Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "i915_reg.h"
  8#include "intel_gt.h"
  9#include "intel_gt_clock_utils.h"
 10#include "intel_gt_print.h"
 11#include "intel_gt_regs.h"
 12#include "soc/intel_dram.h"
 13
 14static u32 read_reference_ts_freq(struct intel_uncore *uncore)
 15{
 16	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
 17	u32 base_freq, frac_freq;
 18
 19	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 20		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 21	base_freq *= 1000000;
 22
 23	frac_freq = ((ts_override &
 24		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 25		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 26	frac_freq = 1000000 / (frac_freq + 1);
 27
 28	return base_freq + frac_freq;
 29}
 30
 31static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
 32					u32 rpm_config_reg)
 33{
 34	u32 f19_2_mhz = 19200000;
 35	u32 f24_mhz = 24000000;
 36	u32 f25_mhz = 25000000;
 37	u32 f38_4_mhz = 38400000;
 38	u32 crystal_clock =
 39		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 40		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 41
 42	switch (crystal_clock) {
 43	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 44		return f24_mhz;
 45	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 46		return f19_2_mhz;
 47	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 48		return f38_4_mhz;
 49	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 50		return f25_mhz;
 51	default:
 52		MISSING_CASE(crystal_clock);
 53		return 0;
 54	}
 55}
 56
 57static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
 58{
 59	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 60	u32 freq = 0;
 61
 62	/*
 63	 * Note that on gen11+, the clock frequency may be reconfigured.
 64	 * We do not, and we assume nobody else does.
 65	 *
 66	 * First figure out the reference frequency. There are 2 ways
 67	 * we can compute the frequency, either through the
 68	 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 69	 * tells us which one we should use.
 70	 */
 71	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 72		freq = read_reference_ts_freq(uncore);
 73	} else {
 74		u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
 75
 76		freq = gen11_get_crystal_clock_freq(uncore, c0);
 77
 78		/*
 79		 * Now figure out how the command stream's timestamp
 80		 * register increments from this frequency (it might
 81		 * increment only every few clock cycle).
 82		 */
 83		freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 84			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 85	}
 86
 87	return freq;
 88}
 89
 90static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
 91{
 92	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 93	u32 freq = 0;
 94
 95	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 96		freq = read_reference_ts_freq(uncore);
 97	} else {
 98		freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
 99
100		/*
101		 * Now figure out how the command stream's timestamp
102		 * register increments from this frequency (it might
103		 * increment only every few clock cycle).
104		 */
105		freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
106			      CTC_SHIFT_PARAMETER_SHIFT);
107	}
108
109	return freq;
110}
111
112static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
113{
114	/*
115	 * PRMs say:
116	 *
117	 *     "The PCU TSC counts 10ns increments; this timestamp
118	 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
119	 *      rolling over every 1.5 hours).
120	 */
121	return 12500000;
122}
123
124static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
125{
126	/*
127	 * 63:32 increments every 1000 ns
128	 * 31:0 mbz
129	 */
130	return 1000000000 / 1000;
131}
132
133static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
134{
135	/*
136	 * 63:20 increments every 1/4 ns
137	 * 19:0 mbz
138	 *
139	 * -> 63:32 increments every 1024 ns
140	 */
141	return 1000000000 / 1024;
142}
143
144static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
145{
146	/*
147	 * PRMs say:
148	 *
149	 *     "The value in this register increments once every 16
150	 *      hclks." (through the “Clocking Configuration”
151	 *      (“CLKCFG”) MCHBAR register)
152	 *
153	 * Testing on actual hardware has shown there is no /16.
154	 */
155	return DIV_ROUND_CLOSEST(i9xx_fsb_freq(uncore->i915), 4) * 1000;
156}
157
158static u32 read_clock_frequency(struct intel_uncore *uncore)
159{
160	if (GRAPHICS_VER(uncore->i915) >= 11)
161		return gen11_read_clock_frequency(uncore);
162	else if (GRAPHICS_VER(uncore->i915) >= 9)
163		return gen9_read_clock_frequency(uncore);
164	else if (GRAPHICS_VER(uncore->i915) >= 6)
165		return gen6_read_clock_frequency(uncore);
166	else if (GRAPHICS_VER(uncore->i915) == 5)
167		return gen5_read_clock_frequency(uncore);
168	else if (IS_G4X(uncore->i915))
169		return g4x_read_clock_frequency(uncore);
170	else if (GRAPHICS_VER(uncore->i915) == 4)
171		return gen4_read_clock_frequency(uncore);
172	else
173		return 0;
174}
175
176void intel_gt_init_clock_frequency(struct intel_gt *gt)
177{
178	gt->clock_frequency = read_clock_frequency(gt->uncore);
179
180	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
181	if (GRAPHICS_VER(gt->i915) == 11)
182		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
183	else if (gt->clock_frequency)
184		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
185
186	GT_TRACE(gt,
187		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
188		 gt->clock_frequency / 1000,
189		 gt->clock_period_ns,
190		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
191			 USEC_PER_SEC));
192}
193
194#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
195void intel_gt_check_clock_frequency(const struct intel_gt *gt)
196{
197	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
198		gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
199		       gt->clock_frequency,
200		       read_clock_frequency(gt->uncore));
201	}
202}
203#endif
204
205static u64 div_u64_roundup(u64 nom, u32 den)
206{
207	return div_u64(nom + den - 1, den);
208}
209
210u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
211{
212	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
213}
214
215u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
216{
217	return intel_gt_clock_interval_to_ns(gt, 16 * count);
218}
219
220u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
221{
222	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
223}
224
225u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
226{
227	u64 val;
228
229	/*
230	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
231	 * 8300) freezing up around GPU hangs. Looks as if even
232	 * scheduling/timer interrupts start misbehaving if the RPS
233	 * EI/thresholds are "bad", leading to a very sluggish or even
234	 * frozen machine.
235	 */
236	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
237	if (GRAPHICS_VER(gt->i915) == 6)
238		val = div_u64_roundup(val, 25) * 25;
239
240	return val;
241}