Loading...
1/*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/errno.h>
25#include <linux/firewire.h>
26#include <linux/firewire-constants.h>
27#include <linux/fs.h>
28#include <linux/init.h>
29#include <linux/idr.h>
30#include <linux/jiffies.h>
31#include <linux/kernel.h>
32#include <linux/list.h>
33#include <linux/module.h>
34#include <linux/rculist.h>
35#include <linux/slab.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/timer.h>
39#include <linux/types.h>
40#include <linux/workqueue.h>
41
42#include <asm/byteorder.h>
43
44#include "core.h"
45
46#define HEADER_PRI(pri) ((pri) << 0)
47#define HEADER_TCODE(tcode) ((tcode) << 4)
48#define HEADER_RETRY(retry) ((retry) << 8)
49#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
50#define HEADER_DESTINATION(destination) ((destination) << 16)
51#define HEADER_SOURCE(source) ((source) << 16)
52#define HEADER_RCODE(rcode) ((rcode) << 12)
53#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
54#define HEADER_DATA_LENGTH(length) ((length) << 16)
55#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
56
57#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
58#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
59#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
60#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
61#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
62#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
63#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
64#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
65
66#define HEADER_DESTINATION_IS_BROADCAST(q) \
67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68
69#define PHY_PACKET_CONFIG 0x0
70#define PHY_PACKET_LINK_ON 0x1
71#define PHY_PACKET_SELF_ID 0x2
72
73#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
74#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
75#define PHY_IDENTIFIER(id) ((id) << 30)
76
77/* returns 0 if the split timeout handler is already running */
78static int try_cancel_split_timeout(struct fw_transaction *t)
79{
80 if (t->is_split_transaction)
81 return del_timer(&t->split_timeout_timer);
82 else
83 return 1;
84}
85
86static int close_transaction(struct fw_transaction *transaction,
87 struct fw_card *card, int rcode)
88{
89 struct fw_transaction *t;
90 unsigned long flags;
91
92 spin_lock_irqsave(&card->lock, flags);
93 list_for_each_entry(t, &card->transaction_list, link) {
94 if (t == transaction) {
95 if (!try_cancel_split_timeout(t)) {
96 spin_unlock_irqrestore(&card->lock, flags);
97 goto timed_out;
98 }
99 list_del_init(&t->link);
100 card->tlabel_mask &= ~(1ULL << t->tlabel);
101 break;
102 }
103 }
104 spin_unlock_irqrestore(&card->lock, flags);
105
106 if (&t->link != &card->transaction_list) {
107 t->callback(card, rcode, NULL, 0, t->callback_data);
108 return 0;
109 }
110
111 timed_out:
112 return -ENOENT;
113}
114
115/*
116 * Only valid for transactions that are potentially pending (ie have
117 * been sent).
118 */
119int fw_cancel_transaction(struct fw_card *card,
120 struct fw_transaction *transaction)
121{
122 /*
123 * Cancel the packet transmission if it's still queued. That
124 * will call the packet transmission callback which cancels
125 * the transaction.
126 */
127
128 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129 return 0;
130
131 /*
132 * If the request packet has already been sent, we need to see
133 * if the transaction is still pending and remove it in that case.
134 */
135
136 return close_transaction(transaction, card, RCODE_CANCELLED);
137}
138EXPORT_SYMBOL(fw_cancel_transaction);
139
140static void split_transaction_timeout_callback(unsigned long data)
141{
142 struct fw_transaction *t = (struct fw_transaction *)data;
143 struct fw_card *card = t->card;
144 unsigned long flags;
145
146 spin_lock_irqsave(&card->lock, flags);
147 if (list_empty(&t->link)) {
148 spin_unlock_irqrestore(&card->lock, flags);
149 return;
150 }
151 list_del(&t->link);
152 card->tlabel_mask &= ~(1ULL << t->tlabel);
153 spin_unlock_irqrestore(&card->lock, flags);
154
155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156}
157
158static void start_split_transaction_timeout(struct fw_transaction *t,
159 struct fw_card *card)
160{
161 unsigned long flags;
162
163 spin_lock_irqsave(&card->lock, flags);
164
165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166 spin_unlock_irqrestore(&card->lock, flags);
167 return;
168 }
169
170 t->is_split_transaction = true;
171 mod_timer(&t->split_timeout_timer,
172 jiffies + card->split_timeout_jiffies);
173
174 spin_unlock_irqrestore(&card->lock, flags);
175}
176
177static void transmit_complete_callback(struct fw_packet *packet,
178 struct fw_card *card, int status)
179{
180 struct fw_transaction *t =
181 container_of(packet, struct fw_transaction, packet);
182
183 switch (status) {
184 case ACK_COMPLETE:
185 close_transaction(t, card, RCODE_COMPLETE);
186 break;
187 case ACK_PENDING:
188 start_split_transaction_timeout(t, card);
189 break;
190 case ACK_BUSY_X:
191 case ACK_BUSY_A:
192 case ACK_BUSY_B:
193 close_transaction(t, card, RCODE_BUSY);
194 break;
195 case ACK_DATA_ERROR:
196 close_transaction(t, card, RCODE_DATA_ERROR);
197 break;
198 case ACK_TYPE_ERROR:
199 close_transaction(t, card, RCODE_TYPE_ERROR);
200 break;
201 default:
202 /*
203 * In this case the ack is really a juju specific
204 * rcode, so just forward that to the callback.
205 */
206 close_transaction(t, card, status);
207 break;
208 }
209}
210
211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212 int destination_id, int source_id, int generation, int speed,
213 unsigned long long offset, void *payload, size_t length)
214{
215 int ext_tcode;
216
217 if (tcode == TCODE_STREAM_DATA) {
218 packet->header[0] =
219 HEADER_DATA_LENGTH(length) |
220 destination_id |
221 HEADER_TCODE(TCODE_STREAM_DATA);
222 packet->header_length = 4;
223 packet->payload = payload;
224 packet->payload_length = length;
225
226 goto common;
227 }
228
229 if (tcode > 0x10) {
230 ext_tcode = tcode & ~0x10;
231 tcode = TCODE_LOCK_REQUEST;
232 } else
233 ext_tcode = 0;
234
235 packet->header[0] =
236 HEADER_RETRY(RETRY_X) |
237 HEADER_TLABEL(tlabel) |
238 HEADER_TCODE(tcode) |
239 HEADER_DESTINATION(destination_id);
240 packet->header[1] =
241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242 packet->header[2] =
243 offset;
244
245 switch (tcode) {
246 case TCODE_WRITE_QUADLET_REQUEST:
247 packet->header[3] = *(u32 *)payload;
248 packet->header_length = 16;
249 packet->payload_length = 0;
250 break;
251
252 case TCODE_LOCK_REQUEST:
253 case TCODE_WRITE_BLOCK_REQUEST:
254 packet->header[3] =
255 HEADER_DATA_LENGTH(length) |
256 HEADER_EXTENDED_TCODE(ext_tcode);
257 packet->header_length = 16;
258 packet->payload = payload;
259 packet->payload_length = length;
260 break;
261
262 case TCODE_READ_QUADLET_REQUEST:
263 packet->header_length = 12;
264 packet->payload_length = 0;
265 break;
266
267 case TCODE_READ_BLOCK_REQUEST:
268 packet->header[3] =
269 HEADER_DATA_LENGTH(length) |
270 HEADER_EXTENDED_TCODE(ext_tcode);
271 packet->header_length = 16;
272 packet->payload_length = 0;
273 break;
274
275 default:
276 WARN(1, "wrong tcode %d\n", tcode);
277 }
278 common:
279 packet->speed = speed;
280 packet->generation = generation;
281 packet->ack = 0;
282 packet->payload_mapped = false;
283}
284
285static int allocate_tlabel(struct fw_card *card)
286{
287 int tlabel;
288
289 tlabel = card->current_tlabel;
290 while (card->tlabel_mask & (1ULL << tlabel)) {
291 tlabel = (tlabel + 1) & 0x3f;
292 if (tlabel == card->current_tlabel)
293 return -EBUSY;
294 }
295
296 card->current_tlabel = (tlabel + 1) & 0x3f;
297 card->tlabel_mask |= 1ULL << tlabel;
298
299 return tlabel;
300}
301
302/**
303 * fw_send_request() - submit a request packet for transmission
304 * @card: interface to send the request at
305 * @t: transaction instance to which the request belongs
306 * @tcode: transaction code
307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
308 * @generation: bus generation in which request and response are valid
309 * @speed: transmission speed
310 * @offset: 48bit wide offset into destination's address space
311 * @payload: data payload for the request subaction
312 * @length: length of the payload, in bytes
313 * @callback: function to be called when the transaction is completed
314 * @callback_data: data to be passed to the transaction completion callback
315 *
316 * Submit a request packet into the asynchronous request transmission queue.
317 * Can be called from atomic context. If you prefer a blocking API, use
318 * fw_run_transaction() in a context that can sleep.
319 *
320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 *
323 * Make sure that the value in @destination_id is not older than the one in
324 * @generation. Otherwise the request is in danger to be sent to a wrong node.
325 *
326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328 * It will contain tag, channel, and sy data instead of a node ID then.
329 *
330 * The payload buffer at @data is going to be DMA-mapped except in case of
331 * @length <= 8 or of local (loopback) requests. Hence make sure that the
332 * buffer complies with the restrictions of the streaming DMA mapping API.
333 * @payload must not be freed before the @callback is called.
334 *
335 * In case of request types without payload, @data is NULL and @length is 0.
336 *
337 * After the transaction is completed successfully or unsuccessfully, the
338 * @callback will be called. Among its parameters is the response code which
339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343 * generation, or missing ACK respectively.
344 *
345 * Note some timing corner cases: fw_send_request() may complete much earlier
346 * than when the request packet actually hits the wire. On the other hand,
347 * transaction completion and hence execution of @callback may happen even
348 * before fw_send_request() returns.
349 */
350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 int destination_id, int generation, int speed,
352 unsigned long long offset, void *payload, size_t length,
353 fw_transaction_callback_t callback, void *callback_data)
354{
355 unsigned long flags;
356 int tlabel;
357
358 /*
359 * Allocate tlabel from the bitmap and put the transaction on
360 * the list while holding the card spinlock.
361 */
362
363 spin_lock_irqsave(&card->lock, flags);
364
365 tlabel = allocate_tlabel(card);
366 if (tlabel < 0) {
367 spin_unlock_irqrestore(&card->lock, flags);
368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369 return;
370 }
371
372 t->node_id = destination_id;
373 t->tlabel = tlabel;
374 t->card = card;
375 t->is_split_transaction = false;
376 setup_timer(&t->split_timeout_timer,
377 split_transaction_timeout_callback, (unsigned long)t);
378 t->callback = callback;
379 t->callback_data = callback_data;
380
381 fw_fill_request(&t->packet, tcode, t->tlabel,
382 destination_id, card->node_id, generation,
383 speed, offset, payload, length);
384 t->packet.callback = transmit_complete_callback;
385
386 list_add_tail(&t->link, &card->transaction_list);
387
388 spin_unlock_irqrestore(&card->lock, flags);
389
390 card->driver->send_request(card, &t->packet);
391}
392EXPORT_SYMBOL(fw_send_request);
393
394struct transaction_callback_data {
395 struct completion done;
396 void *payload;
397 int rcode;
398};
399
400static void transaction_callback(struct fw_card *card, int rcode,
401 void *payload, size_t length, void *data)
402{
403 struct transaction_callback_data *d = data;
404
405 if (rcode == RCODE_COMPLETE)
406 memcpy(d->payload, payload, length);
407 d->rcode = rcode;
408 complete(&d->done);
409}
410
411/**
412 * fw_run_transaction() - send request and sleep until transaction is completed
413 *
414 * Returns the RCODE. See fw_send_request() for parameter documentation.
415 * Unlike fw_send_request(), @data points to the payload of the request or/and
416 * to the payload of the response. DMA mapping restrictions apply to outbound
417 * request payloads of >= 8 bytes but not to inbound response payloads.
418 */
419int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
420 int generation, int speed, unsigned long long offset,
421 void *payload, size_t length)
422{
423 struct transaction_callback_data d;
424 struct fw_transaction t;
425
426 init_timer_on_stack(&t.split_timeout_timer);
427 init_completion(&d.done);
428 d.payload = payload;
429 fw_send_request(card, &t, tcode, destination_id, generation, speed,
430 offset, payload, length, transaction_callback, &d);
431 wait_for_completion(&d.done);
432 destroy_timer_on_stack(&t.split_timeout_timer);
433
434 return d.rcode;
435}
436EXPORT_SYMBOL(fw_run_transaction);
437
438static DEFINE_MUTEX(phy_config_mutex);
439static DECLARE_COMPLETION(phy_config_done);
440
441static void transmit_phy_packet_callback(struct fw_packet *packet,
442 struct fw_card *card, int status)
443{
444 complete(&phy_config_done);
445}
446
447static struct fw_packet phy_config_packet = {
448 .header_length = 12,
449 .header[0] = TCODE_LINK_INTERNAL << 4,
450 .payload_length = 0,
451 .speed = SCODE_100,
452 .callback = transmit_phy_packet_callback,
453};
454
455void fw_send_phy_config(struct fw_card *card,
456 int node_id, int generation, int gap_count)
457{
458 long timeout = DIV_ROUND_UP(HZ, 10);
459 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
460
461 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
462 data |= PHY_CONFIG_ROOT_ID(node_id);
463
464 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
465 gap_count = card->driver->read_phy_reg(card, 1);
466 if (gap_count < 0)
467 return;
468
469 gap_count &= 63;
470 if (gap_count == 63)
471 return;
472 }
473 data |= PHY_CONFIG_GAP_COUNT(gap_count);
474
475 mutex_lock(&phy_config_mutex);
476
477 phy_config_packet.header[1] = data;
478 phy_config_packet.header[2] = ~data;
479 phy_config_packet.generation = generation;
480 reinit_completion(&phy_config_done);
481
482 card->driver->send_request(card, &phy_config_packet);
483 wait_for_completion_timeout(&phy_config_done, timeout);
484
485 mutex_unlock(&phy_config_mutex);
486}
487
488static struct fw_address_handler *lookup_overlapping_address_handler(
489 struct list_head *list, unsigned long long offset, size_t length)
490{
491 struct fw_address_handler *handler;
492
493 list_for_each_entry_rcu(handler, list, link) {
494 if (handler->offset < offset + length &&
495 offset < handler->offset + handler->length)
496 return handler;
497 }
498
499 return NULL;
500}
501
502static bool is_enclosing_handler(struct fw_address_handler *handler,
503 unsigned long long offset, size_t length)
504{
505 return handler->offset <= offset &&
506 offset + length <= handler->offset + handler->length;
507}
508
509static struct fw_address_handler *lookup_enclosing_address_handler(
510 struct list_head *list, unsigned long long offset, size_t length)
511{
512 struct fw_address_handler *handler;
513
514 list_for_each_entry_rcu(handler, list, link) {
515 if (is_enclosing_handler(handler, offset, length))
516 return handler;
517 }
518
519 return NULL;
520}
521
522static DEFINE_SPINLOCK(address_handler_list_lock);
523static LIST_HEAD(address_handler_list);
524
525const struct fw_address_region fw_high_memory_region =
526 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
527EXPORT_SYMBOL(fw_high_memory_region);
528
529static const struct fw_address_region low_memory_region =
530 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
531
532#if 0
533const struct fw_address_region fw_private_region =
534 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
535const struct fw_address_region fw_csr_region =
536 { .start = CSR_REGISTER_BASE,
537 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
538const struct fw_address_region fw_unit_space_region =
539 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
540#endif /* 0 */
541
542static bool is_in_fcp_region(u64 offset, size_t length)
543{
544 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
545 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
546}
547
548/**
549 * fw_core_add_address_handler() - register for incoming requests
550 * @handler: callback
551 * @region: region in the IEEE 1212 node space address range
552 *
553 * region->start, ->end, and handler->length have to be quadlet-aligned.
554 *
555 * When a request is received that falls within the specified address range,
556 * the specified callback is invoked. The parameters passed to the callback
557 * give the details of the particular request.
558 *
559 * To be called in process context.
560 * Return value: 0 on success, non-zero otherwise.
561 *
562 * The start offset of the handler's address region is determined by
563 * fw_core_add_address_handler() and is returned in handler->offset.
564 *
565 * Address allocations are exclusive, except for the FCP registers.
566 */
567int fw_core_add_address_handler(struct fw_address_handler *handler,
568 const struct fw_address_region *region)
569{
570 struct fw_address_handler *other;
571 int ret = -EBUSY;
572
573 if (region->start & 0xffff000000000003ULL ||
574 region->start >= region->end ||
575 region->end > 0x0001000000000000ULL ||
576 handler->length & 3 ||
577 handler->length == 0)
578 return -EINVAL;
579
580 spin_lock(&address_handler_list_lock);
581
582 handler->offset = region->start;
583 while (handler->offset + handler->length <= region->end) {
584 if (is_in_fcp_region(handler->offset, handler->length))
585 other = NULL;
586 else
587 other = lookup_overlapping_address_handler
588 (&address_handler_list,
589 handler->offset, handler->length);
590 if (other != NULL) {
591 handler->offset += other->length;
592 } else {
593 list_add_tail_rcu(&handler->link, &address_handler_list);
594 ret = 0;
595 break;
596 }
597 }
598
599 spin_unlock(&address_handler_list_lock);
600
601 return ret;
602}
603EXPORT_SYMBOL(fw_core_add_address_handler);
604
605/**
606 * fw_core_remove_address_handler() - unregister an address handler
607 *
608 * To be called in process context.
609 *
610 * When fw_core_remove_address_handler() returns, @handler->callback() is
611 * guaranteed to not run on any CPU anymore.
612 */
613void fw_core_remove_address_handler(struct fw_address_handler *handler)
614{
615 spin_lock(&address_handler_list_lock);
616 list_del_rcu(&handler->link);
617 spin_unlock(&address_handler_list_lock);
618 synchronize_rcu();
619}
620EXPORT_SYMBOL(fw_core_remove_address_handler);
621
622struct fw_request {
623 struct fw_packet response;
624 u32 request_header[4];
625 int ack;
626 u32 length;
627 u32 data[0];
628};
629
630static void free_response_callback(struct fw_packet *packet,
631 struct fw_card *card, int status)
632{
633 struct fw_request *request;
634
635 request = container_of(packet, struct fw_request, response);
636 kfree(request);
637}
638
639int fw_get_response_length(struct fw_request *r)
640{
641 int tcode, ext_tcode, data_length;
642
643 tcode = HEADER_GET_TCODE(r->request_header[0]);
644
645 switch (tcode) {
646 case TCODE_WRITE_QUADLET_REQUEST:
647 case TCODE_WRITE_BLOCK_REQUEST:
648 return 0;
649
650 case TCODE_READ_QUADLET_REQUEST:
651 return 4;
652
653 case TCODE_READ_BLOCK_REQUEST:
654 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
655 return data_length;
656
657 case TCODE_LOCK_REQUEST:
658 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
659 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
660 switch (ext_tcode) {
661 case EXTCODE_FETCH_ADD:
662 case EXTCODE_LITTLE_ADD:
663 return data_length;
664 default:
665 return data_length / 2;
666 }
667
668 default:
669 WARN(1, "wrong tcode %d\n", tcode);
670 return 0;
671 }
672}
673
674void fw_fill_response(struct fw_packet *response, u32 *request_header,
675 int rcode, void *payload, size_t length)
676{
677 int tcode, tlabel, extended_tcode, source, destination;
678
679 tcode = HEADER_GET_TCODE(request_header[0]);
680 tlabel = HEADER_GET_TLABEL(request_header[0]);
681 source = HEADER_GET_DESTINATION(request_header[0]);
682 destination = HEADER_GET_SOURCE(request_header[1]);
683 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
684
685 response->header[0] =
686 HEADER_RETRY(RETRY_1) |
687 HEADER_TLABEL(tlabel) |
688 HEADER_DESTINATION(destination);
689 response->header[1] =
690 HEADER_SOURCE(source) |
691 HEADER_RCODE(rcode);
692 response->header[2] = 0;
693
694 switch (tcode) {
695 case TCODE_WRITE_QUADLET_REQUEST:
696 case TCODE_WRITE_BLOCK_REQUEST:
697 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
698 response->header_length = 12;
699 response->payload_length = 0;
700 break;
701
702 case TCODE_READ_QUADLET_REQUEST:
703 response->header[0] |=
704 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
705 if (payload != NULL)
706 response->header[3] = *(u32 *)payload;
707 else
708 response->header[3] = 0;
709 response->header_length = 16;
710 response->payload_length = 0;
711 break;
712
713 case TCODE_READ_BLOCK_REQUEST:
714 case TCODE_LOCK_REQUEST:
715 response->header[0] |= HEADER_TCODE(tcode + 2);
716 response->header[3] =
717 HEADER_DATA_LENGTH(length) |
718 HEADER_EXTENDED_TCODE(extended_tcode);
719 response->header_length = 16;
720 response->payload = payload;
721 response->payload_length = length;
722 break;
723
724 default:
725 WARN(1, "wrong tcode %d\n", tcode);
726 }
727
728 response->payload_mapped = false;
729}
730EXPORT_SYMBOL(fw_fill_response);
731
732static u32 compute_split_timeout_timestamp(struct fw_card *card,
733 u32 request_timestamp)
734{
735 unsigned int cycles;
736 u32 timestamp;
737
738 cycles = card->split_timeout_cycles;
739 cycles += request_timestamp & 0x1fff;
740
741 timestamp = request_timestamp & ~0x1fff;
742 timestamp += (cycles / 8000) << 13;
743 timestamp |= cycles % 8000;
744
745 return timestamp;
746}
747
748static struct fw_request *allocate_request(struct fw_card *card,
749 struct fw_packet *p)
750{
751 struct fw_request *request;
752 u32 *data, length;
753 int request_tcode;
754
755 request_tcode = HEADER_GET_TCODE(p->header[0]);
756 switch (request_tcode) {
757 case TCODE_WRITE_QUADLET_REQUEST:
758 data = &p->header[3];
759 length = 4;
760 break;
761
762 case TCODE_WRITE_BLOCK_REQUEST:
763 case TCODE_LOCK_REQUEST:
764 data = p->payload;
765 length = HEADER_GET_DATA_LENGTH(p->header[3]);
766 break;
767
768 case TCODE_READ_QUADLET_REQUEST:
769 data = NULL;
770 length = 4;
771 break;
772
773 case TCODE_READ_BLOCK_REQUEST:
774 data = NULL;
775 length = HEADER_GET_DATA_LENGTH(p->header[3]);
776 break;
777
778 default:
779 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
780 p->header[0], p->header[1], p->header[2]);
781 return NULL;
782 }
783
784 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
785 if (request == NULL)
786 return NULL;
787
788 request->response.speed = p->speed;
789 request->response.timestamp =
790 compute_split_timeout_timestamp(card, p->timestamp);
791 request->response.generation = p->generation;
792 request->response.ack = 0;
793 request->response.callback = free_response_callback;
794 request->ack = p->ack;
795 request->length = length;
796 if (data)
797 memcpy(request->data, data, length);
798
799 memcpy(request->request_header, p->header, sizeof(p->header));
800
801 return request;
802}
803
804void fw_send_response(struct fw_card *card,
805 struct fw_request *request, int rcode)
806{
807 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
808 return;
809
810 /* unified transaction or broadcast transaction: don't respond */
811 if (request->ack != ACK_PENDING ||
812 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
813 kfree(request);
814 return;
815 }
816
817 if (rcode == RCODE_COMPLETE)
818 fw_fill_response(&request->response, request->request_header,
819 rcode, request->data,
820 fw_get_response_length(request));
821 else
822 fw_fill_response(&request->response, request->request_header,
823 rcode, NULL, 0);
824
825 card->driver->send_response(card, &request->response);
826}
827EXPORT_SYMBOL(fw_send_response);
828
829/**
830 * fw_get_request_speed() - returns speed at which the @request was received
831 */
832int fw_get_request_speed(struct fw_request *request)
833{
834 return request->response.speed;
835}
836EXPORT_SYMBOL(fw_get_request_speed);
837
838static void handle_exclusive_region_request(struct fw_card *card,
839 struct fw_packet *p,
840 struct fw_request *request,
841 unsigned long long offset)
842{
843 struct fw_address_handler *handler;
844 int tcode, destination, source;
845
846 destination = HEADER_GET_DESTINATION(p->header[0]);
847 source = HEADER_GET_SOURCE(p->header[1]);
848 tcode = HEADER_GET_TCODE(p->header[0]);
849 if (tcode == TCODE_LOCK_REQUEST)
850 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
851
852 rcu_read_lock();
853 handler = lookup_enclosing_address_handler(&address_handler_list,
854 offset, request->length);
855 if (handler)
856 handler->address_callback(card, request,
857 tcode, destination, source,
858 p->generation, offset,
859 request->data, request->length,
860 handler->callback_data);
861 rcu_read_unlock();
862
863 if (!handler)
864 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
865}
866
867static void handle_fcp_region_request(struct fw_card *card,
868 struct fw_packet *p,
869 struct fw_request *request,
870 unsigned long long offset)
871{
872 struct fw_address_handler *handler;
873 int tcode, destination, source;
874
875 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
876 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
877 request->length > 0x200) {
878 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
879
880 return;
881 }
882
883 tcode = HEADER_GET_TCODE(p->header[0]);
884 destination = HEADER_GET_DESTINATION(p->header[0]);
885 source = HEADER_GET_SOURCE(p->header[1]);
886
887 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
888 tcode != TCODE_WRITE_BLOCK_REQUEST) {
889 fw_send_response(card, request, RCODE_TYPE_ERROR);
890
891 return;
892 }
893
894 rcu_read_lock();
895 list_for_each_entry_rcu(handler, &address_handler_list, link) {
896 if (is_enclosing_handler(handler, offset, request->length))
897 handler->address_callback(card, NULL, tcode,
898 destination, source,
899 p->generation, offset,
900 request->data,
901 request->length,
902 handler->callback_data);
903 }
904 rcu_read_unlock();
905
906 fw_send_response(card, request, RCODE_COMPLETE);
907}
908
909void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
910{
911 struct fw_request *request;
912 unsigned long long offset;
913
914 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
915 return;
916
917 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
918 fw_cdev_handle_phy_packet(card, p);
919 return;
920 }
921
922 request = allocate_request(card, p);
923 if (request == NULL) {
924 /* FIXME: send statically allocated busy packet. */
925 return;
926 }
927
928 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
929 p->header[2];
930
931 if (!is_in_fcp_region(offset, request->length))
932 handle_exclusive_region_request(card, p, request, offset);
933 else
934 handle_fcp_region_request(card, p, request, offset);
935
936}
937EXPORT_SYMBOL(fw_core_handle_request);
938
939void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
940{
941 struct fw_transaction *t;
942 unsigned long flags;
943 u32 *data;
944 size_t data_length;
945 int tcode, tlabel, source, rcode;
946
947 tcode = HEADER_GET_TCODE(p->header[0]);
948 tlabel = HEADER_GET_TLABEL(p->header[0]);
949 source = HEADER_GET_SOURCE(p->header[1]);
950 rcode = HEADER_GET_RCODE(p->header[1]);
951
952 spin_lock_irqsave(&card->lock, flags);
953 list_for_each_entry(t, &card->transaction_list, link) {
954 if (t->node_id == source && t->tlabel == tlabel) {
955 if (!try_cancel_split_timeout(t)) {
956 spin_unlock_irqrestore(&card->lock, flags);
957 goto timed_out;
958 }
959 list_del_init(&t->link);
960 card->tlabel_mask &= ~(1ULL << t->tlabel);
961 break;
962 }
963 }
964 spin_unlock_irqrestore(&card->lock, flags);
965
966 if (&t->link == &card->transaction_list) {
967 timed_out:
968 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
969 source, tlabel);
970 return;
971 }
972
973 /*
974 * FIXME: sanity check packet, is length correct, does tcodes
975 * and addresses match.
976 */
977
978 switch (tcode) {
979 case TCODE_READ_QUADLET_RESPONSE:
980 data = (u32 *) &p->header[3];
981 data_length = 4;
982 break;
983
984 case TCODE_WRITE_RESPONSE:
985 data = NULL;
986 data_length = 0;
987 break;
988
989 case TCODE_READ_BLOCK_RESPONSE:
990 case TCODE_LOCK_RESPONSE:
991 data = p->payload;
992 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
993 break;
994
995 default:
996 /* Should never happen, this is just to shut up gcc. */
997 data = NULL;
998 data_length = 0;
999 break;
1000 }
1001
1002 /*
1003 * The response handler may be executed while the request handler
1004 * is still pending. Cancel the request handler.
1005 */
1006 card->driver->cancel_packet(card, &t->packet);
1007
1008 t->callback(card, rcode, data, data_length, t->callback_data);
1009}
1010EXPORT_SYMBOL(fw_core_handle_response);
1011
1012/**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
1016const char *fw_rcode_string(int rcode)
1017{
1018 static const char *const names[] = {
1019 [RCODE_COMPLETE] = "no error",
1020 [RCODE_CONFLICT_ERROR] = "conflict error",
1021 [RCODE_DATA_ERROR] = "data error",
1022 [RCODE_TYPE_ERROR] = "type error",
1023 [RCODE_ADDRESS_ERROR] = "address error",
1024 [RCODE_SEND_ERROR] = "send error",
1025 [RCODE_CANCELLED] = "timeout",
1026 [RCODE_BUSY] = "busy",
1027 [RCODE_GENERATION] = "bus reset",
1028 [RCODE_NO_ACK] = "no ack",
1029 };
1030
1031 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032 return names[rcode];
1033 else
1034 return "unknown";
1035}
1036EXPORT_SYMBOL(fw_rcode_string);
1037
1038static const struct fw_address_region topology_map_region =
1039 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
1042static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043 int tcode, int destination, int source, int generation,
1044 unsigned long long offset, void *payload, size_t length,
1045 void *callback_data)
1046{
1047 int start;
1048
1049 if (!TCODE_IS_READ_REQUEST(tcode)) {
1050 fw_send_response(card, request, RCODE_TYPE_ERROR);
1051 return;
1052 }
1053
1054 if ((offset & 3) > 0 || (length & 3) > 0) {
1055 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056 return;
1057 }
1058
1059 start = (offset - topology_map_region.start) / 4;
1060 memcpy(payload, &card->topology_map[start], length);
1061
1062 fw_send_response(card, request, RCODE_COMPLETE);
1063}
1064
1065static struct fw_address_handler topology_map = {
1066 .length = 0x400,
1067 .address_callback = handle_topology_map,
1068};
1069
1070static const struct fw_address_region registers_region =
1071 { .start = CSR_REGISTER_BASE,
1072 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
1074static void update_split_timeout(struct fw_card *card)
1075{
1076 unsigned int cycles;
1077
1078 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081 cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083 card->split_timeout_cycles = cycles;
1084 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085}
1086
1087static void handle_registers(struct fw_card *card, struct fw_request *request,
1088 int tcode, int destination, int source, int generation,
1089 unsigned long long offset, void *payload, size_t length,
1090 void *callback_data)
1091{
1092 int reg = offset & ~CSR_REGISTER_BASE;
1093 __be32 *data = payload;
1094 int rcode = RCODE_COMPLETE;
1095 unsigned long flags;
1096
1097 switch (reg) {
1098 case CSR_PRIORITY_BUDGET:
1099 if (!card->priority_budget_implemented) {
1100 rcode = RCODE_ADDRESS_ERROR;
1101 break;
1102 }
1103 /* else fall through */
1104
1105 case CSR_NODE_IDS:
1106 /*
1107 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109 */
1110 /* fall through */
1111
1112 case CSR_STATE_CLEAR:
1113 case CSR_STATE_SET:
1114 case CSR_CYCLE_TIME:
1115 case CSR_BUS_TIME:
1116 case CSR_BUSY_TIMEOUT:
1117 if (tcode == TCODE_READ_QUADLET_REQUEST)
1118 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1119 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121 else
1122 rcode = RCODE_TYPE_ERROR;
1123 break;
1124
1125 case CSR_RESET_START:
1126 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127 card->driver->write_csr(card, CSR_STATE_CLEAR,
1128 CSR_STATE_BIT_ABDICATE);
1129 else
1130 rcode = RCODE_TYPE_ERROR;
1131 break;
1132
1133 case CSR_SPLIT_TIMEOUT_HI:
1134 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135 *data = cpu_to_be32(card->split_timeout_hi);
1136 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137 spin_lock_irqsave(&card->lock, flags);
1138 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139 update_split_timeout(card);
1140 spin_unlock_irqrestore(&card->lock, flags);
1141 } else {
1142 rcode = RCODE_TYPE_ERROR;
1143 }
1144 break;
1145
1146 case CSR_SPLIT_TIMEOUT_LO:
1147 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148 *data = cpu_to_be32(card->split_timeout_lo);
1149 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150 spin_lock_irqsave(&card->lock, flags);
1151 card->split_timeout_lo =
1152 be32_to_cpu(*data) & 0xfff80000;
1153 update_split_timeout(card);
1154 spin_unlock_irqrestore(&card->lock, flags);
1155 } else {
1156 rcode = RCODE_TYPE_ERROR;
1157 }
1158 break;
1159
1160 case CSR_MAINT_UTILITY:
1161 if (tcode == TCODE_READ_QUADLET_REQUEST)
1162 *data = card->maint_utility_register;
1163 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164 card->maint_utility_register = *data;
1165 else
1166 rcode = RCODE_TYPE_ERROR;
1167 break;
1168
1169 case CSR_BROADCAST_CHANNEL:
1170 if (tcode == TCODE_READ_QUADLET_REQUEST)
1171 *data = cpu_to_be32(card->broadcast_channel);
1172 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173 card->broadcast_channel =
1174 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175 BROADCAST_CHANNEL_INITIAL;
1176 else
1177 rcode = RCODE_TYPE_ERROR;
1178 break;
1179
1180 case CSR_BUS_MANAGER_ID:
1181 case CSR_BANDWIDTH_AVAILABLE:
1182 case CSR_CHANNELS_AVAILABLE_HI:
1183 case CSR_CHANNELS_AVAILABLE_LO:
1184 /*
1185 * FIXME: these are handled by the OHCI hardware and
1186 * the stack never sees these request. If we add
1187 * support for a new type of controller that doesn't
1188 * handle this in hardware we need to deal with these
1189 * transactions.
1190 */
1191 BUG();
1192 break;
1193
1194 default:
1195 rcode = RCODE_ADDRESS_ERROR;
1196 break;
1197 }
1198
1199 fw_send_response(card, request, rcode);
1200}
1201
1202static struct fw_address_handler registers = {
1203 .length = 0x400,
1204 .address_callback = handle_registers,
1205};
1206
1207static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208 int tcode, int destination, int source, int generation,
1209 unsigned long long offset, void *payload, size_t length,
1210 void *callback_data)
1211{
1212 /*
1213 * This catches requests not handled by the physical DMA unit,
1214 * i.e., wrong transaction types or unauthorized source nodes.
1215 */
1216 fw_send_response(card, request, RCODE_TYPE_ERROR);
1217}
1218
1219static struct fw_address_handler low_memory = {
1220 .length = FW_MAX_PHYSICAL_RANGE,
1221 .address_callback = handle_low_memory,
1222};
1223
1224MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226MODULE_LICENSE("GPL");
1227
1228static const u32 vendor_textual_descriptor[] = {
1229 /* textual descriptor leaf () */
1230 0x00060000,
1231 0x00000000,
1232 0x00000000,
1233 0x4c696e75, /* L i n u */
1234 0x78204669, /* x F i */
1235 0x72657769, /* r e w i */
1236 0x72650000, /* r e */
1237};
1238
1239static const u32 model_textual_descriptor[] = {
1240 /* model descriptor leaf () */
1241 0x00030000,
1242 0x00000000,
1243 0x00000000,
1244 0x4a756a75, /* J u j u */
1245};
1246
1247static struct fw_descriptor vendor_id_descriptor = {
1248 .length = ARRAY_SIZE(vendor_textual_descriptor),
1249 .immediate = 0x03001f11,
1250 .key = 0x81000000,
1251 .data = vendor_textual_descriptor,
1252};
1253
1254static struct fw_descriptor model_id_descriptor = {
1255 .length = ARRAY_SIZE(model_textual_descriptor),
1256 .immediate = 0x17023901,
1257 .key = 0x81000000,
1258 .data = model_textual_descriptor,
1259};
1260
1261static int __init fw_core_init(void)
1262{
1263 int ret;
1264
1265 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1266 if (!fw_workqueue)
1267 return -ENOMEM;
1268
1269 ret = bus_register(&fw_bus_type);
1270 if (ret < 0) {
1271 destroy_workqueue(fw_workqueue);
1272 return ret;
1273 }
1274
1275 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1276 if (fw_cdev_major < 0) {
1277 bus_unregister(&fw_bus_type);
1278 destroy_workqueue(fw_workqueue);
1279 return fw_cdev_major;
1280 }
1281
1282 fw_core_add_address_handler(&topology_map, &topology_map_region);
1283 fw_core_add_address_handler(®isters, ®isters_region);
1284 fw_core_add_address_handler(&low_memory, &low_memory_region);
1285 fw_core_add_descriptor(&vendor_id_descriptor);
1286 fw_core_add_descriptor(&model_id_descriptor);
1287
1288 return 0;
1289}
1290
1291static void __exit fw_core_cleanup(void)
1292{
1293 unregister_chrdev(fw_cdev_major, "firewire");
1294 bus_unregister(&fw_bus_type);
1295 destroy_workqueue(fw_workqueue);
1296 idr_destroy(&fw_device_idr);
1297}
1298
1299module_init(fw_core_init);
1300module_exit(fw_core_cleanup);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/errno.h>
12#include <linux/firewire.h>
13#include <linux/firewire-constants.h>
14#include <linux/fs.h>
15#include <linux/init.h>
16#include <linux/jiffies.h>
17#include <linux/kernel.h>
18#include <linux/list.h>
19#include <linux/module.h>
20#include <linux/rculist.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/timer.h>
25#include <linux/types.h>
26#include <linux/workqueue.h>
27
28#include <asm/byteorder.h>
29
30#include "core.h"
31#include "packet-header-definitions.h"
32#include "phy-packet-definitions.h"
33#include <trace/events/firewire.h>
34
35#define HEADER_DESTINATION_IS_BROADCAST(header) \
36 ((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38/* returns 0 if the split timeout handler is already running */
39static int try_cancel_split_timeout(struct fw_transaction *t)
40{
41 if (t->is_split_transaction)
42 return del_timer(&t->split_timeout_timer);
43 else
44 return 1;
45}
46
47static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 u32 response_tstamp)
49{
50 struct fw_transaction *t = NULL, *iter;
51
52 scoped_guard(spinlock_irqsave, &card->lock) {
53 list_for_each_entry(iter, &card->transaction_list, link) {
54 if (iter == transaction) {
55 if (try_cancel_split_timeout(iter)) {
56 list_del_init(&iter->link);
57 card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 t = iter;
59 }
60 break;
61 }
62 }
63 }
64
65 if (!t)
66 return -ENOENT;
67
68 if (!t->with_tstamp) {
69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 } else {
71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 t->callback_data);
73 }
74
75 return 0;
76}
77
78/*
79 * Only valid for transactions that are potentially pending (ie have
80 * been sent).
81 */
82int fw_cancel_transaction(struct fw_card *card,
83 struct fw_transaction *transaction)
84{
85 u32 tstamp;
86
87 /*
88 * Cancel the packet transmission if it's still queued. That
89 * will call the packet transmission callback which cancels
90 * the transaction.
91 */
92
93 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 return 0;
95
96 /*
97 * If the request packet has already been sent, we need to see
98 * if the transaction is still pending and remove it in that case.
99 */
100
101 if (transaction->packet.ack == 0) {
102 // The timestamp is reused since it was just read now.
103 tstamp = transaction->packet.timestamp;
104 } else {
105 u32 curr_cycle_time = 0;
106
107 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 }
110
111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112}
113EXPORT_SYMBOL(fw_cancel_transaction);
114
115static void split_transaction_timeout_callback(struct timer_list *timer)
116{
117 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
118 struct fw_card *card = t->card;
119
120 scoped_guard(spinlock_irqsave, &card->lock) {
121 if (list_empty(&t->link))
122 return;
123 list_del(&t->link);
124 card->tlabel_mask &= ~(1ULL << t->tlabel);
125 }
126
127 if (!t->with_tstamp) {
128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 } else {
130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 t->split_timeout_cycle, NULL, 0, t->callback_data);
132 }
133}
134
135static void start_split_transaction_timeout(struct fw_transaction *t,
136 struct fw_card *card)
137{
138 guard(spinlock_irqsave)(&card->lock);
139
140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 return;
142
143 t->is_split_transaction = true;
144 mod_timer(&t->split_timeout_timer,
145 jiffies + card->split_timeout_jiffies);
146}
147
148static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149
150static void transmit_complete_callback(struct fw_packet *packet,
151 struct fw_card *card, int status)
152{
153 struct fw_transaction *t =
154 container_of(packet, struct fw_transaction, packet);
155
156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 packet->speed, status, packet->timestamp);
158
159 switch (status) {
160 case ACK_COMPLETE:
161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 break;
163 case ACK_PENDING:
164 {
165 t->split_timeout_cycle =
166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 start_split_transaction_timeout(t, card);
168 break;
169 }
170 case ACK_BUSY_X:
171 case ACK_BUSY_A:
172 case ACK_BUSY_B:
173 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 break;
175 case ACK_DATA_ERROR:
176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 break;
178 case ACK_TYPE_ERROR:
179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 break;
181 default:
182 /*
183 * In this case the ack is really a juju specific
184 * rcode, so just forward that to the callback.
185 */
186 close_transaction(t, card, status, packet->timestamp);
187 break;
188 }
189}
190
191static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 int destination_id, int source_id, int generation, int speed,
193 unsigned long long offset, void *payload, size_t length)
194{
195 int ext_tcode;
196
197 if (tcode == TCODE_STREAM_DATA) {
198 // The value of destination_id argument should include tag, channel, and sy fields
199 // as isochronous packet header has.
200 packet->header[0] = destination_id;
201 isoc_header_set_data_length(packet->header, length);
202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 packet->header_length = 4;
204 packet->payload = payload;
205 packet->payload_length = length;
206
207 goto common;
208 }
209
210 if (tcode > 0x10) {
211 ext_tcode = tcode & ~0x10;
212 tcode = TCODE_LOCK_REQUEST;
213 } else
214 ext_tcode = 0;
215
216 async_header_set_retry(packet->header, RETRY_X);
217 async_header_set_tlabel(packet->header, tlabel);
218 async_header_set_tcode(packet->header, tcode);
219 async_header_set_destination(packet->header, destination_id);
220 async_header_set_source(packet->header, source_id);
221 async_header_set_offset(packet->header, offset);
222
223 switch (tcode) {
224 case TCODE_WRITE_QUADLET_REQUEST:
225 async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 packet->header_length = 16;
227 packet->payload_length = 0;
228 break;
229
230 case TCODE_LOCK_REQUEST:
231 case TCODE_WRITE_BLOCK_REQUEST:
232 async_header_set_data_length(packet->header, length);
233 async_header_set_extended_tcode(packet->header, ext_tcode);
234 packet->header_length = 16;
235 packet->payload = payload;
236 packet->payload_length = length;
237 break;
238
239 case TCODE_READ_QUADLET_REQUEST:
240 packet->header_length = 12;
241 packet->payload_length = 0;
242 break;
243
244 case TCODE_READ_BLOCK_REQUEST:
245 async_header_set_data_length(packet->header, length);
246 async_header_set_extended_tcode(packet->header, ext_tcode);
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 default:
252 WARN(1, "wrong tcode %d\n", tcode);
253 }
254 common:
255 packet->speed = speed;
256 packet->generation = generation;
257 packet->ack = 0;
258 packet->payload_mapped = false;
259}
260
261static int allocate_tlabel(struct fw_card *card)
262{
263 int tlabel;
264
265 tlabel = card->current_tlabel;
266 while (card->tlabel_mask & (1ULL << tlabel)) {
267 tlabel = (tlabel + 1) & 0x3f;
268 if (tlabel == card->current_tlabel)
269 return -EBUSY;
270 }
271
272 card->current_tlabel = (tlabel + 1) & 0x3f;
273 card->tlabel_mask |= 1ULL << tlabel;
274
275 return tlabel;
276}
277
278/**
279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
280 * subaction with or without time stamp.
281 * @card: interface to send the request at
282 * @t: transaction instance to which the request belongs
283 * @tcode: transaction code
284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
285 * @generation: bus generation in which request and response are valid
286 * @speed: transmission speed
287 * @offset: 48bit wide offset into destination's address space
288 * @payload: data payload for the request subaction
289 * @length: length of the payload, in bytes
290 * @callback: union of two functions whether to receive time stamp or not for response
291 * subaction.
292 * @with_tstamp: Whether to receive time stamp or not for response subaction.
293 * @callback_data: data to be passed to the transaction completion callback
294 *
295 * Submit a request packet into the asynchronous request transmission queue.
296 * Can be called from atomic context. If you prefer a blocking API, use
297 * fw_run_transaction() in a context that can sleep.
298 *
299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301 *
302 * Make sure that the value in @destination_id is not older than the one in
303 * @generation. Otherwise the request is in danger to be sent to a wrong node.
304 *
305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307 * It will contain tag, channel, and sy data instead of a node ID then.
308 *
309 * The payload buffer at @data is going to be DMA-mapped except in case of
310 * @length <= 8 or of local (loopback) requests. Hence make sure that the
311 * buffer complies with the restrictions of the streaming DMA mapping API.
312 * @payload must not be freed before the @callback is called.
313 *
314 * In case of request types without payload, @data is NULL and @length is 0.
315 *
316 * After the transaction is completed successfully or unsuccessfully, the
317 * @callback will be called. Among its parameters is the response code which
318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322 * generation, or missing ACK respectively.
323 *
324 * Note some timing corner cases: fw_send_request() may complete much earlier
325 * than when the request packet actually hits the wire. On the other hand,
326 * transaction completion and hence execution of @callback may happen even
327 * before fw_send_request() returns.
328 */
329void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 int destination_id, int generation, int speed, unsigned long long offset,
331 void *payload, size_t length, union fw_transaction_callback callback,
332 bool with_tstamp, void *callback_data)
333{
334 unsigned long flags;
335 int tlabel;
336
337 /*
338 * Allocate tlabel from the bitmap and put the transaction on
339 * the list while holding the card spinlock.
340 */
341
342 spin_lock_irqsave(&card->lock, flags);
343
344 tlabel = allocate_tlabel(card);
345 if (tlabel < 0) {
346 spin_unlock_irqrestore(&card->lock, flags);
347 if (!with_tstamp) {
348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 } else {
350 // Timestamping on behalf of hardware.
351 u32 curr_cycle_time = 0;
352 u32 tstamp;
353
354 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356
357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 callback_data);
359 }
360 return;
361 }
362
363 t->node_id = destination_id;
364 t->tlabel = tlabel;
365 t->card = card;
366 t->is_split_transaction = false;
367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 t->callback = callback;
369 t->with_tstamp = with_tstamp;
370 t->callback_data = callback_data;
371
372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 speed, offset, payload, length);
374 t->packet.callback = transmit_complete_callback;
375
376 list_add_tail(&t->link, &card->transaction_list);
377
378 spin_unlock_irqrestore(&card->lock, flags);
379
380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 t->packet.header, payload,
382 tcode_is_read_request(tcode) ? 0 : length / 4);
383
384 card->driver->send_request(card, &t->packet);
385}
386EXPORT_SYMBOL_GPL(__fw_send_request);
387
388struct transaction_callback_data {
389 struct completion done;
390 void *payload;
391 int rcode;
392};
393
394static void transaction_callback(struct fw_card *card, int rcode,
395 void *payload, size_t length, void *data)
396{
397 struct transaction_callback_data *d = data;
398
399 if (rcode == RCODE_COMPLETE)
400 memcpy(d->payload, payload, length);
401 d->rcode = rcode;
402 complete(&d->done);
403}
404
405/**
406 * fw_run_transaction() - send request and sleep until transaction is completed
407 * @card: card interface for this request
408 * @tcode: transaction code
409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
410 * @generation: bus generation in which request and response are valid
411 * @speed: transmission speed
412 * @offset: 48bit wide offset into destination's address space
413 * @payload: data payload for the request subaction
414 * @length: length of the payload, in bytes
415 *
416 * Returns the RCODE. See fw_send_request() for parameter documentation.
417 * Unlike fw_send_request(), @data points to the payload of the request or/and
418 * to the payload of the response. DMA mapping restrictions apply to outbound
419 * request payloads of >= 8 bytes but not to inbound response payloads.
420 */
421int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 int generation, int speed, unsigned long long offset,
423 void *payload, size_t length)
424{
425 struct transaction_callback_data d;
426 struct fw_transaction t;
427
428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 init_completion(&d.done);
430 d.payload = payload;
431 fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 offset, payload, length, transaction_callback, &d);
433 wait_for_completion(&d.done);
434 destroy_timer_on_stack(&t.split_timeout_timer);
435
436 return d.rcode;
437}
438EXPORT_SYMBOL(fw_run_transaction);
439
440static DEFINE_MUTEX(phy_config_mutex);
441static DECLARE_COMPLETION(phy_config_done);
442
443static void transmit_phy_packet_callback(struct fw_packet *packet,
444 struct fw_card *card, int status)
445{
446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 packet->timestamp);
448 complete(&phy_config_done);
449}
450
451static struct fw_packet phy_config_packet = {
452 .header_length = 12,
453 .payload_length = 0,
454 .speed = SCODE_100,
455 .callback = transmit_phy_packet_callback,
456};
457
458void fw_send_phy_config(struct fw_card *card,
459 int node_id, int generation, int gap_count)
460{
461 long timeout = DIV_ROUND_UP(HZ, 10);
462 u32 data = 0;
463
464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465
466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 phy_packet_phy_config_set_root_id(&data, node_id);
468 phy_packet_phy_config_set_force_root_node(&data, true);
469 }
470
471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 gap_count = card->driver->read_phy_reg(card, 1);
473 if (gap_count < 0)
474 return;
475
476 gap_count &= 63;
477 if (gap_count == 63)
478 return;
479 }
480 phy_packet_phy_config_set_gap_count(&data, gap_count);
481 phy_packet_phy_config_set_gap_count_optimization(&data, true);
482
483 guard(mutex)(&phy_config_mutex);
484
485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 phy_config_packet.header[1] = data;
487 phy_config_packet.header[2] = ~data;
488 phy_config_packet.generation = generation;
489 reinit_completion(&phy_config_done);
490
491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 phy_config_packet.generation, phy_config_packet.header[1],
493 phy_config_packet.header[2]);
494
495 card->driver->send_request(card, &phy_config_packet);
496 wait_for_completion_timeout(&phy_config_done, timeout);
497}
498
499static struct fw_address_handler *lookup_overlapping_address_handler(
500 struct list_head *list, unsigned long long offset, size_t length)
501{
502 struct fw_address_handler *handler;
503
504 list_for_each_entry_rcu(handler, list, link) {
505 if (handler->offset < offset + length &&
506 offset < handler->offset + handler->length)
507 return handler;
508 }
509
510 return NULL;
511}
512
513static bool is_enclosing_handler(struct fw_address_handler *handler,
514 unsigned long long offset, size_t length)
515{
516 return handler->offset <= offset &&
517 offset + length <= handler->offset + handler->length;
518}
519
520static struct fw_address_handler *lookup_enclosing_address_handler(
521 struct list_head *list, unsigned long long offset, size_t length)
522{
523 struct fw_address_handler *handler;
524
525 list_for_each_entry_rcu(handler, list, link) {
526 if (is_enclosing_handler(handler, offset, length))
527 return handler;
528 }
529
530 return NULL;
531}
532
533static DEFINE_SPINLOCK(address_handler_list_lock);
534static LIST_HEAD(address_handler_list);
535
536const struct fw_address_region fw_high_memory_region =
537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538EXPORT_SYMBOL(fw_high_memory_region);
539
540static const struct fw_address_region low_memory_region =
541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542
543#if 0
544const struct fw_address_region fw_private_region =
545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
546const struct fw_address_region fw_csr_region =
547 { .start = CSR_REGISTER_BASE,
548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
549const struct fw_address_region fw_unit_space_region =
550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551#endif /* 0 */
552
553/**
554 * fw_core_add_address_handler() - register for incoming requests
555 * @handler: callback
556 * @region: region in the IEEE 1212 node space address range
557 *
558 * region->start, ->end, and handler->length have to be quadlet-aligned.
559 *
560 * When a request is received that falls within the specified address range,
561 * the specified callback is invoked. The parameters passed to the callback
562 * give the details of the particular request.
563 *
564 * To be called in process context.
565 * Return value: 0 on success, non-zero otherwise.
566 *
567 * The start offset of the handler's address region is determined by
568 * fw_core_add_address_handler() and is returned in handler->offset.
569 *
570 * Address allocations are exclusive, except for the FCP registers.
571 */
572int fw_core_add_address_handler(struct fw_address_handler *handler,
573 const struct fw_address_region *region)
574{
575 struct fw_address_handler *other;
576 int ret = -EBUSY;
577
578 if (region->start & 0xffff000000000003ULL ||
579 region->start >= region->end ||
580 region->end > 0x0001000000000000ULL ||
581 handler->length & 3 ||
582 handler->length == 0)
583 return -EINVAL;
584
585 guard(spinlock)(&address_handler_list_lock);
586
587 handler->offset = region->start;
588 while (handler->offset + handler->length <= region->end) {
589 if (is_in_fcp_region(handler->offset, handler->length))
590 other = NULL;
591 else
592 other = lookup_overlapping_address_handler
593 (&address_handler_list,
594 handler->offset, handler->length);
595 if (other != NULL) {
596 handler->offset += other->length;
597 } else {
598 list_add_tail_rcu(&handler->link, &address_handler_list);
599 ret = 0;
600 break;
601 }
602 }
603
604 return ret;
605}
606EXPORT_SYMBOL(fw_core_add_address_handler);
607
608/**
609 * fw_core_remove_address_handler() - unregister an address handler
610 * @handler: callback
611 *
612 * To be called in process context.
613 *
614 * When fw_core_remove_address_handler() returns, @handler->callback() is
615 * guaranteed to not run on any CPU anymore.
616 */
617void fw_core_remove_address_handler(struct fw_address_handler *handler)
618{
619 scoped_guard(spinlock, &address_handler_list_lock)
620 list_del_rcu(&handler->link);
621
622 synchronize_rcu();
623}
624EXPORT_SYMBOL(fw_core_remove_address_handler);
625
626struct fw_request {
627 struct kref kref;
628 struct fw_packet response;
629 u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
630 int ack;
631 u32 timestamp;
632 u32 length;
633 u32 data[];
634};
635
636void fw_request_get(struct fw_request *request)
637{
638 kref_get(&request->kref);
639}
640
641static void release_request(struct kref *kref)
642{
643 struct fw_request *request = container_of(kref, struct fw_request, kref);
644
645 kfree(request);
646}
647
648void fw_request_put(struct fw_request *request)
649{
650 kref_put(&request->kref, release_request);
651}
652
653static void free_response_callback(struct fw_packet *packet,
654 struct fw_card *card, int status)
655{
656 struct fw_request *request = container_of(packet, struct fw_request, response);
657
658 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
659 packet->speed, status, packet->timestamp);
660
661 // Decrease the reference count since not at in-flight.
662 fw_request_put(request);
663
664 // Decrease the reference count to release the object.
665 fw_request_put(request);
666}
667
668int fw_get_response_length(struct fw_request *r)
669{
670 int tcode, ext_tcode, data_length;
671
672 tcode = async_header_get_tcode(r->request_header);
673
674 switch (tcode) {
675 case TCODE_WRITE_QUADLET_REQUEST:
676 case TCODE_WRITE_BLOCK_REQUEST:
677 return 0;
678
679 case TCODE_READ_QUADLET_REQUEST:
680 return 4;
681
682 case TCODE_READ_BLOCK_REQUEST:
683 data_length = async_header_get_data_length(r->request_header);
684 return data_length;
685
686 case TCODE_LOCK_REQUEST:
687 ext_tcode = async_header_get_extended_tcode(r->request_header);
688 data_length = async_header_get_data_length(r->request_header);
689 switch (ext_tcode) {
690 case EXTCODE_FETCH_ADD:
691 case EXTCODE_LITTLE_ADD:
692 return data_length;
693 default:
694 return data_length / 2;
695 }
696
697 default:
698 WARN(1, "wrong tcode %d\n", tcode);
699 return 0;
700 }
701}
702
703void fw_fill_response(struct fw_packet *response, u32 *request_header,
704 int rcode, void *payload, size_t length)
705{
706 int tcode, tlabel, extended_tcode, source, destination;
707
708 tcode = async_header_get_tcode(request_header);
709 tlabel = async_header_get_tlabel(request_header);
710 source = async_header_get_destination(request_header); // Exchange.
711 destination = async_header_get_source(request_header); // Exchange.
712 extended_tcode = async_header_get_extended_tcode(request_header);
713
714 async_header_set_retry(response->header, RETRY_1);
715 async_header_set_tlabel(response->header, tlabel);
716 async_header_set_destination(response->header, destination);
717 async_header_set_source(response->header, source);
718 async_header_set_rcode(response->header, rcode);
719 response->header[2] = 0; // The field is reserved.
720
721 switch (tcode) {
722 case TCODE_WRITE_QUADLET_REQUEST:
723 case TCODE_WRITE_BLOCK_REQUEST:
724 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
725 response->header_length = 12;
726 response->payload_length = 0;
727 break;
728
729 case TCODE_READ_QUADLET_REQUEST:
730 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
731 if (payload != NULL)
732 async_header_set_quadlet_data(response->header, *(u32 *)payload);
733 else
734 async_header_set_quadlet_data(response->header, 0);
735 response->header_length = 16;
736 response->payload_length = 0;
737 break;
738
739 case TCODE_READ_BLOCK_REQUEST:
740 case TCODE_LOCK_REQUEST:
741 async_header_set_tcode(response->header, tcode + 2);
742 async_header_set_data_length(response->header, length);
743 async_header_set_extended_tcode(response->header, extended_tcode);
744 response->header_length = 16;
745 response->payload = payload;
746 response->payload_length = length;
747 break;
748
749 default:
750 WARN(1, "wrong tcode %d\n", tcode);
751 }
752
753 response->payload_mapped = false;
754}
755EXPORT_SYMBOL(fw_fill_response);
756
757static u32 compute_split_timeout_timestamp(struct fw_card *card,
758 u32 request_timestamp)
759{
760 unsigned int cycles;
761 u32 timestamp;
762
763 cycles = card->split_timeout_cycles;
764 cycles += request_timestamp & 0x1fff;
765
766 timestamp = request_timestamp & ~0x1fff;
767 timestamp += (cycles / 8000) << 13;
768 timestamp |= cycles % 8000;
769
770 return timestamp;
771}
772
773static struct fw_request *allocate_request(struct fw_card *card,
774 struct fw_packet *p)
775{
776 struct fw_request *request;
777 u32 *data, length;
778 int request_tcode;
779
780 request_tcode = async_header_get_tcode(p->header);
781 switch (request_tcode) {
782 case TCODE_WRITE_QUADLET_REQUEST:
783 data = &p->header[3];
784 length = 4;
785 break;
786
787 case TCODE_WRITE_BLOCK_REQUEST:
788 case TCODE_LOCK_REQUEST:
789 data = p->payload;
790 length = async_header_get_data_length(p->header);
791 break;
792
793 case TCODE_READ_QUADLET_REQUEST:
794 data = NULL;
795 length = 4;
796 break;
797
798 case TCODE_READ_BLOCK_REQUEST:
799 data = NULL;
800 length = async_header_get_data_length(p->header);
801 break;
802
803 default:
804 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
805 p->header[0], p->header[1], p->header[2]);
806 return NULL;
807 }
808
809 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
810 if (request == NULL)
811 return NULL;
812 kref_init(&request->kref);
813
814 request->response.speed = p->speed;
815 request->response.timestamp =
816 compute_split_timeout_timestamp(card, p->timestamp);
817 request->response.generation = p->generation;
818 request->response.ack = 0;
819 request->response.callback = free_response_callback;
820 request->ack = p->ack;
821 request->timestamp = p->timestamp;
822 request->length = length;
823 if (data)
824 memcpy(request->data, data, length);
825
826 memcpy(request->request_header, p->header, sizeof(p->header));
827
828 return request;
829}
830
831/**
832 * fw_send_response: - send response packet for asynchronous transaction.
833 * @card: interface to send the response at.
834 * @request: firewire request data for the transaction.
835 * @rcode: response code to send.
836 *
837 * Submit a response packet into the asynchronous response transmission queue. The @request
838 * is going to be released when the transmission successfully finishes later.
839 */
840void fw_send_response(struct fw_card *card,
841 struct fw_request *request, int rcode)
842{
843 u32 *data = NULL;
844 unsigned int data_length = 0;
845
846 /* unified transaction or broadcast transaction: don't respond */
847 if (request->ack != ACK_PENDING ||
848 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
849 fw_request_put(request);
850 return;
851 }
852
853 if (rcode == RCODE_COMPLETE) {
854 data = request->data;
855 data_length = fw_get_response_length(request);
856 }
857
858 fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
859
860 // Increase the reference count so that the object is kept during in-flight.
861 fw_request_get(request);
862
863 trace_async_response_outbound_initiate((uintptr_t)request, card->index,
864 request->response.generation, request->response.speed,
865 request->response.header, data,
866 data ? data_length / 4 : 0);
867
868 card->driver->send_response(card, &request->response);
869}
870EXPORT_SYMBOL(fw_send_response);
871
872/**
873 * fw_get_request_speed() - returns speed at which the @request was received
874 * @request: firewire request data
875 */
876int fw_get_request_speed(struct fw_request *request)
877{
878 return request->response.speed;
879}
880EXPORT_SYMBOL(fw_get_request_speed);
881
882/**
883 * fw_request_get_timestamp: Get timestamp of the request.
884 * @request: The opaque pointer to request structure.
885 *
886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
888 * field of isochronous cycle time register.
889 *
890 * Returns: timestamp of the request.
891 */
892u32 fw_request_get_timestamp(const struct fw_request *request)
893{
894 return request->timestamp;
895}
896EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
897
898static void handle_exclusive_region_request(struct fw_card *card,
899 struct fw_packet *p,
900 struct fw_request *request,
901 unsigned long long offset)
902{
903 struct fw_address_handler *handler;
904 int tcode, destination, source;
905
906 destination = async_header_get_destination(p->header);
907 source = async_header_get_source(p->header);
908 tcode = async_header_get_tcode(p->header);
909 if (tcode == TCODE_LOCK_REQUEST)
910 tcode = 0x10 + async_header_get_extended_tcode(p->header);
911
912 scoped_guard(rcu) {
913 handler = lookup_enclosing_address_handler(&address_handler_list, offset,
914 request->length);
915 if (handler)
916 handler->address_callback(card, request, tcode, destination, source,
917 p->generation, offset, request->data,
918 request->length, handler->callback_data);
919 }
920
921 if (!handler)
922 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
923}
924
925static void handle_fcp_region_request(struct fw_card *card,
926 struct fw_packet *p,
927 struct fw_request *request,
928 unsigned long long offset)
929{
930 struct fw_address_handler *handler;
931 int tcode, destination, source;
932
933 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
934 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
935 request->length > 0x200) {
936 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
937
938 return;
939 }
940
941 tcode = async_header_get_tcode(p->header);
942 destination = async_header_get_destination(p->header);
943 source = async_header_get_source(p->header);
944
945 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
946 tcode != TCODE_WRITE_BLOCK_REQUEST) {
947 fw_send_response(card, request, RCODE_TYPE_ERROR);
948
949 return;
950 }
951
952 scoped_guard(rcu) {
953 list_for_each_entry_rcu(handler, &address_handler_list, link) {
954 if (is_enclosing_handler(handler, offset, request->length))
955 handler->address_callback(card, request, tcode, destination, source,
956 p->generation, offset, request->data,
957 request->length, handler->callback_data);
958 }
959 }
960
961 fw_send_response(card, request, RCODE_COMPLETE);
962}
963
964void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
965{
966 struct fw_request *request;
967 unsigned long long offset;
968 unsigned int tcode;
969
970 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
971 return;
972
973 tcode = async_header_get_tcode(p->header);
974 if (tcode_is_link_internal(tcode)) {
975 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
976 p->header[1], p->header[2]);
977 fw_cdev_handle_phy_packet(card, p);
978 return;
979 }
980
981 request = allocate_request(card, p);
982 if (request == NULL) {
983 /* FIXME: send statically allocated busy packet. */
984 return;
985 }
986
987 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
988 p->ack, p->timestamp, p->header, request->data,
989 tcode_is_read_request(tcode) ? 0 : request->length / 4);
990
991 offset = async_header_get_offset(p->header);
992
993 if (!is_in_fcp_region(offset, request->length))
994 handle_exclusive_region_request(card, p, request, offset);
995 else
996 handle_fcp_region_request(card, p, request, offset);
997
998}
999EXPORT_SYMBOL(fw_core_handle_request);
1000
1001void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002{
1003 struct fw_transaction *t = NULL, *iter;
1004 u32 *data;
1005 size_t data_length;
1006 int tcode, tlabel, source, rcode;
1007
1008 tcode = async_header_get_tcode(p->header);
1009 tlabel = async_header_get_tlabel(p->header);
1010 source = async_header_get_source(p->header);
1011 rcode = async_header_get_rcode(p->header);
1012
1013 // FIXME: sanity check packet, is length correct, does tcodes
1014 // and addresses match to the transaction request queried later.
1015 //
1016 // For the tracepoints event, let us decode the header here against the concern.
1017
1018 switch (tcode) {
1019 case TCODE_READ_QUADLET_RESPONSE:
1020 data = (u32 *) &p->header[3];
1021 data_length = 4;
1022 break;
1023
1024 case TCODE_WRITE_RESPONSE:
1025 data = NULL;
1026 data_length = 0;
1027 break;
1028
1029 case TCODE_READ_BLOCK_RESPONSE:
1030 case TCODE_LOCK_RESPONSE:
1031 data = p->payload;
1032 data_length = async_header_get_data_length(p->header);
1033 break;
1034
1035 default:
1036 /* Should never happen, this is just to shut up gcc. */
1037 data = NULL;
1038 data_length = 0;
1039 break;
1040 }
1041
1042 scoped_guard(spinlock_irqsave, &card->lock) {
1043 list_for_each_entry(iter, &card->transaction_list, link) {
1044 if (iter->node_id == source && iter->tlabel == tlabel) {
1045 if (try_cancel_split_timeout(iter)) {
1046 list_del_init(&iter->link);
1047 card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048 t = iter;
1049 }
1050 break;
1051 }
1052 }
1053 }
1054
1055 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056 p->timestamp, p->header, data, data_length / 4);
1057
1058 if (!t) {
1059 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060 source, tlabel);
1061 return;
1062 }
1063
1064 /*
1065 * The response handler may be executed while the request handler
1066 * is still pending. Cancel the request handler.
1067 */
1068 card->driver->cancel_packet(card, &t->packet);
1069
1070 if (!t->with_tstamp) {
1071 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072 } else {
1073 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074 data_length, t->callback_data);
1075 }
1076}
1077EXPORT_SYMBOL(fw_core_handle_response);
1078
1079/**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
1083const char *fw_rcode_string(int rcode)
1084{
1085 static const char *const names[] = {
1086 [RCODE_COMPLETE] = "no error",
1087 [RCODE_CONFLICT_ERROR] = "conflict error",
1088 [RCODE_DATA_ERROR] = "data error",
1089 [RCODE_TYPE_ERROR] = "type error",
1090 [RCODE_ADDRESS_ERROR] = "address error",
1091 [RCODE_SEND_ERROR] = "send error",
1092 [RCODE_CANCELLED] = "timeout",
1093 [RCODE_BUSY] = "busy",
1094 [RCODE_GENERATION] = "bus reset",
1095 [RCODE_NO_ACK] = "no ack",
1096 };
1097
1098 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099 return names[rcode];
1100 else
1101 return "unknown";
1102}
1103EXPORT_SYMBOL(fw_rcode_string);
1104
1105static const struct fw_address_region topology_map_region =
1106 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
1109static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110 int tcode, int destination, int source, int generation,
1111 unsigned long long offset, void *payload, size_t length,
1112 void *callback_data)
1113{
1114 int start;
1115
1116 if (!tcode_is_read_request(tcode)) {
1117 fw_send_response(card, request, RCODE_TYPE_ERROR);
1118 return;
1119 }
1120
1121 if ((offset & 3) > 0 || (length & 3) > 0) {
1122 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123 return;
1124 }
1125
1126 start = (offset - topology_map_region.start) / 4;
1127 memcpy(payload, &card->topology_map[start], length);
1128
1129 fw_send_response(card, request, RCODE_COMPLETE);
1130}
1131
1132static struct fw_address_handler topology_map = {
1133 .length = 0x400,
1134 .address_callback = handle_topology_map,
1135};
1136
1137static const struct fw_address_region registers_region =
1138 { .start = CSR_REGISTER_BASE,
1139 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
1141static void update_split_timeout(struct fw_card *card)
1142{
1143 unsigned int cycles;
1144
1145 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148 cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150 card->split_timeout_cycles = cycles;
1151 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152}
1153
1154static void handle_registers(struct fw_card *card, struct fw_request *request,
1155 int tcode, int destination, int source, int generation,
1156 unsigned long long offset, void *payload, size_t length,
1157 void *callback_data)
1158{
1159 int reg = offset & ~CSR_REGISTER_BASE;
1160 __be32 *data = payload;
1161 int rcode = RCODE_COMPLETE;
1162
1163 switch (reg) {
1164 case CSR_PRIORITY_BUDGET:
1165 if (!card->priority_budget_implemented) {
1166 rcode = RCODE_ADDRESS_ERROR;
1167 break;
1168 }
1169 fallthrough;
1170
1171 case CSR_NODE_IDS:
1172 /*
1173 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175 */
1176 fallthrough;
1177
1178 case CSR_STATE_CLEAR:
1179 case CSR_STATE_SET:
1180 case CSR_CYCLE_TIME:
1181 case CSR_BUS_TIME:
1182 case CSR_BUSY_TIMEOUT:
1183 if (tcode == TCODE_READ_QUADLET_REQUEST)
1184 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1185 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187 else
1188 rcode = RCODE_TYPE_ERROR;
1189 break;
1190
1191 case CSR_RESET_START:
1192 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193 card->driver->write_csr(card, CSR_STATE_CLEAR,
1194 CSR_STATE_BIT_ABDICATE);
1195 else
1196 rcode = RCODE_TYPE_ERROR;
1197 break;
1198
1199 case CSR_SPLIT_TIMEOUT_HI:
1200 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201 *data = cpu_to_be32(card->split_timeout_hi);
1202 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203 guard(spinlock_irqsave)(&card->lock);
1204
1205 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206 update_split_timeout(card);
1207 } else {
1208 rcode = RCODE_TYPE_ERROR;
1209 }
1210 break;
1211
1212 case CSR_SPLIT_TIMEOUT_LO:
1213 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214 *data = cpu_to_be32(card->split_timeout_lo);
1215 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216 guard(spinlock_irqsave)(&card->lock);
1217
1218 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219 update_split_timeout(card);
1220 } else {
1221 rcode = RCODE_TYPE_ERROR;
1222 }
1223 break;
1224
1225 case CSR_MAINT_UTILITY:
1226 if (tcode == TCODE_READ_QUADLET_REQUEST)
1227 *data = card->maint_utility_register;
1228 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229 card->maint_utility_register = *data;
1230 else
1231 rcode = RCODE_TYPE_ERROR;
1232 break;
1233
1234 case CSR_BROADCAST_CHANNEL:
1235 if (tcode == TCODE_READ_QUADLET_REQUEST)
1236 *data = cpu_to_be32(card->broadcast_channel);
1237 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238 card->broadcast_channel =
1239 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240 BROADCAST_CHANNEL_INITIAL;
1241 else
1242 rcode = RCODE_TYPE_ERROR;
1243 break;
1244
1245 case CSR_BUS_MANAGER_ID:
1246 case CSR_BANDWIDTH_AVAILABLE:
1247 case CSR_CHANNELS_AVAILABLE_HI:
1248 case CSR_CHANNELS_AVAILABLE_LO:
1249 /*
1250 * FIXME: these are handled by the OHCI hardware and
1251 * the stack never sees these request. If we add
1252 * support for a new type of controller that doesn't
1253 * handle this in hardware we need to deal with these
1254 * transactions.
1255 */
1256 BUG();
1257 break;
1258
1259 default:
1260 rcode = RCODE_ADDRESS_ERROR;
1261 break;
1262 }
1263
1264 fw_send_response(card, request, rcode);
1265}
1266
1267static struct fw_address_handler registers = {
1268 .length = 0x400,
1269 .address_callback = handle_registers,
1270};
1271
1272static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273 int tcode, int destination, int source, int generation,
1274 unsigned long long offset, void *payload, size_t length,
1275 void *callback_data)
1276{
1277 /*
1278 * This catches requests not handled by the physical DMA unit,
1279 * i.e., wrong transaction types or unauthorized source nodes.
1280 */
1281 fw_send_response(card, request, RCODE_TYPE_ERROR);
1282}
1283
1284static struct fw_address_handler low_memory = {
1285 .length = FW_MAX_PHYSICAL_RANGE,
1286 .address_callback = handle_low_memory,
1287};
1288
1289MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291MODULE_LICENSE("GPL");
1292
1293static const u32 vendor_textual_descriptor[] = {
1294 /* textual descriptor leaf () */
1295 0x00060000,
1296 0x00000000,
1297 0x00000000,
1298 0x4c696e75, /* L i n u */
1299 0x78204669, /* x F i */
1300 0x72657769, /* r e w i */
1301 0x72650000, /* r e */
1302};
1303
1304static const u32 model_textual_descriptor[] = {
1305 /* model descriptor leaf () */
1306 0x00030000,
1307 0x00000000,
1308 0x00000000,
1309 0x4a756a75, /* J u j u */
1310};
1311
1312static struct fw_descriptor vendor_id_descriptor = {
1313 .length = ARRAY_SIZE(vendor_textual_descriptor),
1314 .immediate = 0x03001f11,
1315 .key = 0x81000000,
1316 .data = vendor_textual_descriptor,
1317};
1318
1319static struct fw_descriptor model_id_descriptor = {
1320 .length = ARRAY_SIZE(model_textual_descriptor),
1321 .immediate = 0x17023901,
1322 .key = 0x81000000,
1323 .data = model_textual_descriptor,
1324};
1325
1326static int __init fw_core_init(void)
1327{
1328 int ret;
1329
1330 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331 if (!fw_workqueue)
1332 return -ENOMEM;
1333
1334 ret = bus_register(&fw_bus_type);
1335 if (ret < 0) {
1336 destroy_workqueue(fw_workqueue);
1337 return ret;
1338 }
1339
1340 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341 if (fw_cdev_major < 0) {
1342 bus_unregister(&fw_bus_type);
1343 destroy_workqueue(fw_workqueue);
1344 return fw_cdev_major;
1345 }
1346
1347 fw_core_add_address_handler(&topology_map, &topology_map_region);
1348 fw_core_add_address_handler(®isters, ®isters_region);
1349 fw_core_add_address_handler(&low_memory, &low_memory_region);
1350 fw_core_add_descriptor(&vendor_id_descriptor);
1351 fw_core_add_descriptor(&model_id_descriptor);
1352
1353 return 0;
1354}
1355
1356static void __exit fw_core_cleanup(void)
1357{
1358 unregister_chrdev(fw_cdev_major, "firewire");
1359 bus_unregister(&fw_bus_type);
1360 destroy_workqueue(fw_workqueue);
1361 xa_destroy(&fw_device_xa);
1362}
1363
1364module_init(fw_core_init);
1365module_exit(fw_core_cleanup);