Loading...
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <linux/slab.h>
12#include <net/sock.h>
13#include <linux/sunrpc/addr.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17#include <linux/sunrpc/xprt.h>
18#include <linux/module.h>
19#include <linux/netdevice.h>
20#include <trace/events/sunrpc.h>
21
22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
25static int svc_deferred_recv(struct svc_rqst *rqstp);
26static struct cache_deferred_req *svc_defer(struct cache_req *req);
27static void svc_age_temp_xprts(unsigned long closure);
28static void svc_delete_xprt(struct svc_xprt *xprt);
29
30/* apparently the "standard" is that clients close
31 * idle connections after 5 minutes, servers after
32 * 6 minutes
33 * http://www.connectathon.org/talks96/nfstcp.pdf
34 */
35static int svc_conn_age_period = 6*60;
36
37/* List of registered transport classes */
38static DEFINE_SPINLOCK(svc_xprt_class_lock);
39static LIST_HEAD(svc_xprt_class_list);
40
41/* SMP locking strategy:
42 *
43 * svc_pool->sp_lock protects most of the fields of that pool.
44 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
45 * when both need to be taken (rare), svc_serv->sv_lock is first.
46 * The "service mutex" protects svc_serv->sv_nrthread.
47 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
48 * and the ->sk_info_authunix cache.
49 *
50 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
51 * enqueued multiply. During normal transport processing this bit
52 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
53 * Providers should not manipulate this bit directly.
54 *
55 * Some flags can be set to certain values at any time
56 * providing that certain rules are followed:
57 *
58 * XPT_CONN, XPT_DATA:
59 * - Can be set or cleared at any time.
60 * - After a set, svc_xprt_enqueue must be called to enqueue
61 * the transport for processing.
62 * - After a clear, the transport must be read/accepted.
63 * If this succeeds, it must be set again.
64 * XPT_CLOSE:
65 * - Can set at any time. It is never cleared.
66 * XPT_DEAD:
67 * - Can only be set while XPT_BUSY is held which ensures
68 * that no other thread will be using the transport or will
69 * try to set XPT_DEAD.
70 */
71int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72{
73 struct svc_xprt_class *cl;
74 int res = -EEXIST;
75
76 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77
78 INIT_LIST_HEAD(&xcl->xcl_list);
79 spin_lock(&svc_xprt_class_lock);
80 /* Make sure there isn't already a class with the same name */
81 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 goto out;
84 }
85 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 res = 0;
87out:
88 spin_unlock(&svc_xprt_class_lock);
89 return res;
90}
91EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92
93void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94{
95 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 spin_lock(&svc_xprt_class_lock);
97 list_del_init(&xcl->xcl_list);
98 spin_unlock(&svc_xprt_class_lock);
99}
100EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101
102/*
103 * Format the transport list for printing
104 */
105int svc_print_xprts(char *buf, int maxlen)
106{
107 struct svc_xprt_class *xcl;
108 char tmpstr[80];
109 int len = 0;
110 buf[0] = '\0';
111
112 spin_lock(&svc_xprt_class_lock);
113 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 int slen;
115
116 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 slen = strlen(tmpstr);
118 if (len + slen > maxlen)
119 break;
120 len += slen;
121 strcat(buf, tmpstr);
122 }
123 spin_unlock(&svc_xprt_class_lock);
124
125 return len;
126}
127
128static void svc_xprt_free(struct kref *kref)
129{
130 struct svc_xprt *xprt =
131 container_of(kref, struct svc_xprt, xpt_ref);
132 struct module *owner = xprt->xpt_class->xcl_owner;
133 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 svcauth_unix_info_release(xprt);
135 put_net(xprt->xpt_net);
136 /* See comment on corresponding get in xs_setup_bc_tcp(): */
137 if (xprt->xpt_bc_xprt)
138 xprt_put(xprt->xpt_bc_xprt);
139 xprt->xpt_ops->xpo_free(xprt);
140 module_put(owner);
141}
142
143void svc_xprt_put(struct svc_xprt *xprt)
144{
145 kref_put(&xprt->xpt_ref, svc_xprt_free);
146}
147EXPORT_SYMBOL_GPL(svc_xprt_put);
148
149/*
150 * Called by transport drivers to initialize the transport independent
151 * portion of the transport instance.
152 */
153void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 struct svc_xprt *xprt, struct svc_serv *serv)
155{
156 memset(xprt, 0, sizeof(*xprt));
157 xprt->xpt_class = xcl;
158 xprt->xpt_ops = xcl->xcl_ops;
159 kref_init(&xprt->xpt_ref);
160 xprt->xpt_server = serv;
161 INIT_LIST_HEAD(&xprt->xpt_list);
162 INIT_LIST_HEAD(&xprt->xpt_ready);
163 INIT_LIST_HEAD(&xprt->xpt_deferred);
164 INIT_LIST_HEAD(&xprt->xpt_users);
165 mutex_init(&xprt->xpt_mutex);
166 spin_lock_init(&xprt->xpt_lock);
167 set_bit(XPT_BUSY, &xprt->xpt_flags);
168 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 xprt->xpt_net = get_net(net);
170}
171EXPORT_SYMBOL_GPL(svc_xprt_init);
172
173static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 struct svc_serv *serv,
175 struct net *net,
176 const int family,
177 const unsigned short port,
178 int flags)
179{
180 struct sockaddr_in sin = {
181 .sin_family = AF_INET,
182 .sin_addr.s_addr = htonl(INADDR_ANY),
183 .sin_port = htons(port),
184 };
185#if IS_ENABLED(CONFIG_IPV6)
186 struct sockaddr_in6 sin6 = {
187 .sin6_family = AF_INET6,
188 .sin6_addr = IN6ADDR_ANY_INIT,
189 .sin6_port = htons(port),
190 };
191#endif
192 struct sockaddr *sap;
193 size_t len;
194
195 switch (family) {
196 case PF_INET:
197 sap = (struct sockaddr *)&sin;
198 len = sizeof(sin);
199 break;
200#if IS_ENABLED(CONFIG_IPV6)
201 case PF_INET6:
202 sap = (struct sockaddr *)&sin6;
203 len = sizeof(sin6);
204 break;
205#endif
206 default:
207 return ERR_PTR(-EAFNOSUPPORT);
208 }
209
210 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211}
212
213/*
214 * svc_xprt_received conditionally queues the transport for processing
215 * by another thread. The caller must hold the XPT_BUSY bit and must
216 * not thereafter touch transport data.
217 *
218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219 * insufficient) data.
220 */
221static void svc_xprt_received(struct svc_xprt *xprt)
222{
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 return;
226 }
227
228 /* As soon as we clear busy, the xprt could be closed and
229 * 'put', so we need a reference to call svc_enqueue_xprt with:
230 */
231 svc_xprt_get(xprt);
232 smp_mb__before_atomic();
233 clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
235 svc_xprt_put(xprt);
236}
237
238void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239{
240 clear_bit(XPT_TEMP, &new->xpt_flags);
241 spin_lock_bh(&serv->sv_lock);
242 list_add(&new->xpt_list, &serv->sv_permsocks);
243 spin_unlock_bh(&serv->sv_lock);
244 svc_xprt_received(new);
245}
246
247int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 struct net *net, const int family,
249 const unsigned short port, int flags)
250{
251 struct svc_xprt_class *xcl;
252
253 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
254 spin_lock(&svc_xprt_class_lock);
255 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
256 struct svc_xprt *newxprt;
257 unsigned short newport;
258
259 if (strcmp(xprt_name, xcl->xcl_name))
260 continue;
261
262 if (!try_module_get(xcl->xcl_owner))
263 goto err;
264
265 spin_unlock(&svc_xprt_class_lock);
266 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
267 if (IS_ERR(newxprt)) {
268 module_put(xcl->xcl_owner);
269 return PTR_ERR(newxprt);
270 }
271 svc_add_new_perm_xprt(serv, newxprt);
272 newport = svc_xprt_local_port(newxprt);
273 return newport;
274 }
275 err:
276 spin_unlock(&svc_xprt_class_lock);
277 dprintk("svc: transport %s not found\n", xprt_name);
278
279 /* This errno is exposed to user space. Provide a reasonable
280 * perror msg for a bad transport. */
281 return -EPROTONOSUPPORT;
282}
283EXPORT_SYMBOL_GPL(svc_create_xprt);
284
285/*
286 * Copy the local and remote xprt addresses to the rqstp structure
287 */
288void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
289{
290 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
291 rqstp->rq_addrlen = xprt->xpt_remotelen;
292
293 /*
294 * Destination address in request is needed for binding the
295 * source address in RPC replies/callbacks later.
296 */
297 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
298 rqstp->rq_daddrlen = xprt->xpt_locallen;
299}
300EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
301
302/**
303 * svc_print_addr - Format rq_addr field for printing
304 * @rqstp: svc_rqst struct containing address to print
305 * @buf: target buffer for formatted address
306 * @len: length of target buffer
307 *
308 */
309char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
310{
311 return __svc_print_addr(svc_addr(rqstp), buf, len);
312}
313EXPORT_SYMBOL_GPL(svc_print_addr);
314
315static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
316{
317 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
318 return true;
319 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
320 return xprt->xpt_ops->xpo_has_wspace(xprt);
321 return false;
322}
323
324void svc_xprt_do_enqueue(struct svc_xprt *xprt)
325{
326 struct svc_pool *pool;
327 struct svc_rqst *rqstp = NULL;
328 int cpu;
329 bool queued = false;
330
331 if (!svc_xprt_has_something_to_do(xprt))
332 goto out;
333
334 /* Mark transport as busy. It will remain in this state until
335 * the provider calls svc_xprt_received. We update XPT_BUSY
336 * atomically because it also guards against trying to enqueue
337 * the transport twice.
338 */
339 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
340 /* Don't enqueue transport while already enqueued */
341 dprintk("svc: transport %p busy, not enqueued\n", xprt);
342 goto out;
343 }
344
345 cpu = get_cpu();
346 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
347
348 atomic_long_inc(&pool->sp_stats.packets);
349
350redo_search:
351 /* find a thread for this xprt */
352 rcu_read_lock();
353 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
354 /* Do a lockless check first */
355 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
356 continue;
357
358 /*
359 * Once the xprt has been queued, it can only be dequeued by
360 * the task that intends to service it. All we can do at that
361 * point is to try to wake this thread back up so that it can
362 * do so.
363 */
364 if (!queued) {
365 spin_lock_bh(&rqstp->rq_lock);
366 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
367 /* already busy, move on... */
368 spin_unlock_bh(&rqstp->rq_lock);
369 continue;
370 }
371
372 /* this one will do */
373 rqstp->rq_xprt = xprt;
374 svc_xprt_get(xprt);
375 spin_unlock_bh(&rqstp->rq_lock);
376 }
377 rcu_read_unlock();
378
379 atomic_long_inc(&pool->sp_stats.threads_woken);
380 wake_up_process(rqstp->rq_task);
381 put_cpu();
382 goto out;
383 }
384 rcu_read_unlock();
385
386 /*
387 * We didn't find an idle thread to use, so we need to queue the xprt.
388 * Do so and then search again. If we find one, we can't hook this one
389 * up to it directly but we can wake the thread up in the hopes that it
390 * will pick it up once it searches for a xprt to service.
391 */
392 if (!queued) {
393 queued = true;
394 dprintk("svc: transport %p put into queue\n", xprt);
395 spin_lock_bh(&pool->sp_lock);
396 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
397 pool->sp_stats.sockets_queued++;
398 spin_unlock_bh(&pool->sp_lock);
399 goto redo_search;
400 }
401 rqstp = NULL;
402 put_cpu();
403out:
404 trace_svc_xprt_do_enqueue(xprt, rqstp);
405}
406EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
407
408/*
409 * Queue up a transport with data pending. If there are idle nfsd
410 * processes, wake 'em up.
411 *
412 */
413void svc_xprt_enqueue(struct svc_xprt *xprt)
414{
415 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
416 return;
417 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
418}
419EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
420
421/*
422 * Dequeue the first transport, if there is one.
423 */
424static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
425{
426 struct svc_xprt *xprt = NULL;
427
428 if (list_empty(&pool->sp_sockets))
429 goto out;
430
431 spin_lock_bh(&pool->sp_lock);
432 if (likely(!list_empty(&pool->sp_sockets))) {
433 xprt = list_first_entry(&pool->sp_sockets,
434 struct svc_xprt, xpt_ready);
435 list_del_init(&xprt->xpt_ready);
436 svc_xprt_get(xprt);
437
438 dprintk("svc: transport %p dequeued, inuse=%d\n",
439 xprt, atomic_read(&xprt->xpt_ref.refcount));
440 }
441 spin_unlock_bh(&pool->sp_lock);
442out:
443 trace_svc_xprt_dequeue(xprt);
444 return xprt;
445}
446
447/**
448 * svc_reserve - change the space reserved for the reply to a request.
449 * @rqstp: The request in question
450 * @space: new max space to reserve
451 *
452 * Each request reserves some space on the output queue of the transport
453 * to make sure the reply fits. This function reduces that reserved
454 * space to be the amount of space used already, plus @space.
455 *
456 */
457void svc_reserve(struct svc_rqst *rqstp, int space)
458{
459 space += rqstp->rq_res.head[0].iov_len;
460
461 if (space < rqstp->rq_reserved) {
462 struct svc_xprt *xprt = rqstp->rq_xprt;
463 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
464 rqstp->rq_reserved = space;
465
466 if (xprt->xpt_ops->xpo_adjust_wspace)
467 xprt->xpt_ops->xpo_adjust_wspace(xprt);
468 svc_xprt_enqueue(xprt);
469 }
470}
471EXPORT_SYMBOL_GPL(svc_reserve);
472
473static void svc_xprt_release(struct svc_rqst *rqstp)
474{
475 struct svc_xprt *xprt = rqstp->rq_xprt;
476
477 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
478
479 kfree(rqstp->rq_deferred);
480 rqstp->rq_deferred = NULL;
481
482 svc_free_res_pages(rqstp);
483 rqstp->rq_res.page_len = 0;
484 rqstp->rq_res.page_base = 0;
485
486 /* Reset response buffer and release
487 * the reservation.
488 * But first, check that enough space was reserved
489 * for the reply, otherwise we have a bug!
490 */
491 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
492 printk(KERN_ERR "RPC request reserved %d but used %d\n",
493 rqstp->rq_reserved,
494 rqstp->rq_res.len);
495
496 rqstp->rq_res.head[0].iov_len = 0;
497 svc_reserve(rqstp, 0);
498 rqstp->rq_xprt = NULL;
499
500 svc_xprt_put(xprt);
501}
502
503/*
504 * Some svc_serv's will have occasional work to do, even when a xprt is not
505 * waiting to be serviced. This function is there to "kick" a task in one of
506 * those services so that it can wake up and do that work. Note that we only
507 * bother with pool 0 as we don't need to wake up more than one thread for
508 * this purpose.
509 */
510void svc_wake_up(struct svc_serv *serv)
511{
512 struct svc_rqst *rqstp;
513 struct svc_pool *pool;
514
515 pool = &serv->sv_pools[0];
516
517 rcu_read_lock();
518 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
519 /* skip any that aren't queued */
520 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
521 continue;
522 rcu_read_unlock();
523 dprintk("svc: daemon %p woken up.\n", rqstp);
524 wake_up_process(rqstp->rq_task);
525 trace_svc_wake_up(rqstp->rq_task->pid);
526 return;
527 }
528 rcu_read_unlock();
529
530 /* No free entries available */
531 set_bit(SP_TASK_PENDING, &pool->sp_flags);
532 smp_wmb();
533 trace_svc_wake_up(0);
534}
535EXPORT_SYMBOL_GPL(svc_wake_up);
536
537int svc_port_is_privileged(struct sockaddr *sin)
538{
539 switch (sin->sa_family) {
540 case AF_INET:
541 return ntohs(((struct sockaddr_in *)sin)->sin_port)
542 < PROT_SOCK;
543 case AF_INET6:
544 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
545 < PROT_SOCK;
546 default:
547 return 0;
548 }
549}
550
551/*
552 * Make sure that we don't have too many active connections. If we have,
553 * something must be dropped. It's not clear what will happen if we allow
554 * "too many" connections, but when dealing with network-facing software,
555 * we have to code defensively. Here we do that by imposing hard limits.
556 *
557 * There's no point in trying to do random drop here for DoS
558 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
559 * attacker can easily beat that.
560 *
561 * The only somewhat efficient mechanism would be if drop old
562 * connections from the same IP first. But right now we don't even
563 * record the client IP in svc_sock.
564 *
565 * single-threaded services that expect a lot of clients will probably
566 * need to set sv_maxconn to override the default value which is based
567 * on the number of threads
568 */
569static void svc_check_conn_limits(struct svc_serv *serv)
570{
571 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
572 (serv->sv_nrthreads+3) * 20;
573
574 if (serv->sv_tmpcnt > limit) {
575 struct svc_xprt *xprt = NULL;
576 spin_lock_bh(&serv->sv_lock);
577 if (!list_empty(&serv->sv_tempsocks)) {
578 /* Try to help the admin */
579 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
580 serv->sv_name, serv->sv_maxconn ?
581 "max number of connections" :
582 "number of threads");
583 /*
584 * Always select the oldest connection. It's not fair,
585 * but so is life
586 */
587 xprt = list_entry(serv->sv_tempsocks.prev,
588 struct svc_xprt,
589 xpt_list);
590 set_bit(XPT_CLOSE, &xprt->xpt_flags);
591 svc_xprt_get(xprt);
592 }
593 spin_unlock_bh(&serv->sv_lock);
594
595 if (xprt) {
596 svc_xprt_enqueue(xprt);
597 svc_xprt_put(xprt);
598 }
599 }
600}
601
602static int svc_alloc_arg(struct svc_rqst *rqstp)
603{
604 struct svc_serv *serv = rqstp->rq_server;
605 struct xdr_buf *arg;
606 int pages;
607 int i;
608
609 /* now allocate needed pages. If we get a failure, sleep briefly */
610 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
612 if (pages >= RPCSVC_MAXPAGES)
613 /* use as many pages as possible */
614 pages = RPCSVC_MAXPAGES - 1;
615 for (i = 0; i < pages ; i++)
616 while (rqstp->rq_pages[i] == NULL) {
617 struct page *p = alloc_page(GFP_KERNEL);
618 if (!p) {
619 set_current_state(TASK_INTERRUPTIBLE);
620 if (signalled() || kthread_should_stop()) {
621 set_current_state(TASK_RUNNING);
622 return -EINTR;
623 }
624 schedule_timeout(msecs_to_jiffies(500));
625 }
626 rqstp->rq_pages[i] = p;
627 }
628 rqstp->rq_page_end = &rqstp->rq_pages[i];
629 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
630
631 /* Make arg->head point to first page and arg->pages point to rest */
632 arg = &rqstp->rq_arg;
633 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
634 arg->head[0].iov_len = PAGE_SIZE;
635 arg->pages = rqstp->rq_pages + 1;
636 arg->page_base = 0;
637 /* save at least one page for response */
638 arg->page_len = (pages-2)*PAGE_SIZE;
639 arg->len = (pages-1)*PAGE_SIZE;
640 arg->tail[0].iov_len = 0;
641 return 0;
642}
643
644static bool
645rqst_should_sleep(struct svc_rqst *rqstp)
646{
647 struct svc_pool *pool = rqstp->rq_pool;
648
649 /* did someone call svc_wake_up? */
650 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
651 return false;
652
653 /* was a socket queued? */
654 if (!list_empty(&pool->sp_sockets))
655 return false;
656
657 /* are we shutting down? */
658 if (signalled() || kthread_should_stop())
659 return false;
660
661 /* are we freezing? */
662 if (freezing(current))
663 return false;
664
665 return true;
666}
667
668static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
669{
670 struct svc_xprt *xprt;
671 struct svc_pool *pool = rqstp->rq_pool;
672 long time_left = 0;
673
674 /* rq_xprt should be clear on entry */
675 WARN_ON_ONCE(rqstp->rq_xprt);
676
677 /* Normally we will wait up to 5 seconds for any required
678 * cache information to be provided.
679 */
680 rqstp->rq_chandle.thread_wait = 5*HZ;
681
682 xprt = svc_xprt_dequeue(pool);
683 if (xprt) {
684 rqstp->rq_xprt = xprt;
685
686 /* As there is a shortage of threads and this request
687 * had to be queued, don't allow the thread to wait so
688 * long for cache updates.
689 */
690 rqstp->rq_chandle.thread_wait = 1*HZ;
691 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
692 return xprt;
693 }
694
695 /*
696 * We have to be able to interrupt this wait
697 * to bring down the daemons ...
698 */
699 set_current_state(TASK_INTERRUPTIBLE);
700 clear_bit(RQ_BUSY, &rqstp->rq_flags);
701 smp_mb();
702
703 if (likely(rqst_should_sleep(rqstp)))
704 time_left = schedule_timeout(timeout);
705 else
706 __set_current_state(TASK_RUNNING);
707
708 try_to_freeze();
709
710 spin_lock_bh(&rqstp->rq_lock);
711 set_bit(RQ_BUSY, &rqstp->rq_flags);
712 spin_unlock_bh(&rqstp->rq_lock);
713
714 xprt = rqstp->rq_xprt;
715 if (xprt != NULL)
716 return xprt;
717
718 if (!time_left)
719 atomic_long_inc(&pool->sp_stats.threads_timedout);
720
721 if (signalled() || kthread_should_stop())
722 return ERR_PTR(-EINTR);
723 return ERR_PTR(-EAGAIN);
724}
725
726static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
727{
728 spin_lock_bh(&serv->sv_lock);
729 set_bit(XPT_TEMP, &newxpt->xpt_flags);
730 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
731 serv->sv_tmpcnt++;
732 if (serv->sv_temptimer.function == NULL) {
733 /* setup timer to age temp transports */
734 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
735 (unsigned long)serv);
736 mod_timer(&serv->sv_temptimer,
737 jiffies + svc_conn_age_period * HZ);
738 }
739 spin_unlock_bh(&serv->sv_lock);
740 svc_xprt_received(newxpt);
741}
742
743static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
744{
745 struct svc_serv *serv = rqstp->rq_server;
746 int len = 0;
747
748 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
749 dprintk("svc_recv: found XPT_CLOSE\n");
750 svc_delete_xprt(xprt);
751 /* Leave XPT_BUSY set on the dead xprt: */
752 goto out;
753 }
754 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
755 struct svc_xprt *newxpt;
756 /*
757 * We know this module_get will succeed because the
758 * listener holds a reference too
759 */
760 __module_get(xprt->xpt_class->xcl_owner);
761 svc_check_conn_limits(xprt->xpt_server);
762 newxpt = xprt->xpt_ops->xpo_accept(xprt);
763 if (newxpt)
764 svc_add_new_temp_xprt(serv, newxpt);
765 else
766 module_put(xprt->xpt_class->xcl_owner);
767 } else {
768 /* XPT_DATA|XPT_DEFERRED case: */
769 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
770 rqstp, rqstp->rq_pool->sp_id, xprt,
771 atomic_read(&xprt->xpt_ref.refcount));
772 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
773 if (rqstp->rq_deferred)
774 len = svc_deferred_recv(rqstp);
775 else
776 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
777 dprintk("svc: got len=%d\n", len);
778 rqstp->rq_reserved = serv->sv_max_mesg;
779 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
780 }
781 /* clear XPT_BUSY: */
782 svc_xprt_received(xprt);
783out:
784 trace_svc_handle_xprt(xprt, len);
785 return len;
786}
787
788/*
789 * Receive the next request on any transport. This code is carefully
790 * organised not to touch any cachelines in the shared svc_serv
791 * structure, only cachelines in the local svc_pool.
792 */
793int svc_recv(struct svc_rqst *rqstp, long timeout)
794{
795 struct svc_xprt *xprt = NULL;
796 struct svc_serv *serv = rqstp->rq_server;
797 int len, err;
798
799 dprintk("svc: server %p waiting for data (to = %ld)\n",
800 rqstp, timeout);
801
802 if (rqstp->rq_xprt)
803 printk(KERN_ERR
804 "svc_recv: service %p, transport not NULL!\n",
805 rqstp);
806
807 err = svc_alloc_arg(rqstp);
808 if (err)
809 goto out;
810
811 try_to_freeze();
812 cond_resched();
813 err = -EINTR;
814 if (signalled() || kthread_should_stop())
815 goto out;
816
817 xprt = svc_get_next_xprt(rqstp, timeout);
818 if (IS_ERR(xprt)) {
819 err = PTR_ERR(xprt);
820 goto out;
821 }
822
823 len = svc_handle_xprt(rqstp, xprt);
824
825 /* No data, incomplete (TCP) read, or accept() */
826 err = -EAGAIN;
827 if (len <= 0)
828 goto out_release;
829
830 clear_bit(XPT_OLD, &xprt->xpt_flags);
831
832 if (xprt->xpt_ops->xpo_secure_port(rqstp))
833 set_bit(RQ_SECURE, &rqstp->rq_flags);
834 else
835 clear_bit(RQ_SECURE, &rqstp->rq_flags);
836 rqstp->rq_chandle.defer = svc_defer;
837 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
838
839 if (serv->sv_stats)
840 serv->sv_stats->netcnt++;
841 trace_svc_recv(rqstp, len);
842 return len;
843out_release:
844 rqstp->rq_res.len = 0;
845 svc_xprt_release(rqstp);
846out:
847 trace_svc_recv(rqstp, err);
848 return err;
849}
850EXPORT_SYMBOL_GPL(svc_recv);
851
852/*
853 * Drop request
854 */
855void svc_drop(struct svc_rqst *rqstp)
856{
857 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
858 svc_xprt_release(rqstp);
859}
860EXPORT_SYMBOL_GPL(svc_drop);
861
862/*
863 * Return reply to client.
864 */
865int svc_send(struct svc_rqst *rqstp)
866{
867 struct svc_xprt *xprt;
868 int len = -EFAULT;
869 struct xdr_buf *xb;
870
871 xprt = rqstp->rq_xprt;
872 if (!xprt)
873 goto out;
874
875 /* release the receive skb before sending the reply */
876 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
877
878 /* calculate over-all length */
879 xb = &rqstp->rq_res;
880 xb->len = xb->head[0].iov_len +
881 xb->page_len +
882 xb->tail[0].iov_len;
883
884 /* Grab mutex to serialize outgoing data. */
885 mutex_lock(&xprt->xpt_mutex);
886 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
887 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
888 len = -ENOTCONN;
889 else
890 len = xprt->xpt_ops->xpo_sendto(rqstp);
891 mutex_unlock(&xprt->xpt_mutex);
892 rpc_wake_up(&xprt->xpt_bc_pending);
893 svc_xprt_release(rqstp);
894
895 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
896 len = 0;
897out:
898 trace_svc_send(rqstp, len);
899 return len;
900}
901
902/*
903 * Timer function to close old temporary transports, using
904 * a mark-and-sweep algorithm.
905 */
906static void svc_age_temp_xprts(unsigned long closure)
907{
908 struct svc_serv *serv = (struct svc_serv *)closure;
909 struct svc_xprt *xprt;
910 struct list_head *le, *next;
911
912 dprintk("svc_age_temp_xprts\n");
913
914 if (!spin_trylock_bh(&serv->sv_lock)) {
915 /* busy, try again 1 sec later */
916 dprintk("svc_age_temp_xprts: busy\n");
917 mod_timer(&serv->sv_temptimer, jiffies + HZ);
918 return;
919 }
920
921 list_for_each_safe(le, next, &serv->sv_tempsocks) {
922 xprt = list_entry(le, struct svc_xprt, xpt_list);
923
924 /* First time through, just mark it OLD. Second time
925 * through, close it. */
926 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
927 continue;
928 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
929 test_bit(XPT_BUSY, &xprt->xpt_flags))
930 continue;
931 list_del_init(le);
932 set_bit(XPT_CLOSE, &xprt->xpt_flags);
933 dprintk("queuing xprt %p for closing\n", xprt);
934
935 /* a thread will dequeue and close it soon */
936 svc_xprt_enqueue(xprt);
937 }
938 spin_unlock_bh(&serv->sv_lock);
939
940 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
941}
942
943/* Close temporary transports whose xpt_local matches server_addr immediately
944 * instead of waiting for them to be picked up by the timer.
945 *
946 * This is meant to be called from a notifier_block that runs when an ip
947 * address is deleted.
948 */
949void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
950{
951 struct svc_xprt *xprt;
952 struct svc_sock *svsk;
953 struct socket *sock;
954 struct list_head *le, *next;
955 LIST_HEAD(to_be_closed);
956 struct linger no_linger = {
957 .l_onoff = 1,
958 .l_linger = 0,
959 };
960
961 spin_lock_bh(&serv->sv_lock);
962 list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 xprt = list_entry(le, struct svc_xprt, xpt_list);
964 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 &xprt->xpt_local)) {
966 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 list_move(le, &to_be_closed);
968 }
969 }
970 spin_unlock_bh(&serv->sv_lock);
971
972 while (!list_empty(&to_be_closed)) {
973 le = to_be_closed.next;
974 list_del_init(le);
975 xprt = list_entry(le, struct svc_xprt, xpt_list);
976 dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
977 svsk = container_of(xprt, struct svc_sock, sk_xprt);
978 sock = svsk->sk_sock;
979 kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
980 (char *)&no_linger, sizeof(no_linger));
981 svc_close_xprt(xprt);
982 }
983}
984EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
985
986static void call_xpt_users(struct svc_xprt *xprt)
987{
988 struct svc_xpt_user *u;
989
990 spin_lock(&xprt->xpt_lock);
991 while (!list_empty(&xprt->xpt_users)) {
992 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
993 list_del(&u->list);
994 u->callback(u);
995 }
996 spin_unlock(&xprt->xpt_lock);
997}
998
999/*
1000 * Remove a dead transport
1001 */
1002static void svc_delete_xprt(struct svc_xprt *xprt)
1003{
1004 struct svc_serv *serv = xprt->xpt_server;
1005 struct svc_deferred_req *dr;
1006
1007 /* Only do this once */
1008 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1009 BUG();
1010
1011 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1012 xprt->xpt_ops->xpo_detach(xprt);
1013
1014 spin_lock_bh(&serv->sv_lock);
1015 list_del_init(&xprt->xpt_list);
1016 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1017 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1018 serv->sv_tmpcnt--;
1019 spin_unlock_bh(&serv->sv_lock);
1020
1021 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1022 kfree(dr);
1023
1024 call_xpt_users(xprt);
1025 svc_xprt_put(xprt);
1026}
1027
1028void svc_close_xprt(struct svc_xprt *xprt)
1029{
1030 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1031 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1032 /* someone else will have to effect the close */
1033 return;
1034 /*
1035 * We expect svc_close_xprt() to work even when no threads are
1036 * running (e.g., while configuring the server before starting
1037 * any threads), so if the transport isn't busy, we delete
1038 * it ourself:
1039 */
1040 svc_delete_xprt(xprt);
1041}
1042EXPORT_SYMBOL_GPL(svc_close_xprt);
1043
1044static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1045{
1046 struct svc_xprt *xprt;
1047 int ret = 0;
1048
1049 spin_lock(&serv->sv_lock);
1050 list_for_each_entry(xprt, xprt_list, xpt_list) {
1051 if (xprt->xpt_net != net)
1052 continue;
1053 ret++;
1054 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 svc_xprt_enqueue(xprt);
1056 }
1057 spin_unlock(&serv->sv_lock);
1058 return ret;
1059}
1060
1061static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1062{
1063 struct svc_pool *pool;
1064 struct svc_xprt *xprt;
1065 struct svc_xprt *tmp;
1066 int i;
1067
1068 for (i = 0; i < serv->sv_nrpools; i++) {
1069 pool = &serv->sv_pools[i];
1070
1071 spin_lock_bh(&pool->sp_lock);
1072 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1073 if (xprt->xpt_net != net)
1074 continue;
1075 list_del_init(&xprt->xpt_ready);
1076 spin_unlock_bh(&pool->sp_lock);
1077 return xprt;
1078 }
1079 spin_unlock_bh(&pool->sp_lock);
1080 }
1081 return NULL;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086 struct svc_xprt *xprt;
1087
1088 while ((xprt = svc_dequeue_net(serv, net))) {
1089 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1090 svc_delete_xprt(xprt);
1091 }
1092}
1093
1094/*
1095 * Server threads may still be running (especially in the case where the
1096 * service is still running in other network namespaces).
1097 *
1098 * So we shut down sockets the same way we would on a running server, by
1099 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1100 * the close. In the case there are no such other threads,
1101 * threads running, svc_clean_up_xprts() does a simple version of a
1102 * server's main event loop, and in the case where there are other
1103 * threads, we may need to wait a little while and then check again to
1104 * see if they're done.
1105 */
1106void svc_close_net(struct svc_serv *serv, struct net *net)
1107{
1108 int delay = 0;
1109
1110 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1111 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1112
1113 svc_clean_up_xprts(serv, net);
1114 msleep(delay++);
1115 }
1116}
1117
1118/*
1119 * Handle defer and revisit of requests
1120 */
1121
1122static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1123{
1124 struct svc_deferred_req *dr =
1125 container_of(dreq, struct svc_deferred_req, handle);
1126 struct svc_xprt *xprt = dr->xprt;
1127
1128 spin_lock(&xprt->xpt_lock);
1129 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1130 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1131 spin_unlock(&xprt->xpt_lock);
1132 dprintk("revisit canceled\n");
1133 svc_xprt_put(xprt);
1134 kfree(dr);
1135 return;
1136 }
1137 dprintk("revisit queued\n");
1138 dr->xprt = NULL;
1139 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 spin_unlock(&xprt->xpt_lock);
1141 svc_xprt_enqueue(xprt);
1142 svc_xprt_put(xprt);
1143}
1144
1145/*
1146 * Save the request off for later processing. The request buffer looks
1147 * like this:
1148 *
1149 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150 *
1151 * This code can only handle requests that consist of an xprt-header
1152 * and rpc-header.
1153 */
1154static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155{
1156 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 struct svc_deferred_req *dr;
1158
1159 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 return NULL; /* if more than a page, give up FIXME */
1161 if (rqstp->rq_deferred) {
1162 dr = rqstp->rq_deferred;
1163 rqstp->rq_deferred = NULL;
1164 } else {
1165 size_t skip;
1166 size_t size;
1167 /* FIXME maybe discard if size too large */
1168 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 dr = kmalloc(size, GFP_KERNEL);
1170 if (dr == NULL)
1171 return NULL;
1172
1173 dr->handle.owner = rqstp->rq_server;
1174 dr->prot = rqstp->rq_prot;
1175 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 dr->addrlen = rqstp->rq_addrlen;
1177 dr->daddr = rqstp->rq_daddr;
1178 dr->argslen = rqstp->rq_arg.len >> 2;
1179 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180
1181 /* back up head to the start of the buffer and copy */
1182 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 dr->argslen << 2);
1185 }
1186 svc_xprt_get(rqstp->rq_xprt);
1187 dr->xprt = rqstp->rq_xprt;
1188 set_bit(RQ_DROPME, &rqstp->rq_flags);
1189
1190 dr->handle.revisit = svc_revisit;
1191 return &dr->handle;
1192}
1193
1194/*
1195 * recv data from a deferred request into an active one
1196 */
1197static int svc_deferred_recv(struct svc_rqst *rqstp)
1198{
1199 struct svc_deferred_req *dr = rqstp->rq_deferred;
1200
1201 /* setup iov_base past transport header */
1202 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1203 /* The iov_len does not include the transport header bytes */
1204 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1205 rqstp->rq_arg.page_len = 0;
1206 /* The rq_arg.len includes the transport header bytes */
1207 rqstp->rq_arg.len = dr->argslen<<2;
1208 rqstp->rq_prot = dr->prot;
1209 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1210 rqstp->rq_addrlen = dr->addrlen;
1211 /* Save off transport header len in case we get deferred again */
1212 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1213 rqstp->rq_daddr = dr->daddr;
1214 rqstp->rq_respages = rqstp->rq_pages;
1215 return (dr->argslen<<2) - dr->xprt_hlen;
1216}
1217
1218
1219static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1220{
1221 struct svc_deferred_req *dr = NULL;
1222
1223 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1224 return NULL;
1225 spin_lock(&xprt->xpt_lock);
1226 if (!list_empty(&xprt->xpt_deferred)) {
1227 dr = list_entry(xprt->xpt_deferred.next,
1228 struct svc_deferred_req,
1229 handle.recent);
1230 list_del_init(&dr->handle.recent);
1231 } else
1232 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233 spin_unlock(&xprt->xpt_lock);
1234 return dr;
1235}
1236
1237/**
1238 * svc_find_xprt - find an RPC transport instance
1239 * @serv: pointer to svc_serv to search
1240 * @xcl_name: C string containing transport's class name
1241 * @net: owner net pointer
1242 * @af: Address family of transport's local address
1243 * @port: transport's IP port number
1244 *
1245 * Return the transport instance pointer for the endpoint accepting
1246 * connections/peer traffic from the specified transport class,
1247 * address family and port.
1248 *
1249 * Specifying 0 for the address family or port is effectively a
1250 * wild-card, and will result in matching the first transport in the
1251 * service's list that has a matching class name.
1252 */
1253struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254 struct net *net, const sa_family_t af,
1255 const unsigned short port)
1256{
1257 struct svc_xprt *xprt;
1258 struct svc_xprt *found = NULL;
1259
1260 /* Sanity check the args */
1261 if (serv == NULL || xcl_name == NULL)
1262 return found;
1263
1264 spin_lock_bh(&serv->sv_lock);
1265 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266 if (xprt->xpt_net != net)
1267 continue;
1268 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269 continue;
1270 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271 continue;
1272 if (port != 0 && port != svc_xprt_local_port(xprt))
1273 continue;
1274 found = xprt;
1275 svc_xprt_get(xprt);
1276 break;
1277 }
1278 spin_unlock_bh(&serv->sv_lock);
1279 return found;
1280}
1281EXPORT_SYMBOL_GPL(svc_find_xprt);
1282
1283static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284 char *pos, int remaining)
1285{
1286 int len;
1287
1288 len = snprintf(pos, remaining, "%s %u\n",
1289 xprt->xpt_class->xcl_name,
1290 svc_xprt_local_port(xprt));
1291 if (len >= remaining)
1292 return -ENAMETOOLONG;
1293 return len;
1294}
1295
1296/**
1297 * svc_xprt_names - format a buffer with a list of transport names
1298 * @serv: pointer to an RPC service
1299 * @buf: pointer to a buffer to be filled in
1300 * @buflen: length of buffer to be filled in
1301 *
1302 * Fills in @buf with a string containing a list of transport names,
1303 * each name terminated with '\n'.
1304 *
1305 * Returns positive length of the filled-in string on success; otherwise
1306 * a negative errno value is returned if an error occurs.
1307 */
1308int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1309{
1310 struct svc_xprt *xprt;
1311 int len, totlen;
1312 char *pos;
1313
1314 /* Sanity check args */
1315 if (!serv)
1316 return 0;
1317
1318 spin_lock_bh(&serv->sv_lock);
1319
1320 pos = buf;
1321 totlen = 0;
1322 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324 if (len < 0) {
1325 *buf = '\0';
1326 totlen = len;
1327 }
1328 if (len <= 0)
1329 break;
1330
1331 pos += len;
1332 totlen += len;
1333 }
1334
1335 spin_unlock_bh(&serv->sv_lock);
1336 return totlen;
1337}
1338EXPORT_SYMBOL_GPL(svc_xprt_names);
1339
1340
1341/*----------------------------------------------------------------------------*/
1342
1343static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1344{
1345 unsigned int pidx = (unsigned int)*pos;
1346 struct svc_serv *serv = m->private;
1347
1348 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1349
1350 if (!pidx)
1351 return SEQ_START_TOKEN;
1352 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1353}
1354
1355static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1356{
1357 struct svc_pool *pool = p;
1358 struct svc_serv *serv = m->private;
1359
1360 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1361
1362 if (p == SEQ_START_TOKEN) {
1363 pool = &serv->sv_pools[0];
1364 } else {
1365 unsigned int pidx = (pool - &serv->sv_pools[0]);
1366 if (pidx < serv->sv_nrpools-1)
1367 pool = &serv->sv_pools[pidx+1];
1368 else
1369 pool = NULL;
1370 }
1371 ++*pos;
1372 return pool;
1373}
1374
1375static void svc_pool_stats_stop(struct seq_file *m, void *p)
1376{
1377}
1378
1379static int svc_pool_stats_show(struct seq_file *m, void *p)
1380{
1381 struct svc_pool *pool = p;
1382
1383 if (p == SEQ_START_TOKEN) {
1384 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385 return 0;
1386 }
1387
1388 seq_printf(m, "%u %lu %lu %lu %lu\n",
1389 pool->sp_id,
1390 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391 pool->sp_stats.sockets_queued,
1392 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1394
1395 return 0;
1396}
1397
1398static const struct seq_operations svc_pool_stats_seq_ops = {
1399 .start = svc_pool_stats_start,
1400 .next = svc_pool_stats_next,
1401 .stop = svc_pool_stats_stop,
1402 .show = svc_pool_stats_show,
1403};
1404
1405int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1406{
1407 int err;
1408
1409 err = seq_open(file, &svc_pool_stats_seq_ops);
1410 if (!err)
1411 ((struct seq_file *) file->private_data)->private = serv;
1412 return err;
1413}
1414EXPORT_SYMBOL(svc_pool_stats_open);
1415
1416/*----------------------------------------------------------------------------*/
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <trace/events/sunrpc.h>
22
23#define RPCDBG_FACILITY RPCDBG_SVCXPRT
24
25static unsigned int svc_rpc_per_connection_limit __read_mostly;
26module_param(svc_rpc_per_connection_limit, uint, 0644);
27
28
29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30static int svc_deferred_recv(struct svc_rqst *rqstp);
31static struct cache_deferred_req *svc_defer(struct cache_req *req);
32static void svc_age_temp_xprts(struct timer_list *t);
33static void svc_delete_xprt(struct svc_xprt *xprt);
34
35/* apparently the "standard" is that clients close
36 * idle connections after 5 minutes, servers after
37 * 6 minutes
38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39 */
40static int svc_conn_age_period = 6*60;
41
42/* List of registered transport classes */
43static DEFINE_SPINLOCK(svc_xprt_class_lock);
44static LIST_HEAD(svc_xprt_class_list);
45
46/* SMP locking strategy:
47 *
48 * svc_pool->sp_lock protects most of the fields of that pool.
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77{
78 struct svc_xprt_class *cl;
79 int res = -EEXIST;
80
81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82
83 INIT_LIST_HEAD(&xcl->xcl_list);
84 spin_lock(&svc_xprt_class_lock);
85 /* Make sure there isn't already a class with the same name */
86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 goto out;
89 }
90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 res = 0;
92out:
93 spin_unlock(&svc_xprt_class_lock);
94 return res;
95}
96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97
98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99{
100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 spin_lock(&svc_xprt_class_lock);
102 list_del_init(&xcl->xcl_list);
103 spin_unlock(&svc_xprt_class_lock);
104}
105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106
107/**
108 * svc_print_xprts - Format the transport list for printing
109 * @buf: target buffer for formatted address
110 * @maxlen: length of target buffer
111 *
112 * Fills in @buf with a string containing a list of transport names, each name
113 * terminated with '\n'. If the buffer is too small, some entries may be
114 * missing, but it is guaranteed that all lines in the output buffer are
115 * complete.
116 *
117 * Returns positive length of the filled-in string.
118 */
119int svc_print_xprts(char *buf, int maxlen)
120{
121 struct svc_xprt_class *xcl;
122 char tmpstr[80];
123 int len = 0;
124 buf[0] = '\0';
125
126 spin_lock(&svc_xprt_class_lock);
127 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 int slen;
129
130 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 xcl->xcl_name, xcl->xcl_max_payload);
132 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 break;
134 len += slen;
135 strcat(buf, tmpstr);
136 }
137 spin_unlock(&svc_xprt_class_lock);
138
139 return len;
140}
141
142static void svc_xprt_free(struct kref *kref)
143{
144 struct svc_xprt *xprt =
145 container_of(kref, struct svc_xprt, xpt_ref);
146 struct module *owner = xprt->xpt_class->xcl_owner;
147 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
148 svcauth_unix_info_release(xprt);
149 put_cred(xprt->xpt_cred);
150 put_net(xprt->xpt_net);
151 /* See comment on corresponding get in xs_setup_bc_tcp(): */
152 if (xprt->xpt_bc_xprt)
153 xprt_put(xprt->xpt_bc_xprt);
154 if (xprt->xpt_bc_xps)
155 xprt_switch_put(xprt->xpt_bc_xps);
156 trace_svc_xprt_free(xprt);
157 xprt->xpt_ops->xpo_free(xprt);
158 module_put(owner);
159}
160
161void svc_xprt_put(struct svc_xprt *xprt)
162{
163 kref_put(&xprt->xpt_ref, svc_xprt_free);
164}
165EXPORT_SYMBOL_GPL(svc_xprt_put);
166
167/*
168 * Called by transport drivers to initialize the transport independent
169 * portion of the transport instance.
170 */
171void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
172 struct svc_xprt *xprt, struct svc_serv *serv)
173{
174 memset(xprt, 0, sizeof(*xprt));
175 xprt->xpt_class = xcl;
176 xprt->xpt_ops = xcl->xcl_ops;
177 kref_init(&xprt->xpt_ref);
178 xprt->xpt_server = serv;
179 INIT_LIST_HEAD(&xprt->xpt_list);
180 INIT_LIST_HEAD(&xprt->xpt_ready);
181 INIT_LIST_HEAD(&xprt->xpt_deferred);
182 INIT_LIST_HEAD(&xprt->xpt_users);
183 mutex_init(&xprt->xpt_mutex);
184 spin_lock_init(&xprt->xpt_lock);
185 set_bit(XPT_BUSY, &xprt->xpt_flags);
186 xprt->xpt_net = get_net(net);
187 strcpy(xprt->xpt_remotebuf, "uninitialized");
188}
189EXPORT_SYMBOL_GPL(svc_xprt_init);
190
191static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
192 struct svc_serv *serv,
193 struct net *net,
194 const int family,
195 const unsigned short port,
196 int flags)
197{
198 struct sockaddr_in sin = {
199 .sin_family = AF_INET,
200 .sin_addr.s_addr = htonl(INADDR_ANY),
201 .sin_port = htons(port),
202 };
203#if IS_ENABLED(CONFIG_IPV6)
204 struct sockaddr_in6 sin6 = {
205 .sin6_family = AF_INET6,
206 .sin6_addr = IN6ADDR_ANY_INIT,
207 .sin6_port = htons(port),
208 };
209#endif
210 struct svc_xprt *xprt;
211 struct sockaddr *sap;
212 size_t len;
213
214 switch (family) {
215 case PF_INET:
216 sap = (struct sockaddr *)&sin;
217 len = sizeof(sin);
218 break;
219#if IS_ENABLED(CONFIG_IPV6)
220 case PF_INET6:
221 sap = (struct sockaddr *)&sin6;
222 len = sizeof(sin6);
223 break;
224#endif
225 default:
226 return ERR_PTR(-EAFNOSUPPORT);
227 }
228
229 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
230 if (IS_ERR(xprt))
231 trace_svc_xprt_create_err(serv->sv_program->pg_name,
232 xcl->xcl_name, sap, xprt);
233 return xprt;
234}
235
236/*
237 * svc_xprt_received conditionally queues the transport for processing
238 * by another thread. The caller must hold the XPT_BUSY bit and must
239 * not thereafter touch transport data.
240 *
241 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
242 * insufficient) data.
243 */
244static void svc_xprt_received(struct svc_xprt *xprt)
245{
246 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
247 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
248 return;
249 }
250
251 /* As soon as we clear busy, the xprt could be closed and
252 * 'put', so we need a reference to call svc_enqueue_xprt with:
253 */
254 svc_xprt_get(xprt);
255 smp_mb__before_atomic();
256 clear_bit(XPT_BUSY, &xprt->xpt_flags);
257 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
258 svc_xprt_put(xprt);
259}
260
261void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
262{
263 clear_bit(XPT_TEMP, &new->xpt_flags);
264 spin_lock_bh(&serv->sv_lock);
265 list_add(&new->xpt_list, &serv->sv_permsocks);
266 spin_unlock_bh(&serv->sv_lock);
267 svc_xprt_received(new);
268}
269
270static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
271 struct net *net, const int family,
272 const unsigned short port, int flags,
273 const struct cred *cred)
274{
275 struct svc_xprt_class *xcl;
276
277 spin_lock(&svc_xprt_class_lock);
278 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
279 struct svc_xprt *newxprt;
280 unsigned short newport;
281
282 if (strcmp(xprt_name, xcl->xcl_name))
283 continue;
284
285 if (!try_module_get(xcl->xcl_owner))
286 goto err;
287
288 spin_unlock(&svc_xprt_class_lock);
289 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
290 if (IS_ERR(newxprt)) {
291 module_put(xcl->xcl_owner);
292 return PTR_ERR(newxprt);
293 }
294 newxprt->xpt_cred = get_cred(cred);
295 svc_add_new_perm_xprt(serv, newxprt);
296 newport = svc_xprt_local_port(newxprt);
297 return newport;
298 }
299 err:
300 spin_unlock(&svc_xprt_class_lock);
301 /* This errno is exposed to user space. Provide a reasonable
302 * perror msg for a bad transport. */
303 return -EPROTONOSUPPORT;
304}
305
306int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
307 struct net *net, const int family,
308 const unsigned short port, int flags,
309 const struct cred *cred)
310{
311 int err;
312
313 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
314 if (err == -EPROTONOSUPPORT) {
315 request_module("svc%s", xprt_name);
316 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
317 }
318 return err;
319}
320EXPORT_SYMBOL_GPL(svc_create_xprt);
321
322/*
323 * Copy the local and remote xprt addresses to the rqstp structure
324 */
325void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
326{
327 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
328 rqstp->rq_addrlen = xprt->xpt_remotelen;
329
330 /*
331 * Destination address in request is needed for binding the
332 * source address in RPC replies/callbacks later.
333 */
334 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
335 rqstp->rq_daddrlen = xprt->xpt_locallen;
336}
337EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
338
339/**
340 * svc_print_addr - Format rq_addr field for printing
341 * @rqstp: svc_rqst struct containing address to print
342 * @buf: target buffer for formatted address
343 * @len: length of target buffer
344 *
345 */
346char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
347{
348 return __svc_print_addr(svc_addr(rqstp), buf, len);
349}
350EXPORT_SYMBOL_GPL(svc_print_addr);
351
352static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
353{
354 unsigned int limit = svc_rpc_per_connection_limit;
355 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
356
357 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
358}
359
360static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
361{
362 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
363 if (!svc_xprt_slots_in_range(xprt))
364 return false;
365 atomic_inc(&xprt->xpt_nr_rqsts);
366 set_bit(RQ_DATA, &rqstp->rq_flags);
367 }
368 return true;
369}
370
371static void svc_xprt_release_slot(struct svc_rqst *rqstp)
372{
373 struct svc_xprt *xprt = rqstp->rq_xprt;
374 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
375 atomic_dec(&xprt->xpt_nr_rqsts);
376 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
377 svc_xprt_enqueue(xprt);
378 }
379}
380
381static bool svc_xprt_ready(struct svc_xprt *xprt)
382{
383 unsigned long xpt_flags;
384
385 /*
386 * If another cpu has recently updated xpt_flags,
387 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
388 * know about it; otherwise it's possible that both that cpu and
389 * this one could call svc_xprt_enqueue() without either
390 * svc_xprt_enqueue() recognizing that the conditions below
391 * are satisfied, and we could stall indefinitely:
392 */
393 smp_rmb();
394 xpt_flags = READ_ONCE(xprt->xpt_flags);
395
396 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
397 return true;
398 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
399 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
400 svc_xprt_slots_in_range(xprt))
401 return true;
402 trace_svc_xprt_no_write_space(xprt);
403 return false;
404 }
405 return false;
406}
407
408void svc_xprt_do_enqueue(struct svc_xprt *xprt)
409{
410 struct svc_pool *pool;
411 struct svc_rqst *rqstp = NULL;
412 int cpu;
413
414 if (!svc_xprt_ready(xprt))
415 return;
416
417 /* Mark transport as busy. It will remain in this state until
418 * the provider calls svc_xprt_received. We update XPT_BUSY
419 * atomically because it also guards against trying to enqueue
420 * the transport twice.
421 */
422 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
423 return;
424
425 cpu = get_cpu();
426 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
427
428 atomic_long_inc(&pool->sp_stats.packets);
429
430 spin_lock_bh(&pool->sp_lock);
431 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
432 pool->sp_stats.sockets_queued++;
433 spin_unlock_bh(&pool->sp_lock);
434
435 /* find a thread for this xprt */
436 rcu_read_lock();
437 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
438 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
439 continue;
440 atomic_long_inc(&pool->sp_stats.threads_woken);
441 rqstp->rq_qtime = ktime_get();
442 wake_up_process(rqstp->rq_task);
443 goto out_unlock;
444 }
445 set_bit(SP_CONGESTED, &pool->sp_flags);
446 rqstp = NULL;
447out_unlock:
448 rcu_read_unlock();
449 put_cpu();
450 trace_svc_xprt_do_enqueue(xprt, rqstp);
451}
452EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
453
454/*
455 * Queue up a transport with data pending. If there are idle nfsd
456 * processes, wake 'em up.
457 *
458 */
459void svc_xprt_enqueue(struct svc_xprt *xprt)
460{
461 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
462 return;
463 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
464}
465EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
466
467/*
468 * Dequeue the first transport, if there is one.
469 */
470static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
471{
472 struct svc_xprt *xprt = NULL;
473
474 if (list_empty(&pool->sp_sockets))
475 goto out;
476
477 spin_lock_bh(&pool->sp_lock);
478 if (likely(!list_empty(&pool->sp_sockets))) {
479 xprt = list_first_entry(&pool->sp_sockets,
480 struct svc_xprt, xpt_ready);
481 list_del_init(&xprt->xpt_ready);
482 svc_xprt_get(xprt);
483 }
484 spin_unlock_bh(&pool->sp_lock);
485out:
486 return xprt;
487}
488
489/**
490 * svc_reserve - change the space reserved for the reply to a request.
491 * @rqstp: The request in question
492 * @space: new max space to reserve
493 *
494 * Each request reserves some space on the output queue of the transport
495 * to make sure the reply fits. This function reduces that reserved
496 * space to be the amount of space used already, plus @space.
497 *
498 */
499void svc_reserve(struct svc_rqst *rqstp, int space)
500{
501 struct svc_xprt *xprt = rqstp->rq_xprt;
502
503 space += rqstp->rq_res.head[0].iov_len;
504
505 if (xprt && space < rqstp->rq_reserved) {
506 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
507 rqstp->rq_reserved = space;
508 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
509 svc_xprt_enqueue(xprt);
510 }
511}
512EXPORT_SYMBOL_GPL(svc_reserve);
513
514static void svc_xprt_release(struct svc_rqst *rqstp)
515{
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517
518 xprt->xpt_ops->xpo_release_rqst(rqstp);
519
520 kfree(rqstp->rq_deferred);
521 rqstp->rq_deferred = NULL;
522
523 svc_free_res_pages(rqstp);
524 rqstp->rq_res.page_len = 0;
525 rqstp->rq_res.page_base = 0;
526
527 /* Reset response buffer and release
528 * the reservation.
529 * But first, check that enough space was reserved
530 * for the reply, otherwise we have a bug!
531 */
532 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
533 printk(KERN_ERR "RPC request reserved %d but used %d\n",
534 rqstp->rq_reserved,
535 rqstp->rq_res.len);
536
537 rqstp->rq_res.head[0].iov_len = 0;
538 svc_reserve(rqstp, 0);
539 svc_xprt_release_slot(rqstp);
540 rqstp->rq_xprt = NULL;
541 svc_xprt_put(xprt);
542}
543
544/*
545 * Some svc_serv's will have occasional work to do, even when a xprt is not
546 * waiting to be serviced. This function is there to "kick" a task in one of
547 * those services so that it can wake up and do that work. Note that we only
548 * bother with pool 0 as we don't need to wake up more than one thread for
549 * this purpose.
550 */
551void svc_wake_up(struct svc_serv *serv)
552{
553 struct svc_rqst *rqstp;
554 struct svc_pool *pool;
555
556 pool = &serv->sv_pools[0];
557
558 rcu_read_lock();
559 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
560 /* skip any that aren't queued */
561 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
562 continue;
563 rcu_read_unlock();
564 wake_up_process(rqstp->rq_task);
565 trace_svc_wake_up(rqstp->rq_task->pid);
566 return;
567 }
568 rcu_read_unlock();
569
570 /* No free entries available */
571 set_bit(SP_TASK_PENDING, &pool->sp_flags);
572 smp_wmb();
573 trace_svc_wake_up(0);
574}
575EXPORT_SYMBOL_GPL(svc_wake_up);
576
577int svc_port_is_privileged(struct sockaddr *sin)
578{
579 switch (sin->sa_family) {
580 case AF_INET:
581 return ntohs(((struct sockaddr_in *)sin)->sin_port)
582 < PROT_SOCK;
583 case AF_INET6:
584 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585 < PROT_SOCK;
586 default:
587 return 0;
588 }
589}
590
591/*
592 * Make sure that we don't have too many active connections. If we have,
593 * something must be dropped. It's not clear what will happen if we allow
594 * "too many" connections, but when dealing with network-facing software,
595 * we have to code defensively. Here we do that by imposing hard limits.
596 *
597 * There's no point in trying to do random drop here for DoS
598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599 * attacker can easily beat that.
600 *
601 * The only somewhat efficient mechanism would be if drop old
602 * connections from the same IP first. But right now we don't even
603 * record the client IP in svc_sock.
604 *
605 * single-threaded services that expect a lot of clients will probably
606 * need to set sv_maxconn to override the default value which is based
607 * on the number of threads
608 */
609static void svc_check_conn_limits(struct svc_serv *serv)
610{
611 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612 (serv->sv_nrthreads+3) * 20;
613
614 if (serv->sv_tmpcnt > limit) {
615 struct svc_xprt *xprt = NULL;
616 spin_lock_bh(&serv->sv_lock);
617 if (!list_empty(&serv->sv_tempsocks)) {
618 /* Try to help the admin */
619 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620 serv->sv_name, serv->sv_maxconn ?
621 "max number of connections" :
622 "number of threads");
623 /*
624 * Always select the oldest connection. It's not fair,
625 * but so is life
626 */
627 xprt = list_entry(serv->sv_tempsocks.prev,
628 struct svc_xprt,
629 xpt_list);
630 set_bit(XPT_CLOSE, &xprt->xpt_flags);
631 svc_xprt_get(xprt);
632 }
633 spin_unlock_bh(&serv->sv_lock);
634
635 if (xprt) {
636 svc_xprt_enqueue(xprt);
637 svc_xprt_put(xprt);
638 }
639 }
640}
641
642static int svc_alloc_arg(struct svc_rqst *rqstp)
643{
644 struct svc_serv *serv = rqstp->rq_server;
645 struct xdr_buf *arg;
646 int pages;
647 int i;
648
649 /* now allocate needed pages. If we get a failure, sleep briefly */
650 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
651 if (pages > RPCSVC_MAXPAGES) {
652 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
653 pages, RPCSVC_MAXPAGES);
654 /* use as many pages as possible */
655 pages = RPCSVC_MAXPAGES;
656 }
657 for (i = 0; i < pages ; i++)
658 while (rqstp->rq_pages[i] == NULL) {
659 struct page *p = alloc_page(GFP_KERNEL);
660 if (!p) {
661 set_current_state(TASK_INTERRUPTIBLE);
662 if (signalled() || kthread_should_stop()) {
663 set_current_state(TASK_RUNNING);
664 return -EINTR;
665 }
666 schedule_timeout(msecs_to_jiffies(500));
667 }
668 rqstp->rq_pages[i] = p;
669 }
670 rqstp->rq_page_end = &rqstp->rq_pages[i];
671 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
672
673 /* Make arg->head point to first page and arg->pages point to rest */
674 arg = &rqstp->rq_arg;
675 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
676 arg->head[0].iov_len = PAGE_SIZE;
677 arg->pages = rqstp->rq_pages + 1;
678 arg->page_base = 0;
679 /* save at least one page for response */
680 arg->page_len = (pages-2)*PAGE_SIZE;
681 arg->len = (pages-1)*PAGE_SIZE;
682 arg->tail[0].iov_len = 0;
683 return 0;
684}
685
686static bool
687rqst_should_sleep(struct svc_rqst *rqstp)
688{
689 struct svc_pool *pool = rqstp->rq_pool;
690
691 /* did someone call svc_wake_up? */
692 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
693 return false;
694
695 /* was a socket queued? */
696 if (!list_empty(&pool->sp_sockets))
697 return false;
698
699 /* are we shutting down? */
700 if (signalled() || kthread_should_stop())
701 return false;
702
703 /* are we freezing? */
704 if (freezing(current))
705 return false;
706
707 return true;
708}
709
710static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
711{
712 struct svc_pool *pool = rqstp->rq_pool;
713 long time_left = 0;
714
715 /* rq_xprt should be clear on entry */
716 WARN_ON_ONCE(rqstp->rq_xprt);
717
718 rqstp->rq_xprt = svc_xprt_dequeue(pool);
719 if (rqstp->rq_xprt)
720 goto out_found;
721
722 /*
723 * We have to be able to interrupt this wait
724 * to bring down the daemons ...
725 */
726 set_current_state(TASK_INTERRUPTIBLE);
727 smp_mb__before_atomic();
728 clear_bit(SP_CONGESTED, &pool->sp_flags);
729 clear_bit(RQ_BUSY, &rqstp->rq_flags);
730 smp_mb__after_atomic();
731
732 if (likely(rqst_should_sleep(rqstp)))
733 time_left = schedule_timeout(timeout);
734 else
735 __set_current_state(TASK_RUNNING);
736
737 try_to_freeze();
738
739 set_bit(RQ_BUSY, &rqstp->rq_flags);
740 smp_mb__after_atomic();
741 rqstp->rq_xprt = svc_xprt_dequeue(pool);
742 if (rqstp->rq_xprt)
743 goto out_found;
744
745 if (!time_left)
746 atomic_long_inc(&pool->sp_stats.threads_timedout);
747
748 if (signalled() || kthread_should_stop())
749 return ERR_PTR(-EINTR);
750 return ERR_PTR(-EAGAIN);
751out_found:
752 /* Normally we will wait up to 5 seconds for any required
753 * cache information to be provided.
754 */
755 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
756 rqstp->rq_chandle.thread_wait = 5*HZ;
757 else
758 rqstp->rq_chandle.thread_wait = 1*HZ;
759 trace_svc_xprt_dequeue(rqstp);
760 return rqstp->rq_xprt;
761}
762
763static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
764{
765 spin_lock_bh(&serv->sv_lock);
766 set_bit(XPT_TEMP, &newxpt->xpt_flags);
767 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
768 serv->sv_tmpcnt++;
769 if (serv->sv_temptimer.function == NULL) {
770 /* setup timer to age temp transports */
771 serv->sv_temptimer.function = svc_age_temp_xprts;
772 mod_timer(&serv->sv_temptimer,
773 jiffies + svc_conn_age_period * HZ);
774 }
775 spin_unlock_bh(&serv->sv_lock);
776 svc_xprt_received(newxpt);
777}
778
779static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
780{
781 struct svc_serv *serv = rqstp->rq_server;
782 int len = 0;
783
784 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
785 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
786 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
787 svc_delete_xprt(xprt);
788 /* Leave XPT_BUSY set on the dead xprt: */
789 goto out;
790 }
791 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
792 struct svc_xprt *newxpt;
793 /*
794 * We know this module_get will succeed because the
795 * listener holds a reference too
796 */
797 __module_get(xprt->xpt_class->xcl_owner);
798 svc_check_conn_limits(xprt->xpt_server);
799 newxpt = xprt->xpt_ops->xpo_accept(xprt);
800 if (newxpt) {
801 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
802 svc_add_new_temp_xprt(serv, newxpt);
803 trace_svc_xprt_accept(newxpt, serv->sv_name);
804 } else
805 module_put(xprt->xpt_class->xcl_owner);
806 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
807 /* XPT_DATA|XPT_DEFERRED case: */
808 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
809 rqstp, rqstp->rq_pool->sp_id, xprt,
810 kref_read(&xprt->xpt_ref));
811 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
812 if (rqstp->rq_deferred)
813 len = svc_deferred_recv(rqstp);
814 else
815 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
816 if (len > 0)
817 trace_svc_xdr_recvfrom(rqstp, &rqstp->rq_arg);
818 rqstp->rq_stime = ktime_get();
819 rqstp->rq_reserved = serv->sv_max_mesg;
820 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
821 }
822 /* clear XPT_BUSY: */
823 svc_xprt_received(xprt);
824out:
825 trace_svc_handle_xprt(xprt, len);
826 return len;
827}
828
829/*
830 * Receive the next request on any transport. This code is carefully
831 * organised not to touch any cachelines in the shared svc_serv
832 * structure, only cachelines in the local svc_pool.
833 */
834int svc_recv(struct svc_rqst *rqstp, long timeout)
835{
836 struct svc_xprt *xprt = NULL;
837 struct svc_serv *serv = rqstp->rq_server;
838 int len, err;
839
840 err = svc_alloc_arg(rqstp);
841 if (err)
842 goto out;
843
844 try_to_freeze();
845 cond_resched();
846 err = -EINTR;
847 if (signalled() || kthread_should_stop())
848 goto out;
849
850 xprt = svc_get_next_xprt(rqstp, timeout);
851 if (IS_ERR(xprt)) {
852 err = PTR_ERR(xprt);
853 goto out;
854 }
855
856 len = svc_handle_xprt(rqstp, xprt);
857
858 /* No data, incomplete (TCP) read, or accept() */
859 err = -EAGAIN;
860 if (len <= 0)
861 goto out_release;
862
863 clear_bit(XPT_OLD, &xprt->xpt_flags);
864
865 xprt->xpt_ops->xpo_secure_port(rqstp);
866 rqstp->rq_chandle.defer = svc_defer;
867 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
868
869 if (serv->sv_stats)
870 serv->sv_stats->netcnt++;
871 trace_svc_recv(rqstp, len);
872 return len;
873out_release:
874 rqstp->rq_res.len = 0;
875 svc_xprt_release(rqstp);
876out:
877 return err;
878}
879EXPORT_SYMBOL_GPL(svc_recv);
880
881/*
882 * Drop request
883 */
884void svc_drop(struct svc_rqst *rqstp)
885{
886 trace_svc_drop(rqstp);
887 svc_xprt_release(rqstp);
888}
889EXPORT_SYMBOL_GPL(svc_drop);
890
891/*
892 * Return reply to client.
893 */
894int svc_send(struct svc_rqst *rqstp)
895{
896 struct svc_xprt *xprt;
897 int len = -EFAULT;
898 struct xdr_buf *xb;
899
900 xprt = rqstp->rq_xprt;
901 if (!xprt)
902 goto out;
903
904 /* calculate over-all length */
905 xb = &rqstp->rq_res;
906 xb->len = xb->head[0].iov_len +
907 xb->page_len +
908 xb->tail[0].iov_len;
909 trace_svc_xdr_sendto(rqstp, xb);
910 trace_svc_stats_latency(rqstp);
911
912 len = xprt->xpt_ops->xpo_sendto(rqstp);
913
914 trace_svc_send(rqstp, len);
915 svc_xprt_release(rqstp);
916
917 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
918 len = 0;
919out:
920 return len;
921}
922
923/*
924 * Timer function to close old temporary transports, using
925 * a mark-and-sweep algorithm.
926 */
927static void svc_age_temp_xprts(struct timer_list *t)
928{
929 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
930 struct svc_xprt *xprt;
931 struct list_head *le, *next;
932
933 dprintk("svc_age_temp_xprts\n");
934
935 if (!spin_trylock_bh(&serv->sv_lock)) {
936 /* busy, try again 1 sec later */
937 dprintk("svc_age_temp_xprts: busy\n");
938 mod_timer(&serv->sv_temptimer, jiffies + HZ);
939 return;
940 }
941
942 list_for_each_safe(le, next, &serv->sv_tempsocks) {
943 xprt = list_entry(le, struct svc_xprt, xpt_list);
944
945 /* First time through, just mark it OLD. Second time
946 * through, close it. */
947 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
948 continue;
949 if (kref_read(&xprt->xpt_ref) > 1 ||
950 test_bit(XPT_BUSY, &xprt->xpt_flags))
951 continue;
952 list_del_init(le);
953 set_bit(XPT_CLOSE, &xprt->xpt_flags);
954 dprintk("queuing xprt %p for closing\n", xprt);
955
956 /* a thread will dequeue and close it soon */
957 svc_xprt_enqueue(xprt);
958 }
959 spin_unlock_bh(&serv->sv_lock);
960
961 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
962}
963
964/* Close temporary transports whose xpt_local matches server_addr immediately
965 * instead of waiting for them to be picked up by the timer.
966 *
967 * This is meant to be called from a notifier_block that runs when an ip
968 * address is deleted.
969 */
970void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
971{
972 struct svc_xprt *xprt;
973 struct list_head *le, *next;
974 LIST_HEAD(to_be_closed);
975
976 spin_lock_bh(&serv->sv_lock);
977 list_for_each_safe(le, next, &serv->sv_tempsocks) {
978 xprt = list_entry(le, struct svc_xprt, xpt_list);
979 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
980 &xprt->xpt_local)) {
981 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
982 list_move(le, &to_be_closed);
983 }
984 }
985 spin_unlock_bh(&serv->sv_lock);
986
987 while (!list_empty(&to_be_closed)) {
988 le = to_be_closed.next;
989 list_del_init(le);
990 xprt = list_entry(le, struct svc_xprt, xpt_list);
991 set_bit(XPT_CLOSE, &xprt->xpt_flags);
992 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
993 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
994 xprt);
995 svc_xprt_enqueue(xprt);
996 }
997}
998EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
999
1000static void call_xpt_users(struct svc_xprt *xprt)
1001{
1002 struct svc_xpt_user *u;
1003
1004 spin_lock(&xprt->xpt_lock);
1005 while (!list_empty(&xprt->xpt_users)) {
1006 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1007 list_del_init(&u->list);
1008 u->callback(u);
1009 }
1010 spin_unlock(&xprt->xpt_lock);
1011}
1012
1013/*
1014 * Remove a dead transport
1015 */
1016static void svc_delete_xprt(struct svc_xprt *xprt)
1017{
1018 struct svc_serv *serv = xprt->xpt_server;
1019 struct svc_deferred_req *dr;
1020
1021 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1022 return;
1023
1024 trace_svc_xprt_detach(xprt);
1025 xprt->xpt_ops->xpo_detach(xprt);
1026 if (xprt->xpt_bc_xprt)
1027 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1028
1029 spin_lock_bh(&serv->sv_lock);
1030 list_del_init(&xprt->xpt_list);
1031 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1032 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1033 serv->sv_tmpcnt--;
1034 spin_unlock_bh(&serv->sv_lock);
1035
1036 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1037 kfree(dr);
1038
1039 call_xpt_users(xprt);
1040 svc_xprt_put(xprt);
1041}
1042
1043void svc_close_xprt(struct svc_xprt *xprt)
1044{
1045 trace_svc_xprt_close(xprt);
1046 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1047 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1048 /* someone else will have to effect the close */
1049 return;
1050 /*
1051 * We expect svc_close_xprt() to work even when no threads are
1052 * running (e.g., while configuring the server before starting
1053 * any threads), so if the transport isn't busy, we delete
1054 * it ourself:
1055 */
1056 svc_delete_xprt(xprt);
1057}
1058EXPORT_SYMBOL_GPL(svc_close_xprt);
1059
1060static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1061{
1062 struct svc_xprt *xprt;
1063 int ret = 0;
1064
1065 spin_lock(&serv->sv_lock);
1066 list_for_each_entry(xprt, xprt_list, xpt_list) {
1067 if (xprt->xpt_net != net)
1068 continue;
1069 ret++;
1070 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1071 svc_xprt_enqueue(xprt);
1072 }
1073 spin_unlock(&serv->sv_lock);
1074 return ret;
1075}
1076
1077static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1078{
1079 struct svc_pool *pool;
1080 struct svc_xprt *xprt;
1081 struct svc_xprt *tmp;
1082 int i;
1083
1084 for (i = 0; i < serv->sv_nrpools; i++) {
1085 pool = &serv->sv_pools[i];
1086
1087 spin_lock_bh(&pool->sp_lock);
1088 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1089 if (xprt->xpt_net != net)
1090 continue;
1091 list_del_init(&xprt->xpt_ready);
1092 spin_unlock_bh(&pool->sp_lock);
1093 return xprt;
1094 }
1095 spin_unlock_bh(&pool->sp_lock);
1096 }
1097 return NULL;
1098}
1099
1100static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1101{
1102 struct svc_xprt *xprt;
1103
1104 while ((xprt = svc_dequeue_net(serv, net))) {
1105 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1106 svc_delete_xprt(xprt);
1107 }
1108}
1109
1110/*
1111 * Server threads may still be running (especially in the case where the
1112 * service is still running in other network namespaces).
1113 *
1114 * So we shut down sockets the same way we would on a running server, by
1115 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1116 * the close. In the case there are no such other threads,
1117 * threads running, svc_clean_up_xprts() does a simple version of a
1118 * server's main event loop, and in the case where there are other
1119 * threads, we may need to wait a little while and then check again to
1120 * see if they're done.
1121 */
1122void svc_close_net(struct svc_serv *serv, struct net *net)
1123{
1124 int delay = 0;
1125
1126 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1127 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1128
1129 svc_clean_up_xprts(serv, net);
1130 msleep(delay++);
1131 }
1132}
1133
1134/*
1135 * Handle defer and revisit of requests
1136 */
1137
1138static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1139{
1140 struct svc_deferred_req *dr =
1141 container_of(dreq, struct svc_deferred_req, handle);
1142 struct svc_xprt *xprt = dr->xprt;
1143
1144 spin_lock(&xprt->xpt_lock);
1145 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1147 spin_unlock(&xprt->xpt_lock);
1148 trace_svc_defer_drop(dr);
1149 svc_xprt_put(xprt);
1150 kfree(dr);
1151 return;
1152 }
1153 dr->xprt = NULL;
1154 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1155 spin_unlock(&xprt->xpt_lock);
1156 trace_svc_defer_queue(dr);
1157 svc_xprt_enqueue(xprt);
1158 svc_xprt_put(xprt);
1159}
1160
1161/*
1162 * Save the request off for later processing. The request buffer looks
1163 * like this:
1164 *
1165 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1166 *
1167 * This code can only handle requests that consist of an xprt-header
1168 * and rpc-header.
1169 */
1170static struct cache_deferred_req *svc_defer(struct cache_req *req)
1171{
1172 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1173 struct svc_deferred_req *dr;
1174
1175 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1176 return NULL; /* if more than a page, give up FIXME */
1177 if (rqstp->rq_deferred) {
1178 dr = rqstp->rq_deferred;
1179 rqstp->rq_deferred = NULL;
1180 } else {
1181 size_t skip;
1182 size_t size;
1183 /* FIXME maybe discard if size too large */
1184 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1185 dr = kmalloc(size, GFP_KERNEL);
1186 if (dr == NULL)
1187 return NULL;
1188
1189 dr->handle.owner = rqstp->rq_server;
1190 dr->prot = rqstp->rq_prot;
1191 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1192 dr->addrlen = rqstp->rq_addrlen;
1193 dr->daddr = rqstp->rq_daddr;
1194 dr->argslen = rqstp->rq_arg.len >> 2;
1195 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1196
1197 /* back up head to the start of the buffer and copy */
1198 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1199 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1200 dr->argslen << 2);
1201 }
1202 trace_svc_defer(rqstp);
1203 svc_xprt_get(rqstp->rq_xprt);
1204 dr->xprt = rqstp->rq_xprt;
1205 set_bit(RQ_DROPME, &rqstp->rq_flags);
1206
1207 dr->handle.revisit = svc_revisit;
1208 return &dr->handle;
1209}
1210
1211/*
1212 * recv data from a deferred request into an active one
1213 */
1214static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1215{
1216 struct svc_deferred_req *dr = rqstp->rq_deferred;
1217
1218 trace_svc_defer_recv(dr);
1219
1220 /* setup iov_base past transport header */
1221 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1222 /* The iov_len does not include the transport header bytes */
1223 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1224 rqstp->rq_arg.page_len = 0;
1225 /* The rq_arg.len includes the transport header bytes */
1226 rqstp->rq_arg.len = dr->argslen<<2;
1227 rqstp->rq_prot = dr->prot;
1228 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1229 rqstp->rq_addrlen = dr->addrlen;
1230 /* Save off transport header len in case we get deferred again */
1231 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1232 rqstp->rq_daddr = dr->daddr;
1233 rqstp->rq_respages = rqstp->rq_pages;
1234 return (dr->argslen<<2) - dr->xprt_hlen;
1235}
1236
1237
1238static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239{
1240 struct svc_deferred_req *dr = NULL;
1241
1242 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243 return NULL;
1244 spin_lock(&xprt->xpt_lock);
1245 if (!list_empty(&xprt->xpt_deferred)) {
1246 dr = list_entry(xprt->xpt_deferred.next,
1247 struct svc_deferred_req,
1248 handle.recent);
1249 list_del_init(&dr->handle.recent);
1250 } else
1251 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1252 spin_unlock(&xprt->xpt_lock);
1253 return dr;
1254}
1255
1256/**
1257 * svc_find_xprt - find an RPC transport instance
1258 * @serv: pointer to svc_serv to search
1259 * @xcl_name: C string containing transport's class name
1260 * @net: owner net pointer
1261 * @af: Address family of transport's local address
1262 * @port: transport's IP port number
1263 *
1264 * Return the transport instance pointer for the endpoint accepting
1265 * connections/peer traffic from the specified transport class,
1266 * address family and port.
1267 *
1268 * Specifying 0 for the address family or port is effectively a
1269 * wild-card, and will result in matching the first transport in the
1270 * service's list that has a matching class name.
1271 */
1272struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1273 struct net *net, const sa_family_t af,
1274 const unsigned short port)
1275{
1276 struct svc_xprt *xprt;
1277 struct svc_xprt *found = NULL;
1278
1279 /* Sanity check the args */
1280 if (serv == NULL || xcl_name == NULL)
1281 return found;
1282
1283 spin_lock_bh(&serv->sv_lock);
1284 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1285 if (xprt->xpt_net != net)
1286 continue;
1287 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1288 continue;
1289 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1290 continue;
1291 if (port != 0 && port != svc_xprt_local_port(xprt))
1292 continue;
1293 found = xprt;
1294 svc_xprt_get(xprt);
1295 break;
1296 }
1297 spin_unlock_bh(&serv->sv_lock);
1298 return found;
1299}
1300EXPORT_SYMBOL_GPL(svc_find_xprt);
1301
1302static int svc_one_xprt_name(const struct svc_xprt *xprt,
1303 char *pos, int remaining)
1304{
1305 int len;
1306
1307 len = snprintf(pos, remaining, "%s %u\n",
1308 xprt->xpt_class->xcl_name,
1309 svc_xprt_local_port(xprt));
1310 if (len >= remaining)
1311 return -ENAMETOOLONG;
1312 return len;
1313}
1314
1315/**
1316 * svc_xprt_names - format a buffer with a list of transport names
1317 * @serv: pointer to an RPC service
1318 * @buf: pointer to a buffer to be filled in
1319 * @buflen: length of buffer to be filled in
1320 *
1321 * Fills in @buf with a string containing a list of transport names,
1322 * each name terminated with '\n'.
1323 *
1324 * Returns positive length of the filled-in string on success; otherwise
1325 * a negative errno value is returned if an error occurs.
1326 */
1327int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1328{
1329 struct svc_xprt *xprt;
1330 int len, totlen;
1331 char *pos;
1332
1333 /* Sanity check args */
1334 if (!serv)
1335 return 0;
1336
1337 spin_lock_bh(&serv->sv_lock);
1338
1339 pos = buf;
1340 totlen = 0;
1341 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1342 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1343 if (len < 0) {
1344 *buf = '\0';
1345 totlen = len;
1346 }
1347 if (len <= 0)
1348 break;
1349
1350 pos += len;
1351 totlen += len;
1352 }
1353
1354 spin_unlock_bh(&serv->sv_lock);
1355 return totlen;
1356}
1357EXPORT_SYMBOL_GPL(svc_xprt_names);
1358
1359
1360/*----------------------------------------------------------------------------*/
1361
1362static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1363{
1364 unsigned int pidx = (unsigned int)*pos;
1365 struct svc_serv *serv = m->private;
1366
1367 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1368
1369 if (!pidx)
1370 return SEQ_START_TOKEN;
1371 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1372}
1373
1374static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1375{
1376 struct svc_pool *pool = p;
1377 struct svc_serv *serv = m->private;
1378
1379 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1380
1381 if (p == SEQ_START_TOKEN) {
1382 pool = &serv->sv_pools[0];
1383 } else {
1384 unsigned int pidx = (pool - &serv->sv_pools[0]);
1385 if (pidx < serv->sv_nrpools-1)
1386 pool = &serv->sv_pools[pidx+1];
1387 else
1388 pool = NULL;
1389 }
1390 ++*pos;
1391 return pool;
1392}
1393
1394static void svc_pool_stats_stop(struct seq_file *m, void *p)
1395{
1396}
1397
1398static int svc_pool_stats_show(struct seq_file *m, void *p)
1399{
1400 struct svc_pool *pool = p;
1401
1402 if (p == SEQ_START_TOKEN) {
1403 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1404 return 0;
1405 }
1406
1407 seq_printf(m, "%u %lu %lu %lu %lu\n",
1408 pool->sp_id,
1409 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1410 pool->sp_stats.sockets_queued,
1411 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1412 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1413
1414 return 0;
1415}
1416
1417static const struct seq_operations svc_pool_stats_seq_ops = {
1418 .start = svc_pool_stats_start,
1419 .next = svc_pool_stats_next,
1420 .stop = svc_pool_stats_stop,
1421 .show = svc_pool_stats_show,
1422};
1423
1424int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1425{
1426 int err;
1427
1428 err = seq_open(file, &svc_pool_stats_seq_ops);
1429 if (!err)
1430 ((struct seq_file *) file->private_data)->private = serv;
1431 return err;
1432}
1433EXPORT_SYMBOL(svc_pool_stats_open);
1434
1435/*----------------------------------------------------------------------------*/