Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
  13#include <linux/sunrpc/addr.h>
  14#include <linux/sunrpc/stats.h>
  15#include <linux/sunrpc/svc_xprt.h>
  16#include <linux/sunrpc/svcsock.h>
  17#include <linux/sunrpc/xprt.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <trace/events/sunrpc.h>
  21
  22#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  23
 
 
 
 
  24static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  25static int svc_deferred_recv(struct svc_rqst *rqstp);
  26static struct cache_deferred_req *svc_defer(struct cache_req *req);
  27static void svc_age_temp_xprts(unsigned long closure);
  28static void svc_delete_xprt(struct svc_xprt *xprt);
  29
  30/* apparently the "standard" is that clients close
  31 * idle connections after 5 minutes, servers after
  32 * 6 minutes
  33 *   http://www.connectathon.org/talks96/nfstcp.pdf
  34 */
  35static int svc_conn_age_period = 6*60;
  36
  37/* List of registered transport classes */
  38static DEFINE_SPINLOCK(svc_xprt_class_lock);
  39static LIST_HEAD(svc_xprt_class_list);
  40
  41/* SMP locking strategy:
  42 *
  43 *	svc_pool->sp_lock protects most of the fields of that pool.
  44 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  45 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  46 *	The "service mutex" protects svc_serv->sv_nrthread.
  47 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  48 *             and the ->sk_info_authunix cache.
  49 *
  50 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  51 *	enqueued multiply. During normal transport processing this bit
  52 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  53 *	Providers should not manipulate this bit directly.
  54 *
  55 *	Some flags can be set to certain values at any time
  56 *	providing that certain rules are followed:
  57 *
  58 *	XPT_CONN, XPT_DATA:
  59 *		- Can be set or cleared at any time.
  60 *		- After a set, svc_xprt_enqueue must be called to enqueue
  61 *		  the transport for processing.
  62 *		- After a clear, the transport must be read/accepted.
  63 *		  If this succeeds, it must be set again.
  64 *	XPT_CLOSE:
  65 *		- Can set at any time. It is never cleared.
  66 *      XPT_DEAD:
  67 *		- Can only be set while XPT_BUSY is held which ensures
  68 *		  that no other thread will be using the transport or will
  69 *		  try to set XPT_DEAD.
  70 */
  71int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  72{
  73	struct svc_xprt_class *cl;
  74	int res = -EEXIST;
  75
  76	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  77
  78	INIT_LIST_HEAD(&xcl->xcl_list);
  79	spin_lock(&svc_xprt_class_lock);
  80	/* Make sure there isn't already a class with the same name */
  81	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  82		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  83			goto out;
  84	}
  85	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  86	res = 0;
  87out:
  88	spin_unlock(&svc_xprt_class_lock);
  89	return res;
  90}
  91EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  92
  93void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  94{
  95	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  96	spin_lock(&svc_xprt_class_lock);
  97	list_del_init(&xcl->xcl_list);
  98	spin_unlock(&svc_xprt_class_lock);
  99}
 100EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 101
 102/*
 103 * Format the transport list for printing
 
 
 
 
 
 
 
 
 
 104 */
 105int svc_print_xprts(char *buf, int maxlen)
 106{
 107	struct svc_xprt_class *xcl;
 108	char tmpstr[80];
 109	int len = 0;
 110	buf[0] = '\0';
 111
 112	spin_lock(&svc_xprt_class_lock);
 113	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 114		int slen;
 115
 116		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 117		slen = strlen(tmpstr);
 118		if (len + slen > maxlen)
 119			break;
 120		len += slen;
 121		strcat(buf, tmpstr);
 122	}
 123	spin_unlock(&svc_xprt_class_lock);
 124
 125	return len;
 126}
 127
 128static void svc_xprt_free(struct kref *kref)
 129{
 130	struct svc_xprt *xprt =
 131		container_of(kref, struct svc_xprt, xpt_ref);
 132	struct module *owner = xprt->xpt_class->xcl_owner;
 133	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 134		svcauth_unix_info_release(xprt);
 
 135	put_net(xprt->xpt_net);
 136	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 137	if (xprt->xpt_bc_xprt)
 138		xprt_put(xprt->xpt_bc_xprt);
 
 
 
 139	xprt->xpt_ops->xpo_free(xprt);
 140	module_put(owner);
 141}
 142
 143void svc_xprt_put(struct svc_xprt *xprt)
 144{
 145	kref_put(&xprt->xpt_ref, svc_xprt_free);
 146}
 147EXPORT_SYMBOL_GPL(svc_xprt_put);
 148
 149/*
 150 * Called by transport drivers to initialize the transport independent
 151 * portion of the transport instance.
 152 */
 153void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 154		   struct svc_xprt *xprt, struct svc_serv *serv)
 155{
 156	memset(xprt, 0, sizeof(*xprt));
 157	xprt->xpt_class = xcl;
 158	xprt->xpt_ops = xcl->xcl_ops;
 159	kref_init(&xprt->xpt_ref);
 160	xprt->xpt_server = serv;
 161	INIT_LIST_HEAD(&xprt->xpt_list);
 162	INIT_LIST_HEAD(&xprt->xpt_ready);
 163	INIT_LIST_HEAD(&xprt->xpt_deferred);
 164	INIT_LIST_HEAD(&xprt->xpt_users);
 165	mutex_init(&xprt->xpt_mutex);
 166	spin_lock_init(&xprt->xpt_lock);
 167	set_bit(XPT_BUSY, &xprt->xpt_flags);
 168	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 169	xprt->xpt_net = get_net(net);
 
 170}
 171EXPORT_SYMBOL_GPL(svc_xprt_init);
 172
 173static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 174					 struct svc_serv *serv,
 175					 struct net *net,
 176					 const int family,
 177					 const unsigned short port,
 178					 int flags)
 179{
 180	struct sockaddr_in sin = {
 181		.sin_family		= AF_INET,
 182		.sin_addr.s_addr	= htonl(INADDR_ANY),
 183		.sin_port		= htons(port),
 184	};
 185#if IS_ENABLED(CONFIG_IPV6)
 186	struct sockaddr_in6 sin6 = {
 187		.sin6_family		= AF_INET6,
 188		.sin6_addr		= IN6ADDR_ANY_INIT,
 189		.sin6_port		= htons(port),
 190	};
 191#endif
 
 192	struct sockaddr *sap;
 193	size_t len;
 194
 195	switch (family) {
 196	case PF_INET:
 197		sap = (struct sockaddr *)&sin;
 198		len = sizeof(sin);
 199		break;
 200#if IS_ENABLED(CONFIG_IPV6)
 201	case PF_INET6:
 202		sap = (struct sockaddr *)&sin6;
 203		len = sizeof(sin6);
 204		break;
 205#endif
 206	default:
 207		return ERR_PTR(-EAFNOSUPPORT);
 208	}
 209
 210	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 
 
 
 
 211}
 212
 213/*
 214 * svc_xprt_received conditionally queues the transport for processing
 215 * by another thread. The caller must hold the XPT_BUSY bit and must
 216 * not thereafter touch transport data.
 217 *
 218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 219 * insufficient) data.
 220 */
 221static void svc_xprt_received(struct svc_xprt *xprt)
 222{
 223	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 224		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 225		return;
 226	}
 227
 228	/* As soon as we clear busy, the xprt could be closed and
 229	 * 'put', so we need a reference to call svc_enqueue_xprt with:
 230	 */
 231	svc_xprt_get(xprt);
 232	smp_mb__before_atomic();
 233	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 234	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 235	svc_xprt_put(xprt);
 236}
 237
 238void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 239{
 240	clear_bit(XPT_TEMP, &new->xpt_flags);
 241	spin_lock_bh(&serv->sv_lock);
 242	list_add(&new->xpt_list, &serv->sv_permsocks);
 243	spin_unlock_bh(&serv->sv_lock);
 244	svc_xprt_received(new);
 245}
 246
 247int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 248		    struct net *net, const int family,
 249		    const unsigned short port, int flags)
 
 250{
 251	struct svc_xprt_class *xcl;
 252
 253	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 254	spin_lock(&svc_xprt_class_lock);
 255	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 256		struct svc_xprt *newxprt;
 257		unsigned short newport;
 258
 259		if (strcmp(xprt_name, xcl->xcl_name))
 260			continue;
 261
 262		if (!try_module_get(xcl->xcl_owner))
 263			goto err;
 264
 265		spin_unlock(&svc_xprt_class_lock);
 266		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 267		if (IS_ERR(newxprt)) {
 268			module_put(xcl->xcl_owner);
 269			return PTR_ERR(newxprt);
 270		}
 
 271		svc_add_new_perm_xprt(serv, newxprt);
 272		newport = svc_xprt_local_port(newxprt);
 273		return newport;
 274	}
 275 err:
 276	spin_unlock(&svc_xprt_class_lock);
 277	dprintk("svc: transport %s not found\n", xprt_name);
 278
 279	/* This errno is exposed to user space.  Provide a reasonable
 280	 * perror msg for a bad transport. */
 281	return -EPROTONOSUPPORT;
 282}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283EXPORT_SYMBOL_GPL(svc_create_xprt);
 284
 285/*
 286 * Copy the local and remote xprt addresses to the rqstp structure
 287 */
 288void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 289{
 290	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 291	rqstp->rq_addrlen = xprt->xpt_remotelen;
 292
 293	/*
 294	 * Destination address in request is needed for binding the
 295	 * source address in RPC replies/callbacks later.
 296	 */
 297	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 298	rqstp->rq_daddrlen = xprt->xpt_locallen;
 299}
 300EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 301
 302/**
 303 * svc_print_addr - Format rq_addr field for printing
 304 * @rqstp: svc_rqst struct containing address to print
 305 * @buf: target buffer for formatted address
 306 * @len: length of target buffer
 307 *
 308 */
 309char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 310{
 311	return __svc_print_addr(svc_addr(rqstp), buf, len);
 312}
 313EXPORT_SYMBOL_GPL(svc_print_addr);
 314
 315static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316{
 317	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 318		return true;
 319	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
 320		return xprt->xpt_ops->xpo_has_wspace(xprt);
 
 
 
 
 
 321	return false;
 322}
 323
 324void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 325{
 326	struct svc_pool *pool;
 327	struct svc_rqst	*rqstp = NULL;
 328	int cpu;
 329	bool queued = false;
 330
 331	if (!svc_xprt_has_something_to_do(xprt))
 332		goto out;
 333
 334	/* Mark transport as busy. It will remain in this state until
 335	 * the provider calls svc_xprt_received. We update XPT_BUSY
 336	 * atomically because it also guards against trying to enqueue
 337	 * the transport twice.
 338	 */
 339	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 340		/* Don't enqueue transport while already enqueued */
 341		dprintk("svc: transport %p busy, not enqueued\n", xprt);
 342		goto out;
 343	}
 344
 345	cpu = get_cpu();
 346	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 347
 348	atomic_long_inc(&pool->sp_stats.packets);
 349
 350redo_search:
 
 
 
 
 351	/* find a thread for this xprt */
 352	rcu_read_lock();
 353	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 354		/* Do a lockless check first */
 355		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 356			continue;
 357
 358		/*
 359		 * Once the xprt has been queued, it can only be dequeued by
 360		 * the task that intends to service it. All we can do at that
 361		 * point is to try to wake this thread back up so that it can
 362		 * do so.
 363		 */
 364		if (!queued) {
 365			spin_lock_bh(&rqstp->rq_lock);
 366			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
 367				/* already busy, move on... */
 368				spin_unlock_bh(&rqstp->rq_lock);
 369				continue;
 370			}
 371
 372			/* this one will do */
 373			rqstp->rq_xprt = xprt;
 374			svc_xprt_get(xprt);
 375			spin_unlock_bh(&rqstp->rq_lock);
 376		}
 377		rcu_read_unlock();
 378
 379		atomic_long_inc(&pool->sp_stats.threads_woken);
 
 380		wake_up_process(rqstp->rq_task);
 381		put_cpu();
 382		goto out;
 383	}
 384	rcu_read_unlock();
 385
 386	/*
 387	 * We didn't find an idle thread to use, so we need to queue the xprt.
 388	 * Do so and then search again. If we find one, we can't hook this one
 389	 * up to it directly but we can wake the thread up in the hopes that it
 390	 * will pick it up once it searches for a xprt to service.
 391	 */
 392	if (!queued) {
 393		queued = true;
 394		dprintk("svc: transport %p put into queue\n", xprt);
 395		spin_lock_bh(&pool->sp_lock);
 396		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 397		pool->sp_stats.sockets_queued++;
 398		spin_unlock_bh(&pool->sp_lock);
 399		goto redo_search;
 400	}
 
 401	rqstp = NULL;
 
 
 402	put_cpu();
 403out:
 404	trace_svc_xprt_do_enqueue(xprt, rqstp);
 405}
 406EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 407
 408/*
 409 * Queue up a transport with data pending. If there are idle nfsd
 410 * processes, wake 'em up.
 411 *
 412 */
 413void svc_xprt_enqueue(struct svc_xprt *xprt)
 414{
 415	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 416		return;
 417	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 418}
 419EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 420
 421/*
 422 * Dequeue the first transport, if there is one.
 423 */
 424static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 425{
 426	struct svc_xprt	*xprt = NULL;
 427
 428	if (list_empty(&pool->sp_sockets))
 429		goto out;
 430
 431	spin_lock_bh(&pool->sp_lock);
 432	if (likely(!list_empty(&pool->sp_sockets))) {
 433		xprt = list_first_entry(&pool->sp_sockets,
 434					struct svc_xprt, xpt_ready);
 435		list_del_init(&xprt->xpt_ready);
 436		svc_xprt_get(xprt);
 437
 438		dprintk("svc: transport %p dequeued, inuse=%d\n",
 439			xprt, atomic_read(&xprt->xpt_ref.refcount));
 440	}
 441	spin_unlock_bh(&pool->sp_lock);
 442out:
 443	trace_svc_xprt_dequeue(xprt);
 444	return xprt;
 445}
 446
 447/**
 448 * svc_reserve - change the space reserved for the reply to a request.
 449 * @rqstp:  The request in question
 450 * @space: new max space to reserve
 451 *
 452 * Each request reserves some space on the output queue of the transport
 453 * to make sure the reply fits.  This function reduces that reserved
 454 * space to be the amount of space used already, plus @space.
 455 *
 456 */
 457void svc_reserve(struct svc_rqst *rqstp, int space)
 458{
 
 
 459	space += rqstp->rq_res.head[0].iov_len;
 460
 461	if (space < rqstp->rq_reserved) {
 462		struct svc_xprt *xprt = rqstp->rq_xprt;
 463		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 464		rqstp->rq_reserved = space;
 465
 466		if (xprt->xpt_ops->xpo_adjust_wspace)
 467			xprt->xpt_ops->xpo_adjust_wspace(xprt);
 468		svc_xprt_enqueue(xprt);
 469	}
 470}
 471EXPORT_SYMBOL_GPL(svc_reserve);
 472
 473static void svc_xprt_release(struct svc_rqst *rqstp)
 474{
 475	struct svc_xprt	*xprt = rqstp->rq_xprt;
 476
 477	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 478
 479	kfree(rqstp->rq_deferred);
 480	rqstp->rq_deferred = NULL;
 481
 482	svc_free_res_pages(rqstp);
 483	rqstp->rq_res.page_len = 0;
 484	rqstp->rq_res.page_base = 0;
 485
 486	/* Reset response buffer and release
 487	 * the reservation.
 488	 * But first, check that enough space was reserved
 489	 * for the reply, otherwise we have a bug!
 490	 */
 491	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 492		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 493		       rqstp->rq_reserved,
 494		       rqstp->rq_res.len);
 495
 496	rqstp->rq_res.head[0].iov_len = 0;
 497	svc_reserve(rqstp, 0);
 
 498	rqstp->rq_xprt = NULL;
 499
 500	svc_xprt_put(xprt);
 501}
 502
 503/*
 504 * Some svc_serv's will have occasional work to do, even when a xprt is not
 505 * waiting to be serviced. This function is there to "kick" a task in one of
 506 * those services so that it can wake up and do that work. Note that we only
 507 * bother with pool 0 as we don't need to wake up more than one thread for
 508 * this purpose.
 509 */
 510void svc_wake_up(struct svc_serv *serv)
 511{
 512	struct svc_rqst	*rqstp;
 513	struct svc_pool *pool;
 514
 515	pool = &serv->sv_pools[0];
 516
 517	rcu_read_lock();
 518	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 519		/* skip any that aren't queued */
 520		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 521			continue;
 522		rcu_read_unlock();
 523		dprintk("svc: daemon %p woken up.\n", rqstp);
 524		wake_up_process(rqstp->rq_task);
 525		trace_svc_wake_up(rqstp->rq_task->pid);
 526		return;
 527	}
 528	rcu_read_unlock();
 529
 530	/* No free entries available */
 531	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 532	smp_wmb();
 533	trace_svc_wake_up(0);
 534}
 535EXPORT_SYMBOL_GPL(svc_wake_up);
 536
 537int svc_port_is_privileged(struct sockaddr *sin)
 538{
 539	switch (sin->sa_family) {
 540	case AF_INET:
 541		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 542			< PROT_SOCK;
 543	case AF_INET6:
 544		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 545			< PROT_SOCK;
 546	default:
 547		return 0;
 548	}
 549}
 550
 551/*
 552 * Make sure that we don't have too many active connections. If we have,
 553 * something must be dropped. It's not clear what will happen if we allow
 554 * "too many" connections, but when dealing with network-facing software,
 555 * we have to code defensively. Here we do that by imposing hard limits.
 556 *
 557 * There's no point in trying to do random drop here for DoS
 558 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 559 * attacker can easily beat that.
 560 *
 561 * The only somewhat efficient mechanism would be if drop old
 562 * connections from the same IP first. But right now we don't even
 563 * record the client IP in svc_sock.
 564 *
 565 * single-threaded services that expect a lot of clients will probably
 566 * need to set sv_maxconn to override the default value which is based
 567 * on the number of threads
 568 */
 569static void svc_check_conn_limits(struct svc_serv *serv)
 570{
 571	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 572				(serv->sv_nrthreads+3) * 20;
 573
 574	if (serv->sv_tmpcnt > limit) {
 575		struct svc_xprt *xprt = NULL;
 576		spin_lock_bh(&serv->sv_lock);
 577		if (!list_empty(&serv->sv_tempsocks)) {
 578			/* Try to help the admin */
 579			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 580					       serv->sv_name, serv->sv_maxconn ?
 581					       "max number of connections" :
 582					       "number of threads");
 583			/*
 584			 * Always select the oldest connection. It's not fair,
 585			 * but so is life
 586			 */
 587			xprt = list_entry(serv->sv_tempsocks.prev,
 588					  struct svc_xprt,
 589					  xpt_list);
 590			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 591			svc_xprt_get(xprt);
 592		}
 593		spin_unlock_bh(&serv->sv_lock);
 594
 595		if (xprt) {
 596			svc_xprt_enqueue(xprt);
 597			svc_xprt_put(xprt);
 598		}
 599	}
 600}
 601
 602static int svc_alloc_arg(struct svc_rqst *rqstp)
 603{
 604	struct svc_serv *serv = rqstp->rq_server;
 605	struct xdr_buf *arg;
 606	int pages;
 607	int i;
 608
 609	/* now allocate needed pages.  If we get a failure, sleep briefly */
 610	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
 611	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
 612	if (pages >= RPCSVC_MAXPAGES)
 
 613		/* use as many pages as possible */
 614		pages = RPCSVC_MAXPAGES - 1;
 
 615	for (i = 0; i < pages ; i++)
 616		while (rqstp->rq_pages[i] == NULL) {
 617			struct page *p = alloc_page(GFP_KERNEL);
 618			if (!p) {
 619				set_current_state(TASK_INTERRUPTIBLE);
 620				if (signalled() || kthread_should_stop()) {
 621					set_current_state(TASK_RUNNING);
 622					return -EINTR;
 623				}
 624				schedule_timeout(msecs_to_jiffies(500));
 625			}
 626			rqstp->rq_pages[i] = p;
 627		}
 628	rqstp->rq_page_end = &rqstp->rq_pages[i];
 629	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 630
 631	/* Make arg->head point to first page and arg->pages point to rest */
 632	arg = &rqstp->rq_arg;
 633	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 634	arg->head[0].iov_len = PAGE_SIZE;
 635	arg->pages = rqstp->rq_pages + 1;
 636	arg->page_base = 0;
 637	/* save at least one page for response */
 638	arg->page_len = (pages-2)*PAGE_SIZE;
 639	arg->len = (pages-1)*PAGE_SIZE;
 640	arg->tail[0].iov_len = 0;
 641	return 0;
 642}
 643
 644static bool
 645rqst_should_sleep(struct svc_rqst *rqstp)
 646{
 647	struct svc_pool		*pool = rqstp->rq_pool;
 648
 649	/* did someone call svc_wake_up? */
 650	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 651		return false;
 652
 653	/* was a socket queued? */
 654	if (!list_empty(&pool->sp_sockets))
 655		return false;
 656
 657	/* are we shutting down? */
 658	if (signalled() || kthread_should_stop())
 659		return false;
 660
 661	/* are we freezing? */
 662	if (freezing(current))
 663		return false;
 664
 665	return true;
 666}
 667
 668static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 669{
 670	struct svc_xprt *xprt;
 671	struct svc_pool		*pool = rqstp->rq_pool;
 672	long			time_left = 0;
 673
 674	/* rq_xprt should be clear on entry */
 675	WARN_ON_ONCE(rqstp->rq_xprt);
 676
 677	/* Normally we will wait up to 5 seconds for any required
 678	 * cache information to be provided.
 679	 */
 680	rqstp->rq_chandle.thread_wait = 5*HZ;
 681
 682	xprt = svc_xprt_dequeue(pool);
 683	if (xprt) {
 684		rqstp->rq_xprt = xprt;
 685
 686		/* As there is a shortage of threads and this request
 687		 * had to be queued, don't allow the thread to wait so
 688		 * long for cache updates.
 689		 */
 690		rqstp->rq_chandle.thread_wait = 1*HZ;
 691		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
 692		return xprt;
 693	}
 694
 695	/*
 696	 * We have to be able to interrupt this wait
 697	 * to bring down the daemons ...
 698	 */
 699	set_current_state(TASK_INTERRUPTIBLE);
 
 
 700	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 701	smp_mb();
 702
 703	if (likely(rqst_should_sleep(rqstp)))
 704		time_left = schedule_timeout(timeout);
 705	else
 706		__set_current_state(TASK_RUNNING);
 707
 708	try_to_freeze();
 709
 710	spin_lock_bh(&rqstp->rq_lock);
 711	set_bit(RQ_BUSY, &rqstp->rq_flags);
 712	spin_unlock_bh(&rqstp->rq_lock);
 713
 714	xprt = rqstp->rq_xprt;
 715	if (xprt != NULL)
 716		return xprt;
 717
 718	if (!time_left)
 719		atomic_long_inc(&pool->sp_stats.threads_timedout);
 720
 721	if (signalled() || kthread_should_stop())
 722		return ERR_PTR(-EINTR);
 723	return ERR_PTR(-EAGAIN);
 
 
 
 
 
 
 
 
 
 
 724}
 725
 726static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 727{
 728	spin_lock_bh(&serv->sv_lock);
 729	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 730	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 731	serv->sv_tmpcnt++;
 732	if (serv->sv_temptimer.function == NULL) {
 733		/* setup timer to age temp transports */
 734		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
 735			    (unsigned long)serv);
 736		mod_timer(&serv->sv_temptimer,
 737			  jiffies + svc_conn_age_period * HZ);
 738	}
 739	spin_unlock_bh(&serv->sv_lock);
 740	svc_xprt_received(newxpt);
 741}
 742
 743static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 744{
 745	struct svc_serv *serv = rqstp->rq_server;
 746	int len = 0;
 747
 748	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 749		dprintk("svc_recv: found XPT_CLOSE\n");
 
 750		svc_delete_xprt(xprt);
 751		/* Leave XPT_BUSY set on the dead xprt: */
 752		goto out;
 753	}
 754	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 755		struct svc_xprt *newxpt;
 756		/*
 757		 * We know this module_get will succeed because the
 758		 * listener holds a reference too
 759		 */
 760		__module_get(xprt->xpt_class->xcl_owner);
 761		svc_check_conn_limits(xprt->xpt_server);
 762		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 763		if (newxpt)
 
 764			svc_add_new_temp_xprt(serv, newxpt);
 765		else
 
 766			module_put(xprt->xpt_class->xcl_owner);
 767	} else {
 768		/* XPT_DATA|XPT_DEFERRED case: */
 769		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 770			rqstp, rqstp->rq_pool->sp_id, xprt,
 771			atomic_read(&xprt->xpt_ref.refcount));
 772		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 773		if (rqstp->rq_deferred)
 774			len = svc_deferred_recv(rqstp);
 775		else
 776			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 777		dprintk("svc: got len=%d\n", len);
 
 
 778		rqstp->rq_reserved = serv->sv_max_mesg;
 779		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 780	}
 781	/* clear XPT_BUSY: */
 782	svc_xprt_received(xprt);
 783out:
 784	trace_svc_handle_xprt(xprt, len);
 785	return len;
 786}
 787
 788/*
 789 * Receive the next request on any transport.  This code is carefully
 790 * organised not to touch any cachelines in the shared svc_serv
 791 * structure, only cachelines in the local svc_pool.
 792 */
 793int svc_recv(struct svc_rqst *rqstp, long timeout)
 794{
 795	struct svc_xprt		*xprt = NULL;
 796	struct svc_serv		*serv = rqstp->rq_server;
 797	int			len, err;
 798
 799	dprintk("svc: server %p waiting for data (to = %ld)\n",
 800		rqstp, timeout);
 801
 802	if (rqstp->rq_xprt)
 803		printk(KERN_ERR
 804			"svc_recv: service %p, transport not NULL!\n",
 805			 rqstp);
 806
 807	err = svc_alloc_arg(rqstp);
 808	if (err)
 809		goto out;
 810
 811	try_to_freeze();
 812	cond_resched();
 813	err = -EINTR;
 814	if (signalled() || kthread_should_stop())
 815		goto out;
 816
 817	xprt = svc_get_next_xprt(rqstp, timeout);
 818	if (IS_ERR(xprt)) {
 819		err = PTR_ERR(xprt);
 820		goto out;
 821	}
 822
 823	len = svc_handle_xprt(rqstp, xprt);
 824
 825	/* No data, incomplete (TCP) read, or accept() */
 826	err = -EAGAIN;
 827	if (len <= 0)
 828		goto out_release;
 829
 830	clear_bit(XPT_OLD, &xprt->xpt_flags);
 831
 832	if (xprt->xpt_ops->xpo_secure_port(rqstp))
 833		set_bit(RQ_SECURE, &rqstp->rq_flags);
 834	else
 835		clear_bit(RQ_SECURE, &rqstp->rq_flags);
 836	rqstp->rq_chandle.defer = svc_defer;
 837	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 838
 839	if (serv->sv_stats)
 840		serv->sv_stats->netcnt++;
 841	trace_svc_recv(rqstp, len);
 842	return len;
 843out_release:
 844	rqstp->rq_res.len = 0;
 845	svc_xprt_release(rqstp);
 846out:
 847	trace_svc_recv(rqstp, err);
 848	return err;
 849}
 850EXPORT_SYMBOL_GPL(svc_recv);
 851
 852/*
 853 * Drop request
 854 */
 855void svc_drop(struct svc_rqst *rqstp)
 856{
 857	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 858	svc_xprt_release(rqstp);
 859}
 860EXPORT_SYMBOL_GPL(svc_drop);
 861
 862/*
 863 * Return reply to client.
 864 */
 865int svc_send(struct svc_rqst *rqstp)
 866{
 867	struct svc_xprt	*xprt;
 868	int		len = -EFAULT;
 869	struct xdr_buf	*xb;
 870
 871	xprt = rqstp->rq_xprt;
 872	if (!xprt)
 873		goto out;
 874
 875	/* release the receive skb before sending the reply */
 876	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 877
 878	/* calculate over-all length */
 879	xb = &rqstp->rq_res;
 880	xb->len = xb->head[0].iov_len +
 881		xb->page_len +
 882		xb->tail[0].iov_len;
 
 
 883
 884	/* Grab mutex to serialize outgoing data. */
 885	mutex_lock(&xprt->xpt_mutex);
 886	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 887			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
 888		len = -ENOTCONN;
 889	else
 890		len = xprt->xpt_ops->xpo_sendto(rqstp);
 891	mutex_unlock(&xprt->xpt_mutex);
 892	rpc_wake_up(&xprt->xpt_bc_pending);
 893	svc_xprt_release(rqstp);
 894
 895	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 896		len = 0;
 897out:
 898	trace_svc_send(rqstp, len);
 899	return len;
 900}
 901
 902/*
 903 * Timer function to close old temporary transports, using
 904 * a mark-and-sweep algorithm.
 905 */
 906static void svc_age_temp_xprts(unsigned long closure)
 907{
 908	struct svc_serv *serv = (struct svc_serv *)closure;
 909	struct svc_xprt *xprt;
 910	struct list_head *le, *next;
 911
 912	dprintk("svc_age_temp_xprts\n");
 913
 914	if (!spin_trylock_bh(&serv->sv_lock)) {
 915		/* busy, try again 1 sec later */
 916		dprintk("svc_age_temp_xprts: busy\n");
 917		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 918		return;
 919	}
 920
 921	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 922		xprt = list_entry(le, struct svc_xprt, xpt_list);
 923
 924		/* First time through, just mark it OLD. Second time
 925		 * through, close it. */
 926		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 927			continue;
 928		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
 929		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 930			continue;
 931		list_del_init(le);
 932		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 933		dprintk("queuing xprt %p for closing\n", xprt);
 934
 935		/* a thread will dequeue and close it soon */
 936		svc_xprt_enqueue(xprt);
 937	}
 938	spin_unlock_bh(&serv->sv_lock);
 939
 940	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 941}
 942
 943/* Close temporary transports whose xpt_local matches server_addr immediately
 944 * instead of waiting for them to be picked up by the timer.
 945 *
 946 * This is meant to be called from a notifier_block that runs when an ip
 947 * address is deleted.
 948 */
 949void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 950{
 951	struct svc_xprt *xprt;
 952	struct svc_sock *svsk;
 953	struct socket *sock;
 954	struct list_head *le, *next;
 955	LIST_HEAD(to_be_closed);
 956	struct linger no_linger = {
 957		.l_onoff = 1,
 958		.l_linger = 0,
 959	};
 960
 961	spin_lock_bh(&serv->sv_lock);
 962	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 963		xprt = list_entry(le, struct svc_xprt, xpt_list);
 964		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
 965				&xprt->xpt_local)) {
 966			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
 967			list_move(le, &to_be_closed);
 968		}
 969	}
 970	spin_unlock_bh(&serv->sv_lock);
 971
 972	while (!list_empty(&to_be_closed)) {
 973		le = to_be_closed.next;
 974		list_del_init(le);
 975		xprt = list_entry(le, struct svc_xprt, xpt_list);
 976		dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
 977		svsk = container_of(xprt, struct svc_sock, sk_xprt);
 978		sock = svsk->sk_sock;
 979		kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
 980				  (char *)&no_linger, sizeof(no_linger));
 981		svc_close_xprt(xprt);
 982	}
 983}
 984EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
 985
 986static void call_xpt_users(struct svc_xprt *xprt)
 987{
 988	struct svc_xpt_user *u;
 989
 990	spin_lock(&xprt->xpt_lock);
 991	while (!list_empty(&xprt->xpt_users)) {
 992		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
 993		list_del(&u->list);
 994		u->callback(u);
 995	}
 996	spin_unlock(&xprt->xpt_lock);
 997}
 998
 999/*
1000 * Remove a dead transport
1001 */
1002static void svc_delete_xprt(struct svc_xprt *xprt)
1003{
1004	struct svc_serv	*serv = xprt->xpt_server;
1005	struct svc_deferred_req *dr;
1006
1007	/* Only do this once */
1008	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1009		BUG();
1010
1011	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1012	xprt->xpt_ops->xpo_detach(xprt);
 
 
1013
1014	spin_lock_bh(&serv->sv_lock);
1015	list_del_init(&xprt->xpt_list);
1016	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1017	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1018		serv->sv_tmpcnt--;
1019	spin_unlock_bh(&serv->sv_lock);
1020
1021	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1022		kfree(dr);
1023
1024	call_xpt_users(xprt);
1025	svc_xprt_put(xprt);
1026}
1027
1028void svc_close_xprt(struct svc_xprt *xprt)
1029{
 
1030	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1031	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1032		/* someone else will have to effect the close */
1033		return;
1034	/*
1035	 * We expect svc_close_xprt() to work even when no threads are
1036	 * running (e.g., while configuring the server before starting
1037	 * any threads), so if the transport isn't busy, we delete
1038	 * it ourself:
1039	 */
1040	svc_delete_xprt(xprt);
1041}
1042EXPORT_SYMBOL_GPL(svc_close_xprt);
1043
1044static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1045{
1046	struct svc_xprt *xprt;
1047	int ret = 0;
1048
1049	spin_lock(&serv->sv_lock);
1050	list_for_each_entry(xprt, xprt_list, xpt_list) {
1051		if (xprt->xpt_net != net)
1052			continue;
1053		ret++;
1054		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055		svc_xprt_enqueue(xprt);
1056	}
1057	spin_unlock(&serv->sv_lock);
1058	return ret;
1059}
1060
1061static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1062{
1063	struct svc_pool *pool;
1064	struct svc_xprt *xprt;
1065	struct svc_xprt *tmp;
1066	int i;
1067
1068	for (i = 0; i < serv->sv_nrpools; i++) {
1069		pool = &serv->sv_pools[i];
1070
1071		spin_lock_bh(&pool->sp_lock);
1072		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1073			if (xprt->xpt_net != net)
1074				continue;
1075			list_del_init(&xprt->xpt_ready);
1076			spin_unlock_bh(&pool->sp_lock);
1077			return xprt;
1078		}
1079		spin_unlock_bh(&pool->sp_lock);
1080	}
1081	return NULL;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086	struct svc_xprt *xprt;
1087
1088	while ((xprt = svc_dequeue_net(serv, net))) {
1089		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1090		svc_delete_xprt(xprt);
1091	}
1092}
1093
1094/*
1095 * Server threads may still be running (especially in the case where the
1096 * service is still running in other network namespaces).
1097 *
1098 * So we shut down sockets the same way we would on a running server, by
1099 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1100 * the close.  In the case there are no such other threads,
1101 * threads running, svc_clean_up_xprts() does a simple version of a
1102 * server's main event loop, and in the case where there are other
1103 * threads, we may need to wait a little while and then check again to
1104 * see if they're done.
1105 */
1106void svc_close_net(struct svc_serv *serv, struct net *net)
1107{
1108	int delay = 0;
1109
1110	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1111	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1112
1113		svc_clean_up_xprts(serv, net);
1114		msleep(delay++);
1115	}
1116}
1117
1118/*
1119 * Handle defer and revisit of requests
1120 */
1121
1122static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1123{
1124	struct svc_deferred_req *dr =
1125		container_of(dreq, struct svc_deferred_req, handle);
1126	struct svc_xprt *xprt = dr->xprt;
1127
1128	spin_lock(&xprt->xpt_lock);
1129	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1130	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1131		spin_unlock(&xprt->xpt_lock);
1132		dprintk("revisit canceled\n");
1133		svc_xprt_put(xprt);
1134		kfree(dr);
1135		return;
1136	}
1137	dprintk("revisit queued\n");
1138	dr->xprt = NULL;
1139	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140	spin_unlock(&xprt->xpt_lock);
 
1141	svc_xprt_enqueue(xprt);
1142	svc_xprt_put(xprt);
1143}
1144
1145/*
1146 * Save the request off for later processing. The request buffer looks
1147 * like this:
1148 *
1149 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150 *
1151 * This code can only handle requests that consist of an xprt-header
1152 * and rpc-header.
1153 */
1154static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155{
1156	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157	struct svc_deferred_req *dr;
1158
1159	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160		return NULL; /* if more than a page, give up FIXME */
1161	if (rqstp->rq_deferred) {
1162		dr = rqstp->rq_deferred;
1163		rqstp->rq_deferred = NULL;
1164	} else {
1165		size_t skip;
1166		size_t size;
1167		/* FIXME maybe discard if size too large */
1168		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169		dr = kmalloc(size, GFP_KERNEL);
1170		if (dr == NULL)
1171			return NULL;
1172
1173		dr->handle.owner = rqstp->rq_server;
1174		dr->prot = rqstp->rq_prot;
1175		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176		dr->addrlen = rqstp->rq_addrlen;
1177		dr->daddr = rqstp->rq_daddr;
1178		dr->argslen = rqstp->rq_arg.len >> 2;
1179		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180
1181		/* back up head to the start of the buffer and copy */
1182		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184		       dr->argslen << 2);
1185	}
 
1186	svc_xprt_get(rqstp->rq_xprt);
1187	dr->xprt = rqstp->rq_xprt;
1188	set_bit(RQ_DROPME, &rqstp->rq_flags);
1189
1190	dr->handle.revisit = svc_revisit;
1191	return &dr->handle;
1192}
1193
1194/*
1195 * recv data from a deferred request into an active one
1196 */
1197static int svc_deferred_recv(struct svc_rqst *rqstp)
1198{
1199	struct svc_deferred_req *dr = rqstp->rq_deferred;
 
 
1200
1201	/* setup iov_base past transport header */
1202	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1203	/* The iov_len does not include the transport header bytes */
1204	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1205	rqstp->rq_arg.page_len = 0;
1206	/* The rq_arg.len includes the transport header bytes */
1207	rqstp->rq_arg.len     = dr->argslen<<2;
1208	rqstp->rq_prot        = dr->prot;
1209	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1210	rqstp->rq_addrlen     = dr->addrlen;
1211	/* Save off transport header len in case we get deferred again */
1212	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1213	rqstp->rq_daddr       = dr->daddr;
1214	rqstp->rq_respages    = rqstp->rq_pages;
1215	return (dr->argslen<<2) - dr->xprt_hlen;
1216}
1217
1218
1219static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1220{
1221	struct svc_deferred_req *dr = NULL;
1222
1223	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1224		return NULL;
1225	spin_lock(&xprt->xpt_lock);
1226	if (!list_empty(&xprt->xpt_deferred)) {
1227		dr = list_entry(xprt->xpt_deferred.next,
1228				struct svc_deferred_req,
1229				handle.recent);
1230		list_del_init(&dr->handle.recent);
1231	} else
1232		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233	spin_unlock(&xprt->xpt_lock);
1234	return dr;
1235}
1236
1237/**
1238 * svc_find_xprt - find an RPC transport instance
1239 * @serv: pointer to svc_serv to search
1240 * @xcl_name: C string containing transport's class name
1241 * @net: owner net pointer
1242 * @af: Address family of transport's local address
1243 * @port: transport's IP port number
1244 *
1245 * Return the transport instance pointer for the endpoint accepting
1246 * connections/peer traffic from the specified transport class,
1247 * address family and port.
1248 *
1249 * Specifying 0 for the address family or port is effectively a
1250 * wild-card, and will result in matching the first transport in the
1251 * service's list that has a matching class name.
1252 */
1253struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254			       struct net *net, const sa_family_t af,
1255			       const unsigned short port)
1256{
1257	struct svc_xprt *xprt;
1258	struct svc_xprt *found = NULL;
1259
1260	/* Sanity check the args */
1261	if (serv == NULL || xcl_name == NULL)
1262		return found;
1263
1264	spin_lock_bh(&serv->sv_lock);
1265	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266		if (xprt->xpt_net != net)
1267			continue;
1268		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269			continue;
1270		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271			continue;
1272		if (port != 0 && port != svc_xprt_local_port(xprt))
1273			continue;
1274		found = xprt;
1275		svc_xprt_get(xprt);
1276		break;
1277	}
1278	spin_unlock_bh(&serv->sv_lock);
1279	return found;
1280}
1281EXPORT_SYMBOL_GPL(svc_find_xprt);
1282
1283static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284			     char *pos, int remaining)
1285{
1286	int len;
1287
1288	len = snprintf(pos, remaining, "%s %u\n",
1289			xprt->xpt_class->xcl_name,
1290			svc_xprt_local_port(xprt));
1291	if (len >= remaining)
1292		return -ENAMETOOLONG;
1293	return len;
1294}
1295
1296/**
1297 * svc_xprt_names - format a buffer with a list of transport names
1298 * @serv: pointer to an RPC service
1299 * @buf: pointer to a buffer to be filled in
1300 * @buflen: length of buffer to be filled in
1301 *
1302 * Fills in @buf with a string containing a list of transport names,
1303 * each name terminated with '\n'.
1304 *
1305 * Returns positive length of the filled-in string on success; otherwise
1306 * a negative errno value is returned if an error occurs.
1307 */
1308int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1309{
1310	struct svc_xprt *xprt;
1311	int len, totlen;
1312	char *pos;
1313
1314	/* Sanity check args */
1315	if (!serv)
1316		return 0;
1317
1318	spin_lock_bh(&serv->sv_lock);
1319
1320	pos = buf;
1321	totlen = 0;
1322	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324		if (len < 0) {
1325			*buf = '\0';
1326			totlen = len;
1327		}
1328		if (len <= 0)
1329			break;
1330
1331		pos += len;
1332		totlen += len;
1333	}
1334
1335	spin_unlock_bh(&serv->sv_lock);
1336	return totlen;
1337}
1338EXPORT_SYMBOL_GPL(svc_xprt_names);
1339
1340
1341/*----------------------------------------------------------------------------*/
1342
1343static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1344{
1345	unsigned int pidx = (unsigned int)*pos;
1346	struct svc_serv *serv = m->private;
1347
1348	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1349
1350	if (!pidx)
1351		return SEQ_START_TOKEN;
1352	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1353}
1354
1355static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1356{
1357	struct svc_pool *pool = p;
1358	struct svc_serv *serv = m->private;
1359
1360	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1361
1362	if (p == SEQ_START_TOKEN) {
1363		pool = &serv->sv_pools[0];
1364	} else {
1365		unsigned int pidx = (pool - &serv->sv_pools[0]);
1366		if (pidx < serv->sv_nrpools-1)
1367			pool = &serv->sv_pools[pidx+1];
1368		else
1369			pool = NULL;
1370	}
1371	++*pos;
1372	return pool;
1373}
1374
1375static void svc_pool_stats_stop(struct seq_file *m, void *p)
1376{
1377}
1378
1379static int svc_pool_stats_show(struct seq_file *m, void *p)
1380{
1381	struct svc_pool *pool = p;
1382
1383	if (p == SEQ_START_TOKEN) {
1384		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385		return 0;
1386	}
1387
1388	seq_printf(m, "%u %lu %lu %lu %lu\n",
1389		pool->sp_id,
1390		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391		pool->sp_stats.sockets_queued,
1392		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1394
1395	return 0;
1396}
1397
1398static const struct seq_operations svc_pool_stats_seq_ops = {
1399	.start	= svc_pool_stats_start,
1400	.next	= svc_pool_stats_next,
1401	.stop	= svc_pool_stats_stop,
1402	.show	= svc_pool_stats_show,
1403};
1404
1405int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1406{
1407	int err;
1408
1409	err = seq_open(file, &svc_pool_stats_seq_ops);
1410	if (!err)
1411		((struct seq_file *) file->private_data)->private = serv;
1412	return err;
1413}
1414EXPORT_SYMBOL(svc_pool_stats_open);
1415
1416/*----------------------------------------------------------------------------*/
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc_xprt.c
   4 *
   5 * Author: Tom Tucker <tom@opengridcomputing.com>
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/errno.h>
  10#include <linux/freezer.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <net/sock.h>
  14#include <linux/sunrpc/addr.h>
  15#include <linux/sunrpc/stats.h>
  16#include <linux/sunrpc/svc_xprt.h>
  17#include <linux/sunrpc/svcsock.h>
  18#include <linux/sunrpc/xprt.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <trace/events/sunrpc.h>
  22
  23#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  24
  25static unsigned int svc_rpc_per_connection_limit __read_mostly;
  26module_param(svc_rpc_per_connection_limit, uint, 0644);
  27
  28
  29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  30static int svc_deferred_recv(struct svc_rqst *rqstp);
  31static struct cache_deferred_req *svc_defer(struct cache_req *req);
  32static void svc_age_temp_xprts(struct timer_list *t);
  33static void svc_delete_xprt(struct svc_xprt *xprt);
  34
  35/* apparently the "standard" is that clients close
  36 * idle connections after 5 minutes, servers after
  37 * 6 minutes
  38 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
  39 */
  40static int svc_conn_age_period = 6*60;
  41
  42/* List of registered transport classes */
  43static DEFINE_SPINLOCK(svc_xprt_class_lock);
  44static LIST_HEAD(svc_xprt_class_list);
  45
  46/* SMP locking strategy:
  47 *
  48 *	svc_pool->sp_lock protects most of the fields of that pool.
  49 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  50 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  51 *	The "service mutex" protects svc_serv->sv_nrthread.
  52 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  53 *             and the ->sk_info_authunix cache.
  54 *
  55 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  56 *	enqueued multiply. During normal transport processing this bit
  57 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  58 *	Providers should not manipulate this bit directly.
  59 *
  60 *	Some flags can be set to certain values at any time
  61 *	providing that certain rules are followed:
  62 *
  63 *	XPT_CONN, XPT_DATA:
  64 *		- Can be set or cleared at any time.
  65 *		- After a set, svc_xprt_enqueue must be called to enqueue
  66 *		  the transport for processing.
  67 *		- After a clear, the transport must be read/accepted.
  68 *		  If this succeeds, it must be set again.
  69 *	XPT_CLOSE:
  70 *		- Can set at any time. It is never cleared.
  71 *      XPT_DEAD:
  72 *		- Can only be set while XPT_BUSY is held which ensures
  73 *		  that no other thread will be using the transport or will
  74 *		  try to set XPT_DEAD.
  75 */
  76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  77{
  78	struct svc_xprt_class *cl;
  79	int res = -EEXIST;
  80
  81	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  82
  83	INIT_LIST_HEAD(&xcl->xcl_list);
  84	spin_lock(&svc_xprt_class_lock);
  85	/* Make sure there isn't already a class with the same name */
  86	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  87		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  88			goto out;
  89	}
  90	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  91	res = 0;
  92out:
  93	spin_unlock(&svc_xprt_class_lock);
  94	return res;
  95}
  96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  97
  98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  99{
 100	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 101	spin_lock(&svc_xprt_class_lock);
 102	list_del_init(&xcl->xcl_list);
 103	spin_unlock(&svc_xprt_class_lock);
 104}
 105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 106
 107/**
 108 * svc_print_xprts - Format the transport list for printing
 109 * @buf: target buffer for formatted address
 110 * @maxlen: length of target buffer
 111 *
 112 * Fills in @buf with a string containing a list of transport names, each name
 113 * terminated with '\n'. If the buffer is too small, some entries may be
 114 * missing, but it is guaranteed that all lines in the output buffer are
 115 * complete.
 116 *
 117 * Returns positive length of the filled-in string.
 118 */
 119int svc_print_xprts(char *buf, int maxlen)
 120{
 121	struct svc_xprt_class *xcl;
 122	char tmpstr[80];
 123	int len = 0;
 124	buf[0] = '\0';
 125
 126	spin_lock(&svc_xprt_class_lock);
 127	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 128		int slen;
 129
 130		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
 131				xcl->xcl_name, xcl->xcl_max_payload);
 132		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
 133			break;
 134		len += slen;
 135		strcat(buf, tmpstr);
 136	}
 137	spin_unlock(&svc_xprt_class_lock);
 138
 139	return len;
 140}
 141
 142static void svc_xprt_free(struct kref *kref)
 143{
 144	struct svc_xprt *xprt =
 145		container_of(kref, struct svc_xprt, xpt_ref);
 146	struct module *owner = xprt->xpt_class->xcl_owner;
 147	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 148		svcauth_unix_info_release(xprt);
 149	put_cred(xprt->xpt_cred);
 150	put_net(xprt->xpt_net);
 151	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 152	if (xprt->xpt_bc_xprt)
 153		xprt_put(xprt->xpt_bc_xprt);
 154	if (xprt->xpt_bc_xps)
 155		xprt_switch_put(xprt->xpt_bc_xps);
 156	trace_svc_xprt_free(xprt);
 157	xprt->xpt_ops->xpo_free(xprt);
 158	module_put(owner);
 159}
 160
 161void svc_xprt_put(struct svc_xprt *xprt)
 162{
 163	kref_put(&xprt->xpt_ref, svc_xprt_free);
 164}
 165EXPORT_SYMBOL_GPL(svc_xprt_put);
 166
 167/*
 168 * Called by transport drivers to initialize the transport independent
 169 * portion of the transport instance.
 170 */
 171void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 172		   struct svc_xprt *xprt, struct svc_serv *serv)
 173{
 174	memset(xprt, 0, sizeof(*xprt));
 175	xprt->xpt_class = xcl;
 176	xprt->xpt_ops = xcl->xcl_ops;
 177	kref_init(&xprt->xpt_ref);
 178	xprt->xpt_server = serv;
 179	INIT_LIST_HEAD(&xprt->xpt_list);
 180	INIT_LIST_HEAD(&xprt->xpt_ready);
 181	INIT_LIST_HEAD(&xprt->xpt_deferred);
 182	INIT_LIST_HEAD(&xprt->xpt_users);
 183	mutex_init(&xprt->xpt_mutex);
 184	spin_lock_init(&xprt->xpt_lock);
 185	set_bit(XPT_BUSY, &xprt->xpt_flags);
 
 186	xprt->xpt_net = get_net(net);
 187	strcpy(xprt->xpt_remotebuf, "uninitialized");
 188}
 189EXPORT_SYMBOL_GPL(svc_xprt_init);
 190
 191static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 192					 struct svc_serv *serv,
 193					 struct net *net,
 194					 const int family,
 195					 const unsigned short port,
 196					 int flags)
 197{
 198	struct sockaddr_in sin = {
 199		.sin_family		= AF_INET,
 200		.sin_addr.s_addr	= htonl(INADDR_ANY),
 201		.sin_port		= htons(port),
 202	};
 203#if IS_ENABLED(CONFIG_IPV6)
 204	struct sockaddr_in6 sin6 = {
 205		.sin6_family		= AF_INET6,
 206		.sin6_addr		= IN6ADDR_ANY_INIT,
 207		.sin6_port		= htons(port),
 208	};
 209#endif
 210	struct svc_xprt *xprt;
 211	struct sockaddr *sap;
 212	size_t len;
 213
 214	switch (family) {
 215	case PF_INET:
 216		sap = (struct sockaddr *)&sin;
 217		len = sizeof(sin);
 218		break;
 219#if IS_ENABLED(CONFIG_IPV6)
 220	case PF_INET6:
 221		sap = (struct sockaddr *)&sin6;
 222		len = sizeof(sin6);
 223		break;
 224#endif
 225	default:
 226		return ERR_PTR(-EAFNOSUPPORT);
 227	}
 228
 229	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 230	if (IS_ERR(xprt))
 231		trace_svc_xprt_create_err(serv->sv_program->pg_name,
 232					  xcl->xcl_name, sap, xprt);
 233	return xprt;
 234}
 235
 236/*
 237 * svc_xprt_received conditionally queues the transport for processing
 238 * by another thread. The caller must hold the XPT_BUSY bit and must
 239 * not thereafter touch transport data.
 240 *
 241 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 242 * insufficient) data.
 243 */
 244static void svc_xprt_received(struct svc_xprt *xprt)
 245{
 246	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 247		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 248		return;
 249	}
 250
 251	/* As soon as we clear busy, the xprt could be closed and
 252	 * 'put', so we need a reference to call svc_enqueue_xprt with:
 253	 */
 254	svc_xprt_get(xprt);
 255	smp_mb__before_atomic();
 256	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 257	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 258	svc_xprt_put(xprt);
 259}
 260
 261void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 262{
 263	clear_bit(XPT_TEMP, &new->xpt_flags);
 264	spin_lock_bh(&serv->sv_lock);
 265	list_add(&new->xpt_list, &serv->sv_permsocks);
 266	spin_unlock_bh(&serv->sv_lock);
 267	svc_xprt_received(new);
 268}
 269
 270static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 271			    struct net *net, const int family,
 272			    const unsigned short port, int flags,
 273			    const struct cred *cred)
 274{
 275	struct svc_xprt_class *xcl;
 276
 
 277	spin_lock(&svc_xprt_class_lock);
 278	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 279		struct svc_xprt *newxprt;
 280		unsigned short newport;
 281
 282		if (strcmp(xprt_name, xcl->xcl_name))
 283			continue;
 284
 285		if (!try_module_get(xcl->xcl_owner))
 286			goto err;
 287
 288		spin_unlock(&svc_xprt_class_lock);
 289		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 290		if (IS_ERR(newxprt)) {
 291			module_put(xcl->xcl_owner);
 292			return PTR_ERR(newxprt);
 293		}
 294		newxprt->xpt_cred = get_cred(cred);
 295		svc_add_new_perm_xprt(serv, newxprt);
 296		newport = svc_xprt_local_port(newxprt);
 297		return newport;
 298	}
 299 err:
 300	spin_unlock(&svc_xprt_class_lock);
 
 
 301	/* This errno is exposed to user space.  Provide a reasonable
 302	 * perror msg for a bad transport. */
 303	return -EPROTONOSUPPORT;
 304}
 305
 306int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 307		    struct net *net, const int family,
 308		    const unsigned short port, int flags,
 309		    const struct cred *cred)
 310{
 311	int err;
 312
 313	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 314	if (err == -EPROTONOSUPPORT) {
 315		request_module("svc%s", xprt_name);
 316		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 317	}
 318	return err;
 319}
 320EXPORT_SYMBOL_GPL(svc_create_xprt);
 321
 322/*
 323 * Copy the local and remote xprt addresses to the rqstp structure
 324 */
 325void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 326{
 327	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 328	rqstp->rq_addrlen = xprt->xpt_remotelen;
 329
 330	/*
 331	 * Destination address in request is needed for binding the
 332	 * source address in RPC replies/callbacks later.
 333	 */
 334	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 335	rqstp->rq_daddrlen = xprt->xpt_locallen;
 336}
 337EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 338
 339/**
 340 * svc_print_addr - Format rq_addr field for printing
 341 * @rqstp: svc_rqst struct containing address to print
 342 * @buf: target buffer for formatted address
 343 * @len: length of target buffer
 344 *
 345 */
 346char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 347{
 348	return __svc_print_addr(svc_addr(rqstp), buf, len);
 349}
 350EXPORT_SYMBOL_GPL(svc_print_addr);
 351
 352static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 353{
 354	unsigned int limit = svc_rpc_per_connection_limit;
 355	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 356
 357	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 358}
 359
 360static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 361{
 362	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 363		if (!svc_xprt_slots_in_range(xprt))
 364			return false;
 365		atomic_inc(&xprt->xpt_nr_rqsts);
 366		set_bit(RQ_DATA, &rqstp->rq_flags);
 367	}
 368	return true;
 369}
 370
 371static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 372{
 373	struct svc_xprt	*xprt = rqstp->rq_xprt;
 374	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 375		atomic_dec(&xprt->xpt_nr_rqsts);
 376		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 377		svc_xprt_enqueue(xprt);
 378	}
 379}
 380
 381static bool svc_xprt_ready(struct svc_xprt *xprt)
 382{
 383	unsigned long xpt_flags;
 384
 385	/*
 386	 * If another cpu has recently updated xpt_flags,
 387	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
 388	 * know about it; otherwise it's possible that both that cpu and
 389	 * this one could call svc_xprt_enqueue() without either
 390	 * svc_xprt_enqueue() recognizing that the conditions below
 391	 * are satisfied, and we could stall indefinitely:
 392	 */
 393	smp_rmb();
 394	xpt_flags = READ_ONCE(xprt->xpt_flags);
 395
 396	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
 397		return true;
 398	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
 399		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 400		    svc_xprt_slots_in_range(xprt))
 401			return true;
 402		trace_svc_xprt_no_write_space(xprt);
 403		return false;
 404	}
 405	return false;
 406}
 407
 408void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 409{
 410	struct svc_pool *pool;
 411	struct svc_rqst	*rqstp = NULL;
 412	int cpu;
 
 413
 414	if (!svc_xprt_ready(xprt))
 415		return;
 416
 417	/* Mark transport as busy. It will remain in this state until
 418	 * the provider calls svc_xprt_received. We update XPT_BUSY
 419	 * atomically because it also guards against trying to enqueue
 420	 * the transport twice.
 421	 */
 422	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 423		return;
 
 
 
 424
 425	cpu = get_cpu();
 426	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 427
 428	atomic_long_inc(&pool->sp_stats.packets);
 429
 430	spin_lock_bh(&pool->sp_lock);
 431	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 432	pool->sp_stats.sockets_queued++;
 433	spin_unlock_bh(&pool->sp_lock);
 434
 435	/* find a thread for this xprt */
 436	rcu_read_lock();
 437	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 438		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
 
 439			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440		atomic_long_inc(&pool->sp_stats.threads_woken);
 441		rqstp->rq_qtime = ktime_get();
 442		wake_up_process(rqstp->rq_task);
 443		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444	}
 445	set_bit(SP_CONGESTED, &pool->sp_flags);
 446	rqstp = NULL;
 447out_unlock:
 448	rcu_read_unlock();
 449	put_cpu();
 
 450	trace_svc_xprt_do_enqueue(xprt, rqstp);
 451}
 452EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 453
 454/*
 455 * Queue up a transport with data pending. If there are idle nfsd
 456 * processes, wake 'em up.
 457 *
 458 */
 459void svc_xprt_enqueue(struct svc_xprt *xprt)
 460{
 461	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 462		return;
 463	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 464}
 465EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 466
 467/*
 468 * Dequeue the first transport, if there is one.
 469 */
 470static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 471{
 472	struct svc_xprt	*xprt = NULL;
 473
 474	if (list_empty(&pool->sp_sockets))
 475		goto out;
 476
 477	spin_lock_bh(&pool->sp_lock);
 478	if (likely(!list_empty(&pool->sp_sockets))) {
 479		xprt = list_first_entry(&pool->sp_sockets,
 480					struct svc_xprt, xpt_ready);
 481		list_del_init(&xprt->xpt_ready);
 482		svc_xprt_get(xprt);
 
 
 
 483	}
 484	spin_unlock_bh(&pool->sp_lock);
 485out:
 
 486	return xprt;
 487}
 488
 489/**
 490 * svc_reserve - change the space reserved for the reply to a request.
 491 * @rqstp:  The request in question
 492 * @space: new max space to reserve
 493 *
 494 * Each request reserves some space on the output queue of the transport
 495 * to make sure the reply fits.  This function reduces that reserved
 496 * space to be the amount of space used already, plus @space.
 497 *
 498 */
 499void svc_reserve(struct svc_rqst *rqstp, int space)
 500{
 501	struct svc_xprt *xprt = rqstp->rq_xprt;
 502
 503	space += rqstp->rq_res.head[0].iov_len;
 504
 505	if (xprt && space < rqstp->rq_reserved) {
 
 506		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 507		rqstp->rq_reserved = space;
 508		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 
 
 509		svc_xprt_enqueue(xprt);
 510	}
 511}
 512EXPORT_SYMBOL_GPL(svc_reserve);
 513
 514static void svc_xprt_release(struct svc_rqst *rqstp)
 515{
 516	struct svc_xprt	*xprt = rqstp->rq_xprt;
 517
 518	xprt->xpt_ops->xpo_release_rqst(rqstp);
 519
 520	kfree(rqstp->rq_deferred);
 521	rqstp->rq_deferred = NULL;
 522
 523	svc_free_res_pages(rqstp);
 524	rqstp->rq_res.page_len = 0;
 525	rqstp->rq_res.page_base = 0;
 526
 527	/* Reset response buffer and release
 528	 * the reservation.
 529	 * But first, check that enough space was reserved
 530	 * for the reply, otherwise we have a bug!
 531	 */
 532	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 533		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 534		       rqstp->rq_reserved,
 535		       rqstp->rq_res.len);
 536
 537	rqstp->rq_res.head[0].iov_len = 0;
 538	svc_reserve(rqstp, 0);
 539	svc_xprt_release_slot(rqstp);
 540	rqstp->rq_xprt = NULL;
 
 541	svc_xprt_put(xprt);
 542}
 543
 544/*
 545 * Some svc_serv's will have occasional work to do, even when a xprt is not
 546 * waiting to be serviced. This function is there to "kick" a task in one of
 547 * those services so that it can wake up and do that work. Note that we only
 548 * bother with pool 0 as we don't need to wake up more than one thread for
 549 * this purpose.
 550 */
 551void svc_wake_up(struct svc_serv *serv)
 552{
 553	struct svc_rqst	*rqstp;
 554	struct svc_pool *pool;
 555
 556	pool = &serv->sv_pools[0];
 557
 558	rcu_read_lock();
 559	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 560		/* skip any that aren't queued */
 561		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 562			continue;
 563		rcu_read_unlock();
 
 564		wake_up_process(rqstp->rq_task);
 565		trace_svc_wake_up(rqstp->rq_task->pid);
 566		return;
 567	}
 568	rcu_read_unlock();
 569
 570	/* No free entries available */
 571	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 572	smp_wmb();
 573	trace_svc_wake_up(0);
 574}
 575EXPORT_SYMBOL_GPL(svc_wake_up);
 576
 577int svc_port_is_privileged(struct sockaddr *sin)
 578{
 579	switch (sin->sa_family) {
 580	case AF_INET:
 581		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 582			< PROT_SOCK;
 583	case AF_INET6:
 584		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 585			< PROT_SOCK;
 586	default:
 587		return 0;
 588	}
 589}
 590
 591/*
 592 * Make sure that we don't have too many active connections. If we have,
 593 * something must be dropped. It's not clear what will happen if we allow
 594 * "too many" connections, but when dealing with network-facing software,
 595 * we have to code defensively. Here we do that by imposing hard limits.
 596 *
 597 * There's no point in trying to do random drop here for DoS
 598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 599 * attacker can easily beat that.
 600 *
 601 * The only somewhat efficient mechanism would be if drop old
 602 * connections from the same IP first. But right now we don't even
 603 * record the client IP in svc_sock.
 604 *
 605 * single-threaded services that expect a lot of clients will probably
 606 * need to set sv_maxconn to override the default value which is based
 607 * on the number of threads
 608 */
 609static void svc_check_conn_limits(struct svc_serv *serv)
 610{
 611	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 612				(serv->sv_nrthreads+3) * 20;
 613
 614	if (serv->sv_tmpcnt > limit) {
 615		struct svc_xprt *xprt = NULL;
 616		spin_lock_bh(&serv->sv_lock);
 617		if (!list_empty(&serv->sv_tempsocks)) {
 618			/* Try to help the admin */
 619			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 620					       serv->sv_name, serv->sv_maxconn ?
 621					       "max number of connections" :
 622					       "number of threads");
 623			/*
 624			 * Always select the oldest connection. It's not fair,
 625			 * but so is life
 626			 */
 627			xprt = list_entry(serv->sv_tempsocks.prev,
 628					  struct svc_xprt,
 629					  xpt_list);
 630			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 631			svc_xprt_get(xprt);
 632		}
 633		spin_unlock_bh(&serv->sv_lock);
 634
 635		if (xprt) {
 636			svc_xprt_enqueue(xprt);
 637			svc_xprt_put(xprt);
 638		}
 639	}
 640}
 641
 642static int svc_alloc_arg(struct svc_rqst *rqstp)
 643{
 644	struct svc_serv *serv = rqstp->rq_server;
 645	struct xdr_buf *arg;
 646	int pages;
 647	int i;
 648
 649	/* now allocate needed pages.  If we get a failure, sleep briefly */
 650	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 651	if (pages > RPCSVC_MAXPAGES) {
 652		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
 653			     pages, RPCSVC_MAXPAGES);
 654		/* use as many pages as possible */
 655		pages = RPCSVC_MAXPAGES;
 656	}
 657	for (i = 0; i < pages ; i++)
 658		while (rqstp->rq_pages[i] == NULL) {
 659			struct page *p = alloc_page(GFP_KERNEL);
 660			if (!p) {
 661				set_current_state(TASK_INTERRUPTIBLE);
 662				if (signalled() || kthread_should_stop()) {
 663					set_current_state(TASK_RUNNING);
 664					return -EINTR;
 665				}
 666				schedule_timeout(msecs_to_jiffies(500));
 667			}
 668			rqstp->rq_pages[i] = p;
 669		}
 670	rqstp->rq_page_end = &rqstp->rq_pages[i];
 671	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 672
 673	/* Make arg->head point to first page and arg->pages point to rest */
 674	arg = &rqstp->rq_arg;
 675	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 676	arg->head[0].iov_len = PAGE_SIZE;
 677	arg->pages = rqstp->rq_pages + 1;
 678	arg->page_base = 0;
 679	/* save at least one page for response */
 680	arg->page_len = (pages-2)*PAGE_SIZE;
 681	arg->len = (pages-1)*PAGE_SIZE;
 682	arg->tail[0].iov_len = 0;
 683	return 0;
 684}
 685
 686static bool
 687rqst_should_sleep(struct svc_rqst *rqstp)
 688{
 689	struct svc_pool		*pool = rqstp->rq_pool;
 690
 691	/* did someone call svc_wake_up? */
 692	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 693		return false;
 694
 695	/* was a socket queued? */
 696	if (!list_empty(&pool->sp_sockets))
 697		return false;
 698
 699	/* are we shutting down? */
 700	if (signalled() || kthread_should_stop())
 701		return false;
 702
 703	/* are we freezing? */
 704	if (freezing(current))
 705		return false;
 706
 707	return true;
 708}
 709
 710static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 711{
 
 712	struct svc_pool		*pool = rqstp->rq_pool;
 713	long			time_left = 0;
 714
 715	/* rq_xprt should be clear on entry */
 716	WARN_ON_ONCE(rqstp->rq_xprt);
 717
 718	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 719	if (rqstp->rq_xprt)
 720		goto out_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	/*
 723	 * We have to be able to interrupt this wait
 724	 * to bring down the daemons ...
 725	 */
 726	set_current_state(TASK_INTERRUPTIBLE);
 727	smp_mb__before_atomic();
 728	clear_bit(SP_CONGESTED, &pool->sp_flags);
 729	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 730	smp_mb__after_atomic();
 731
 732	if (likely(rqst_should_sleep(rqstp)))
 733		time_left = schedule_timeout(timeout);
 734	else
 735		__set_current_state(TASK_RUNNING);
 736
 737	try_to_freeze();
 738
 
 739	set_bit(RQ_BUSY, &rqstp->rq_flags);
 740	smp_mb__after_atomic();
 741	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 742	if (rqstp->rq_xprt)
 743		goto out_found;
 
 744
 745	if (!time_left)
 746		atomic_long_inc(&pool->sp_stats.threads_timedout);
 747
 748	if (signalled() || kthread_should_stop())
 749		return ERR_PTR(-EINTR);
 750	return ERR_PTR(-EAGAIN);
 751out_found:
 752	/* Normally we will wait up to 5 seconds for any required
 753	 * cache information to be provided.
 754	 */
 755	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
 756		rqstp->rq_chandle.thread_wait = 5*HZ;
 757	else
 758		rqstp->rq_chandle.thread_wait = 1*HZ;
 759	trace_svc_xprt_dequeue(rqstp);
 760	return rqstp->rq_xprt;
 761}
 762
 763static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 764{
 765	spin_lock_bh(&serv->sv_lock);
 766	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 767	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 768	serv->sv_tmpcnt++;
 769	if (serv->sv_temptimer.function == NULL) {
 770		/* setup timer to age temp transports */
 771		serv->sv_temptimer.function = svc_age_temp_xprts;
 
 772		mod_timer(&serv->sv_temptimer,
 773			  jiffies + svc_conn_age_period * HZ);
 774	}
 775	spin_unlock_bh(&serv->sv_lock);
 776	svc_xprt_received(newxpt);
 777}
 778
 779static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 780{
 781	struct svc_serv *serv = rqstp->rq_server;
 782	int len = 0;
 783
 784	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 785		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 786			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 787		svc_delete_xprt(xprt);
 788		/* Leave XPT_BUSY set on the dead xprt: */
 789		goto out;
 790	}
 791	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 792		struct svc_xprt *newxpt;
 793		/*
 794		 * We know this module_get will succeed because the
 795		 * listener holds a reference too
 796		 */
 797		__module_get(xprt->xpt_class->xcl_owner);
 798		svc_check_conn_limits(xprt->xpt_server);
 799		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 800		if (newxpt) {
 801			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
 802			svc_add_new_temp_xprt(serv, newxpt);
 803			trace_svc_xprt_accept(newxpt, serv->sv_name);
 804		} else
 805			module_put(xprt->xpt_class->xcl_owner);
 806	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 807		/* XPT_DATA|XPT_DEFERRED case: */
 808		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 809			rqstp, rqstp->rq_pool->sp_id, xprt,
 810			kref_read(&xprt->xpt_ref));
 811		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 812		if (rqstp->rq_deferred)
 813			len = svc_deferred_recv(rqstp);
 814		else
 815			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 816		if (len > 0)
 817			trace_svc_xdr_recvfrom(rqstp, &rqstp->rq_arg);
 818		rqstp->rq_stime = ktime_get();
 819		rqstp->rq_reserved = serv->sv_max_mesg;
 820		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 821	}
 822	/* clear XPT_BUSY: */
 823	svc_xprt_received(xprt);
 824out:
 825	trace_svc_handle_xprt(xprt, len);
 826	return len;
 827}
 828
 829/*
 830 * Receive the next request on any transport.  This code is carefully
 831 * organised not to touch any cachelines in the shared svc_serv
 832 * structure, only cachelines in the local svc_pool.
 833 */
 834int svc_recv(struct svc_rqst *rqstp, long timeout)
 835{
 836	struct svc_xprt		*xprt = NULL;
 837	struct svc_serv		*serv = rqstp->rq_server;
 838	int			len, err;
 839
 
 
 
 
 
 
 
 
 840	err = svc_alloc_arg(rqstp);
 841	if (err)
 842		goto out;
 843
 844	try_to_freeze();
 845	cond_resched();
 846	err = -EINTR;
 847	if (signalled() || kthread_should_stop())
 848		goto out;
 849
 850	xprt = svc_get_next_xprt(rqstp, timeout);
 851	if (IS_ERR(xprt)) {
 852		err = PTR_ERR(xprt);
 853		goto out;
 854	}
 855
 856	len = svc_handle_xprt(rqstp, xprt);
 857
 858	/* No data, incomplete (TCP) read, or accept() */
 859	err = -EAGAIN;
 860	if (len <= 0)
 861		goto out_release;
 862
 863	clear_bit(XPT_OLD, &xprt->xpt_flags);
 864
 865	xprt->xpt_ops->xpo_secure_port(rqstp);
 
 
 
 866	rqstp->rq_chandle.defer = svc_defer;
 867	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 868
 869	if (serv->sv_stats)
 870		serv->sv_stats->netcnt++;
 871	trace_svc_recv(rqstp, len);
 872	return len;
 873out_release:
 874	rqstp->rq_res.len = 0;
 875	svc_xprt_release(rqstp);
 876out:
 
 877	return err;
 878}
 879EXPORT_SYMBOL_GPL(svc_recv);
 880
 881/*
 882 * Drop request
 883 */
 884void svc_drop(struct svc_rqst *rqstp)
 885{
 886	trace_svc_drop(rqstp);
 887	svc_xprt_release(rqstp);
 888}
 889EXPORT_SYMBOL_GPL(svc_drop);
 890
 891/*
 892 * Return reply to client.
 893 */
 894int svc_send(struct svc_rqst *rqstp)
 895{
 896	struct svc_xprt	*xprt;
 897	int		len = -EFAULT;
 898	struct xdr_buf	*xb;
 899
 900	xprt = rqstp->rq_xprt;
 901	if (!xprt)
 902		goto out;
 903
 
 
 
 904	/* calculate over-all length */
 905	xb = &rqstp->rq_res;
 906	xb->len = xb->head[0].iov_len +
 907		xb->page_len +
 908		xb->tail[0].iov_len;
 909	trace_svc_xdr_sendto(rqstp, xb);
 910	trace_svc_stats_latency(rqstp);
 911
 912	len = xprt->xpt_ops->xpo_sendto(rqstp);
 913
 914	trace_svc_send(rqstp, len);
 
 
 
 
 
 
 915	svc_xprt_release(rqstp);
 916
 917	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 918		len = 0;
 919out:
 
 920	return len;
 921}
 922
 923/*
 924 * Timer function to close old temporary transports, using
 925 * a mark-and-sweep algorithm.
 926 */
 927static void svc_age_temp_xprts(struct timer_list *t)
 928{
 929	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
 930	struct svc_xprt *xprt;
 931	struct list_head *le, *next;
 932
 933	dprintk("svc_age_temp_xprts\n");
 934
 935	if (!spin_trylock_bh(&serv->sv_lock)) {
 936		/* busy, try again 1 sec later */
 937		dprintk("svc_age_temp_xprts: busy\n");
 938		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 939		return;
 940	}
 941
 942	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 943		xprt = list_entry(le, struct svc_xprt, xpt_list);
 944
 945		/* First time through, just mark it OLD. Second time
 946		 * through, close it. */
 947		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 948			continue;
 949		if (kref_read(&xprt->xpt_ref) > 1 ||
 950		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 951			continue;
 952		list_del_init(le);
 953		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 954		dprintk("queuing xprt %p for closing\n", xprt);
 955
 956		/* a thread will dequeue and close it soon */
 957		svc_xprt_enqueue(xprt);
 958	}
 959	spin_unlock_bh(&serv->sv_lock);
 960
 961	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 962}
 963
 964/* Close temporary transports whose xpt_local matches server_addr immediately
 965 * instead of waiting for them to be picked up by the timer.
 966 *
 967 * This is meant to be called from a notifier_block that runs when an ip
 968 * address is deleted.
 969 */
 970void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 971{
 972	struct svc_xprt *xprt;
 
 
 973	struct list_head *le, *next;
 974	LIST_HEAD(to_be_closed);
 
 
 
 
 975
 976	spin_lock_bh(&serv->sv_lock);
 977	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 978		xprt = list_entry(le, struct svc_xprt, xpt_list);
 979		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
 980				&xprt->xpt_local)) {
 981			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
 982			list_move(le, &to_be_closed);
 983		}
 984	}
 985	spin_unlock_bh(&serv->sv_lock);
 986
 987	while (!list_empty(&to_be_closed)) {
 988		le = to_be_closed.next;
 989		list_del_init(le);
 990		xprt = list_entry(le, struct svc_xprt, xpt_list);
 991		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 992		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
 993		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
 994				xprt);
 995		svc_xprt_enqueue(xprt);
 
 996	}
 997}
 998EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
 999
1000static void call_xpt_users(struct svc_xprt *xprt)
1001{
1002	struct svc_xpt_user *u;
1003
1004	spin_lock(&xprt->xpt_lock);
1005	while (!list_empty(&xprt->xpt_users)) {
1006		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1007		list_del_init(&u->list);
1008		u->callback(u);
1009	}
1010	spin_unlock(&xprt->xpt_lock);
1011}
1012
1013/*
1014 * Remove a dead transport
1015 */
1016static void svc_delete_xprt(struct svc_xprt *xprt)
1017{
1018	struct svc_serv	*serv = xprt->xpt_server;
1019	struct svc_deferred_req *dr;
1020
 
1021	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1022		return;
1023
1024	trace_svc_xprt_detach(xprt);
1025	xprt->xpt_ops->xpo_detach(xprt);
1026	if (xprt->xpt_bc_xprt)
1027		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1028
1029	spin_lock_bh(&serv->sv_lock);
1030	list_del_init(&xprt->xpt_list);
1031	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1032	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1033		serv->sv_tmpcnt--;
1034	spin_unlock_bh(&serv->sv_lock);
1035
1036	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1037		kfree(dr);
1038
1039	call_xpt_users(xprt);
1040	svc_xprt_put(xprt);
1041}
1042
1043void svc_close_xprt(struct svc_xprt *xprt)
1044{
1045	trace_svc_xprt_close(xprt);
1046	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1047	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1048		/* someone else will have to effect the close */
1049		return;
1050	/*
1051	 * We expect svc_close_xprt() to work even when no threads are
1052	 * running (e.g., while configuring the server before starting
1053	 * any threads), so if the transport isn't busy, we delete
1054	 * it ourself:
1055	 */
1056	svc_delete_xprt(xprt);
1057}
1058EXPORT_SYMBOL_GPL(svc_close_xprt);
1059
1060static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1061{
1062	struct svc_xprt *xprt;
1063	int ret = 0;
1064
1065	spin_lock(&serv->sv_lock);
1066	list_for_each_entry(xprt, xprt_list, xpt_list) {
1067		if (xprt->xpt_net != net)
1068			continue;
1069		ret++;
1070		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1071		svc_xprt_enqueue(xprt);
1072	}
1073	spin_unlock(&serv->sv_lock);
1074	return ret;
1075}
1076
1077static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1078{
1079	struct svc_pool *pool;
1080	struct svc_xprt *xprt;
1081	struct svc_xprt *tmp;
1082	int i;
1083
1084	for (i = 0; i < serv->sv_nrpools; i++) {
1085		pool = &serv->sv_pools[i];
1086
1087		spin_lock_bh(&pool->sp_lock);
1088		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1089			if (xprt->xpt_net != net)
1090				continue;
1091			list_del_init(&xprt->xpt_ready);
1092			spin_unlock_bh(&pool->sp_lock);
1093			return xprt;
1094		}
1095		spin_unlock_bh(&pool->sp_lock);
1096	}
1097	return NULL;
1098}
1099
1100static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1101{
1102	struct svc_xprt *xprt;
1103
1104	while ((xprt = svc_dequeue_net(serv, net))) {
1105		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1106		svc_delete_xprt(xprt);
1107	}
1108}
1109
1110/*
1111 * Server threads may still be running (especially in the case where the
1112 * service is still running in other network namespaces).
1113 *
1114 * So we shut down sockets the same way we would on a running server, by
1115 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1116 * the close.  In the case there are no such other threads,
1117 * threads running, svc_clean_up_xprts() does a simple version of a
1118 * server's main event loop, and in the case where there are other
1119 * threads, we may need to wait a little while and then check again to
1120 * see if they're done.
1121 */
1122void svc_close_net(struct svc_serv *serv, struct net *net)
1123{
1124	int delay = 0;
1125
1126	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1127	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1128
1129		svc_clean_up_xprts(serv, net);
1130		msleep(delay++);
1131	}
1132}
1133
1134/*
1135 * Handle defer and revisit of requests
1136 */
1137
1138static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1139{
1140	struct svc_deferred_req *dr =
1141		container_of(dreq, struct svc_deferred_req, handle);
1142	struct svc_xprt *xprt = dr->xprt;
1143
1144	spin_lock(&xprt->xpt_lock);
1145	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1147		spin_unlock(&xprt->xpt_lock);
1148		trace_svc_defer_drop(dr);
1149		svc_xprt_put(xprt);
1150		kfree(dr);
1151		return;
1152	}
 
1153	dr->xprt = NULL;
1154	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1155	spin_unlock(&xprt->xpt_lock);
1156	trace_svc_defer_queue(dr);
1157	svc_xprt_enqueue(xprt);
1158	svc_xprt_put(xprt);
1159}
1160
1161/*
1162 * Save the request off for later processing. The request buffer looks
1163 * like this:
1164 *
1165 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1166 *
1167 * This code can only handle requests that consist of an xprt-header
1168 * and rpc-header.
1169 */
1170static struct cache_deferred_req *svc_defer(struct cache_req *req)
1171{
1172	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1173	struct svc_deferred_req *dr;
1174
1175	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1176		return NULL; /* if more than a page, give up FIXME */
1177	if (rqstp->rq_deferred) {
1178		dr = rqstp->rq_deferred;
1179		rqstp->rq_deferred = NULL;
1180	} else {
1181		size_t skip;
1182		size_t size;
1183		/* FIXME maybe discard if size too large */
1184		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1185		dr = kmalloc(size, GFP_KERNEL);
1186		if (dr == NULL)
1187			return NULL;
1188
1189		dr->handle.owner = rqstp->rq_server;
1190		dr->prot = rqstp->rq_prot;
1191		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1192		dr->addrlen = rqstp->rq_addrlen;
1193		dr->daddr = rqstp->rq_daddr;
1194		dr->argslen = rqstp->rq_arg.len >> 2;
1195		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1196
1197		/* back up head to the start of the buffer and copy */
1198		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1199		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1200		       dr->argslen << 2);
1201	}
1202	trace_svc_defer(rqstp);
1203	svc_xprt_get(rqstp->rq_xprt);
1204	dr->xprt = rqstp->rq_xprt;
1205	set_bit(RQ_DROPME, &rqstp->rq_flags);
1206
1207	dr->handle.revisit = svc_revisit;
1208	return &dr->handle;
1209}
1210
1211/*
1212 * recv data from a deferred request into an active one
1213 */
1214static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1215{
1216	struct svc_deferred_req *dr = rqstp->rq_deferred;
1217
1218	trace_svc_defer_recv(dr);
1219
1220	/* setup iov_base past transport header */
1221	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1222	/* The iov_len does not include the transport header bytes */
1223	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1224	rqstp->rq_arg.page_len = 0;
1225	/* The rq_arg.len includes the transport header bytes */
1226	rqstp->rq_arg.len     = dr->argslen<<2;
1227	rqstp->rq_prot        = dr->prot;
1228	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1229	rqstp->rq_addrlen     = dr->addrlen;
1230	/* Save off transport header len in case we get deferred again */
1231	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1232	rqstp->rq_daddr       = dr->daddr;
1233	rqstp->rq_respages    = rqstp->rq_pages;
1234	return (dr->argslen<<2) - dr->xprt_hlen;
1235}
1236
1237
1238static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239{
1240	struct svc_deferred_req *dr = NULL;
1241
1242	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243		return NULL;
1244	spin_lock(&xprt->xpt_lock);
1245	if (!list_empty(&xprt->xpt_deferred)) {
1246		dr = list_entry(xprt->xpt_deferred.next,
1247				struct svc_deferred_req,
1248				handle.recent);
1249		list_del_init(&dr->handle.recent);
1250	} else
1251		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1252	spin_unlock(&xprt->xpt_lock);
1253	return dr;
1254}
1255
1256/**
1257 * svc_find_xprt - find an RPC transport instance
1258 * @serv: pointer to svc_serv to search
1259 * @xcl_name: C string containing transport's class name
1260 * @net: owner net pointer
1261 * @af: Address family of transport's local address
1262 * @port: transport's IP port number
1263 *
1264 * Return the transport instance pointer for the endpoint accepting
1265 * connections/peer traffic from the specified transport class,
1266 * address family and port.
1267 *
1268 * Specifying 0 for the address family or port is effectively a
1269 * wild-card, and will result in matching the first transport in the
1270 * service's list that has a matching class name.
1271 */
1272struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1273			       struct net *net, const sa_family_t af,
1274			       const unsigned short port)
1275{
1276	struct svc_xprt *xprt;
1277	struct svc_xprt *found = NULL;
1278
1279	/* Sanity check the args */
1280	if (serv == NULL || xcl_name == NULL)
1281		return found;
1282
1283	spin_lock_bh(&serv->sv_lock);
1284	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1285		if (xprt->xpt_net != net)
1286			continue;
1287		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1288			continue;
1289		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1290			continue;
1291		if (port != 0 && port != svc_xprt_local_port(xprt))
1292			continue;
1293		found = xprt;
1294		svc_xprt_get(xprt);
1295		break;
1296	}
1297	spin_unlock_bh(&serv->sv_lock);
1298	return found;
1299}
1300EXPORT_SYMBOL_GPL(svc_find_xprt);
1301
1302static int svc_one_xprt_name(const struct svc_xprt *xprt,
1303			     char *pos, int remaining)
1304{
1305	int len;
1306
1307	len = snprintf(pos, remaining, "%s %u\n",
1308			xprt->xpt_class->xcl_name,
1309			svc_xprt_local_port(xprt));
1310	if (len >= remaining)
1311		return -ENAMETOOLONG;
1312	return len;
1313}
1314
1315/**
1316 * svc_xprt_names - format a buffer with a list of transport names
1317 * @serv: pointer to an RPC service
1318 * @buf: pointer to a buffer to be filled in
1319 * @buflen: length of buffer to be filled in
1320 *
1321 * Fills in @buf with a string containing a list of transport names,
1322 * each name terminated with '\n'.
1323 *
1324 * Returns positive length of the filled-in string on success; otherwise
1325 * a negative errno value is returned if an error occurs.
1326 */
1327int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1328{
1329	struct svc_xprt *xprt;
1330	int len, totlen;
1331	char *pos;
1332
1333	/* Sanity check args */
1334	if (!serv)
1335		return 0;
1336
1337	spin_lock_bh(&serv->sv_lock);
1338
1339	pos = buf;
1340	totlen = 0;
1341	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1342		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1343		if (len < 0) {
1344			*buf = '\0';
1345			totlen = len;
1346		}
1347		if (len <= 0)
1348			break;
1349
1350		pos += len;
1351		totlen += len;
1352	}
1353
1354	spin_unlock_bh(&serv->sv_lock);
1355	return totlen;
1356}
1357EXPORT_SYMBOL_GPL(svc_xprt_names);
1358
1359
1360/*----------------------------------------------------------------------------*/
1361
1362static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1363{
1364	unsigned int pidx = (unsigned int)*pos;
1365	struct svc_serv *serv = m->private;
1366
1367	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1368
1369	if (!pidx)
1370		return SEQ_START_TOKEN;
1371	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1372}
1373
1374static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1375{
1376	struct svc_pool *pool = p;
1377	struct svc_serv *serv = m->private;
1378
1379	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1380
1381	if (p == SEQ_START_TOKEN) {
1382		pool = &serv->sv_pools[0];
1383	} else {
1384		unsigned int pidx = (pool - &serv->sv_pools[0]);
1385		if (pidx < serv->sv_nrpools-1)
1386			pool = &serv->sv_pools[pidx+1];
1387		else
1388			pool = NULL;
1389	}
1390	++*pos;
1391	return pool;
1392}
1393
1394static void svc_pool_stats_stop(struct seq_file *m, void *p)
1395{
1396}
1397
1398static int svc_pool_stats_show(struct seq_file *m, void *p)
1399{
1400	struct svc_pool *pool = p;
1401
1402	if (p == SEQ_START_TOKEN) {
1403		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1404		return 0;
1405	}
1406
1407	seq_printf(m, "%u %lu %lu %lu %lu\n",
1408		pool->sp_id,
1409		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1410		pool->sp_stats.sockets_queued,
1411		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1412		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1413
1414	return 0;
1415}
1416
1417static const struct seq_operations svc_pool_stats_seq_ops = {
1418	.start	= svc_pool_stats_start,
1419	.next	= svc_pool_stats_next,
1420	.stop	= svc_pool_stats_stop,
1421	.show	= svc_pool_stats_show,
1422};
1423
1424int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1425{
1426	int err;
1427
1428	err = seq_open(file, &svc_pool_stats_seq_ops);
1429	if (!err)
1430		((struct seq_file *) file->private_data)->private = serv;
1431	return err;
1432}
1433EXPORT_SYMBOL(svc_pool_stats_open);
1434
1435/*----------------------------------------------------------------------------*/