Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <asm/unaligned.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
 
 
 
 
 
 
 
 
 
 
  44static int req_run(struct hci_request *req, hci_req_complete_t complete,
  45		   hci_req_complete_skb_t complete_skb)
  46{
  47	struct hci_dev *hdev = req->hdev;
  48	struct sk_buff *skb;
  49	unsigned long flags;
  50
  51	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  52
  53	/* If an error occurred during request building, remove all HCI
  54	 * commands queued on the HCI request queue.
  55	 */
  56	if (req->err) {
  57		skb_queue_purge(&req->cmd_q);
  58		return req->err;
  59	}
  60
  61	/* Do not allow empty requests */
  62	if (skb_queue_empty(&req->cmd_q))
  63		return -ENODATA;
  64
  65	skb = skb_peek_tail(&req->cmd_q);
  66	if (complete) {
  67		bt_cb(skb)->hci.req_complete = complete;
  68	} else if (complete_skb) {
  69		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  70		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  71	}
  72
  73	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  74	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  75	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  76
  77	queue_work(hdev->workqueue, &hdev->cmd_work);
  78
  79	return 0;
  80}
  81
  82int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  83{
  84	return req_run(req, complete, NULL);
  85}
  86
  87int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  88{
  89	return req_run(req, NULL, complete);
  90}
  91
  92static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  93				  struct sk_buff *skb)
  94{
  95	BT_DBG("%s result 0x%2.2x", hdev->name, result);
  96
  97	if (hdev->req_status == HCI_REQ_PEND) {
  98		hdev->req_result = result;
  99		hdev->req_status = HCI_REQ_DONE;
 100		if (skb)
 101			hdev->req_skb = skb_get(skb);
 102		wake_up_interruptible(&hdev->req_wait_q);
 103	}
 104}
 105
 106void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 107{
 108	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 109
 110	if (hdev->req_status == HCI_REQ_PEND) {
 111		hdev->req_result = err;
 112		hdev->req_status = HCI_REQ_CANCELED;
 113		wake_up_interruptible(&hdev->req_wait_q);
 114	}
 115}
 116
 117struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 118				  const void *param, u8 event, u32 timeout)
 119{
 120	DECLARE_WAITQUEUE(wait, current);
 121	struct hci_request req;
 122	struct sk_buff *skb;
 123	int err = 0;
 124
 125	BT_DBG("%s", hdev->name);
 126
 127	hci_req_init(&req, hdev);
 128
 129	hci_req_add_ev(&req, opcode, plen, param, event);
 130
 131	hdev->req_status = HCI_REQ_PEND;
 132
 133	add_wait_queue(&hdev->req_wait_q, &wait);
 134	set_current_state(TASK_INTERRUPTIBLE);
 135
 136	err = hci_req_run_skb(&req, hci_req_sync_complete);
 137	if (err < 0) {
 138		remove_wait_queue(&hdev->req_wait_q, &wait);
 139		set_current_state(TASK_RUNNING);
 140		return ERR_PTR(err);
 141	}
 142
 143	schedule_timeout(timeout);
 144
 145	remove_wait_queue(&hdev->req_wait_q, &wait);
 
 146
 147	if (signal_pending(current))
 148		return ERR_PTR(-EINTR);
 149
 150	switch (hdev->req_status) {
 151	case HCI_REQ_DONE:
 152		err = -bt_to_errno(hdev->req_result);
 153		break;
 154
 155	case HCI_REQ_CANCELED:
 156		err = -hdev->req_result;
 157		break;
 158
 159	default:
 160		err = -ETIMEDOUT;
 161		break;
 162	}
 163
 164	hdev->req_status = hdev->req_result = 0;
 165	skb = hdev->req_skb;
 166	hdev->req_skb = NULL;
 167
 168	BT_DBG("%s end: err %d", hdev->name, err);
 169
 170	if (err < 0) {
 171		kfree_skb(skb);
 172		return ERR_PTR(err);
 173	}
 174
 175	if (!skb)
 176		return ERR_PTR(-ENODATA);
 177
 178	return skb;
 179}
 180EXPORT_SYMBOL(__hci_cmd_sync_ev);
 181
 182struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 183			       const void *param, u32 timeout)
 184{
 185	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 186}
 187EXPORT_SYMBOL(__hci_cmd_sync);
 188
 189/* Execute request and wait for completion. */
 190int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 191						     unsigned long opt),
 192		   unsigned long opt, u32 timeout, u8 *hci_status)
 193{
 194	struct hci_request req;
 195	DECLARE_WAITQUEUE(wait, current);
 196	int err = 0;
 197
 198	BT_DBG("%s start", hdev->name);
 199
 200	hci_req_init(&req, hdev);
 201
 202	hdev->req_status = HCI_REQ_PEND;
 203
 204	err = func(&req, opt);
 205	if (err) {
 206		if (hci_status)
 207			*hci_status = HCI_ERROR_UNSPECIFIED;
 208		return err;
 209	}
 210
 211	add_wait_queue(&hdev->req_wait_q, &wait);
 212	set_current_state(TASK_INTERRUPTIBLE);
 213
 214	err = hci_req_run_skb(&req, hci_req_sync_complete);
 215	if (err < 0) {
 216		hdev->req_status = 0;
 217
 218		remove_wait_queue(&hdev->req_wait_q, &wait);
 219		set_current_state(TASK_RUNNING);
 220
 221		/* ENODATA means the HCI request command queue is empty.
 222		 * This can happen when a request with conditionals doesn't
 223		 * trigger any commands to be sent. This is normal behavior
 224		 * and should not trigger an error return.
 225		 */
 226		if (err == -ENODATA) {
 227			if (hci_status)
 228				*hci_status = 0;
 229			return 0;
 230		}
 231
 232		if (hci_status)
 233			*hci_status = HCI_ERROR_UNSPECIFIED;
 234
 235		return err;
 236	}
 237
 238	schedule_timeout(timeout);
 
 239
 240	remove_wait_queue(&hdev->req_wait_q, &wait);
 241
 242	if (signal_pending(current))
 243		return -EINTR;
 244
 245	switch (hdev->req_status) {
 246	case HCI_REQ_DONE:
 247		err = -bt_to_errno(hdev->req_result);
 248		if (hci_status)
 249			*hci_status = hdev->req_result;
 250		break;
 251
 252	case HCI_REQ_CANCELED:
 253		err = -hdev->req_result;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257
 258	default:
 259		err = -ETIMEDOUT;
 260		if (hci_status)
 261			*hci_status = HCI_ERROR_UNSPECIFIED;
 262		break;
 263	}
 264
 
 
 265	hdev->req_status = hdev->req_result = 0;
 266
 267	BT_DBG("%s end: err %d", hdev->name, err);
 268
 269	return err;
 270}
 271
 272int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 273						  unsigned long opt),
 274		 unsigned long opt, u32 timeout, u8 *hci_status)
 275{
 276	int ret;
 277
 278	if (!test_bit(HCI_UP, &hdev->flags))
 279		return -ENETDOWN;
 280
 281	/* Serialize all requests */
 282	hci_req_sync_lock(hdev);
 283	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 284	hci_req_sync_unlock(hdev);
 285
 286	return ret;
 287}
 288
 289struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 290				const void *param)
 291{
 292	int len = HCI_COMMAND_HDR_SIZE + plen;
 293	struct hci_command_hdr *hdr;
 294	struct sk_buff *skb;
 295
 296	skb = bt_skb_alloc(len, GFP_ATOMIC);
 297	if (!skb)
 298		return NULL;
 299
 300	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
 301	hdr->opcode = cpu_to_le16(opcode);
 302	hdr->plen   = plen;
 303
 304	if (plen)
 305		memcpy(skb_put(skb, plen), param, plen);
 306
 307	BT_DBG("skb len %d", skb->len);
 308
 309	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 310	hci_skb_opcode(skb) = opcode;
 311
 312	return skb;
 313}
 314
 315/* Queue a command to an asynchronous HCI request */
 316void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 317		    const void *param, u8 event)
 318{
 319	struct hci_dev *hdev = req->hdev;
 320	struct sk_buff *skb;
 321
 322	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 323
 324	/* If an error occurred during request building, there is no point in
 325	 * queueing the HCI command. We can simply return.
 326	 */
 327	if (req->err)
 328		return;
 329
 330	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 331	if (!skb) {
 332		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
 333		       hdev->name, opcode);
 334		req->err = -ENOMEM;
 335		return;
 336	}
 337
 338	if (skb_queue_empty(&req->cmd_q))
 339		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 340
 341	bt_cb(skb)->hci.req_event = event;
 342
 343	skb_queue_tail(&req->cmd_q, skb);
 344}
 345
 346void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 347		 const void *param)
 348{
 349	hci_req_add_ev(req, opcode, plen, param, 0);
 350}
 351
 352void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 353{
 354	struct hci_dev *hdev = req->hdev;
 355	struct hci_cp_write_page_scan_activity acp;
 356	u8 type;
 357
 358	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 359		return;
 360
 361	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 362		return;
 363
 364	if (enable) {
 365		type = PAGE_SCAN_TYPE_INTERLACED;
 366
 367		/* 160 msec page scan interval */
 368		acp.interval = cpu_to_le16(0x0100);
 369	} else {
 370		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 371
 372		/* default 1.28 sec page scan */
 373		acp.interval = cpu_to_le16(0x0800);
 374	}
 375
 376	acp.window = cpu_to_le16(0x0012);
 377
 378	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 379	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 381			    sizeof(acp), &acp);
 382
 383	if (hdev->page_scan_type != type)
 384		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 385}
 386
 387/* This function controls the background scanning based on hdev->pend_le_conns
 388 * list. If there are pending LE connection we start the background scanning,
 389 * otherwise we stop it.
 390 *
 391 * This function requires the caller holds hdev->lock.
 392 */
 393static void __hci_update_background_scan(struct hci_request *req)
 394{
 395	struct hci_dev *hdev = req->hdev;
 396
 397	if (!test_bit(HCI_UP, &hdev->flags) ||
 398	    test_bit(HCI_INIT, &hdev->flags) ||
 399	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 400	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 401	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 402	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 403		return;
 404
 405	/* No point in doing scanning if LE support hasn't been enabled */
 406	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 407		return;
 408
 409	/* If discovery is active don't interfere with it */
 410	if (hdev->discovery.state != DISCOVERY_STOPPED)
 411		return;
 412
 413	/* Reset RSSI and UUID filters when starting background scanning
 414	 * since these filters are meant for service discovery only.
 415	 *
 416	 * The Start Discovery and Start Service Discovery operations
 417	 * ensure to set proper values for RSSI threshold and UUID
 418	 * filter list. So it is safe to just reset them here.
 419	 */
 420	hci_discovery_filter_clear(hdev);
 421
 
 
 
 422	if (list_empty(&hdev->pend_le_conns) &&
 423	    list_empty(&hdev->pend_le_reports)) {
 
 424		/* If there is no pending LE connections or devices
 425		 * to be scanned for, we should stop the background
 426		 * scanning.
 427		 */
 428
 429		/* If controller is not scanning we are done. */
 430		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 431			return;
 432
 433		hci_req_add_le_scan_disable(req);
 434
 435		BT_DBG("%s stopping background scanning", hdev->name);
 436	} else {
 437		/* If there is at least one pending LE connection, we should
 438		 * keep the background scan running.
 439		 */
 440
 441		/* If controller is connecting, we should not start scanning
 442		 * since some controllers are not able to scan and connect at
 443		 * the same time.
 444		 */
 445		if (hci_lookup_le_connect(hdev))
 446			return;
 447
 448		/* If controller is currently scanning, we stop it to ensure we
 449		 * don't miss any advertising (due to duplicates filter).
 450		 */
 451		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 452			hci_req_add_le_scan_disable(req);
 453
 454		hci_req_add_le_passive_scan(req);
 455
 456		BT_DBG("%s starting background scanning", hdev->name);
 457	}
 458}
 459
 460void __hci_req_update_name(struct hci_request *req)
 461{
 462	struct hci_dev *hdev = req->hdev;
 463	struct hci_cp_write_local_name cp;
 464
 465	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 466
 467	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 468}
 469
 470#define PNP_INFO_SVCLASS_ID		0x1200
 471
 472static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 473{
 474	u8 *ptr = data, *uuids_start = NULL;
 475	struct bt_uuid *uuid;
 476
 477	if (len < 4)
 478		return ptr;
 479
 480	list_for_each_entry(uuid, &hdev->uuids, list) {
 481		u16 uuid16;
 482
 483		if (uuid->size != 16)
 484			continue;
 485
 486		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 487		if (uuid16 < 0x1100)
 488			continue;
 489
 490		if (uuid16 == PNP_INFO_SVCLASS_ID)
 491			continue;
 492
 493		if (!uuids_start) {
 494			uuids_start = ptr;
 495			uuids_start[0] = 1;
 496			uuids_start[1] = EIR_UUID16_ALL;
 497			ptr += 2;
 498		}
 499
 500		/* Stop if not enough space to put next UUID */
 501		if ((ptr - data) + sizeof(u16) > len) {
 502			uuids_start[1] = EIR_UUID16_SOME;
 503			break;
 504		}
 505
 506		*ptr++ = (uuid16 & 0x00ff);
 507		*ptr++ = (uuid16 & 0xff00) >> 8;
 508		uuids_start[0] += sizeof(uuid16);
 509	}
 510
 511	return ptr;
 512}
 513
 514static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 515{
 516	u8 *ptr = data, *uuids_start = NULL;
 517	struct bt_uuid *uuid;
 518
 519	if (len < 6)
 520		return ptr;
 521
 522	list_for_each_entry(uuid, &hdev->uuids, list) {
 523		if (uuid->size != 32)
 524			continue;
 525
 526		if (!uuids_start) {
 527			uuids_start = ptr;
 528			uuids_start[0] = 1;
 529			uuids_start[1] = EIR_UUID32_ALL;
 530			ptr += 2;
 531		}
 532
 533		/* Stop if not enough space to put next UUID */
 534		if ((ptr - data) + sizeof(u32) > len) {
 535			uuids_start[1] = EIR_UUID32_SOME;
 536			break;
 537		}
 538
 539		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 540		ptr += sizeof(u32);
 541		uuids_start[0] += sizeof(u32);
 542	}
 543
 544	return ptr;
 545}
 546
 547static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 548{
 549	u8 *ptr = data, *uuids_start = NULL;
 550	struct bt_uuid *uuid;
 551
 552	if (len < 18)
 553		return ptr;
 554
 555	list_for_each_entry(uuid, &hdev->uuids, list) {
 556		if (uuid->size != 128)
 557			continue;
 558
 559		if (!uuids_start) {
 560			uuids_start = ptr;
 561			uuids_start[0] = 1;
 562			uuids_start[1] = EIR_UUID128_ALL;
 563			ptr += 2;
 564		}
 565
 566		/* Stop if not enough space to put next UUID */
 567		if ((ptr - data) + 16 > len) {
 568			uuids_start[1] = EIR_UUID128_SOME;
 569			break;
 570		}
 571
 572		memcpy(ptr, uuid->uuid, 16);
 573		ptr += 16;
 574		uuids_start[0] += 16;
 575	}
 576
 577	return ptr;
 578}
 579
 580static void create_eir(struct hci_dev *hdev, u8 *data)
 581{
 582	u8 *ptr = data;
 583	size_t name_len;
 584
 585	name_len = strlen(hdev->dev_name);
 586
 587	if (name_len > 0) {
 588		/* EIR Data type */
 589		if (name_len > 48) {
 590			name_len = 48;
 591			ptr[1] = EIR_NAME_SHORT;
 592		} else
 593			ptr[1] = EIR_NAME_COMPLETE;
 594
 595		/* EIR Data length */
 596		ptr[0] = name_len + 1;
 597
 598		memcpy(ptr + 2, hdev->dev_name, name_len);
 599
 600		ptr += (name_len + 2);
 601	}
 602
 603	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 604		ptr[0] = 2;
 605		ptr[1] = EIR_TX_POWER;
 606		ptr[2] = (u8) hdev->inq_tx_power;
 607
 608		ptr += 3;
 609	}
 610
 611	if (hdev->devid_source > 0) {
 612		ptr[0] = 9;
 613		ptr[1] = EIR_DEVICE_ID;
 614
 615		put_unaligned_le16(hdev->devid_source, ptr + 2);
 616		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 617		put_unaligned_le16(hdev->devid_product, ptr + 6);
 618		put_unaligned_le16(hdev->devid_version, ptr + 8);
 619
 620		ptr += 10;
 621	}
 622
 623	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 625	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 626}
 627
 628void __hci_req_update_eir(struct hci_request *req)
 629{
 630	struct hci_dev *hdev = req->hdev;
 631	struct hci_cp_write_eir cp;
 632
 633	if (!hdev_is_powered(hdev))
 634		return;
 635
 636	if (!lmp_ext_inq_capable(hdev))
 637		return;
 638
 639	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 640		return;
 641
 642	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 643		return;
 644
 645	memset(&cp, 0, sizeof(cp));
 646
 647	create_eir(hdev, cp.data);
 648
 649	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 650		return;
 651
 652	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 653
 654	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 655}
 656
 657void hci_req_add_le_scan_disable(struct hci_request *req)
 658{
 659	struct hci_cp_le_set_scan_enable cp;
 660
 661	memset(&cp, 0, sizeof(cp));
 662	cp.enable = LE_SCAN_DISABLE;
 663	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664}
 665
 666static void add_to_white_list(struct hci_request *req,
 667			      struct hci_conn_params *params)
 
 
 668{
 669	struct hci_cp_le_add_to_white_list cp;
 
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	cp.bdaddr_type = params->addr_type;
 672	bacpy(&cp.bdaddr, &params->addr);
 673
 
 
 674	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 676
 677static u8 update_white_list(struct hci_request *req)
 678{
 679	struct hci_dev *hdev = req->hdev;
 680	struct hci_conn_params *params;
 681	struct bdaddr_list *b;
 682	uint8_t white_list_entries = 0;
 
 
 
 
 
 
 
 683
 684	/* Go through the current white list programmed into the
 685	 * controller one by one and check if that address is still
 686	 * in the list of pending connections or list of devices to
 687	 * report. If not present in either list, then queue the
 688	 * command to remove it from the controller.
 689	 */
 690	list_for_each_entry(b, &hdev->le_white_list, list) {
 691		/* If the device is neither in pend_le_conns nor
 692		 * pend_le_reports then remove it from the whitelist.
 693		 */
 694		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 695					       &b->bdaddr, b->bdaddr_type) &&
 696		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 697					       &b->bdaddr, b->bdaddr_type)) {
 698			struct hci_cp_le_del_from_white_list cp;
 699
 700			cp.bdaddr_type = b->bdaddr_type;
 701			bacpy(&cp.bdaddr, &b->bdaddr);
 702
 703			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 704				    sizeof(cp), &cp);
 
 
 
 705			continue;
 706		}
 707
 708		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 709			/* White list can not be used with RPAs */
 
 710			return 0x00;
 711		}
 712
 713		white_list_entries++;
 714	}
 715
 716	/* Since all no longer valid white list entries have been
 717	 * removed, walk through the list of pending connections
 718	 * and ensure that any new device gets programmed into
 719	 * the controller.
 720	 *
 721	 * If the list of the devices is larger than the list of
 722	 * available white list entries in the controller, then
 723	 * just abort and return filer policy value to not use the
 724	 * white list.
 725	 */
 726	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 727		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 728					   &params->addr, params->addr_type))
 729			continue;
 730
 731		if (white_list_entries >= hdev->le_white_list_size) {
 732			/* Select filter policy to accept all advertising */
 733			return 0x00;
 734		}
 735
 736		if (hci_find_irk_by_addr(hdev, &params->addr,
 737					 params->addr_type)) {
 738			/* White list can not be used with RPAs */
 739			return 0x00;
 740		}
 741
 742		white_list_entries++;
 743		add_to_white_list(req, params);
 744	}
 745
 746	/* After adding all new pending connections, walk through
 747	 * the list of pending reports and also add these to the
 748	 * white list if there is still space.
 749	 */
 750	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 751		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 752					   &params->addr, params->addr_type))
 753			continue;
 754
 755		if (white_list_entries >= hdev->le_white_list_size) {
 756			/* Select filter policy to accept all advertising */
 757			return 0x00;
 758		}
 759
 760		if (hci_find_irk_by_addr(hdev, &params->addr,
 761					 params->addr_type)) {
 762			/* White list can not be used with RPAs */
 763			return 0x00;
 764		}
 765
 766		white_list_entries++;
 767		add_to_white_list(req, params);
 768	}
 769
 
 
 
 
 
 
 
 
 770	/* Select filter policy to use white list */
 771	return 0x01;
 772}
 773
 774static bool scan_use_rpa(struct hci_dev *hdev)
 775{
 776	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 777}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779void hci_req_add_le_passive_scan(struct hci_request *req)
 780{
 781	struct hci_cp_le_set_scan_param param_cp;
 782	struct hci_cp_le_set_scan_enable enable_cp;
 783	struct hci_dev *hdev = req->hdev;
 784	u8 own_addr_type;
 785	u8 filter_policy;
 
 
 
 
 
 
 
 
 786
 787	/* Set require_privacy to false since no SCAN_REQ are send
 788	 * during passive scanning. Not using an non-resolvable address
 789	 * here is important so that peer devices using direct
 790	 * advertising with our address will be correctly reported
 791	 * by the controller.
 792	 */
 793	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 794				      &own_addr_type))
 795		return;
 796
 797	/* Adding or removing entries from the white list must
 798	 * happen before enabling scanning. The controller does
 799	 * not allow white list modification while scanning.
 800	 */
 801	filter_policy = update_white_list(req);
 802
 803	/* When the controller is using random resolvable addresses and
 804	 * with that having LE privacy enabled, then controllers with
 805	 * Extended Scanner Filter Policies support can now enable support
 806	 * for handling directed advertising.
 807	 *
 808	 * So instead of using filter polices 0x00 (no whitelist)
 809	 * and 0x01 (whitelist enabled) use the new filter policies
 810	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 811	 */
 812	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 813	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 814		filter_policy |= 0x02;
 815
 816	memset(&param_cp, 0, sizeof(param_cp));
 817	param_cp.type = LE_SCAN_PASSIVE;
 818	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 819	param_cp.window = cpu_to_le16(hdev->le_scan_window);
 820	param_cp.own_address_type = own_addr_type;
 821	param_cp.filter_policy = filter_policy;
 822	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 823		    &param_cp);
 824
 825	memset(&enable_cp, 0, sizeof(enable_cp));
 826	enable_cp.enable = LE_SCAN_ENABLE;
 827	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 828	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 829		    &enable_cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830}
 831
 832static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 833{
 834	u8 instance = hdev->cur_adv_instance;
 835	struct adv_info *adv_instance;
 836
 837	/* Ignore instance 0 */
 838	if (instance == 0x00)
 839		return 0;
 840
 841	adv_instance = hci_find_adv_instance(hdev, instance);
 842	if (!adv_instance)
 843		return 0;
 844
 845	/* TODO: Take into account the "appearance" and "local-name" flags here.
 846	 * These are currently being ignored as they are not supported.
 847	 */
 848	return adv_instance->scan_rsp_len;
 849}
 850
 851void __hci_req_disable_advertising(struct hci_request *req)
 852{
 853	u8 enable = 0x00;
 
 854
 855	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 
 
 
 
 856}
 857
 858static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 859{
 860	u32 flags;
 861	struct adv_info *adv_instance;
 862
 863	if (instance == 0x00) {
 864		/* Instance 0 always manages the "Tx Power" and "Flags"
 865		 * fields
 866		 */
 867		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 868
 869		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 870		 * corresponds to the "connectable" instance flag.
 871		 */
 872		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 873			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 874
 875		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 876			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 877		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 878			flags |= MGMT_ADV_FLAG_DISCOV;
 879
 880		return flags;
 881	}
 882
 883	adv_instance = hci_find_adv_instance(hdev, instance);
 884
 885	/* Return 0 when we got an invalid instance identifier. */
 886	if (!adv_instance)
 887		return 0;
 888
 889	return adv_instance->flags;
 890}
 891
 892static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 893{
 894	/* If privacy is not enabled don't use RPA */
 895	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 896		return false;
 897
 898	/* If basic privacy mode is enabled use RPA */
 899	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 900		return true;
 901
 902	/* If limited privacy mode is enabled don't use RPA if we're
 903	 * both discoverable and bondable.
 904	 */
 905	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 906	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 907		return false;
 908
 909	/* We're neither bondable nor discoverable in the limited
 910	 * privacy mode, therefore use RPA.
 911	 */
 912	return true;
 913}
 914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915void __hci_req_enable_advertising(struct hci_request *req)
 916{
 917	struct hci_dev *hdev = req->hdev;
 918	struct hci_cp_le_set_adv_param cp;
 919	u8 own_addr_type, enable = 0x01;
 920	bool connectable;
 
 921	u32 flags;
 922
 923	if (hci_conn_num(hdev, LE_LINK) > 0)
 
 
 
 
 
 
 
 
 924		return;
 925
 926	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 927		__hci_req_disable_advertising(req);
 928
 929	/* Clear the HCI_LE_ADV bit temporarily so that the
 930	 * hci_update_random_address knows that it's safe to go ahead
 931	 * and write a new random address. The flag will be set back on
 932	 * as soon as the SET_ADV_ENABLE HCI command completes.
 933	 */
 934	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 935
 936	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 937
 938	/* If the "connectable" instance flag was not set, then choose between
 939	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 940	 */
 941	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 942		      mgmt_get_connectable(hdev);
 943
 944	/* Set require_privacy to true only when non-connectable
 945	 * advertising is used. In that case it is fine to use a
 946	 * non-resolvable private address.
 947	 */
 948	if (hci_update_random_address(req, !connectable,
 949				      adv_use_rpa(hdev, flags),
 950				      &own_addr_type) < 0)
 951		return;
 952
 953	memset(&cp, 0, sizeof(cp));
 954	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 955	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
 956
 957	if (connectable)
 958		cp.type = LE_ADV_IND;
 959	else if (get_cur_adv_instance_scan_rsp_len(hdev))
 960		cp.type = LE_ADV_SCAN_IND;
 961	else
 962		cp.type = LE_ADV_NONCONN_IND;
 963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964	cp.own_address_type = own_addr_type;
 965	cp.channel_map = hdev->le_adv_channel_map;
 966
 967	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
 968
 969	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 970}
 971
 972static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
 973{
 974	u8 ad_len = 0;
 975	size_t name_len;
 976
 977	name_len = strlen(hdev->dev_name);
 978	if (name_len > 0) {
 979		size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981		if (name_len > max_len) {
 982			name_len = max_len;
 983			ptr[1] = EIR_NAME_SHORT;
 984		} else
 985			ptr[1] = EIR_NAME_COMPLETE;
 986
 987		ptr[0] = name_len + 1;
 
 
 988
 989		memcpy(ptr + 2, hdev->dev_name, name_len);
 
 990
 991		ad_len += (name_len + 2);
 992		ptr += (name_len + 2);
 
 
 
 
 
 
 
 
 
 993	}
 994
 995	return ad_len;
 996}
 997
 998static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
 999					u8 *ptr)
1000{
1001	struct adv_info *adv_instance;
 
 
1002
1003	adv_instance = hci_find_adv_instance(hdev, instance);
1004	if (!adv_instance)
1005		return 0;
1006
1007	/* TODO: Set the appropriate entries based on advertising instance flags
1008	 * here once flags other than 0 are supported.
1009	 */
1010	memcpy(ptr, adv_instance->scan_rsp_data,
 
 
 
1011	       adv_instance->scan_rsp_len);
1012
1013	return adv_instance->scan_rsp_len;
 
 
 
 
 
1014}
1015
1016void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1017{
1018	struct hci_dev *hdev = req->hdev;
1019	struct hci_cp_le_set_scan_rsp_data cp;
1020	u8 len;
1021
1022	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1023		return;
1024
1025	memset(&cp, 0, sizeof(cp));
 
1026
1027	if (instance)
1028		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1029	else
1030		len = create_default_scan_rsp_data(hdev, cp.data);
1031
1032	if (hdev->scan_rsp_data_len == len &&
1033	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1034		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1037	hdev->scan_rsp_data_len = len;
 
 
1038
1039	cp.length = len;
 
 
 
 
 
 
 
 
 
 
1040
1041	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
 
 
 
 
 
 
1042}
1043
1044static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1045{
1046	struct adv_info *adv_instance = NULL;
1047	u8 ad_len = 0, flags = 0;
1048	u32 instance_flags;
1049
1050	/* Return 0 when the current instance identifier is invalid. */
1051	if (instance) {
1052		adv_instance = hci_find_adv_instance(hdev, instance);
1053		if (!adv_instance)
1054			return 0;
1055	}
1056
1057	instance_flags = get_adv_instance_flags(hdev, instance);
1058
 
 
 
 
 
 
 
 
1059	/* The Add Advertising command allows userspace to set both the general
1060	 * and limited discoverable flags.
1061	 */
1062	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1063		flags |= LE_AD_GENERAL;
1064
1065	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1066		flags |= LE_AD_LIMITED;
1067
 
 
 
1068	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1069		/* If a discovery flag wasn't provided, simply use the global
1070		 * settings.
1071		 */
1072		if (!flags)
1073			flags |= mgmt_get_adv_discov_flags(hdev);
1074
1075		if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1076			flags |= LE_AD_NO_BREDR;
1077
1078		/* If flags would still be empty, then there is no need to
1079		 * include the "Flags" AD field".
1080		 */
1081		if (flags) {
1082			ptr[0] = 0x02;
1083			ptr[1] = EIR_FLAGS;
1084			ptr[2] = flags;
1085
1086			ad_len += 3;
1087			ptr += 3;
1088		}
1089	}
1090
 
1091	if (adv_instance) {
1092		memcpy(ptr, adv_instance->adv_data,
1093		       adv_instance->adv_data_len);
1094		ad_len += adv_instance->adv_data_len;
1095		ptr += adv_instance->adv_data_len;
1096	}
1097
1098	/* Provide Tx Power only if we can provide a valid value for it */
1099	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1100	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1101		ptr[0] = 0x02;
1102		ptr[1] = EIR_TX_POWER;
1103		ptr[2] = (u8)hdev->adv_tx_power;
1104
1105		ad_len += 3;
1106		ptr += 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107	}
1108
1109	return ad_len;
1110}
1111
1112void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1113{
1114	struct hci_dev *hdev = req->hdev;
1115	struct hci_cp_le_set_adv_data cp;
1116	u8 len;
1117
1118	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1119		return;
1120
1121	memset(&cp, 0, sizeof(cp));
 
1122
1123	len = create_instance_adv_data(hdev, instance, cp.data);
1124
1125	/* There's nothing to do if the data hasn't changed */
1126	if (hdev->adv_data_len == len &&
1127	    memcmp(cp.data, hdev->adv_data, len) == 0)
1128		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1131	hdev->adv_data_len = len;
1132
1133	cp.length = len;
1134
1135	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
 
1136}
1137
1138int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1139{
1140	struct hci_request req;
1141
1142	hci_req_init(&req, hdev);
1143	__hci_req_update_adv_data(&req, instance);
1144
1145	return hci_req_run(&req, NULL);
1146}
1147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1149{
1150	BT_DBG("%s status %u", hdev->name, status);
1151}
1152
1153void hci_req_reenable_advertising(struct hci_dev *hdev)
1154{
1155	struct hci_request req;
1156
1157	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1158	    list_empty(&hdev->adv_instances))
1159		return;
1160
1161	hci_req_init(&req, hdev);
1162
1163	if (hdev->cur_adv_instance) {
1164		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1165						true);
1166	} else {
1167		__hci_req_update_adv_data(&req, 0x00);
1168		__hci_req_update_scan_rsp_data(&req, 0x00);
1169		__hci_req_enable_advertising(&req);
 
 
 
 
1170	}
1171
1172	hci_req_run(&req, adv_enable_complete);
1173}
1174
1175static void adv_timeout_expire(struct work_struct *work)
1176{
1177	struct hci_dev *hdev = container_of(work, struct hci_dev,
1178					    adv_instance_expire.work);
1179
1180	struct hci_request req;
1181	u8 instance;
1182
1183	BT_DBG("%s", hdev->name);
1184
1185	hci_dev_lock(hdev);
1186
1187	hdev->adv_instance_timeout = 0;
1188
1189	instance = hdev->cur_adv_instance;
1190	if (instance == 0x00)
1191		goto unlock;
1192
1193	hci_req_init(&req, hdev);
1194
1195	hci_req_clear_adv_instance(hdev, &req, instance, false);
1196
1197	if (list_empty(&hdev->adv_instances))
1198		__hci_req_disable_advertising(&req);
1199
1200	hci_req_run(&req, NULL);
1201
1202unlock:
1203	hci_dev_unlock(hdev);
1204}
1205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1207				    bool force)
1208{
1209	struct hci_dev *hdev = req->hdev;
1210	struct adv_info *adv_instance = NULL;
1211	u16 timeout;
1212
1213	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1214	    list_empty(&hdev->adv_instances))
1215		return -EPERM;
1216
1217	if (hdev->adv_instance_timeout)
1218		return -EBUSY;
1219
1220	adv_instance = hci_find_adv_instance(hdev, instance);
1221	if (!adv_instance)
1222		return -ENOENT;
1223
1224	/* A zero timeout means unlimited advertising. As long as there is
1225	 * only one instance, duration should be ignored. We still set a timeout
1226	 * in case further instances are being added later on.
1227	 *
1228	 * If the remaining lifetime of the instance is more than the duration
1229	 * then the timeout corresponds to the duration, otherwise it will be
1230	 * reduced to the remaining instance lifetime.
1231	 */
1232	if (adv_instance->timeout == 0 ||
1233	    adv_instance->duration <= adv_instance->remaining_time)
1234		timeout = adv_instance->duration;
1235	else
1236		timeout = adv_instance->remaining_time;
1237
1238	/* The remaining time is being reduced unless the instance is being
1239	 * advertised without time limit.
1240	 */
1241	if (adv_instance->timeout)
1242		adv_instance->remaining_time =
1243				adv_instance->remaining_time - timeout;
1244
1245	hdev->adv_instance_timeout = timeout;
1246	queue_delayed_work(hdev->req_workqueue,
 
 
1247			   &hdev->adv_instance_expire,
1248			   msecs_to_jiffies(timeout * 1000));
 
1249
1250	/* If we're just re-scheduling the same instance again then do not
1251	 * execute any HCI commands. This happens when a single instance is
1252	 * being advertised.
1253	 */
1254	if (!force && hdev->cur_adv_instance == instance &&
1255	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1256		return 0;
1257
1258	hdev->cur_adv_instance = instance;
1259	__hci_req_update_adv_data(req, instance);
1260	__hci_req_update_scan_rsp_data(req, instance);
1261	__hci_req_enable_advertising(req);
 
 
 
 
1262
1263	return 0;
1264}
1265
1266static void cancel_adv_timeout(struct hci_dev *hdev)
1267{
1268	if (hdev->adv_instance_timeout) {
1269		hdev->adv_instance_timeout = 0;
1270		cancel_delayed_work(&hdev->adv_instance_expire);
1271	}
1272}
1273
1274/* For a single instance:
1275 * - force == true: The instance will be removed even when its remaining
1276 *   lifetime is not zero.
1277 * - force == false: the instance will be deactivated but kept stored unless
1278 *   the remaining lifetime is zero.
1279 *
1280 * For instance == 0x00:
1281 * - force == true: All instances will be removed regardless of their timeout
1282 *   setting.
1283 * - force == false: Only instances that have a timeout will be removed.
1284 */
1285void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req,
1286				u8 instance, bool force)
 
1287{
1288	struct adv_info *adv_instance, *n, *next_instance = NULL;
1289	int err;
1290	u8 rem_inst;
1291
1292	/* Cancel any timeout concerning the removed instance(s). */
1293	if (!instance || hdev->cur_adv_instance == instance)
1294		cancel_adv_timeout(hdev);
1295
1296	/* Get the next instance to advertise BEFORE we remove
1297	 * the current one. This can be the same instance again
1298	 * if there is only one instance.
1299	 */
1300	if (instance && hdev->cur_adv_instance == instance)
1301		next_instance = hci_get_next_instance(hdev, instance);
1302
1303	if (instance == 0x00) {
1304		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1305					 list) {
1306			if (!(force || adv_instance->timeout))
1307				continue;
1308
1309			rem_inst = adv_instance->instance;
1310			err = hci_remove_adv_instance(hdev, rem_inst);
1311			if (!err)
1312				mgmt_advertising_removed(NULL, hdev, rem_inst);
1313		}
1314	} else {
1315		adv_instance = hci_find_adv_instance(hdev, instance);
1316
1317		if (force || (adv_instance && adv_instance->timeout &&
1318			      !adv_instance->remaining_time)) {
1319			/* Don't advertise a removed instance. */
1320			if (next_instance &&
1321			    next_instance->instance == instance)
1322				next_instance = NULL;
1323
1324			err = hci_remove_adv_instance(hdev, instance);
1325			if (!err)
1326				mgmt_advertising_removed(NULL, hdev, instance);
1327		}
1328	}
1329
1330	if (!req || !hdev_is_powered(hdev) ||
1331	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1332		return;
1333
1334	if (next_instance)
1335		__hci_req_schedule_adv_instance(req, next_instance->instance,
1336						false);
1337}
1338
1339static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1340{
1341	struct hci_dev *hdev = req->hdev;
1342
1343	/* If we're advertising or initiating an LE connection we can't
1344	 * go ahead and change the random address at this time. This is
1345	 * because the eventual initiator address used for the
1346	 * subsequently created connection will be undefined (some
1347	 * controllers use the new address and others the one we had
1348	 * when the operation started).
1349	 *
1350	 * In this kind of scenario skip the update and let the random
1351	 * address be updated at the next cycle.
1352	 */
1353	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1354	    hci_lookup_le_connect(hdev)) {
1355		BT_DBG("Deferring random address update");
1356		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1357		return;
1358	}
1359
1360	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1361}
1362
1363int hci_update_random_address(struct hci_request *req, bool require_privacy,
1364			      bool use_rpa, u8 *own_addr_type)
1365{
1366	struct hci_dev *hdev = req->hdev;
1367	int err;
1368
1369	/* If privacy is enabled use a resolvable private address. If
1370	 * current RPA has expired or there is something else than
1371	 * the current RPA in use, then generate a new one.
1372	 */
1373	if (use_rpa) {
1374		int to;
1375
1376		*own_addr_type = ADDR_LE_DEV_RANDOM;
 
 
 
 
 
 
1377
1378		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1379		    !bacmp(&hdev->random_addr, &hdev->rpa))
1380			return 0;
1381
1382		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1383		if (err < 0) {
1384			BT_ERR("%s failed to generate new RPA", hdev->name);
1385			return err;
1386		}
1387
1388		set_random_addr(req, &hdev->rpa);
1389
1390		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1391		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1392
1393		return 0;
1394	}
1395
1396	/* In case of required privacy without resolvable private address,
1397	 * use an non-resolvable private address. This is useful for active
1398	 * scanning and non-connectable advertising.
1399	 */
1400	if (require_privacy) {
1401		bdaddr_t nrpa;
1402
1403		while (true) {
1404			/* The non-resolvable private address is generated
1405			 * from random six bytes with the two most significant
1406			 * bits cleared.
1407			 */
1408			get_random_bytes(&nrpa, 6);
1409			nrpa.b[5] &= 0x3f;
1410
1411			/* The non-resolvable private address shall not be
1412			 * equal to the public address.
1413			 */
1414			if (bacmp(&hdev->bdaddr, &nrpa))
1415				break;
1416		}
1417
1418		*own_addr_type = ADDR_LE_DEV_RANDOM;
1419		set_random_addr(req, &nrpa);
1420		return 0;
1421	}
1422
1423	/* If forcing static address is in use or there is no public
1424	 * address use the static address as random address (but skip
1425	 * the HCI command if the current random address is already the
1426	 * static one.
1427	 *
1428	 * In case BR/EDR has been disabled on a dual-mode controller
1429	 * and a static address has been configured, then use that
1430	 * address instead of the public BR/EDR address.
1431	 */
1432	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1433	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1434	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1435	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1436		*own_addr_type = ADDR_LE_DEV_RANDOM;
1437		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1438			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1439				    &hdev->static_addr);
1440		return 0;
1441	}
1442
1443	/* Neither privacy nor static address is being used so use a
1444	 * public address.
1445	 */
1446	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1447
1448	return 0;
1449}
1450
1451static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1452{
1453	struct bdaddr_list *b;
1454
1455	list_for_each_entry(b, &hdev->whitelist, list) {
1456		struct hci_conn *conn;
1457
1458		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1459		if (!conn)
1460			return true;
1461
1462		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1463			return true;
1464	}
1465
1466	return false;
1467}
1468
1469void __hci_req_update_scan(struct hci_request *req)
1470{
1471	struct hci_dev *hdev = req->hdev;
1472	u8 scan;
1473
1474	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1475		return;
1476
1477	if (!hdev_is_powered(hdev))
1478		return;
1479
1480	if (mgmt_powering_down(hdev))
1481		return;
1482
 
 
 
1483	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1484	    disconnected_whitelist_entries(hdev))
1485		scan = SCAN_PAGE;
1486	else
1487		scan = SCAN_DISABLED;
1488
1489	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1490		scan |= SCAN_INQUIRY;
1491
1492	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1493	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1494		return;
1495
1496	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1497}
1498
1499static int update_scan(struct hci_request *req, unsigned long opt)
1500{
1501	hci_dev_lock(req->hdev);
1502	__hci_req_update_scan(req);
1503	hci_dev_unlock(req->hdev);
1504	return 0;
1505}
1506
1507static void scan_update_work(struct work_struct *work)
1508{
1509	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1510
1511	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1512}
1513
1514static int connectable_update(struct hci_request *req, unsigned long opt)
1515{
1516	struct hci_dev *hdev = req->hdev;
1517
1518	hci_dev_lock(hdev);
1519
1520	__hci_req_update_scan(req);
1521
1522	/* If BR/EDR is not enabled and we disable advertising as a
1523	 * by-product of disabling connectable, we need to update the
1524	 * advertising flags.
1525	 */
1526	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1527		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1528
1529	/* Update the advertising parameters if necessary */
1530	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1531	    !list_empty(&hdev->adv_instances))
1532		__hci_req_enable_advertising(req);
 
 
 
 
1533
1534	__hci_update_background_scan(req);
1535
1536	hci_dev_unlock(hdev);
1537
1538	return 0;
1539}
1540
1541static void connectable_update_work(struct work_struct *work)
1542{
1543	struct hci_dev *hdev = container_of(work, struct hci_dev,
1544					    connectable_update);
1545	u8 status;
1546
1547	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1548	mgmt_set_connectable_complete(hdev, status);
1549}
1550
1551static u8 get_service_classes(struct hci_dev *hdev)
1552{
1553	struct bt_uuid *uuid;
1554	u8 val = 0;
1555
1556	list_for_each_entry(uuid, &hdev->uuids, list)
1557		val |= uuid->svc_hint;
1558
1559	return val;
1560}
1561
1562void __hci_req_update_class(struct hci_request *req)
1563{
1564	struct hci_dev *hdev = req->hdev;
1565	u8 cod[3];
1566
1567	BT_DBG("%s", hdev->name);
1568
1569	if (!hdev_is_powered(hdev))
1570		return;
1571
1572	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1573		return;
1574
1575	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1576		return;
1577
1578	cod[0] = hdev->minor_class;
1579	cod[1] = hdev->major_class;
1580	cod[2] = get_service_classes(hdev);
1581
1582	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1583		cod[1] |= 0x20;
1584
1585	if (memcmp(cod, hdev->dev_class, 3) == 0)
1586		return;
1587
1588	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1589}
1590
1591static void write_iac(struct hci_request *req)
1592{
1593	struct hci_dev *hdev = req->hdev;
1594	struct hci_cp_write_current_iac_lap cp;
1595
1596	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1597		return;
1598
1599	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1600		/* Limited discoverable mode */
1601		cp.num_iac = min_t(u8, hdev->num_iac, 2);
1602		cp.iac_lap[0] = 0x00;	/* LIAC */
1603		cp.iac_lap[1] = 0x8b;
1604		cp.iac_lap[2] = 0x9e;
1605		cp.iac_lap[3] = 0x33;	/* GIAC */
1606		cp.iac_lap[4] = 0x8b;
1607		cp.iac_lap[5] = 0x9e;
1608	} else {
1609		/* General discoverable mode */
1610		cp.num_iac = 1;
1611		cp.iac_lap[0] = 0x33;	/* GIAC */
1612		cp.iac_lap[1] = 0x8b;
1613		cp.iac_lap[2] = 0x9e;
1614	}
1615
1616	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1617		    (cp.num_iac * 3) + 1, &cp);
1618}
1619
1620static int discoverable_update(struct hci_request *req, unsigned long opt)
1621{
1622	struct hci_dev *hdev = req->hdev;
1623
1624	hci_dev_lock(hdev);
1625
1626	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1627		write_iac(req);
1628		__hci_req_update_scan(req);
1629		__hci_req_update_class(req);
1630	}
1631
1632	/* Advertising instances don't use the global discoverable setting, so
1633	 * only update AD if advertising was enabled using Set Advertising.
1634	 */
1635	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1636		__hci_req_update_adv_data(req, 0x00);
1637
1638		/* Discoverable mode affects the local advertising
1639		 * address in limited privacy mode.
1640		 */
1641		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1642			__hci_req_enable_advertising(req);
 
 
 
 
1643	}
1644
1645	hci_dev_unlock(hdev);
1646
1647	return 0;
1648}
1649
1650static void discoverable_update_work(struct work_struct *work)
1651{
1652	struct hci_dev *hdev = container_of(work, struct hci_dev,
1653					    discoverable_update);
1654	u8 status;
1655
1656	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1657	mgmt_set_discoverable_complete(hdev, status);
1658}
1659
1660void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1661		      u8 reason)
1662{
1663	switch (conn->state) {
1664	case BT_CONNECTED:
1665	case BT_CONFIG:
1666		if (conn->type == AMP_LINK) {
1667			struct hci_cp_disconn_phy_link cp;
1668
1669			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1670			cp.reason = reason;
1671			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1672				    &cp);
1673		} else {
1674			struct hci_cp_disconnect dc;
1675
1676			dc.handle = cpu_to_le16(conn->handle);
1677			dc.reason = reason;
1678			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1679		}
1680
1681		conn->state = BT_DISCONN;
1682
1683		break;
1684	case BT_CONNECT:
1685		if (conn->type == LE_LINK) {
1686			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1687				break;
1688			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1689				    0, NULL);
1690		} else if (conn->type == ACL_LINK) {
1691			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1692				break;
1693			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1694				    6, &conn->dst);
1695		}
1696		break;
1697	case BT_CONNECT2:
1698		if (conn->type == ACL_LINK) {
1699			struct hci_cp_reject_conn_req rej;
1700
1701			bacpy(&rej.bdaddr, &conn->dst);
1702			rej.reason = reason;
1703
1704			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1705				    sizeof(rej), &rej);
1706		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1707			struct hci_cp_reject_sync_conn_req rej;
1708
1709			bacpy(&rej.bdaddr, &conn->dst);
1710
1711			/* SCO rejection has its own limited set of
1712			 * allowed error values (0x0D-0x0F) which isn't
1713			 * compatible with most values passed to this
1714			 * function. To be safe hard-code one of the
1715			 * values that's suitable for SCO.
1716			 */
1717			rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;
1718
1719			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1720				    sizeof(rej), &rej);
1721		}
1722		break;
1723	default:
1724		conn->state = BT_CLOSED;
1725		break;
1726	}
1727}
1728
1729static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1730{
1731	if (status)
1732		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1733}
1734
1735int hci_abort_conn(struct hci_conn *conn, u8 reason)
1736{
1737	struct hci_request req;
1738	int err;
1739
1740	hci_req_init(&req, conn->hdev);
1741
1742	__hci_abort_conn(&req, conn, reason);
1743
1744	err = hci_req_run(&req, abort_conn_complete);
1745	if (err && err != -ENODATA) {
1746		BT_ERR("Failed to run HCI request: err %d", err);
1747		return err;
1748	}
1749
1750	return 0;
1751}
1752
1753static int update_bg_scan(struct hci_request *req, unsigned long opt)
1754{
1755	hci_dev_lock(req->hdev);
1756	__hci_update_background_scan(req);
1757	hci_dev_unlock(req->hdev);
1758	return 0;
1759}
1760
1761static void bg_scan_update(struct work_struct *work)
1762{
1763	struct hci_dev *hdev = container_of(work, struct hci_dev,
1764					    bg_scan_update);
1765	struct hci_conn *conn;
1766	u8 status;
1767	int err;
1768
1769	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1770	if (!err)
1771		return;
1772
1773	hci_dev_lock(hdev);
1774
1775	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1776	if (conn)
1777		hci_le_conn_failed(conn, status);
1778
1779	hci_dev_unlock(hdev);
1780}
1781
1782static int le_scan_disable(struct hci_request *req, unsigned long opt)
1783{
1784	hci_req_add_le_scan_disable(req);
1785	return 0;
1786}
1787
1788static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1789{
1790	u8 length = opt;
1791	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1792	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1793	struct hci_cp_inquiry cp;
1794
1795	BT_DBG("%s", req->hdev->name);
1796
1797	hci_dev_lock(req->hdev);
1798	hci_inquiry_cache_flush(req->hdev);
1799	hci_dev_unlock(req->hdev);
1800
1801	memset(&cp, 0, sizeof(cp));
1802
1803	if (req->hdev->discovery.limited)
1804		memcpy(&cp.lap, liac, sizeof(cp.lap));
1805	else
1806		memcpy(&cp.lap, giac, sizeof(cp.lap));
1807
1808	cp.length = length;
1809
1810	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1811
1812	return 0;
1813}
1814
1815static void le_scan_disable_work(struct work_struct *work)
1816{
1817	struct hci_dev *hdev = container_of(work, struct hci_dev,
1818					    le_scan_disable.work);
1819	u8 status;
1820
1821	BT_DBG("%s", hdev->name);
1822
1823	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1824		return;
1825
1826	cancel_delayed_work(&hdev->le_scan_restart);
1827
1828	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1829	if (status) {
1830		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
 
1831		return;
1832	}
1833
1834	hdev->discovery.scan_start = 0;
1835
1836	/* If we were running LE only scan, change discovery state. If
1837	 * we were running both LE and BR/EDR inquiry simultaneously,
1838	 * and BR/EDR inquiry is already finished, stop discovery,
1839	 * otherwise BR/EDR inquiry will stop discovery when finished.
1840	 * If we will resolve remote device name, do not change
1841	 * discovery state.
1842	 */
1843
1844	if (hdev->discovery.type == DISCOV_TYPE_LE)
1845		goto discov_stopped;
1846
1847	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1848		return;
1849
1850	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1851		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1852		    hdev->discovery.state != DISCOVERY_RESOLVING)
1853			goto discov_stopped;
1854
1855		return;
1856	}
1857
1858	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1859		     HCI_CMD_TIMEOUT, &status);
1860	if (status) {
1861		BT_ERR("Inquiry failed: status 0x%02x", status);
1862		goto discov_stopped;
1863	}
1864
1865	return;
1866
1867discov_stopped:
1868	hci_dev_lock(hdev);
1869	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1870	hci_dev_unlock(hdev);
1871}
1872
1873static int le_scan_restart(struct hci_request *req, unsigned long opt)
1874{
1875	struct hci_dev *hdev = req->hdev;
1876	struct hci_cp_le_set_scan_enable cp;
1877
1878	/* If controller is not scanning we are done. */
1879	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1880		return 0;
1881
1882	hci_req_add_le_scan_disable(req);
 
 
 
1883
1884	memset(&cp, 0, sizeof(cp));
1885	cp.enable = LE_SCAN_ENABLE;
1886	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1887	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888
1889	return 0;
1890}
1891
1892static void le_scan_restart_work(struct work_struct *work)
1893{
1894	struct hci_dev *hdev = container_of(work, struct hci_dev,
1895					    le_scan_restart.work);
1896	unsigned long timeout, duration, scan_start, now;
1897	u8 status;
1898
1899	BT_DBG("%s", hdev->name);
1900
1901	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1902	if (status) {
1903		BT_ERR("Failed to restart LE scan: status %d", status);
 
1904		return;
1905	}
1906
1907	hci_dev_lock(hdev);
1908
1909	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1910	    !hdev->discovery.scan_start)
1911		goto unlock;
1912
1913	/* When the scan was started, hdev->le_scan_disable has been queued
1914	 * after duration from scan_start. During scan restart this job
1915	 * has been canceled, and we need to queue it again after proper
1916	 * timeout, to make sure that scan does not run indefinitely.
1917	 */
1918	duration = hdev->discovery.scan_duration;
1919	scan_start = hdev->discovery.scan_start;
1920	now = jiffies;
1921	if (now - scan_start <= duration) {
1922		int elapsed;
1923
1924		if (now >= scan_start)
1925			elapsed = now - scan_start;
1926		else
1927			elapsed = ULONG_MAX - scan_start + now;
1928
1929		timeout = duration - elapsed;
1930	} else {
1931		timeout = 0;
1932	}
1933
1934	queue_delayed_work(hdev->req_workqueue,
1935			   &hdev->le_scan_disable, timeout);
1936
1937unlock:
1938	hci_dev_unlock(hdev);
1939}
1940
1941static void disable_advertising(struct hci_request *req)
1942{
1943	u8 enable = 0x00;
1944
1945	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1946}
1947
1948static int active_scan(struct hci_request *req, unsigned long opt)
1949{
1950	uint16_t interval = opt;
1951	struct hci_dev *hdev = req->hdev;
1952	struct hci_cp_le_set_scan_param param_cp;
1953	struct hci_cp_le_set_scan_enable enable_cp;
1954	u8 own_addr_type;
 
 
 
 
1955	int err;
1956
1957	BT_DBG("%s", hdev->name);
1958
1959	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1960		hci_dev_lock(hdev);
1961
1962		/* Don't let discovery abort an outgoing connection attempt
1963		 * that's using directed advertising.
1964		 */
1965		if (hci_lookup_le_connect(hdev)) {
1966			hci_dev_unlock(hdev);
1967			return -EBUSY;
1968		}
1969
1970		cancel_adv_timeout(hdev);
1971		hci_dev_unlock(hdev);
1972
1973		disable_advertising(req);
1974	}
1975
1976	/* If controller is scanning, it means the background scanning is
1977	 * running. Thus, we should temporarily stop it in order to set the
1978	 * discovery scanning parameters.
1979	 */
1980	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1981		hci_req_add_le_scan_disable(req);
1982
1983	/* All active scans will be done with either a resolvable private
1984	 * address (when privacy feature has been enabled) or non-resolvable
1985	 * private address.
1986	 */
1987	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
1988					&own_addr_type);
1989	if (err < 0)
1990		own_addr_type = ADDR_LE_DEV_PUBLIC;
1991
1992	memset(&param_cp, 0, sizeof(param_cp));
1993	param_cp.type = LE_SCAN_ACTIVE;
1994	param_cp.interval = cpu_to_le16(interval);
1995	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
1996	param_cp.own_address_type = own_addr_type;
1997
1998	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
1999		    &param_cp);
2000
2001	memset(&enable_cp, 0, sizeof(enable_cp));
2002	enable_cp.enable = LE_SCAN_ENABLE;
2003	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2004
2005	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2006		    &enable_cp);
2007
2008	return 0;
2009}
2010
2011static int interleaved_discov(struct hci_request *req, unsigned long opt)
2012{
2013	int err;
2014
2015	BT_DBG("%s", req->hdev->name);
2016
2017	err = active_scan(req, opt);
2018	if (err)
2019		return err;
2020
2021	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2022}
2023
2024static void start_discovery(struct hci_dev *hdev, u8 *status)
2025{
2026	unsigned long timeout;
2027
2028	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2029
2030	switch (hdev->discovery.type) {
2031	case DISCOV_TYPE_BREDR:
2032		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2033			hci_req_sync(hdev, bredr_inquiry,
2034				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2035				     status);
2036		return;
2037	case DISCOV_TYPE_INTERLEAVED:
2038		/* When running simultaneous discovery, the LE scanning time
2039		 * should occupy the whole discovery time sine BR/EDR inquiry
2040		 * and LE scanning are scheduled by the controller.
2041		 *
2042		 * For interleaving discovery in comparison, BR/EDR inquiry
2043		 * and LE scanning are done sequentially with separate
2044		 * timeouts.
2045		 */
2046		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2047			     &hdev->quirks)) {
2048			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2049			/* During simultaneous discovery, we double LE scan
2050			 * interval. We must leave some time for the controller
2051			 * to do BR/EDR inquiry.
2052			 */
2053			hci_req_sync(hdev, interleaved_discov,
2054				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2055				     status);
2056			break;
2057		}
2058
2059		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2060		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2061			     HCI_CMD_TIMEOUT, status);
2062		break;
2063	case DISCOV_TYPE_LE:
2064		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2065		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2066			     HCI_CMD_TIMEOUT, status);
2067		break;
2068	default:
2069		*status = HCI_ERROR_UNSPECIFIED;
2070		return;
2071	}
2072
2073	if (*status)
2074		return;
2075
2076	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2077
2078	/* When service discovery is used and the controller has a
2079	 * strict duplicate filter, it is important to remember the
2080	 * start and duration of the scan. This is required for
2081	 * restarting scanning during the discovery phase.
2082	 */
2083	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2084		     hdev->discovery.result_filtering) {
2085		hdev->discovery.scan_start = jiffies;
2086		hdev->discovery.scan_duration = timeout;
2087	}
2088
2089	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2090			   timeout);
2091}
2092
2093bool hci_req_stop_discovery(struct hci_request *req)
2094{
2095	struct hci_dev *hdev = req->hdev;
2096	struct discovery_state *d = &hdev->discovery;
2097	struct hci_cp_remote_name_req_cancel cp;
2098	struct inquiry_entry *e;
2099	bool ret = false;
2100
2101	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2102
2103	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2104		if (test_bit(HCI_INQUIRY, &hdev->flags))
2105			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2106
2107		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2108			cancel_delayed_work(&hdev->le_scan_disable);
2109			hci_req_add_le_scan_disable(req);
2110		}
2111
2112		ret = true;
2113	} else {
2114		/* Passive scanning */
2115		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2116			hci_req_add_le_scan_disable(req);
2117			ret = true;
2118		}
2119	}
2120
2121	/* No further actions needed for LE-only discovery */
2122	if (d->type == DISCOV_TYPE_LE)
2123		return ret;
2124
2125	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2126		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2127						     NAME_PENDING);
2128		if (!e)
2129			return ret;
2130
2131		bacpy(&cp.bdaddr, &e->data.bdaddr);
2132		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2133			    &cp);
2134		ret = true;
2135	}
2136
2137	return ret;
2138}
2139
2140static int stop_discovery(struct hci_request *req, unsigned long opt)
2141{
2142	hci_dev_lock(req->hdev);
2143	hci_req_stop_discovery(req);
2144	hci_dev_unlock(req->hdev);
2145
2146	return 0;
2147}
2148
2149static void discov_update(struct work_struct *work)
2150{
2151	struct hci_dev *hdev = container_of(work, struct hci_dev,
2152					    discov_update);
2153	u8 status = 0;
2154
2155	switch (hdev->discovery.state) {
2156	case DISCOVERY_STARTING:
2157		start_discovery(hdev, &status);
2158		mgmt_start_discovery_complete(hdev, status);
2159		if (status)
2160			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2161		else
2162			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2163		break;
2164	case DISCOVERY_STOPPING:
2165		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2166		mgmt_stop_discovery_complete(hdev, status);
2167		if (!status)
2168			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2169		break;
2170	case DISCOVERY_STOPPED:
2171	default:
2172		return;
2173	}
2174}
2175
2176static void discov_off(struct work_struct *work)
2177{
2178	struct hci_dev *hdev = container_of(work, struct hci_dev,
2179					    discov_off.work);
2180
2181	BT_DBG("%s", hdev->name);
2182
2183	hci_dev_lock(hdev);
2184
2185	/* When discoverable timeout triggers, then just make sure
2186	 * the limited discoverable flag is cleared. Even in the case
2187	 * of a timeout triggered from general discoverable, it is
2188	 * safe to unconditionally clear the flag.
2189	 */
2190	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2191	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2192	hdev->discov_timeout = 0;
2193
2194	hci_dev_unlock(hdev);
2195
2196	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2197	mgmt_new_settings(hdev);
2198}
2199
2200static int powered_update_hci(struct hci_request *req, unsigned long opt)
2201{
2202	struct hci_dev *hdev = req->hdev;
2203	u8 link_sec;
2204
2205	hci_dev_lock(hdev);
2206
2207	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2208	    !lmp_host_ssp_capable(hdev)) {
2209		u8 mode = 0x01;
2210
2211		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2212
2213		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2214			u8 support = 0x01;
2215
2216			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2217				    sizeof(support), &support);
2218		}
2219	}
2220
2221	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2222	    lmp_bredr_capable(hdev)) {
2223		struct hci_cp_write_le_host_supported cp;
2224
2225		cp.le = 0x01;
2226		cp.simul = 0x00;
2227
2228		/* Check first if we already have the right
2229		 * host state (host features set)
2230		 */
2231		if (cp.le != lmp_host_le_capable(hdev) ||
2232		    cp.simul != lmp_host_le_br_capable(hdev))
2233			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2234				    sizeof(cp), &cp);
2235	}
2236
2237	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2238		/* Make sure the controller has a good default for
2239		 * advertising data. This also applies to the case
2240		 * where BR/EDR was toggled during the AUTO_OFF phase.
2241		 */
2242		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2243		    list_empty(&hdev->adv_instances)) {
2244			__hci_req_update_adv_data(req, 0x00);
2245			__hci_req_update_scan_rsp_data(req, 0x00);
2246
2247			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2248				__hci_req_enable_advertising(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249		} else if (!list_empty(&hdev->adv_instances)) {
2250			struct adv_info *adv_instance;
2251
2252			adv_instance = list_first_entry(&hdev->adv_instances,
2253							struct adv_info, list);
2254			__hci_req_schedule_adv_instance(req,
2255							adv_instance->instance,
2256							true);
2257		}
2258	}
2259
2260	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2261	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2262		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2263			    sizeof(link_sec), &link_sec);
2264
2265	if (lmp_bredr_capable(hdev)) {
2266		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2267			__hci_req_write_fast_connectable(req, true);
2268		else
2269			__hci_req_write_fast_connectable(req, false);
2270		__hci_req_update_scan(req);
2271		__hci_req_update_class(req);
2272		__hci_req_update_name(req);
2273		__hci_req_update_eir(req);
2274	}
2275
2276	hci_dev_unlock(hdev);
2277	return 0;
2278}
2279
2280int __hci_req_hci_power_on(struct hci_dev *hdev)
2281{
2282	/* Register the available SMP channels (BR/EDR and LE) only when
2283	 * successfully powering on the controller. This late
2284	 * registration is required so that LE SMP can clearly decide if
2285	 * the public address or static address is used.
2286	 */
2287	smp_register(hdev);
2288
2289	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2290			      NULL);
2291}
2292
2293void hci_request_setup(struct hci_dev *hdev)
2294{
2295	INIT_WORK(&hdev->discov_update, discov_update);
2296	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2297	INIT_WORK(&hdev->scan_update, scan_update_work);
2298	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2299	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2300	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2301	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2302	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2303	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2304}
2305
2306void hci_request_cancel_all(struct hci_dev *hdev)
2307{
2308	hci_req_sync_cancel(hdev, ENODEV);
2309
2310	cancel_work_sync(&hdev->discov_update);
2311	cancel_work_sync(&hdev->bg_scan_update);
2312	cancel_work_sync(&hdev->scan_update);
2313	cancel_work_sync(&hdev->connectable_update);
2314	cancel_work_sync(&hdev->discoverable_update);
2315	cancel_delayed_work_sync(&hdev->discov_off);
2316	cancel_delayed_work_sync(&hdev->le_scan_disable);
2317	cancel_delayed_work_sync(&hdev->le_scan_restart);
2318
2319	if (hdev->adv_instance_timeout) {
2320		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2321		hdev->adv_instance_timeout = 0;
2322	}
2323}
v5.9
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49bool hci_req_status_pend(struct hci_dev *hdev)
  50{
  51	return hdev->req_status == HCI_REQ_PEND;
  52}
  53
  54static int req_run(struct hci_request *req, hci_req_complete_t complete,
  55		   hci_req_complete_skb_t complete_skb)
  56{
  57	struct hci_dev *hdev = req->hdev;
  58	struct sk_buff *skb;
  59	unsigned long flags;
  60
  61	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  62
  63	/* If an error occurred during request building, remove all HCI
  64	 * commands queued on the HCI request queue.
  65	 */
  66	if (req->err) {
  67		skb_queue_purge(&req->cmd_q);
  68		return req->err;
  69	}
  70
  71	/* Do not allow empty requests */
  72	if (skb_queue_empty(&req->cmd_q))
  73		return -ENODATA;
  74
  75	skb = skb_peek_tail(&req->cmd_q);
  76	if (complete) {
  77		bt_cb(skb)->hci.req_complete = complete;
  78	} else if (complete_skb) {
  79		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  80		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  81	}
  82
  83	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  84	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  85	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  86
  87	queue_work(hdev->workqueue, &hdev->cmd_work);
  88
  89	return 0;
  90}
  91
  92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  93{
  94	return req_run(req, complete, NULL);
  95}
  96
  97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  98{
  99	return req_run(req, NULL, complete);
 100}
 101
 102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 103				  struct sk_buff *skb)
 104{
 105	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		if (skb)
 111			hdev->req_skb = skb_get(skb);
 112		wake_up_interruptible(&hdev->req_wait_q);
 113	}
 114}
 115
 116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 117{
 118	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 119
 120	if (hdev->req_status == HCI_REQ_PEND) {
 121		hdev->req_result = err;
 122		hdev->req_status = HCI_REQ_CANCELED;
 123		wake_up_interruptible(&hdev->req_wait_q);
 124	}
 125}
 126
 127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 128				  const void *param, u8 event, u32 timeout)
 129{
 
 130	struct hci_request req;
 131	struct sk_buff *skb;
 132	int err = 0;
 133
 134	BT_DBG("%s", hdev->name);
 135
 136	hci_req_init(&req, hdev);
 137
 138	hci_req_add_ev(&req, opcode, plen, param, event);
 139
 140	hdev->req_status = HCI_REQ_PEND;
 141
 
 
 
 142	err = hci_req_run_skb(&req, hci_req_sync_complete);
 143	if (err < 0)
 
 
 144		return ERR_PTR(err);
 
 
 
 145
 146	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 147			hdev->req_status != HCI_REQ_PEND, timeout);
 148
 149	if (err == -ERESTARTSYS)
 150		return ERR_PTR(-EINTR);
 151
 152	switch (hdev->req_status) {
 153	case HCI_REQ_DONE:
 154		err = -bt_to_errno(hdev->req_result);
 155		break;
 156
 157	case HCI_REQ_CANCELED:
 158		err = -hdev->req_result;
 159		break;
 160
 161	default:
 162		err = -ETIMEDOUT;
 163		break;
 164	}
 165
 166	hdev->req_status = hdev->req_result = 0;
 167	skb = hdev->req_skb;
 168	hdev->req_skb = NULL;
 169
 170	BT_DBG("%s end: err %d", hdev->name, err);
 171
 172	if (err < 0) {
 173		kfree_skb(skb);
 174		return ERR_PTR(err);
 175	}
 176
 177	if (!skb)
 178		return ERR_PTR(-ENODATA);
 179
 180	return skb;
 181}
 182EXPORT_SYMBOL(__hci_cmd_sync_ev);
 183
 184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 185			       const void *param, u32 timeout)
 186{
 187	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 188}
 189EXPORT_SYMBOL(__hci_cmd_sync);
 190
 191/* Execute request and wait for completion. */
 192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 193						     unsigned long opt),
 194		   unsigned long opt, u32 timeout, u8 *hci_status)
 195{
 196	struct hci_request req;
 
 197	int err = 0;
 198
 199	BT_DBG("%s start", hdev->name);
 200
 201	hci_req_init(&req, hdev);
 202
 203	hdev->req_status = HCI_REQ_PEND;
 204
 205	err = func(&req, opt);
 206	if (err) {
 207		if (hci_status)
 208			*hci_status = HCI_ERROR_UNSPECIFIED;
 209		return err;
 210	}
 211
 
 
 
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 
 
 
 216		/* ENODATA means the HCI request command queue is empty.
 217		 * This can happen when a request with conditionals doesn't
 218		 * trigger any commands to be sent. This is normal behavior
 219		 * and should not trigger an error return.
 220		 */
 221		if (err == -ENODATA) {
 222			if (hci_status)
 223				*hci_status = 0;
 224			return 0;
 225		}
 226
 227		if (hci_status)
 228			*hci_status = HCI_ERROR_UNSPECIFIED;
 229
 230		return err;
 231	}
 232
 233	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 234			hdev->req_status != HCI_REQ_PEND, timeout);
 235
 236	if (err == -ERESTARTSYS)
 
 
 237		return -EINTR;
 238
 239	switch (hdev->req_status) {
 240	case HCI_REQ_DONE:
 241		err = -bt_to_errno(hdev->req_result);
 242		if (hci_status)
 243			*hci_status = hdev->req_result;
 244		break;
 245
 246	case HCI_REQ_CANCELED:
 247		err = -hdev->req_result;
 248		if (hci_status)
 249			*hci_status = HCI_ERROR_UNSPECIFIED;
 250		break;
 251
 252	default:
 253		err = -ETIMEDOUT;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257	}
 258
 259	kfree_skb(hdev->req_skb);
 260	hdev->req_skb = NULL;
 261	hdev->req_status = hdev->req_result = 0;
 262
 263	BT_DBG("%s end: err %d", hdev->name, err);
 264
 265	return err;
 266}
 267
 268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 269						  unsigned long opt),
 270		 unsigned long opt, u32 timeout, u8 *hci_status)
 271{
 272	int ret;
 273
 274	if (!test_bit(HCI_UP, &hdev->flags))
 275		return -ENETDOWN;
 276
 277	/* Serialize all requests */
 278	hci_req_sync_lock(hdev);
 279	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 280	hci_req_sync_unlock(hdev);
 281
 282	return ret;
 283}
 284
 285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 286				const void *param)
 287{
 288	int len = HCI_COMMAND_HDR_SIZE + plen;
 289	struct hci_command_hdr *hdr;
 290	struct sk_buff *skb;
 291
 292	skb = bt_skb_alloc(len, GFP_ATOMIC);
 293	if (!skb)
 294		return NULL;
 295
 296	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 297	hdr->opcode = cpu_to_le16(opcode);
 298	hdr->plen   = plen;
 299
 300	if (plen)
 301		skb_put_data(skb, param, plen);
 302
 303	BT_DBG("skb len %d", skb->len);
 304
 305	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 306	hci_skb_opcode(skb) = opcode;
 307
 308	return skb;
 309}
 310
 311/* Queue a command to an asynchronous HCI request */
 312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 313		    const void *param, u8 event)
 314{
 315	struct hci_dev *hdev = req->hdev;
 316	struct sk_buff *skb;
 317
 318	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 319
 320	/* If an error occurred during request building, there is no point in
 321	 * queueing the HCI command. We can simply return.
 322	 */
 323	if (req->err)
 324		return;
 325
 326	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 327	if (!skb) {
 328		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 329			   opcode);
 330		req->err = -ENOMEM;
 331		return;
 332	}
 333
 334	if (skb_queue_empty(&req->cmd_q))
 335		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 336
 337	bt_cb(skb)->hci.req_event = event;
 338
 339	skb_queue_tail(&req->cmd_q, skb);
 340}
 341
 342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 343		 const void *param)
 344{
 345	hci_req_add_ev(req, opcode, plen, param, 0);
 346}
 347
 348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 349{
 350	struct hci_dev *hdev = req->hdev;
 351	struct hci_cp_write_page_scan_activity acp;
 352	u8 type;
 353
 354	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 355		return;
 356
 357	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 358		return;
 359
 360	if (enable) {
 361		type = PAGE_SCAN_TYPE_INTERLACED;
 362
 363		/* 160 msec page scan interval */
 364		acp.interval = cpu_to_le16(0x0100);
 365	} else {
 366		type = hdev->def_page_scan_type;
 367		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
 
 
 368	}
 369
 370	acp.window = cpu_to_le16(hdev->def_page_scan_window);
 371
 372	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 373	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 374		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 375			    sizeof(acp), &acp);
 376
 377	if (hdev->page_scan_type != type)
 378		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 379}
 380
 381/* This function controls the background scanning based on hdev->pend_le_conns
 382 * list. If there are pending LE connection we start the background scanning,
 383 * otherwise we stop it.
 384 *
 385 * This function requires the caller holds hdev->lock.
 386 */
 387static void __hci_update_background_scan(struct hci_request *req)
 388{
 389	struct hci_dev *hdev = req->hdev;
 390
 391	if (!test_bit(HCI_UP, &hdev->flags) ||
 392	    test_bit(HCI_INIT, &hdev->flags) ||
 393	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 394	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 395	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 396	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 397		return;
 398
 399	/* No point in doing scanning if LE support hasn't been enabled */
 400	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 401		return;
 402
 403	/* If discovery is active don't interfere with it */
 404	if (hdev->discovery.state != DISCOVERY_STOPPED)
 405		return;
 406
 407	/* Reset RSSI and UUID filters when starting background scanning
 408	 * since these filters are meant for service discovery only.
 409	 *
 410	 * The Start Discovery and Start Service Discovery operations
 411	 * ensure to set proper values for RSSI threshold and UUID
 412	 * filter list. So it is safe to just reset them here.
 413	 */
 414	hci_discovery_filter_clear(hdev);
 415
 416	BT_DBG("%s ADV monitoring is %s", hdev->name,
 417	       hci_is_adv_monitoring(hdev) ? "on" : "off");
 418
 419	if (list_empty(&hdev->pend_le_conns) &&
 420	    list_empty(&hdev->pend_le_reports) &&
 421	    !hci_is_adv_monitoring(hdev)) {
 422		/* If there is no pending LE connections or devices
 423		 * to be scanned for or no ADV monitors, we should stop the
 424		 * background scanning.
 425		 */
 426
 427		/* If controller is not scanning we are done. */
 428		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 429			return;
 430
 431		hci_req_add_le_scan_disable(req, false);
 432
 433		BT_DBG("%s stopping background scanning", hdev->name);
 434	} else {
 435		/* If there is at least one pending LE connection, we should
 436		 * keep the background scan running.
 437		 */
 438
 439		/* If controller is connecting, we should not start scanning
 440		 * since some controllers are not able to scan and connect at
 441		 * the same time.
 442		 */
 443		if (hci_lookup_le_connect(hdev))
 444			return;
 445
 446		/* If controller is currently scanning, we stop it to ensure we
 447		 * don't miss any advertising (due to duplicates filter).
 448		 */
 449		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 450			hci_req_add_le_scan_disable(req, false);
 451
 452		hci_req_add_le_passive_scan(req);
 453
 454		BT_DBG("%s starting background scanning", hdev->name);
 455	}
 456}
 457
 458void __hci_req_update_name(struct hci_request *req)
 459{
 460	struct hci_dev *hdev = req->hdev;
 461	struct hci_cp_write_local_name cp;
 462
 463	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 464
 465	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 466}
 467
 468#define PNP_INFO_SVCLASS_ID		0x1200
 469
 470static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 471{
 472	u8 *ptr = data, *uuids_start = NULL;
 473	struct bt_uuid *uuid;
 474
 475	if (len < 4)
 476		return ptr;
 477
 478	list_for_each_entry(uuid, &hdev->uuids, list) {
 479		u16 uuid16;
 480
 481		if (uuid->size != 16)
 482			continue;
 483
 484		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 485		if (uuid16 < 0x1100)
 486			continue;
 487
 488		if (uuid16 == PNP_INFO_SVCLASS_ID)
 489			continue;
 490
 491		if (!uuids_start) {
 492			uuids_start = ptr;
 493			uuids_start[0] = 1;
 494			uuids_start[1] = EIR_UUID16_ALL;
 495			ptr += 2;
 496		}
 497
 498		/* Stop if not enough space to put next UUID */
 499		if ((ptr - data) + sizeof(u16) > len) {
 500			uuids_start[1] = EIR_UUID16_SOME;
 501			break;
 502		}
 503
 504		*ptr++ = (uuid16 & 0x00ff);
 505		*ptr++ = (uuid16 & 0xff00) >> 8;
 506		uuids_start[0] += sizeof(uuid16);
 507	}
 508
 509	return ptr;
 510}
 511
 512static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 513{
 514	u8 *ptr = data, *uuids_start = NULL;
 515	struct bt_uuid *uuid;
 516
 517	if (len < 6)
 518		return ptr;
 519
 520	list_for_each_entry(uuid, &hdev->uuids, list) {
 521		if (uuid->size != 32)
 522			continue;
 523
 524		if (!uuids_start) {
 525			uuids_start = ptr;
 526			uuids_start[0] = 1;
 527			uuids_start[1] = EIR_UUID32_ALL;
 528			ptr += 2;
 529		}
 530
 531		/* Stop if not enough space to put next UUID */
 532		if ((ptr - data) + sizeof(u32) > len) {
 533			uuids_start[1] = EIR_UUID32_SOME;
 534			break;
 535		}
 536
 537		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 538		ptr += sizeof(u32);
 539		uuids_start[0] += sizeof(u32);
 540	}
 541
 542	return ptr;
 543}
 544
 545static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 546{
 547	u8 *ptr = data, *uuids_start = NULL;
 548	struct bt_uuid *uuid;
 549
 550	if (len < 18)
 551		return ptr;
 552
 553	list_for_each_entry(uuid, &hdev->uuids, list) {
 554		if (uuid->size != 128)
 555			continue;
 556
 557		if (!uuids_start) {
 558			uuids_start = ptr;
 559			uuids_start[0] = 1;
 560			uuids_start[1] = EIR_UUID128_ALL;
 561			ptr += 2;
 562		}
 563
 564		/* Stop if not enough space to put next UUID */
 565		if ((ptr - data) + 16 > len) {
 566			uuids_start[1] = EIR_UUID128_SOME;
 567			break;
 568		}
 569
 570		memcpy(ptr, uuid->uuid, 16);
 571		ptr += 16;
 572		uuids_start[0] += 16;
 573	}
 574
 575	return ptr;
 576}
 577
 578static void create_eir(struct hci_dev *hdev, u8 *data)
 579{
 580	u8 *ptr = data;
 581	size_t name_len;
 582
 583	name_len = strlen(hdev->dev_name);
 584
 585	if (name_len > 0) {
 586		/* EIR Data type */
 587		if (name_len > 48) {
 588			name_len = 48;
 589			ptr[1] = EIR_NAME_SHORT;
 590		} else
 591			ptr[1] = EIR_NAME_COMPLETE;
 592
 593		/* EIR Data length */
 594		ptr[0] = name_len + 1;
 595
 596		memcpy(ptr + 2, hdev->dev_name, name_len);
 597
 598		ptr += (name_len + 2);
 599	}
 600
 601	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 602		ptr[0] = 2;
 603		ptr[1] = EIR_TX_POWER;
 604		ptr[2] = (u8) hdev->inq_tx_power;
 605
 606		ptr += 3;
 607	}
 608
 609	if (hdev->devid_source > 0) {
 610		ptr[0] = 9;
 611		ptr[1] = EIR_DEVICE_ID;
 612
 613		put_unaligned_le16(hdev->devid_source, ptr + 2);
 614		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 615		put_unaligned_le16(hdev->devid_product, ptr + 6);
 616		put_unaligned_le16(hdev->devid_version, ptr + 8);
 617
 618		ptr += 10;
 619	}
 620
 621	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 622	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 623	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624}
 625
 626void __hci_req_update_eir(struct hci_request *req)
 627{
 628	struct hci_dev *hdev = req->hdev;
 629	struct hci_cp_write_eir cp;
 630
 631	if (!hdev_is_powered(hdev))
 632		return;
 633
 634	if (!lmp_ext_inq_capable(hdev))
 635		return;
 636
 637	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 638		return;
 639
 640	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 641		return;
 642
 643	memset(&cp, 0, sizeof(cp));
 644
 645	create_eir(hdev, cp.data);
 646
 647	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 648		return;
 649
 650	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 651
 652	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 653}
 654
 655void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
 656{
 657	struct hci_dev *hdev = req->hdev;
 658
 659	if (hdev->scanning_paused) {
 660		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 661		return;
 662	}
 663
 664	if (use_ext_scan(hdev)) {
 665		struct hci_cp_le_set_ext_scan_enable cp;
 666
 667		memset(&cp, 0, sizeof(cp));
 668		cp.enable = LE_SCAN_DISABLE;
 669		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
 670			    &cp);
 671	} else {
 672		struct hci_cp_le_set_scan_enable cp;
 673
 674		memset(&cp, 0, sizeof(cp));
 675		cp.enable = LE_SCAN_DISABLE;
 676		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 677	}
 678
 679	/* Disable address resolution */
 680	if (use_ll_privacy(hdev) &&
 681	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
 682	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
 683		__u8 enable = 0x00;
 684
 685		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
 686	}
 687}
 688
 689static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
 690				u8 bdaddr_type)
 691{
 692	struct hci_cp_le_del_from_white_list cp;
 693
 694	cp.bdaddr_type = bdaddr_type;
 695	bacpy(&cp.bdaddr, bdaddr);
 696
 697	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
 698		   cp.bdaddr_type);
 699	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
 700
 701	if (use_ll_privacy(req->hdev)) {
 702		struct smp_irk *irk;
 703
 704		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
 705		if (irk) {
 706			struct hci_cp_le_del_from_resolv_list cp;
 707
 708			cp.bdaddr_type = bdaddr_type;
 709			bacpy(&cp.bdaddr, bdaddr);
 710
 711			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
 712				    sizeof(cp), &cp);
 713		}
 714	}
 715}
 716
 717/* Adds connection to white list if needed. On error, returns -1. */
 718static int add_to_white_list(struct hci_request *req,
 719			     struct hci_conn_params *params, u8 *num_entries,
 720			     bool allow_rpa)
 721{
 722	struct hci_cp_le_add_to_white_list cp;
 723	struct hci_dev *hdev = req->hdev;
 724
 725	/* Already in white list */
 726	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
 727				   params->addr_type))
 728		return 0;
 729
 730	/* Select filter policy to accept all advertising */
 731	if (*num_entries >= hdev->le_white_list_size)
 732		return -1;
 733
 734	/* White list can not be used with RPAs */
 735	if (!allow_rpa && !use_ll_privacy(hdev) &&
 736	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
 737		return -1;
 738	}
 739
 740	/* During suspend, only wakeable devices can be in whitelist */
 741	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
 742						   params->current_flags))
 743		return 0;
 744
 745	*num_entries += 1;
 746	cp.bdaddr_type = params->addr_type;
 747	bacpy(&cp.bdaddr, &params->addr);
 748
 749	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
 750		   cp.bdaddr_type);
 751	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 752
 753	if (use_ll_privacy(hdev)) {
 754		struct smp_irk *irk;
 755
 756		irk = hci_find_irk_by_addr(hdev, &params->addr,
 757					   params->addr_type);
 758		if (irk) {
 759			struct hci_cp_le_add_to_resolv_list cp;
 760
 761			cp.bdaddr_type = params->addr_type;
 762			bacpy(&cp.bdaddr, &params->addr);
 763			memcpy(cp.peer_irk, irk->val, 16);
 764
 765			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
 766				memcpy(cp.local_irk, hdev->irk, 16);
 767			else
 768				memset(cp.local_irk, 0, 16);
 769
 770			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
 771				    sizeof(cp), &cp);
 772		}
 773	}
 774
 775	return 0;
 776}
 777
 778static u8 update_white_list(struct hci_request *req)
 779{
 780	struct hci_dev *hdev = req->hdev;
 781	struct hci_conn_params *params;
 782	struct bdaddr_list *b;
 783	u8 num_entries = 0;
 784	bool pend_conn, pend_report;
 785	/* We allow whitelisting even with RPAs in suspend. In the worst case,
 786	 * we won't be able to wake from devices that use the privacy1.2
 787	 * features. Additionally, once we support privacy1.2 and IRK
 788	 * offloading, we can update this to also check for those conditions.
 789	 */
 790	bool allow_rpa = hdev->suspended;
 791
 792	/* Go through the current white list programmed into the
 793	 * controller one by one and check if that address is still
 794	 * in the list of pending connections or list of devices to
 795	 * report. If not present in either list, then queue the
 796	 * command to remove it from the controller.
 797	 */
 798	list_for_each_entry(b, &hdev->le_white_list, list) {
 799		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
 800						      &b->bdaddr,
 801						      b->bdaddr_type);
 802		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
 803							&b->bdaddr,
 804							b->bdaddr_type);
 
 
 
 
 
 805
 806		/* If the device is not likely to connect or report,
 807		 * remove it from the whitelist.
 808		 */
 809		if (!pend_conn && !pend_report) {
 810			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
 811			continue;
 812		}
 813
 814		/* White list can not be used with RPAs */
 815		if (!allow_rpa && !use_ll_privacy(hdev) &&
 816		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 817			return 0x00;
 818		}
 819
 820		num_entries++;
 821	}
 822
 823	/* Since all no longer valid white list entries have been
 824	 * removed, walk through the list of pending connections
 825	 * and ensure that any new device gets programmed into
 826	 * the controller.
 827	 *
 828	 * If the list of the devices is larger than the list of
 829	 * available white list entries in the controller, then
 830	 * just abort and return filer policy value to not use the
 831	 * white list.
 832	 */
 833	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 834		if (add_to_white_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
 835			return 0x00;
 
 
 
 
 
 
 
 
 
 
 836	}
 837
 838	/* After adding all new pending connections, walk through
 839	 * the list of pending reports and also add these to the
 840	 * white list if there is still space. Abort if space runs out.
 841	 */
 842	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 843		if (add_to_white_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
 844			return 0x00;
 
 
 
 
 
 
 
 
 
 
 845	}
 846
 847	/* Once the controller offloading of advertisement monitor is in place,
 848	 * the if condition should include the support of MSFT extension
 849	 * support. If suspend is ongoing, whitelist should be the default to
 850	 * prevent waking by random advertisements.
 851	 */
 852	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended)
 853		return 0x00;
 854
 855	/* Select filter policy to use white list */
 856	return 0x01;
 857}
 858
 859static bool scan_use_rpa(struct hci_dev *hdev)
 860{
 861	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 862}
 863
 864static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
 865			       u16 window, u8 own_addr_type, u8 filter_policy,
 866			       bool addr_resolv)
 867{
 868	struct hci_dev *hdev = req->hdev;
 869
 870	if (hdev->scanning_paused) {
 871		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 872		return;
 873	}
 874
 875	if (use_ll_privacy(hdev) &&
 876	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
 877	    addr_resolv) {
 878		u8 enable = 0x01;
 879
 880		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
 881	}
 882
 883	/* Use ext scanning if set ext scan param and ext scan enable is
 884	 * supported
 885	 */
 886	if (use_ext_scan(hdev)) {
 887		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
 888		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
 889		struct hci_cp_le_scan_phy_params *phy_params;
 890		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
 891		u32 plen;
 892
 893		ext_param_cp = (void *)data;
 894		phy_params = (void *)ext_param_cp->data;
 895
 896		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
 897		ext_param_cp->own_addr_type = own_addr_type;
 898		ext_param_cp->filter_policy = filter_policy;
 899
 900		plen = sizeof(*ext_param_cp);
 901
 902		if (scan_1m(hdev) || scan_2m(hdev)) {
 903			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
 904
 905			memset(phy_params, 0, sizeof(*phy_params));
 906			phy_params->type = type;
 907			phy_params->interval = cpu_to_le16(interval);
 908			phy_params->window = cpu_to_le16(window);
 909
 910			plen += sizeof(*phy_params);
 911			phy_params++;
 912		}
 913
 914		if (scan_coded(hdev)) {
 915			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
 916
 917			memset(phy_params, 0, sizeof(*phy_params));
 918			phy_params->type = type;
 919			phy_params->interval = cpu_to_le16(interval);
 920			phy_params->window = cpu_to_le16(window);
 921
 922			plen += sizeof(*phy_params);
 923			phy_params++;
 924		}
 925
 926		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 927			    plen, ext_param_cp);
 928
 929		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
 930		ext_enable_cp.enable = LE_SCAN_ENABLE;
 931		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 932
 933		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 934			    sizeof(ext_enable_cp), &ext_enable_cp);
 935	} else {
 936		struct hci_cp_le_set_scan_param param_cp;
 937		struct hci_cp_le_set_scan_enable enable_cp;
 938
 939		memset(&param_cp, 0, sizeof(param_cp));
 940		param_cp.type = type;
 941		param_cp.interval = cpu_to_le16(interval);
 942		param_cp.window = cpu_to_le16(window);
 943		param_cp.own_address_type = own_addr_type;
 944		param_cp.filter_policy = filter_policy;
 945		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 946			    &param_cp);
 947
 948		memset(&enable_cp, 0, sizeof(enable_cp));
 949		enable_cp.enable = LE_SCAN_ENABLE;
 950		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 951		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 952			    &enable_cp);
 953	}
 954}
 955
 956/* Returns true if an le connection is in the scanning state */
 957static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
 958{
 959	struct hci_conn_hash *h = &hdev->conn_hash;
 960	struct hci_conn  *c;
 961
 962	rcu_read_lock();
 963
 964	list_for_each_entry_rcu(c, &h->list, list) {
 965		if (c->type == LE_LINK && c->state == BT_CONNECT &&
 966		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
 967			rcu_read_unlock();
 968			return true;
 969		}
 970	}
 971
 972	rcu_read_unlock();
 973
 974	return false;
 975}
 976
 977/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 978 * controller based address resolution to be able to reconfigure
 979 * resolving list.
 980 */
 981void hci_req_add_le_passive_scan(struct hci_request *req)
 982{
 
 
 983	struct hci_dev *hdev = req->hdev;
 984	u8 own_addr_type;
 985	u8 filter_policy;
 986	u16 window, interval;
 987	/* Background scanning should run with address resolution */
 988	bool addr_resolv = true;
 989
 990	if (hdev->scanning_paused) {
 991		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 992		return;
 993	}
 994
 995	/* Set require_privacy to false since no SCAN_REQ are send
 996	 * during passive scanning. Not using an non-resolvable address
 997	 * here is important so that peer devices using direct
 998	 * advertising with our address will be correctly reported
 999	 * by the controller.
1000	 */
1001	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1002				      &own_addr_type))
1003		return;
1004
1005	/* Adding or removing entries from the white list must
1006	 * happen before enabling scanning. The controller does
1007	 * not allow white list modification while scanning.
1008	 */
1009	filter_policy = update_white_list(req);
1010
1011	/* When the controller is using random resolvable addresses and
1012	 * with that having LE privacy enabled, then controllers with
1013	 * Extended Scanner Filter Policies support can now enable support
1014	 * for handling directed advertising.
1015	 *
1016	 * So instead of using filter polices 0x00 (no whitelist)
1017	 * and 0x01 (whitelist enabled) use the new filter policies
1018	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
1019	 */
1020	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1021	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1022		filter_policy |= 0x02;
1023
1024	if (hdev->suspended) {
1025		window = hdev->le_scan_window_suspend;
1026		interval = hdev->le_scan_int_suspend;
1027	} else if (hci_is_le_conn_scanning(hdev)) {
1028		window = hdev->le_scan_window_connect;
1029		interval = hdev->le_scan_int_connect;
1030	} else {
1031		window = hdev->le_scan_window;
1032		interval = hdev->le_scan_interval;
1033	}
1034
1035	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
1036	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1037			   own_addr_type, filter_policy, addr_resolv);
1038}
1039
1040static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
1041{
1042	struct adv_info *adv_instance;
1043
1044	/* Instance 0x00 always set local name */
1045	if (instance == 0x00)
1046		return 1;
1047
1048	adv_instance = hci_find_adv_instance(hdev, instance);
1049	if (!adv_instance)
1050		return 0;
1051
1052	/* TODO: Take into account the "appearance" and "local-name" flags here.
1053	 * These are currently being ignored as they are not supported.
1054	 */
1055	return adv_instance->scan_rsp_len;
1056}
1057
1058static void hci_req_clear_event_filter(struct hci_request *req)
1059{
1060	struct hci_cp_set_event_filter f;
1061
1062	memset(&f, 0, sizeof(f));
1063	f.flt_type = HCI_FLT_CLEAR_ALL;
1064	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1065
1066	/* Update page scan state (since we may have modified it when setting
1067	 * the event filter).
1068	 */
1069	__hci_req_update_scan(req);
1070}
1071
1072static void hci_req_set_event_filter(struct hci_request *req)
1073{
1074	struct bdaddr_list_with_flags *b;
1075	struct hci_cp_set_event_filter f;
1076	struct hci_dev *hdev = req->hdev;
1077	u8 scan = SCAN_DISABLED;
1078
1079	/* Always clear event filter when starting */
1080	hci_req_clear_event_filter(req);
1081
1082	list_for_each_entry(b, &hdev->whitelist, list) {
1083		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1084					b->current_flags))
1085			continue;
1086
1087		memset(&f, 0, sizeof(f));
1088		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1089		f.flt_type = HCI_FLT_CONN_SETUP;
1090		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1091		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1092
1093		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1094		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1095		scan = SCAN_PAGE;
1096	}
1097
1098	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1099}
1100
1101static void hci_req_config_le_suspend_scan(struct hci_request *req)
1102{
1103	/* Before changing params disable scan if enabled */
1104	if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
1105		hci_req_add_le_scan_disable(req, false);
1106
1107	/* Configure params and enable scanning */
1108	hci_req_add_le_passive_scan(req);
1109
1110	/* Block suspend notifier on response */
1111	set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1112}
1113
1114static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1115{
1116	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1117		   status);
1118	if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1119	    test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1120		wake_up(&hdev->suspend_wait_q);
1121	}
1122}
1123
1124/* Call with hci_dev_lock */
1125void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1126{
1127	int old_state;
1128	struct hci_conn *conn;
1129	struct hci_request req;
1130	u8 page_scan;
1131	int disconnect_counter;
1132
1133	if (next == hdev->suspend_state) {
1134		bt_dev_dbg(hdev, "Same state before and after: %d", next);
1135		goto done;
1136	}
1137
1138	hdev->suspend_state = next;
1139	hci_req_init(&req, hdev);
1140
1141	if (next == BT_SUSPEND_DISCONNECT) {
1142		/* Mark device as suspended */
1143		hdev->suspended = true;
1144
1145		/* Pause discovery if not already stopped */
1146		old_state = hdev->discovery.state;
1147		if (old_state != DISCOVERY_STOPPED) {
1148			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1149			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1150			queue_work(hdev->req_workqueue, &hdev->discov_update);
1151		}
1152
1153		hdev->discovery_paused = true;
1154		hdev->discovery_old_state = old_state;
1155
1156		/* Stop advertising */
1157		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1158		if (old_state) {
1159			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1160			cancel_delayed_work(&hdev->discov_off);
1161			queue_delayed_work(hdev->req_workqueue,
1162					   &hdev->discov_off, 0);
1163		}
1164
1165		hdev->advertising_paused = true;
1166		hdev->advertising_old_state = old_state;
1167		/* Disable page scan */
1168		page_scan = SCAN_DISABLED;
1169		hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1170
1171		/* Disable LE passive scan if enabled */
1172		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1173			hci_req_add_le_scan_disable(&req, false);
1174
1175		/* Mark task needing completion */
1176		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1177
1178		/* Prevent disconnects from causing scanning to be re-enabled */
1179		hdev->scanning_paused = true;
1180
1181		/* Run commands before disconnecting */
1182		hci_req_run(&req, suspend_req_complete);
1183
1184		disconnect_counter = 0;
1185		/* Soft disconnect everything (power off) */
1186		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1187			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1188			disconnect_counter++;
1189		}
1190
1191		if (disconnect_counter > 0) {
1192			bt_dev_dbg(hdev,
1193				   "Had %d disconnects. Will wait on them",
1194				   disconnect_counter);
1195			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1196		}
1197	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1198		/* Unpause to take care of updating scanning params */
1199		hdev->scanning_paused = false;
1200		/* Enable event filter for paired devices */
1201		hci_req_set_event_filter(&req);
1202		/* Enable passive scan at lower duty cycle */
1203		hci_req_config_le_suspend_scan(&req);
1204		/* Pause scan changes again. */
1205		hdev->scanning_paused = true;
1206		hci_req_run(&req, suspend_req_complete);
1207	} else {
1208		hdev->suspended = false;
1209		hdev->scanning_paused = false;
1210
1211		hci_req_clear_event_filter(&req);
1212		/* Reset passive/background scanning to normal */
1213		hci_req_config_le_suspend_scan(&req);
1214
1215		/* Unpause advertising */
1216		hdev->advertising_paused = false;
1217		if (hdev->advertising_old_state) {
1218			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1219				hdev->suspend_tasks);
1220			hci_dev_set_flag(hdev, HCI_ADVERTISING);
1221			queue_work(hdev->req_workqueue,
1222				   &hdev->discoverable_update);
1223			hdev->advertising_old_state = 0;
1224		}
1225
1226		/* Unpause discovery */
1227		hdev->discovery_paused = false;
1228		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1229		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
1230			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1231			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1232			queue_work(hdev->req_workqueue, &hdev->discov_update);
1233		}
1234
1235		hci_req_run(&req, suspend_req_complete);
1236	}
1237
1238	hdev->suspend_state = next;
1239
1240done:
1241	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1242	wake_up(&hdev->suspend_wait_q);
1243}
1244
1245static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1246{
1247	u8 instance = hdev->cur_adv_instance;
1248	struct adv_info *adv_instance;
1249
1250	/* Instance 0x00 always set local name */
1251	if (instance == 0x00)
1252		return 1;
1253
1254	adv_instance = hci_find_adv_instance(hdev, instance);
1255	if (!adv_instance)
1256		return 0;
1257
1258	/* TODO: Take into account the "appearance" and "local-name" flags here.
1259	 * These are currently being ignored as they are not supported.
1260	 */
1261	return adv_instance->scan_rsp_len;
1262}
1263
1264void __hci_req_disable_advertising(struct hci_request *req)
1265{
1266	if (ext_adv_capable(req->hdev)) {
1267		__hci_req_disable_ext_adv_instance(req, 0x00);
1268
1269	} else {
1270		u8 enable = 0x00;
1271
1272		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1273	}
1274}
1275
1276static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1277{
1278	u32 flags;
1279	struct adv_info *adv_instance;
1280
1281	if (instance == 0x00) {
1282		/* Instance 0 always manages the "Tx Power" and "Flags"
1283		 * fields
1284		 */
1285		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1286
1287		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1288		 * corresponds to the "connectable" instance flag.
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1291			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1292
1293		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1294			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1295		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1296			flags |= MGMT_ADV_FLAG_DISCOV;
1297
1298		return flags;
1299	}
1300
1301	adv_instance = hci_find_adv_instance(hdev, instance);
1302
1303	/* Return 0 when we got an invalid instance identifier. */
1304	if (!adv_instance)
1305		return 0;
1306
1307	return adv_instance->flags;
1308}
1309
1310static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1311{
1312	/* If privacy is not enabled don't use RPA */
1313	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1314		return false;
1315
1316	/* If basic privacy mode is enabled use RPA */
1317	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1318		return true;
1319
1320	/* If limited privacy mode is enabled don't use RPA if we're
1321	 * both discoverable and bondable.
1322	 */
1323	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1324	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1325		return false;
1326
1327	/* We're neither bondable nor discoverable in the limited
1328	 * privacy mode, therefore use RPA.
1329	 */
1330	return true;
1331}
1332
1333static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1334{
1335	/* If there is no connection we are OK to advertise. */
1336	if (hci_conn_num(hdev, LE_LINK) == 0)
1337		return true;
1338
1339	/* Check le_states if there is any connection in slave role. */
1340	if (hdev->conn_hash.le_num_slave > 0) {
1341		/* Slave connection state and non connectable mode bit 20. */
1342		if (!connectable && !(hdev->le_states[2] & 0x10))
1343			return false;
1344
1345		/* Slave connection state and connectable mode bit 38
1346		 * and scannable bit 21.
1347		 */
1348		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1349				    !(hdev->le_states[2] & 0x20)))
1350			return false;
1351	}
1352
1353	/* Check le_states if there is any connection in master role. */
1354	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1355		/* Master connection state and non connectable mode bit 18. */
1356		if (!connectable && !(hdev->le_states[2] & 0x02))
1357			return false;
1358
1359		/* Master connection state and connectable mode bit 35 and
1360		 * scannable 19.
1361		 */
1362		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1363				    !(hdev->le_states[2] & 0x08)))
1364			return false;
1365	}
1366
1367	return true;
1368}
1369
1370void __hci_req_enable_advertising(struct hci_request *req)
1371{
1372	struct hci_dev *hdev = req->hdev;
1373	struct hci_cp_le_set_adv_param cp;
1374	u8 own_addr_type, enable = 0x01;
1375	bool connectable;
1376	u16 adv_min_interval, adv_max_interval;
1377	u32 flags;
1378
1379	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1380
1381	/* If the "connectable" instance flag was not set, then choose between
1382	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1383	 */
1384	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1385		      mgmt_get_connectable(hdev);
1386
1387	if (!is_advertising_allowed(hdev, connectable))
1388		return;
1389
1390	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1391		__hci_req_disable_advertising(req);
1392
1393	/* Clear the HCI_LE_ADV bit temporarily so that the
1394	 * hci_update_random_address knows that it's safe to go ahead
1395	 * and write a new random address. The flag will be set back on
1396	 * as soon as the SET_ADV_ENABLE HCI command completes.
1397	 */
1398	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1399
 
 
 
 
 
 
 
 
1400	/* Set require_privacy to true only when non-connectable
1401	 * advertising is used. In that case it is fine to use a
1402	 * non-resolvable private address.
1403	 */
1404	if (hci_update_random_address(req, !connectable,
1405				      adv_use_rpa(hdev, flags),
1406				      &own_addr_type) < 0)
1407		return;
1408
1409	memset(&cp, 0, sizeof(cp));
 
 
1410
1411	if (connectable) {
1412		cp.type = LE_ADV_IND;
 
 
 
 
1413
1414		adv_min_interval = hdev->le_adv_min_interval;
1415		adv_max_interval = hdev->le_adv_max_interval;
1416	} else {
1417		if (get_cur_adv_instance_scan_rsp_len(hdev))
1418			cp.type = LE_ADV_SCAN_IND;
1419		else
1420			cp.type = LE_ADV_NONCONN_IND;
1421
1422		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1423		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1424			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1425			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1426		} else {
1427			adv_min_interval = hdev->le_adv_min_interval;
1428			adv_max_interval = hdev->le_adv_max_interval;
1429		}
1430	}
1431
1432	cp.min_interval = cpu_to_le16(adv_min_interval);
1433	cp.max_interval = cpu_to_le16(adv_max_interval);
1434	cp.own_address_type = own_addr_type;
1435	cp.channel_map = hdev->le_adv_channel_map;
1436
1437	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1438
1439	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1440}
1441
1442u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1443{
1444	size_t short_len;
1445	size_t complete_len;
1446
1447	/* no space left for name (+ NULL + type + len) */
1448	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1449		return ad_len;
1450
1451	/* use complete name if present and fits */
1452	complete_len = strlen(hdev->dev_name);
1453	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1454		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1455				       hdev->dev_name, complete_len + 1);
1456
1457	/* use short name if present */
1458	short_len = strlen(hdev->short_name);
1459	if (short_len)
1460		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1461				       hdev->short_name, short_len + 1);
1462
1463	/* use shortened full name if present, we already know that name
1464	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1465	 */
1466	if (complete_len) {
1467		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1468
1469		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1470		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
 
 
 
1471
1472		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1473				       sizeof(name));
1474	}
1475
1476	return ad_len;
1477}
1478
1479static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1480{
1481	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1482}
1483
1484static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1485{
1486	u8 scan_rsp_len = 0;
1487
1488	if (hdev->appearance) {
1489		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1490	}
1491
1492	return append_local_name(hdev, ptr, scan_rsp_len);
1493}
1494
1495static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1496					u8 *ptr)
1497{
1498	struct adv_info *adv_instance;
1499	u32 instance_flags;
1500	u8 scan_rsp_len = 0;
1501
1502	adv_instance = hci_find_adv_instance(hdev, instance);
1503	if (!adv_instance)
1504		return 0;
1505
1506	instance_flags = adv_instance->flags;
1507
1508	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1509		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1510	}
1511
1512	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1513	       adv_instance->scan_rsp_len);
1514
1515	scan_rsp_len += adv_instance->scan_rsp_len;
1516
1517	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1518		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1519
1520	return scan_rsp_len;
1521}
1522
1523void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1524{
1525	struct hci_dev *hdev = req->hdev;
 
1526	u8 len;
1527
1528	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1529		return;
1530
1531	if (ext_adv_capable(hdev)) {
1532		struct hci_cp_le_set_ext_scan_rsp_data cp;
1533
1534		memset(&cp, 0, sizeof(cp));
 
 
 
1535
1536		if (instance)
1537			len = create_instance_scan_rsp_data(hdev, instance,
1538							    cp.data);
1539		else
1540			len = create_default_scan_rsp_data(hdev, cp.data);
1541
1542		if (hdev->scan_rsp_data_len == len &&
1543		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1544			return;
1545
1546		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1547		hdev->scan_rsp_data_len = len;
1548
1549		cp.handle = instance;
1550		cp.length = len;
1551		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1552		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1553
1554		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1555			    &cp);
1556	} else {
1557		struct hci_cp_le_set_scan_rsp_data cp;
1558
1559		memset(&cp, 0, sizeof(cp));
1560
1561		if (instance)
1562			len = create_instance_scan_rsp_data(hdev, instance,
1563							    cp.data);
1564		else
1565			len = create_default_scan_rsp_data(hdev, cp.data);
1566
1567		if (hdev->scan_rsp_data_len == len &&
1568		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1569			return;
1570
1571		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1572		hdev->scan_rsp_data_len = len;
1573
1574		cp.length = len;
1575
1576		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1577	}
1578}
1579
1580static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1581{
1582	struct adv_info *adv_instance = NULL;
1583	u8 ad_len = 0, flags = 0;
1584	u32 instance_flags;
1585
1586	/* Return 0 when the current instance identifier is invalid. */
1587	if (instance) {
1588		adv_instance = hci_find_adv_instance(hdev, instance);
1589		if (!adv_instance)
1590			return 0;
1591	}
1592
1593	instance_flags = get_adv_instance_flags(hdev, instance);
1594
1595	/* If instance already has the flags set skip adding it once
1596	 * again.
1597	 */
1598	if (adv_instance && eir_get_data(adv_instance->adv_data,
1599					 adv_instance->adv_data_len, EIR_FLAGS,
1600					 NULL))
1601		goto skip_flags;
1602
1603	/* The Add Advertising command allows userspace to set both the general
1604	 * and limited discoverable flags.
1605	 */
1606	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1607		flags |= LE_AD_GENERAL;
1608
1609	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1610		flags |= LE_AD_LIMITED;
1611
1612	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1613		flags |= LE_AD_NO_BREDR;
1614
1615	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1616		/* If a discovery flag wasn't provided, simply use the global
1617		 * settings.
1618		 */
1619		if (!flags)
1620			flags |= mgmt_get_adv_discov_flags(hdev);
1621
 
 
 
1622		/* If flags would still be empty, then there is no need to
1623		 * include the "Flags" AD field".
1624		 */
1625		if (flags) {
1626			ptr[0] = 0x02;
1627			ptr[1] = EIR_FLAGS;
1628			ptr[2] = flags;
1629
1630			ad_len += 3;
1631			ptr += 3;
1632		}
1633	}
1634
1635skip_flags:
1636	if (adv_instance) {
1637		memcpy(ptr, adv_instance->adv_data,
1638		       adv_instance->adv_data_len);
1639		ad_len += adv_instance->adv_data_len;
1640		ptr += adv_instance->adv_data_len;
1641	}
1642
1643	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1644		s8 adv_tx_power;
 
 
 
 
1645
1646		if (ext_adv_capable(hdev)) {
1647			if (adv_instance)
1648				adv_tx_power = adv_instance->tx_power;
1649			else
1650				adv_tx_power = hdev->adv_tx_power;
1651		} else {
1652			adv_tx_power = hdev->adv_tx_power;
1653		}
1654
1655		/* Provide Tx Power only if we can provide a valid value for it */
1656		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1657			ptr[0] = 0x02;
1658			ptr[1] = EIR_TX_POWER;
1659			ptr[2] = (u8)adv_tx_power;
1660
1661			ad_len += 3;
1662			ptr += 3;
1663		}
1664	}
1665
1666	return ad_len;
1667}
1668
1669void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1670{
1671	struct hci_dev *hdev = req->hdev;
 
1672	u8 len;
1673
1674	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1675		return;
1676
1677	if (ext_adv_capable(hdev)) {
1678		struct hci_cp_le_set_ext_adv_data cp;
1679
1680		memset(&cp, 0, sizeof(cp));
1681
1682		len = create_instance_adv_data(hdev, instance, cp.data);
1683
1684		/* There's nothing to do if the data hasn't changed */
1685		if (hdev->adv_data_len == len &&
1686		    memcmp(cp.data, hdev->adv_data, len) == 0)
1687			return;
1688
1689		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1690		hdev->adv_data_len = len;
1691
1692		cp.length = len;
1693		cp.handle = instance;
1694		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696
1697		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1698	} else {
1699		struct hci_cp_le_set_adv_data cp;
1700
1701		memset(&cp, 0, sizeof(cp));
1702
1703		len = create_instance_adv_data(hdev, instance, cp.data);
1704
1705		/* There's nothing to do if the data hasn't changed */
1706		if (hdev->adv_data_len == len &&
1707		    memcmp(cp.data, hdev->adv_data, len) == 0)
1708			return;
1709
1710		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1711		hdev->adv_data_len = len;
1712
1713		cp.length = len;
1714
1715		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1716	}
1717}
1718
1719int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1720{
1721	struct hci_request req;
1722
1723	hci_req_init(&req, hdev);
1724	__hci_req_update_adv_data(&req, instance);
1725
1726	return hci_req_run(&req, NULL);
1727}
1728
1729static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1730					    u16 opcode)
1731{
1732	BT_DBG("%s status %u", hdev->name, status);
1733}
1734
1735void hci_req_disable_address_resolution(struct hci_dev *hdev)
1736{
1737	struct hci_request req;
1738	__u8 enable = 0x00;
1739
1740	if (!use_ll_privacy(hdev) &&
1741	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1742		return;
1743
1744	hci_req_init(&req, hdev);
1745
1746	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1747
1748	hci_req_run(&req, enable_addr_resolution_complete);
1749}
1750
1751static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1752{
1753	BT_DBG("%s status %u", hdev->name, status);
1754}
1755
1756void hci_req_reenable_advertising(struct hci_dev *hdev)
1757{
1758	struct hci_request req;
1759
1760	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1761	    list_empty(&hdev->adv_instances))
1762		return;
1763
1764	hci_req_init(&req, hdev);
1765
1766	if (hdev->cur_adv_instance) {
1767		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1768						true);
1769	} else {
1770		if (ext_adv_capable(hdev)) {
1771			__hci_req_start_ext_adv(&req, 0x00);
1772		} else {
1773			__hci_req_update_adv_data(&req, 0x00);
1774			__hci_req_update_scan_rsp_data(&req, 0x00);
1775			__hci_req_enable_advertising(&req);
1776		}
1777	}
1778
1779	hci_req_run(&req, adv_enable_complete);
1780}
1781
1782static void adv_timeout_expire(struct work_struct *work)
1783{
1784	struct hci_dev *hdev = container_of(work, struct hci_dev,
1785					    adv_instance_expire.work);
1786
1787	struct hci_request req;
1788	u8 instance;
1789
1790	BT_DBG("%s", hdev->name);
1791
1792	hci_dev_lock(hdev);
1793
1794	hdev->adv_instance_timeout = 0;
1795
1796	instance = hdev->cur_adv_instance;
1797	if (instance == 0x00)
1798		goto unlock;
1799
1800	hci_req_init(&req, hdev);
1801
1802	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1803
1804	if (list_empty(&hdev->adv_instances))
1805		__hci_req_disable_advertising(&req);
1806
1807	hci_req_run(&req, NULL);
1808
1809unlock:
1810	hci_dev_unlock(hdev);
1811}
1812
1813int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1814			   bool use_rpa, struct adv_info *adv_instance,
1815			   u8 *own_addr_type, bdaddr_t *rand_addr)
1816{
1817	int err;
1818
1819	bacpy(rand_addr, BDADDR_ANY);
1820
1821	/* If privacy is enabled use a resolvable private address. If
1822	 * current RPA has expired then generate a new one.
1823	 */
1824	if (use_rpa) {
1825		int to;
1826
1827		*own_addr_type = ADDR_LE_DEV_RANDOM;
1828
1829		if (adv_instance) {
1830			if (!adv_instance->rpa_expired &&
1831			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1832				return 0;
1833
1834			adv_instance->rpa_expired = false;
1835		} else {
1836			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1837			    !bacmp(&hdev->random_addr, &hdev->rpa))
1838				return 0;
1839		}
1840
1841		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1842		if (err < 0) {
1843			bt_dev_err(hdev, "failed to generate new RPA");
1844			return err;
1845		}
1846
1847		bacpy(rand_addr, &hdev->rpa);
1848
1849		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1850		if (adv_instance)
1851			queue_delayed_work(hdev->workqueue,
1852					   &adv_instance->rpa_expired_cb, to);
1853		else
1854			queue_delayed_work(hdev->workqueue,
1855					   &hdev->rpa_expired, to);
1856
1857		return 0;
1858	}
1859
1860	/* In case of required privacy without resolvable private address,
1861	 * use an non-resolvable private address. This is useful for
1862	 * non-connectable advertising.
1863	 */
1864	if (require_privacy) {
1865		bdaddr_t nrpa;
1866
1867		while (true) {
1868			/* The non-resolvable private address is generated
1869			 * from random six bytes with the two most significant
1870			 * bits cleared.
1871			 */
1872			get_random_bytes(&nrpa, 6);
1873			nrpa.b[5] &= 0x3f;
1874
1875			/* The non-resolvable private address shall not be
1876			 * equal to the public address.
1877			 */
1878			if (bacmp(&hdev->bdaddr, &nrpa))
1879				break;
1880		}
1881
1882		*own_addr_type = ADDR_LE_DEV_RANDOM;
1883		bacpy(rand_addr, &nrpa);
1884
1885		return 0;
1886	}
1887
1888	/* No privacy so use a public address. */
1889	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1890
1891	return 0;
1892}
1893
1894void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1895{
1896	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1897}
1898
1899int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1900{
1901	struct hci_cp_le_set_ext_adv_params cp;
1902	struct hci_dev *hdev = req->hdev;
1903	bool connectable;
1904	u32 flags;
1905	bdaddr_t random_addr;
1906	u8 own_addr_type;
1907	int err;
1908	struct adv_info *adv_instance;
1909	bool secondary_adv;
1910
1911	if (instance > 0) {
1912		adv_instance = hci_find_adv_instance(hdev, instance);
1913		if (!adv_instance)
1914			return -EINVAL;
1915	} else {
1916		adv_instance = NULL;
1917	}
1918
1919	flags = get_adv_instance_flags(hdev, instance);
1920
1921	/* If the "connectable" instance flag was not set, then choose between
1922	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1923	 */
1924	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1925		      mgmt_get_connectable(hdev);
1926
1927	if (!is_advertising_allowed(hdev, connectable))
1928		return -EPERM;
1929
1930	/* Set require_privacy to true only when non-connectable
1931	 * advertising is used. In that case it is fine to use a
1932	 * non-resolvable private address.
1933	 */
1934	err = hci_get_random_address(hdev, !connectable,
1935				     adv_use_rpa(hdev, flags), adv_instance,
1936				     &own_addr_type, &random_addr);
1937	if (err < 0)
1938		return err;
1939
1940	memset(&cp, 0, sizeof(cp));
1941
1942	/* In ext adv set param interval is 3 octets */
1943	hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1944	hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1945
1946	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1947
1948	if (connectable) {
1949		if (secondary_adv)
1950			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1951		else
1952			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1953	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1954		if (secondary_adv)
1955			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1956		else
1957			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1958	} else {
1959		if (secondary_adv)
1960			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1961		else
1962			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1963	}
1964
1965	cp.own_addr_type = own_addr_type;
1966	cp.channel_map = hdev->le_adv_channel_map;
1967	cp.tx_power = 127;
1968	cp.handle = instance;
1969
1970	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1971		cp.primary_phy = HCI_ADV_PHY_1M;
1972		cp.secondary_phy = HCI_ADV_PHY_2M;
1973	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1974		cp.primary_phy = HCI_ADV_PHY_CODED;
1975		cp.secondary_phy = HCI_ADV_PHY_CODED;
1976	} else {
1977		/* In all other cases use 1M */
1978		cp.primary_phy = HCI_ADV_PHY_1M;
1979		cp.secondary_phy = HCI_ADV_PHY_1M;
1980	}
1981
1982	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1983
1984	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1985	    bacmp(&random_addr, BDADDR_ANY)) {
1986		struct hci_cp_le_set_adv_set_rand_addr cp;
1987
1988		/* Check if random address need to be updated */
1989		if (adv_instance) {
1990			if (!bacmp(&random_addr, &adv_instance->random_addr))
1991				return 0;
1992		} else {
1993			if (!bacmp(&random_addr, &hdev->random_addr))
1994				return 0;
1995		}
1996
1997		memset(&cp, 0, sizeof(cp));
1998
1999		cp.handle = instance;
2000		bacpy(&cp.bdaddr, &random_addr);
2001
2002		hci_req_add(req,
2003			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2004			    sizeof(cp), &cp);
2005	}
2006
2007	return 0;
2008}
2009
2010int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2011{
2012	struct hci_dev *hdev = req->hdev;
2013	struct hci_cp_le_set_ext_adv_enable *cp;
2014	struct hci_cp_ext_adv_set *adv_set;
2015	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2016	struct adv_info *adv_instance;
2017
2018	if (instance > 0) {
2019		adv_instance = hci_find_adv_instance(hdev, instance);
2020		if (!adv_instance)
2021			return -EINVAL;
2022	} else {
2023		adv_instance = NULL;
2024	}
2025
2026	cp = (void *) data;
2027	adv_set = (void *) cp->data;
2028
2029	memset(cp, 0, sizeof(*cp));
2030
2031	cp->enable = 0x01;
2032	cp->num_of_sets = 0x01;
2033
2034	memset(adv_set, 0, sizeof(*adv_set));
2035
2036	adv_set->handle = instance;
2037
2038	/* Set duration per instance since controller is responsible for
2039	 * scheduling it.
2040	 */
2041	if (adv_instance && adv_instance->duration) {
2042		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2043
2044		/* Time = N * 10 ms */
2045		adv_set->duration = cpu_to_le16(duration / 10);
2046	}
2047
2048	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2049		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2050		    data);
2051
2052	return 0;
2053}
2054
2055int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2056{
2057	struct hci_dev *hdev = req->hdev;
2058	struct hci_cp_le_set_ext_adv_enable *cp;
2059	struct hci_cp_ext_adv_set *adv_set;
2060	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2061	u8 req_size;
2062
2063	/* If request specifies an instance that doesn't exist, fail */
2064	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2065		return -EINVAL;
2066
2067	memset(data, 0, sizeof(data));
2068
2069	cp = (void *)data;
2070	adv_set = (void *)cp->data;
2071
2072	/* Instance 0x00 indicates all advertising instances will be disabled */
2073	cp->num_of_sets = !!instance;
2074	cp->enable = 0x00;
2075
2076	adv_set->handle = instance;
2077
2078	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2079	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2080
2081	return 0;
2082}
2083
2084int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2085{
2086	struct hci_dev *hdev = req->hdev;
2087
2088	/* If request specifies an instance that doesn't exist, fail */
2089	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2090		return -EINVAL;
2091
2092	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2093
2094	return 0;
2095}
2096
2097int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2098{
2099	struct hci_dev *hdev = req->hdev;
2100	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2101	int err;
2102
2103	/* If instance isn't pending, the chip knows about it, and it's safe to
2104	 * disable
2105	 */
2106	if (adv_instance && !adv_instance->pending)
2107		__hci_req_disable_ext_adv_instance(req, instance);
2108
2109	err = __hci_req_setup_ext_adv_instance(req, instance);
2110	if (err < 0)
2111		return err;
2112
2113	__hci_req_update_scan_rsp_data(req, instance);
2114	__hci_req_enable_ext_advertising(req, instance);
2115
2116	return 0;
2117}
2118
2119int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2120				    bool force)
2121{
2122	struct hci_dev *hdev = req->hdev;
2123	struct adv_info *adv_instance = NULL;
2124	u16 timeout;
2125
2126	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2127	    list_empty(&hdev->adv_instances))
2128		return -EPERM;
2129
2130	if (hdev->adv_instance_timeout)
2131		return -EBUSY;
2132
2133	adv_instance = hci_find_adv_instance(hdev, instance);
2134	if (!adv_instance)
2135		return -ENOENT;
2136
2137	/* A zero timeout means unlimited advertising. As long as there is
2138	 * only one instance, duration should be ignored. We still set a timeout
2139	 * in case further instances are being added later on.
2140	 *
2141	 * If the remaining lifetime of the instance is more than the duration
2142	 * then the timeout corresponds to the duration, otherwise it will be
2143	 * reduced to the remaining instance lifetime.
2144	 */
2145	if (adv_instance->timeout == 0 ||
2146	    adv_instance->duration <= adv_instance->remaining_time)
2147		timeout = adv_instance->duration;
2148	else
2149		timeout = adv_instance->remaining_time;
2150
2151	/* The remaining time is being reduced unless the instance is being
2152	 * advertised without time limit.
2153	 */
2154	if (adv_instance->timeout)
2155		adv_instance->remaining_time =
2156				adv_instance->remaining_time - timeout;
2157
2158	/* Only use work for scheduling instances with legacy advertising */
2159	if (!ext_adv_capable(hdev)) {
2160		hdev->adv_instance_timeout = timeout;
2161		queue_delayed_work(hdev->req_workqueue,
2162			   &hdev->adv_instance_expire,
2163			   msecs_to_jiffies(timeout * 1000));
2164	}
2165
2166	/* If we're just re-scheduling the same instance again then do not
2167	 * execute any HCI commands. This happens when a single instance is
2168	 * being advertised.
2169	 */
2170	if (!force && hdev->cur_adv_instance == instance &&
2171	    hci_dev_test_flag(hdev, HCI_LE_ADV))
2172		return 0;
2173
2174	hdev->cur_adv_instance = instance;
2175	if (ext_adv_capable(hdev)) {
2176		__hci_req_start_ext_adv(req, instance);
2177	} else {
2178		__hci_req_update_adv_data(req, instance);
2179		__hci_req_update_scan_rsp_data(req, instance);
2180		__hci_req_enable_advertising(req);
2181	}
2182
2183	return 0;
2184}
2185
2186static void cancel_adv_timeout(struct hci_dev *hdev)
2187{
2188	if (hdev->adv_instance_timeout) {
2189		hdev->adv_instance_timeout = 0;
2190		cancel_delayed_work(&hdev->adv_instance_expire);
2191	}
2192}
2193
2194/* For a single instance:
2195 * - force == true: The instance will be removed even when its remaining
2196 *   lifetime is not zero.
2197 * - force == false: the instance will be deactivated but kept stored unless
2198 *   the remaining lifetime is zero.
2199 *
2200 * For instance == 0x00:
2201 * - force == true: All instances will be removed regardless of their timeout
2202 *   setting.
2203 * - force == false: Only instances that have a timeout will be removed.
2204 */
2205void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2206				struct hci_request *req, u8 instance,
2207				bool force)
2208{
2209	struct adv_info *adv_instance, *n, *next_instance = NULL;
2210	int err;
2211	u8 rem_inst;
2212
2213	/* Cancel any timeout concerning the removed instance(s). */
2214	if (!instance || hdev->cur_adv_instance == instance)
2215		cancel_adv_timeout(hdev);
2216
2217	/* Get the next instance to advertise BEFORE we remove
2218	 * the current one. This can be the same instance again
2219	 * if there is only one instance.
2220	 */
2221	if (instance && hdev->cur_adv_instance == instance)
2222		next_instance = hci_get_next_instance(hdev, instance);
2223
2224	if (instance == 0x00) {
2225		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2226					 list) {
2227			if (!(force || adv_instance->timeout))
2228				continue;
2229
2230			rem_inst = adv_instance->instance;
2231			err = hci_remove_adv_instance(hdev, rem_inst);
2232			if (!err)
2233				mgmt_advertising_removed(sk, hdev, rem_inst);
2234		}
2235	} else {
2236		adv_instance = hci_find_adv_instance(hdev, instance);
2237
2238		if (force || (adv_instance && adv_instance->timeout &&
2239			      !adv_instance->remaining_time)) {
2240			/* Don't advertise a removed instance. */
2241			if (next_instance &&
2242			    next_instance->instance == instance)
2243				next_instance = NULL;
2244
2245			err = hci_remove_adv_instance(hdev, instance);
2246			if (!err)
2247				mgmt_advertising_removed(sk, hdev, instance);
2248		}
2249	}
2250
2251	if (!req || !hdev_is_powered(hdev) ||
2252	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
2253		return;
2254
2255	if (next_instance && !ext_adv_capable(hdev))
2256		__hci_req_schedule_adv_instance(req, next_instance->instance,
2257						false);
2258}
2259
2260static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2261{
2262	struct hci_dev *hdev = req->hdev;
2263
2264	/* If we're advertising or initiating an LE connection we can't
2265	 * go ahead and change the random address at this time. This is
2266	 * because the eventual initiator address used for the
2267	 * subsequently created connection will be undefined (some
2268	 * controllers use the new address and others the one we had
2269	 * when the operation started).
2270	 *
2271	 * In this kind of scenario skip the update and let the random
2272	 * address be updated at the next cycle.
2273	 */
2274	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2275	    hci_lookup_le_connect(hdev)) {
2276		BT_DBG("Deferring random address update");
2277		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2278		return;
2279	}
2280
2281	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2282}
2283
2284int hci_update_random_address(struct hci_request *req, bool require_privacy,
2285			      bool use_rpa, u8 *own_addr_type)
2286{
2287	struct hci_dev *hdev = req->hdev;
2288	int err;
2289
2290	/* If privacy is enabled use a resolvable private address. If
2291	 * current RPA has expired or there is something else than
2292	 * the current RPA in use, then generate a new one.
2293	 */
2294	if (use_rpa) {
2295		int to;
2296
2297		/* If Controller supports LL Privacy use own address type is
2298		 * 0x03
2299		 */
2300		if (use_ll_privacy(hdev))
2301			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2302		else
2303			*own_addr_type = ADDR_LE_DEV_RANDOM;
2304
2305		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2306		    !bacmp(&hdev->random_addr, &hdev->rpa))
2307			return 0;
2308
2309		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2310		if (err < 0) {
2311			bt_dev_err(hdev, "failed to generate new RPA");
2312			return err;
2313		}
2314
2315		set_random_addr(req, &hdev->rpa);
2316
2317		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2318		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2319
2320		return 0;
2321	}
2322
2323	/* In case of required privacy without resolvable private address,
2324	 * use an non-resolvable private address. This is useful for active
2325	 * scanning and non-connectable advertising.
2326	 */
2327	if (require_privacy) {
2328		bdaddr_t nrpa;
2329
2330		while (true) {
2331			/* The non-resolvable private address is generated
2332			 * from random six bytes with the two most significant
2333			 * bits cleared.
2334			 */
2335			get_random_bytes(&nrpa, 6);
2336			nrpa.b[5] &= 0x3f;
2337
2338			/* The non-resolvable private address shall not be
2339			 * equal to the public address.
2340			 */
2341			if (bacmp(&hdev->bdaddr, &nrpa))
2342				break;
2343		}
2344
2345		*own_addr_type = ADDR_LE_DEV_RANDOM;
2346		set_random_addr(req, &nrpa);
2347		return 0;
2348	}
2349
2350	/* If forcing static address is in use or there is no public
2351	 * address use the static address as random address (but skip
2352	 * the HCI command if the current random address is already the
2353	 * static one.
2354	 *
2355	 * In case BR/EDR has been disabled on a dual-mode controller
2356	 * and a static address has been configured, then use that
2357	 * address instead of the public BR/EDR address.
2358	 */
2359	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2360	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2361	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2362	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2363		*own_addr_type = ADDR_LE_DEV_RANDOM;
2364		if (bacmp(&hdev->static_addr, &hdev->random_addr))
2365			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2366				    &hdev->static_addr);
2367		return 0;
2368	}
2369
2370	/* Neither privacy nor static address is being used so use a
2371	 * public address.
2372	 */
2373	*own_addr_type = ADDR_LE_DEV_PUBLIC;
2374
2375	return 0;
2376}
2377
2378static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2379{
2380	struct bdaddr_list *b;
2381
2382	list_for_each_entry(b, &hdev->whitelist, list) {
2383		struct hci_conn *conn;
2384
2385		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2386		if (!conn)
2387			return true;
2388
2389		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2390			return true;
2391	}
2392
2393	return false;
2394}
2395
2396void __hci_req_update_scan(struct hci_request *req)
2397{
2398	struct hci_dev *hdev = req->hdev;
2399	u8 scan;
2400
2401	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2402		return;
2403
2404	if (!hdev_is_powered(hdev))
2405		return;
2406
2407	if (mgmt_powering_down(hdev))
2408		return;
2409
2410	if (hdev->scanning_paused)
2411		return;
2412
2413	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2414	    disconnected_whitelist_entries(hdev))
2415		scan = SCAN_PAGE;
2416	else
2417		scan = SCAN_DISABLED;
2418
2419	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2420		scan |= SCAN_INQUIRY;
2421
2422	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2423	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2424		return;
2425
2426	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2427}
2428
2429static int update_scan(struct hci_request *req, unsigned long opt)
2430{
2431	hci_dev_lock(req->hdev);
2432	__hci_req_update_scan(req);
2433	hci_dev_unlock(req->hdev);
2434	return 0;
2435}
2436
2437static void scan_update_work(struct work_struct *work)
2438{
2439	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2440
2441	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2442}
2443
2444static int connectable_update(struct hci_request *req, unsigned long opt)
2445{
2446	struct hci_dev *hdev = req->hdev;
2447
2448	hci_dev_lock(hdev);
2449
2450	__hci_req_update_scan(req);
2451
2452	/* If BR/EDR is not enabled and we disable advertising as a
2453	 * by-product of disabling connectable, we need to update the
2454	 * advertising flags.
2455	 */
2456	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2457		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2458
2459	/* Update the advertising parameters if necessary */
2460	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2461	    !list_empty(&hdev->adv_instances)) {
2462		if (ext_adv_capable(hdev))
2463			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2464		else
2465			__hci_req_enable_advertising(req);
2466	}
2467
2468	__hci_update_background_scan(req);
2469
2470	hci_dev_unlock(hdev);
2471
2472	return 0;
2473}
2474
2475static void connectable_update_work(struct work_struct *work)
2476{
2477	struct hci_dev *hdev = container_of(work, struct hci_dev,
2478					    connectable_update);
2479	u8 status;
2480
2481	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2482	mgmt_set_connectable_complete(hdev, status);
2483}
2484
2485static u8 get_service_classes(struct hci_dev *hdev)
2486{
2487	struct bt_uuid *uuid;
2488	u8 val = 0;
2489
2490	list_for_each_entry(uuid, &hdev->uuids, list)
2491		val |= uuid->svc_hint;
2492
2493	return val;
2494}
2495
2496void __hci_req_update_class(struct hci_request *req)
2497{
2498	struct hci_dev *hdev = req->hdev;
2499	u8 cod[3];
2500
2501	BT_DBG("%s", hdev->name);
2502
2503	if (!hdev_is_powered(hdev))
2504		return;
2505
2506	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2507		return;
2508
2509	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2510		return;
2511
2512	cod[0] = hdev->minor_class;
2513	cod[1] = hdev->major_class;
2514	cod[2] = get_service_classes(hdev);
2515
2516	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2517		cod[1] |= 0x20;
2518
2519	if (memcmp(cod, hdev->dev_class, 3) == 0)
2520		return;
2521
2522	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2523}
2524
2525static void write_iac(struct hci_request *req)
2526{
2527	struct hci_dev *hdev = req->hdev;
2528	struct hci_cp_write_current_iac_lap cp;
2529
2530	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2531		return;
2532
2533	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2534		/* Limited discoverable mode */
2535		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2536		cp.iac_lap[0] = 0x00;	/* LIAC */
2537		cp.iac_lap[1] = 0x8b;
2538		cp.iac_lap[2] = 0x9e;
2539		cp.iac_lap[3] = 0x33;	/* GIAC */
2540		cp.iac_lap[4] = 0x8b;
2541		cp.iac_lap[5] = 0x9e;
2542	} else {
2543		/* General discoverable mode */
2544		cp.num_iac = 1;
2545		cp.iac_lap[0] = 0x33;	/* GIAC */
2546		cp.iac_lap[1] = 0x8b;
2547		cp.iac_lap[2] = 0x9e;
2548	}
2549
2550	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2551		    (cp.num_iac * 3) + 1, &cp);
2552}
2553
2554static int discoverable_update(struct hci_request *req, unsigned long opt)
2555{
2556	struct hci_dev *hdev = req->hdev;
2557
2558	hci_dev_lock(hdev);
2559
2560	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2561		write_iac(req);
2562		__hci_req_update_scan(req);
2563		__hci_req_update_class(req);
2564	}
2565
2566	/* Advertising instances don't use the global discoverable setting, so
2567	 * only update AD if advertising was enabled using Set Advertising.
2568	 */
2569	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2570		__hci_req_update_adv_data(req, 0x00);
2571
2572		/* Discoverable mode affects the local advertising
2573		 * address in limited privacy mode.
2574		 */
2575		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2576			if (ext_adv_capable(hdev))
2577				__hci_req_start_ext_adv(req, 0x00);
2578			else
2579				__hci_req_enable_advertising(req);
2580		}
2581	}
2582
2583	hci_dev_unlock(hdev);
2584
2585	return 0;
2586}
2587
2588static void discoverable_update_work(struct work_struct *work)
2589{
2590	struct hci_dev *hdev = container_of(work, struct hci_dev,
2591					    discoverable_update);
2592	u8 status;
2593
2594	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2595	mgmt_set_discoverable_complete(hdev, status);
2596}
2597
2598void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2599		      u8 reason)
2600{
2601	switch (conn->state) {
2602	case BT_CONNECTED:
2603	case BT_CONFIG:
2604		if (conn->type == AMP_LINK) {
2605			struct hci_cp_disconn_phy_link cp;
2606
2607			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2608			cp.reason = reason;
2609			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2610				    &cp);
2611		} else {
2612			struct hci_cp_disconnect dc;
2613
2614			dc.handle = cpu_to_le16(conn->handle);
2615			dc.reason = reason;
2616			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2617		}
2618
2619		conn->state = BT_DISCONN;
2620
2621		break;
2622	case BT_CONNECT:
2623		if (conn->type == LE_LINK) {
2624			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2625				break;
2626			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2627				    0, NULL);
2628		} else if (conn->type == ACL_LINK) {
2629			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2630				break;
2631			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2632				    6, &conn->dst);
2633		}
2634		break;
2635	case BT_CONNECT2:
2636		if (conn->type == ACL_LINK) {
2637			struct hci_cp_reject_conn_req rej;
2638
2639			bacpy(&rej.bdaddr, &conn->dst);
2640			rej.reason = reason;
2641
2642			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2643				    sizeof(rej), &rej);
2644		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2645			struct hci_cp_reject_sync_conn_req rej;
2646
2647			bacpy(&rej.bdaddr, &conn->dst);
2648
2649			/* SCO rejection has its own limited set of
2650			 * allowed error values (0x0D-0x0F) which isn't
2651			 * compatible with most values passed to this
2652			 * function. To be safe hard-code one of the
2653			 * values that's suitable for SCO.
2654			 */
2655			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2656
2657			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2658				    sizeof(rej), &rej);
2659		}
2660		break;
2661	default:
2662		conn->state = BT_CLOSED;
2663		break;
2664	}
2665}
2666
2667static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2668{
2669	if (status)
2670		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2671}
2672
2673int hci_abort_conn(struct hci_conn *conn, u8 reason)
2674{
2675	struct hci_request req;
2676	int err;
2677
2678	hci_req_init(&req, conn->hdev);
2679
2680	__hci_abort_conn(&req, conn, reason);
2681
2682	err = hci_req_run(&req, abort_conn_complete);
2683	if (err && err != -ENODATA) {
2684		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2685		return err;
2686	}
2687
2688	return 0;
2689}
2690
2691static int update_bg_scan(struct hci_request *req, unsigned long opt)
2692{
2693	hci_dev_lock(req->hdev);
2694	__hci_update_background_scan(req);
2695	hci_dev_unlock(req->hdev);
2696	return 0;
2697}
2698
2699static void bg_scan_update(struct work_struct *work)
2700{
2701	struct hci_dev *hdev = container_of(work, struct hci_dev,
2702					    bg_scan_update);
2703	struct hci_conn *conn;
2704	u8 status;
2705	int err;
2706
2707	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2708	if (!err)
2709		return;
2710
2711	hci_dev_lock(hdev);
2712
2713	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2714	if (conn)
2715		hci_le_conn_failed(conn, status);
2716
2717	hci_dev_unlock(hdev);
2718}
2719
2720static int le_scan_disable(struct hci_request *req, unsigned long opt)
2721{
2722	hci_req_add_le_scan_disable(req, false);
2723	return 0;
2724}
2725
2726static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2727{
2728	u8 length = opt;
2729	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2730	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2731	struct hci_cp_inquiry cp;
2732
2733	BT_DBG("%s", req->hdev->name);
2734
2735	hci_dev_lock(req->hdev);
2736	hci_inquiry_cache_flush(req->hdev);
2737	hci_dev_unlock(req->hdev);
2738
2739	memset(&cp, 0, sizeof(cp));
2740
2741	if (req->hdev->discovery.limited)
2742		memcpy(&cp.lap, liac, sizeof(cp.lap));
2743	else
2744		memcpy(&cp.lap, giac, sizeof(cp.lap));
2745
2746	cp.length = length;
2747
2748	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2749
2750	return 0;
2751}
2752
2753static void le_scan_disable_work(struct work_struct *work)
2754{
2755	struct hci_dev *hdev = container_of(work, struct hci_dev,
2756					    le_scan_disable.work);
2757	u8 status;
2758
2759	BT_DBG("%s", hdev->name);
2760
2761	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2762		return;
2763
2764	cancel_delayed_work(&hdev->le_scan_restart);
2765
2766	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2767	if (status) {
2768		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2769			   status);
2770		return;
2771	}
2772
2773	hdev->discovery.scan_start = 0;
2774
2775	/* If we were running LE only scan, change discovery state. If
2776	 * we were running both LE and BR/EDR inquiry simultaneously,
2777	 * and BR/EDR inquiry is already finished, stop discovery,
2778	 * otherwise BR/EDR inquiry will stop discovery when finished.
2779	 * If we will resolve remote device name, do not change
2780	 * discovery state.
2781	 */
2782
2783	if (hdev->discovery.type == DISCOV_TYPE_LE)
2784		goto discov_stopped;
2785
2786	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2787		return;
2788
2789	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2790		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2791		    hdev->discovery.state != DISCOVERY_RESOLVING)
2792			goto discov_stopped;
2793
2794		return;
2795	}
2796
2797	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2798		     HCI_CMD_TIMEOUT, &status);
2799	if (status) {
2800		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2801		goto discov_stopped;
2802	}
2803
2804	return;
2805
2806discov_stopped:
2807	hci_dev_lock(hdev);
2808	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2809	hci_dev_unlock(hdev);
2810}
2811
2812static int le_scan_restart(struct hci_request *req, unsigned long opt)
2813{
2814	struct hci_dev *hdev = req->hdev;
 
2815
2816	/* If controller is not scanning we are done. */
2817	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2818		return 0;
2819
2820	if (hdev->scanning_paused) {
2821		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2822		return 0;
2823	}
2824
2825	hci_req_add_le_scan_disable(req, false);
2826
2827	if (use_ext_scan(hdev)) {
2828		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2829
2830		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2831		ext_enable_cp.enable = LE_SCAN_ENABLE;
2832		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2833
2834		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2835			    sizeof(ext_enable_cp), &ext_enable_cp);
2836	} else {
2837		struct hci_cp_le_set_scan_enable cp;
2838
2839		memset(&cp, 0, sizeof(cp));
2840		cp.enable = LE_SCAN_ENABLE;
2841		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2842		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2843	}
2844
2845	return 0;
2846}
2847
2848static void le_scan_restart_work(struct work_struct *work)
2849{
2850	struct hci_dev *hdev = container_of(work, struct hci_dev,
2851					    le_scan_restart.work);
2852	unsigned long timeout, duration, scan_start, now;
2853	u8 status;
2854
2855	BT_DBG("%s", hdev->name);
2856
2857	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2858	if (status) {
2859		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2860			   status);
2861		return;
2862	}
2863
2864	hci_dev_lock(hdev);
2865
2866	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2867	    !hdev->discovery.scan_start)
2868		goto unlock;
2869
2870	/* When the scan was started, hdev->le_scan_disable has been queued
2871	 * after duration from scan_start. During scan restart this job
2872	 * has been canceled, and we need to queue it again after proper
2873	 * timeout, to make sure that scan does not run indefinitely.
2874	 */
2875	duration = hdev->discovery.scan_duration;
2876	scan_start = hdev->discovery.scan_start;
2877	now = jiffies;
2878	if (now - scan_start <= duration) {
2879		int elapsed;
2880
2881		if (now >= scan_start)
2882			elapsed = now - scan_start;
2883		else
2884			elapsed = ULONG_MAX - scan_start + now;
2885
2886		timeout = duration - elapsed;
2887	} else {
2888		timeout = 0;
2889	}
2890
2891	queue_delayed_work(hdev->req_workqueue,
2892			   &hdev->le_scan_disable, timeout);
2893
2894unlock:
2895	hci_dev_unlock(hdev);
2896}
2897
 
 
 
 
 
 
 
2898static int active_scan(struct hci_request *req, unsigned long opt)
2899{
2900	uint16_t interval = opt;
2901	struct hci_dev *hdev = req->hdev;
 
 
2902	u8 own_addr_type;
2903	/* White list is not used for discovery */
2904	u8 filter_policy = 0x00;
2905	/* Discovery doesn't require controller address resolution */
2906	bool addr_resolv = false;
2907	int err;
2908
2909	BT_DBG("%s", hdev->name);
2910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2911	/* If controller is scanning, it means the background scanning is
2912	 * running. Thus, we should temporarily stop it in order to set the
2913	 * discovery scanning parameters.
2914	 */
2915	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2916		hci_req_add_le_scan_disable(req, false);
2917
2918	/* All active scans will be done with either a resolvable private
2919	 * address (when privacy feature has been enabled) or non-resolvable
2920	 * private address.
2921	 */
2922	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2923					&own_addr_type);
2924	if (err < 0)
2925		own_addr_type = ADDR_LE_DEV_PUBLIC;
2926
2927	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
2928			   hdev->le_scan_window_discovery, own_addr_type,
2929			   filter_policy, addr_resolv);
 
 
 
 
 
 
 
 
 
 
 
 
 
2930	return 0;
2931}
2932
2933static int interleaved_discov(struct hci_request *req, unsigned long opt)
2934{
2935	int err;
2936
2937	BT_DBG("%s", req->hdev->name);
2938
2939	err = active_scan(req, opt);
2940	if (err)
2941		return err;
2942
2943	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2944}
2945
2946static void start_discovery(struct hci_dev *hdev, u8 *status)
2947{
2948	unsigned long timeout;
2949
2950	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2951
2952	switch (hdev->discovery.type) {
2953	case DISCOV_TYPE_BREDR:
2954		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2955			hci_req_sync(hdev, bredr_inquiry,
2956				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2957				     status);
2958		return;
2959	case DISCOV_TYPE_INTERLEAVED:
2960		/* When running simultaneous discovery, the LE scanning time
2961		 * should occupy the whole discovery time sine BR/EDR inquiry
2962		 * and LE scanning are scheduled by the controller.
2963		 *
2964		 * For interleaving discovery in comparison, BR/EDR inquiry
2965		 * and LE scanning are done sequentially with separate
2966		 * timeouts.
2967		 */
2968		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2969			     &hdev->quirks)) {
2970			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2971			/* During simultaneous discovery, we double LE scan
2972			 * interval. We must leave some time for the controller
2973			 * to do BR/EDR inquiry.
2974			 */
2975			hci_req_sync(hdev, interleaved_discov,
2976				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2977				     status);
2978			break;
2979		}
2980
2981		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2982		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2983			     HCI_CMD_TIMEOUT, status);
2984		break;
2985	case DISCOV_TYPE_LE:
2986		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2987		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2988			     HCI_CMD_TIMEOUT, status);
2989		break;
2990	default:
2991		*status = HCI_ERROR_UNSPECIFIED;
2992		return;
2993	}
2994
2995	if (*status)
2996		return;
2997
2998	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2999
3000	/* When service discovery is used and the controller has a
3001	 * strict duplicate filter, it is important to remember the
3002	 * start and duration of the scan. This is required for
3003	 * restarting scanning during the discovery phase.
3004	 */
3005	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3006		     hdev->discovery.result_filtering) {
3007		hdev->discovery.scan_start = jiffies;
3008		hdev->discovery.scan_duration = timeout;
3009	}
3010
3011	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3012			   timeout);
3013}
3014
3015bool hci_req_stop_discovery(struct hci_request *req)
3016{
3017	struct hci_dev *hdev = req->hdev;
3018	struct discovery_state *d = &hdev->discovery;
3019	struct hci_cp_remote_name_req_cancel cp;
3020	struct inquiry_entry *e;
3021	bool ret = false;
3022
3023	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
3024
3025	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3026		if (test_bit(HCI_INQUIRY, &hdev->flags))
3027			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3028
3029		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3030			cancel_delayed_work(&hdev->le_scan_disable);
3031			hci_req_add_le_scan_disable(req, false);
3032		}
3033
3034		ret = true;
3035	} else {
3036		/* Passive scanning */
3037		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3038			hci_req_add_le_scan_disable(req, false);
3039			ret = true;
3040		}
3041	}
3042
3043	/* No further actions needed for LE-only discovery */
3044	if (d->type == DISCOV_TYPE_LE)
3045		return ret;
3046
3047	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3048		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3049						     NAME_PENDING);
3050		if (!e)
3051			return ret;
3052
3053		bacpy(&cp.bdaddr, &e->data.bdaddr);
3054		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3055			    &cp);
3056		ret = true;
3057	}
3058
3059	return ret;
3060}
3061
3062static int stop_discovery(struct hci_request *req, unsigned long opt)
3063{
3064	hci_dev_lock(req->hdev);
3065	hci_req_stop_discovery(req);
3066	hci_dev_unlock(req->hdev);
3067
3068	return 0;
3069}
3070
3071static void discov_update(struct work_struct *work)
3072{
3073	struct hci_dev *hdev = container_of(work, struct hci_dev,
3074					    discov_update);
3075	u8 status = 0;
3076
3077	switch (hdev->discovery.state) {
3078	case DISCOVERY_STARTING:
3079		start_discovery(hdev, &status);
3080		mgmt_start_discovery_complete(hdev, status);
3081		if (status)
3082			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3083		else
3084			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3085		break;
3086	case DISCOVERY_STOPPING:
3087		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3088		mgmt_stop_discovery_complete(hdev, status);
3089		if (!status)
3090			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3091		break;
3092	case DISCOVERY_STOPPED:
3093	default:
3094		return;
3095	}
3096}
3097
3098static void discov_off(struct work_struct *work)
3099{
3100	struct hci_dev *hdev = container_of(work, struct hci_dev,
3101					    discov_off.work);
3102
3103	BT_DBG("%s", hdev->name);
3104
3105	hci_dev_lock(hdev);
3106
3107	/* When discoverable timeout triggers, then just make sure
3108	 * the limited discoverable flag is cleared. Even in the case
3109	 * of a timeout triggered from general discoverable, it is
3110	 * safe to unconditionally clear the flag.
3111	 */
3112	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3113	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3114	hdev->discov_timeout = 0;
3115
3116	hci_dev_unlock(hdev);
3117
3118	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3119	mgmt_new_settings(hdev);
3120}
3121
3122static int powered_update_hci(struct hci_request *req, unsigned long opt)
3123{
3124	struct hci_dev *hdev = req->hdev;
3125	u8 link_sec;
3126
3127	hci_dev_lock(hdev);
3128
3129	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3130	    !lmp_host_ssp_capable(hdev)) {
3131		u8 mode = 0x01;
3132
3133		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3134
3135		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3136			u8 support = 0x01;
3137
3138			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3139				    sizeof(support), &support);
3140		}
3141	}
3142
3143	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3144	    lmp_bredr_capable(hdev)) {
3145		struct hci_cp_write_le_host_supported cp;
3146
3147		cp.le = 0x01;
3148		cp.simul = 0x00;
3149
3150		/* Check first if we already have the right
3151		 * host state (host features set)
3152		 */
3153		if (cp.le != lmp_host_le_capable(hdev) ||
3154		    cp.simul != lmp_host_le_br_capable(hdev))
3155			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3156				    sizeof(cp), &cp);
3157	}
3158
3159	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3160		/* Make sure the controller has a good default for
3161		 * advertising data. This also applies to the case
3162		 * where BR/EDR was toggled during the AUTO_OFF phase.
3163		 */
3164		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3165		    list_empty(&hdev->adv_instances)) {
3166			int err;
 
3167
3168			if (ext_adv_capable(hdev)) {
3169				err = __hci_req_setup_ext_adv_instance(req,
3170								       0x00);
3171				if (!err)
3172					__hci_req_update_scan_rsp_data(req,
3173								       0x00);
3174			} else {
3175				err = 0;
3176				__hci_req_update_adv_data(req, 0x00);
3177				__hci_req_update_scan_rsp_data(req, 0x00);
3178			}
3179
3180			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3181				if (!ext_adv_capable(hdev))
3182					__hci_req_enable_advertising(req);
3183				else if (!err)
3184					__hci_req_enable_ext_advertising(req,
3185									 0x00);
3186			}
3187		} else if (!list_empty(&hdev->adv_instances)) {
3188			struct adv_info *adv_instance;
3189
3190			adv_instance = list_first_entry(&hdev->adv_instances,
3191							struct adv_info, list);
3192			__hci_req_schedule_adv_instance(req,
3193							adv_instance->instance,
3194							true);
3195		}
3196	}
3197
3198	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3199	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3200		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3201			    sizeof(link_sec), &link_sec);
3202
3203	if (lmp_bredr_capable(hdev)) {
3204		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3205			__hci_req_write_fast_connectable(req, true);
3206		else
3207			__hci_req_write_fast_connectable(req, false);
3208		__hci_req_update_scan(req);
3209		__hci_req_update_class(req);
3210		__hci_req_update_name(req);
3211		__hci_req_update_eir(req);
3212	}
3213
3214	hci_dev_unlock(hdev);
3215	return 0;
3216}
3217
3218int __hci_req_hci_power_on(struct hci_dev *hdev)
3219{
3220	/* Register the available SMP channels (BR/EDR and LE) only when
3221	 * successfully powering on the controller. This late
3222	 * registration is required so that LE SMP can clearly decide if
3223	 * the public address or static address is used.
3224	 */
3225	smp_register(hdev);
3226
3227	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3228			      NULL);
3229}
3230
3231void hci_request_setup(struct hci_dev *hdev)
3232{
3233	INIT_WORK(&hdev->discov_update, discov_update);
3234	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3235	INIT_WORK(&hdev->scan_update, scan_update_work);
3236	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3237	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3238	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3239	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3240	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3241	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3242}
3243
3244void hci_request_cancel_all(struct hci_dev *hdev)
3245{
3246	hci_req_sync_cancel(hdev, ENODEV);
3247
3248	cancel_work_sync(&hdev->discov_update);
3249	cancel_work_sync(&hdev->bg_scan_update);
3250	cancel_work_sync(&hdev->scan_update);
3251	cancel_work_sync(&hdev->connectable_update);
3252	cancel_work_sync(&hdev->discoverable_update);
3253	cancel_delayed_work_sync(&hdev->discov_off);
3254	cancel_delayed_work_sync(&hdev->le_scan_disable);
3255	cancel_delayed_work_sync(&hdev->le_scan_restart);
3256
3257	if (hdev->adv_instance_timeout) {
3258		cancel_delayed_work_sync(&hdev->adv_instance_expire);
3259		hdev->adv_instance_timeout = 0;
3260	}
3261}