Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* internal.h: mm/ internal definitions
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 11#ifndef __MM_INTERNAL_H
 12#define __MM_INTERNAL_H
 13
 14#include <linux/fs.h>
 15#include <linux/mm.h>
 16#include <linux/pagemap.h>
 17#include <linux/tracepoint-defs.h>
 18
 19/*
 20 * The set of flags that only affect watermark checking and reclaim
 21 * behaviour. This is used by the MM to obey the caller constraints
 22 * about IO, FS and watermark checking while ignoring placement
 23 * hints such as HIGHMEM usage.
 24 */
 25#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 26			__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
 27			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
 
 28
 29/* The GFP flags allowed during early boot */
 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 31
 32/* Control allocation cpuset and node placement constraints */
 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 34
 35/* Do not use these with a slab allocator */
 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 37
 
 
 
 
 38void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 39		unsigned long floor, unsigned long ceiling);
 40
 
 
 
 
 
 41void unmap_page_range(struct mmu_gather *tlb,
 42			     struct vm_area_struct *vma,
 43			     unsigned long addr, unsigned long end,
 44			     struct zap_details *details);
 45
 46extern int __do_page_cache_readahead(struct address_space *mapping,
 47		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 
 
 48		unsigned long lookahead_size);
 49
 50/*
 51 * Submit IO for the read-ahead request in file_ra_state.
 52 */
 53static inline unsigned long ra_submit(struct file_ra_state *ra,
 54		struct address_space *mapping, struct file *filp)
 55{
 56	return __do_page_cache_readahead(mapping, filp,
 57					ra->start, ra->size, ra->async_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58}
 59
 60/*
 61 * Turn a non-refcounted page (->_count == 0) into refcounted with
 62 * a count of one.
 63 */
 64static inline void set_page_refcounted(struct page *page)
 65{
 66	VM_BUG_ON_PAGE(PageTail(page), page);
 67	VM_BUG_ON_PAGE(page_ref_count(page), page);
 68	set_page_count(page, 1);
 69}
 70
 71extern unsigned long highest_memmap_pfn;
 72
 73/*
 
 
 
 
 
 
 74 * in mm/vmscan.c:
 75 */
 76extern int isolate_lru_page(struct page *page);
 77extern void putback_lru_page(struct page *page);
 78extern bool zone_reclaimable(struct zone *zone);
 79
 80/*
 81 * in mm/rmap.c:
 82 */
 83extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 84
 85/*
 86 * in mm/page_alloc.c
 87 */
 88
 89/*
 90 * Structure for holding the mostly immutable allocation parameters passed
 91 * between functions involved in allocations, including the alloc_pages*
 92 * family of functions.
 93 *
 94 * nodemask, migratetype and high_zoneidx are initialized only once in
 95 * __alloc_pages_nodemask() and then never change.
 96 *
 97 * zonelist, preferred_zone and classzone_idx are set first in
 98 * __alloc_pages_nodemask() for the fast path, and might be later changed
 99 * in __alloc_pages_slowpath(). All other functions pass the whole strucure
100 * by a const pointer.
101 */
102struct alloc_context {
103	struct zonelist *zonelist;
104	nodemask_t *nodemask;
105	struct zone *preferred_zone;
106	int classzone_idx;
107	int migratetype;
108	enum zone_type high_zoneidx;
 
 
 
 
 
 
 
 
 
 
 
109	bool spread_dirty_pages;
110};
111
112/*
113 * Locate the struct page for both the matching buddy in our
114 * pair (buddy1) and the combined O(n+1) page they form (page).
115 *
116 * 1) Any buddy B1 will have an order O twin B2 which satisfies
117 * the following equation:
118 *     B2 = B1 ^ (1 << O)
119 * For example, if the starting buddy (buddy2) is #8 its order
120 * 1 buddy is #10:
121 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
122 *
123 * 2) Any buddy B will have an order O+1 parent P which
124 * satisfies the following equation:
125 *     P = B & ~(1 << O)
126 *
127 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
128 */
129static inline unsigned long
130__find_buddy_index(unsigned long page_idx, unsigned int order)
131{
132	return page_idx ^ (1 << order);
133}
134
135extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
136				unsigned long end_pfn, struct zone *zone);
137
138static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
139				unsigned long end_pfn, struct zone *zone)
140{
141	if (zone->contiguous)
142		return pfn_to_page(start_pfn);
143
144	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
145}
146
147extern int __isolate_free_page(struct page *page, unsigned int order);
148extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
 
 
149					unsigned int order);
 
150extern void prep_compound_page(struct page *page, unsigned int order);
 
 
151extern int user_min_free_kbytes;
152
 
 
 
153#if defined CONFIG_COMPACTION || defined CONFIG_CMA
154
155/*
156 * in mm/compaction.c
157 */
158/*
159 * compact_control is used to track pages being migrated and the free pages
160 * they are being migrated to during memory compaction. The free_pfn starts
161 * at the end of a zone and migrate_pfn begins at the start. Movable pages
162 * are moved to the end of a zone during a compaction run and the run
163 * completes when free_pfn <= migrate_pfn
164 */
165struct compact_control {
166	struct list_head freepages;	/* List of free pages to migrate to */
167	struct list_head migratepages;	/* List of pages being migrated */
168	unsigned long nr_freepages;	/* Number of isolated free pages */
169	unsigned long nr_migratepages;	/* Number of pages to migrate */
170	unsigned long free_pfn;		/* isolate_freepages search base */
171	unsigned long migrate_pfn;	/* isolate_migratepages search base */
172	unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
 
 
 
 
 
 
 
 
 
 
173	enum migrate_mode mode;		/* Async or sync migration mode */
174	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 
 
175	bool direct_compaction;		/* False from kcompactd or /proc/... */
176	int order;			/* order a direct compactor needs */
177	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
178	const int alloc_flags;		/* alloc flags of a direct compactor */
179	const int classzone_idx;	/* zone index of a direct compactor */
180	struct zone *zone;
181	int contended;			/* Signal need_sched() or lock
182					 * contention detected during
183					 * compaction
184					 */
 
 
 
 
 
185};
186
187unsigned long
188isolate_freepages_range(struct compact_control *cc,
189			unsigned long start_pfn, unsigned long end_pfn);
190unsigned long
191isolate_migratepages_range(struct compact_control *cc,
192			   unsigned long low_pfn, unsigned long end_pfn);
193int find_suitable_fallback(struct free_area *area, unsigned int order,
194			int migratetype, bool only_stealable, bool *can_steal);
195
196#endif
197
198/*
199 * This function returns the order of a free page in the buddy system. In
200 * general, page_zone(page)->lock must be held by the caller to prevent the
201 * page from being allocated in parallel and returning garbage as the order.
202 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
203 * page cannot be allocated or merged in parallel. Alternatively, it must
204 * handle invalid values gracefully, and use page_order_unsafe() below.
205 */
206static inline unsigned int page_order(struct page *page)
207{
208	/* PageBuddy() must be checked by the caller */
209	return page_private(page);
210}
211
212/*
213 * Like page_order(), but for callers who cannot afford to hold the zone lock.
214 * PageBuddy() should be checked first by the caller to minimize race window,
215 * and invalid values must be handled gracefully.
216 *
217 * READ_ONCE is used so that if the caller assigns the result into a local
218 * variable and e.g. tests it for valid range before using, the compiler cannot
219 * decide to remove the variable and inline the page_private(page) multiple
220 * times, potentially observing different values in the tests and the actual
221 * use of the result.
222 */
223#define page_order_unsafe(page)		READ_ONCE(page_private(page))
224
225static inline bool is_cow_mapping(vm_flags_t flags)
226{
227	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
228}
229
230/*
231 * These three helpers classifies VMAs for virtual memory accounting.
232 */
233
234/*
235 * Executable code area - executable, not writable, not stack
236 */
237static inline bool is_exec_mapping(vm_flags_t flags)
238{
239	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
240}
241
242/*
243 * Stack area - atomatically grows in one direction
244 *
245 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
246 * do_mmap() forbids all other combinations.
247 */
248static inline bool is_stack_mapping(vm_flags_t flags)
249{
250	return (flags & VM_STACK) == VM_STACK;
251}
252
253/*
254 * Data area - private, writable, not stack
255 */
256static inline bool is_data_mapping(vm_flags_t flags)
257{
258	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
259}
260
261/* mm/util.c */
262void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
263		struct vm_area_struct *prev, struct rb_node *rb_parent);
 
264
265#ifdef CONFIG_MMU
266extern long populate_vma_page_range(struct vm_area_struct *vma,
267		unsigned long start, unsigned long end, int *nonblocking);
268extern void munlock_vma_pages_range(struct vm_area_struct *vma,
269			unsigned long start, unsigned long end);
270static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
271{
272	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
273}
274
275/*
276 * must be called with vma's mmap_sem held for read or write, and page locked.
277 */
278extern void mlock_vma_page(struct page *page);
279extern unsigned int munlock_vma_page(struct page *page);
280
281/*
282 * Clear the page's PageMlocked().  This can be useful in a situation where
283 * we want to unconditionally remove a page from the pagecache -- e.g.,
284 * on truncation or freeing.
285 *
286 * It is legal to call this function for any page, mlocked or not.
287 * If called for a page that is still mapped by mlocked vmas, all we do
288 * is revert to lazy LRU behaviour -- semantics are not broken.
289 */
290extern void clear_page_mlock(struct page *page);
291
292/*
293 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
294 * (because that does not go through the full procedure of migration ptes):
295 * to migrate the Mlocked page flag; update statistics.
296 */
297static inline void mlock_migrate_page(struct page *newpage, struct page *page)
298{
299	if (TestClearPageMlocked(page)) {
300		int nr_pages = hpage_nr_pages(page);
301
302		/* Holding pmd lock, no change in irq context: __mod is safe */
303		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
304		SetPageMlocked(newpage);
305		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
306	}
307}
308
309extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
310
311/*
312 * At what user virtual address is page expected in @vma?
313 */
314static inline unsigned long
315__vma_address(struct page *page, struct vm_area_struct *vma)
316{
317	pgoff_t pgoff = page_to_pgoff(page);
318	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
319}
320
321static inline unsigned long
322vma_address(struct page *page, struct vm_area_struct *vma)
323{
324	unsigned long address = __vma_address(page, vma);
 
 
 
325
326	/* page should be within @vma mapping range */
327	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 
 
 
 
 
 
 
 
 
 
 
328
329	return address;
 
 
 
 
 
 
 
 
 
 
330}
331
332#else /* !CONFIG_MMU */
333static inline void clear_page_mlock(struct page *page) { }
334static inline void mlock_vma_page(struct page *page) { }
335static inline void mlock_migrate_page(struct page *new, struct page *old) { }
336
337#endif /* !CONFIG_MMU */
338
339/*
340 * Return the mem_map entry representing the 'offset' subpage within
341 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
342 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
343 */
344static inline struct page *mem_map_offset(struct page *base, int offset)
345{
346	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
347		return nth_page(base, offset);
348	return base + offset;
349}
350
351/*
352 * Iterator over all subpages within the maximally aligned gigantic
353 * page 'base'.  Handle any discontiguity in the mem_map.
354 */
355static inline struct page *mem_map_next(struct page *iter,
356						struct page *base, int offset)
357{
358	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
359		unsigned long pfn = page_to_pfn(base) + offset;
360		if (!pfn_valid(pfn))
361			return NULL;
362		return pfn_to_page(pfn);
363	}
364	return iter + 1;
365}
366
367/*
368 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
369 * so all functions starting at paging_init should be marked __init
370 * in those cases. SPARSEMEM, however, allows for memory hotplug,
371 * and alloc_bootmem_node is not used.
372 */
373#ifdef CONFIG_SPARSEMEM
374#define __paginginit __meminit
375#else
376#define __paginginit __init
377#endif
378
379/* Memory initialisation debug and verification */
380enum mminit_level {
381	MMINIT_WARNING,
382	MMINIT_VERIFY,
383	MMINIT_TRACE
384};
385
386#ifdef CONFIG_DEBUG_MEMORY_INIT
387
388extern int mminit_loglevel;
389
390#define mminit_dprintk(level, prefix, fmt, arg...) \
391do { \
392	if (level < mminit_loglevel) { \
393		if (level <= MMINIT_WARNING) \
394			pr_warn("mminit::" prefix " " fmt, ##arg);	\
395		else \
396			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
397	} \
398} while (0)
399
400extern void mminit_verify_pageflags_layout(void);
401extern void mminit_verify_zonelist(void);
402#else
403
404static inline void mminit_dprintk(enum mminit_level level,
405				const char *prefix, const char *fmt, ...)
406{
407}
408
409static inline void mminit_verify_pageflags_layout(void)
410{
411}
412
413static inline void mminit_verify_zonelist(void)
414{
415}
416#endif /* CONFIG_DEBUG_MEMORY_INIT */
417
418/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
419#if defined(CONFIG_SPARSEMEM)
420extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
421				unsigned long *end_pfn);
422#else
423static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
424				unsigned long *end_pfn)
425{
426}
427#endif /* CONFIG_SPARSEMEM */
428
429#define ZONE_RECLAIM_NOSCAN	-2
430#define ZONE_RECLAIM_FULL	-1
431#define ZONE_RECLAIM_SOME	0
432#define ZONE_RECLAIM_SUCCESS	1
 
 
 
 
 
 
 
 
 
 
433
434extern int hwpoison_filter(struct page *p);
435
436extern u32 hwpoison_filter_dev_major;
437extern u32 hwpoison_filter_dev_minor;
438extern u64 hwpoison_filter_flags_mask;
439extern u64 hwpoison_filter_flags_value;
440extern u64 hwpoison_filter_memcg;
441extern u32 hwpoison_filter_enable;
442
443extern unsigned long vm_mmap_pgoff(struct file *, unsigned long,
444        unsigned long, unsigned long,
445        unsigned long, unsigned long);
446
447extern void set_pageblock_order(void);
448unsigned long reclaim_clean_pages_from_list(struct zone *zone,
449					    struct list_head *page_list);
450/* The ALLOC_WMARK bits are used as an index to zone->watermark */
451#define ALLOC_WMARK_MIN		WMARK_MIN
452#define ALLOC_WMARK_LOW		WMARK_LOW
453#define ALLOC_WMARK_HIGH	WMARK_HIGH
454#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
455
456/* Mask to get the watermark bits */
457#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
458
459#define ALLOC_HARDER		0x10 /* try to alloc harder */
460#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
461#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
462#define ALLOC_CMA		0x80 /* allow allocations from CMA areas */
463#define ALLOC_FAIR		0x100 /* fair zone allocation */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464
465enum ttu_flags;
466struct tlbflush_unmap_batch;
467
 
 
 
 
 
 
 
468#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
469void try_to_unmap_flush(void);
470void try_to_unmap_flush_dirty(void);
 
471#else
472static inline void try_to_unmap_flush(void)
473{
474}
475static inline void try_to_unmap_flush_dirty(void)
476{
477}
478
 
 
479#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
480
481extern const struct trace_print_flags pageflag_names[];
482extern const struct trace_print_flags vmaflag_names[];
483extern const struct trace_print_flags gfpflag_names[];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484
485#endif	/* __MM_INTERNAL_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/tracepoint-defs.h>
 14
 15/*
 16 * The set of flags that only affect watermark checking and reclaim
 17 * behaviour. This is used by the MM to obey the caller constraints
 18 * about IO, FS and watermark checking while ignoring placement
 19 * hints such as HIGHMEM usage.
 20 */
 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 22			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 23			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 24			__GFP_ATOMIC)
 25
 26/* The GFP flags allowed during early boot */
 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 28
 29/* Control allocation cpuset and node placement constraints */
 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 31
 32/* Do not use these with a slab allocator */
 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 34
 35void page_writeback_init(void);
 36
 37vm_fault_t do_swap_page(struct vm_fault *vmf);
 38
 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 40		unsigned long floor, unsigned long ceiling);
 41
 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
 43{
 44	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
 45}
 46
 47void unmap_page_range(struct mmu_gather *tlb,
 48			     struct vm_area_struct *vma,
 49			     unsigned long addr, unsigned long end,
 50			     struct zap_details *details);
 51
 52void force_page_cache_readahead(struct address_space *, struct file *,
 53		pgoff_t index, unsigned long nr_to_read);
 54void __do_page_cache_readahead(struct address_space *, struct file *,
 55		pgoff_t index, unsigned long nr_to_read,
 56		unsigned long lookahead_size);
 57
 58/*
 59 * Submit IO for the read-ahead request in file_ra_state.
 60 */
 61static inline void ra_submit(struct file_ra_state *ra,
 62		struct address_space *mapping, struct file *filp)
 63{
 64	__do_page_cache_readahead(mapping, filp,
 65			ra->start, ra->size, ra->async_size);
 66}
 67
 68/**
 69 * page_evictable - test whether a page is evictable
 70 * @page: the page to test
 71 *
 72 * Test whether page is evictable--i.e., should be placed on active/inactive
 73 * lists vs unevictable list.
 74 *
 75 * Reasons page might not be evictable:
 76 * (1) page's mapping marked unevictable
 77 * (2) page is part of an mlocked VMA
 78 *
 79 */
 80static inline bool page_evictable(struct page *page)
 81{
 82	bool ret;
 83
 84	/* Prevent address_space of inode and swap cache from being freed */
 85	rcu_read_lock();
 86	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 87	rcu_read_unlock();
 88	return ret;
 89}
 90
 91/*
 92 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 93 * a count of one.
 94 */
 95static inline void set_page_refcounted(struct page *page)
 96{
 97	VM_BUG_ON_PAGE(PageTail(page), page);
 98	VM_BUG_ON_PAGE(page_ref_count(page), page);
 99	set_page_count(page, 1);
100}
101
102extern unsigned long highest_memmap_pfn;
103
104/*
105 * Maximum number of reclaim retries without progress before the OOM
106 * killer is consider the only way forward.
107 */
108#define MAX_RECLAIM_RETRIES 16
109
110/*
111 * in mm/vmscan.c:
112 */
113extern int isolate_lru_page(struct page *page);
114extern void putback_lru_page(struct page *page);
 
115
116/*
117 * in mm/rmap.c:
118 */
119extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
120
121/*
122 * in mm/page_alloc.c
123 */
124
125/*
126 * Structure for holding the mostly immutable allocation parameters passed
127 * between functions involved in allocations, including the alloc_pages*
128 * family of functions.
129 *
130 * nodemask, migratetype and highest_zoneidx are initialized only once in
131 * __alloc_pages_nodemask() and then never change.
132 *
133 * zonelist, preferred_zone and highest_zoneidx are set first in
134 * __alloc_pages_nodemask() for the fast path, and might be later changed
135 * in __alloc_pages_slowpath(). All other functions pass the whole structure
136 * by a const pointer.
137 */
138struct alloc_context {
139	struct zonelist *zonelist;
140	nodemask_t *nodemask;
141	struct zoneref *preferred_zoneref;
 
142	int migratetype;
143
144	/*
145	 * highest_zoneidx represents highest usable zone index of
146	 * the allocation request. Due to the nature of the zone,
147	 * memory on lower zone than the highest_zoneidx will be
148	 * protected by lowmem_reserve[highest_zoneidx].
149	 *
150	 * highest_zoneidx is also used by reclaim/compaction to limit
151	 * the target zone since higher zone than this index cannot be
152	 * usable for this allocation request.
153	 */
154	enum zone_type highest_zoneidx;
155	bool spread_dirty_pages;
156};
157
158/*
159 * Locate the struct page for both the matching buddy in our
160 * pair (buddy1) and the combined O(n+1) page they form (page).
161 *
162 * 1) Any buddy B1 will have an order O twin B2 which satisfies
163 * the following equation:
164 *     B2 = B1 ^ (1 << O)
165 * For example, if the starting buddy (buddy2) is #8 its order
166 * 1 buddy is #10:
167 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
168 *
169 * 2) Any buddy B will have an order O+1 parent P which
170 * satisfies the following equation:
171 *     P = B & ~(1 << O)
172 *
173 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
174 */
175static inline unsigned long
176__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
177{
178	return page_pfn ^ (1 << order);
179}
180
181extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
182				unsigned long end_pfn, struct zone *zone);
183
184static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
185				unsigned long end_pfn, struct zone *zone)
186{
187	if (zone->contiguous)
188		return pfn_to_page(start_pfn);
189
190	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
191}
192
193extern int __isolate_free_page(struct page *page, unsigned int order);
194extern void __putback_isolated_page(struct page *page, unsigned int order,
195				    int mt);
196extern void memblock_free_pages(struct page *page, unsigned long pfn,
197					unsigned int order);
198extern void __free_pages_core(struct page *page, unsigned int order);
199extern void prep_compound_page(struct page *page, unsigned int order);
200extern void post_alloc_hook(struct page *page, unsigned int order,
201					gfp_t gfp_flags);
202extern int user_min_free_kbytes;
203
204extern void zone_pcp_update(struct zone *zone);
205extern void zone_pcp_reset(struct zone *zone);
206
207#if defined CONFIG_COMPACTION || defined CONFIG_CMA
208
209/*
210 * in mm/compaction.c
211 */
212/*
213 * compact_control is used to track pages being migrated and the free pages
214 * they are being migrated to during memory compaction. The free_pfn starts
215 * at the end of a zone and migrate_pfn begins at the start. Movable pages
216 * are moved to the end of a zone during a compaction run and the run
217 * completes when free_pfn <= migrate_pfn
218 */
219struct compact_control {
220	struct list_head freepages;	/* List of free pages to migrate to */
221	struct list_head migratepages;	/* List of pages being migrated */
222	unsigned int nr_freepages;	/* Number of isolated free pages */
223	unsigned int nr_migratepages;	/* Number of pages to migrate */
224	unsigned long free_pfn;		/* isolate_freepages search base */
225	unsigned long migrate_pfn;	/* isolate_migratepages search base */
226	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
227	struct zone *zone;
228	unsigned long total_migrate_scanned;
229	unsigned long total_free_scanned;
230	unsigned short fast_search_fail;/* failures to use free list searches */
231	short search_order;		/* order to start a fast search at */
232	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
233	int order;			/* order a direct compactor needs */
234	int migratetype;		/* migratetype of direct compactor */
235	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
236	const int highest_zoneidx;	/* zone index of a direct compactor */
237	enum migrate_mode mode;		/* Async or sync migration mode */
238	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
239	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
240	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
241	bool direct_compaction;		/* False from kcompactd or /proc/... */
242	bool proactive_compaction;	/* kcompactd proactive compaction */
243	bool whole_zone;		/* Whole zone should/has been scanned */
244	bool contended;			/* Signal lock or sched contention */
245	bool rescan;			/* Rescanning the same pageblock */
246	bool alloc_contig;		/* alloc_contig_range allocation */
247};
248
249/*
250 * Used in direct compaction when a page should be taken from the freelists
251 * immediately when one is created during the free path.
252 */
253struct capture_control {
254	struct compact_control *cc;
255	struct page *page;
256};
257
258unsigned long
259isolate_freepages_range(struct compact_control *cc,
260			unsigned long start_pfn, unsigned long end_pfn);
261unsigned long
262isolate_migratepages_range(struct compact_control *cc,
263			   unsigned long low_pfn, unsigned long end_pfn);
264int find_suitable_fallback(struct free_area *area, unsigned int order,
265			int migratetype, bool only_stealable, bool *can_steal);
266
267#endif
268
269/*
270 * This function returns the order of a free page in the buddy system. In
271 * general, page_zone(page)->lock must be held by the caller to prevent the
272 * page from being allocated in parallel and returning garbage as the order.
273 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
274 * page cannot be allocated or merged in parallel. Alternatively, it must
275 * handle invalid values gracefully, and use page_order_unsafe() below.
276 */
277static inline unsigned int page_order(struct page *page)
278{
279	/* PageBuddy() must be checked by the caller */
280	return page_private(page);
281}
282
283/*
284 * Like page_order(), but for callers who cannot afford to hold the zone lock.
285 * PageBuddy() should be checked first by the caller to minimize race window,
286 * and invalid values must be handled gracefully.
287 *
288 * READ_ONCE is used so that if the caller assigns the result into a local
289 * variable and e.g. tests it for valid range before using, the compiler cannot
290 * decide to remove the variable and inline the page_private(page) multiple
291 * times, potentially observing different values in the tests and the actual
292 * use of the result.
293 */
294#define page_order_unsafe(page)		READ_ONCE(page_private(page))
295
296static inline bool is_cow_mapping(vm_flags_t flags)
297{
298	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
299}
300
301/*
302 * These three helpers classifies VMAs for virtual memory accounting.
303 */
304
305/*
306 * Executable code area - executable, not writable, not stack
307 */
308static inline bool is_exec_mapping(vm_flags_t flags)
309{
310	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
311}
312
313/*
314 * Stack area - atomatically grows in one direction
315 *
316 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
317 * do_mmap() forbids all other combinations.
318 */
319static inline bool is_stack_mapping(vm_flags_t flags)
320{
321	return (flags & VM_STACK) == VM_STACK;
322}
323
324/*
325 * Data area - private, writable, not stack
326 */
327static inline bool is_data_mapping(vm_flags_t flags)
328{
329	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
330}
331
332/* mm/util.c */
333void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
334		struct vm_area_struct *prev);
335void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
336
337#ifdef CONFIG_MMU
338extern long populate_vma_page_range(struct vm_area_struct *vma,
339		unsigned long start, unsigned long end, int *nonblocking);
340extern void munlock_vma_pages_range(struct vm_area_struct *vma,
341			unsigned long start, unsigned long end);
342static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
343{
344	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
345}
346
347/*
348 * must be called with vma's mmap_lock held for read or write, and page locked.
349 */
350extern void mlock_vma_page(struct page *page);
351extern unsigned int munlock_vma_page(struct page *page);
352
353/*
354 * Clear the page's PageMlocked().  This can be useful in a situation where
355 * we want to unconditionally remove a page from the pagecache -- e.g.,
356 * on truncation or freeing.
357 *
358 * It is legal to call this function for any page, mlocked or not.
359 * If called for a page that is still mapped by mlocked vmas, all we do
360 * is revert to lazy LRU behaviour -- semantics are not broken.
361 */
362extern void clear_page_mlock(struct page *page);
363
364/*
365 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
366 * (because that does not go through the full procedure of migration ptes):
367 * to migrate the Mlocked page flag; update statistics.
368 */
369static inline void mlock_migrate_page(struct page *newpage, struct page *page)
370{
371	if (TestClearPageMlocked(page)) {
372		int nr_pages = thp_nr_pages(page);
373
374		/* Holding pmd lock, no change in irq context: __mod is safe */
375		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
376		SetPageMlocked(newpage);
377		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
378	}
379}
380
381extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
382
383/*
384 * At what user virtual address is page expected in @vma?
385 */
386static inline unsigned long
387__vma_address(struct page *page, struct vm_area_struct *vma)
388{
389	pgoff_t pgoff = page_to_pgoff(page);
390	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
391}
392
393static inline unsigned long
394vma_address(struct page *page, struct vm_area_struct *vma)
395{
396	unsigned long start, end;
397
398	start = __vma_address(page, vma);
399	end = start + thp_size(page) - PAGE_SIZE;
400
401	/* page should be within @vma mapping range */
402	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
403
404	return max(start, vma->vm_start);
405}
406
407static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
408						    struct file *fpin)
409{
410	int flags = vmf->flags;
411
412	if (fpin)
413		return fpin;
414
415	/*
416	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
417	 * anything, so we only pin the file and drop the mmap_lock if only
418	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
419	 */
420	if (fault_flag_allow_retry_first(flags) &&
421	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
422		fpin = get_file(vmf->vma->vm_file);
423		mmap_read_unlock(vmf->vma->vm_mm);
424	}
425	return fpin;
426}
427
428#else /* !CONFIG_MMU */
429static inline void clear_page_mlock(struct page *page) { }
430static inline void mlock_vma_page(struct page *page) { }
431static inline void mlock_migrate_page(struct page *new, struct page *old) { }
432
433#endif /* !CONFIG_MMU */
434
435/*
436 * Return the mem_map entry representing the 'offset' subpage within
437 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
438 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
439 */
440static inline struct page *mem_map_offset(struct page *base, int offset)
441{
442	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
443		return nth_page(base, offset);
444	return base + offset;
445}
446
447/*
448 * Iterator over all subpages within the maximally aligned gigantic
449 * page 'base'.  Handle any discontiguity in the mem_map.
450 */
451static inline struct page *mem_map_next(struct page *iter,
452						struct page *base, int offset)
453{
454	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
455		unsigned long pfn = page_to_pfn(base) + offset;
456		if (!pfn_valid(pfn))
457			return NULL;
458		return pfn_to_page(pfn);
459	}
460	return iter + 1;
461}
462
 
 
 
 
 
 
 
 
 
 
 
 
463/* Memory initialisation debug and verification */
464enum mminit_level {
465	MMINIT_WARNING,
466	MMINIT_VERIFY,
467	MMINIT_TRACE
468};
469
470#ifdef CONFIG_DEBUG_MEMORY_INIT
471
472extern int mminit_loglevel;
473
474#define mminit_dprintk(level, prefix, fmt, arg...) \
475do { \
476	if (level < mminit_loglevel) { \
477		if (level <= MMINIT_WARNING) \
478			pr_warn("mminit::" prefix " " fmt, ##arg);	\
479		else \
480			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
481	} \
482} while (0)
483
484extern void mminit_verify_pageflags_layout(void);
485extern void mminit_verify_zonelist(void);
486#else
487
488static inline void mminit_dprintk(enum mminit_level level,
489				const char *prefix, const char *fmt, ...)
490{
491}
492
493static inline void mminit_verify_pageflags_layout(void)
494{
495}
496
497static inline void mminit_verify_zonelist(void)
498{
499}
500#endif /* CONFIG_DEBUG_MEMORY_INIT */
501
502/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
503#if defined(CONFIG_SPARSEMEM)
504extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
505				unsigned long *end_pfn);
506#else
507static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
508				unsigned long *end_pfn)
509{
510}
511#endif /* CONFIG_SPARSEMEM */
512
513#define NODE_RECLAIM_NOSCAN	-2
514#define NODE_RECLAIM_FULL	-1
515#define NODE_RECLAIM_SOME	0
516#define NODE_RECLAIM_SUCCESS	1
517
518#ifdef CONFIG_NUMA
519extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
520#else
521static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
522				unsigned int order)
523{
524	return NODE_RECLAIM_NOSCAN;
525}
526#endif
527
528extern int hwpoison_filter(struct page *p);
529
530extern u32 hwpoison_filter_dev_major;
531extern u32 hwpoison_filter_dev_minor;
532extern u64 hwpoison_filter_flags_mask;
533extern u64 hwpoison_filter_flags_value;
534extern u64 hwpoison_filter_memcg;
535extern u32 hwpoison_filter_enable;
536
537extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
538        unsigned long, unsigned long,
539        unsigned long, unsigned long);
540
541extern void set_pageblock_order(void);
542unsigned int reclaim_clean_pages_from_list(struct zone *zone,
543					    struct list_head *page_list);
544/* The ALLOC_WMARK bits are used as an index to zone->watermark */
545#define ALLOC_WMARK_MIN		WMARK_MIN
546#define ALLOC_WMARK_LOW		WMARK_LOW
547#define ALLOC_WMARK_HIGH	WMARK_HIGH
548#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
549
550/* Mask to get the watermark bits */
551#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
552
553/*
554 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
555 * cannot assume a reduced access to memory reserves is sufficient for
556 * !MMU
557 */
558#ifdef CONFIG_MMU
559#define ALLOC_OOM		0x08
560#else
561#define ALLOC_OOM		ALLOC_NO_WATERMARKS
562#endif
563
564#define ALLOC_HARDER		 0x10 /* try to alloc harder */
565#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
566#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
567#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
568#ifdef CONFIG_ZONE_DMA32
569#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
570#else
571#define ALLOC_NOFRAGMENT	  0x0
572#endif
573#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
574
575enum ttu_flags;
576struct tlbflush_unmap_batch;
577
578
579/*
580 * only for MM internal work items which do not depend on
581 * any allocations or locks which might depend on allocations
582 */
583extern struct workqueue_struct *mm_percpu_wq;
584
585#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
586void try_to_unmap_flush(void);
587void try_to_unmap_flush_dirty(void);
588void flush_tlb_batched_pending(struct mm_struct *mm);
589#else
590static inline void try_to_unmap_flush(void)
591{
592}
593static inline void try_to_unmap_flush_dirty(void)
594{
595}
596static inline void flush_tlb_batched_pending(struct mm_struct *mm)
597{
598}
599#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
600
601extern const struct trace_print_flags pageflag_names[];
602extern const struct trace_print_flags vmaflag_names[];
603extern const struct trace_print_flags gfpflag_names[];
604
605static inline bool is_migrate_highatomic(enum migratetype migratetype)
606{
607	return migratetype == MIGRATE_HIGHATOMIC;
608}
609
610static inline bool is_migrate_highatomic_page(struct page *page)
611{
612	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
613}
614
615void setup_zone_pageset(struct zone *zone);
616
617struct migration_target_control {
618	int nid;		/* preferred node id */
619	nodemask_t *nmask;
620	gfp_t gfp_mask;
621};
622
623#endif	/* __MM_INTERNAL_H */