Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Deadline Scheduling Class (SCHED_DEADLINE)
   3 *
   4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   5 *
   6 * Tasks that periodically executes their instances for less than their
   7 * runtime won't miss any of their deadlines.
   8 * Tasks that are not periodic or sporadic or that tries to execute more
   9 * than their reserved bandwidth will be slowed down (and may potentially
  10 * miss some of their deadlines), and won't affect any other task.
  11 *
  12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  13 *                    Juri Lelli <juri.lelli@gmail.com>,
  14 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  15 *                    Fabio Checconi <fchecconi@gmail.com>
  16 */
  17#include "sched.h"
  18
  19#include <linux/slab.h>
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
  47{
  48	struct sched_dl_entity *dl_se = &p->dl;
  49
  50	return dl_rq->rb_leftmost == &dl_se->rb_node;
  51}
  52
 
 
  53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
  54{
  55	raw_spin_lock_init(&dl_b->dl_runtime_lock);
  56	dl_b->dl_period = period;
  57	dl_b->dl_runtime = runtime;
  58}
  59
  60void init_dl_bw(struct dl_bw *dl_b)
  61{
  62	raw_spin_lock_init(&dl_b->lock);
  63	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
  64	if (global_rt_runtime() == RUNTIME_INF)
  65		dl_b->bw = -1;
  66	else
  67		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
  68	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
  69	dl_b->total_bw = 0;
  70}
  71
  72void init_dl_rq(struct dl_rq *dl_rq)
  73{
  74	dl_rq->rb_root = RB_ROOT;
  75
  76#ifdef CONFIG_SMP
  77	/* zero means no -deadline tasks */
  78	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
  79
  80	dl_rq->dl_nr_migratory = 0;
  81	dl_rq->overloaded = 0;
  82	dl_rq->pushable_dl_tasks_root = RB_ROOT;
  83#else
  84	init_dl_bw(&dl_rq->dl_bw);
  85#endif
 
 
 
 
  86}
  87
  88#ifdef CONFIG_SMP
  89
  90static inline int dl_overloaded(struct rq *rq)
  91{
  92	return atomic_read(&rq->rd->dlo_count);
  93}
  94
  95static inline void dl_set_overload(struct rq *rq)
  96{
  97	if (!rq->online)
  98		return;
  99
 100	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 101	/*
 102	 * Must be visible before the overload count is
 103	 * set (as in sched_rt.c).
 104	 *
 105	 * Matched by the barrier in pull_dl_task().
 106	 */
 107	smp_wmb();
 108	atomic_inc(&rq->rd->dlo_count);
 109}
 110
 111static inline void dl_clear_overload(struct rq *rq)
 112{
 113	if (!rq->online)
 114		return;
 115
 116	atomic_dec(&rq->rd->dlo_count);
 117	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 118}
 119
 120static void update_dl_migration(struct dl_rq *dl_rq)
 121{
 122	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 123		if (!dl_rq->overloaded) {
 124			dl_set_overload(rq_of_dl_rq(dl_rq));
 125			dl_rq->overloaded = 1;
 126		}
 127	} else if (dl_rq->overloaded) {
 128		dl_clear_overload(rq_of_dl_rq(dl_rq));
 129		dl_rq->overloaded = 0;
 130	}
 131}
 132
 133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 134{
 135	struct task_struct *p = dl_task_of(dl_se);
 136
 137	if (p->nr_cpus_allowed > 1)
 138		dl_rq->dl_nr_migratory++;
 139
 140	update_dl_migration(dl_rq);
 141}
 142
 143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145	struct task_struct *p = dl_task_of(dl_se);
 146
 147	if (p->nr_cpus_allowed > 1)
 148		dl_rq->dl_nr_migratory--;
 149
 150	update_dl_migration(dl_rq);
 151}
 152
 153/*
 154 * The list of pushable -deadline task is not a plist, like in
 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 156 */
 157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 158{
 159	struct dl_rq *dl_rq = &rq->dl;
 160	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
 161	struct rb_node *parent = NULL;
 162	struct task_struct *entry;
 163	int leftmost = 1;
 164
 165	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 166
 167	while (*link) {
 168		parent = *link;
 169		entry = rb_entry(parent, struct task_struct,
 170				 pushable_dl_tasks);
 171		if (dl_entity_preempt(&p->dl, &entry->dl))
 172			link = &parent->rb_left;
 173		else {
 174			link = &parent->rb_right;
 175			leftmost = 0;
 176		}
 177	}
 178
 179	if (leftmost) {
 180		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
 181		dl_rq->earliest_dl.next = p->dl.deadline;
 182	}
 183
 184	rb_link_node(&p->pushable_dl_tasks, parent, link);
 185	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 
 186}
 187
 188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 189{
 190	struct dl_rq *dl_rq = &rq->dl;
 191
 192	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 193		return;
 194
 195	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
 196		struct rb_node *next_node;
 197
 198		next_node = rb_next(&p->pushable_dl_tasks);
 199		dl_rq->pushable_dl_tasks_leftmost = next_node;
 200		if (next_node) {
 201			dl_rq->earliest_dl.next = rb_entry(next_node,
 202				struct task_struct, pushable_dl_tasks)->dl.deadline;
 203		}
 204	}
 205
 206	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 207	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 208}
 209
 210static inline int has_pushable_dl_tasks(struct rq *rq)
 211{
 212	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
 213}
 214
 215static int push_dl_task(struct rq *rq);
 216
 217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 218{
 219	return dl_task(prev);
 220}
 221
 222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 224
 225static void push_dl_tasks(struct rq *);
 226static void pull_dl_task(struct rq *);
 227
 228static inline void queue_push_tasks(struct rq *rq)
 229{
 230	if (!has_pushable_dl_tasks(rq))
 231		return;
 232
 233	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 234}
 235
 236static inline void queue_pull_task(struct rq *rq)
 237{
 238	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 239}
 240
 241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 242
 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 244{
 245	struct rq *later_rq = NULL;
 246	bool fallback = false;
 247
 248	later_rq = find_lock_later_rq(p, rq);
 249
 250	if (!later_rq) {
 251		int cpu;
 252
 253		/*
 254		 * If we cannot preempt any rq, fall back to pick any
 255		 * online cpu.
 256		 */
 257		fallback = true;
 258		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
 259		if (cpu >= nr_cpu_ids) {
 260			/*
 261			 * Fail to find any suitable cpu.
 262			 * The task will never come back!
 263			 */
 264			BUG_ON(dl_bandwidth_enabled());
 265
 266			/*
 267			 * If admission control is disabled we
 268			 * try a little harder to let the task
 269			 * run.
 270			 */
 271			cpu = cpumask_any(cpu_active_mask);
 272		}
 273		later_rq = cpu_rq(cpu);
 274		double_lock_balance(rq, later_rq);
 275	}
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277	/*
 278	 * By now the task is replenished and enqueued; migrate it.
 
 
 279	 */
 280	deactivate_task(rq, p, 0);
 281	set_task_cpu(p, later_rq->cpu);
 282	activate_task(later_rq, p, 0);
 
 283
 284	if (!fallback)
 285		resched_curr(later_rq);
 
 
 286
 
 287	double_unlock_balance(later_rq, rq);
 288
 289	return later_rq;
 290}
 291
 292#else
 293
 294static inline
 295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 296{
 297}
 298
 299static inline
 300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 301{
 302}
 303
 304static inline
 305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 306{
 307}
 308
 309static inline
 310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 311{
 312}
 313
 314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 315{
 316	return false;
 317}
 318
 319static inline void pull_dl_task(struct rq *rq)
 320{
 321}
 322
 323static inline void queue_push_tasks(struct rq *rq)
 324{
 325}
 326
 327static inline void queue_pull_task(struct rq *rq)
 328{
 329}
 330#endif /* CONFIG_SMP */
 331
 332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 335				  int flags);
 336
 337/*
 338 * We are being explicitly informed that a new instance is starting,
 339 * and this means that:
 340 *  - the absolute deadline of the entity has to be placed at
 341 *    current time + relative deadline;
 342 *  - the runtime of the entity has to be set to the maximum value.
 343 *
 344 * The capability of specifying such event is useful whenever a -deadline
 345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 346 * one, and to (try to!) reconcile itself with its own scheduling
 347 * parameters.
 348 */
 349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
 350				       struct sched_dl_entity *pi_se)
 351{
 352	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 353	struct rq *rq = rq_of_dl_rq(dl_rq);
 354
 
 355	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 356
 357	/*
 358	 * We are racing with the deadline timer. So, do nothing because
 359	 * the deadline timer handler will take care of properly recharging
 360	 * the runtime and postponing the deadline
 361	 */
 362	if (dl_se->dl_throttled)
 363		return;
 364
 365	/*
 366	 * We use the regular wall clock time to set deadlines in the
 367	 * future; in fact, we must consider execution overheads (time
 368	 * spent on hardirq context, etc.).
 369	 */
 370	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 371	dl_se->runtime = pi_se->dl_runtime;
 372}
 373
 374/*
 375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 376 * possibility of a entity lasting more than what it declared, and thus
 377 * exhausting its runtime.
 378 *
 379 * Here we are interested in making runtime overrun possible, but we do
 380 * not want a entity which is misbehaving to affect the scheduling of all
 381 * other entities.
 382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 383 * is used, in order to confine each entity within its own bandwidth.
 384 *
 385 * This function deals exactly with that, and ensures that when the runtime
 386 * of a entity is replenished, its deadline is also postponed. That ensures
 387 * the overrunning entity can't interfere with other entity in the system and
 388 * can't make them miss their deadlines. Reasons why this kind of overruns
 389 * could happen are, typically, a entity voluntarily trying to overcome its
 390 * runtime, or it just underestimated it during sched_setattr().
 391 */
 392static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 393				struct sched_dl_entity *pi_se)
 394{
 395	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 396	struct rq *rq = rq_of_dl_rq(dl_rq);
 397
 398	BUG_ON(pi_se->dl_runtime <= 0);
 399
 400	/*
 401	 * This could be the case for a !-dl task that is boosted.
 402	 * Just go with full inherited parameters.
 403	 */
 404	if (dl_se->dl_deadline == 0) {
 405		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 406		dl_se->runtime = pi_se->dl_runtime;
 407	}
 408
 409	if (dl_se->dl_yielded && dl_se->runtime > 0)
 410		dl_se->runtime = 0;
 411
 412	/*
 413	 * We keep moving the deadline away until we get some
 414	 * available runtime for the entity. This ensures correct
 415	 * handling of situations where the runtime overrun is
 416	 * arbitrary large.
 417	 */
 418	while (dl_se->runtime <= 0) {
 419		dl_se->deadline += pi_se->dl_period;
 420		dl_se->runtime += pi_se->dl_runtime;
 421	}
 422
 423	/*
 424	 * At this point, the deadline really should be "in
 425	 * the future" with respect to rq->clock. If it's
 426	 * not, we are, for some reason, lagging too much!
 427	 * Anyway, after having warn userspace abut that,
 428	 * we still try to keep the things running by
 429	 * resetting the deadline and the budget of the
 430	 * entity.
 431	 */
 432	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 433		printk_deferred_once("sched: DL replenish lagged too much\n");
 434		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 435		dl_se->runtime = pi_se->dl_runtime;
 436	}
 437
 438	if (dl_se->dl_yielded)
 439		dl_se->dl_yielded = 0;
 440	if (dl_se->dl_throttled)
 441		dl_se->dl_throttled = 0;
 442}
 443
 444/*
 445 * Here we check if --at time t-- an entity (which is probably being
 446 * [re]activated or, in general, enqueued) can use its remaining runtime
 447 * and its current deadline _without_ exceeding the bandwidth it is
 448 * assigned (function returns true if it can't). We are in fact applying
 449 * one of the CBS rules: when a task wakes up, if the residual runtime
 450 * over residual deadline fits within the allocated bandwidth, then we
 451 * can keep the current (absolute) deadline and residual budget without
 452 * disrupting the schedulability of the system. Otherwise, we should
 453 * refill the runtime and set the deadline a period in the future,
 454 * because keeping the current (absolute) deadline of the task would
 455 * result in breaking guarantees promised to other tasks (refer to
 456 * Documentation/scheduler/sched-deadline.txt for more informations).
 457 *
 458 * This function returns true if:
 459 *
 460 *   runtime / (deadline - t) > dl_runtime / dl_period ,
 461 *
 462 * IOW we can't recycle current parameters.
 463 *
 464 * Notice that the bandwidth check is done against the period. For
 465 * task with deadline equal to period this is the same of using
 466 * dl_deadline instead of dl_period in the equation above.
 467 */
 468static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 469			       struct sched_dl_entity *pi_se, u64 t)
 470{
 471	u64 left, right;
 472
 473	/*
 474	 * left and right are the two sides of the equation above,
 475	 * after a bit of shuffling to use multiplications instead
 476	 * of divisions.
 477	 *
 478	 * Note that none of the time values involved in the two
 479	 * multiplications are absolute: dl_deadline and dl_runtime
 480	 * are the relative deadline and the maximum runtime of each
 481	 * instance, runtime is the runtime left for the last instance
 482	 * and (deadline - t), since t is rq->clock, is the time left
 483	 * to the (absolute) deadline. Even if overflowing the u64 type
 484	 * is very unlikely to occur in both cases, here we scale down
 485	 * as we want to avoid that risk at all. Scaling down by 10
 486	 * means that we reduce granularity to 1us. We are fine with it,
 487	 * since this is only a true/false check and, anyway, thinking
 488	 * of anything below microseconds resolution is actually fiction
 489	 * (but still we want to give the user that illusion >;).
 490	 */
 491	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 492	right = ((dl_se->deadline - t) >> DL_SCALE) *
 493		(pi_se->dl_runtime >> DL_SCALE);
 494
 495	return dl_time_before(right, left);
 496}
 497
 498/*
 499 * When a -deadline entity is queued back on the runqueue, its runtime and
 500 * deadline might need updating.
 
 
 
 
 
 501 *
 502 * The policy here is that we update the deadline of the entity only if:
 503 *  - the current deadline is in the past,
 504 *  - using the remaining runtime with the current deadline would make
 505 *    the entity exceed its bandwidth.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506 */
 507static void update_dl_entity(struct sched_dl_entity *dl_se,
 508			     struct sched_dl_entity *pi_se)
 509{
 510	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 511	struct rq *rq = rq_of_dl_rq(dl_rq);
 512
 513	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 514	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 
 
 
 
 
 
 
 
 515		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 516		dl_se->runtime = pi_se->dl_runtime;
 517	}
 518}
 519
 
 
 
 
 
 520/*
 521 * If the entity depleted all its runtime, and if we want it to sleep
 522 * while waiting for some new execution time to become available, we
 523 * set the bandwidth enforcement timer to the replenishment instant
 524 * and try to activate it.
 525 *
 526 * Notice that it is important for the caller to know if the timer
 527 * actually started or not (i.e., the replenishment instant is in
 528 * the future or in the past).
 529 */
 530static int start_dl_timer(struct task_struct *p)
 531{
 532	struct sched_dl_entity *dl_se = &p->dl;
 533	struct hrtimer *timer = &dl_se->dl_timer;
 534	struct rq *rq = task_rq(p);
 535	ktime_t now, act;
 536	s64 delta;
 537
 538	lockdep_assert_held(&rq->lock);
 539
 540	/*
 541	 * We want the timer to fire at the deadline, but considering
 542	 * that it is actually coming from rq->clock and not from
 543	 * hrtimer's time base reading.
 544	 */
 545	act = ns_to_ktime(dl_se->deadline);
 546	now = hrtimer_cb_get_time(timer);
 547	delta = ktime_to_ns(now) - rq_clock(rq);
 548	act = ktime_add_ns(act, delta);
 549
 550	/*
 551	 * If the expiry time already passed, e.g., because the value
 552	 * chosen as the deadline is too small, don't even try to
 553	 * start the timer in the past!
 554	 */
 555	if (ktime_us_delta(act, now) < 0)
 556		return 0;
 557
 558	/*
 559	 * !enqueued will guarantee another callback; even if one is already in
 560	 * progress. This ensures a balanced {get,put}_task_struct().
 561	 *
 562	 * The race against __run_timer() clearing the enqueued state is
 563	 * harmless because we're holding task_rq()->lock, therefore the timer
 564	 * expiring after we've done the check will wait on its task_rq_lock()
 565	 * and observe our state.
 566	 */
 567	if (!hrtimer_is_queued(timer)) {
 568		get_task_struct(p);
 569		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 570	}
 571
 572	return 1;
 573}
 574
 575/*
 576 * This is the bandwidth enforcement timer callback. If here, we know
 577 * a task is not on its dl_rq, since the fact that the timer was running
 578 * means the task is throttled and needs a runtime replenishment.
 579 *
 580 * However, what we actually do depends on the fact the task is active,
 581 * (it is on its rq) or has been removed from there by a call to
 582 * dequeue_task_dl(). In the former case we must issue the runtime
 583 * replenishment and add the task back to the dl_rq; in the latter, we just
 584 * do nothing but clearing dl_throttled, so that runtime and deadline
 585 * updating (and the queueing back to dl_rq) will be done by the
 586 * next call to enqueue_task_dl().
 587 */
 588static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 589{
 590	struct sched_dl_entity *dl_se = container_of(timer,
 591						     struct sched_dl_entity,
 592						     dl_timer);
 593	struct task_struct *p = dl_task_of(dl_se);
 594	unsigned long flags;
 595	struct rq *rq;
 596
 597	rq = task_rq_lock(p, &flags);
 598
 599	/*
 600	 * The task might have changed its scheduling policy to something
 601	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
 602	 */
 603	if (!dl_task(p)) {
 604		__dl_clear_params(p);
 605		goto unlock;
 606	}
 607
 608	/*
 609	 * The task might have been boosted by someone else and might be in the
 610	 * boosting/deboosting path, its not throttled.
 611	 */
 612	if (dl_se->dl_boosted)
 613		goto unlock;
 614
 615	/*
 616	 * Spurious timer due to start_dl_timer() race; or we already received
 617	 * a replenishment from rt_mutex_setprio().
 618	 */
 619	if (!dl_se->dl_throttled)
 620		goto unlock;
 621
 622	sched_clock_tick();
 623	update_rq_clock(rq);
 624
 625	/*
 626	 * If the throttle happened during sched-out; like:
 627	 *
 628	 *   schedule()
 629	 *     deactivate_task()
 630	 *       dequeue_task_dl()
 631	 *         update_curr_dl()
 632	 *           start_dl_timer()
 633	 *         __dequeue_task_dl()
 634	 *     prev->on_rq = 0;
 635	 *
 636	 * We can be both throttled and !queued. Replenish the counter
 637	 * but do not enqueue -- wait for our wakeup to do that.
 638	 */
 639	if (!task_on_rq_queued(p)) {
 640		replenish_dl_entity(dl_se, dl_se);
 641		goto unlock;
 642	}
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 645	if (dl_task(rq->curr))
 646		check_preempt_curr_dl(rq, p, 0);
 647	else
 648		resched_curr(rq);
 649
 650#ifdef CONFIG_SMP
 651	/*
 652	 * Perform balancing operations here; after the replenishments.  We
 653	 * cannot drop rq->lock before this, otherwise the assertion in
 654	 * start_dl_timer() about not missing updates is not true.
 655	 *
 656	 * If we find that the rq the task was on is no longer available, we
 657	 * need to select a new rq.
 658	 *
 659	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
 660	 */
 661	if (unlikely(!rq->online))
 662		rq = dl_task_offline_migration(rq, p);
 663
 664	/*
 665	 * Queueing this task back might have overloaded rq, check if we need
 666	 * to kick someone away.
 667	 */
 668	if (has_pushable_dl_tasks(rq)) {
 669		/*
 670		 * Nothing relies on rq->lock after this, so its safe to drop
 671		 * rq->lock.
 672		 */
 673		lockdep_unpin_lock(&rq->lock);
 674		push_dl_task(rq);
 675		lockdep_pin_lock(&rq->lock);
 676	}
 677#endif
 678
 679unlock:
 680	task_rq_unlock(rq, p, &flags);
 681
 682	/*
 683	 * This can free the task_struct, including this hrtimer, do not touch
 684	 * anything related to that after this.
 685	 */
 686	put_task_struct(p);
 687
 688	return HRTIMER_NORESTART;
 689}
 690
 691void init_dl_task_timer(struct sched_dl_entity *dl_se)
 692{
 693	struct hrtimer *timer = &dl_se->dl_timer;
 694
 695	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 696	timer->function = dl_task_timer;
 697}
 698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699static
 700int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 701{
 702	return (dl_se->runtime <= 0);
 703}
 704
 705extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 706
 707/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708 * Update the current task's runtime statistics (provided it is still
 709 * a -deadline task and has not been removed from the dl_rq).
 710 */
 711static void update_curr_dl(struct rq *rq)
 712{
 713	struct task_struct *curr = rq->curr;
 714	struct sched_dl_entity *dl_se = &curr->dl;
 715	u64 delta_exec;
 
 
 716
 717	if (!dl_task(curr) || !on_dl_rq(dl_se))
 718		return;
 719
 720	/* Kick cpufreq (see the comment in linux/cpufreq.h). */
 721	if (cpu_of(rq) == smp_processor_id())
 722		cpufreq_trigger_update(rq_clock(rq));
 723
 724	/*
 725	 * Consumed budget is computed considering the time as
 726	 * observed by schedulable tasks (excluding time spent
 727	 * in hardirq context, etc.). Deadlines are instead
 728	 * computed using hard walltime. This seems to be the more
 729	 * natural solution, but the full ramifications of this
 730	 * approach need further study.
 731	 */
 732	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 
 733	if (unlikely((s64)delta_exec <= 0)) {
 734		if (unlikely(dl_se->dl_yielded))
 735			goto throttle;
 736		return;
 737	}
 738
 739	schedstat_set(curr->se.statistics.exec_max,
 740		      max(curr->se.statistics.exec_max, delta_exec));
 741
 742	curr->se.sum_exec_runtime += delta_exec;
 743	account_group_exec_runtime(curr, delta_exec);
 744
 745	curr->se.exec_start = rq_clock_task(rq);
 746	cpuacct_charge(curr, delta_exec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747
 748	sched_rt_avg_update(rq, delta_exec);
 
 
 749
 750	dl_se->runtime -= delta_exec;
 751
 752throttle:
 753	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
 754		dl_se->dl_throttled = 1;
 
 
 
 
 
 
 755		__dequeue_task_dl(rq, curr, 0);
 756		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
 757			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 758
 759		if (!is_leftmost(curr, &rq->dl))
 760			resched_curr(rq);
 761	}
 762
 763	/*
 764	 * Because -- for now -- we share the rt bandwidth, we need to
 765	 * account our runtime there too, otherwise actual rt tasks
 766	 * would be able to exceed the shared quota.
 767	 *
 768	 * Account to the root rt group for now.
 769	 *
 770	 * The solution we're working towards is having the RT groups scheduled
 771	 * using deadline servers -- however there's a few nasties to figure
 772	 * out before that can happen.
 773	 */
 774	if (rt_bandwidth_enabled()) {
 775		struct rt_rq *rt_rq = &rq->rt;
 776
 777		raw_spin_lock(&rt_rq->rt_runtime_lock);
 778		/*
 779		 * We'll let actual RT tasks worry about the overflow here, we
 780		 * have our own CBS to keep us inline; only account when RT
 781		 * bandwidth is relevant.
 782		 */
 783		if (sched_rt_bandwidth_account(rt_rq))
 784			rt_rq->rt_time += delta_exec;
 785		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 786	}
 787}
 788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789#ifdef CONFIG_SMP
 790
 791static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 792{
 793	struct rq *rq = rq_of_dl_rq(dl_rq);
 794
 795	if (dl_rq->earliest_dl.curr == 0 ||
 796	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 797		dl_rq->earliest_dl.curr = deadline;
 798		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
 799	}
 800}
 801
 802static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 803{
 804	struct rq *rq = rq_of_dl_rq(dl_rq);
 805
 806	/*
 807	 * Since we may have removed our earliest (and/or next earliest)
 808	 * task we must recompute them.
 809	 */
 810	if (!dl_rq->dl_nr_running) {
 811		dl_rq->earliest_dl.curr = 0;
 812		dl_rq->earliest_dl.next = 0;
 813		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
 814	} else {
 815		struct rb_node *leftmost = dl_rq->rb_leftmost;
 816		struct sched_dl_entity *entry;
 817
 818		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
 819		dl_rq->earliest_dl.curr = entry->deadline;
 820		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
 821	}
 822}
 823
 824#else
 825
 826static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 827static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 828
 829#endif /* CONFIG_SMP */
 830
 831static inline
 832void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 833{
 834	int prio = dl_task_of(dl_se)->prio;
 835	u64 deadline = dl_se->deadline;
 836
 837	WARN_ON(!dl_prio(prio));
 838	dl_rq->dl_nr_running++;
 839	add_nr_running(rq_of_dl_rq(dl_rq), 1);
 840
 841	inc_dl_deadline(dl_rq, deadline);
 842	inc_dl_migration(dl_se, dl_rq);
 843}
 844
 845static inline
 846void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 847{
 848	int prio = dl_task_of(dl_se)->prio;
 849
 850	WARN_ON(!dl_prio(prio));
 851	WARN_ON(!dl_rq->dl_nr_running);
 852	dl_rq->dl_nr_running--;
 853	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 854
 855	dec_dl_deadline(dl_rq, dl_se->deadline);
 856	dec_dl_migration(dl_se, dl_rq);
 857}
 858
 859static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 860{
 861	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 862	struct rb_node **link = &dl_rq->rb_root.rb_node;
 863	struct rb_node *parent = NULL;
 864	struct sched_dl_entity *entry;
 865	int leftmost = 1;
 866
 867	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
 868
 869	while (*link) {
 870		parent = *link;
 871		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
 872		if (dl_time_before(dl_se->deadline, entry->deadline))
 873			link = &parent->rb_left;
 874		else {
 875			link = &parent->rb_right;
 876			leftmost = 0;
 877		}
 878	}
 879
 880	if (leftmost)
 881		dl_rq->rb_leftmost = &dl_se->rb_node;
 882
 883	rb_link_node(&dl_se->rb_node, parent, link);
 884	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
 885
 886	inc_dl_tasks(dl_se, dl_rq);
 887}
 888
 889static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 890{
 891	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 892
 893	if (RB_EMPTY_NODE(&dl_se->rb_node))
 894		return;
 895
 896	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
 897		struct rb_node *next_node;
 898
 899		next_node = rb_next(&dl_se->rb_node);
 900		dl_rq->rb_leftmost = next_node;
 901	}
 902
 903	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
 904	RB_CLEAR_NODE(&dl_se->rb_node);
 905
 906	dec_dl_tasks(dl_se, dl_rq);
 907}
 908
 909static void
 910enqueue_dl_entity(struct sched_dl_entity *dl_se,
 911		  struct sched_dl_entity *pi_se, int flags)
 912{
 913	BUG_ON(on_dl_rq(dl_se));
 914
 915	/*
 916	 * If this is a wakeup or a new instance, the scheduling
 917	 * parameters of the task might need updating. Otherwise,
 918	 * we want a replenishment of its runtime.
 919	 */
 920	if (flags & ENQUEUE_WAKEUP)
 
 921		update_dl_entity(dl_se, pi_se);
 922	else if (flags & ENQUEUE_REPLENISH)
 923		replenish_dl_entity(dl_se, pi_se);
 
 
 
 
 
 924
 925	__enqueue_dl_entity(dl_se);
 926}
 927
 928static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
 929{
 930	__dequeue_dl_entity(dl_se);
 931}
 932
 933static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 934{
 935	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 936	struct sched_dl_entity *pi_se = &p->dl;
 937
 938	/*
 939	 * Use the scheduling parameters of the top pi-waiter
 940	 * task if we have one and its (absolute) deadline is
 941	 * smaller than our one... OTW we keep our runtime and
 942	 * deadline.
 
 
 943	 */
 944	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
 945		pi_se = &pi_task->dl;
 946	} else if (!dl_prio(p->normal_prio)) {
 947		/*
 948		 * Special case in which we have a !SCHED_DEADLINE task
 949		 * that is going to be deboosted, but exceedes its
 950		 * runtime while doing so. No point in replenishing
 951		 * it, as it's going to return back to its original
 952		 * scheduling class after this.
 953		 */
 954		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
 955		return;
 956	}
 957
 958	/*
 959	 * If p is throttled, we do nothing. In fact, if it exhausted
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960	 * its budget it needs a replenishment and, since it now is on
 961	 * its rq, the bandwidth timer callback (which clearly has not
 962	 * run yet) will take care of this.
 963	 */
 964	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
 
 
 
 
 
 
 
 
 
 965		return;
 
 966
 967	enqueue_dl_entity(&p->dl, pi_se, flags);
 968
 969	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
 970		enqueue_pushable_dl_task(rq, p);
 971}
 972
 973static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 974{
 975	dequeue_dl_entity(&p->dl);
 976	dequeue_pushable_dl_task(rq, p);
 977}
 978
 979static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 980{
 981	update_curr_dl(rq);
 982	__dequeue_task_dl(rq, p, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983}
 984
 985/*
 986 * Yield task semantic for -deadline tasks is:
 987 *
 988 *   get off from the CPU until our next instance, with
 989 *   a new runtime. This is of little use now, since we
 990 *   don't have a bandwidth reclaiming mechanism. Anyway,
 991 *   bandwidth reclaiming is planned for the future, and
 992 *   yield_task_dl will indicate that some spare budget
 993 *   is available for other task instances to use it.
 994 */
 995static void yield_task_dl(struct rq *rq)
 996{
 997	/*
 998	 * We make the task go to sleep until its current deadline by
 999	 * forcing its runtime to zero. This way, update_curr_dl() stops
1000	 * it and the bandwidth timer will wake it up and will give it
1001	 * new scheduling parameters (thanks to dl_yielded=1).
1002	 */
1003	rq->curr->dl.dl_yielded = 1;
1004
1005	update_rq_clock(rq);
1006	update_curr_dl(rq);
1007	/*
1008	 * Tell update_rq_clock() that we've just updated,
1009	 * so we don't do microscopic update in schedule()
1010	 * and double the fastpath cost.
1011	 */
1012	rq_clock_skip_update(rq, true);
1013}
1014
1015#ifdef CONFIG_SMP
1016
1017static int find_later_rq(struct task_struct *task);
1018
1019static int
1020select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021{
1022	struct task_struct *curr;
 
1023	struct rq *rq;
1024
1025	if (sd_flag != SD_BALANCE_WAKE)
1026		goto out;
1027
1028	rq = cpu_rq(cpu);
1029
1030	rcu_read_lock();
1031	curr = READ_ONCE(rq->curr); /* unlocked access */
1032
1033	/*
1034	 * If we are dealing with a -deadline task, we must
1035	 * decide where to wake it up.
1036	 * If it has a later deadline and the current task
1037	 * on this rq can't move (provided the waking task
1038	 * can!) we prefer to send it somewhere else. On the
1039	 * other hand, if it has a shorter deadline, we
1040	 * try to make it stay here, it might be important.
1041	 */
1042	if (unlikely(dl_task(curr)) &&
1043	    (curr->nr_cpus_allowed < 2 ||
1044	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1045	    (p->nr_cpus_allowed > 1)) {
 
 
 
 
 
 
 
 
 
1046		int target = find_later_rq(p);
1047
1048		if (target != -1 &&
1049				(dl_time_before(p->dl.deadline,
1050					cpu_rq(target)->dl.earliest_dl.curr) ||
1051				(cpu_rq(target)->dl.dl_nr_running == 0)))
1052			cpu = target;
1053	}
1054	rcu_read_unlock();
1055
1056out:
1057	return cpu;
1058}
1059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061{
1062	/*
1063	 * Current can't be migrated, useless to reschedule,
1064	 * let's hope p can move out.
1065	 */
1066	if (rq->curr->nr_cpus_allowed == 1 ||
1067	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1068		return;
1069
1070	/*
1071	 * p is migratable, so let's not schedule it and
1072	 * see if it is pushed or pulled somewhere else.
1073	 */
1074	if (p->nr_cpus_allowed != 1 &&
1075	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1076		return;
1077
1078	resched_curr(rq);
1079}
1080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081#endif /* CONFIG_SMP */
1082
1083/*
1084 * Only called when both the current and waking task are -deadline
1085 * tasks.
1086 */
1087static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088				  int flags)
1089{
1090	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1091		resched_curr(rq);
1092		return;
1093	}
1094
1095#ifdef CONFIG_SMP
1096	/*
1097	 * In the unlikely case current and p have the same deadline
1098	 * let us try to decide what's the best thing to do...
1099	 */
1100	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101	    !test_tsk_need_resched(rq->curr))
1102		check_preempt_equal_dl(rq, p);
1103#endif /* CONFIG_SMP */
1104}
1105
1106#ifdef CONFIG_SCHED_HRTICK
1107static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108{
1109	hrtick_start(rq, p->dl.runtime);
1110}
1111#else /* !CONFIG_SCHED_HRTICK */
1112static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113{
1114}
1115#endif
1116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118						   struct dl_rq *dl_rq)
1119{
1120	struct rb_node *left = dl_rq->rb_leftmost;
1121
1122	if (!left)
1123		return NULL;
1124
1125	return rb_entry(left, struct sched_dl_entity, rb_node);
1126}
1127
1128struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1129{
1130	struct sched_dl_entity *dl_se;
 
1131	struct task_struct *p;
1132	struct dl_rq *dl_rq;
1133
1134	dl_rq = &rq->dl;
1135
1136	if (need_pull_dl_task(rq, prev)) {
1137		/*
1138		 * This is OK, because current is on_cpu, which avoids it being
1139		 * picked for load-balance and preemption/IRQs are still
1140		 * disabled avoiding further scheduler activity on it and we're
1141		 * being very careful to re-start the picking loop.
1142		 */
1143		lockdep_unpin_lock(&rq->lock);
1144		pull_dl_task(rq);
1145		lockdep_pin_lock(&rq->lock);
1146		/*
1147		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1148		 * means a stop task can slip in, in which case we need to
1149		 * re-start task selection.
1150		 */
1151		if (rq->stop && task_on_rq_queued(rq->stop))
1152			return RETRY_TASK;
1153	}
1154
1155	/*
1156	 * When prev is DL, we may throttle it in put_prev_task().
1157	 * So, we update time before we check for dl_nr_running.
1158	 */
1159	if (prev->sched_class == &dl_sched_class)
1160		update_curr_dl(rq);
1161
1162	if (unlikely(!dl_rq->dl_nr_running))
1163		return NULL;
1164
1165	put_prev_task(rq, prev);
1166
1167	dl_se = pick_next_dl_entity(rq, dl_rq);
1168	BUG_ON(!dl_se);
1169
1170	p = dl_task_of(dl_se);
1171	p->se.exec_start = rq_clock_task(rq);
1172
1173	/* Running task will never be pushed. */
1174       dequeue_pushable_dl_task(rq, p);
1175
1176	if (hrtick_enabled(rq))
1177		start_hrtick_dl(rq, p);
1178
1179	queue_push_tasks(rq);
1180
1181	return p;
1182}
1183
1184static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1185{
1186	update_curr_dl(rq);
1187
 
1188	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1189		enqueue_pushable_dl_task(rq, p);
1190}
1191
 
 
 
 
 
 
 
 
1192static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1193{
1194	update_curr_dl(rq);
1195
 
1196	/*
1197	 * Even when we have runtime, update_curr_dl() might have resulted in us
1198	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1199	 * be set and schedule() will start a new hrtick for the next task.
1200	 */
1201	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1202	    is_leftmost(p, &rq->dl))
1203		start_hrtick_dl(rq, p);
1204}
1205
1206static void task_fork_dl(struct task_struct *p)
1207{
1208	/*
1209	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1210	 * sched_fork()
1211	 */
1212}
1213
1214static void task_dead_dl(struct task_struct *p)
1215{
1216	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1217
1218	/*
1219	 * Since we are TASK_DEAD we won't slip out of the domain!
1220	 */
1221	raw_spin_lock_irq(&dl_b->lock);
1222	/* XXX we should retain the bw until 0-lag */
1223	dl_b->total_bw -= p->dl.dl_bw;
1224	raw_spin_unlock_irq(&dl_b->lock);
1225}
1226
1227static void set_curr_task_dl(struct rq *rq)
1228{
1229	struct task_struct *p = rq->curr;
1230
1231	p->se.exec_start = rq_clock_task(rq);
1232
1233	/* You can't push away the running task */
1234	dequeue_pushable_dl_task(rq, p);
1235}
1236
1237#ifdef CONFIG_SMP
1238
1239/* Only try algorithms three times */
1240#define DL_MAX_TRIES 3
1241
1242static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1243{
1244	if (!task_running(rq, p) &&
1245	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1246		return 1;
1247	return 0;
1248}
1249
1250/*
1251 * Return the earliest pushable rq's task, which is suitable to be executed
1252 * on the CPU, NULL otherwise:
1253 */
1254static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1255{
1256	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1257	struct task_struct *p = NULL;
1258
1259	if (!has_pushable_dl_tasks(rq))
1260		return NULL;
1261
1262next_node:
1263	if (next_node) {
1264		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1265
1266		if (pick_dl_task(rq, p, cpu))
1267			return p;
1268
1269		next_node = rb_next(next_node);
1270		goto next_node;
1271	}
1272
1273	return NULL;
1274}
1275
1276static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1277
1278static int find_later_rq(struct task_struct *task)
1279{
1280	struct sched_domain *sd;
1281	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1282	int this_cpu = smp_processor_id();
1283	int best_cpu, cpu = task_cpu(task);
1284
1285	/* Make sure the mask is initialized first */
1286	if (unlikely(!later_mask))
1287		return -1;
1288
1289	if (task->nr_cpus_allowed == 1)
1290		return -1;
1291
1292	/*
1293	 * We have to consider system topology and task affinity
1294	 * first, then we can look for a suitable cpu.
1295	 */
1296	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1297			task, later_mask);
1298	if (best_cpu == -1)
1299		return -1;
1300
1301	/*
1302	 * If we are here, some target has been found,
1303	 * the most suitable of which is cached in best_cpu.
1304	 * This is, among the runqueues where the current tasks
1305	 * have later deadlines than the task's one, the rq
1306	 * with the latest possible one.
1307	 *
1308	 * Now we check how well this matches with task's
1309	 * affinity and system topology.
1310	 *
1311	 * The last cpu where the task run is our first
1312	 * guess, since it is most likely cache-hot there.
1313	 */
1314	if (cpumask_test_cpu(cpu, later_mask))
1315		return cpu;
1316	/*
1317	 * Check if this_cpu is to be skipped (i.e., it is
1318	 * not in the mask) or not.
1319	 */
1320	if (!cpumask_test_cpu(this_cpu, later_mask))
1321		this_cpu = -1;
1322
1323	rcu_read_lock();
1324	for_each_domain(cpu, sd) {
1325		if (sd->flags & SD_WAKE_AFFINE) {
 
1326
1327			/*
1328			 * If possible, preempting this_cpu is
1329			 * cheaper than migrating.
1330			 */
1331			if (this_cpu != -1 &&
1332			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1333				rcu_read_unlock();
1334				return this_cpu;
1335			}
1336
 
 
1337			/*
1338			 * Last chance: if best_cpu is valid and is
1339			 * in the mask, that becomes our choice.
 
 
1340			 */
1341			if (best_cpu < nr_cpu_ids &&
1342			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1343				rcu_read_unlock();
1344				return best_cpu;
1345			}
1346		}
1347	}
1348	rcu_read_unlock();
1349
1350	/*
1351	 * At this point, all our guesses failed, we just return
1352	 * 'something', and let the caller sort the things out.
1353	 */
1354	if (this_cpu != -1)
1355		return this_cpu;
1356
1357	cpu = cpumask_any(later_mask);
1358	if (cpu < nr_cpu_ids)
1359		return cpu;
1360
1361	return -1;
1362}
1363
1364/* Locks the rq it finds */
1365static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1366{
1367	struct rq *later_rq = NULL;
1368	int tries;
1369	int cpu;
1370
1371	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1372		cpu = find_later_rq(task);
1373
1374		if ((cpu == -1) || (cpu == rq->cpu))
1375			break;
1376
1377		later_rq = cpu_rq(cpu);
1378
1379		if (later_rq->dl.dl_nr_running &&
1380		    !dl_time_before(task->dl.deadline,
1381					later_rq->dl.earliest_dl.curr)) {
1382			/*
1383			 * Target rq has tasks of equal or earlier deadline,
1384			 * retrying does not release any lock and is unlikely
1385			 * to yield a different result.
1386			 */
1387			later_rq = NULL;
1388			break;
1389		}
1390
1391		/* Retry if something changed. */
1392		if (double_lock_balance(rq, later_rq)) {
1393			if (unlikely(task_rq(task) != rq ||
1394				     !cpumask_test_cpu(later_rq->cpu,
1395				                       &task->cpus_allowed) ||
1396				     task_running(rq, task) ||
1397				     !dl_task(task) ||
1398				     !task_on_rq_queued(task))) {
1399				double_unlock_balance(rq, later_rq);
1400				later_rq = NULL;
1401				break;
1402			}
1403		}
1404
1405		/*
1406		 * If the rq we found has no -deadline task, or
1407		 * its earliest one has a later deadline than our
1408		 * task, the rq is a good one.
1409		 */
1410		if (!later_rq->dl.dl_nr_running ||
1411		    dl_time_before(task->dl.deadline,
1412				   later_rq->dl.earliest_dl.curr))
1413			break;
1414
1415		/* Otherwise we try again. */
1416		double_unlock_balance(rq, later_rq);
1417		later_rq = NULL;
1418	}
1419
1420	return later_rq;
1421}
1422
1423static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1424{
1425	struct task_struct *p;
1426
1427	if (!has_pushable_dl_tasks(rq))
1428		return NULL;
1429
1430	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1431		     struct task_struct, pushable_dl_tasks);
1432
1433	BUG_ON(rq->cpu != task_cpu(p));
1434	BUG_ON(task_current(rq, p));
1435	BUG_ON(p->nr_cpus_allowed <= 1);
1436
1437	BUG_ON(!task_on_rq_queued(p));
1438	BUG_ON(!dl_task(p));
1439
1440	return p;
1441}
1442
1443/*
1444 * See if the non running -deadline tasks on this rq
1445 * can be sent to some other CPU where they can preempt
1446 * and start executing.
1447 */
1448static int push_dl_task(struct rq *rq)
1449{
1450	struct task_struct *next_task;
1451	struct rq *later_rq;
1452	int ret = 0;
1453
1454	if (!rq->dl.overloaded)
1455		return 0;
1456
1457	next_task = pick_next_pushable_dl_task(rq);
1458	if (!next_task)
1459		return 0;
1460
1461retry:
1462	if (unlikely(next_task == rq->curr)) {
1463		WARN_ON(1);
1464		return 0;
1465	}
1466
1467	/*
1468	 * If next_task preempts rq->curr, and rq->curr
1469	 * can move away, it makes sense to just reschedule
1470	 * without going further in pushing next_task.
1471	 */
1472	if (dl_task(rq->curr) &&
1473	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1474	    rq->curr->nr_cpus_allowed > 1) {
1475		resched_curr(rq);
1476		return 0;
1477	}
1478
1479	/* We might release rq lock */
1480	get_task_struct(next_task);
1481
1482	/* Will lock the rq it'll find */
1483	later_rq = find_lock_later_rq(next_task, rq);
1484	if (!later_rq) {
1485		struct task_struct *task;
1486
1487		/*
1488		 * We must check all this again, since
1489		 * find_lock_later_rq releases rq->lock and it is
1490		 * then possible that next_task has migrated.
1491		 */
1492		task = pick_next_pushable_dl_task(rq);
1493		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1494			/*
1495			 * The task is still there. We don't try
1496			 * again, some other cpu will pull it when ready.
1497			 */
1498			goto out;
1499		}
1500
1501		if (!task)
1502			/* No more tasks */
1503			goto out;
1504
1505		put_task_struct(next_task);
1506		next_task = task;
1507		goto retry;
1508	}
1509
1510	deactivate_task(rq, next_task, 0);
1511	set_task_cpu(next_task, later_rq->cpu);
1512	activate_task(later_rq, next_task, 0);
 
 
 
 
 
 
1513	ret = 1;
1514
1515	resched_curr(later_rq);
1516
1517	double_unlock_balance(rq, later_rq);
1518
1519out:
1520	put_task_struct(next_task);
1521
1522	return ret;
1523}
1524
1525static void push_dl_tasks(struct rq *rq)
1526{
1527	/* push_dl_task() will return true if it moved a -deadline task */
1528	while (push_dl_task(rq))
1529		;
1530}
1531
1532static void pull_dl_task(struct rq *this_rq)
1533{
1534	int this_cpu = this_rq->cpu, cpu;
1535	struct task_struct *p;
1536	bool resched = false;
1537	struct rq *src_rq;
1538	u64 dmin = LONG_MAX;
1539
1540	if (likely(!dl_overloaded(this_rq)))
1541		return;
1542
1543	/*
1544	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1545	 * see overloaded we must also see the dlo_mask bit.
1546	 */
1547	smp_rmb();
1548
1549	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1550		if (this_cpu == cpu)
1551			continue;
1552
1553		src_rq = cpu_rq(cpu);
1554
1555		/*
1556		 * It looks racy, abd it is! However, as in sched_rt.c,
1557		 * we are fine with this.
1558		 */
1559		if (this_rq->dl.dl_nr_running &&
1560		    dl_time_before(this_rq->dl.earliest_dl.curr,
1561				   src_rq->dl.earliest_dl.next))
1562			continue;
1563
1564		/* Might drop this_rq->lock */
1565		double_lock_balance(this_rq, src_rq);
1566
1567		/*
1568		 * If there are no more pullable tasks on the
1569		 * rq, we're done with it.
1570		 */
1571		if (src_rq->dl.dl_nr_running <= 1)
1572			goto skip;
1573
1574		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1575
1576		/*
1577		 * We found a task to be pulled if:
1578		 *  - it preempts our current (if there's one),
1579		 *  - it will preempt the last one we pulled (if any).
1580		 */
1581		if (p && dl_time_before(p->dl.deadline, dmin) &&
1582		    (!this_rq->dl.dl_nr_running ||
1583		     dl_time_before(p->dl.deadline,
1584				    this_rq->dl.earliest_dl.curr))) {
1585			WARN_ON(p == src_rq->curr);
1586			WARN_ON(!task_on_rq_queued(p));
1587
1588			/*
1589			 * Then we pull iff p has actually an earlier
1590			 * deadline than the current task of its runqueue.
1591			 */
1592			if (dl_time_before(p->dl.deadline,
1593					   src_rq->curr->dl.deadline))
1594				goto skip;
1595
1596			resched = true;
1597
1598			deactivate_task(src_rq, p, 0);
1599			set_task_cpu(p, this_cpu);
1600			activate_task(this_rq, p, 0);
1601			dmin = p->dl.deadline;
1602
1603			/* Is there any other task even earlier? */
1604		}
1605skip:
1606		double_unlock_balance(this_rq, src_rq);
1607	}
1608
1609	if (resched)
1610		resched_curr(this_rq);
1611}
1612
1613/*
1614 * Since the task is not running and a reschedule is not going to happen
1615 * anytime soon on its runqueue, we try pushing it away now.
1616 */
1617static void task_woken_dl(struct rq *rq, struct task_struct *p)
1618{
1619	if (!task_running(rq, p) &&
1620	    !test_tsk_need_resched(rq->curr) &&
1621	    p->nr_cpus_allowed > 1 &&
1622	    dl_task(rq->curr) &&
1623	    (rq->curr->nr_cpus_allowed < 2 ||
1624	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1625		push_dl_tasks(rq);
1626	}
1627}
1628
1629static void set_cpus_allowed_dl(struct task_struct *p,
1630				const struct cpumask *new_mask)
1631{
1632	struct root_domain *src_rd;
1633	struct rq *rq;
1634
1635	BUG_ON(!dl_task(p));
1636
1637	rq = task_rq(p);
1638	src_rd = rq->rd;
1639	/*
1640	 * Migrating a SCHED_DEADLINE task between exclusive
1641	 * cpusets (different root_domains) entails a bandwidth
1642	 * update. We already made space for us in the destination
1643	 * domain (see cpuset_can_attach()).
1644	 */
1645	if (!cpumask_intersects(src_rd->span, new_mask)) {
1646		struct dl_bw *src_dl_b;
1647
1648		src_dl_b = dl_bw_of(cpu_of(rq));
1649		/*
1650		 * We now free resources of the root_domain we are migrating
1651		 * off. In the worst case, sched_setattr() may temporary fail
1652		 * until we complete the update.
1653		 */
1654		raw_spin_lock(&src_dl_b->lock);
1655		__dl_clear(src_dl_b, p->dl.dl_bw);
1656		raw_spin_unlock(&src_dl_b->lock);
1657	}
1658
1659	set_cpus_allowed_common(p, new_mask);
1660}
1661
1662/* Assumes rq->lock is held */
1663static void rq_online_dl(struct rq *rq)
1664{
1665	if (rq->dl.overloaded)
1666		dl_set_overload(rq);
1667
1668	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1669	if (rq->dl.dl_nr_running > 0)
1670		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1671}
1672
1673/* Assumes rq->lock is held */
1674static void rq_offline_dl(struct rq *rq)
1675{
1676	if (rq->dl.overloaded)
1677		dl_clear_overload(rq);
1678
1679	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1680	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1681}
1682
1683void __init init_sched_dl_class(void)
1684{
1685	unsigned int i;
1686
1687	for_each_possible_cpu(i)
1688		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1689					GFP_KERNEL, cpu_to_node(i));
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692#endif /* CONFIG_SMP */
1693
1694static void switched_from_dl(struct rq *rq, struct task_struct *p)
1695{
1696	/*
1697	 * Start the deadline timer; if we switch back to dl before this we'll
1698	 * continue consuming our current CBS slice. If we stay outside of
1699	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1700	 * task.
 
 
1701	 */
1702	if (!start_dl_timer(p))
1703		__dl_clear_params(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704
1705	/*
1706	 * Since this might be the only -deadline task on the rq,
1707	 * this is the right place to try to pull some other one
1708	 * from an overloaded cpu, if any.
1709	 */
1710	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1711		return;
1712
1713	queue_pull_task(rq);
1714}
1715
1716/*
1717 * When switching to -deadline, we may overload the rq, then
1718 * we try to push someone off, if possible.
1719 */
1720static void switched_to_dl(struct rq *rq, struct task_struct *p)
1721{
1722	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1723		setup_new_dl_entity(&p->dl, &p->dl);
1724
1725	if (task_on_rq_queued(p) && rq->curr != p) {
 
 
 
 
 
 
 
1726#ifdef CONFIG_SMP
1727		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1728			queue_push_tasks(rq);
1729#else
1730		if (dl_task(rq->curr))
1731			check_preempt_curr_dl(rq, p, 0);
1732		else
1733			resched_curr(rq);
1734#endif
1735	}
1736}
1737
1738/*
1739 * If the scheduling parameters of a -deadline task changed,
1740 * a push or pull operation might be needed.
1741 */
1742static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1743			    int oldprio)
1744{
1745	if (task_on_rq_queued(p) || rq->curr == p) {
1746#ifdef CONFIG_SMP
1747		/*
1748		 * This might be too much, but unfortunately
1749		 * we don't have the old deadline value, and
1750		 * we can't argue if the task is increasing
1751		 * or lowering its prio, so...
1752		 */
1753		if (!rq->dl.overloaded)
1754			queue_pull_task(rq);
1755
1756		/*
1757		 * If we now have a earlier deadline task than p,
1758		 * then reschedule, provided p is still on this
1759		 * runqueue.
1760		 */
1761		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1762			resched_curr(rq);
1763#else
1764		/*
1765		 * Again, we don't know if p has a earlier
1766		 * or later deadline, so let's blindly set a
1767		 * (maybe not needed) rescheduling point.
1768		 */
1769		resched_curr(rq);
1770#endif /* CONFIG_SMP */
1771	}
1772}
1773
1774const struct sched_class dl_sched_class = {
1775	.next			= &rt_sched_class,
1776	.enqueue_task		= enqueue_task_dl,
1777	.dequeue_task		= dequeue_task_dl,
1778	.yield_task		= yield_task_dl,
1779
1780	.check_preempt_curr	= check_preempt_curr_dl,
1781
1782	.pick_next_task		= pick_next_task_dl,
1783	.put_prev_task		= put_prev_task_dl,
 
1784
1785#ifdef CONFIG_SMP
 
1786	.select_task_rq		= select_task_rq_dl,
 
1787	.set_cpus_allowed       = set_cpus_allowed_dl,
1788	.rq_online              = rq_online_dl,
1789	.rq_offline             = rq_offline_dl,
1790	.task_woken		= task_woken_dl,
1791#endif
1792
1793	.set_curr_task		= set_curr_task_dl,
1794	.task_tick		= task_tick_dl,
1795	.task_fork              = task_fork_dl,
1796	.task_dead		= task_dead_dl,
1797
1798	.prio_changed           = prio_changed_dl,
1799	.switched_from		= switched_from_dl,
1800	.switched_to		= switched_to_dl,
1801
1802	.update_curr		= update_curr_dl,
1803};
1804
1805#ifdef CONFIG_SCHED_DEBUG
1806extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808void print_dl_stats(struct seq_file *m, int cpu)
1809{
1810	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1811}
1812#endif /* CONFIG_SCHED_DEBUG */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
 
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50			 "sched RCU must be held");
  51	return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56	struct root_domain *rd = cpu_rq(i)->rd;
  57	int cpus;
  58
  59	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60			 "sched RCU must be held");
  61
  62	if (cpumask_subset(rd->span, cpu_active_mask))
  63		return cpumask_weight(rd->span);
  64
  65	cpus = 0;
  66
  67	for_each_cpu_and(i, rd->span, cpu_active_mask)
  68		cpus++;
  69
  70	return cpus;
  71}
  72
  73static inline unsigned long __dl_bw_capacity(int i)
  74{
  75	struct root_domain *rd = cpu_rq(i)->rd;
  76	unsigned long cap = 0;
  77
  78	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  79			 "sched RCU must be held");
  80
  81	for_each_cpu_and(i, rd->span, cpu_active_mask)
  82		cap += capacity_orig_of(i);
  83
  84	return cap;
  85}
  86
  87/*
  88 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
  89 * of the CPU the task is running on rather rd's \Sum CPU capacity.
  90 */
  91static inline unsigned long dl_bw_capacity(int i)
  92{
  93	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
  94	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
  95		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
  96	} else {
  97		return __dl_bw_capacity(i);
  98	}
  99}
 100#else
 101static inline struct dl_bw *dl_bw_of(int i)
 102{
 103	return &cpu_rq(i)->dl.dl_bw;
 104}
 105
 106static inline int dl_bw_cpus(int i)
 107{
 108	return 1;
 109}
 110
 111static inline unsigned long dl_bw_capacity(int i)
 112{
 113	return SCHED_CAPACITY_SCALE;
 114}
 115#endif
 116
 117static inline
 118void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 119{
 120	u64 old = dl_rq->running_bw;
 121
 122	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 123	dl_rq->running_bw += dl_bw;
 124	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 125	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 127	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 128}
 129
 130static inline
 131void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 132{
 133	u64 old = dl_rq->running_bw;
 134
 135	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 136	dl_rq->running_bw -= dl_bw;
 137	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 138	if (dl_rq->running_bw > old)
 139		dl_rq->running_bw = 0;
 140	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 141	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 142}
 143
 144static inline
 145void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 146{
 147	u64 old = dl_rq->this_bw;
 148
 149	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 150	dl_rq->this_bw += dl_bw;
 151	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 152}
 153
 154static inline
 155void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 156{
 157	u64 old = dl_rq->this_bw;
 158
 159	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 160	dl_rq->this_bw -= dl_bw;
 161	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 162	if (dl_rq->this_bw > old)
 163		dl_rq->this_bw = 0;
 164	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 165}
 166
 167static inline
 168void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 169{
 170	if (!dl_entity_is_special(dl_se))
 171		__add_rq_bw(dl_se->dl_bw, dl_rq);
 172}
 173
 174static inline
 175void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 176{
 177	if (!dl_entity_is_special(dl_se))
 178		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 179}
 180
 181static inline
 182void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 183{
 184	if (!dl_entity_is_special(dl_se))
 185		__add_running_bw(dl_se->dl_bw, dl_rq);
 186}
 187
 188static inline
 189void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 190{
 191	if (!dl_entity_is_special(dl_se))
 192		__sub_running_bw(dl_se->dl_bw, dl_rq);
 193}
 194
 195static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 196{
 197	struct rq *rq;
 198
 199	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 200
 201	if (task_on_rq_queued(p))
 202		return;
 203
 204	rq = task_rq(p);
 205	if (p->dl.dl_non_contending) {
 206		sub_running_bw(&p->dl, &rq->dl);
 207		p->dl.dl_non_contending = 0;
 208		/*
 209		 * If the timer handler is currently running and the
 210		 * timer cannot be cancelled, inactive_task_timer()
 211		 * will see that dl_not_contending is not set, and
 212		 * will not touch the rq's active utilization,
 213		 * so we are still safe.
 214		 */
 215		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 216			put_task_struct(p);
 217	}
 218	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 219	__add_rq_bw(new_bw, &rq->dl);
 220}
 221
 222/*
 223 * The utilization of a task cannot be immediately removed from
 224 * the rq active utilization (running_bw) when the task blocks.
 225 * Instead, we have to wait for the so called "0-lag time".
 226 *
 227 * If a task blocks before the "0-lag time", a timer (the inactive
 228 * timer) is armed, and running_bw is decreased when the timer
 229 * fires.
 230 *
 231 * If the task wakes up again before the inactive timer fires,
 232 * the timer is cancelled, whereas if the task wakes up after the
 233 * inactive timer fired (and running_bw has been decreased) the
 234 * task's utilization has to be added to running_bw again.
 235 * A flag in the deadline scheduling entity (dl_non_contending)
 236 * is used to avoid race conditions between the inactive timer handler
 237 * and task wakeups.
 238 *
 239 * The following diagram shows how running_bw is updated. A task is
 240 * "ACTIVE" when its utilization contributes to running_bw; an
 241 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 242 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 243 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 244 * time already passed, which does not contribute to running_bw anymore.
 245 *                              +------------------+
 246 *             wakeup           |    ACTIVE        |
 247 *          +------------------>+   contending     |
 248 *          | add_running_bw    |                  |
 249 *          |                   +----+------+------+
 250 *          |                        |      ^
 251 *          |                dequeue |      |
 252 * +--------+-------+                |      |
 253 * |                |   t >= 0-lag   |      | wakeup
 254 * |    INACTIVE    |<---------------+      |
 255 * |                | sub_running_bw |      |
 256 * +--------+-------+                |      |
 257 *          ^                        |      |
 258 *          |              t < 0-lag |      |
 259 *          |                        |      |
 260 *          |                        V      |
 261 *          |                   +----+------+------+
 262 *          | sub_running_bw    |    ACTIVE        |
 263 *          +-------------------+                  |
 264 *            inactive timer    |  non contending  |
 265 *            fired             +------------------+
 266 *
 267 * The task_non_contending() function is invoked when a task
 268 * blocks, and checks if the 0-lag time already passed or
 269 * not (in the first case, it directly updates running_bw;
 270 * in the second case, it arms the inactive timer).
 271 *
 272 * The task_contending() function is invoked when a task wakes
 273 * up, and checks if the task is still in the "ACTIVE non contending"
 274 * state or not (in the second case, it updates running_bw).
 275 */
 276static void task_non_contending(struct task_struct *p)
 277{
 278	struct sched_dl_entity *dl_se = &p->dl;
 279	struct hrtimer *timer = &dl_se->inactive_timer;
 280	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 281	struct rq *rq = rq_of_dl_rq(dl_rq);
 282	s64 zerolag_time;
 283
 284	/*
 285	 * If this is a non-deadline task that has been boosted,
 286	 * do nothing
 287	 */
 288	if (dl_se->dl_runtime == 0)
 289		return;
 290
 291	if (dl_entity_is_special(dl_se))
 292		return;
 293
 294	WARN_ON(dl_se->dl_non_contending);
 295
 296	zerolag_time = dl_se->deadline -
 297		 div64_long((dl_se->runtime * dl_se->dl_period),
 298			dl_se->dl_runtime);
 299
 300	/*
 301	 * Using relative times instead of the absolute "0-lag time"
 302	 * allows to simplify the code
 303	 */
 304	zerolag_time -= rq_clock(rq);
 305
 306	/*
 307	 * If the "0-lag time" already passed, decrease the active
 308	 * utilization now, instead of starting a timer
 309	 */
 310	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 311		if (dl_task(p))
 312			sub_running_bw(dl_se, dl_rq);
 313		if (!dl_task(p) || p->state == TASK_DEAD) {
 314			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 315
 316			if (p->state == TASK_DEAD)
 317				sub_rq_bw(&p->dl, &rq->dl);
 318			raw_spin_lock(&dl_b->lock);
 319			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 320			__dl_clear_params(p);
 321			raw_spin_unlock(&dl_b->lock);
 322		}
 323
 324		return;
 325	}
 326
 327	dl_se->dl_non_contending = 1;
 328	get_task_struct(p);
 329	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 330}
 331
 332static void task_contending(struct sched_dl_entity *dl_se, int flags)
 333{
 334	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 335
 336	/*
 337	 * If this is a non-deadline task that has been boosted,
 338	 * do nothing
 339	 */
 340	if (dl_se->dl_runtime == 0)
 341		return;
 342
 343	if (flags & ENQUEUE_MIGRATED)
 344		add_rq_bw(dl_se, dl_rq);
 345
 346	if (dl_se->dl_non_contending) {
 347		dl_se->dl_non_contending = 0;
 348		/*
 349		 * If the timer handler is currently running and the
 350		 * timer cannot be cancelled, inactive_task_timer()
 351		 * will see that dl_not_contending is not set, and
 352		 * will not touch the rq's active utilization,
 353		 * so we are still safe.
 354		 */
 355		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 356			put_task_struct(dl_task_of(dl_se));
 357	} else {
 358		/*
 359		 * Since "dl_non_contending" is not set, the
 360		 * task's utilization has already been removed from
 361		 * active utilization (either when the task blocked,
 362		 * when the "inactive timer" fired).
 363		 * So, add it back.
 364		 */
 365		add_running_bw(dl_se, dl_rq);
 366	}
 367}
 368
 369static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 370{
 371	struct sched_dl_entity *dl_se = &p->dl;
 372
 373	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 374}
 375
 376static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 377
 378void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 379{
 380	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 381	dl_b->dl_period = period;
 382	dl_b->dl_runtime = runtime;
 383}
 384
 385void init_dl_bw(struct dl_bw *dl_b)
 386{
 387	raw_spin_lock_init(&dl_b->lock);
 388	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 389	if (global_rt_runtime() == RUNTIME_INF)
 390		dl_b->bw = -1;
 391	else
 392		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 393	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 394	dl_b->total_bw = 0;
 395}
 396
 397void init_dl_rq(struct dl_rq *dl_rq)
 398{
 399	dl_rq->root = RB_ROOT_CACHED;
 400
 401#ifdef CONFIG_SMP
 402	/* zero means no -deadline tasks */
 403	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 404
 405	dl_rq->dl_nr_migratory = 0;
 406	dl_rq->overloaded = 0;
 407	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 408#else
 409	init_dl_bw(&dl_rq->dl_bw);
 410#endif
 411
 412	dl_rq->running_bw = 0;
 413	dl_rq->this_bw = 0;
 414	init_dl_rq_bw_ratio(dl_rq);
 415}
 416
 417#ifdef CONFIG_SMP
 418
 419static inline int dl_overloaded(struct rq *rq)
 420{
 421	return atomic_read(&rq->rd->dlo_count);
 422}
 423
 424static inline void dl_set_overload(struct rq *rq)
 425{
 426	if (!rq->online)
 427		return;
 428
 429	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 430	/*
 431	 * Must be visible before the overload count is
 432	 * set (as in sched_rt.c).
 433	 *
 434	 * Matched by the barrier in pull_dl_task().
 435	 */
 436	smp_wmb();
 437	atomic_inc(&rq->rd->dlo_count);
 438}
 439
 440static inline void dl_clear_overload(struct rq *rq)
 441{
 442	if (!rq->online)
 443		return;
 444
 445	atomic_dec(&rq->rd->dlo_count);
 446	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 447}
 448
 449static void update_dl_migration(struct dl_rq *dl_rq)
 450{
 451	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 452		if (!dl_rq->overloaded) {
 453			dl_set_overload(rq_of_dl_rq(dl_rq));
 454			dl_rq->overloaded = 1;
 455		}
 456	} else if (dl_rq->overloaded) {
 457		dl_clear_overload(rq_of_dl_rq(dl_rq));
 458		dl_rq->overloaded = 0;
 459	}
 460}
 461
 462static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 463{
 464	struct task_struct *p = dl_task_of(dl_se);
 465
 466	if (p->nr_cpus_allowed > 1)
 467		dl_rq->dl_nr_migratory++;
 468
 469	update_dl_migration(dl_rq);
 470}
 471
 472static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 473{
 474	struct task_struct *p = dl_task_of(dl_se);
 475
 476	if (p->nr_cpus_allowed > 1)
 477		dl_rq->dl_nr_migratory--;
 478
 479	update_dl_migration(dl_rq);
 480}
 481
 482/*
 483 * The list of pushable -deadline task is not a plist, like in
 484 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 485 */
 486static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 487{
 488	struct dl_rq *dl_rq = &rq->dl;
 489	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 490	struct rb_node *parent = NULL;
 491	struct task_struct *entry;
 492	bool leftmost = true;
 493
 494	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 495
 496	while (*link) {
 497		parent = *link;
 498		entry = rb_entry(parent, struct task_struct,
 499				 pushable_dl_tasks);
 500		if (dl_entity_preempt(&p->dl, &entry->dl))
 501			link = &parent->rb_left;
 502		else {
 503			link = &parent->rb_right;
 504			leftmost = false;
 505		}
 506	}
 507
 508	if (leftmost)
 
 509		dl_rq->earliest_dl.next = p->dl.deadline;
 
 510
 511	rb_link_node(&p->pushable_dl_tasks, parent, link);
 512	rb_insert_color_cached(&p->pushable_dl_tasks,
 513			       &dl_rq->pushable_dl_tasks_root, leftmost);
 514}
 515
 516static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 517{
 518	struct dl_rq *dl_rq = &rq->dl;
 519
 520	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 521		return;
 522
 523	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 524		struct rb_node *next_node;
 525
 526		next_node = rb_next(&p->pushable_dl_tasks);
 
 527		if (next_node) {
 528			dl_rq->earliest_dl.next = rb_entry(next_node,
 529				struct task_struct, pushable_dl_tasks)->dl.deadline;
 530		}
 531	}
 532
 533	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 534	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 535}
 536
 537static inline int has_pushable_dl_tasks(struct rq *rq)
 538{
 539	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 540}
 541
 542static int push_dl_task(struct rq *rq);
 543
 544static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 545{
 546	return dl_task(prev);
 547}
 548
 549static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 550static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 551
 552static void push_dl_tasks(struct rq *);
 553static void pull_dl_task(struct rq *);
 554
 555static inline void deadline_queue_push_tasks(struct rq *rq)
 556{
 557	if (!has_pushable_dl_tasks(rq))
 558		return;
 559
 560	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 561}
 562
 563static inline void deadline_queue_pull_task(struct rq *rq)
 564{
 565	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 566}
 567
 568static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 569
 570static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 571{
 572	struct rq *later_rq = NULL;
 573	struct dl_bw *dl_b;
 574
 575	later_rq = find_lock_later_rq(p, rq);
 
 576	if (!later_rq) {
 577		int cpu;
 578
 579		/*
 580		 * If we cannot preempt any rq, fall back to pick any
 581		 * online CPU:
 582		 */
 583		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 
 584		if (cpu >= nr_cpu_ids) {
 585			/*
 586			 * Failed to find any suitable CPU.
 587			 * The task will never come back!
 588			 */
 589			BUG_ON(dl_bandwidth_enabled());
 590
 591			/*
 592			 * If admission control is disabled we
 593			 * try a little harder to let the task
 594			 * run.
 595			 */
 596			cpu = cpumask_any(cpu_active_mask);
 597		}
 598		later_rq = cpu_rq(cpu);
 599		double_lock_balance(rq, later_rq);
 600	}
 601
 602	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 603		/*
 604		 * Inactive timer is armed (or callback is running, but
 605		 * waiting for us to release rq locks). In any case, when it
 606		 * will fire (or continue), it will see running_bw of this
 607		 * task migrated to later_rq (and correctly handle it).
 608		 */
 609		sub_running_bw(&p->dl, &rq->dl);
 610		sub_rq_bw(&p->dl, &rq->dl);
 611
 612		add_rq_bw(&p->dl, &later_rq->dl);
 613		add_running_bw(&p->dl, &later_rq->dl);
 614	} else {
 615		sub_rq_bw(&p->dl, &rq->dl);
 616		add_rq_bw(&p->dl, &later_rq->dl);
 617	}
 618
 619	/*
 620	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 621	 * since p is still hanging out in the old (now moved to default) root
 622	 * domain.
 623	 */
 624	dl_b = &rq->rd->dl_bw;
 625	raw_spin_lock(&dl_b->lock);
 626	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 627	raw_spin_unlock(&dl_b->lock);
 628
 629	dl_b = &later_rq->rd->dl_bw;
 630	raw_spin_lock(&dl_b->lock);
 631	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 632	raw_spin_unlock(&dl_b->lock);
 633
 634	set_task_cpu(p, later_rq->cpu);
 635	double_unlock_balance(later_rq, rq);
 636
 637	return later_rq;
 638}
 639
 640#else
 641
 642static inline
 643void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 644{
 645}
 646
 647static inline
 648void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 649{
 650}
 651
 652static inline
 653void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 654{
 655}
 656
 657static inline
 658void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 659{
 660}
 661
 662static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 663{
 664	return false;
 665}
 666
 667static inline void pull_dl_task(struct rq *rq)
 668{
 669}
 670
 671static inline void deadline_queue_push_tasks(struct rq *rq)
 672{
 673}
 674
 675static inline void deadline_queue_pull_task(struct rq *rq)
 676{
 677}
 678#endif /* CONFIG_SMP */
 679
 680static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 681static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 682static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 
 683
 684/*
 685 * We are being explicitly informed that a new instance is starting,
 686 * and this means that:
 687 *  - the absolute deadline of the entity has to be placed at
 688 *    current time + relative deadline;
 689 *  - the runtime of the entity has to be set to the maximum value.
 690 *
 691 * The capability of specifying such event is useful whenever a -deadline
 692 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 693 * one, and to (try to!) reconcile itself with its own scheduling
 694 * parameters.
 695 */
 696static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 
 697{
 698	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 699	struct rq *rq = rq_of_dl_rq(dl_rq);
 700
 701	WARN_ON(dl_se->dl_boosted);
 702	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 703
 704	/*
 705	 * We are racing with the deadline timer. So, do nothing because
 706	 * the deadline timer handler will take care of properly recharging
 707	 * the runtime and postponing the deadline
 708	 */
 709	if (dl_se->dl_throttled)
 710		return;
 711
 712	/*
 713	 * We use the regular wall clock time to set deadlines in the
 714	 * future; in fact, we must consider execution overheads (time
 715	 * spent on hardirq context, etc.).
 716	 */
 717	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 718	dl_se->runtime = dl_se->dl_runtime;
 719}
 720
 721/*
 722 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 723 * possibility of a entity lasting more than what it declared, and thus
 724 * exhausting its runtime.
 725 *
 726 * Here we are interested in making runtime overrun possible, but we do
 727 * not want a entity which is misbehaving to affect the scheduling of all
 728 * other entities.
 729 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 730 * is used, in order to confine each entity within its own bandwidth.
 731 *
 732 * This function deals exactly with that, and ensures that when the runtime
 733 * of a entity is replenished, its deadline is also postponed. That ensures
 734 * the overrunning entity can't interfere with other entity in the system and
 735 * can't make them miss their deadlines. Reasons why this kind of overruns
 736 * could happen are, typically, a entity voluntarily trying to overcome its
 737 * runtime, or it just underestimated it during sched_setattr().
 738 */
 739static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 740				struct sched_dl_entity *pi_se)
 741{
 742	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 743	struct rq *rq = rq_of_dl_rq(dl_rq);
 744
 745	BUG_ON(pi_se->dl_runtime <= 0);
 746
 747	/*
 748	 * This could be the case for a !-dl task that is boosted.
 749	 * Just go with full inherited parameters.
 750	 */
 751	if (dl_se->dl_deadline == 0) {
 752		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 753		dl_se->runtime = pi_se->dl_runtime;
 754	}
 755
 756	if (dl_se->dl_yielded && dl_se->runtime > 0)
 757		dl_se->runtime = 0;
 758
 759	/*
 760	 * We keep moving the deadline away until we get some
 761	 * available runtime for the entity. This ensures correct
 762	 * handling of situations where the runtime overrun is
 763	 * arbitrary large.
 764	 */
 765	while (dl_se->runtime <= 0) {
 766		dl_se->deadline += pi_se->dl_period;
 767		dl_se->runtime += pi_se->dl_runtime;
 768	}
 769
 770	/*
 771	 * At this point, the deadline really should be "in
 772	 * the future" with respect to rq->clock. If it's
 773	 * not, we are, for some reason, lagging too much!
 774	 * Anyway, after having warn userspace abut that,
 775	 * we still try to keep the things running by
 776	 * resetting the deadline and the budget of the
 777	 * entity.
 778	 */
 779	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 780		printk_deferred_once("sched: DL replenish lagged too much\n");
 781		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 782		dl_se->runtime = pi_se->dl_runtime;
 783	}
 784
 785	if (dl_se->dl_yielded)
 786		dl_se->dl_yielded = 0;
 787	if (dl_se->dl_throttled)
 788		dl_se->dl_throttled = 0;
 789}
 790
 791/*
 792 * Here we check if --at time t-- an entity (which is probably being
 793 * [re]activated or, in general, enqueued) can use its remaining runtime
 794 * and its current deadline _without_ exceeding the bandwidth it is
 795 * assigned (function returns true if it can't). We are in fact applying
 796 * one of the CBS rules: when a task wakes up, if the residual runtime
 797 * over residual deadline fits within the allocated bandwidth, then we
 798 * can keep the current (absolute) deadline and residual budget without
 799 * disrupting the schedulability of the system. Otherwise, we should
 800 * refill the runtime and set the deadline a period in the future,
 801 * because keeping the current (absolute) deadline of the task would
 802 * result in breaking guarantees promised to other tasks (refer to
 803 * Documentation/scheduler/sched-deadline.rst for more information).
 804 *
 805 * This function returns true if:
 806 *
 807 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 808 *
 809 * IOW we can't recycle current parameters.
 810 *
 811 * Notice that the bandwidth check is done against the deadline. For
 812 * task with deadline equal to period this is the same of using
 813 * dl_period instead of dl_deadline in the equation above.
 814 */
 815static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 816			       struct sched_dl_entity *pi_se, u64 t)
 817{
 818	u64 left, right;
 819
 820	/*
 821	 * left and right are the two sides of the equation above,
 822	 * after a bit of shuffling to use multiplications instead
 823	 * of divisions.
 824	 *
 825	 * Note that none of the time values involved in the two
 826	 * multiplications are absolute: dl_deadline and dl_runtime
 827	 * are the relative deadline and the maximum runtime of each
 828	 * instance, runtime is the runtime left for the last instance
 829	 * and (deadline - t), since t is rq->clock, is the time left
 830	 * to the (absolute) deadline. Even if overflowing the u64 type
 831	 * is very unlikely to occur in both cases, here we scale down
 832	 * as we want to avoid that risk at all. Scaling down by 10
 833	 * means that we reduce granularity to 1us. We are fine with it,
 834	 * since this is only a true/false check and, anyway, thinking
 835	 * of anything below microseconds resolution is actually fiction
 836	 * (but still we want to give the user that illusion >;).
 837	 */
 838	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 839	right = ((dl_se->deadline - t) >> DL_SCALE) *
 840		(pi_se->dl_runtime >> DL_SCALE);
 841
 842	return dl_time_before(right, left);
 843}
 844
 845/*
 846 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 847 * re-initializing task's runtime and deadline, the revised wakeup
 848 * rule adjusts the task's runtime to avoid the task to overrun its
 849 * density.
 850 *
 851 * Reasoning: a task may overrun the density if:
 852 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 853 *
 854 * Therefore, runtime can be adjusted to:
 855 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 856 *
 857 * In such way that runtime will be equal to the maximum density
 858 * the task can use without breaking any rule.
 859 *
 860 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 861 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 862 */
 863static void
 864update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 865{
 866	u64 laxity = dl_se->deadline - rq_clock(rq);
 867
 868	/*
 869	 * If the task has deadline < period, and the deadline is in the past,
 870	 * it should already be throttled before this check.
 871	 *
 872	 * See update_dl_entity() comments for further details.
 873	 */
 874	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 875
 876	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 877}
 878
 879/*
 880 * Regarding the deadline, a task with implicit deadline has a relative
 881 * deadline == relative period. A task with constrained deadline has a
 882 * relative deadline <= relative period.
 883 *
 884 * We support constrained deadline tasks. However, there are some restrictions
 885 * applied only for tasks which do not have an implicit deadline. See
 886 * update_dl_entity() to know more about such restrictions.
 887 *
 888 * The dl_is_implicit() returns true if the task has an implicit deadline.
 889 */
 890static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 891{
 892	return dl_se->dl_deadline == dl_se->dl_period;
 893}
 894
 895/*
 896 * When a deadline entity is placed in the runqueue, its runtime and deadline
 897 * might need to be updated. This is done by a CBS wake up rule. There are two
 898 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 899 *
 900 * When the task is starting a new period, the Original CBS is used. In this
 901 * case, the runtime is replenished and a new absolute deadline is set.
 902 *
 903 * When a task is queued before the begin of the next period, using the
 904 * remaining runtime and deadline could make the entity to overflow, see
 905 * dl_entity_overflow() to find more about runtime overflow. When such case
 906 * is detected, the runtime and deadline need to be updated.
 907 *
 908 * If the task has an implicit deadline, i.e., deadline == period, the Original
 909 * CBS is applied. the runtime is replenished and a new absolute deadline is
 910 * set, as in the previous cases.
 911 *
 912 * However, the Original CBS does not work properly for tasks with
 913 * deadline < period, which are said to have a constrained deadline. By
 914 * applying the Original CBS, a constrained deadline task would be able to run
 915 * runtime/deadline in a period. With deadline < period, the task would
 916 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 917 *
 918 * In order to prevent this misbehave, the Revisited CBS is used for
 919 * constrained deadline tasks when a runtime overflow is detected. In the
 920 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 921 * the remaining runtime of the task is reduced to avoid runtime overflow.
 922 * Please refer to the comments update_dl_revised_wakeup() function to find
 923 * more about the Revised CBS rule.
 924 */
 925static void update_dl_entity(struct sched_dl_entity *dl_se,
 926			     struct sched_dl_entity *pi_se)
 927{
 928	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 929	struct rq *rq = rq_of_dl_rq(dl_rq);
 930
 931	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 932	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 933
 934		if (unlikely(!dl_is_implicit(dl_se) &&
 935			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 936			     !dl_se->dl_boosted)){
 937			update_dl_revised_wakeup(dl_se, rq);
 938			return;
 939		}
 940
 941		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 942		dl_se->runtime = pi_se->dl_runtime;
 943	}
 944}
 945
 946static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 947{
 948	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 949}
 950
 951/*
 952 * If the entity depleted all its runtime, and if we want it to sleep
 953 * while waiting for some new execution time to become available, we
 954 * set the bandwidth replenishment timer to the replenishment instant
 955 * and try to activate it.
 956 *
 957 * Notice that it is important for the caller to know if the timer
 958 * actually started or not (i.e., the replenishment instant is in
 959 * the future or in the past).
 960 */
 961static int start_dl_timer(struct task_struct *p)
 962{
 963	struct sched_dl_entity *dl_se = &p->dl;
 964	struct hrtimer *timer = &dl_se->dl_timer;
 965	struct rq *rq = task_rq(p);
 966	ktime_t now, act;
 967	s64 delta;
 968
 969	lockdep_assert_held(&rq->lock);
 970
 971	/*
 972	 * We want the timer to fire at the deadline, but considering
 973	 * that it is actually coming from rq->clock and not from
 974	 * hrtimer's time base reading.
 975	 */
 976	act = ns_to_ktime(dl_next_period(dl_se));
 977	now = hrtimer_cb_get_time(timer);
 978	delta = ktime_to_ns(now) - rq_clock(rq);
 979	act = ktime_add_ns(act, delta);
 980
 981	/*
 982	 * If the expiry time already passed, e.g., because the value
 983	 * chosen as the deadline is too small, don't even try to
 984	 * start the timer in the past!
 985	 */
 986	if (ktime_us_delta(act, now) < 0)
 987		return 0;
 988
 989	/*
 990	 * !enqueued will guarantee another callback; even if one is already in
 991	 * progress. This ensures a balanced {get,put}_task_struct().
 992	 *
 993	 * The race against __run_timer() clearing the enqueued state is
 994	 * harmless because we're holding task_rq()->lock, therefore the timer
 995	 * expiring after we've done the check will wait on its task_rq_lock()
 996	 * and observe our state.
 997	 */
 998	if (!hrtimer_is_queued(timer)) {
 999		get_task_struct(p);
1000		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1001	}
1002
1003	return 1;
1004}
1005
1006/*
1007 * This is the bandwidth enforcement timer callback. If here, we know
1008 * a task is not on its dl_rq, since the fact that the timer was running
1009 * means the task is throttled and needs a runtime replenishment.
1010 *
1011 * However, what we actually do depends on the fact the task is active,
1012 * (it is on its rq) or has been removed from there by a call to
1013 * dequeue_task_dl(). In the former case we must issue the runtime
1014 * replenishment and add the task back to the dl_rq; in the latter, we just
1015 * do nothing but clearing dl_throttled, so that runtime and deadline
1016 * updating (and the queueing back to dl_rq) will be done by the
1017 * next call to enqueue_task_dl().
1018 */
1019static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1020{
1021	struct sched_dl_entity *dl_se = container_of(timer,
1022						     struct sched_dl_entity,
1023						     dl_timer);
1024	struct task_struct *p = dl_task_of(dl_se);
1025	struct rq_flags rf;
1026	struct rq *rq;
1027
1028	rq = task_rq_lock(p, &rf);
1029
1030	/*
1031	 * The task might have changed its scheduling policy to something
1032	 * different than SCHED_DEADLINE (through switched_from_dl()).
1033	 */
1034	if (!dl_task(p))
 
1035		goto unlock;
 
1036
1037	/*
1038	 * The task might have been boosted by someone else and might be in the
1039	 * boosting/deboosting path, its not throttled.
1040	 */
1041	if (dl_se->dl_boosted)
1042		goto unlock;
1043
1044	/*
1045	 * Spurious timer due to start_dl_timer() race; or we already received
1046	 * a replenishment from rt_mutex_setprio().
1047	 */
1048	if (!dl_se->dl_throttled)
1049		goto unlock;
1050
1051	sched_clock_tick();
1052	update_rq_clock(rq);
1053
1054	/*
1055	 * If the throttle happened during sched-out; like:
1056	 *
1057	 *   schedule()
1058	 *     deactivate_task()
1059	 *       dequeue_task_dl()
1060	 *         update_curr_dl()
1061	 *           start_dl_timer()
1062	 *         __dequeue_task_dl()
1063	 *     prev->on_rq = 0;
1064	 *
1065	 * We can be both throttled and !queued. Replenish the counter
1066	 * but do not enqueue -- wait for our wakeup to do that.
1067	 */
1068	if (!task_on_rq_queued(p)) {
1069		replenish_dl_entity(dl_se, dl_se);
1070		goto unlock;
1071	}
1072
1073#ifdef CONFIG_SMP
1074	if (unlikely(!rq->online)) {
1075		/*
1076		 * If the runqueue is no longer available, migrate the
1077		 * task elsewhere. This necessarily changes rq.
1078		 */
1079		lockdep_unpin_lock(&rq->lock, rf.cookie);
1080		rq = dl_task_offline_migration(rq, p);
1081		rf.cookie = lockdep_pin_lock(&rq->lock);
1082		update_rq_clock(rq);
1083
1084		/*
1085		 * Now that the task has been migrated to the new RQ and we
1086		 * have that locked, proceed as normal and enqueue the task
1087		 * there.
1088		 */
1089	}
1090#endif
1091
1092	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1093	if (dl_task(rq->curr))
1094		check_preempt_curr_dl(rq, p, 0);
1095	else
1096		resched_curr(rq);
1097
1098#ifdef CONFIG_SMP
1099	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1100	 * Queueing this task back might have overloaded rq, check if we need
1101	 * to kick someone away.
1102	 */
1103	if (has_pushable_dl_tasks(rq)) {
1104		/*
1105		 * Nothing relies on rq->lock after this, so its safe to drop
1106		 * rq->lock.
1107		 */
1108		rq_unpin_lock(rq, &rf);
1109		push_dl_task(rq);
1110		rq_repin_lock(rq, &rf);
1111	}
1112#endif
1113
1114unlock:
1115	task_rq_unlock(rq, p, &rf);
1116
1117	/*
1118	 * This can free the task_struct, including this hrtimer, do not touch
1119	 * anything related to that after this.
1120	 */
1121	put_task_struct(p);
1122
1123	return HRTIMER_NORESTART;
1124}
1125
1126void init_dl_task_timer(struct sched_dl_entity *dl_se)
1127{
1128	struct hrtimer *timer = &dl_se->dl_timer;
1129
1130	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1131	timer->function = dl_task_timer;
1132}
1133
1134/*
1135 * During the activation, CBS checks if it can reuse the current task's
1136 * runtime and period. If the deadline of the task is in the past, CBS
1137 * cannot use the runtime, and so it replenishes the task. This rule
1138 * works fine for implicit deadline tasks (deadline == period), and the
1139 * CBS was designed for implicit deadline tasks. However, a task with
1140 * constrained deadline (deadline < period) might be awakened after the
1141 * deadline, but before the next period. In this case, replenishing the
1142 * task would allow it to run for runtime / deadline. As in this case
1143 * deadline < period, CBS enables a task to run for more than the
1144 * runtime / period. In a very loaded system, this can cause a domino
1145 * effect, making other tasks miss their deadlines.
1146 *
1147 * To avoid this problem, in the activation of a constrained deadline
1148 * task after the deadline but before the next period, throttle the
1149 * task and set the replenishing timer to the begin of the next period,
1150 * unless it is boosted.
1151 */
1152static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1153{
1154	struct task_struct *p = dl_task_of(dl_se);
1155	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1156
1157	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1158	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1159		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1160			return;
1161		dl_se->dl_throttled = 1;
1162		if (dl_se->runtime > 0)
1163			dl_se->runtime = 0;
1164	}
1165}
1166
1167static
1168int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1169{
1170	return (dl_se->runtime <= 0);
1171}
1172
1173extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1174
1175/*
1176 * This function implements the GRUB accounting rule:
1177 * according to the GRUB reclaiming algorithm, the runtime is
1178 * not decreased as "dq = -dt", but as
1179 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1180 * where u is the utilization of the task, Umax is the maximum reclaimable
1181 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1182 * as the difference between the "total runqueue utilization" and the
1183 * runqueue active utilization, and Uextra is the (per runqueue) extra
1184 * reclaimable utilization.
1185 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1186 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1187 * BW_SHIFT.
1188 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1189 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1190 * Since delta is a 64 bit variable, to have an overflow its value
1191 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1192 * So, overflow is not an issue here.
1193 */
1194static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1195{
1196	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1197	u64 u_act;
1198	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1199
1200	/*
1201	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1202	 * we compare u_inact + rq->dl.extra_bw with
1203	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1204	 * u_inact + rq->dl.extra_bw can be larger than
1205	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1206	 * leading to wrong results)
1207	 */
1208	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1209		u_act = u_act_min;
1210	else
1211		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1212
1213	return (delta * u_act) >> BW_SHIFT;
1214}
1215
1216/*
1217 * Update the current task's runtime statistics (provided it is still
1218 * a -deadline task and has not been removed from the dl_rq).
1219 */
1220static void update_curr_dl(struct rq *rq)
1221{
1222	struct task_struct *curr = rq->curr;
1223	struct sched_dl_entity *dl_se = &curr->dl;
1224	u64 delta_exec, scaled_delta_exec;
1225	int cpu = cpu_of(rq);
1226	u64 now;
1227
1228	if (!dl_task(curr) || !on_dl_rq(dl_se))
1229		return;
1230
 
 
 
 
1231	/*
1232	 * Consumed budget is computed considering the time as
1233	 * observed by schedulable tasks (excluding time spent
1234	 * in hardirq context, etc.). Deadlines are instead
1235	 * computed using hard walltime. This seems to be the more
1236	 * natural solution, but the full ramifications of this
1237	 * approach need further study.
1238	 */
1239	now = rq_clock_task(rq);
1240	delta_exec = now - curr->se.exec_start;
1241	if (unlikely((s64)delta_exec <= 0)) {
1242		if (unlikely(dl_se->dl_yielded))
1243			goto throttle;
1244		return;
1245	}
1246
1247	schedstat_set(curr->se.statistics.exec_max,
1248		      max(curr->se.statistics.exec_max, delta_exec));
1249
1250	curr->se.sum_exec_runtime += delta_exec;
1251	account_group_exec_runtime(curr, delta_exec);
1252
1253	curr->se.exec_start = now;
1254	cgroup_account_cputime(curr, delta_exec);
1255
1256	if (dl_entity_is_special(dl_se))
1257		return;
1258
1259	/*
1260	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1261	 * spare reclaimed bandwidth is used to clock down frequency.
1262	 *
1263	 * For the others, we still need to scale reservation parameters
1264	 * according to current frequency and CPU maximum capacity.
1265	 */
1266	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1267		scaled_delta_exec = grub_reclaim(delta_exec,
1268						 rq,
1269						 &curr->dl);
1270	} else {
1271		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1272		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1273
1274		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1275		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1276	}
1277
1278	dl_se->runtime -= scaled_delta_exec;
1279
1280throttle:
1281	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1282		dl_se->dl_throttled = 1;
1283
1284		/* If requested, inform the user about runtime overruns. */
1285		if (dl_runtime_exceeded(dl_se) &&
1286		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1287			dl_se->dl_overrun = 1;
1288
1289		__dequeue_task_dl(rq, curr, 0);
1290		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1291			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1292
1293		if (!is_leftmost(curr, &rq->dl))
1294			resched_curr(rq);
1295	}
1296
1297	/*
1298	 * Because -- for now -- we share the rt bandwidth, we need to
1299	 * account our runtime there too, otherwise actual rt tasks
1300	 * would be able to exceed the shared quota.
1301	 *
1302	 * Account to the root rt group for now.
1303	 *
1304	 * The solution we're working towards is having the RT groups scheduled
1305	 * using deadline servers -- however there's a few nasties to figure
1306	 * out before that can happen.
1307	 */
1308	if (rt_bandwidth_enabled()) {
1309		struct rt_rq *rt_rq = &rq->rt;
1310
1311		raw_spin_lock(&rt_rq->rt_runtime_lock);
1312		/*
1313		 * We'll let actual RT tasks worry about the overflow here, we
1314		 * have our own CBS to keep us inline; only account when RT
1315		 * bandwidth is relevant.
1316		 */
1317		if (sched_rt_bandwidth_account(rt_rq))
1318			rt_rq->rt_time += delta_exec;
1319		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1320	}
1321}
1322
1323static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1324{
1325	struct sched_dl_entity *dl_se = container_of(timer,
1326						     struct sched_dl_entity,
1327						     inactive_timer);
1328	struct task_struct *p = dl_task_of(dl_se);
1329	struct rq_flags rf;
1330	struct rq *rq;
1331
1332	rq = task_rq_lock(p, &rf);
1333
1334	sched_clock_tick();
1335	update_rq_clock(rq);
1336
1337	if (!dl_task(p) || p->state == TASK_DEAD) {
1338		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1339
1340		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1341			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1342			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1343			dl_se->dl_non_contending = 0;
1344		}
1345
1346		raw_spin_lock(&dl_b->lock);
1347		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1348		raw_spin_unlock(&dl_b->lock);
1349		__dl_clear_params(p);
1350
1351		goto unlock;
1352	}
1353	if (dl_se->dl_non_contending == 0)
1354		goto unlock;
1355
1356	sub_running_bw(dl_se, &rq->dl);
1357	dl_se->dl_non_contending = 0;
1358unlock:
1359	task_rq_unlock(rq, p, &rf);
1360	put_task_struct(p);
1361
1362	return HRTIMER_NORESTART;
1363}
1364
1365void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1366{
1367	struct hrtimer *timer = &dl_se->inactive_timer;
1368
1369	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1370	timer->function = inactive_task_timer;
1371}
1372
1373#ifdef CONFIG_SMP
1374
1375static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1376{
1377	struct rq *rq = rq_of_dl_rq(dl_rq);
1378
1379	if (dl_rq->earliest_dl.curr == 0 ||
1380	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1381		dl_rq->earliest_dl.curr = deadline;
1382		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1383	}
1384}
1385
1386static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1387{
1388	struct rq *rq = rq_of_dl_rq(dl_rq);
1389
1390	/*
1391	 * Since we may have removed our earliest (and/or next earliest)
1392	 * task we must recompute them.
1393	 */
1394	if (!dl_rq->dl_nr_running) {
1395		dl_rq->earliest_dl.curr = 0;
1396		dl_rq->earliest_dl.next = 0;
1397		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1398	} else {
1399		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1400		struct sched_dl_entity *entry;
1401
1402		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1403		dl_rq->earliest_dl.curr = entry->deadline;
1404		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1405	}
1406}
1407
1408#else
1409
1410static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1411static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1412
1413#endif /* CONFIG_SMP */
1414
1415static inline
1416void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1417{
1418	int prio = dl_task_of(dl_se)->prio;
1419	u64 deadline = dl_se->deadline;
1420
1421	WARN_ON(!dl_prio(prio));
1422	dl_rq->dl_nr_running++;
1423	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1424
1425	inc_dl_deadline(dl_rq, deadline);
1426	inc_dl_migration(dl_se, dl_rq);
1427}
1428
1429static inline
1430void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1431{
1432	int prio = dl_task_of(dl_se)->prio;
1433
1434	WARN_ON(!dl_prio(prio));
1435	WARN_ON(!dl_rq->dl_nr_running);
1436	dl_rq->dl_nr_running--;
1437	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1438
1439	dec_dl_deadline(dl_rq, dl_se->deadline);
1440	dec_dl_migration(dl_se, dl_rq);
1441}
1442
1443static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1444{
1445	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1446	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1447	struct rb_node *parent = NULL;
1448	struct sched_dl_entity *entry;
1449	int leftmost = 1;
1450
1451	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1452
1453	while (*link) {
1454		parent = *link;
1455		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1456		if (dl_time_before(dl_se->deadline, entry->deadline))
1457			link = &parent->rb_left;
1458		else {
1459			link = &parent->rb_right;
1460			leftmost = 0;
1461		}
1462	}
1463
 
 
 
1464	rb_link_node(&dl_se->rb_node, parent, link);
1465	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1466
1467	inc_dl_tasks(dl_se, dl_rq);
1468}
1469
1470static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1471{
1472	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1473
1474	if (RB_EMPTY_NODE(&dl_se->rb_node))
1475		return;
1476
1477	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
 
 
 
 
 
 
 
1478	RB_CLEAR_NODE(&dl_se->rb_node);
1479
1480	dec_dl_tasks(dl_se, dl_rq);
1481}
1482
1483static void
1484enqueue_dl_entity(struct sched_dl_entity *dl_se,
1485		  struct sched_dl_entity *pi_se, int flags)
1486{
1487	BUG_ON(on_dl_rq(dl_se));
1488
1489	/*
1490	 * If this is a wakeup or a new instance, the scheduling
1491	 * parameters of the task might need updating. Otherwise,
1492	 * we want a replenishment of its runtime.
1493	 */
1494	if (flags & ENQUEUE_WAKEUP) {
1495		task_contending(dl_se, flags);
1496		update_dl_entity(dl_se, pi_se);
1497	} else if (flags & ENQUEUE_REPLENISH) {
1498		replenish_dl_entity(dl_se, pi_se);
1499	} else if ((flags & ENQUEUE_RESTORE) &&
1500		  dl_time_before(dl_se->deadline,
1501				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1502		setup_new_dl_entity(dl_se);
1503	}
1504
1505	__enqueue_dl_entity(dl_se);
1506}
1507
1508static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509{
1510	__dequeue_dl_entity(dl_se);
1511}
1512
1513static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514{
1515	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1516	struct sched_dl_entity *pi_se = &p->dl;
1517
1518	/*
1519	 * Use the scheduling parameters of the top pi-waiter task if:
1520	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1521	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1522	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1523	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1524	 * Otherwise we keep our runtime and deadline.
1525	 */
1526	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1527		pi_se = &pi_task->dl;
1528	} else if (!dl_prio(p->normal_prio)) {
1529		/*
1530		 * Special case in which we have a !SCHED_DEADLINE task
1531		 * that is going to be deboosted, but exceeds its
1532		 * runtime while doing so. No point in replenishing
1533		 * it, as it's going to return back to its original
1534		 * scheduling class after this.
1535		 */
1536		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1537		return;
1538	}
1539
1540	/*
1541	 * Check if a constrained deadline task was activated
1542	 * after the deadline but before the next period.
1543	 * If that is the case, the task will be throttled and
1544	 * the replenishment timer will be set to the next period.
1545	 */
1546	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1547		dl_check_constrained_dl(&p->dl);
1548
1549	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1550		add_rq_bw(&p->dl, &rq->dl);
1551		add_running_bw(&p->dl, &rq->dl);
1552	}
1553
1554	/*
1555	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1556	 * its budget it needs a replenishment and, since it now is on
1557	 * its rq, the bandwidth timer callback (which clearly has not
1558	 * run yet) will take care of this.
1559	 * However, the active utilization does not depend on the fact
1560	 * that the task is on the runqueue or not (but depends on the
1561	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1562	 * In other words, even if a task is throttled its utilization must
1563	 * be counted in the active utilization; hence, we need to call
1564	 * add_running_bw().
1565	 */
1566	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1567		if (flags & ENQUEUE_WAKEUP)
1568			task_contending(&p->dl, flags);
1569
1570		return;
1571	}
1572
1573	enqueue_dl_entity(&p->dl, pi_se, flags);
1574
1575	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1576		enqueue_pushable_dl_task(rq, p);
1577}
1578
1579static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1580{
1581	dequeue_dl_entity(&p->dl);
1582	dequeue_pushable_dl_task(rq, p);
1583}
1584
1585static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1586{
1587	update_curr_dl(rq);
1588	__dequeue_task_dl(rq, p, flags);
1589
1590	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1591		sub_running_bw(&p->dl, &rq->dl);
1592		sub_rq_bw(&p->dl, &rq->dl);
1593	}
1594
1595	/*
1596	 * This check allows to start the inactive timer (or to immediately
1597	 * decrease the active utilization, if needed) in two cases:
1598	 * when the task blocks and when it is terminating
1599	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1600	 * way, because from GRUB's point of view the same thing is happening
1601	 * (the task moves from "active contending" to "active non contending"
1602	 * or "inactive")
1603	 */
1604	if (flags & DEQUEUE_SLEEP)
1605		task_non_contending(p);
1606}
1607
1608/*
1609 * Yield task semantic for -deadline tasks is:
1610 *
1611 *   get off from the CPU until our next instance, with
1612 *   a new runtime. This is of little use now, since we
1613 *   don't have a bandwidth reclaiming mechanism. Anyway,
1614 *   bandwidth reclaiming is planned for the future, and
1615 *   yield_task_dl will indicate that some spare budget
1616 *   is available for other task instances to use it.
1617 */
1618static void yield_task_dl(struct rq *rq)
1619{
1620	/*
1621	 * We make the task go to sleep until its current deadline by
1622	 * forcing its runtime to zero. This way, update_curr_dl() stops
1623	 * it and the bandwidth timer will wake it up and will give it
1624	 * new scheduling parameters (thanks to dl_yielded=1).
1625	 */
1626	rq->curr->dl.dl_yielded = 1;
1627
1628	update_rq_clock(rq);
1629	update_curr_dl(rq);
1630	/*
1631	 * Tell update_rq_clock() that we've just updated,
1632	 * so we don't do microscopic update in schedule()
1633	 * and double the fastpath cost.
1634	 */
1635	rq_clock_skip_update(rq);
1636}
1637
1638#ifdef CONFIG_SMP
1639
1640static int find_later_rq(struct task_struct *task);
1641
1642static int
1643select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1644{
1645	struct task_struct *curr;
1646	bool select_rq;
1647	struct rq *rq;
1648
1649	if (sd_flag != SD_BALANCE_WAKE)
1650		goto out;
1651
1652	rq = cpu_rq(cpu);
1653
1654	rcu_read_lock();
1655	curr = READ_ONCE(rq->curr); /* unlocked access */
1656
1657	/*
1658	 * If we are dealing with a -deadline task, we must
1659	 * decide where to wake it up.
1660	 * If it has a later deadline and the current task
1661	 * on this rq can't move (provided the waking task
1662	 * can!) we prefer to send it somewhere else. On the
1663	 * other hand, if it has a shorter deadline, we
1664	 * try to make it stay here, it might be important.
1665	 */
1666	select_rq = unlikely(dl_task(curr)) &&
1667		    (curr->nr_cpus_allowed < 2 ||
1668		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1669		    p->nr_cpus_allowed > 1;
1670
1671	/*
1672	 * Take the capacity of the CPU into account to
1673	 * ensure it fits the requirement of the task.
1674	 */
1675	if (static_branch_unlikely(&sched_asym_cpucapacity))
1676		select_rq |= !dl_task_fits_capacity(p, cpu);
1677
1678	if (select_rq) {
1679		int target = find_later_rq(p);
1680
1681		if (target != -1 &&
1682				(dl_time_before(p->dl.deadline,
1683					cpu_rq(target)->dl.earliest_dl.curr) ||
1684				(cpu_rq(target)->dl.dl_nr_running == 0)))
1685			cpu = target;
1686	}
1687	rcu_read_unlock();
1688
1689out:
1690	return cpu;
1691}
1692
1693static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1694{
1695	struct rq *rq;
1696
1697	if (p->state != TASK_WAKING)
1698		return;
1699
1700	rq = task_rq(p);
1701	/*
1702	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1703	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1704	 * rq->lock is not... So, lock it
1705	 */
1706	raw_spin_lock(&rq->lock);
1707	if (p->dl.dl_non_contending) {
1708		sub_running_bw(&p->dl, &rq->dl);
1709		p->dl.dl_non_contending = 0;
1710		/*
1711		 * If the timer handler is currently running and the
1712		 * timer cannot be cancelled, inactive_task_timer()
1713		 * will see that dl_not_contending is not set, and
1714		 * will not touch the rq's active utilization,
1715		 * so we are still safe.
1716		 */
1717		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1718			put_task_struct(p);
1719	}
1720	sub_rq_bw(&p->dl, &rq->dl);
1721	raw_spin_unlock(&rq->lock);
1722}
1723
1724static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1725{
1726	/*
1727	 * Current can't be migrated, useless to reschedule,
1728	 * let's hope p can move out.
1729	 */
1730	if (rq->curr->nr_cpus_allowed == 1 ||
1731	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1732		return;
1733
1734	/*
1735	 * p is migratable, so let's not schedule it and
1736	 * see if it is pushed or pulled somewhere else.
1737	 */
1738	if (p->nr_cpus_allowed != 1 &&
1739	    cpudl_find(&rq->rd->cpudl, p, NULL))
1740		return;
1741
1742	resched_curr(rq);
1743}
1744
1745static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1746{
1747	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1748		/*
1749		 * This is OK, because current is on_cpu, which avoids it being
1750		 * picked for load-balance and preemption/IRQs are still
1751		 * disabled avoiding further scheduler activity on it and we've
1752		 * not yet started the picking loop.
1753		 */
1754		rq_unpin_lock(rq, rf);
1755		pull_dl_task(rq);
1756		rq_repin_lock(rq, rf);
1757	}
1758
1759	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1760}
1761#endif /* CONFIG_SMP */
1762
1763/*
1764 * Only called when both the current and waking task are -deadline
1765 * tasks.
1766 */
1767static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1768				  int flags)
1769{
1770	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1771		resched_curr(rq);
1772		return;
1773	}
1774
1775#ifdef CONFIG_SMP
1776	/*
1777	 * In the unlikely case current and p have the same deadline
1778	 * let us try to decide what's the best thing to do...
1779	 */
1780	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1781	    !test_tsk_need_resched(rq->curr))
1782		check_preempt_equal_dl(rq, p);
1783#endif /* CONFIG_SMP */
1784}
1785
1786#ifdef CONFIG_SCHED_HRTICK
1787static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1788{
1789	hrtick_start(rq, p->dl.runtime);
1790}
1791#else /* !CONFIG_SCHED_HRTICK */
1792static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1793{
1794}
1795#endif
1796
1797static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1798{
1799	p->se.exec_start = rq_clock_task(rq);
1800
1801	/* You can't push away the running task */
1802	dequeue_pushable_dl_task(rq, p);
1803
1804	if (!first)
1805		return;
1806
1807	if (hrtick_enabled(rq))
1808		start_hrtick_dl(rq, p);
1809
1810	if (rq->curr->sched_class != &dl_sched_class)
1811		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1812
1813	deadline_queue_push_tasks(rq);
1814}
1815
1816static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1817						   struct dl_rq *dl_rq)
1818{
1819	struct rb_node *left = rb_first_cached(&dl_rq->root);
1820
1821	if (!left)
1822		return NULL;
1823
1824	return rb_entry(left, struct sched_dl_entity, rb_node);
1825}
1826
1827static struct task_struct *pick_next_task_dl(struct rq *rq)
1828{
1829	struct sched_dl_entity *dl_se;
1830	struct dl_rq *dl_rq = &rq->dl;
1831	struct task_struct *p;
 
 
 
1832
1833	if (!sched_dl_runnable(rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834		return NULL;
1835
 
 
1836	dl_se = pick_next_dl_entity(rq, dl_rq);
1837	BUG_ON(!dl_se);
 
1838	p = dl_task_of(dl_se);
1839	set_next_task_dl(rq, p, true);
 
 
 
 
 
 
 
 
 
1840	return p;
1841}
1842
1843static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1844{
1845	update_curr_dl(rq);
1846
1847	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1848	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1849		enqueue_pushable_dl_task(rq, p);
1850}
1851
1852/*
1853 * scheduler tick hitting a task of our scheduling class.
1854 *
1855 * NOTE: This function can be called remotely by the tick offload that
1856 * goes along full dynticks. Therefore no local assumption can be made
1857 * and everything must be accessed through the @rq and @curr passed in
1858 * parameters.
1859 */
1860static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1861{
1862	update_curr_dl(rq);
1863
1864	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1865	/*
1866	 * Even when we have runtime, update_curr_dl() might have resulted in us
1867	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1868	 * be set and schedule() will start a new hrtick for the next task.
1869	 */
1870	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1871	    is_leftmost(p, &rq->dl))
1872		start_hrtick_dl(rq, p);
1873}
1874
1875static void task_fork_dl(struct task_struct *p)
1876{
1877	/*
1878	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1879	 * sched_fork()
1880	 */
1881}
1882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883#ifdef CONFIG_SMP
1884
1885/* Only try algorithms three times */
1886#define DL_MAX_TRIES 3
1887
1888static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1889{
1890	if (!task_running(rq, p) &&
1891	    cpumask_test_cpu(cpu, p->cpus_ptr))
1892		return 1;
1893	return 0;
1894}
1895
1896/*
1897 * Return the earliest pushable rq's task, which is suitable to be executed
1898 * on the CPU, NULL otherwise:
1899 */
1900static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1901{
1902	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1903	struct task_struct *p = NULL;
1904
1905	if (!has_pushable_dl_tasks(rq))
1906		return NULL;
1907
1908next_node:
1909	if (next_node) {
1910		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1911
1912		if (pick_dl_task(rq, p, cpu))
1913			return p;
1914
1915		next_node = rb_next(next_node);
1916		goto next_node;
1917	}
1918
1919	return NULL;
1920}
1921
1922static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1923
1924static int find_later_rq(struct task_struct *task)
1925{
1926	struct sched_domain *sd;
1927	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1928	int this_cpu = smp_processor_id();
1929	int cpu = task_cpu(task);
1930
1931	/* Make sure the mask is initialized first */
1932	if (unlikely(!later_mask))
1933		return -1;
1934
1935	if (task->nr_cpus_allowed == 1)
1936		return -1;
1937
1938	/*
1939	 * We have to consider system topology and task affinity
1940	 * first, then we can look for a suitable CPU.
1941	 */
1942	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
 
 
1943		return -1;
1944
1945	/*
1946	 * If we are here, some targets have been found, including
1947	 * the most suitable which is, among the runqueues where the
1948	 * current tasks have later deadlines than the task's one, the
1949	 * rq with the latest possible one.
 
1950	 *
1951	 * Now we check how well this matches with task's
1952	 * affinity and system topology.
1953	 *
1954	 * The last CPU where the task run is our first
1955	 * guess, since it is most likely cache-hot there.
1956	 */
1957	if (cpumask_test_cpu(cpu, later_mask))
1958		return cpu;
1959	/*
1960	 * Check if this_cpu is to be skipped (i.e., it is
1961	 * not in the mask) or not.
1962	 */
1963	if (!cpumask_test_cpu(this_cpu, later_mask))
1964		this_cpu = -1;
1965
1966	rcu_read_lock();
1967	for_each_domain(cpu, sd) {
1968		if (sd->flags & SD_WAKE_AFFINE) {
1969			int best_cpu;
1970
1971			/*
1972			 * If possible, preempting this_cpu is
1973			 * cheaper than migrating.
1974			 */
1975			if (this_cpu != -1 &&
1976			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1977				rcu_read_unlock();
1978				return this_cpu;
1979			}
1980
1981			best_cpu = cpumask_first_and(later_mask,
1982							sched_domain_span(sd));
1983			/*
1984			 * Last chance: if a CPU being in both later_mask
1985			 * and current sd span is valid, that becomes our
1986			 * choice. Of course, the latest possible CPU is
1987			 * already under consideration through later_mask.
1988			 */
1989			if (best_cpu < nr_cpu_ids) {
 
1990				rcu_read_unlock();
1991				return best_cpu;
1992			}
1993		}
1994	}
1995	rcu_read_unlock();
1996
1997	/*
1998	 * At this point, all our guesses failed, we just return
1999	 * 'something', and let the caller sort the things out.
2000	 */
2001	if (this_cpu != -1)
2002		return this_cpu;
2003
2004	cpu = cpumask_any(later_mask);
2005	if (cpu < nr_cpu_ids)
2006		return cpu;
2007
2008	return -1;
2009}
2010
2011/* Locks the rq it finds */
2012static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2013{
2014	struct rq *later_rq = NULL;
2015	int tries;
2016	int cpu;
2017
2018	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2019		cpu = find_later_rq(task);
2020
2021		if ((cpu == -1) || (cpu == rq->cpu))
2022			break;
2023
2024		later_rq = cpu_rq(cpu);
2025
2026		if (later_rq->dl.dl_nr_running &&
2027		    !dl_time_before(task->dl.deadline,
2028					later_rq->dl.earliest_dl.curr)) {
2029			/*
2030			 * Target rq has tasks of equal or earlier deadline,
2031			 * retrying does not release any lock and is unlikely
2032			 * to yield a different result.
2033			 */
2034			later_rq = NULL;
2035			break;
2036		}
2037
2038		/* Retry if something changed. */
2039		if (double_lock_balance(rq, later_rq)) {
2040			if (unlikely(task_rq(task) != rq ||
2041				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
 
2042				     task_running(rq, task) ||
2043				     !dl_task(task) ||
2044				     !task_on_rq_queued(task))) {
2045				double_unlock_balance(rq, later_rq);
2046				later_rq = NULL;
2047				break;
2048			}
2049		}
2050
2051		/*
2052		 * If the rq we found has no -deadline task, or
2053		 * its earliest one has a later deadline than our
2054		 * task, the rq is a good one.
2055		 */
2056		if (!later_rq->dl.dl_nr_running ||
2057		    dl_time_before(task->dl.deadline,
2058				   later_rq->dl.earliest_dl.curr))
2059			break;
2060
2061		/* Otherwise we try again. */
2062		double_unlock_balance(rq, later_rq);
2063		later_rq = NULL;
2064	}
2065
2066	return later_rq;
2067}
2068
2069static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2070{
2071	struct task_struct *p;
2072
2073	if (!has_pushable_dl_tasks(rq))
2074		return NULL;
2075
2076	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2077		     struct task_struct, pushable_dl_tasks);
2078
2079	BUG_ON(rq->cpu != task_cpu(p));
2080	BUG_ON(task_current(rq, p));
2081	BUG_ON(p->nr_cpus_allowed <= 1);
2082
2083	BUG_ON(!task_on_rq_queued(p));
2084	BUG_ON(!dl_task(p));
2085
2086	return p;
2087}
2088
2089/*
2090 * See if the non running -deadline tasks on this rq
2091 * can be sent to some other CPU where they can preempt
2092 * and start executing.
2093 */
2094static int push_dl_task(struct rq *rq)
2095{
2096	struct task_struct *next_task;
2097	struct rq *later_rq;
2098	int ret = 0;
2099
2100	if (!rq->dl.overloaded)
2101		return 0;
2102
2103	next_task = pick_next_pushable_dl_task(rq);
2104	if (!next_task)
2105		return 0;
2106
2107retry:
2108	if (WARN_ON(next_task == rq->curr))
 
2109		return 0;
 
2110
2111	/*
2112	 * If next_task preempts rq->curr, and rq->curr
2113	 * can move away, it makes sense to just reschedule
2114	 * without going further in pushing next_task.
2115	 */
2116	if (dl_task(rq->curr) &&
2117	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2118	    rq->curr->nr_cpus_allowed > 1) {
2119		resched_curr(rq);
2120		return 0;
2121	}
2122
2123	/* We might release rq lock */
2124	get_task_struct(next_task);
2125
2126	/* Will lock the rq it'll find */
2127	later_rq = find_lock_later_rq(next_task, rq);
2128	if (!later_rq) {
2129		struct task_struct *task;
2130
2131		/*
2132		 * We must check all this again, since
2133		 * find_lock_later_rq releases rq->lock and it is
2134		 * then possible that next_task has migrated.
2135		 */
2136		task = pick_next_pushable_dl_task(rq);
2137		if (task == next_task) {
2138			/*
2139			 * The task is still there. We don't try
2140			 * again, some other CPU will pull it when ready.
2141			 */
2142			goto out;
2143		}
2144
2145		if (!task)
2146			/* No more tasks */
2147			goto out;
2148
2149		put_task_struct(next_task);
2150		next_task = task;
2151		goto retry;
2152	}
2153
2154	deactivate_task(rq, next_task, 0);
2155	set_task_cpu(next_task, later_rq->cpu);
2156
2157	/*
2158	 * Update the later_rq clock here, because the clock is used
2159	 * by the cpufreq_update_util() inside __add_running_bw().
2160	 */
2161	update_rq_clock(later_rq);
2162	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2163	ret = 1;
2164
2165	resched_curr(later_rq);
2166
2167	double_unlock_balance(rq, later_rq);
2168
2169out:
2170	put_task_struct(next_task);
2171
2172	return ret;
2173}
2174
2175static void push_dl_tasks(struct rq *rq)
2176{
2177	/* push_dl_task() will return true if it moved a -deadline task */
2178	while (push_dl_task(rq))
2179		;
2180}
2181
2182static void pull_dl_task(struct rq *this_rq)
2183{
2184	int this_cpu = this_rq->cpu, cpu;
2185	struct task_struct *p;
2186	bool resched = false;
2187	struct rq *src_rq;
2188	u64 dmin = LONG_MAX;
2189
2190	if (likely(!dl_overloaded(this_rq)))
2191		return;
2192
2193	/*
2194	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2195	 * see overloaded we must also see the dlo_mask bit.
2196	 */
2197	smp_rmb();
2198
2199	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2200		if (this_cpu == cpu)
2201			continue;
2202
2203		src_rq = cpu_rq(cpu);
2204
2205		/*
2206		 * It looks racy, abd it is! However, as in sched_rt.c,
2207		 * we are fine with this.
2208		 */
2209		if (this_rq->dl.dl_nr_running &&
2210		    dl_time_before(this_rq->dl.earliest_dl.curr,
2211				   src_rq->dl.earliest_dl.next))
2212			continue;
2213
2214		/* Might drop this_rq->lock */
2215		double_lock_balance(this_rq, src_rq);
2216
2217		/*
2218		 * If there are no more pullable tasks on the
2219		 * rq, we're done with it.
2220		 */
2221		if (src_rq->dl.dl_nr_running <= 1)
2222			goto skip;
2223
2224		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2225
2226		/*
2227		 * We found a task to be pulled if:
2228		 *  - it preempts our current (if there's one),
2229		 *  - it will preempt the last one we pulled (if any).
2230		 */
2231		if (p && dl_time_before(p->dl.deadline, dmin) &&
2232		    (!this_rq->dl.dl_nr_running ||
2233		     dl_time_before(p->dl.deadline,
2234				    this_rq->dl.earliest_dl.curr))) {
2235			WARN_ON(p == src_rq->curr);
2236			WARN_ON(!task_on_rq_queued(p));
2237
2238			/*
2239			 * Then we pull iff p has actually an earlier
2240			 * deadline than the current task of its runqueue.
2241			 */
2242			if (dl_time_before(p->dl.deadline,
2243					   src_rq->curr->dl.deadline))
2244				goto skip;
2245
2246			resched = true;
2247
2248			deactivate_task(src_rq, p, 0);
2249			set_task_cpu(p, this_cpu);
2250			activate_task(this_rq, p, 0);
2251			dmin = p->dl.deadline;
2252
2253			/* Is there any other task even earlier? */
2254		}
2255skip:
2256		double_unlock_balance(this_rq, src_rq);
2257	}
2258
2259	if (resched)
2260		resched_curr(this_rq);
2261}
2262
2263/*
2264 * Since the task is not running and a reschedule is not going to happen
2265 * anytime soon on its runqueue, we try pushing it away now.
2266 */
2267static void task_woken_dl(struct rq *rq, struct task_struct *p)
2268{
2269	if (!task_running(rq, p) &&
2270	    !test_tsk_need_resched(rq->curr) &&
2271	    p->nr_cpus_allowed > 1 &&
2272	    dl_task(rq->curr) &&
2273	    (rq->curr->nr_cpus_allowed < 2 ||
2274	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2275		push_dl_tasks(rq);
2276	}
2277}
2278
2279static void set_cpus_allowed_dl(struct task_struct *p,
2280				const struct cpumask *new_mask)
2281{
2282	struct root_domain *src_rd;
2283	struct rq *rq;
2284
2285	BUG_ON(!dl_task(p));
2286
2287	rq = task_rq(p);
2288	src_rd = rq->rd;
2289	/*
2290	 * Migrating a SCHED_DEADLINE task between exclusive
2291	 * cpusets (different root_domains) entails a bandwidth
2292	 * update. We already made space for us in the destination
2293	 * domain (see cpuset_can_attach()).
2294	 */
2295	if (!cpumask_intersects(src_rd->span, new_mask)) {
2296		struct dl_bw *src_dl_b;
2297
2298		src_dl_b = dl_bw_of(cpu_of(rq));
2299		/*
2300		 * We now free resources of the root_domain we are migrating
2301		 * off. In the worst case, sched_setattr() may temporary fail
2302		 * until we complete the update.
2303		 */
2304		raw_spin_lock(&src_dl_b->lock);
2305		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2306		raw_spin_unlock(&src_dl_b->lock);
2307	}
2308
2309	set_cpus_allowed_common(p, new_mask);
2310}
2311
2312/* Assumes rq->lock is held */
2313static void rq_online_dl(struct rq *rq)
2314{
2315	if (rq->dl.overloaded)
2316		dl_set_overload(rq);
2317
2318	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2319	if (rq->dl.dl_nr_running > 0)
2320		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2321}
2322
2323/* Assumes rq->lock is held */
2324static void rq_offline_dl(struct rq *rq)
2325{
2326	if (rq->dl.overloaded)
2327		dl_clear_overload(rq);
2328
2329	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2330	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2331}
2332
2333void __init init_sched_dl_class(void)
2334{
2335	unsigned int i;
2336
2337	for_each_possible_cpu(i)
2338		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2339					GFP_KERNEL, cpu_to_node(i));
2340}
2341
2342void dl_add_task_root_domain(struct task_struct *p)
2343{
2344	struct rq_flags rf;
2345	struct rq *rq;
2346	struct dl_bw *dl_b;
2347
2348	rq = task_rq_lock(p, &rf);
2349	if (!dl_task(p))
2350		goto unlock;
2351
2352	dl_b = &rq->rd->dl_bw;
2353	raw_spin_lock(&dl_b->lock);
2354
2355	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2356
2357	raw_spin_unlock(&dl_b->lock);
2358
2359unlock:
2360	task_rq_unlock(rq, p, &rf);
2361}
2362
2363void dl_clear_root_domain(struct root_domain *rd)
2364{
2365	unsigned long flags;
2366
2367	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2368	rd->dl_bw.total_bw = 0;
2369	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2370}
2371
2372#endif /* CONFIG_SMP */
2373
2374static void switched_from_dl(struct rq *rq, struct task_struct *p)
2375{
2376	/*
2377	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2378	 * time is in the future). If the task switches back to dl before
2379	 * the "inactive timer" fires, it can continue to consume its current
2380	 * runtime using its current deadline. If it stays outside of
2381	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2382	 * will reset the task parameters.
2383	 */
2384	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2385		task_non_contending(p);
2386
2387	if (!task_on_rq_queued(p)) {
2388		/*
2389		 * Inactive timer is armed. However, p is leaving DEADLINE and
2390		 * might migrate away from this rq while continuing to run on
2391		 * some other class. We need to remove its contribution from
2392		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2393		 */
2394		if (p->dl.dl_non_contending)
2395			sub_running_bw(&p->dl, &rq->dl);
2396		sub_rq_bw(&p->dl, &rq->dl);
2397	}
2398
2399	/*
2400	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2401	 * at the 0-lag time, because the task could have been migrated
2402	 * while SCHED_OTHER in the meanwhile.
2403	 */
2404	if (p->dl.dl_non_contending)
2405		p->dl.dl_non_contending = 0;
2406
2407	/*
2408	 * Since this might be the only -deadline task on the rq,
2409	 * this is the right place to try to pull some other one
2410	 * from an overloaded CPU, if any.
2411	 */
2412	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2413		return;
2414
2415	deadline_queue_pull_task(rq);
2416}
2417
2418/*
2419 * When switching to -deadline, we may overload the rq, then
2420 * we try to push someone off, if possible.
2421 */
2422static void switched_to_dl(struct rq *rq, struct task_struct *p)
2423{
2424	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2425		put_task_struct(p);
2426
2427	/* If p is not queued we will update its parameters at next wakeup. */
2428	if (!task_on_rq_queued(p)) {
2429		add_rq_bw(&p->dl, &rq->dl);
2430
2431		return;
2432	}
2433
2434	if (rq->curr != p) {
2435#ifdef CONFIG_SMP
2436		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2437			deadline_queue_push_tasks(rq);
2438#endif
2439		if (dl_task(rq->curr))
2440			check_preempt_curr_dl(rq, p, 0);
2441		else
2442			resched_curr(rq);
 
2443	}
2444}
2445
2446/*
2447 * If the scheduling parameters of a -deadline task changed,
2448 * a push or pull operation might be needed.
2449 */
2450static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2451			    int oldprio)
2452{
2453	if (task_on_rq_queued(p) || rq->curr == p) {
2454#ifdef CONFIG_SMP
2455		/*
2456		 * This might be too much, but unfortunately
2457		 * we don't have the old deadline value, and
2458		 * we can't argue if the task is increasing
2459		 * or lowering its prio, so...
2460		 */
2461		if (!rq->dl.overloaded)
2462			deadline_queue_pull_task(rq);
2463
2464		/*
2465		 * If we now have a earlier deadline task than p,
2466		 * then reschedule, provided p is still on this
2467		 * runqueue.
2468		 */
2469		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2470			resched_curr(rq);
2471#else
2472		/*
2473		 * Again, we don't know if p has a earlier
2474		 * or later deadline, so let's blindly set a
2475		 * (maybe not needed) rescheduling point.
2476		 */
2477		resched_curr(rq);
2478#endif /* CONFIG_SMP */
2479	}
2480}
2481
2482const struct sched_class dl_sched_class
2483	__attribute__((section("__dl_sched_class"))) = {
2484	.enqueue_task		= enqueue_task_dl,
2485	.dequeue_task		= dequeue_task_dl,
2486	.yield_task		= yield_task_dl,
2487
2488	.check_preempt_curr	= check_preempt_curr_dl,
2489
2490	.pick_next_task		= pick_next_task_dl,
2491	.put_prev_task		= put_prev_task_dl,
2492	.set_next_task		= set_next_task_dl,
2493
2494#ifdef CONFIG_SMP
2495	.balance		= balance_dl,
2496	.select_task_rq		= select_task_rq_dl,
2497	.migrate_task_rq	= migrate_task_rq_dl,
2498	.set_cpus_allowed       = set_cpus_allowed_dl,
2499	.rq_online              = rq_online_dl,
2500	.rq_offline             = rq_offline_dl,
2501	.task_woken		= task_woken_dl,
2502#endif
2503
 
2504	.task_tick		= task_tick_dl,
2505	.task_fork              = task_fork_dl,
 
2506
2507	.prio_changed           = prio_changed_dl,
2508	.switched_from		= switched_from_dl,
2509	.switched_to		= switched_to_dl,
2510
2511	.update_curr		= update_curr_dl,
2512};
2513
2514int sched_dl_global_validate(void)
2515{
2516	u64 runtime = global_rt_runtime();
2517	u64 period = global_rt_period();
2518	u64 new_bw = to_ratio(period, runtime);
2519	struct dl_bw *dl_b;
2520	int cpu, ret = 0;
2521	unsigned long flags;
2522
2523	/*
2524	 * Here we want to check the bandwidth not being set to some
2525	 * value smaller than the currently allocated bandwidth in
2526	 * any of the root_domains.
2527	 *
2528	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2529	 * cycling on root_domains... Discussion on different/better
2530	 * solutions is welcome!
2531	 */
2532	for_each_possible_cpu(cpu) {
2533		rcu_read_lock_sched();
2534		dl_b = dl_bw_of(cpu);
2535
2536		raw_spin_lock_irqsave(&dl_b->lock, flags);
2537		if (new_bw < dl_b->total_bw)
2538			ret = -EBUSY;
2539		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2540
2541		rcu_read_unlock_sched();
2542
2543		if (ret)
2544			break;
2545	}
2546
2547	return ret;
2548}
2549
2550static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2551{
2552	if (global_rt_runtime() == RUNTIME_INF) {
2553		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2554		dl_rq->extra_bw = 1 << BW_SHIFT;
2555	} else {
2556		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2557			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2558		dl_rq->extra_bw = to_ratio(global_rt_period(),
2559						    global_rt_runtime());
2560	}
2561}
2562
2563void sched_dl_do_global(void)
2564{
2565	u64 new_bw = -1;
2566	struct dl_bw *dl_b;
2567	int cpu;
2568	unsigned long flags;
2569
2570	def_dl_bandwidth.dl_period = global_rt_period();
2571	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2572
2573	if (global_rt_runtime() != RUNTIME_INF)
2574		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2575
2576	/*
2577	 * FIXME: As above...
2578	 */
2579	for_each_possible_cpu(cpu) {
2580		rcu_read_lock_sched();
2581		dl_b = dl_bw_of(cpu);
2582
2583		raw_spin_lock_irqsave(&dl_b->lock, flags);
2584		dl_b->bw = new_bw;
2585		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2586
2587		rcu_read_unlock_sched();
2588		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2589	}
2590}
2591
2592/*
2593 * We must be sure that accepting a new task (or allowing changing the
2594 * parameters of an existing one) is consistent with the bandwidth
2595 * constraints. If yes, this function also accordingly updates the currently
2596 * allocated bandwidth to reflect the new situation.
2597 *
2598 * This function is called while holding p's rq->lock.
2599 */
2600int sched_dl_overflow(struct task_struct *p, int policy,
2601		      const struct sched_attr *attr)
2602{
2603	u64 period = attr->sched_period ?: attr->sched_deadline;
2604	u64 runtime = attr->sched_runtime;
2605	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2606	int cpus, err = -1, cpu = task_cpu(p);
2607	struct dl_bw *dl_b = dl_bw_of(cpu);
2608	unsigned long cap;
2609
2610	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2611		return 0;
2612
2613	/* !deadline task may carry old deadline bandwidth */
2614	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2615		return 0;
2616
2617	/*
2618	 * Either if a task, enters, leave, or stays -deadline but changes
2619	 * its parameters, we may need to update accordingly the total
2620	 * allocated bandwidth of the container.
2621	 */
2622	raw_spin_lock(&dl_b->lock);
2623	cpus = dl_bw_cpus(cpu);
2624	cap = dl_bw_capacity(cpu);
2625
2626	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2627	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2628		if (hrtimer_active(&p->dl.inactive_timer))
2629			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2630		__dl_add(dl_b, new_bw, cpus);
2631		err = 0;
2632	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2633		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2634		/*
2635		 * XXX this is slightly incorrect: when the task
2636		 * utilization decreases, we should delay the total
2637		 * utilization change until the task's 0-lag point.
2638		 * But this would require to set the task's "inactive
2639		 * timer" when the task is not inactive.
2640		 */
2641		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2642		__dl_add(dl_b, new_bw, cpus);
2643		dl_change_utilization(p, new_bw);
2644		err = 0;
2645	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2646		/*
2647		 * Do not decrease the total deadline utilization here,
2648		 * switched_from_dl() will take care to do it at the correct
2649		 * (0-lag) time.
2650		 */
2651		err = 0;
2652	}
2653	raw_spin_unlock(&dl_b->lock);
2654
2655	return err;
2656}
2657
2658/*
2659 * This function initializes the sched_dl_entity of a newly becoming
2660 * SCHED_DEADLINE task.
2661 *
2662 * Only the static values are considered here, the actual runtime and the
2663 * absolute deadline will be properly calculated when the task is enqueued
2664 * for the first time with its new policy.
2665 */
2666void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2667{
2668	struct sched_dl_entity *dl_se = &p->dl;
2669
2670	dl_se->dl_runtime = attr->sched_runtime;
2671	dl_se->dl_deadline = attr->sched_deadline;
2672	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2673	dl_se->flags = attr->sched_flags;
2674	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2675	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2676}
2677
2678void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2679{
2680	struct sched_dl_entity *dl_se = &p->dl;
2681
2682	attr->sched_priority = p->rt_priority;
2683	attr->sched_runtime = dl_se->dl_runtime;
2684	attr->sched_deadline = dl_se->dl_deadline;
2685	attr->sched_period = dl_se->dl_period;
2686	attr->sched_flags = dl_se->flags;
2687}
2688
2689/*
2690 * Default limits for DL period; on the top end we guard against small util
2691 * tasks still getting rediculous long effective runtimes, on the bottom end we
2692 * guard against timer DoS.
2693 */
2694unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2695unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2696
2697/*
2698 * This function validates the new parameters of a -deadline task.
2699 * We ask for the deadline not being zero, and greater or equal
2700 * than the runtime, as well as the period of being zero or
2701 * greater than deadline. Furthermore, we have to be sure that
2702 * user parameters are above the internal resolution of 1us (we
2703 * check sched_runtime only since it is always the smaller one) and
2704 * below 2^63 ns (we have to check both sched_deadline and
2705 * sched_period, as the latter can be zero).
2706 */
2707bool __checkparam_dl(const struct sched_attr *attr)
2708{
2709	u64 period, max, min;
2710
2711	/* special dl tasks don't actually use any parameter */
2712	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2713		return true;
2714
2715	/* deadline != 0 */
2716	if (attr->sched_deadline == 0)
2717		return false;
2718
2719	/*
2720	 * Since we truncate DL_SCALE bits, make sure we're at least
2721	 * that big.
2722	 */
2723	if (attr->sched_runtime < (1ULL << DL_SCALE))
2724		return false;
2725
2726	/*
2727	 * Since we use the MSB for wrap-around and sign issues, make
2728	 * sure it's not set (mind that period can be equal to zero).
2729	 */
2730	if (attr->sched_deadline & (1ULL << 63) ||
2731	    attr->sched_period & (1ULL << 63))
2732		return false;
2733
2734	period = attr->sched_period;
2735	if (!period)
2736		period = attr->sched_deadline;
2737
2738	/* runtime <= deadline <= period (if period != 0) */
2739	if (period < attr->sched_deadline ||
2740	    attr->sched_deadline < attr->sched_runtime)
2741		return false;
2742
2743	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2744	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2745
2746	if (period < min || period > max)
2747		return false;
2748
2749	return true;
2750}
2751
2752/*
2753 * This function clears the sched_dl_entity static params.
2754 */
2755void __dl_clear_params(struct task_struct *p)
2756{
2757	struct sched_dl_entity *dl_se = &p->dl;
2758
2759	dl_se->dl_runtime		= 0;
2760	dl_se->dl_deadline		= 0;
2761	dl_se->dl_period		= 0;
2762	dl_se->flags			= 0;
2763	dl_se->dl_bw			= 0;
2764	dl_se->dl_density		= 0;
2765
2766	dl_se->dl_boosted		= 0;
2767	dl_se->dl_throttled		= 0;
2768	dl_se->dl_yielded		= 0;
2769	dl_se->dl_non_contending	= 0;
2770	dl_se->dl_overrun		= 0;
2771}
2772
2773bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2774{
2775	struct sched_dl_entity *dl_se = &p->dl;
2776
2777	if (dl_se->dl_runtime != attr->sched_runtime ||
2778	    dl_se->dl_deadline != attr->sched_deadline ||
2779	    dl_se->dl_period != attr->sched_period ||
2780	    dl_se->flags != attr->sched_flags)
2781		return true;
2782
2783	return false;
2784}
2785
2786#ifdef CONFIG_SMP
2787int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2788{
2789	unsigned long flags, cap;
2790	unsigned int dest_cpu;
2791	struct dl_bw *dl_b;
2792	bool overflow;
2793	int ret;
2794
2795	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2796
2797	rcu_read_lock_sched();
2798	dl_b = dl_bw_of(dest_cpu);
2799	raw_spin_lock_irqsave(&dl_b->lock, flags);
2800	cap = dl_bw_capacity(dest_cpu);
2801	overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2802	if (overflow) {
2803		ret = -EBUSY;
2804	} else {
2805		/*
2806		 * We reserve space for this task in the destination
2807		 * root_domain, as we can't fail after this point.
2808		 * We will free resources in the source root_domain
2809		 * later on (see set_cpus_allowed_dl()).
2810		 */
2811		int cpus = dl_bw_cpus(dest_cpu);
2812
2813		__dl_add(dl_b, p->dl.dl_bw, cpus);
2814		ret = 0;
2815	}
2816	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2817	rcu_read_unlock_sched();
2818
2819	return ret;
2820}
2821
2822int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2823				 const struct cpumask *trial)
2824{
2825	int ret = 1, trial_cpus;
2826	struct dl_bw *cur_dl_b;
2827	unsigned long flags;
2828
2829	rcu_read_lock_sched();
2830	cur_dl_b = dl_bw_of(cpumask_any(cur));
2831	trial_cpus = cpumask_weight(trial);
2832
2833	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2834	if (cur_dl_b->bw != -1 &&
2835	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2836		ret = 0;
2837	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2838	rcu_read_unlock_sched();
2839
2840	return ret;
2841}
2842
2843bool dl_cpu_busy(unsigned int cpu)
2844{
2845	unsigned long flags, cap;
2846	struct dl_bw *dl_b;
2847	bool overflow;
2848
2849	rcu_read_lock_sched();
2850	dl_b = dl_bw_of(cpu);
2851	raw_spin_lock_irqsave(&dl_b->lock, flags);
2852	cap = dl_bw_capacity(cpu);
2853	overflow = __dl_overflow(dl_b, cap, 0, 0);
2854	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2855	rcu_read_unlock_sched();
2856
2857	return overflow;
2858}
2859#endif
2860
2861#ifdef CONFIG_SCHED_DEBUG
2862void print_dl_stats(struct seq_file *m, int cpu)
2863{
2864	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2865}
2866#endif /* CONFIG_SCHED_DEBUG */