Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
  1#include <linux/slab.h>
  2#include <linux/file.h>
  3#include <linux/fdtable.h>
 
  4#include <linux/mm.h>
  5#include <linux/stat.h>
  6#include <linux/fcntl.h>
  7#include <linux/swap.h>
 
  8#include <linux/string.h>
  9#include <linux/init.h>
 10#include <linux/pagemap.h>
 11#include <linux/perf_event.h>
 12#include <linux/highmem.h>
 13#include <linux/spinlock.h>
 14#include <linux/key.h>
 15#include <linux/personality.h>
 16#include <linux/binfmts.h>
 17#include <linux/coredump.h>
 
 
 
 18#include <linux/utsname.h>
 19#include <linux/pid_namespace.h>
 20#include <linux/module.h>
 21#include <linux/namei.h>
 22#include <linux/mount.h>
 23#include <linux/security.h>
 24#include <linux/syscalls.h>
 25#include <linux/tsacct_kern.h>
 26#include <linux/cn_proc.h>
 27#include <linux/audit.h>
 28#include <linux/tracehook.h>
 29#include <linux/kmod.h>
 30#include <linux/fsnotify.h>
 31#include <linux/fs_struct.h>
 32#include <linux/pipe_fs_i.h>
 33#include <linux/oom.h>
 34#include <linux/compat.h>
 35#include <linux/sched.h>
 36#include <linux/fs.h>
 37#include <linux/path.h>
 38#include <linux/timekeeping.h>
 39
 40#include <asm/uaccess.h>
 41#include <asm/mmu_context.h>
 42#include <asm/tlb.h>
 43#include <asm/exec.h>
 44
 45#include <trace/events/task.h>
 46#include "internal.h"
 47
 48#include <trace/events/sched.h>
 49
 50int core_uses_pid;
 51unsigned int core_pipe_limit;
 52char core_pattern[CORENAME_MAX_SIZE] = "core";
 53static int core_name_size = CORENAME_MAX_SIZE;
 54
 55struct core_name {
 56	char *corename;
 57	int used, size;
 58};
 59
 60/* The maximal length of core_pattern is also specified in sysctl.c */
 61
 62static int expand_corename(struct core_name *cn, int size)
 63{
 64	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
 65
 66	if (!corename)
 67		return -ENOMEM;
 68
 69	if (size > core_name_size) /* racy but harmless */
 70		core_name_size = size;
 71
 72	cn->size = ksize(corename);
 73	cn->corename = corename;
 74	return 0;
 75}
 76
 77static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
 78				     va_list arg)
 79{
 80	int free, need;
 81	va_list arg_copy;
 82
 83again:
 84	free = cn->size - cn->used;
 85
 86	va_copy(arg_copy, arg);
 87	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
 88	va_end(arg_copy);
 89
 90	if (need < free) {
 91		cn->used += need;
 92		return 0;
 93	}
 94
 95	if (!expand_corename(cn, cn->size + need - free + 1))
 96		goto again;
 97
 98	return -ENOMEM;
 99}
100
101static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
102{
103	va_list arg;
104	int ret;
105
106	va_start(arg, fmt);
107	ret = cn_vprintf(cn, fmt, arg);
108	va_end(arg);
109
110	return ret;
111}
112
113static __printf(2, 3)
114int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
115{
116	int cur = cn->used;
117	va_list arg;
118	int ret;
119
120	va_start(arg, fmt);
121	ret = cn_vprintf(cn, fmt, arg);
122	va_end(arg);
123
124	if (ret == 0) {
125		/*
126		 * Ensure that this coredump name component can't cause the
127		 * resulting corefile path to consist of a ".." or ".".
128		 */
129		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
130				(cn->used - cur == 2 && cn->corename[cur] == '.'
131				&& cn->corename[cur+1] == '.'))
132			cn->corename[cur] = '!';
133
134		/*
135		 * Empty names are fishy and could be used to create a "//" in a
136		 * corefile name, causing the coredump to happen one directory
137		 * level too high. Enforce that all components of the core
138		 * pattern are at least one character long.
139		 */
140		if (cn->used == cur)
141			ret = cn_printf(cn, "!");
142	}
143
144	for (; cur < cn->used; ++cur) {
145		if (cn->corename[cur] == '/')
146			cn->corename[cur] = '!';
147	}
148	return ret;
149}
150
151static int cn_print_exe_file(struct core_name *cn)
152{
153	struct file *exe_file;
154	char *pathbuf, *path;
155	int ret;
156
157	exe_file = get_mm_exe_file(current->mm);
158	if (!exe_file)
159		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
160
161	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
162	if (!pathbuf) {
163		ret = -ENOMEM;
164		goto put_exe_file;
165	}
166
167	path = file_path(exe_file, pathbuf, PATH_MAX);
168	if (IS_ERR(path)) {
169		ret = PTR_ERR(path);
170		goto free_buf;
171	}
172
 
 
 
 
 
173	ret = cn_esc_printf(cn, "%s", path);
174
175free_buf:
176	kfree(pathbuf);
177put_exe_file:
178	fput(exe_file);
179	return ret;
180}
181
182/* format_corename will inspect the pattern parameter, and output a
183 * name into corename, which must have space for at least
184 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
185 */
186static int format_corename(struct core_name *cn, struct coredump_params *cprm)
 
187{
188	const struct cred *cred = current_cred();
189	const char *pat_ptr = core_pattern;
190	int ispipe = (*pat_ptr == '|');
 
191	int pid_in_pattern = 0;
192	int err = 0;
193
194	cn->used = 0;
195	cn->corename = NULL;
196	if (expand_corename(cn, core_name_size))
197		return -ENOMEM;
198	cn->corename[0] = '\0';
199
200	if (ispipe)
 
 
 
 
 
201		++pat_ptr;
 
 
 
202
203	/* Repeat as long as we have more pattern to process and more output
204	   space */
205	while (*pat_ptr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206		if (*pat_ptr != '%') {
207			err = cn_printf(cn, "%c", *pat_ptr++);
208		} else {
209			switch (*++pat_ptr) {
210			/* single % at the end, drop that */
211			case 0:
212				goto out;
213			/* Double percent, output one percent */
214			case '%':
215				err = cn_printf(cn, "%c", '%');
216				break;
217			/* pid */
218			case 'p':
219				pid_in_pattern = 1;
220				err = cn_printf(cn, "%d",
221					      task_tgid_vnr(current));
222				break;
223			/* global pid */
224			case 'P':
225				err = cn_printf(cn, "%d",
226					      task_tgid_nr(current));
227				break;
228			case 'i':
229				err = cn_printf(cn, "%d",
230					      task_pid_vnr(current));
231				break;
232			case 'I':
233				err = cn_printf(cn, "%d",
234					      task_pid_nr(current));
235				break;
236			/* uid */
237			case 'u':
238				err = cn_printf(cn, "%u",
239						from_kuid(&init_user_ns,
240							  cred->uid));
241				break;
242			/* gid */
243			case 'g':
244				err = cn_printf(cn, "%u",
245						from_kgid(&init_user_ns,
246							  cred->gid));
247				break;
248			case 'd':
249				err = cn_printf(cn, "%d",
250					__get_dumpable(cprm->mm_flags));
251				break;
252			/* signal that caused the coredump */
253			case 's':
254				err = cn_printf(cn, "%d",
255						cprm->siginfo->si_signo);
256				break;
257			/* UNIX time of coredump */
258			case 't': {
259				time64_t time;
260
261				time = ktime_get_real_seconds();
262				err = cn_printf(cn, "%lld", time);
263				break;
264			}
265			/* hostname */
266			case 'h':
267				down_read(&uts_sem);
268				err = cn_esc_printf(cn, "%s",
269					      utsname()->nodename);
270				up_read(&uts_sem);
271				break;
272			/* executable */
273			case 'e':
274				err = cn_esc_printf(cn, "%s", current->comm);
275				break;
 
 
 
 
276			case 'E':
277				err = cn_print_exe_file(cn);
278				break;
279			/* core limit size */
280			case 'c':
281				err = cn_printf(cn, "%lu",
282					      rlimit(RLIMIT_CORE));
283				break;
284			default:
285				break;
286			}
287			++pat_ptr;
288		}
289
290		if (err)
291			return err;
292	}
293
294out:
295	/* Backward compatibility with core_uses_pid:
296	 *
297	 * If core_pattern does not include a %p (as is the default)
298	 * and core_uses_pid is set, then .%pid will be appended to
299	 * the filename. Do not do this for piped commands. */
300	if (!ispipe && !pid_in_pattern && core_uses_pid) {
301		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
302		if (err)
303			return err;
304	}
305	return ispipe;
306}
307
308static int zap_process(struct task_struct *start, int exit_code, int flags)
309{
310	struct task_struct *t;
311	int nr = 0;
312
313	/* ignore all signals except SIGKILL, see prepare_signal() */
314	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
315	start->signal->group_exit_code = exit_code;
316	start->signal->group_stop_count = 0;
317
318	for_each_thread(start, t) {
319		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
320		if (t != current && t->mm) {
321			sigaddset(&t->pending.signal, SIGKILL);
322			signal_wake_up(t, 1);
323			nr++;
324		}
325	}
326
327	return nr;
328}
329
330static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
331			struct core_state *core_state, int exit_code)
332{
333	struct task_struct *g, *p;
334	unsigned long flags;
335	int nr = -EAGAIN;
336
337	spin_lock_irq(&tsk->sighand->siglock);
338	if (!signal_group_exit(tsk->signal)) {
339		mm->core_state = core_state;
340		tsk->signal->group_exit_task = tsk;
341		nr = zap_process(tsk, exit_code, 0);
342		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
343	}
344	spin_unlock_irq(&tsk->sighand->siglock);
345	if (unlikely(nr < 0))
346		return nr;
347
348	tsk->flags |= PF_DUMPCORE;
349	if (atomic_read(&mm->mm_users) == nr + 1)
350		goto done;
351	/*
352	 * We should find and kill all tasks which use this mm, and we should
353	 * count them correctly into ->nr_threads. We don't take tasklist
354	 * lock, but this is safe wrt:
355	 *
356	 * fork:
357	 *	None of sub-threads can fork after zap_process(leader). All
358	 *	processes which were created before this point should be
359	 *	visible to zap_threads() because copy_process() adds the new
360	 *	process to the tail of init_task.tasks list, and lock/unlock
361	 *	of ->siglock provides a memory barrier.
362	 *
363	 * do_exit:
364	 *	The caller holds mm->mmap_sem. This means that the task which
365	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
366	 *	its ->mm.
367	 *
368	 * de_thread:
369	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
370	 *	we must see either old or new leader, this does not matter.
371	 *	However, it can change p->sighand, so lock_task_sighand(p)
372	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
373	 *	it can't fail.
374	 *
375	 *	Note also that "g" can be the old leader with ->mm == NULL
376	 *	and already unhashed and thus removed from ->thread_group.
377	 *	This is OK, __unhash_process()->list_del_rcu() does not
378	 *	clear the ->next pointer, we will find the new leader via
379	 *	next_thread().
380	 */
381	rcu_read_lock();
382	for_each_process(g) {
383		if (g == tsk->group_leader)
384			continue;
385		if (g->flags & PF_KTHREAD)
386			continue;
387
388		for_each_thread(g, p) {
389			if (unlikely(!p->mm))
390				continue;
391			if (unlikely(p->mm == mm)) {
392				lock_task_sighand(p, &flags);
393				nr += zap_process(p, exit_code,
394							SIGNAL_GROUP_EXIT);
395				unlock_task_sighand(p, &flags);
396			}
397			break;
398		}
399	}
400	rcu_read_unlock();
401done:
402	atomic_set(&core_state->nr_threads, nr);
403	return nr;
404}
405
406static int coredump_wait(int exit_code, struct core_state *core_state)
407{
408	struct task_struct *tsk = current;
409	struct mm_struct *mm = tsk->mm;
410	int core_waiters = -EBUSY;
411
412	init_completion(&core_state->startup);
413	core_state->dumper.task = tsk;
414	core_state->dumper.next = NULL;
415
416	down_write(&mm->mmap_sem);
 
 
417	if (!mm->core_state)
418		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
419	up_write(&mm->mmap_sem);
420
421	if (core_waiters > 0) {
422		struct core_thread *ptr;
423
 
424		wait_for_completion(&core_state->startup);
 
425		/*
426		 * Wait for all the threads to become inactive, so that
427		 * all the thread context (extended register state, like
428		 * fpu etc) gets copied to the memory.
429		 */
430		ptr = core_state->dumper.next;
431		while (ptr != NULL) {
432			wait_task_inactive(ptr->task, 0);
433			ptr = ptr->next;
434		}
435	}
436
437	return core_waiters;
438}
439
440static void coredump_finish(struct mm_struct *mm, bool core_dumped)
441{
442	struct core_thread *curr, *next;
443	struct task_struct *task;
444
445	spin_lock_irq(&current->sighand->siglock);
446	if (core_dumped && !__fatal_signal_pending(current))
447		current->signal->group_exit_code |= 0x80;
448	current->signal->group_exit_task = NULL;
449	current->signal->flags = SIGNAL_GROUP_EXIT;
450	spin_unlock_irq(&current->sighand->siglock);
451
452	next = mm->core_state->dumper.next;
453	while ((curr = next) != NULL) {
454		next = curr->next;
455		task = curr->task;
456		/*
457		 * see exit_mm(), curr->task must not see
458		 * ->task == NULL before we read ->next.
459		 */
460		smp_mb();
461		curr->task = NULL;
462		wake_up_process(task);
463	}
464
465	mm->core_state = NULL;
466}
467
468static bool dump_interrupted(void)
469{
470	/*
471	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
472	 * can do try_to_freeze() and check __fatal_signal_pending(),
473	 * but then we need to teach dump_write() to restart and clear
474	 * TIF_SIGPENDING.
475	 */
476	return signal_pending(current);
477}
478
479static void wait_for_dump_helpers(struct file *file)
480{
481	struct pipe_inode_info *pipe = file->private_data;
482
483	pipe_lock(pipe);
484	pipe->readers++;
485	pipe->writers--;
486	wake_up_interruptible_sync(&pipe->wait);
487	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
488	pipe_unlock(pipe);
489
490	/*
491	 * We actually want wait_event_freezable() but then we need
492	 * to clear TIF_SIGPENDING and improve dump_interrupted().
493	 */
494	wait_event_interruptible(pipe->wait, pipe->readers == 1);
495
496	pipe_lock(pipe);
497	pipe->readers--;
498	pipe->writers++;
499	pipe_unlock(pipe);
500}
501
502/*
503 * umh_pipe_setup
504 * helper function to customize the process used
505 * to collect the core in userspace.  Specifically
506 * it sets up a pipe and installs it as fd 0 (stdin)
507 * for the process.  Returns 0 on success, or
508 * PTR_ERR on failure.
509 * Note that it also sets the core limit to 1.  This
510 * is a special value that we use to trap recursive
511 * core dumps
512 */
513static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
514{
515	struct file *files[2];
516	struct coredump_params *cp = (struct coredump_params *)info->data;
517	int err = create_pipe_files(files, 0);
518	if (err)
519		return err;
520
521	cp->file = files[1];
522
523	err = replace_fd(0, files[0], 0);
524	fput(files[0]);
525	/* and disallow core files too */
526	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
527
528	return err;
529}
530
531void do_coredump(const siginfo_t *siginfo)
532{
533	struct core_state core_state;
534	struct core_name cn;
535	struct mm_struct *mm = current->mm;
536	struct linux_binfmt * binfmt;
537	const struct cred *old_cred;
538	struct cred *cred;
539	int retval = 0;
540	int ispipe;
 
 
541	struct files_struct *displaced;
542	/* require nonrelative corefile path and be extra careful */
543	bool need_suid_safe = false;
544	bool core_dumped = false;
545	static atomic_t core_dump_count = ATOMIC_INIT(0);
546	struct coredump_params cprm = {
547		.siginfo = siginfo,
548		.regs = signal_pt_regs(),
549		.limit = rlimit(RLIMIT_CORE),
550		/*
551		 * We must use the same mm->flags while dumping core to avoid
552		 * inconsistency of bit flags, since this flag is not protected
553		 * by any locks.
554		 */
555		.mm_flags = mm->flags,
556	};
557
558	audit_core_dumps(siginfo->si_signo);
559
560	binfmt = mm->binfmt;
561	if (!binfmt || !binfmt->core_dump)
562		goto fail;
563	if (!__get_dumpable(cprm.mm_flags))
564		goto fail;
565
566	cred = prepare_creds();
567	if (!cred)
568		goto fail;
569	/*
570	 * We cannot trust fsuid as being the "true" uid of the process
571	 * nor do we know its entire history. We only know it was tainted
572	 * so we dump it as root in mode 2, and only into a controlled
573	 * environment (pipe handler or fully qualified path).
574	 */
575	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
576		/* Setuid core dump mode */
577		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
578		need_suid_safe = true;
579	}
580
581	retval = coredump_wait(siginfo->si_signo, &core_state);
582	if (retval < 0)
583		goto fail_creds;
584
585	old_cred = override_creds(cred);
586
587	ispipe = format_corename(&cn, &cprm);
588
589	if (ispipe) {
 
590		int dump_count;
591		char **helper_argv;
592		struct subprocess_info *sub_info;
593
594		if (ispipe < 0) {
595			printk(KERN_WARNING "format_corename failed\n");
596			printk(KERN_WARNING "Aborting core\n");
597			goto fail_unlock;
598		}
599
600		if (cprm.limit == 1) {
601			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
602			 *
603			 * Normally core limits are irrelevant to pipes, since
604			 * we're not writing to the file system, but we use
605			 * cprm.limit of 1 here as a special value, this is a
606			 * consistent way to catch recursive crashes.
607			 * We can still crash if the core_pattern binary sets
608			 * RLIM_CORE = !1, but it runs as root, and can do
609			 * lots of stupid things.
610			 *
611			 * Note that we use task_tgid_vnr here to grab the pid
612			 * of the process group leader.  That way we get the
613			 * right pid if a thread in a multi-threaded
614			 * core_pattern process dies.
615			 */
616			printk(KERN_WARNING
617				"Process %d(%s) has RLIMIT_CORE set to 1\n",
618				task_tgid_vnr(current), current->comm);
619			printk(KERN_WARNING "Aborting core\n");
620			goto fail_unlock;
621		}
622		cprm.limit = RLIM_INFINITY;
623
624		dump_count = atomic_inc_return(&core_dump_count);
625		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
626			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
627			       task_tgid_vnr(current), current->comm);
628			printk(KERN_WARNING "Skipping core dump\n");
629			goto fail_dropcount;
630		}
631
632		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
 
633		if (!helper_argv) {
634			printk(KERN_WARNING "%s failed to allocate memory\n",
635			       __func__);
636			goto fail_dropcount;
637		}
 
 
 
638
639		retval = -ENOMEM;
640		sub_info = call_usermodehelper_setup(helper_argv[0],
641						helper_argv, NULL, GFP_KERNEL,
642						umh_pipe_setup, NULL, &cprm);
643		if (sub_info)
644			retval = call_usermodehelper_exec(sub_info,
645							  UMH_WAIT_EXEC);
646
647		argv_free(helper_argv);
648		if (retval) {
649			printk(KERN_INFO "Core dump to |%s pipe failed\n",
650			       cn.corename);
651			goto close_fail;
652		}
653	} else {
654		struct inode *inode;
655		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
656				 O_LARGEFILE | O_EXCL;
657
658		if (cprm.limit < binfmt->min_coredump)
659			goto fail_unlock;
660
661		if (need_suid_safe && cn.corename[0] != '/') {
662			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
663				"to fully qualified path!\n",
664				task_tgid_vnr(current), current->comm);
665			printk(KERN_WARNING "Skipping core dump\n");
666			goto fail_unlock;
667		}
668
669		/*
670		 * Unlink the file if it exists unless this is a SUID
671		 * binary - in that case, we're running around with root
672		 * privs and don't want to unlink another user's coredump.
673		 */
674		if (!need_suid_safe) {
675			mm_segment_t old_fs;
676
677			old_fs = get_fs();
678			set_fs(KERNEL_DS);
679			/*
680			 * If it doesn't exist, that's fine. If there's some
681			 * other problem, we'll catch it at the filp_open().
682			 */
683			(void) sys_unlink((const char __user *)cn.corename);
684			set_fs(old_fs);
685		}
686
687		/*
688		 * There is a race between unlinking and creating the
689		 * file, but if that causes an EEXIST here, that's
690		 * fine - another process raced with us while creating
691		 * the corefile, and the other process won. To userspace,
692		 * what matters is that at least one of the two processes
693		 * writes its coredump successfully, not which one.
694		 */
695		if (need_suid_safe) {
696			/*
697			 * Using user namespaces, normal user tasks can change
698			 * their current->fs->root to point to arbitrary
699			 * directories. Since the intention of the "only dump
700			 * with a fully qualified path" rule is to control where
701			 * coredumps may be placed using root privileges,
702			 * current->fs->root must not be used. Instead, use the
703			 * root directory of init_task.
704			 */
705			struct path root;
706
707			task_lock(&init_task);
708			get_fs_root(init_task.fs, &root);
709			task_unlock(&init_task);
710			cprm.file = file_open_root(root.dentry, root.mnt,
711				cn.corename, open_flags, 0600);
712			path_put(&root);
713		} else {
714			cprm.file = filp_open(cn.corename, open_flags, 0600);
715		}
716		if (IS_ERR(cprm.file))
717			goto fail_unlock;
718
719		inode = file_inode(cprm.file);
720		if (inode->i_nlink > 1)
721			goto close_fail;
722		if (d_unhashed(cprm.file->f_path.dentry))
723			goto close_fail;
724		/*
725		 * AK: actually i see no reason to not allow this for named
726		 * pipes etc, but keep the previous behaviour for now.
727		 */
728		if (!S_ISREG(inode->i_mode))
729			goto close_fail;
730		/*
731		 * Don't dump core if the filesystem changed owner or mode
732		 * of the file during file creation. This is an issue when
733		 * a process dumps core while its cwd is e.g. on a vfat
734		 * filesystem.
735		 */
736		if (!uid_eq(inode->i_uid, current_fsuid()))
737			goto close_fail;
738		if ((inode->i_mode & 0677) != 0600)
739			goto close_fail;
740		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
741			goto close_fail;
742		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
743			goto close_fail;
744	}
745
746	/* get us an unshared descriptor table; almost always a no-op */
747	retval = unshare_files(&displaced);
748	if (retval)
749		goto close_fail;
750	if (displaced)
751		put_files_struct(displaced);
752	if (!dump_interrupted()) {
 
 
 
 
 
 
 
 
753		file_start_write(cprm.file);
754		core_dumped = binfmt->core_dump(&cprm);
755		file_end_write(cprm.file);
756	}
757	if (ispipe && core_pipe_limit)
758		wait_for_dump_helpers(cprm.file);
759close_fail:
760	if (cprm.file)
761		filp_close(cprm.file, NULL);
762fail_dropcount:
763	if (ispipe)
764		atomic_dec(&core_dump_count);
765fail_unlock:
 
766	kfree(cn.corename);
767	coredump_finish(mm, core_dumped);
768	revert_creds(old_cred);
769fail_creds:
770	put_cred(cred);
771fail:
772	return;
773}
774
775/*
776 * Core dumping helper functions.  These are the only things you should
777 * do on a core-file: use only these functions to write out all the
778 * necessary info.
779 */
780int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
781{
782	struct file *file = cprm->file;
783	loff_t pos = file->f_pos;
784	ssize_t n;
785	if (cprm->written + nr > cprm->limit)
786		return 0;
787	while (nr) {
788		if (dump_interrupted())
789			return 0;
790		n = __kernel_write(file, addr, nr, &pos);
791		if (n <= 0)
792			return 0;
793		file->f_pos = pos;
794		cprm->written += n;
 
795		nr -= n;
796	}
797	return 1;
798}
799EXPORT_SYMBOL(dump_emit);
800
801int dump_skip(struct coredump_params *cprm, size_t nr)
802{
803	static char zeroes[PAGE_SIZE];
804	struct file *file = cprm->file;
805	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
806		if (cprm->written + nr > cprm->limit)
807			return 0;
808		if (dump_interrupted() ||
809		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
810			return 0;
811		cprm->written += nr;
812		return 1;
813	} else {
814		while (nr > PAGE_SIZE) {
815			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
816				return 0;
817			nr -= PAGE_SIZE;
818		}
819		return dump_emit(cprm, zeroes, nr);
820	}
821}
822EXPORT_SYMBOL(dump_skip);
823
824int dump_align(struct coredump_params *cprm, int align)
825{
826	unsigned mod = cprm->written & (align - 1);
827	if (align & (align - 1))
828		return 0;
829	return mod ? dump_skip(cprm, align - mod) : 1;
830}
831EXPORT_SYMBOL(dump_align);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/slab.h>
  3#include <linux/file.h>
  4#include <linux/fdtable.h>
  5#include <linux/freezer.h>
  6#include <linux/mm.h>
  7#include <linux/stat.h>
  8#include <linux/fcntl.h>
  9#include <linux/swap.h>
 10#include <linux/ctype.h>
 11#include <linux/string.h>
 12#include <linux/init.h>
 13#include <linux/pagemap.h>
 14#include <linux/perf_event.h>
 15#include <linux/highmem.h>
 16#include <linux/spinlock.h>
 17#include <linux/key.h>
 18#include <linux/personality.h>
 19#include <linux/binfmts.h>
 20#include <linux/coredump.h>
 21#include <linux/sched/coredump.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/task_stack.h>
 24#include <linux/utsname.h>
 25#include <linux/pid_namespace.h>
 26#include <linux/module.h>
 27#include <linux/namei.h>
 28#include <linux/mount.h>
 29#include <linux/security.h>
 30#include <linux/syscalls.h>
 31#include <linux/tsacct_kern.h>
 32#include <linux/cn_proc.h>
 33#include <linux/audit.h>
 34#include <linux/tracehook.h>
 35#include <linux/kmod.h>
 36#include <linux/fsnotify.h>
 37#include <linux/fs_struct.h>
 38#include <linux/pipe_fs_i.h>
 39#include <linux/oom.h>
 40#include <linux/compat.h>
 
 41#include <linux/fs.h>
 42#include <linux/path.h>
 43#include <linux/timekeeping.h>
 44
 45#include <linux/uaccess.h>
 46#include <asm/mmu_context.h>
 47#include <asm/tlb.h>
 48#include <asm/exec.h>
 49
 50#include <trace/events/task.h>
 51#include "internal.h"
 52
 53#include <trace/events/sched.h>
 54
 55int core_uses_pid;
 56unsigned int core_pipe_limit;
 57char core_pattern[CORENAME_MAX_SIZE] = "core";
 58static int core_name_size = CORENAME_MAX_SIZE;
 59
 60struct core_name {
 61	char *corename;
 62	int used, size;
 63};
 64
 65/* The maximal length of core_pattern is also specified in sysctl.c */
 66
 67static int expand_corename(struct core_name *cn, int size)
 68{
 69	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
 70
 71	if (!corename)
 72		return -ENOMEM;
 73
 74	if (size > core_name_size) /* racy but harmless */
 75		core_name_size = size;
 76
 77	cn->size = ksize(corename);
 78	cn->corename = corename;
 79	return 0;
 80}
 81
 82static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
 83				     va_list arg)
 84{
 85	int free, need;
 86	va_list arg_copy;
 87
 88again:
 89	free = cn->size - cn->used;
 90
 91	va_copy(arg_copy, arg);
 92	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
 93	va_end(arg_copy);
 94
 95	if (need < free) {
 96		cn->used += need;
 97		return 0;
 98	}
 99
100	if (!expand_corename(cn, cn->size + need - free + 1))
101		goto again;
102
103	return -ENOMEM;
104}
105
106static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107{
108	va_list arg;
109	int ret;
110
111	va_start(arg, fmt);
112	ret = cn_vprintf(cn, fmt, arg);
113	va_end(arg);
114
115	return ret;
116}
117
118static __printf(2, 3)
119int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120{
121	int cur = cn->used;
122	va_list arg;
123	int ret;
124
125	va_start(arg, fmt);
126	ret = cn_vprintf(cn, fmt, arg);
127	va_end(arg);
128
129	if (ret == 0) {
130		/*
131		 * Ensure that this coredump name component can't cause the
132		 * resulting corefile path to consist of a ".." or ".".
133		 */
134		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135				(cn->used - cur == 2 && cn->corename[cur] == '.'
136				&& cn->corename[cur+1] == '.'))
137			cn->corename[cur] = '!';
138
139		/*
140		 * Empty names are fishy and could be used to create a "//" in a
141		 * corefile name, causing the coredump to happen one directory
142		 * level too high. Enforce that all components of the core
143		 * pattern are at least one character long.
144		 */
145		if (cn->used == cur)
146			ret = cn_printf(cn, "!");
147	}
148
149	for (; cur < cn->used; ++cur) {
150		if (cn->corename[cur] == '/')
151			cn->corename[cur] = '!';
152	}
153	return ret;
154}
155
156static int cn_print_exe_file(struct core_name *cn, bool name_only)
157{
158	struct file *exe_file;
159	char *pathbuf, *path, *ptr;
160	int ret;
161
162	exe_file = get_mm_exe_file(current->mm);
163	if (!exe_file)
164		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165
166	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167	if (!pathbuf) {
168		ret = -ENOMEM;
169		goto put_exe_file;
170	}
171
172	path = file_path(exe_file, pathbuf, PATH_MAX);
173	if (IS_ERR(path)) {
174		ret = PTR_ERR(path);
175		goto free_buf;
176	}
177
178	if (name_only) {
179		ptr = strrchr(path, '/');
180		if (ptr)
181			path = ptr + 1;
182	}
183	ret = cn_esc_printf(cn, "%s", path);
184
185free_buf:
186	kfree(pathbuf);
187put_exe_file:
188	fput(exe_file);
189	return ret;
190}
191
192/* format_corename will inspect the pattern parameter, and output a
193 * name into corename, which must have space for at least
194 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
195 */
196static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197			   size_t **argv, int *argc)
198{
199	const struct cred *cred = current_cred();
200	const char *pat_ptr = core_pattern;
201	int ispipe = (*pat_ptr == '|');
202	bool was_space = false;
203	int pid_in_pattern = 0;
204	int err = 0;
205
206	cn->used = 0;
207	cn->corename = NULL;
208	if (expand_corename(cn, core_name_size))
209		return -ENOMEM;
210	cn->corename[0] = '\0';
211
212	if (ispipe) {
213		int argvs = sizeof(core_pattern) / 2;
214		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215		if (!(*argv))
216			return -ENOMEM;
217		(*argv)[(*argc)++] = 0;
218		++pat_ptr;
219		if (!(*pat_ptr))
220			return -ENOMEM;
221	}
222
223	/* Repeat as long as we have more pattern to process and more output
224	   space */
225	while (*pat_ptr) {
226		/*
227		 * Split on spaces before doing template expansion so that
228		 * %e and %E don't get split if they have spaces in them
229		 */
230		if (ispipe) {
231			if (isspace(*pat_ptr)) {
232				was_space = true;
233				pat_ptr++;
234				continue;
235			} else if (was_space) {
236				was_space = false;
237				err = cn_printf(cn, "%c", '\0');
238				if (err)
239					return err;
240				(*argv)[(*argc)++] = cn->used;
241			}
242		}
243		if (*pat_ptr != '%') {
244			err = cn_printf(cn, "%c", *pat_ptr++);
245		} else {
246			switch (*++pat_ptr) {
247			/* single % at the end, drop that */
248			case 0:
249				goto out;
250			/* Double percent, output one percent */
251			case '%':
252				err = cn_printf(cn, "%c", '%');
253				break;
254			/* pid */
255			case 'p':
256				pid_in_pattern = 1;
257				err = cn_printf(cn, "%d",
258					      task_tgid_vnr(current));
259				break;
260			/* global pid */
261			case 'P':
262				err = cn_printf(cn, "%d",
263					      task_tgid_nr(current));
264				break;
265			case 'i':
266				err = cn_printf(cn, "%d",
267					      task_pid_vnr(current));
268				break;
269			case 'I':
270				err = cn_printf(cn, "%d",
271					      task_pid_nr(current));
272				break;
273			/* uid */
274			case 'u':
275				err = cn_printf(cn, "%u",
276						from_kuid(&init_user_ns,
277							  cred->uid));
278				break;
279			/* gid */
280			case 'g':
281				err = cn_printf(cn, "%u",
282						from_kgid(&init_user_ns,
283							  cred->gid));
284				break;
285			case 'd':
286				err = cn_printf(cn, "%d",
287					__get_dumpable(cprm->mm_flags));
288				break;
289			/* signal that caused the coredump */
290			case 's':
291				err = cn_printf(cn, "%d",
292						cprm->siginfo->si_signo);
293				break;
294			/* UNIX time of coredump */
295			case 't': {
296				time64_t time;
297
298				time = ktime_get_real_seconds();
299				err = cn_printf(cn, "%lld", time);
300				break;
301			}
302			/* hostname */
303			case 'h':
304				down_read(&uts_sem);
305				err = cn_esc_printf(cn, "%s",
306					      utsname()->nodename);
307				up_read(&uts_sem);
308				break;
309			/* executable, could be changed by prctl PR_SET_NAME etc */
310			case 'e':
311				err = cn_esc_printf(cn, "%s", current->comm);
312				break;
313			/* file name of executable */
314			case 'f':
315				err = cn_print_exe_file(cn, true);
316				break;
317			case 'E':
318				err = cn_print_exe_file(cn, false);
319				break;
320			/* core limit size */
321			case 'c':
322				err = cn_printf(cn, "%lu",
323					      rlimit(RLIMIT_CORE));
324				break;
325			default:
326				break;
327			}
328			++pat_ptr;
329		}
330
331		if (err)
332			return err;
333	}
334
335out:
336	/* Backward compatibility with core_uses_pid:
337	 *
338	 * If core_pattern does not include a %p (as is the default)
339	 * and core_uses_pid is set, then .%pid will be appended to
340	 * the filename. Do not do this for piped commands. */
341	if (!ispipe && !pid_in_pattern && core_uses_pid) {
342		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
343		if (err)
344			return err;
345	}
346	return ispipe;
347}
348
349static int zap_process(struct task_struct *start, int exit_code, int flags)
350{
351	struct task_struct *t;
352	int nr = 0;
353
354	/* ignore all signals except SIGKILL, see prepare_signal() */
355	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
356	start->signal->group_exit_code = exit_code;
357	start->signal->group_stop_count = 0;
358
359	for_each_thread(start, t) {
360		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
361		if (t != current && t->mm) {
362			sigaddset(&t->pending.signal, SIGKILL);
363			signal_wake_up(t, 1);
364			nr++;
365		}
366	}
367
368	return nr;
369}
370
371static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
372			struct core_state *core_state, int exit_code)
373{
374	struct task_struct *g, *p;
375	unsigned long flags;
376	int nr = -EAGAIN;
377
378	spin_lock_irq(&tsk->sighand->siglock);
379	if (!signal_group_exit(tsk->signal)) {
380		mm->core_state = core_state;
381		tsk->signal->group_exit_task = tsk;
382		nr = zap_process(tsk, exit_code, 0);
383		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
384	}
385	spin_unlock_irq(&tsk->sighand->siglock);
386	if (unlikely(nr < 0))
387		return nr;
388
389	tsk->flags |= PF_DUMPCORE;
390	if (atomic_read(&mm->mm_users) == nr + 1)
391		goto done;
392	/*
393	 * We should find and kill all tasks which use this mm, and we should
394	 * count them correctly into ->nr_threads. We don't take tasklist
395	 * lock, but this is safe wrt:
396	 *
397	 * fork:
398	 *	None of sub-threads can fork after zap_process(leader). All
399	 *	processes which were created before this point should be
400	 *	visible to zap_threads() because copy_process() adds the new
401	 *	process to the tail of init_task.tasks list, and lock/unlock
402	 *	of ->siglock provides a memory barrier.
403	 *
404	 * do_exit:
405	 *	The caller holds mm->mmap_lock. This means that the task which
406	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
407	 *	its ->mm.
408	 *
409	 * de_thread:
410	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
411	 *	we must see either old or new leader, this does not matter.
412	 *	However, it can change p->sighand, so lock_task_sighand(p)
413	 *	must be used. Since p->mm != NULL and we hold ->mmap_lock
414	 *	it can't fail.
415	 *
416	 *	Note also that "g" can be the old leader with ->mm == NULL
417	 *	and already unhashed and thus removed from ->thread_group.
418	 *	This is OK, __unhash_process()->list_del_rcu() does not
419	 *	clear the ->next pointer, we will find the new leader via
420	 *	next_thread().
421	 */
422	rcu_read_lock();
423	for_each_process(g) {
424		if (g == tsk->group_leader)
425			continue;
426		if (g->flags & PF_KTHREAD)
427			continue;
428
429		for_each_thread(g, p) {
430			if (unlikely(!p->mm))
431				continue;
432			if (unlikely(p->mm == mm)) {
433				lock_task_sighand(p, &flags);
434				nr += zap_process(p, exit_code,
435							SIGNAL_GROUP_EXIT);
436				unlock_task_sighand(p, &flags);
437			}
438			break;
439		}
440	}
441	rcu_read_unlock();
442done:
443	atomic_set(&core_state->nr_threads, nr);
444	return nr;
445}
446
447static int coredump_wait(int exit_code, struct core_state *core_state)
448{
449	struct task_struct *tsk = current;
450	struct mm_struct *mm = tsk->mm;
451	int core_waiters = -EBUSY;
452
453	init_completion(&core_state->startup);
454	core_state->dumper.task = tsk;
455	core_state->dumper.next = NULL;
456
457	if (mmap_write_lock_killable(mm))
458		return -EINTR;
459
460	if (!mm->core_state)
461		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
462	mmap_write_unlock(mm);
463
464	if (core_waiters > 0) {
465		struct core_thread *ptr;
466
467		freezer_do_not_count();
468		wait_for_completion(&core_state->startup);
469		freezer_count();
470		/*
471		 * Wait for all the threads to become inactive, so that
472		 * all the thread context (extended register state, like
473		 * fpu etc) gets copied to the memory.
474		 */
475		ptr = core_state->dumper.next;
476		while (ptr != NULL) {
477			wait_task_inactive(ptr->task, 0);
478			ptr = ptr->next;
479		}
480	}
481
482	return core_waiters;
483}
484
485static void coredump_finish(struct mm_struct *mm, bool core_dumped)
486{
487	struct core_thread *curr, *next;
488	struct task_struct *task;
489
490	spin_lock_irq(&current->sighand->siglock);
491	if (core_dumped && !__fatal_signal_pending(current))
492		current->signal->group_exit_code |= 0x80;
493	current->signal->group_exit_task = NULL;
494	current->signal->flags = SIGNAL_GROUP_EXIT;
495	spin_unlock_irq(&current->sighand->siglock);
496
497	next = mm->core_state->dumper.next;
498	while ((curr = next) != NULL) {
499		next = curr->next;
500		task = curr->task;
501		/*
502		 * see exit_mm(), curr->task must not see
503		 * ->task == NULL before we read ->next.
504		 */
505		smp_mb();
506		curr->task = NULL;
507		wake_up_process(task);
508	}
509
510	mm->core_state = NULL;
511}
512
513static bool dump_interrupted(void)
514{
515	/*
516	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
517	 * can do try_to_freeze() and check __fatal_signal_pending(),
518	 * but then we need to teach dump_write() to restart and clear
519	 * TIF_SIGPENDING.
520	 */
521	return signal_pending(current);
522}
523
524static void wait_for_dump_helpers(struct file *file)
525{
526	struct pipe_inode_info *pipe = file->private_data;
527
528	pipe_lock(pipe);
529	pipe->readers++;
530	pipe->writers--;
531	wake_up_interruptible_sync(&pipe->rd_wait);
532	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
533	pipe_unlock(pipe);
534
535	/*
536	 * We actually want wait_event_freezable() but then we need
537	 * to clear TIF_SIGPENDING and improve dump_interrupted().
538	 */
539	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
540
541	pipe_lock(pipe);
542	pipe->readers--;
543	pipe->writers++;
544	pipe_unlock(pipe);
545}
546
547/*
548 * umh_pipe_setup
549 * helper function to customize the process used
550 * to collect the core in userspace.  Specifically
551 * it sets up a pipe and installs it as fd 0 (stdin)
552 * for the process.  Returns 0 on success, or
553 * PTR_ERR on failure.
554 * Note that it also sets the core limit to 1.  This
555 * is a special value that we use to trap recursive
556 * core dumps
557 */
558static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
559{
560	struct file *files[2];
561	struct coredump_params *cp = (struct coredump_params *)info->data;
562	int err = create_pipe_files(files, 0);
563	if (err)
564		return err;
565
566	cp->file = files[1];
567
568	err = replace_fd(0, files[0], 0);
569	fput(files[0]);
570	/* and disallow core files too */
571	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
572
573	return err;
574}
575
576void do_coredump(const kernel_siginfo_t *siginfo)
577{
578	struct core_state core_state;
579	struct core_name cn;
580	struct mm_struct *mm = current->mm;
581	struct linux_binfmt * binfmt;
582	const struct cred *old_cred;
583	struct cred *cred;
584	int retval = 0;
585	int ispipe;
586	size_t *argv = NULL;
587	int argc = 0;
588	struct files_struct *displaced;
589	/* require nonrelative corefile path and be extra careful */
590	bool need_suid_safe = false;
591	bool core_dumped = false;
592	static atomic_t core_dump_count = ATOMIC_INIT(0);
593	struct coredump_params cprm = {
594		.siginfo = siginfo,
595		.regs = signal_pt_regs(),
596		.limit = rlimit(RLIMIT_CORE),
597		/*
598		 * We must use the same mm->flags while dumping core to avoid
599		 * inconsistency of bit flags, since this flag is not protected
600		 * by any locks.
601		 */
602		.mm_flags = mm->flags,
603	};
604
605	audit_core_dumps(siginfo->si_signo);
606
607	binfmt = mm->binfmt;
608	if (!binfmt || !binfmt->core_dump)
609		goto fail;
610	if (!__get_dumpable(cprm.mm_flags))
611		goto fail;
612
613	cred = prepare_creds();
614	if (!cred)
615		goto fail;
616	/*
617	 * We cannot trust fsuid as being the "true" uid of the process
618	 * nor do we know its entire history. We only know it was tainted
619	 * so we dump it as root in mode 2, and only into a controlled
620	 * environment (pipe handler or fully qualified path).
621	 */
622	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
623		/* Setuid core dump mode */
624		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
625		need_suid_safe = true;
626	}
627
628	retval = coredump_wait(siginfo->si_signo, &core_state);
629	if (retval < 0)
630		goto fail_creds;
631
632	old_cred = override_creds(cred);
633
634	ispipe = format_corename(&cn, &cprm, &argv, &argc);
635
636	if (ispipe) {
637		int argi;
638		int dump_count;
639		char **helper_argv;
640		struct subprocess_info *sub_info;
641
642		if (ispipe < 0) {
643			printk(KERN_WARNING "format_corename failed\n");
644			printk(KERN_WARNING "Aborting core\n");
645			goto fail_unlock;
646		}
647
648		if (cprm.limit == 1) {
649			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
650			 *
651			 * Normally core limits are irrelevant to pipes, since
652			 * we're not writing to the file system, but we use
653			 * cprm.limit of 1 here as a special value, this is a
654			 * consistent way to catch recursive crashes.
655			 * We can still crash if the core_pattern binary sets
656			 * RLIM_CORE = !1, but it runs as root, and can do
657			 * lots of stupid things.
658			 *
659			 * Note that we use task_tgid_vnr here to grab the pid
660			 * of the process group leader.  That way we get the
661			 * right pid if a thread in a multi-threaded
662			 * core_pattern process dies.
663			 */
664			printk(KERN_WARNING
665				"Process %d(%s) has RLIMIT_CORE set to 1\n",
666				task_tgid_vnr(current), current->comm);
667			printk(KERN_WARNING "Aborting core\n");
668			goto fail_unlock;
669		}
670		cprm.limit = RLIM_INFINITY;
671
672		dump_count = atomic_inc_return(&core_dump_count);
673		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
674			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
675			       task_tgid_vnr(current), current->comm);
676			printk(KERN_WARNING "Skipping core dump\n");
677			goto fail_dropcount;
678		}
679
680		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
681					    GFP_KERNEL);
682		if (!helper_argv) {
683			printk(KERN_WARNING "%s failed to allocate memory\n",
684			       __func__);
685			goto fail_dropcount;
686		}
687		for (argi = 0; argi < argc; argi++)
688			helper_argv[argi] = cn.corename + argv[argi];
689		helper_argv[argi] = NULL;
690
691		retval = -ENOMEM;
692		sub_info = call_usermodehelper_setup(helper_argv[0],
693						helper_argv, NULL, GFP_KERNEL,
694						umh_pipe_setup, NULL, &cprm);
695		if (sub_info)
696			retval = call_usermodehelper_exec(sub_info,
697							  UMH_WAIT_EXEC);
698
699		kfree(helper_argv);
700		if (retval) {
701			printk(KERN_INFO "Core dump to |%s pipe failed\n",
702			       cn.corename);
703			goto close_fail;
704		}
705	} else {
706		struct inode *inode;
707		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
708				 O_LARGEFILE | O_EXCL;
709
710		if (cprm.limit < binfmt->min_coredump)
711			goto fail_unlock;
712
713		if (need_suid_safe && cn.corename[0] != '/') {
714			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
715				"to fully qualified path!\n",
716				task_tgid_vnr(current), current->comm);
717			printk(KERN_WARNING "Skipping core dump\n");
718			goto fail_unlock;
719		}
720
721		/*
722		 * Unlink the file if it exists unless this is a SUID
723		 * binary - in that case, we're running around with root
724		 * privs and don't want to unlink another user's coredump.
725		 */
726		if (!need_suid_safe) {
 
 
 
 
727			/*
728			 * If it doesn't exist, that's fine. If there's some
729			 * other problem, we'll catch it at the filp_open().
730			 */
731			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
 
732		}
733
734		/*
735		 * There is a race between unlinking and creating the
736		 * file, but if that causes an EEXIST here, that's
737		 * fine - another process raced with us while creating
738		 * the corefile, and the other process won. To userspace,
739		 * what matters is that at least one of the two processes
740		 * writes its coredump successfully, not which one.
741		 */
742		if (need_suid_safe) {
743			/*
744			 * Using user namespaces, normal user tasks can change
745			 * their current->fs->root to point to arbitrary
746			 * directories. Since the intention of the "only dump
747			 * with a fully qualified path" rule is to control where
748			 * coredumps may be placed using root privileges,
749			 * current->fs->root must not be used. Instead, use the
750			 * root directory of init_task.
751			 */
752			struct path root;
753
754			task_lock(&init_task);
755			get_fs_root(init_task.fs, &root);
756			task_unlock(&init_task);
757			cprm.file = file_open_root(root.dentry, root.mnt,
758				cn.corename, open_flags, 0600);
759			path_put(&root);
760		} else {
761			cprm.file = filp_open(cn.corename, open_flags, 0600);
762		}
763		if (IS_ERR(cprm.file))
764			goto fail_unlock;
765
766		inode = file_inode(cprm.file);
767		if (inode->i_nlink > 1)
768			goto close_fail;
769		if (d_unhashed(cprm.file->f_path.dentry))
770			goto close_fail;
771		/*
772		 * AK: actually i see no reason to not allow this for named
773		 * pipes etc, but keep the previous behaviour for now.
774		 */
775		if (!S_ISREG(inode->i_mode))
776			goto close_fail;
777		/*
778		 * Don't dump core if the filesystem changed owner or mode
779		 * of the file during file creation. This is an issue when
780		 * a process dumps core while its cwd is e.g. on a vfat
781		 * filesystem.
782		 */
783		if (!uid_eq(inode->i_uid, current_fsuid()))
784			goto close_fail;
785		if ((inode->i_mode & 0677) != 0600)
786			goto close_fail;
787		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
788			goto close_fail;
789		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
790			goto close_fail;
791	}
792
793	/* get us an unshared descriptor table; almost always a no-op */
794	retval = unshare_files(&displaced);
795	if (retval)
796		goto close_fail;
797	if (displaced)
798		put_files_struct(displaced);
799	if (!dump_interrupted()) {
800		/*
801		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
802		 * have this set to NULL.
803		 */
804		if (!cprm.file) {
805			pr_info("Core dump to |%s disabled\n", cn.corename);
806			goto close_fail;
807		}
808		file_start_write(cprm.file);
809		core_dumped = binfmt->core_dump(&cprm);
810		file_end_write(cprm.file);
811	}
812	if (ispipe && core_pipe_limit)
813		wait_for_dump_helpers(cprm.file);
814close_fail:
815	if (cprm.file)
816		filp_close(cprm.file, NULL);
817fail_dropcount:
818	if (ispipe)
819		atomic_dec(&core_dump_count);
820fail_unlock:
821	kfree(argv);
822	kfree(cn.corename);
823	coredump_finish(mm, core_dumped);
824	revert_creds(old_cred);
825fail_creds:
826	put_cred(cred);
827fail:
828	return;
829}
830
831/*
832 * Core dumping helper functions.  These are the only things you should
833 * do on a core-file: use only these functions to write out all the
834 * necessary info.
835 */
836int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
837{
838	struct file *file = cprm->file;
839	loff_t pos = file->f_pos;
840	ssize_t n;
841	if (cprm->written + nr > cprm->limit)
842		return 0;
843	while (nr) {
844		if (dump_interrupted())
845			return 0;
846		n = __kernel_write(file, addr, nr, &pos);
847		if (n <= 0)
848			return 0;
849		file->f_pos = pos;
850		cprm->written += n;
851		cprm->pos += n;
852		nr -= n;
853	}
854	return 1;
855}
856EXPORT_SYMBOL(dump_emit);
857
858int dump_skip(struct coredump_params *cprm, size_t nr)
859{
860	static char zeroes[PAGE_SIZE];
861	struct file *file = cprm->file;
862	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 
 
863		if (dump_interrupted() ||
864		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
865			return 0;
866		cprm->pos += nr;
867		return 1;
868	} else {
869		while (nr > PAGE_SIZE) {
870			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
871				return 0;
872			nr -= PAGE_SIZE;
873		}
874		return dump_emit(cprm, zeroes, nr);
875	}
876}
877EXPORT_SYMBOL(dump_skip);
878
879int dump_align(struct coredump_params *cprm, int align)
880{
881	unsigned mod = cprm->pos & (align - 1);
882	if (align & (align - 1))
883		return 0;
884	return mod ? dump_skip(cprm, align - mod) : 1;
885}
886EXPORT_SYMBOL(dump_align);
887
888/*
889 * Ensures that file size is big enough to contain the current file
890 * postion. This prevents gdb from complaining about a truncated file
891 * if the last "write" to the file was dump_skip.
892 */
893void dump_truncate(struct coredump_params *cprm)
894{
895	struct file *file = cprm->file;
896	loff_t offset;
897
898	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
899		offset = file->f_op->llseek(file, 0, SEEK_CUR);
900		if (i_size_read(file->f_mapping->host) < offset)
901			do_truncate(file->f_path.dentry, offset, 0, file);
902	}
903}
904EXPORT_SYMBOL(dump_truncate);