Loading...
1/*
2 * hcd.c - DesignWare HS OTG Controller host-mode routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37/*
38 * This file contains the core HCD code, and implements the Linux hc_driver
39 * API
40 */
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/spinlock.h>
44#include <linux/interrupt.h>
45#include <linux/dma-mapping.h>
46#include <linux/delay.h>
47#include <linux/io.h>
48#include <linux/slab.h>
49#include <linux/usb.h>
50
51#include <linux/usb/hcd.h>
52#include <linux/usb/ch11.h>
53
54#include "core.h"
55#include "hcd.h"
56
57/*
58 * =========================================================================
59 * Host Core Layer Functions
60 * =========================================================================
61 */
62
63/**
64 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
65 * used in both device and host modes
66 *
67 * @hsotg: Programming view of the DWC_otg controller
68 */
69static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
70{
71 u32 intmsk;
72
73 /* Clear any pending OTG Interrupts */
74 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
75
76 /* Clear any pending interrupts */
77 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
78
79 /* Enable the interrupts in the GINTMSK */
80 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
81
82 if (hsotg->core_params->dma_enable <= 0)
83 intmsk |= GINTSTS_RXFLVL;
84 if (hsotg->core_params->external_id_pin_ctl <= 0)
85 intmsk |= GINTSTS_CONIDSTSCHNG;
86
87 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
88 GINTSTS_SESSREQINT;
89
90 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
91}
92
93/*
94 * Initializes the FSLSPClkSel field of the HCFG register depending on the
95 * PHY type
96 */
97static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
98{
99 u32 hcfg, val;
100
101 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
102 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
103 hsotg->core_params->ulpi_fs_ls > 0) ||
104 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
105 /* Full speed PHY */
106 val = HCFG_FSLSPCLKSEL_48_MHZ;
107 } else {
108 /* High speed PHY running at full speed or high speed */
109 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
110 }
111
112 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
113 hcfg = dwc2_readl(hsotg->regs + HCFG);
114 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
115 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
116 dwc2_writel(hcfg, hsotg->regs + HCFG);
117}
118
119static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
120{
121 u32 usbcfg, i2cctl;
122 int retval = 0;
123
124 /*
125 * core_init() is now called on every switch so only call the
126 * following for the first time through
127 */
128 if (select_phy) {
129 dev_dbg(hsotg->dev, "FS PHY selected\n");
130
131 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
132 if (!(usbcfg & GUSBCFG_PHYSEL)) {
133 usbcfg |= GUSBCFG_PHYSEL;
134 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
135
136 /* Reset after a PHY select */
137 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
138
139 if (retval) {
140 dev_err(hsotg->dev,
141 "%s: Reset failed, aborting", __func__);
142 return retval;
143 }
144 }
145 }
146
147 /*
148 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
149 * do this on HNP Dev/Host mode switches (done in dev_init and
150 * host_init).
151 */
152 if (dwc2_is_host_mode(hsotg))
153 dwc2_init_fs_ls_pclk_sel(hsotg);
154
155 if (hsotg->core_params->i2c_enable > 0) {
156 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
157
158 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
159 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
160 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
161 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
162
163 /* Program GI2CCTL.I2CEn */
164 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
165 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
166 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
167 i2cctl &= ~GI2CCTL_I2CEN;
168 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
169 i2cctl |= GI2CCTL_I2CEN;
170 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
171 }
172
173 return retval;
174}
175
176static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
177{
178 u32 usbcfg, usbcfg_old;
179 int retval = 0;
180
181 if (!select_phy)
182 return 0;
183
184 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
185 usbcfg_old = usbcfg;
186
187 /*
188 * HS PHY parameters. These parameters are preserved during soft reset
189 * so only program the first time. Do a soft reset immediately after
190 * setting phyif.
191 */
192 switch (hsotg->core_params->phy_type) {
193 case DWC2_PHY_TYPE_PARAM_ULPI:
194 /* ULPI interface */
195 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
196 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
197 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
198 if (hsotg->core_params->phy_ulpi_ddr > 0)
199 usbcfg |= GUSBCFG_DDRSEL;
200 break;
201 case DWC2_PHY_TYPE_PARAM_UTMI:
202 /* UTMI+ interface */
203 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
204 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
205 if (hsotg->core_params->phy_utmi_width == 16)
206 usbcfg |= GUSBCFG_PHYIF16;
207 break;
208 default:
209 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
210 break;
211 }
212
213 if (usbcfg != usbcfg_old) {
214 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
215
216 /* Reset after setting the PHY parameters */
217 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
218 if (retval) {
219 dev_err(hsotg->dev,
220 "%s: Reset failed, aborting", __func__);
221 return retval;
222 }
223 }
224
225 return retval;
226}
227
228static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
229{
230 u32 usbcfg;
231 int retval = 0;
232
233 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
234 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
235 /* If FS mode with FS PHY */
236 retval = dwc2_fs_phy_init(hsotg, select_phy);
237 if (retval)
238 return retval;
239 } else {
240 /* High speed PHY */
241 retval = dwc2_hs_phy_init(hsotg, select_phy);
242 if (retval)
243 return retval;
244 }
245
246 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
247 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
248 hsotg->core_params->ulpi_fs_ls > 0) {
249 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
250 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
251 usbcfg |= GUSBCFG_ULPI_FS_LS;
252 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
253 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
254 } else {
255 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
256 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
257 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
258 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
259 }
260
261 return retval;
262}
263
264static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
265{
266 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
267
268 switch (hsotg->hw_params.arch) {
269 case GHWCFG2_EXT_DMA_ARCH:
270 dev_err(hsotg->dev, "External DMA Mode not supported\n");
271 return -EINVAL;
272
273 case GHWCFG2_INT_DMA_ARCH:
274 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
275 if (hsotg->core_params->ahbcfg != -1) {
276 ahbcfg &= GAHBCFG_CTRL_MASK;
277 ahbcfg |= hsotg->core_params->ahbcfg &
278 ~GAHBCFG_CTRL_MASK;
279 }
280 break;
281
282 case GHWCFG2_SLAVE_ONLY_ARCH:
283 default:
284 dev_dbg(hsotg->dev, "Slave Only Mode\n");
285 break;
286 }
287
288 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
289 hsotg->core_params->dma_enable,
290 hsotg->core_params->dma_desc_enable);
291
292 if (hsotg->core_params->dma_enable > 0) {
293 if (hsotg->core_params->dma_desc_enable > 0)
294 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
295 else
296 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
297 } else {
298 dev_dbg(hsotg->dev, "Using Slave mode\n");
299 hsotg->core_params->dma_desc_enable = 0;
300 }
301
302 if (hsotg->core_params->dma_enable > 0)
303 ahbcfg |= GAHBCFG_DMA_EN;
304
305 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
306
307 return 0;
308}
309
310static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
311{
312 u32 usbcfg;
313
314 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
315 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
316
317 switch (hsotg->hw_params.op_mode) {
318 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
319 if (hsotg->core_params->otg_cap ==
320 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
321 usbcfg |= GUSBCFG_HNPCAP;
322 if (hsotg->core_params->otg_cap !=
323 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
324 usbcfg |= GUSBCFG_SRPCAP;
325 break;
326
327 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
328 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
329 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
330 if (hsotg->core_params->otg_cap !=
331 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
332 usbcfg |= GUSBCFG_SRPCAP;
333 break;
334
335 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
336 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
337 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
338 default:
339 break;
340 }
341
342 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
343}
344
345/**
346 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
347 *
348 * @hsotg: Programming view of DWC_otg controller
349 */
350static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
351{
352 u32 intmsk;
353
354 dev_dbg(hsotg->dev, "%s()\n", __func__);
355
356 /* Disable all interrupts */
357 dwc2_writel(0, hsotg->regs + GINTMSK);
358 dwc2_writel(0, hsotg->regs + HAINTMSK);
359
360 /* Enable the common interrupts */
361 dwc2_enable_common_interrupts(hsotg);
362
363 /* Enable host mode interrupts without disturbing common interrupts */
364 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
365 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
366 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
367}
368
369/**
370 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
371 *
372 * @hsotg: Programming view of DWC_otg controller
373 */
374static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
375{
376 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
377
378 /* Disable host mode interrupts without disturbing common interrupts */
379 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
380 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
381 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
382}
383
384/*
385 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
386 * For system that have a total fifo depth that is smaller than the default
387 * RX + TX fifo size.
388 *
389 * @hsotg: Programming view of DWC_otg controller
390 */
391static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
392{
393 struct dwc2_core_params *params = hsotg->core_params;
394 struct dwc2_hw_params *hw = &hsotg->hw_params;
395 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
396
397 total_fifo_size = hw->total_fifo_size;
398 rxfsiz = params->host_rx_fifo_size;
399 nptxfsiz = params->host_nperio_tx_fifo_size;
400 ptxfsiz = params->host_perio_tx_fifo_size;
401
402 /*
403 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
404 * allocation with support for high bandwidth endpoints. Synopsys
405 * defines MPS(Max Packet size) for a periodic EP=1024, and for
406 * non-periodic as 512.
407 */
408 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
409 /*
410 * For Buffer DMA mode/Scatter Gather DMA mode
411 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
412 * with n = number of host channel.
413 * 2 * ((1024/4) + 2) = 516
414 */
415 rxfsiz = 516 + hw->host_channels;
416
417 /*
418 * min non-periodic tx fifo depth
419 * 2 * (largest non-periodic USB packet used / 4)
420 * 2 * (512/4) = 256
421 */
422 nptxfsiz = 256;
423
424 /*
425 * min periodic tx fifo depth
426 * (largest packet size*MC)/4
427 * (1024 * 3)/4 = 768
428 */
429 ptxfsiz = 768;
430
431 params->host_rx_fifo_size = rxfsiz;
432 params->host_nperio_tx_fifo_size = nptxfsiz;
433 params->host_perio_tx_fifo_size = ptxfsiz;
434 }
435
436 /*
437 * If the summation of RX, NPTX and PTX fifo sizes is still
438 * bigger than the total_fifo_size, then we have a problem.
439 *
440 * We won't be able to allocate as many endpoints. Right now,
441 * we're just printing an error message, but ideally this FIFO
442 * allocation algorithm would be improved in the future.
443 *
444 * FIXME improve this FIFO allocation algorithm.
445 */
446 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
447 dev_err(hsotg->dev, "invalid fifo sizes\n");
448}
449
450static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
451{
452 struct dwc2_core_params *params = hsotg->core_params;
453 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
454
455 if (!params->enable_dynamic_fifo)
456 return;
457
458 dwc2_calculate_dynamic_fifo(hsotg);
459
460 /* Rx FIFO */
461 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
462 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
463 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
464 grxfsiz |= params->host_rx_fifo_size <<
465 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
466 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
467 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
468 dwc2_readl(hsotg->regs + GRXFSIZ));
469
470 /* Non-periodic Tx FIFO */
471 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
472 dwc2_readl(hsotg->regs + GNPTXFSIZ));
473 nptxfsiz = params->host_nperio_tx_fifo_size <<
474 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
475 nptxfsiz |= params->host_rx_fifo_size <<
476 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
477 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
478 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
479 dwc2_readl(hsotg->regs + GNPTXFSIZ));
480
481 /* Periodic Tx FIFO */
482 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
483 dwc2_readl(hsotg->regs + HPTXFSIZ));
484 hptxfsiz = params->host_perio_tx_fifo_size <<
485 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
486 hptxfsiz |= (params->host_rx_fifo_size +
487 params->host_nperio_tx_fifo_size) <<
488 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
489 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
490 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
491 dwc2_readl(hsotg->regs + HPTXFSIZ));
492
493 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
494 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
495 /*
496 * Global DFIFOCFG calculation for Host mode -
497 * include RxFIFO, NPTXFIFO and HPTXFIFO
498 */
499 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
500 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
501 dfifocfg |= (params->host_rx_fifo_size +
502 params->host_nperio_tx_fifo_size +
503 params->host_perio_tx_fifo_size) <<
504 GDFIFOCFG_EPINFOBASE_SHIFT &
505 GDFIFOCFG_EPINFOBASE_MASK;
506 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
507 }
508}
509
510/**
511 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
512 * the HFIR register according to PHY type and speed
513 *
514 * @hsotg: Programming view of DWC_otg controller
515 *
516 * NOTE: The caller can modify the value of the HFIR register only after the
517 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
518 * has been set
519 */
520u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
521{
522 u32 usbcfg;
523 u32 hprt0;
524 int clock = 60; /* default value */
525
526 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
527 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
528
529 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
530 !(usbcfg & GUSBCFG_PHYIF16))
531 clock = 60;
532 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
533 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
534 clock = 48;
535 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
536 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
537 clock = 30;
538 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
539 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
540 clock = 60;
541 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
542 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
543 clock = 48;
544 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
545 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
546 clock = 48;
547 if ((usbcfg & GUSBCFG_PHYSEL) &&
548 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
549 clock = 48;
550
551 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
552 /* High speed case */
553 return 125 * clock - 1;
554
555 /* FS/LS case */
556 return 1000 * clock - 1;
557}
558
559/**
560 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
561 * buffer
562 *
563 * @core_if: Programming view of DWC_otg controller
564 * @dest: Destination buffer for the packet
565 * @bytes: Number of bytes to copy to the destination
566 */
567void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
568{
569 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
570 u32 *data_buf = (u32 *)dest;
571 int word_count = (bytes + 3) / 4;
572 int i;
573
574 /*
575 * Todo: Account for the case where dest is not dword aligned. This
576 * requires reading data from the FIFO into a u32 temp buffer, then
577 * moving it into the data buffer.
578 */
579
580 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
581
582 for (i = 0; i < word_count; i++, data_buf++)
583 *data_buf = dwc2_readl(fifo);
584}
585
586/**
587 * dwc2_dump_channel_info() - Prints the state of a host channel
588 *
589 * @hsotg: Programming view of DWC_otg controller
590 * @chan: Pointer to the channel to dump
591 *
592 * Must be called with interrupt disabled and spinlock held
593 *
594 * NOTE: This function will be removed once the peripheral controller code
595 * is integrated and the driver is stable
596 */
597static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
598 struct dwc2_host_chan *chan)
599{
600#ifdef VERBOSE_DEBUG
601 int num_channels = hsotg->core_params->host_channels;
602 struct dwc2_qh *qh;
603 u32 hcchar;
604 u32 hcsplt;
605 u32 hctsiz;
606 u32 hc_dma;
607 int i;
608
609 if (!chan)
610 return;
611
612 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
613 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
614 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
615 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
616
617 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
618 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
619 hcchar, hcsplt);
620 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
621 hctsiz, hc_dma);
622 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
623 chan->dev_addr, chan->ep_num, chan->ep_is_in);
624 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
625 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
626 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
627 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
628 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
629 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
630 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
631 (unsigned long)chan->xfer_dma);
632 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
633 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
634 dev_dbg(hsotg->dev, " NP inactive sched:\n");
635 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
636 qh_list_entry)
637 dev_dbg(hsotg->dev, " %p\n", qh);
638 dev_dbg(hsotg->dev, " NP active sched:\n");
639 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
640 qh_list_entry)
641 dev_dbg(hsotg->dev, " %p\n", qh);
642 dev_dbg(hsotg->dev, " Channels:\n");
643 for (i = 0; i < num_channels; i++) {
644 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
645
646 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
647 }
648#endif /* VERBOSE_DEBUG */
649}
650
651/*
652 * =========================================================================
653 * Low Level Host Channel Access Functions
654 * =========================================================================
655 */
656
657static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
658 struct dwc2_host_chan *chan)
659{
660 u32 hcintmsk = HCINTMSK_CHHLTD;
661
662 switch (chan->ep_type) {
663 case USB_ENDPOINT_XFER_CONTROL:
664 case USB_ENDPOINT_XFER_BULK:
665 dev_vdbg(hsotg->dev, "control/bulk\n");
666 hcintmsk |= HCINTMSK_XFERCOMPL;
667 hcintmsk |= HCINTMSK_STALL;
668 hcintmsk |= HCINTMSK_XACTERR;
669 hcintmsk |= HCINTMSK_DATATGLERR;
670 if (chan->ep_is_in) {
671 hcintmsk |= HCINTMSK_BBLERR;
672 } else {
673 hcintmsk |= HCINTMSK_NAK;
674 hcintmsk |= HCINTMSK_NYET;
675 if (chan->do_ping)
676 hcintmsk |= HCINTMSK_ACK;
677 }
678
679 if (chan->do_split) {
680 hcintmsk |= HCINTMSK_NAK;
681 if (chan->complete_split)
682 hcintmsk |= HCINTMSK_NYET;
683 else
684 hcintmsk |= HCINTMSK_ACK;
685 }
686
687 if (chan->error_state)
688 hcintmsk |= HCINTMSK_ACK;
689 break;
690
691 case USB_ENDPOINT_XFER_INT:
692 if (dbg_perio())
693 dev_vdbg(hsotg->dev, "intr\n");
694 hcintmsk |= HCINTMSK_XFERCOMPL;
695 hcintmsk |= HCINTMSK_NAK;
696 hcintmsk |= HCINTMSK_STALL;
697 hcintmsk |= HCINTMSK_XACTERR;
698 hcintmsk |= HCINTMSK_DATATGLERR;
699 hcintmsk |= HCINTMSK_FRMOVRUN;
700
701 if (chan->ep_is_in)
702 hcintmsk |= HCINTMSK_BBLERR;
703 if (chan->error_state)
704 hcintmsk |= HCINTMSK_ACK;
705 if (chan->do_split) {
706 if (chan->complete_split)
707 hcintmsk |= HCINTMSK_NYET;
708 else
709 hcintmsk |= HCINTMSK_ACK;
710 }
711 break;
712
713 case USB_ENDPOINT_XFER_ISOC:
714 if (dbg_perio())
715 dev_vdbg(hsotg->dev, "isoc\n");
716 hcintmsk |= HCINTMSK_XFERCOMPL;
717 hcintmsk |= HCINTMSK_FRMOVRUN;
718 hcintmsk |= HCINTMSK_ACK;
719
720 if (chan->ep_is_in) {
721 hcintmsk |= HCINTMSK_XACTERR;
722 hcintmsk |= HCINTMSK_BBLERR;
723 }
724 break;
725 default:
726 dev_err(hsotg->dev, "## Unknown EP type ##\n");
727 break;
728 }
729
730 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
731 if (dbg_hc(chan))
732 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
733}
734
735static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
736 struct dwc2_host_chan *chan)
737{
738 u32 hcintmsk = HCINTMSK_CHHLTD;
739
740 /*
741 * For Descriptor DMA mode core halts the channel on AHB error.
742 * Interrupt is not required.
743 */
744 if (hsotg->core_params->dma_desc_enable <= 0) {
745 if (dbg_hc(chan))
746 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
747 hcintmsk |= HCINTMSK_AHBERR;
748 } else {
749 if (dbg_hc(chan))
750 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
751 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
752 hcintmsk |= HCINTMSK_XFERCOMPL;
753 }
754
755 if (chan->error_state && !chan->do_split &&
756 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
757 if (dbg_hc(chan))
758 dev_vdbg(hsotg->dev, "setting ACK\n");
759 hcintmsk |= HCINTMSK_ACK;
760 if (chan->ep_is_in) {
761 hcintmsk |= HCINTMSK_DATATGLERR;
762 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
763 hcintmsk |= HCINTMSK_NAK;
764 }
765 }
766
767 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
768 if (dbg_hc(chan))
769 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
770}
771
772static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
773 struct dwc2_host_chan *chan)
774{
775 u32 intmsk;
776
777 if (hsotg->core_params->dma_enable > 0) {
778 if (dbg_hc(chan))
779 dev_vdbg(hsotg->dev, "DMA enabled\n");
780 dwc2_hc_enable_dma_ints(hsotg, chan);
781 } else {
782 if (dbg_hc(chan))
783 dev_vdbg(hsotg->dev, "DMA disabled\n");
784 dwc2_hc_enable_slave_ints(hsotg, chan);
785 }
786
787 /* Enable the top level host channel interrupt */
788 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
789 intmsk |= 1 << chan->hc_num;
790 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
791 if (dbg_hc(chan))
792 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
793
794 /* Make sure host channel interrupts are enabled */
795 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
796 intmsk |= GINTSTS_HCHINT;
797 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
798 if (dbg_hc(chan))
799 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
800}
801
802/**
803 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
804 * a specific endpoint
805 *
806 * @hsotg: Programming view of DWC_otg controller
807 * @chan: Information needed to initialize the host channel
808 *
809 * The HCCHARn register is set up with the characteristics specified in chan.
810 * Host channel interrupts that may need to be serviced while this transfer is
811 * in progress are enabled.
812 */
813static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
814{
815 u8 hc_num = chan->hc_num;
816 u32 hcintmsk;
817 u32 hcchar;
818 u32 hcsplt = 0;
819
820 if (dbg_hc(chan))
821 dev_vdbg(hsotg->dev, "%s()\n", __func__);
822
823 /* Clear old interrupt conditions for this host channel */
824 hcintmsk = 0xffffffff;
825 hcintmsk &= ~HCINTMSK_RESERVED14_31;
826 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
827
828 /* Enable channel interrupts required for this transfer */
829 dwc2_hc_enable_ints(hsotg, chan);
830
831 /*
832 * Program the HCCHARn register with the endpoint characteristics for
833 * the current transfer
834 */
835 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
836 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
837 if (chan->ep_is_in)
838 hcchar |= HCCHAR_EPDIR;
839 if (chan->speed == USB_SPEED_LOW)
840 hcchar |= HCCHAR_LSPDDEV;
841 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
842 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
843 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
844 if (dbg_hc(chan)) {
845 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
846 hc_num, hcchar);
847
848 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
849 __func__, hc_num);
850 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
851 chan->dev_addr);
852 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
853 chan->ep_num);
854 dev_vdbg(hsotg->dev, " Is In: %d\n",
855 chan->ep_is_in);
856 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
857 chan->speed == USB_SPEED_LOW);
858 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
859 chan->ep_type);
860 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
861 chan->max_packet);
862 }
863
864 /* Program the HCSPLT register for SPLITs */
865 if (chan->do_split) {
866 if (dbg_hc(chan))
867 dev_vdbg(hsotg->dev,
868 "Programming HC %d with split --> %s\n",
869 hc_num,
870 chan->complete_split ? "CSPLIT" : "SSPLIT");
871 if (chan->complete_split)
872 hcsplt |= HCSPLT_COMPSPLT;
873 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
874 HCSPLT_XACTPOS_MASK;
875 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
876 HCSPLT_HUBADDR_MASK;
877 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
878 HCSPLT_PRTADDR_MASK;
879 if (dbg_hc(chan)) {
880 dev_vdbg(hsotg->dev, " comp split %d\n",
881 chan->complete_split);
882 dev_vdbg(hsotg->dev, " xact pos %d\n",
883 chan->xact_pos);
884 dev_vdbg(hsotg->dev, " hub addr %d\n",
885 chan->hub_addr);
886 dev_vdbg(hsotg->dev, " hub port %d\n",
887 chan->hub_port);
888 dev_vdbg(hsotg->dev, " is_in %d\n",
889 chan->ep_is_in);
890 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
891 chan->max_packet);
892 dev_vdbg(hsotg->dev, " xferlen %d\n",
893 chan->xfer_len);
894 }
895 }
896
897 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
898}
899
900/**
901 * dwc2_hc_halt() - Attempts to halt a host channel
902 *
903 * @hsotg: Controller register interface
904 * @chan: Host channel to halt
905 * @halt_status: Reason for halting the channel
906 *
907 * This function should only be called in Slave mode or to abort a transfer in
908 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
909 * controller halts the channel when the transfer is complete or a condition
910 * occurs that requires application intervention.
911 *
912 * In slave mode, checks for a free request queue entry, then sets the Channel
913 * Enable and Channel Disable bits of the Host Channel Characteristics
914 * register of the specified channel to intiate the halt. If there is no free
915 * request queue entry, sets only the Channel Disable bit of the HCCHARn
916 * register to flush requests for this channel. In the latter case, sets a
917 * flag to indicate that the host channel needs to be halted when a request
918 * queue slot is open.
919 *
920 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
921 * HCCHARn register. The controller ensures there is space in the request
922 * queue before submitting the halt request.
923 *
924 * Some time may elapse before the core flushes any posted requests for this
925 * host channel and halts. The Channel Halted interrupt handler completes the
926 * deactivation of the host channel.
927 */
928void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
929 enum dwc2_halt_status halt_status)
930{
931 u32 nptxsts, hptxsts, hcchar;
932
933 if (dbg_hc(chan))
934 dev_vdbg(hsotg->dev, "%s()\n", __func__);
935 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
936 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
937
938 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
939 halt_status == DWC2_HC_XFER_AHB_ERR) {
940 /*
941 * Disable all channel interrupts except Ch Halted. The QTD
942 * and QH state associated with this transfer has been cleared
943 * (in the case of URB_DEQUEUE), so the channel needs to be
944 * shut down carefully to prevent crashes.
945 */
946 u32 hcintmsk = HCINTMSK_CHHLTD;
947
948 dev_vdbg(hsotg->dev, "dequeue/error\n");
949 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
950
951 /*
952 * Make sure no other interrupts besides halt are currently
953 * pending. Handling another interrupt could cause a crash due
954 * to the QTD and QH state.
955 */
956 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
957
958 /*
959 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
960 * even if the channel was already halted for some other
961 * reason
962 */
963 chan->halt_status = halt_status;
964
965 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
966 if (!(hcchar & HCCHAR_CHENA)) {
967 /*
968 * The channel is either already halted or it hasn't
969 * started yet. In DMA mode, the transfer may halt if
970 * it finishes normally or a condition occurs that
971 * requires driver intervention. Don't want to halt
972 * the channel again. In either Slave or DMA mode,
973 * it's possible that the transfer has been assigned
974 * to a channel, but not started yet when an URB is
975 * dequeued. Don't want to halt a channel that hasn't
976 * started yet.
977 */
978 return;
979 }
980 }
981 if (chan->halt_pending) {
982 /*
983 * A halt has already been issued for this channel. This might
984 * happen when a transfer is aborted by a higher level in
985 * the stack.
986 */
987 dev_vdbg(hsotg->dev,
988 "*** %s: Channel %d, chan->halt_pending already set ***\n",
989 __func__, chan->hc_num);
990 return;
991 }
992
993 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
994
995 /* No need to set the bit in DDMA for disabling the channel */
996 /* TODO check it everywhere channel is disabled */
997 if (hsotg->core_params->dma_desc_enable <= 0) {
998 if (dbg_hc(chan))
999 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1000 hcchar |= HCCHAR_CHENA;
1001 } else {
1002 if (dbg_hc(chan))
1003 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1004 }
1005 hcchar |= HCCHAR_CHDIS;
1006
1007 if (hsotg->core_params->dma_enable <= 0) {
1008 if (dbg_hc(chan))
1009 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1010 hcchar |= HCCHAR_CHENA;
1011
1012 /* Check for space in the request queue to issue the halt */
1013 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1014 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1015 dev_vdbg(hsotg->dev, "control/bulk\n");
1016 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1017 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1018 dev_vdbg(hsotg->dev, "Disabling channel\n");
1019 hcchar &= ~HCCHAR_CHENA;
1020 }
1021 } else {
1022 if (dbg_perio())
1023 dev_vdbg(hsotg->dev, "isoc/intr\n");
1024 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1025 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1026 hsotg->queuing_high_bandwidth) {
1027 if (dbg_perio())
1028 dev_vdbg(hsotg->dev, "Disabling channel\n");
1029 hcchar &= ~HCCHAR_CHENA;
1030 }
1031 }
1032 } else {
1033 if (dbg_hc(chan))
1034 dev_vdbg(hsotg->dev, "DMA enabled\n");
1035 }
1036
1037 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1038 chan->halt_status = halt_status;
1039
1040 if (hcchar & HCCHAR_CHENA) {
1041 if (dbg_hc(chan))
1042 dev_vdbg(hsotg->dev, "Channel enabled\n");
1043 chan->halt_pending = 1;
1044 chan->halt_on_queue = 0;
1045 } else {
1046 if (dbg_hc(chan))
1047 dev_vdbg(hsotg->dev, "Channel disabled\n");
1048 chan->halt_on_queue = 1;
1049 }
1050
1051 if (dbg_hc(chan)) {
1052 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1053 chan->hc_num);
1054 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1055 hcchar);
1056 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1057 chan->halt_pending);
1058 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1059 chan->halt_on_queue);
1060 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1061 chan->halt_status);
1062 }
1063}
1064
1065/**
1066 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1067 *
1068 * @hsotg: Programming view of DWC_otg controller
1069 * @chan: Identifies the host channel to clean up
1070 *
1071 * This function is normally called after a transfer is done and the host
1072 * channel is being released
1073 */
1074void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1075{
1076 u32 hcintmsk;
1077
1078 chan->xfer_started = 0;
1079
1080 list_del_init(&chan->split_order_list_entry);
1081
1082 /*
1083 * Clear channel interrupt enables and any unhandled channel interrupt
1084 * conditions
1085 */
1086 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1087 hcintmsk = 0xffffffff;
1088 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1089 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1090}
1091
1092/**
1093 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1094 * which frame a periodic transfer should occur
1095 *
1096 * @hsotg: Programming view of DWC_otg controller
1097 * @chan: Identifies the host channel to set up and its properties
1098 * @hcchar: Current value of the HCCHAR register for the specified host channel
1099 *
1100 * This function has no effect on non-periodic transfers
1101 */
1102static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1103 struct dwc2_host_chan *chan, u32 *hcchar)
1104{
1105 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1106 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1107 int host_speed;
1108 int xfer_ns;
1109 int xfer_us;
1110 int bytes_in_fifo;
1111 u16 fifo_space;
1112 u16 frame_number;
1113 u16 wire_frame;
1114
1115 /*
1116 * Try to figure out if we're an even or odd frame. If we set
1117 * even and the current frame number is even the the transfer
1118 * will happen immediately. Similar if both are odd. If one is
1119 * even and the other is odd then the transfer will happen when
1120 * the frame number ticks.
1121 *
1122 * There's a bit of a balancing act to get this right.
1123 * Sometimes we may want to send data in the current frame (AK
1124 * right away). We might want to do this if the frame number
1125 * _just_ ticked, but we might also want to do this in order
1126 * to continue a split transaction that happened late in a
1127 * microframe (so we didn't know to queue the next transfer
1128 * until the frame number had ticked). The problem is that we
1129 * need a lot of knowledge to know if there's actually still
1130 * time to send things or if it would be better to wait until
1131 * the next frame.
1132 *
1133 * We can look at how much time is left in the current frame
1134 * and make a guess about whether we'll have time to transfer.
1135 * We'll do that.
1136 */
1137
1138 /* Get speed host is running at */
1139 host_speed = (chan->speed != USB_SPEED_HIGH &&
1140 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1141
1142 /* See how many bytes are in the periodic FIFO right now */
1143 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1144 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1145 bytes_in_fifo = sizeof(u32) *
1146 (hsotg->core_params->host_perio_tx_fifo_size -
1147 fifo_space);
1148
1149 /*
1150 * Roughly estimate bus time for everything in the periodic
1151 * queue + our new transfer. This is "rough" because we're
1152 * using a function that makes takes into account IN/OUT
1153 * and INT/ISO and we're just slamming in one value for all
1154 * transfers. This should be an over-estimate and that should
1155 * be OK, but we can probably tighten it.
1156 */
1157 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1158 chan->xfer_len + bytes_in_fifo);
1159 xfer_us = NS_TO_US(xfer_ns);
1160
1161 /* See what frame number we'll be at by the time we finish */
1162 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1163
1164 /* This is when we were scheduled to be on the wire */
1165 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1166
1167 /*
1168 * If we'd finish _after_ the frame we're scheduled in then
1169 * it's hopeless. Just schedule right away and hope for the
1170 * best. Note that it _might_ be wise to call back into the
1171 * scheduler to pick a better frame, but this is better than
1172 * nothing.
1173 */
1174 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1175 dwc2_sch_vdbg(hsotg,
1176 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1177 chan->qh, wire_frame, frame_number,
1178 dwc2_frame_num_dec(frame_number,
1179 wire_frame));
1180 wire_frame = frame_number;
1181
1182 /*
1183 * We picked a different frame number; communicate this
1184 * back to the scheduler so it doesn't try to schedule
1185 * another in the same frame.
1186 *
1187 * Remember that next_active_frame is 1 before the wire
1188 * frame.
1189 */
1190 chan->qh->next_active_frame =
1191 dwc2_frame_num_dec(frame_number, 1);
1192 }
1193
1194 if (wire_frame & 1)
1195 *hcchar |= HCCHAR_ODDFRM;
1196 else
1197 *hcchar &= ~HCCHAR_ODDFRM;
1198 }
1199}
1200
1201static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1202{
1203 /* Set up the initial PID for the transfer */
1204 if (chan->speed == USB_SPEED_HIGH) {
1205 if (chan->ep_is_in) {
1206 if (chan->multi_count == 1)
1207 chan->data_pid_start = DWC2_HC_PID_DATA0;
1208 else if (chan->multi_count == 2)
1209 chan->data_pid_start = DWC2_HC_PID_DATA1;
1210 else
1211 chan->data_pid_start = DWC2_HC_PID_DATA2;
1212 } else {
1213 if (chan->multi_count == 1)
1214 chan->data_pid_start = DWC2_HC_PID_DATA0;
1215 else
1216 chan->data_pid_start = DWC2_HC_PID_MDATA;
1217 }
1218 } else {
1219 chan->data_pid_start = DWC2_HC_PID_DATA0;
1220 }
1221}
1222
1223/**
1224 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1225 * the Host Channel
1226 *
1227 * @hsotg: Programming view of DWC_otg controller
1228 * @chan: Information needed to initialize the host channel
1229 *
1230 * This function should only be called in Slave mode. For a channel associated
1231 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1232 * associated with a periodic EP, the periodic Tx FIFO is written.
1233 *
1234 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1235 * the number of bytes written to the Tx FIFO.
1236 */
1237static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1238 struct dwc2_host_chan *chan)
1239{
1240 u32 i;
1241 u32 remaining_count;
1242 u32 byte_count;
1243 u32 dword_count;
1244 u32 __iomem *data_fifo;
1245 u32 *data_buf = (u32 *)chan->xfer_buf;
1246
1247 if (dbg_hc(chan))
1248 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1249
1250 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1251
1252 remaining_count = chan->xfer_len - chan->xfer_count;
1253 if (remaining_count > chan->max_packet)
1254 byte_count = chan->max_packet;
1255 else
1256 byte_count = remaining_count;
1257
1258 dword_count = (byte_count + 3) / 4;
1259
1260 if (((unsigned long)data_buf & 0x3) == 0) {
1261 /* xfer_buf is DWORD aligned */
1262 for (i = 0; i < dword_count; i++, data_buf++)
1263 dwc2_writel(*data_buf, data_fifo);
1264 } else {
1265 /* xfer_buf is not DWORD aligned */
1266 for (i = 0; i < dword_count; i++, data_buf++) {
1267 u32 data = data_buf[0] | data_buf[1] << 8 |
1268 data_buf[2] << 16 | data_buf[3] << 24;
1269 dwc2_writel(data, data_fifo);
1270 }
1271 }
1272
1273 chan->xfer_count += byte_count;
1274 chan->xfer_buf += byte_count;
1275}
1276
1277/**
1278 * dwc2_hc_do_ping() - Starts a PING transfer
1279 *
1280 * @hsotg: Programming view of DWC_otg controller
1281 * @chan: Information needed to initialize the host channel
1282 *
1283 * This function should only be called in Slave mode. The Do Ping bit is set in
1284 * the HCTSIZ register, then the channel is enabled.
1285 */
1286static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1287 struct dwc2_host_chan *chan)
1288{
1289 u32 hcchar;
1290 u32 hctsiz;
1291
1292 if (dbg_hc(chan))
1293 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1294 chan->hc_num);
1295
1296 hctsiz = TSIZ_DOPNG;
1297 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1298 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1299
1300 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1301 hcchar |= HCCHAR_CHENA;
1302 hcchar &= ~HCCHAR_CHDIS;
1303 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1304}
1305
1306/**
1307 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1308 * channel and starts the transfer
1309 *
1310 * @hsotg: Programming view of DWC_otg controller
1311 * @chan: Information needed to initialize the host channel. The xfer_len value
1312 * may be reduced to accommodate the max widths of the XferSize and
1313 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1314 * changed to reflect the final xfer_len value.
1315 *
1316 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1317 * the caller must ensure that there is sufficient space in the request queue
1318 * and Tx Data FIFO.
1319 *
1320 * For an OUT transfer in Slave mode, it loads a data packet into the
1321 * appropriate FIFO. If necessary, additional data packets are loaded in the
1322 * Host ISR.
1323 *
1324 * For an IN transfer in Slave mode, a data packet is requested. The data
1325 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1326 * additional data packets are requested in the Host ISR.
1327 *
1328 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1329 * register along with a packet count of 1 and the channel is enabled. This
1330 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1331 * simply set to 0 since no data transfer occurs in this case.
1332 *
1333 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1334 * all the information required to perform the subsequent data transfer. In
1335 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1336 * controller performs the entire PING protocol, then starts the data
1337 * transfer.
1338 */
1339static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1340 struct dwc2_host_chan *chan)
1341{
1342 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1343 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1344 u32 hcchar;
1345 u32 hctsiz = 0;
1346 u16 num_packets;
1347 u32 ec_mc;
1348
1349 if (dbg_hc(chan))
1350 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1351
1352 if (chan->do_ping) {
1353 if (hsotg->core_params->dma_enable <= 0) {
1354 if (dbg_hc(chan))
1355 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1356 dwc2_hc_do_ping(hsotg, chan);
1357 chan->xfer_started = 1;
1358 return;
1359 }
1360
1361 if (dbg_hc(chan))
1362 dev_vdbg(hsotg->dev, "ping, DMA\n");
1363
1364 hctsiz |= TSIZ_DOPNG;
1365 }
1366
1367 if (chan->do_split) {
1368 if (dbg_hc(chan))
1369 dev_vdbg(hsotg->dev, "split\n");
1370 num_packets = 1;
1371
1372 if (chan->complete_split && !chan->ep_is_in)
1373 /*
1374 * For CSPLIT OUT Transfer, set the size to 0 so the
1375 * core doesn't expect any data written to the FIFO
1376 */
1377 chan->xfer_len = 0;
1378 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1379 chan->xfer_len = chan->max_packet;
1380 else if (!chan->ep_is_in && chan->xfer_len > 188)
1381 chan->xfer_len = 188;
1382
1383 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1384 TSIZ_XFERSIZE_MASK;
1385
1386 /* For split set ec_mc for immediate retries */
1387 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1388 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1389 ec_mc = 3;
1390 else
1391 ec_mc = 1;
1392 } else {
1393 if (dbg_hc(chan))
1394 dev_vdbg(hsotg->dev, "no split\n");
1395 /*
1396 * Ensure that the transfer length and packet count will fit
1397 * in the widths allocated for them in the HCTSIZn register
1398 */
1399 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1400 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1401 /*
1402 * Make sure the transfer size is no larger than one
1403 * (micro)frame's worth of data. (A check was done
1404 * when the periodic transfer was accepted to ensure
1405 * that a (micro)frame's worth of data can be
1406 * programmed into a channel.)
1407 */
1408 u32 max_periodic_len =
1409 chan->multi_count * chan->max_packet;
1410
1411 if (chan->xfer_len > max_periodic_len)
1412 chan->xfer_len = max_periodic_len;
1413 } else if (chan->xfer_len > max_hc_xfer_size) {
1414 /*
1415 * Make sure that xfer_len is a multiple of max packet
1416 * size
1417 */
1418 chan->xfer_len =
1419 max_hc_xfer_size - chan->max_packet + 1;
1420 }
1421
1422 if (chan->xfer_len > 0) {
1423 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1424 chan->max_packet;
1425 if (num_packets > max_hc_pkt_count) {
1426 num_packets = max_hc_pkt_count;
1427 chan->xfer_len = num_packets * chan->max_packet;
1428 }
1429 } else {
1430 /* Need 1 packet for transfer length of 0 */
1431 num_packets = 1;
1432 }
1433
1434 if (chan->ep_is_in)
1435 /*
1436 * Always program an integral # of max packets for IN
1437 * transfers
1438 */
1439 chan->xfer_len = num_packets * chan->max_packet;
1440
1441 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1442 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1443 /*
1444 * Make sure that the multi_count field matches the
1445 * actual transfer length
1446 */
1447 chan->multi_count = num_packets;
1448
1449 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 dwc2_set_pid_isoc(chan);
1451
1452 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1453 TSIZ_XFERSIZE_MASK;
1454
1455 /* The ec_mc gets the multi_count for non-split */
1456 ec_mc = chan->multi_count;
1457 }
1458
1459 chan->start_pkt_count = num_packets;
1460 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1461 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1462 TSIZ_SC_MC_PID_MASK;
1463 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1464 if (dbg_hc(chan)) {
1465 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1466 hctsiz, chan->hc_num);
1467
1468 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1469 chan->hc_num);
1470 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1471 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1472 TSIZ_XFERSIZE_SHIFT);
1473 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1474 (hctsiz & TSIZ_PKTCNT_MASK) >>
1475 TSIZ_PKTCNT_SHIFT);
1476 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1477 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1478 TSIZ_SC_MC_PID_SHIFT);
1479 }
1480
1481 if (hsotg->core_params->dma_enable > 0) {
1482 dwc2_writel((u32)chan->xfer_dma,
1483 hsotg->regs + HCDMA(chan->hc_num));
1484 if (dbg_hc(chan))
1485 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1486 (unsigned long)chan->xfer_dma, chan->hc_num);
1487 }
1488
1489 /* Start the split */
1490 if (chan->do_split) {
1491 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1492
1493 hcsplt |= HCSPLT_SPLTENA;
1494 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1495 }
1496
1497 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1498 hcchar &= ~HCCHAR_MULTICNT_MASK;
1499 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1500 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1501
1502 if (hcchar & HCCHAR_CHDIS)
1503 dev_warn(hsotg->dev,
1504 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1505 __func__, chan->hc_num, hcchar);
1506
1507 /* Set host channel enable after all other setup is complete */
1508 hcchar |= HCCHAR_CHENA;
1509 hcchar &= ~HCCHAR_CHDIS;
1510
1511 if (dbg_hc(chan))
1512 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1513 (hcchar & HCCHAR_MULTICNT_MASK) >>
1514 HCCHAR_MULTICNT_SHIFT);
1515
1516 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1517 if (dbg_hc(chan))
1518 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1519 chan->hc_num);
1520
1521 chan->xfer_started = 1;
1522 chan->requests++;
1523
1524 if (hsotg->core_params->dma_enable <= 0 &&
1525 !chan->ep_is_in && chan->xfer_len > 0)
1526 /* Load OUT packet into the appropriate Tx FIFO */
1527 dwc2_hc_write_packet(hsotg, chan);
1528}
1529
1530/**
1531 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1532 * host channel and starts the transfer in Descriptor DMA mode
1533 *
1534 * @hsotg: Programming view of DWC_otg controller
1535 * @chan: Information needed to initialize the host channel
1536 *
1537 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1538 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1539 * with micro-frame bitmap.
1540 *
1541 * Initializes HCDMA register with descriptor list address and CTD value then
1542 * starts the transfer via enabling the channel.
1543 */
1544void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1545 struct dwc2_host_chan *chan)
1546{
1547 u32 hcchar;
1548 u32 hctsiz = 0;
1549
1550 if (chan->do_ping)
1551 hctsiz |= TSIZ_DOPNG;
1552
1553 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1554 dwc2_set_pid_isoc(chan);
1555
1556 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1557 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1558 TSIZ_SC_MC_PID_MASK;
1559
1560 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1561 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1562
1563 /* Non-zero only for high-speed interrupt endpoints */
1564 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1565
1566 if (dbg_hc(chan)) {
1567 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1568 chan->hc_num);
1569 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1570 chan->data_pid_start);
1571 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1572 }
1573
1574 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1575
1576 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1577 chan->desc_list_sz, DMA_TO_DEVICE);
1578
1579 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1580
1581 if (dbg_hc(chan))
1582 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1583 &chan->desc_list_addr, chan->hc_num);
1584
1585 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586 hcchar &= ~HCCHAR_MULTICNT_MASK;
1587 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1588 HCCHAR_MULTICNT_MASK;
1589
1590 if (hcchar & HCCHAR_CHDIS)
1591 dev_warn(hsotg->dev,
1592 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593 __func__, chan->hc_num, hcchar);
1594
1595 /* Set host channel enable after all other setup is complete */
1596 hcchar |= HCCHAR_CHENA;
1597 hcchar &= ~HCCHAR_CHDIS;
1598
1599 if (dbg_hc(chan))
1600 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1601 (hcchar & HCCHAR_MULTICNT_MASK) >>
1602 HCCHAR_MULTICNT_SHIFT);
1603
1604 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605 if (dbg_hc(chan))
1606 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607 chan->hc_num);
1608
1609 chan->xfer_started = 1;
1610 chan->requests++;
1611}
1612
1613/**
1614 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1615 * a previous call to dwc2_hc_start_transfer()
1616 *
1617 * @hsotg: Programming view of DWC_otg controller
1618 * @chan: Information needed to initialize the host channel
1619 *
1620 * The caller must ensure there is sufficient space in the request queue and Tx
1621 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1622 * the controller acts autonomously to complete transfers programmed to a host
1623 * channel.
1624 *
1625 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1626 * if there is any data remaining to be queued. For an IN transfer, another
1627 * data packet is always requested. For the SETUP phase of a control transfer,
1628 * this function does nothing.
1629 *
1630 * Return: 1 if a new request is queued, 0 if no more requests are required
1631 * for this transfer
1632 */
1633static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1634 struct dwc2_host_chan *chan)
1635{
1636 if (dbg_hc(chan))
1637 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1638 chan->hc_num);
1639
1640 if (chan->do_split)
1641 /* SPLITs always queue just once per channel */
1642 return 0;
1643
1644 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1645 /* SETUPs are queued only once since they can't be NAK'd */
1646 return 0;
1647
1648 if (chan->ep_is_in) {
1649 /*
1650 * Always queue another request for other IN transfers. If
1651 * back-to-back INs are issued and NAKs are received for both,
1652 * the driver may still be processing the first NAK when the
1653 * second NAK is received. When the interrupt handler clears
1654 * the NAK interrupt for the first NAK, the second NAK will
1655 * not be seen. So we can't depend on the NAK interrupt
1656 * handler to requeue a NAK'd request. Instead, IN requests
1657 * are issued each time this function is called. When the
1658 * transfer completes, the extra requests for the channel will
1659 * be flushed.
1660 */
1661 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1662
1663 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1664 hcchar |= HCCHAR_CHENA;
1665 hcchar &= ~HCCHAR_CHDIS;
1666 if (dbg_hc(chan))
1667 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1668 hcchar);
1669 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1670 chan->requests++;
1671 return 1;
1672 }
1673
1674 /* OUT transfers */
1675
1676 if (chan->xfer_count < chan->xfer_len) {
1677 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1678 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1679 u32 hcchar = dwc2_readl(hsotg->regs +
1680 HCCHAR(chan->hc_num));
1681
1682 dwc2_hc_set_even_odd_frame(hsotg, chan,
1683 &hcchar);
1684 }
1685
1686 /* Load OUT packet into the appropriate Tx FIFO */
1687 dwc2_hc_write_packet(hsotg, chan);
1688 chan->requests++;
1689 return 1;
1690 }
1691
1692 return 0;
1693}
1694
1695/*
1696 * =========================================================================
1697 * HCD
1698 * =========================================================================
1699 */
1700
1701/*
1702 * Processes all the URBs in a single list of QHs. Completes them with
1703 * -ETIMEDOUT and frees the QTD.
1704 *
1705 * Must be called with interrupt disabled and spinlock held
1706 */
1707static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1708 struct list_head *qh_list)
1709{
1710 struct dwc2_qh *qh, *qh_tmp;
1711 struct dwc2_qtd *qtd, *qtd_tmp;
1712
1713 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1714 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1715 qtd_list_entry) {
1716 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1717 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1718 }
1719 }
1720}
1721
1722static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1723 struct list_head *qh_list)
1724{
1725 struct dwc2_qtd *qtd, *qtd_tmp;
1726 struct dwc2_qh *qh, *qh_tmp;
1727 unsigned long flags;
1728
1729 if (!qh_list->next)
1730 /* The list hasn't been initialized yet */
1731 return;
1732
1733 spin_lock_irqsave(&hsotg->lock, flags);
1734
1735 /* Ensure there are no QTDs or URBs left */
1736 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1737
1738 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1739 dwc2_hcd_qh_unlink(hsotg, qh);
1740
1741 /* Free each QTD in the QH's QTD list */
1742 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1743 qtd_list_entry)
1744 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1745
1746 if (qh->channel && qh->channel->qh == qh)
1747 qh->channel->qh = NULL;
1748
1749 spin_unlock_irqrestore(&hsotg->lock, flags);
1750 dwc2_hcd_qh_free(hsotg, qh);
1751 spin_lock_irqsave(&hsotg->lock, flags);
1752 }
1753
1754 spin_unlock_irqrestore(&hsotg->lock, flags);
1755}
1756
1757/*
1758 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1759 * and periodic schedules. The QTD associated with each URB is removed from
1760 * the schedule and freed. This function may be called when a disconnect is
1761 * detected or when the HCD is being stopped.
1762 *
1763 * Must be called with interrupt disabled and spinlock held
1764 */
1765static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1766{
1767 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1768 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1769 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1770 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1771 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1772 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1773}
1774
1775/**
1776 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1777 *
1778 * @hsotg: Pointer to struct dwc2_hsotg
1779 */
1780void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1781{
1782 u32 hprt0;
1783
1784 if (hsotg->op_state == OTG_STATE_B_HOST) {
1785 /*
1786 * Reset the port. During a HNP mode switch the reset
1787 * needs to occur within 1ms and have a duration of at
1788 * least 50ms.
1789 */
1790 hprt0 = dwc2_read_hprt0(hsotg);
1791 hprt0 |= HPRT0_RST;
1792 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1793 }
1794
1795 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1796 msecs_to_jiffies(50));
1797}
1798
1799/* Must be called with interrupt disabled and spinlock held */
1800static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1801{
1802 int num_channels = hsotg->core_params->host_channels;
1803 struct dwc2_host_chan *channel;
1804 u32 hcchar;
1805 int i;
1806
1807 if (hsotg->core_params->dma_enable <= 0) {
1808 /* Flush out any channel requests in slave mode */
1809 for (i = 0; i < num_channels; i++) {
1810 channel = hsotg->hc_ptr_array[i];
1811 if (!list_empty(&channel->hc_list_entry))
1812 continue;
1813 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1814 if (hcchar & HCCHAR_CHENA) {
1815 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1816 hcchar |= HCCHAR_CHDIS;
1817 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1818 }
1819 }
1820 }
1821
1822 for (i = 0; i < num_channels; i++) {
1823 channel = hsotg->hc_ptr_array[i];
1824 if (!list_empty(&channel->hc_list_entry))
1825 continue;
1826 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1827 if (hcchar & HCCHAR_CHENA) {
1828 /* Halt the channel */
1829 hcchar |= HCCHAR_CHDIS;
1830 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1831 }
1832
1833 dwc2_hc_cleanup(hsotg, channel);
1834 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1835 /*
1836 * Added for Descriptor DMA to prevent channel double cleanup in
1837 * release_channel_ddma(), which is called from ep_disable when
1838 * device disconnects
1839 */
1840 channel->qh = NULL;
1841 }
1842 /* All channels have been freed, mark them available */
1843 if (hsotg->core_params->uframe_sched > 0) {
1844 hsotg->available_host_channels =
1845 hsotg->core_params->host_channels;
1846 } else {
1847 hsotg->non_periodic_channels = 0;
1848 hsotg->periodic_channels = 0;
1849 }
1850}
1851
1852/**
1853 * dwc2_hcd_connect() - Handles connect of the HCD
1854 *
1855 * @hsotg: Pointer to struct dwc2_hsotg
1856 *
1857 * Must be called with interrupt disabled and spinlock held
1858 */
1859void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1860{
1861 if (hsotg->lx_state != DWC2_L0)
1862 usb_hcd_resume_root_hub(hsotg->priv);
1863
1864 hsotg->flags.b.port_connect_status_change = 1;
1865 hsotg->flags.b.port_connect_status = 1;
1866}
1867
1868/**
1869 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1870 *
1871 * @hsotg: Pointer to struct dwc2_hsotg
1872 * @force: If true, we won't try to reconnect even if we see device connected.
1873 *
1874 * Must be called with interrupt disabled and spinlock held
1875 */
1876void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1877{
1878 u32 intr;
1879 u32 hprt0;
1880
1881 /* Set status flags for the hub driver */
1882 hsotg->flags.b.port_connect_status_change = 1;
1883 hsotg->flags.b.port_connect_status = 0;
1884
1885 /*
1886 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1887 * interrupt mask and status bits and disabling subsequent host
1888 * channel interrupts.
1889 */
1890 intr = dwc2_readl(hsotg->regs + GINTMSK);
1891 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1892 dwc2_writel(intr, hsotg->regs + GINTMSK);
1893 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1894 dwc2_writel(intr, hsotg->regs + GINTSTS);
1895
1896 /*
1897 * Turn off the vbus power only if the core has transitioned to device
1898 * mode. If still in host mode, need to keep power on to detect a
1899 * reconnection.
1900 */
1901 if (dwc2_is_device_mode(hsotg)) {
1902 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1903 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1904 dwc2_writel(0, hsotg->regs + HPRT0);
1905 }
1906
1907 dwc2_disable_host_interrupts(hsotg);
1908 }
1909
1910 /* Respond with an error status to all URBs in the schedule */
1911 dwc2_kill_all_urbs(hsotg);
1912
1913 if (dwc2_is_host_mode(hsotg))
1914 /* Clean up any host channels that were in use */
1915 dwc2_hcd_cleanup_channels(hsotg);
1916
1917 dwc2_host_disconnect(hsotg);
1918
1919 /*
1920 * Add an extra check here to see if we're actually connected but
1921 * we don't have a detection interrupt pending. This can happen if:
1922 * 1. hardware sees connect
1923 * 2. hardware sees disconnect
1924 * 3. hardware sees connect
1925 * 4. dwc2_port_intr() - clears connect interrupt
1926 * 5. dwc2_handle_common_intr() - calls here
1927 *
1928 * Without the extra check here we will end calling disconnect
1929 * and won't get any future interrupts to handle the connect.
1930 */
1931 if (!force) {
1932 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1933 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1934 dwc2_hcd_connect(hsotg);
1935 }
1936}
1937
1938/**
1939 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1940 *
1941 * @hsotg: Pointer to struct dwc2_hsotg
1942 */
1943static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1944{
1945 if (hsotg->bus_suspended) {
1946 hsotg->flags.b.port_suspend_change = 1;
1947 usb_hcd_resume_root_hub(hsotg->priv);
1948 }
1949
1950 if (hsotg->lx_state == DWC2_L1)
1951 hsotg->flags.b.port_l1_change = 1;
1952}
1953
1954/**
1955 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1956 *
1957 * @hsotg: Pointer to struct dwc2_hsotg
1958 *
1959 * Must be called with interrupt disabled and spinlock held
1960 */
1961void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1962{
1963 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1964
1965 /*
1966 * The root hub should be disconnected before this function is called.
1967 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1968 * and the QH lists (via ..._hcd_endpoint_disable).
1969 */
1970
1971 /* Turn off all host-specific interrupts */
1972 dwc2_disable_host_interrupts(hsotg);
1973
1974 /* Turn off the vbus power */
1975 dev_dbg(hsotg->dev, "PortPower off\n");
1976 dwc2_writel(0, hsotg->regs + HPRT0);
1977}
1978
1979/* Caller must hold driver lock */
1980static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1981 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1982 struct dwc2_qtd *qtd)
1983{
1984 u32 intr_mask;
1985 int retval;
1986 int dev_speed;
1987
1988 if (!hsotg->flags.b.port_connect_status) {
1989 /* No longer connected */
1990 dev_err(hsotg->dev, "Not connected\n");
1991 return -ENODEV;
1992 }
1993
1994 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1995
1996 /* Some configurations cannot support LS traffic on a FS root port */
1997 if ((dev_speed == USB_SPEED_LOW) &&
1998 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1999 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2000 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2001 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2002
2003 if (prtspd == HPRT0_SPD_FULL_SPEED)
2004 return -ENODEV;
2005 }
2006
2007 if (!qtd)
2008 return -EINVAL;
2009
2010 dwc2_hcd_qtd_init(qtd, urb);
2011 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2012 if (retval) {
2013 dev_err(hsotg->dev,
2014 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2015 retval);
2016 return retval;
2017 }
2018
2019 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2020 if (!(intr_mask & GINTSTS_SOF)) {
2021 enum dwc2_transaction_type tr_type;
2022
2023 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2024 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2025 /*
2026 * Do not schedule SG transactions until qtd has
2027 * URB_GIVEBACK_ASAP set
2028 */
2029 return 0;
2030
2031 tr_type = dwc2_hcd_select_transactions(hsotg);
2032 if (tr_type != DWC2_TRANSACTION_NONE)
2033 dwc2_hcd_queue_transactions(hsotg, tr_type);
2034 }
2035
2036 return 0;
2037}
2038
2039/* Must be called with interrupt disabled and spinlock held */
2040static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2041 struct dwc2_hcd_urb *urb)
2042{
2043 struct dwc2_qh *qh;
2044 struct dwc2_qtd *urb_qtd;
2045
2046 urb_qtd = urb->qtd;
2047 if (!urb_qtd) {
2048 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2049 return -EINVAL;
2050 }
2051
2052 qh = urb_qtd->qh;
2053 if (!qh) {
2054 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2055 return -EINVAL;
2056 }
2057
2058 urb->priv = NULL;
2059
2060 if (urb_qtd->in_process && qh->channel) {
2061 dwc2_dump_channel_info(hsotg, qh->channel);
2062
2063 /* The QTD is in process (it has been assigned to a channel) */
2064 if (hsotg->flags.b.port_connect_status)
2065 /*
2066 * If still connected (i.e. in host mode), halt the
2067 * channel so it can be used for other transfers. If
2068 * no longer connected, the host registers can't be
2069 * written to halt the channel since the core is in
2070 * device mode.
2071 */
2072 dwc2_hc_halt(hsotg, qh->channel,
2073 DWC2_HC_XFER_URB_DEQUEUE);
2074 }
2075
2076 /*
2077 * Free the QTD and clean up the associated QH. Leave the QH in the
2078 * schedule if it has any remaining QTDs.
2079 */
2080 if (hsotg->core_params->dma_desc_enable <= 0) {
2081 u8 in_process = urb_qtd->in_process;
2082
2083 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2084 if (in_process) {
2085 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2086 qh->channel = NULL;
2087 } else if (list_empty(&qh->qtd_list)) {
2088 dwc2_hcd_qh_unlink(hsotg, qh);
2089 }
2090 } else {
2091 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2092 }
2093
2094 return 0;
2095}
2096
2097/* Must NOT be called with interrupt disabled or spinlock held */
2098static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2099 struct usb_host_endpoint *ep, int retry)
2100{
2101 struct dwc2_qtd *qtd, *qtd_tmp;
2102 struct dwc2_qh *qh;
2103 unsigned long flags;
2104 int rc;
2105
2106 spin_lock_irqsave(&hsotg->lock, flags);
2107
2108 qh = ep->hcpriv;
2109 if (!qh) {
2110 rc = -EINVAL;
2111 goto err;
2112 }
2113
2114 while (!list_empty(&qh->qtd_list) && retry--) {
2115 if (retry == 0) {
2116 dev_err(hsotg->dev,
2117 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2118 rc = -EBUSY;
2119 goto err;
2120 }
2121
2122 spin_unlock_irqrestore(&hsotg->lock, flags);
2123 usleep_range(20000, 40000);
2124 spin_lock_irqsave(&hsotg->lock, flags);
2125 qh = ep->hcpriv;
2126 if (!qh) {
2127 rc = -EINVAL;
2128 goto err;
2129 }
2130 }
2131
2132 dwc2_hcd_qh_unlink(hsotg, qh);
2133
2134 /* Free each QTD in the QH's QTD list */
2135 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2136 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2137
2138 ep->hcpriv = NULL;
2139
2140 if (qh->channel && qh->channel->qh == qh)
2141 qh->channel->qh = NULL;
2142
2143 spin_unlock_irqrestore(&hsotg->lock, flags);
2144
2145 dwc2_hcd_qh_free(hsotg, qh);
2146
2147 return 0;
2148
2149err:
2150 ep->hcpriv = NULL;
2151 spin_unlock_irqrestore(&hsotg->lock, flags);
2152
2153 return rc;
2154}
2155
2156/* Must be called with interrupt disabled and spinlock held */
2157static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2158 struct usb_host_endpoint *ep)
2159{
2160 struct dwc2_qh *qh = ep->hcpriv;
2161
2162 if (!qh)
2163 return -EINVAL;
2164
2165 qh->data_toggle = DWC2_HC_PID_DATA0;
2166
2167 return 0;
2168}
2169
2170/**
2171 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2172 * prepares the core for device mode or host mode operation
2173 *
2174 * @hsotg: Programming view of the DWC_otg controller
2175 * @initial_setup: If true then this is the first init for this instance.
2176 */
2177static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2178{
2179 u32 usbcfg, otgctl;
2180 int retval;
2181
2182 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2183
2184 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2185
2186 /* Set ULPI External VBUS bit if needed */
2187 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2188 if (hsotg->core_params->phy_ulpi_ext_vbus ==
2189 DWC2_PHY_ULPI_EXTERNAL_VBUS)
2190 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2191
2192 /* Set external TS Dline pulsing bit if needed */
2193 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2194 if (hsotg->core_params->ts_dline > 0)
2195 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2196
2197 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2198
2199 /*
2200 * Reset the Controller
2201 *
2202 * We only need to reset the controller if this is a re-init.
2203 * For the first init we know for sure that earlier code reset us (it
2204 * needed to in order to properly detect various parameters).
2205 */
2206 if (!initial_setup) {
2207 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2208 if (retval) {
2209 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2210 __func__);
2211 return retval;
2212 }
2213 }
2214
2215 /*
2216 * This needs to happen in FS mode before any other programming occurs
2217 */
2218 retval = dwc2_phy_init(hsotg, initial_setup);
2219 if (retval)
2220 return retval;
2221
2222 /* Program the GAHBCFG Register */
2223 retval = dwc2_gahbcfg_init(hsotg);
2224 if (retval)
2225 return retval;
2226
2227 /* Program the GUSBCFG register */
2228 dwc2_gusbcfg_init(hsotg);
2229
2230 /* Program the GOTGCTL register */
2231 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2232 otgctl &= ~GOTGCTL_OTGVER;
2233 if (hsotg->core_params->otg_ver > 0)
2234 otgctl |= GOTGCTL_OTGVER;
2235 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2236 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
2237
2238 /* Clear the SRP success bit for FS-I2c */
2239 hsotg->srp_success = 0;
2240
2241 /* Enable common interrupts */
2242 dwc2_enable_common_interrupts(hsotg);
2243
2244 /*
2245 * Do device or host initialization based on mode during PCD and
2246 * HCD initialization
2247 */
2248 if (dwc2_is_host_mode(hsotg)) {
2249 dev_dbg(hsotg->dev, "Host Mode\n");
2250 hsotg->op_state = OTG_STATE_A_HOST;
2251 } else {
2252 dev_dbg(hsotg->dev, "Device Mode\n");
2253 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2254 }
2255
2256 return 0;
2257}
2258
2259/**
2260 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2261 * Host mode
2262 *
2263 * @hsotg: Programming view of DWC_otg controller
2264 *
2265 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2266 * request queues. Host channels are reset to ensure that they are ready for
2267 * performing transfers.
2268 */
2269static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2270{
2271 u32 hcfg, hfir, otgctl;
2272
2273 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2274
2275 /* Restart the Phy Clock */
2276 dwc2_writel(0, hsotg->regs + PCGCTL);
2277
2278 /* Initialize Host Configuration Register */
2279 dwc2_init_fs_ls_pclk_sel(hsotg);
2280 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
2281 hcfg = dwc2_readl(hsotg->regs + HCFG);
2282 hcfg |= HCFG_FSLSSUPP;
2283 dwc2_writel(hcfg, hsotg->regs + HCFG);
2284 }
2285
2286 /*
2287 * This bit allows dynamic reloading of the HFIR register during
2288 * runtime. This bit needs to be programmed during initial configuration
2289 * and its value must not be changed during runtime.
2290 */
2291 if (hsotg->core_params->reload_ctl > 0) {
2292 hfir = dwc2_readl(hsotg->regs + HFIR);
2293 hfir |= HFIR_RLDCTRL;
2294 dwc2_writel(hfir, hsotg->regs + HFIR);
2295 }
2296
2297 if (hsotg->core_params->dma_desc_enable > 0) {
2298 u32 op_mode = hsotg->hw_params.op_mode;
2299
2300 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2301 !hsotg->hw_params.dma_desc_enable ||
2302 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2303 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2304 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2305 dev_err(hsotg->dev,
2306 "Hardware does not support descriptor DMA mode -\n");
2307 dev_err(hsotg->dev,
2308 "falling back to buffer DMA mode.\n");
2309 hsotg->core_params->dma_desc_enable = 0;
2310 } else {
2311 hcfg = dwc2_readl(hsotg->regs + HCFG);
2312 hcfg |= HCFG_DESCDMA;
2313 dwc2_writel(hcfg, hsotg->regs + HCFG);
2314 }
2315 }
2316
2317 /* Configure data FIFO sizes */
2318 dwc2_config_fifos(hsotg);
2319
2320 /* TODO - check this */
2321 /* Clear Host Set HNP Enable in the OTG Control Register */
2322 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2323 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2324 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2325
2326 /* Make sure the FIFOs are flushed */
2327 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2328 dwc2_flush_rx_fifo(hsotg);
2329
2330 /* Clear Host Set HNP Enable in the OTG Control Register */
2331 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2332 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2333 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2334
2335 if (hsotg->core_params->dma_desc_enable <= 0) {
2336 int num_channels, i;
2337 u32 hcchar;
2338
2339 /* Flush out any leftover queued requests */
2340 num_channels = hsotg->core_params->host_channels;
2341 for (i = 0; i < num_channels; i++) {
2342 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2343 hcchar &= ~HCCHAR_CHENA;
2344 hcchar |= HCCHAR_CHDIS;
2345 hcchar &= ~HCCHAR_EPDIR;
2346 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2347 }
2348
2349 /* Halt all channels to put them into a known state */
2350 for (i = 0; i < num_channels; i++) {
2351 int count = 0;
2352
2353 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2354 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2355 hcchar &= ~HCCHAR_EPDIR;
2356 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2357 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2358 __func__, i);
2359 do {
2360 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2361 if (++count > 1000) {
2362 dev_err(hsotg->dev,
2363 "Unable to clear enable on channel %d\n",
2364 i);
2365 break;
2366 }
2367 udelay(1);
2368 } while (hcchar & HCCHAR_CHENA);
2369 }
2370 }
2371
2372 /* Turn on the vbus power */
2373 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2374 if (hsotg->op_state == OTG_STATE_A_HOST) {
2375 u32 hprt0 = dwc2_read_hprt0(hsotg);
2376
2377 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2378 !!(hprt0 & HPRT0_PWR));
2379 if (!(hprt0 & HPRT0_PWR)) {
2380 hprt0 |= HPRT0_PWR;
2381 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2382 }
2383 }
2384
2385 dwc2_enable_host_interrupts(hsotg);
2386}
2387
2388/*
2389 * Initializes dynamic portions of the DWC_otg HCD state
2390 *
2391 * Must be called with interrupt disabled and spinlock held
2392 */
2393static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2394{
2395 struct dwc2_host_chan *chan, *chan_tmp;
2396 int num_channels;
2397 int i;
2398
2399 hsotg->flags.d32 = 0;
2400 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2401
2402 if (hsotg->core_params->uframe_sched > 0) {
2403 hsotg->available_host_channels =
2404 hsotg->core_params->host_channels;
2405 } else {
2406 hsotg->non_periodic_channels = 0;
2407 hsotg->periodic_channels = 0;
2408 }
2409
2410 /*
2411 * Put all channels in the free channel list and clean up channel
2412 * states
2413 */
2414 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2415 hc_list_entry)
2416 list_del_init(&chan->hc_list_entry);
2417
2418 num_channels = hsotg->core_params->host_channels;
2419 for (i = 0; i < num_channels; i++) {
2420 chan = hsotg->hc_ptr_array[i];
2421 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2422 dwc2_hc_cleanup(hsotg, chan);
2423 }
2424
2425 /* Initialize the DWC core for host mode operation */
2426 dwc2_core_host_init(hsotg);
2427}
2428
2429static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2430 struct dwc2_host_chan *chan,
2431 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2432{
2433 int hub_addr, hub_port;
2434
2435 chan->do_split = 1;
2436 chan->xact_pos = qtd->isoc_split_pos;
2437 chan->complete_split = qtd->complete_split;
2438 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2439 chan->hub_addr = (u8)hub_addr;
2440 chan->hub_port = (u8)hub_port;
2441}
2442
2443static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2444 struct dwc2_host_chan *chan,
2445 struct dwc2_qtd *qtd)
2446{
2447 struct dwc2_hcd_urb *urb = qtd->urb;
2448 struct dwc2_hcd_iso_packet_desc *frame_desc;
2449
2450 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2451 case USB_ENDPOINT_XFER_CONTROL:
2452 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2453
2454 switch (qtd->control_phase) {
2455 case DWC2_CONTROL_SETUP:
2456 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2457 chan->do_ping = 0;
2458 chan->ep_is_in = 0;
2459 chan->data_pid_start = DWC2_HC_PID_SETUP;
2460 if (hsotg->core_params->dma_enable > 0)
2461 chan->xfer_dma = urb->setup_dma;
2462 else
2463 chan->xfer_buf = urb->setup_packet;
2464 chan->xfer_len = 8;
2465 break;
2466
2467 case DWC2_CONTROL_DATA:
2468 dev_vdbg(hsotg->dev, " Control data transaction\n");
2469 chan->data_pid_start = qtd->data_toggle;
2470 break;
2471
2472 case DWC2_CONTROL_STATUS:
2473 /*
2474 * Direction is opposite of data direction or IN if no
2475 * data
2476 */
2477 dev_vdbg(hsotg->dev, " Control status transaction\n");
2478 if (urb->length == 0)
2479 chan->ep_is_in = 1;
2480 else
2481 chan->ep_is_in =
2482 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2483 if (chan->ep_is_in)
2484 chan->do_ping = 0;
2485 chan->data_pid_start = DWC2_HC_PID_DATA1;
2486 chan->xfer_len = 0;
2487 if (hsotg->core_params->dma_enable > 0)
2488 chan->xfer_dma = hsotg->status_buf_dma;
2489 else
2490 chan->xfer_buf = hsotg->status_buf;
2491 break;
2492 }
2493 break;
2494
2495 case USB_ENDPOINT_XFER_BULK:
2496 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2497 break;
2498
2499 case USB_ENDPOINT_XFER_INT:
2500 chan->ep_type = USB_ENDPOINT_XFER_INT;
2501 break;
2502
2503 case USB_ENDPOINT_XFER_ISOC:
2504 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2505 if (hsotg->core_params->dma_desc_enable > 0)
2506 break;
2507
2508 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2509 frame_desc->status = 0;
2510
2511 if (hsotg->core_params->dma_enable > 0) {
2512 chan->xfer_dma = urb->dma;
2513 chan->xfer_dma += frame_desc->offset +
2514 qtd->isoc_split_offset;
2515 } else {
2516 chan->xfer_buf = urb->buf;
2517 chan->xfer_buf += frame_desc->offset +
2518 qtd->isoc_split_offset;
2519 }
2520
2521 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2522
2523 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2524 if (chan->xfer_len <= 188)
2525 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2526 else
2527 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2528 }
2529 break;
2530 }
2531}
2532
2533#define DWC2_USB_DMA_ALIGN 4
2534
2535struct dma_aligned_buffer {
2536 void *kmalloc_ptr;
2537 void *old_xfer_buffer;
2538 u8 data[0];
2539};
2540
2541static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2542{
2543 struct dma_aligned_buffer *temp;
2544
2545 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2546 return;
2547
2548 temp = container_of(urb->transfer_buffer,
2549 struct dma_aligned_buffer, data);
2550
2551 if (usb_urb_dir_in(urb))
2552 memcpy(temp->old_xfer_buffer, temp->data,
2553 urb->transfer_buffer_length);
2554 urb->transfer_buffer = temp->old_xfer_buffer;
2555 kfree(temp->kmalloc_ptr);
2556
2557 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2558}
2559
2560static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2561{
2562 struct dma_aligned_buffer *temp, *kmalloc_ptr;
2563 size_t kmalloc_size;
2564
2565 if (urb->num_sgs || urb->sg ||
2566 urb->transfer_buffer_length == 0 ||
2567 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2568 return 0;
2569
2570 /* Allocate a buffer with enough padding for alignment */
2571 kmalloc_size = urb->transfer_buffer_length +
2572 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2573
2574 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2575 if (!kmalloc_ptr)
2576 return -ENOMEM;
2577
2578 /* Position our struct dma_aligned_buffer such that data is aligned */
2579 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2580 temp->kmalloc_ptr = kmalloc_ptr;
2581 temp->old_xfer_buffer = urb->transfer_buffer;
2582 if (usb_urb_dir_out(urb))
2583 memcpy(temp->data, urb->transfer_buffer,
2584 urb->transfer_buffer_length);
2585 urb->transfer_buffer = temp->data;
2586
2587 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2588
2589 return 0;
2590}
2591
2592static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2593 gfp_t mem_flags)
2594{
2595 int ret;
2596
2597 /* We assume setup_dma is always aligned; warn if not */
2598 WARN_ON_ONCE(urb->setup_dma &&
2599 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2600
2601 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2602 if (ret)
2603 return ret;
2604
2605 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2606 if (ret)
2607 dwc2_free_dma_aligned_buffer(urb);
2608
2609 return ret;
2610}
2611
2612static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2613{
2614 usb_hcd_unmap_urb_for_dma(hcd, urb);
2615 dwc2_free_dma_aligned_buffer(urb);
2616}
2617
2618/**
2619 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2620 * channel and initializes the host channel to perform the transactions. The
2621 * host channel is removed from the free list.
2622 *
2623 * @hsotg: The HCD state structure
2624 * @qh: Transactions from the first QTD for this QH are selected and assigned
2625 * to a free host channel
2626 */
2627static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2628{
2629 struct dwc2_host_chan *chan;
2630 struct dwc2_hcd_urb *urb;
2631 struct dwc2_qtd *qtd;
2632
2633 if (dbg_qh(qh))
2634 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2635
2636 if (list_empty(&qh->qtd_list)) {
2637 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2638 return -ENOMEM;
2639 }
2640
2641 if (list_empty(&hsotg->free_hc_list)) {
2642 dev_dbg(hsotg->dev, "No free channel to assign\n");
2643 return -ENOMEM;
2644 }
2645
2646 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2647 hc_list_entry);
2648
2649 /* Remove host channel from free list */
2650 list_del_init(&chan->hc_list_entry);
2651
2652 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2653 urb = qtd->urb;
2654 qh->channel = chan;
2655 qtd->in_process = 1;
2656
2657 /*
2658 * Use usb_pipedevice to determine device address. This address is
2659 * 0 before the SET_ADDRESS command and the correct address afterward.
2660 */
2661 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2662 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2663 chan->speed = qh->dev_speed;
2664 chan->max_packet = dwc2_max_packet(qh->maxp);
2665
2666 chan->xfer_started = 0;
2667 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2668 chan->error_state = (qtd->error_count > 0);
2669 chan->halt_on_queue = 0;
2670 chan->halt_pending = 0;
2671 chan->requests = 0;
2672
2673 /*
2674 * The following values may be modified in the transfer type section
2675 * below. The xfer_len value may be reduced when the transfer is
2676 * started to accommodate the max widths of the XferSize and PktCnt
2677 * fields in the HCTSIZn register.
2678 */
2679
2680 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2681 if (chan->ep_is_in)
2682 chan->do_ping = 0;
2683 else
2684 chan->do_ping = qh->ping_state;
2685
2686 chan->data_pid_start = qh->data_toggle;
2687 chan->multi_count = 1;
2688
2689 if (urb->actual_length > urb->length &&
2690 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2691 urb->actual_length = urb->length;
2692
2693 if (hsotg->core_params->dma_enable > 0)
2694 chan->xfer_dma = urb->dma + urb->actual_length;
2695 else
2696 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2697
2698 chan->xfer_len = urb->length - urb->actual_length;
2699 chan->xfer_count = 0;
2700
2701 /* Set the split attributes if required */
2702 if (qh->do_split)
2703 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2704 else
2705 chan->do_split = 0;
2706
2707 /* Set the transfer attributes */
2708 dwc2_hc_init_xfer(hsotg, chan, qtd);
2709
2710 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2711 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2712 /*
2713 * This value may be modified when the transfer is started
2714 * to reflect the actual transfer length
2715 */
2716 chan->multi_count = dwc2_hb_mult(qh->maxp);
2717
2718 if (hsotg->core_params->dma_desc_enable > 0) {
2719 chan->desc_list_addr = qh->desc_list_dma;
2720 chan->desc_list_sz = qh->desc_list_sz;
2721 }
2722
2723 dwc2_hc_init(hsotg, chan);
2724 chan->qh = qh;
2725
2726 return 0;
2727}
2728
2729/**
2730 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2731 * schedule and assigns them to available host channels. Called from the HCD
2732 * interrupt handler functions.
2733 *
2734 * @hsotg: The HCD state structure
2735 *
2736 * Return: The types of new transactions that were assigned to host channels
2737 */
2738enum dwc2_transaction_type dwc2_hcd_select_transactions(
2739 struct dwc2_hsotg *hsotg)
2740{
2741 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2742 struct list_head *qh_ptr;
2743 struct dwc2_qh *qh;
2744 int num_channels;
2745
2746#ifdef DWC2_DEBUG_SOF
2747 dev_vdbg(hsotg->dev, " Select Transactions\n");
2748#endif
2749
2750 /* Process entries in the periodic ready list */
2751 qh_ptr = hsotg->periodic_sched_ready.next;
2752 while (qh_ptr != &hsotg->periodic_sched_ready) {
2753 if (list_empty(&hsotg->free_hc_list))
2754 break;
2755 if (hsotg->core_params->uframe_sched > 0) {
2756 if (hsotg->available_host_channels <= 1)
2757 break;
2758 hsotg->available_host_channels--;
2759 }
2760 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761 if (dwc2_assign_and_init_hc(hsotg, qh))
2762 break;
2763
2764 /*
2765 * Move the QH from the periodic ready schedule to the
2766 * periodic assigned schedule
2767 */
2768 qh_ptr = qh_ptr->next;
2769 list_move_tail(&qh->qh_list_entry,
2770 &hsotg->periodic_sched_assigned);
2771 ret_val = DWC2_TRANSACTION_PERIODIC;
2772 }
2773
2774 /*
2775 * Process entries in the inactive portion of the non-periodic
2776 * schedule. Some free host channels may not be used if they are
2777 * reserved for periodic transfers.
2778 */
2779 num_channels = hsotg->core_params->host_channels;
2780 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2781 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2782 if (hsotg->core_params->uframe_sched <= 0 &&
2783 hsotg->non_periodic_channels >= num_channels -
2784 hsotg->periodic_channels)
2785 break;
2786 if (list_empty(&hsotg->free_hc_list))
2787 break;
2788 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2789 if (hsotg->core_params->uframe_sched > 0) {
2790 if (hsotg->available_host_channels < 1)
2791 break;
2792 hsotg->available_host_channels--;
2793 }
2794
2795 if (dwc2_assign_and_init_hc(hsotg, qh))
2796 break;
2797
2798 /*
2799 * Move the QH from the non-periodic inactive schedule to the
2800 * non-periodic active schedule
2801 */
2802 qh_ptr = qh_ptr->next;
2803 list_move_tail(&qh->qh_list_entry,
2804 &hsotg->non_periodic_sched_active);
2805
2806 if (ret_val == DWC2_TRANSACTION_NONE)
2807 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2808 else
2809 ret_val = DWC2_TRANSACTION_ALL;
2810
2811 if (hsotg->core_params->uframe_sched <= 0)
2812 hsotg->non_periodic_channels++;
2813 }
2814
2815 return ret_val;
2816}
2817
2818/**
2819 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2820 * a host channel associated with either a periodic or non-periodic transfer
2821 *
2822 * @hsotg: The HCD state structure
2823 * @chan: Host channel descriptor associated with either a periodic or
2824 * non-periodic transfer
2825 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2826 * for periodic transfers or the non-periodic Tx FIFO
2827 * for non-periodic transfers
2828 *
2829 * Return: 1 if a request is queued and more requests may be needed to
2830 * complete the transfer, 0 if no more requests are required for this
2831 * transfer, -1 if there is insufficient space in the Tx FIFO
2832 *
2833 * This function assumes that there is space available in the appropriate
2834 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2835 * it checks whether space is available in the appropriate Tx FIFO.
2836 *
2837 * Must be called with interrupt disabled and spinlock held
2838 */
2839static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2840 struct dwc2_host_chan *chan,
2841 u16 fifo_dwords_avail)
2842{
2843 int retval = 0;
2844
2845 if (chan->do_split)
2846 /* Put ourselves on the list to keep order straight */
2847 list_move_tail(&chan->split_order_list_entry,
2848 &hsotg->split_order);
2849
2850 if (hsotg->core_params->dma_enable > 0) {
2851 if (hsotg->core_params->dma_desc_enable > 0) {
2852 if (!chan->xfer_started ||
2853 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2854 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2855 chan->qh->ping_state = 0;
2856 }
2857 } else if (!chan->xfer_started) {
2858 dwc2_hc_start_transfer(hsotg, chan);
2859 chan->qh->ping_state = 0;
2860 }
2861 } else if (chan->halt_pending) {
2862 /* Don't queue a request if the channel has been halted */
2863 } else if (chan->halt_on_queue) {
2864 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2865 } else if (chan->do_ping) {
2866 if (!chan->xfer_started)
2867 dwc2_hc_start_transfer(hsotg, chan);
2868 } else if (!chan->ep_is_in ||
2869 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2870 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2871 if (!chan->xfer_started) {
2872 dwc2_hc_start_transfer(hsotg, chan);
2873 retval = 1;
2874 } else {
2875 retval = dwc2_hc_continue_transfer(hsotg, chan);
2876 }
2877 } else {
2878 retval = -1;
2879 }
2880 } else {
2881 if (!chan->xfer_started) {
2882 dwc2_hc_start_transfer(hsotg, chan);
2883 retval = 1;
2884 } else {
2885 retval = dwc2_hc_continue_transfer(hsotg, chan);
2886 }
2887 }
2888
2889 return retval;
2890}
2891
2892/*
2893 * Processes periodic channels for the next frame and queues transactions for
2894 * these channels to the DWC_otg controller. After queueing transactions, the
2895 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2896 * to queue as Periodic Tx FIFO or request queue space becomes available.
2897 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2898 *
2899 * Must be called with interrupt disabled and spinlock held
2900 */
2901static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2902{
2903 struct list_head *qh_ptr;
2904 struct dwc2_qh *qh;
2905 u32 tx_status;
2906 u32 fspcavail;
2907 u32 gintmsk;
2908 int status;
2909 bool no_queue_space = false;
2910 bool no_fifo_space = false;
2911 u32 qspcavail;
2912
2913 /* If empty list then just adjust interrupt enables */
2914 if (list_empty(&hsotg->periodic_sched_assigned))
2915 goto exit;
2916
2917 if (dbg_perio())
2918 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2919
2920 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2921 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2922 TXSTS_QSPCAVAIL_SHIFT;
2923 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2924 TXSTS_FSPCAVAIL_SHIFT;
2925
2926 if (dbg_perio()) {
2927 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2928 qspcavail);
2929 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2930 fspcavail);
2931 }
2932
2933 qh_ptr = hsotg->periodic_sched_assigned.next;
2934 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2935 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2936 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2937 TXSTS_QSPCAVAIL_SHIFT;
2938 if (qspcavail == 0) {
2939 no_queue_space = 1;
2940 break;
2941 }
2942
2943 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2944 if (!qh->channel) {
2945 qh_ptr = qh_ptr->next;
2946 continue;
2947 }
2948
2949 /* Make sure EP's TT buffer is clean before queueing qtds */
2950 if (qh->tt_buffer_dirty) {
2951 qh_ptr = qh_ptr->next;
2952 continue;
2953 }
2954
2955 /*
2956 * Set a flag if we're queuing high-bandwidth in slave mode.
2957 * The flag prevents any halts to get into the request queue in
2958 * the middle of multiple high-bandwidth packets getting queued.
2959 */
2960 if (hsotg->core_params->dma_enable <= 0 &&
2961 qh->channel->multi_count > 1)
2962 hsotg->queuing_high_bandwidth = 1;
2963
2964 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2965 TXSTS_FSPCAVAIL_SHIFT;
2966 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2967 if (status < 0) {
2968 no_fifo_space = 1;
2969 break;
2970 }
2971
2972 /*
2973 * In Slave mode, stay on the current transfer until there is
2974 * nothing more to do or the high-bandwidth request count is
2975 * reached. In DMA mode, only need to queue one request. The
2976 * controller automatically handles multiple packets for
2977 * high-bandwidth transfers.
2978 */
2979 if (hsotg->core_params->dma_enable > 0 || status == 0 ||
2980 qh->channel->requests == qh->channel->multi_count) {
2981 qh_ptr = qh_ptr->next;
2982 /*
2983 * Move the QH from the periodic assigned schedule to
2984 * the periodic queued schedule
2985 */
2986 list_move_tail(&qh->qh_list_entry,
2987 &hsotg->periodic_sched_queued);
2988
2989 /* done queuing high bandwidth */
2990 hsotg->queuing_high_bandwidth = 0;
2991 }
2992 }
2993
2994exit:
2995 if (no_queue_space || no_fifo_space ||
2996 (hsotg->core_params->dma_enable <= 0 &&
2997 !list_empty(&hsotg->periodic_sched_assigned))) {
2998 /*
2999 * May need to queue more transactions as the request
3000 * queue or Tx FIFO empties. Enable the periodic Tx
3001 * FIFO empty interrupt. (Always use the half-empty
3002 * level to ensure that new requests are loaded as
3003 * soon as possible.)
3004 */
3005 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3006 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3007 gintmsk |= GINTSTS_PTXFEMP;
3008 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3009 }
3010 } else {
3011 /*
3012 * Disable the Tx FIFO empty interrupt since there are
3013 * no more transactions that need to be queued right
3014 * now. This function is called from interrupt
3015 * handlers to queue more transactions as transfer
3016 * states change.
3017 */
3018 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3019 if (gintmsk & GINTSTS_PTXFEMP) {
3020 gintmsk &= ~GINTSTS_PTXFEMP;
3021 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3022 }
3023 }
3024}
3025
3026/*
3027 * Processes active non-periodic channels and queues transactions for these
3028 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3029 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3030 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3031 * FIFO Empty interrupt is disabled.
3032 *
3033 * Must be called with interrupt disabled and spinlock held
3034 */
3035static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3036{
3037 struct list_head *orig_qh_ptr;
3038 struct dwc2_qh *qh;
3039 u32 tx_status;
3040 u32 qspcavail;
3041 u32 fspcavail;
3042 u32 gintmsk;
3043 int status;
3044 int no_queue_space = 0;
3045 int no_fifo_space = 0;
3046 int more_to_do = 0;
3047
3048 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3049
3050 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3051 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052 TXSTS_QSPCAVAIL_SHIFT;
3053 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3054 TXSTS_FSPCAVAIL_SHIFT;
3055 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3056 qspcavail);
3057 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3058 fspcavail);
3059
3060 /*
3061 * Keep track of the starting point. Skip over the start-of-list
3062 * entry.
3063 */
3064 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3065 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3066 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3067
3068 /*
3069 * Process once through the active list or until no more space is
3070 * available in the request queue or the Tx FIFO
3071 */
3072 do {
3073 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3074 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3075 TXSTS_QSPCAVAIL_SHIFT;
3076 if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
3077 no_queue_space = 1;
3078 break;
3079 }
3080
3081 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3082 qh_list_entry);
3083 if (!qh->channel)
3084 goto next;
3085
3086 /* Make sure EP's TT buffer is clean before queueing qtds */
3087 if (qh->tt_buffer_dirty)
3088 goto next;
3089
3090 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091 TXSTS_FSPCAVAIL_SHIFT;
3092 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3093
3094 if (status > 0) {
3095 more_to_do = 1;
3096 } else if (status < 0) {
3097 no_fifo_space = 1;
3098 break;
3099 }
3100next:
3101 /* Advance to next QH, skipping start-of-list entry */
3102 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3103 if (hsotg->non_periodic_qh_ptr ==
3104 &hsotg->non_periodic_sched_active)
3105 hsotg->non_periodic_qh_ptr =
3106 hsotg->non_periodic_qh_ptr->next;
3107 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3108
3109 if (hsotg->core_params->dma_enable <= 0) {
3110 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3111 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3112 TXSTS_QSPCAVAIL_SHIFT;
3113 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3114 TXSTS_FSPCAVAIL_SHIFT;
3115 dev_vdbg(hsotg->dev,
3116 " NP Tx Req Queue Space Avail (after queue): %d\n",
3117 qspcavail);
3118 dev_vdbg(hsotg->dev,
3119 " NP Tx FIFO Space Avail (after queue): %d\n",
3120 fspcavail);
3121
3122 if (more_to_do || no_queue_space || no_fifo_space) {
3123 /*
3124 * May need to queue more transactions as the request
3125 * queue or Tx FIFO empties. Enable the non-periodic
3126 * Tx FIFO empty interrupt. (Always use the half-empty
3127 * level to ensure that new requests are loaded as
3128 * soon as possible.)
3129 */
3130 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3131 gintmsk |= GINTSTS_NPTXFEMP;
3132 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3133 } else {
3134 /*
3135 * Disable the Tx FIFO empty interrupt since there are
3136 * no more transactions that need to be queued right
3137 * now. This function is called from interrupt
3138 * handlers to queue more transactions as transfer
3139 * states change.
3140 */
3141 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3142 gintmsk &= ~GINTSTS_NPTXFEMP;
3143 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3144 }
3145 }
3146}
3147
3148/**
3149 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3150 * and queues transactions for these channels to the DWC_otg controller. Called
3151 * from the HCD interrupt handler functions.
3152 *
3153 * @hsotg: The HCD state structure
3154 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3155 * or both)
3156 *
3157 * Must be called with interrupt disabled and spinlock held
3158 */
3159void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3160 enum dwc2_transaction_type tr_type)
3161{
3162#ifdef DWC2_DEBUG_SOF
3163 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3164#endif
3165 /* Process host channels associated with periodic transfers */
3166 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3167 tr_type == DWC2_TRANSACTION_ALL)
3168 dwc2_process_periodic_channels(hsotg);
3169
3170 /* Process host channels associated with non-periodic transfers */
3171 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3172 tr_type == DWC2_TRANSACTION_ALL) {
3173 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3174 dwc2_process_non_periodic_channels(hsotg);
3175 } else {
3176 /*
3177 * Ensure NP Tx FIFO empty interrupt is disabled when
3178 * there are no non-periodic transfers to process
3179 */
3180 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3181
3182 gintmsk &= ~GINTSTS_NPTXFEMP;
3183 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3184 }
3185 }
3186}
3187
3188static void dwc2_conn_id_status_change(struct work_struct *work)
3189{
3190 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3191 wf_otg);
3192 u32 count = 0;
3193 u32 gotgctl;
3194 unsigned long flags;
3195
3196 dev_dbg(hsotg->dev, "%s()\n", __func__);
3197
3198 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3199 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3200 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3201 !!(gotgctl & GOTGCTL_CONID_B));
3202
3203 /* B-Device connector (Device Mode) */
3204 if (gotgctl & GOTGCTL_CONID_B) {
3205 /* Wait for switch to device mode */
3206 dev_dbg(hsotg->dev, "connId B\n");
3207 while (!dwc2_is_device_mode(hsotg)) {
3208 dev_info(hsotg->dev,
3209 "Waiting for Peripheral Mode, Mode=%s\n",
3210 dwc2_is_host_mode(hsotg) ? "Host" :
3211 "Peripheral");
3212 usleep_range(20000, 40000);
3213 if (++count > 250)
3214 break;
3215 }
3216 if (count > 250)
3217 dev_err(hsotg->dev,
3218 "Connection id status change timed out\n");
3219 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3220 dwc2_core_init(hsotg, false);
3221 dwc2_enable_global_interrupts(hsotg);
3222 spin_lock_irqsave(&hsotg->lock, flags);
3223 dwc2_hsotg_core_init_disconnected(hsotg, false);
3224 spin_unlock_irqrestore(&hsotg->lock, flags);
3225 dwc2_hsotg_core_connect(hsotg);
3226 } else {
3227 /* A-Device connector (Host Mode) */
3228 dev_dbg(hsotg->dev, "connId A\n");
3229 while (!dwc2_is_host_mode(hsotg)) {
3230 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3231 dwc2_is_host_mode(hsotg) ?
3232 "Host" : "Peripheral");
3233 usleep_range(20000, 40000);
3234 if (++count > 250)
3235 break;
3236 }
3237 if (count > 250)
3238 dev_err(hsotg->dev,
3239 "Connection id status change timed out\n");
3240 hsotg->op_state = OTG_STATE_A_HOST;
3241
3242 /* Initialize the Core for Host mode */
3243 dwc2_core_init(hsotg, false);
3244 dwc2_enable_global_interrupts(hsotg);
3245 dwc2_hcd_start(hsotg);
3246 }
3247}
3248
3249static void dwc2_wakeup_detected(unsigned long data)
3250{
3251 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3252 u32 hprt0;
3253
3254 dev_dbg(hsotg->dev, "%s()\n", __func__);
3255
3256 /*
3257 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3258 * so that OPT tests pass with all PHYs.)
3259 */
3260 hprt0 = dwc2_read_hprt0(hsotg);
3261 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3262 hprt0 &= ~HPRT0_RES;
3263 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3264 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3265 dwc2_readl(hsotg->regs + HPRT0));
3266
3267 dwc2_hcd_rem_wakeup(hsotg);
3268 hsotg->bus_suspended = 0;
3269
3270 /* Change to L0 state */
3271 hsotg->lx_state = DWC2_L0;
3272}
3273
3274static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3275{
3276 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3277
3278 return hcd->self.b_hnp_enable;
3279}
3280
3281/* Must NOT be called with interrupt disabled or spinlock held */
3282static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3283{
3284 unsigned long flags;
3285 u32 hprt0;
3286 u32 pcgctl;
3287 u32 gotgctl;
3288
3289 dev_dbg(hsotg->dev, "%s()\n", __func__);
3290
3291 spin_lock_irqsave(&hsotg->lock, flags);
3292
3293 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3294 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3295 gotgctl |= GOTGCTL_HSTSETHNPEN;
3296 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3297 hsotg->op_state = OTG_STATE_A_SUSPEND;
3298 }
3299
3300 hprt0 = dwc2_read_hprt0(hsotg);
3301 hprt0 |= HPRT0_SUSP;
3302 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3303
3304 hsotg->bus_suspended = 1;
3305
3306 /*
3307 * If hibernation is supported, Phy clock will be suspended
3308 * after registers are backuped.
3309 */
3310 if (!hsotg->core_params->hibernation) {
3311 /* Suspend the Phy Clock */
3312 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3313 pcgctl |= PCGCTL_STOPPCLK;
3314 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3315 udelay(10);
3316 }
3317
3318 /* For HNP the bus must be suspended for at least 200ms */
3319 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3320 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3321 pcgctl &= ~PCGCTL_STOPPCLK;
3322 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3323
3324 spin_unlock_irqrestore(&hsotg->lock, flags);
3325
3326 usleep_range(200000, 250000);
3327 } else {
3328 spin_unlock_irqrestore(&hsotg->lock, flags);
3329 }
3330}
3331
3332/* Must NOT be called with interrupt disabled or spinlock held */
3333static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3334{
3335 unsigned long flags;
3336 u32 hprt0;
3337 u32 pcgctl;
3338
3339 spin_lock_irqsave(&hsotg->lock, flags);
3340
3341 /*
3342 * If hibernation is supported, Phy clock is already resumed
3343 * after registers restore.
3344 */
3345 if (!hsotg->core_params->hibernation) {
3346 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3347 pcgctl &= ~PCGCTL_STOPPCLK;
3348 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3349 spin_unlock_irqrestore(&hsotg->lock, flags);
3350 usleep_range(20000, 40000);
3351 spin_lock_irqsave(&hsotg->lock, flags);
3352 }
3353
3354 hprt0 = dwc2_read_hprt0(hsotg);
3355 hprt0 |= HPRT0_RES;
3356 hprt0 &= ~HPRT0_SUSP;
3357 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3358 spin_unlock_irqrestore(&hsotg->lock, flags);
3359
3360 msleep(USB_RESUME_TIMEOUT);
3361
3362 spin_lock_irqsave(&hsotg->lock, flags);
3363 hprt0 = dwc2_read_hprt0(hsotg);
3364 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3365 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3366 hsotg->bus_suspended = 0;
3367 spin_unlock_irqrestore(&hsotg->lock, flags);
3368}
3369
3370/* Handles hub class-specific requests */
3371static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3372 u16 wvalue, u16 windex, char *buf, u16 wlength)
3373{
3374 struct usb_hub_descriptor *hub_desc;
3375 int retval = 0;
3376 u32 hprt0;
3377 u32 port_status;
3378 u32 speed;
3379 u32 pcgctl;
3380
3381 switch (typereq) {
3382 case ClearHubFeature:
3383 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3384
3385 switch (wvalue) {
3386 case C_HUB_LOCAL_POWER:
3387 case C_HUB_OVER_CURRENT:
3388 /* Nothing required here */
3389 break;
3390
3391 default:
3392 retval = -EINVAL;
3393 dev_err(hsotg->dev,
3394 "ClearHubFeature request %1xh unknown\n",
3395 wvalue);
3396 }
3397 break;
3398
3399 case ClearPortFeature:
3400 if (wvalue != USB_PORT_FEAT_L1)
3401 if (!windex || windex > 1)
3402 goto error;
3403 switch (wvalue) {
3404 case USB_PORT_FEAT_ENABLE:
3405 dev_dbg(hsotg->dev,
3406 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407 hprt0 = dwc2_read_hprt0(hsotg);
3408 hprt0 |= HPRT0_ENA;
3409 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3410 break;
3411
3412 case USB_PORT_FEAT_SUSPEND:
3413 dev_dbg(hsotg->dev,
3414 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415
3416 if (hsotg->bus_suspended)
3417 dwc2_port_resume(hsotg);
3418 break;
3419
3420 case USB_PORT_FEAT_POWER:
3421 dev_dbg(hsotg->dev,
3422 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3423 hprt0 = dwc2_read_hprt0(hsotg);
3424 hprt0 &= ~HPRT0_PWR;
3425 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3426 break;
3427
3428 case USB_PORT_FEAT_INDICATOR:
3429 dev_dbg(hsotg->dev,
3430 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3431 /* Port indicator not supported */
3432 break;
3433
3434 case USB_PORT_FEAT_C_CONNECTION:
3435 /*
3436 * Clears driver's internal Connect Status Change flag
3437 */
3438 dev_dbg(hsotg->dev,
3439 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3440 hsotg->flags.b.port_connect_status_change = 0;
3441 break;
3442
3443 case USB_PORT_FEAT_C_RESET:
3444 /* Clears driver's internal Port Reset Change flag */
3445 dev_dbg(hsotg->dev,
3446 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3447 hsotg->flags.b.port_reset_change = 0;
3448 break;
3449
3450 case USB_PORT_FEAT_C_ENABLE:
3451 /*
3452 * Clears the driver's internal Port Enable/Disable
3453 * Change flag
3454 */
3455 dev_dbg(hsotg->dev,
3456 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3457 hsotg->flags.b.port_enable_change = 0;
3458 break;
3459
3460 case USB_PORT_FEAT_C_SUSPEND:
3461 /*
3462 * Clears the driver's internal Port Suspend Change
3463 * flag, which is set when resume signaling on the host
3464 * port is complete
3465 */
3466 dev_dbg(hsotg->dev,
3467 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3468 hsotg->flags.b.port_suspend_change = 0;
3469 break;
3470
3471 case USB_PORT_FEAT_C_PORT_L1:
3472 dev_dbg(hsotg->dev,
3473 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3474 hsotg->flags.b.port_l1_change = 0;
3475 break;
3476
3477 case USB_PORT_FEAT_C_OVER_CURRENT:
3478 dev_dbg(hsotg->dev,
3479 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3480 hsotg->flags.b.port_over_current_change = 0;
3481 break;
3482
3483 default:
3484 retval = -EINVAL;
3485 dev_err(hsotg->dev,
3486 "ClearPortFeature request %1xh unknown or unsupported\n",
3487 wvalue);
3488 }
3489 break;
3490
3491 case GetHubDescriptor:
3492 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3493 hub_desc = (struct usb_hub_descriptor *)buf;
3494 hub_desc->bDescLength = 9;
3495 hub_desc->bDescriptorType = USB_DT_HUB;
3496 hub_desc->bNbrPorts = 1;
3497 hub_desc->wHubCharacteristics =
3498 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3499 HUB_CHAR_INDV_PORT_OCPM);
3500 hub_desc->bPwrOn2PwrGood = 1;
3501 hub_desc->bHubContrCurrent = 0;
3502 hub_desc->u.hs.DeviceRemovable[0] = 0;
3503 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3504 break;
3505
3506 case GetHubStatus:
3507 dev_dbg(hsotg->dev, "GetHubStatus\n");
3508 memset(buf, 0, 4);
3509 break;
3510
3511 case GetPortStatus:
3512 dev_vdbg(hsotg->dev,
3513 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3514 hsotg->flags.d32);
3515 if (!windex || windex > 1)
3516 goto error;
3517
3518 port_status = 0;
3519 if (hsotg->flags.b.port_connect_status_change)
3520 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3521 if (hsotg->flags.b.port_enable_change)
3522 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3523 if (hsotg->flags.b.port_suspend_change)
3524 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3525 if (hsotg->flags.b.port_l1_change)
3526 port_status |= USB_PORT_STAT_C_L1 << 16;
3527 if (hsotg->flags.b.port_reset_change)
3528 port_status |= USB_PORT_STAT_C_RESET << 16;
3529 if (hsotg->flags.b.port_over_current_change) {
3530 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3531 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3532 }
3533
3534 if (!hsotg->flags.b.port_connect_status) {
3535 /*
3536 * The port is disconnected, which means the core is
3537 * either in device mode or it soon will be. Just
3538 * return 0's for the remainder of the port status
3539 * since the port register can't be read if the core
3540 * is in device mode.
3541 */
3542 *(__le32 *)buf = cpu_to_le32(port_status);
3543 break;
3544 }
3545
3546 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3547 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3548
3549 if (hprt0 & HPRT0_CONNSTS)
3550 port_status |= USB_PORT_STAT_CONNECTION;
3551 if (hprt0 & HPRT0_ENA)
3552 port_status |= USB_PORT_STAT_ENABLE;
3553 if (hprt0 & HPRT0_SUSP)
3554 port_status |= USB_PORT_STAT_SUSPEND;
3555 if (hprt0 & HPRT0_OVRCURRACT)
3556 port_status |= USB_PORT_STAT_OVERCURRENT;
3557 if (hprt0 & HPRT0_RST)
3558 port_status |= USB_PORT_STAT_RESET;
3559 if (hprt0 & HPRT0_PWR)
3560 port_status |= USB_PORT_STAT_POWER;
3561
3562 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3563 if (speed == HPRT0_SPD_HIGH_SPEED)
3564 port_status |= USB_PORT_STAT_HIGH_SPEED;
3565 else if (speed == HPRT0_SPD_LOW_SPEED)
3566 port_status |= USB_PORT_STAT_LOW_SPEED;
3567
3568 if (hprt0 & HPRT0_TSTCTL_MASK)
3569 port_status |= USB_PORT_STAT_TEST;
3570 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3571
3572 if (hsotg->core_params->dma_desc_fs_enable) {
3573 /*
3574 * Enable descriptor DMA only if a full speed
3575 * device is connected.
3576 */
3577 if (hsotg->new_connection &&
3578 ((port_status &
3579 (USB_PORT_STAT_CONNECTION |
3580 USB_PORT_STAT_HIGH_SPEED |
3581 USB_PORT_STAT_LOW_SPEED)) ==
3582 USB_PORT_STAT_CONNECTION)) {
3583 u32 hcfg;
3584
3585 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3586 hsotg->core_params->dma_desc_enable = 1;
3587 hcfg = dwc2_readl(hsotg->regs + HCFG);
3588 hcfg |= HCFG_DESCDMA;
3589 dwc2_writel(hcfg, hsotg->regs + HCFG);
3590 hsotg->new_connection = false;
3591 }
3592 }
3593
3594 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3595 *(__le32 *)buf = cpu_to_le32(port_status);
3596 break;
3597
3598 case SetHubFeature:
3599 dev_dbg(hsotg->dev, "SetHubFeature\n");
3600 /* No HUB features supported */
3601 break;
3602
3603 case SetPortFeature:
3604 dev_dbg(hsotg->dev, "SetPortFeature\n");
3605 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3606 goto error;
3607
3608 if (!hsotg->flags.b.port_connect_status) {
3609 /*
3610 * The port is disconnected, which means the core is
3611 * either in device mode or it soon will be. Just
3612 * return without doing anything since the port
3613 * register can't be written if the core is in device
3614 * mode.
3615 */
3616 break;
3617 }
3618
3619 switch (wvalue) {
3620 case USB_PORT_FEAT_SUSPEND:
3621 dev_dbg(hsotg->dev,
3622 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3623 if (windex != hsotg->otg_port)
3624 goto error;
3625 dwc2_port_suspend(hsotg, windex);
3626 break;
3627
3628 case USB_PORT_FEAT_POWER:
3629 dev_dbg(hsotg->dev,
3630 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3631 hprt0 = dwc2_read_hprt0(hsotg);
3632 hprt0 |= HPRT0_PWR;
3633 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3634 break;
3635
3636 case USB_PORT_FEAT_RESET:
3637 hprt0 = dwc2_read_hprt0(hsotg);
3638 dev_dbg(hsotg->dev,
3639 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3640 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3641 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3642 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3643 /* ??? Original driver does this */
3644 dwc2_writel(0, hsotg->regs + PCGCTL);
3645
3646 hprt0 = dwc2_read_hprt0(hsotg);
3647 /* Clear suspend bit if resetting from suspend state */
3648 hprt0 &= ~HPRT0_SUSP;
3649
3650 /*
3651 * When B-Host the Port reset bit is set in the Start
3652 * HCD Callback function, so that the reset is started
3653 * within 1ms of the HNP success interrupt
3654 */
3655 if (!dwc2_hcd_is_b_host(hsotg)) {
3656 hprt0 |= HPRT0_PWR | HPRT0_RST;
3657 dev_dbg(hsotg->dev,
3658 "In host mode, hprt0=%08x\n", hprt0);
3659 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3660 }
3661
3662 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3663 usleep_range(50000, 70000);
3664 hprt0 &= ~HPRT0_RST;
3665 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3666 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3667 break;
3668
3669 case USB_PORT_FEAT_INDICATOR:
3670 dev_dbg(hsotg->dev,
3671 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3672 /* Not supported */
3673 break;
3674
3675 case USB_PORT_FEAT_TEST:
3676 hprt0 = dwc2_read_hprt0(hsotg);
3677 dev_dbg(hsotg->dev,
3678 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3679 hprt0 &= ~HPRT0_TSTCTL_MASK;
3680 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3681 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3682 break;
3683
3684 default:
3685 retval = -EINVAL;
3686 dev_err(hsotg->dev,
3687 "SetPortFeature %1xh unknown or unsupported\n",
3688 wvalue);
3689 break;
3690 }
3691 break;
3692
3693 default:
3694error:
3695 retval = -EINVAL;
3696 dev_dbg(hsotg->dev,
3697 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3698 typereq, windex, wvalue);
3699 break;
3700 }
3701
3702 return retval;
3703}
3704
3705static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3706{
3707 int retval;
3708
3709 if (port != 1)
3710 return -EINVAL;
3711
3712 retval = (hsotg->flags.b.port_connect_status_change ||
3713 hsotg->flags.b.port_reset_change ||
3714 hsotg->flags.b.port_enable_change ||
3715 hsotg->flags.b.port_suspend_change ||
3716 hsotg->flags.b.port_over_current_change);
3717
3718 if (retval) {
3719 dev_dbg(hsotg->dev,
3720 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3721 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3722 hsotg->flags.b.port_connect_status_change);
3723 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3724 hsotg->flags.b.port_reset_change);
3725 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3726 hsotg->flags.b.port_enable_change);
3727 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3728 hsotg->flags.b.port_suspend_change);
3729 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3730 hsotg->flags.b.port_over_current_change);
3731 }
3732
3733 return retval;
3734}
3735
3736int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3737{
3738 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3739
3740#ifdef DWC2_DEBUG_SOF
3741 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3742 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3743#endif
3744 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3745}
3746
3747int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3748{
3749 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3750 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3751 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3752 unsigned int us_per_frame;
3753 unsigned int frame_number;
3754 unsigned int remaining;
3755 unsigned int interval;
3756 unsigned int phy_clks;
3757
3758 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3759 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3760
3761 /* Extract fields */
3762 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3764 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3765
3766 /*
3767 * Number of phy clocks since the last tick of the frame number after
3768 * "us" has passed.
3769 */
3770 phy_clks = (interval - remaining) +
3771 DIV_ROUND_UP(interval * us, us_per_frame);
3772
3773 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3774}
3775
3776int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3777{
3778 return hsotg->op_state == OTG_STATE_B_HOST;
3779}
3780
3781static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3782 int iso_desc_count,
3783 gfp_t mem_flags)
3784{
3785 struct dwc2_hcd_urb *urb;
3786 u32 size = sizeof(*urb) + iso_desc_count *
3787 sizeof(struct dwc2_hcd_iso_packet_desc);
3788
3789 urb = kzalloc(size, mem_flags);
3790 if (urb)
3791 urb->packet_count = iso_desc_count;
3792 return urb;
3793}
3794
3795static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3796 struct dwc2_hcd_urb *urb, u8 dev_addr,
3797 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3798{
3799 if (dbg_perio() ||
3800 ep_type == USB_ENDPOINT_XFER_BULK ||
3801 ep_type == USB_ENDPOINT_XFER_CONTROL)
3802 dev_vdbg(hsotg->dev,
3803 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3804 dev_addr, ep_num, ep_dir, ep_type, mps);
3805 urb->pipe_info.dev_addr = dev_addr;
3806 urb->pipe_info.ep_num = ep_num;
3807 urb->pipe_info.pipe_type = ep_type;
3808 urb->pipe_info.pipe_dir = ep_dir;
3809 urb->pipe_info.mps = mps;
3810}
3811
3812/*
3813 * NOTE: This function will be removed once the peripheral controller code
3814 * is integrated and the driver is stable
3815 */
3816void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3817{
3818#ifdef DEBUG
3819 struct dwc2_host_chan *chan;
3820 struct dwc2_hcd_urb *urb;
3821 struct dwc2_qtd *qtd;
3822 int num_channels;
3823 u32 np_tx_status;
3824 u32 p_tx_status;
3825 int i;
3826
3827 num_channels = hsotg->core_params->host_channels;
3828 dev_dbg(hsotg->dev, "\n");
3829 dev_dbg(hsotg->dev,
3830 "************************************************************\n");
3831 dev_dbg(hsotg->dev, "HCD State:\n");
3832 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3833
3834 for (i = 0; i < num_channels; i++) {
3835 chan = hsotg->hc_ptr_array[i];
3836 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3837 dev_dbg(hsotg->dev,
3838 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3839 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3840 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3841 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3842 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3843 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3844 chan->data_pid_start);
3845 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3846 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3847 chan->xfer_started);
3848 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3849 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3850 (unsigned long)chan->xfer_dma);
3851 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3852 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3853 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3854 chan->halt_on_queue);
3855 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3856 chan->halt_pending);
3857 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3858 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3859 dev_dbg(hsotg->dev, " complete_split: %d\n",
3860 chan->complete_split);
3861 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3862 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3863 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3864 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3865 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3866
3867 if (chan->xfer_started) {
3868 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3869
3870 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3871 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3872 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3873 hcint = dwc2_readl(hsotg->regs + HCINT(i));
3874 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3875 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3876 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3877 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3878 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3879 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3880 }
3881
3882 if (!(chan->xfer_started && chan->qh))
3883 continue;
3884
3885 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3886 if (!qtd->in_process)
3887 break;
3888 urb = qtd->urb;
3889 dev_dbg(hsotg->dev, " URB Info:\n");
3890 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3891 qtd, urb);
3892 if (urb) {
3893 dev_dbg(hsotg->dev,
3894 " Dev: %d, EP: %d %s\n",
3895 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3896 dwc2_hcd_get_ep_num(&urb->pipe_info),
3897 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3898 "IN" : "OUT");
3899 dev_dbg(hsotg->dev,
3900 " Max packet size: %d\n",
3901 dwc2_hcd_get_mps(&urb->pipe_info));
3902 dev_dbg(hsotg->dev,
3903 " transfer_buffer: %p\n",
3904 urb->buf);
3905 dev_dbg(hsotg->dev,
3906 " transfer_dma: %08lx\n",
3907 (unsigned long)urb->dma);
3908 dev_dbg(hsotg->dev,
3909 " transfer_buffer_length: %d\n",
3910 urb->length);
3911 dev_dbg(hsotg->dev, " actual_length: %d\n",
3912 urb->actual_length);
3913 }
3914 }
3915 }
3916
3917 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3918 hsotg->non_periodic_channels);
3919 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3920 hsotg->periodic_channels);
3921 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3922 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3923 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3924 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3925 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3926 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3927 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3928 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3929 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3930 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3931 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3932 dwc2_hcd_dump_frrem(hsotg);
3933 dwc2_dump_global_registers(hsotg);
3934 dwc2_dump_host_registers(hsotg);
3935 dev_dbg(hsotg->dev,
3936 "************************************************************\n");
3937 dev_dbg(hsotg->dev, "\n");
3938#endif
3939}
3940
3941/*
3942 * NOTE: This function will be removed once the peripheral controller code
3943 * is integrated and the driver is stable
3944 */
3945void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3946{
3947#ifdef DWC2_DUMP_FRREM
3948 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3949 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3950 hsotg->frrem_samples, hsotg->frrem_accum,
3951 hsotg->frrem_samples > 0 ?
3952 hsotg->frrem_accum / hsotg->frrem_samples : 0);
3953 dev_dbg(hsotg->dev, "\n");
3954 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3955 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3956 hsotg->hfnum_7_samples,
3957 hsotg->hfnum_7_frrem_accum,
3958 hsotg->hfnum_7_samples > 0 ?
3959 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3960 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3961 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3962 hsotg->hfnum_0_samples,
3963 hsotg->hfnum_0_frrem_accum,
3964 hsotg->hfnum_0_samples > 0 ?
3965 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3966 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3967 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3968 hsotg->hfnum_other_samples,
3969 hsotg->hfnum_other_frrem_accum,
3970 hsotg->hfnum_other_samples > 0 ?
3971 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
3972 0);
3973 dev_dbg(hsotg->dev, "\n");
3974 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
3975 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3976 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
3977 hsotg->hfnum_7_samples_a > 0 ?
3978 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
3979 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
3980 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3981 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
3982 hsotg->hfnum_0_samples_a > 0 ?
3983 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
3984 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
3985 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3986 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
3987 hsotg->hfnum_other_samples_a > 0 ?
3988 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
3989 : 0);
3990 dev_dbg(hsotg->dev, "\n");
3991 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
3992 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3993 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
3994 hsotg->hfnum_7_samples_b > 0 ?
3995 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
3996 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
3997 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3998 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
3999 (hsotg->hfnum_0_samples_b > 0) ?
4000 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4001 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4002 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4003 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4004 (hsotg->hfnum_other_samples_b > 0) ?
4005 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4006 : 0);
4007#endif
4008}
4009
4010struct wrapper_priv_data {
4011 struct dwc2_hsotg *hsotg;
4012};
4013
4014/* Gets the dwc2_hsotg from a usb_hcd */
4015static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4016{
4017 struct wrapper_priv_data *p;
4018
4019 p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4020 return p->hsotg;
4021}
4022
4023static int _dwc2_hcd_start(struct usb_hcd *hcd);
4024
4025void dwc2_host_start(struct dwc2_hsotg *hsotg)
4026{
4027 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4028
4029 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
4030 _dwc2_hcd_start(hcd);
4031}
4032
4033void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
4034{
4035 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4036
4037 hcd->self.is_b_host = 0;
4038}
4039
4040void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
4041 int *hub_port)
4042{
4043 struct urb *urb = context;
4044
4045 if (urb->dev->tt)
4046 *hub_addr = urb->dev->tt->hub->devnum;
4047 else
4048 *hub_addr = 0;
4049 *hub_port = urb->dev->ttport;
4050}
4051
4052/**
4053 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4054 *
4055 * This will get the dwc2_tt structure (and ttport) associated with the given
4056 * context (which is really just a struct urb pointer).
4057 *
4058 * The first time this is called for a given TT we allocate memory for our
4059 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4060 * then the refcount for the structure will go to 0 and we'll free it.
4061 *
4062 * @hsotg: The HCD state structure for the DWC OTG controller.
4063 * @qh: The QH structure.
4064 * @context: The priv pointer from a struct dwc2_hcd_urb.
4065 * @mem_flags: Flags for allocating memory.
4066 * @ttport: We'll return this device's port number here. That's used to
4067 * reference into the bitmap if we're on a multi_tt hub.
4068 *
4069 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4070 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4071 */
4072
4073struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4074 gfp_t mem_flags, int *ttport)
4075{
4076 struct urb *urb = context;
4077 struct dwc2_tt *dwc_tt = NULL;
4078
4079 if (urb->dev->tt) {
4080 *ttport = urb->dev->ttport;
4081
4082 dwc_tt = urb->dev->tt->hcpriv;
4083 if (dwc_tt == NULL) {
4084 size_t bitmap_size;
4085
4086 /*
4087 * For single_tt we need one schedule. For multi_tt
4088 * we need one per port.
4089 */
4090 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4091 sizeof(dwc_tt->periodic_bitmaps[0]);
4092 if (urb->dev->tt->multi)
4093 bitmap_size *= urb->dev->tt->hub->maxchild;
4094
4095 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4096 mem_flags);
4097 if (dwc_tt == NULL)
4098 return NULL;
4099
4100 dwc_tt->usb_tt = urb->dev->tt;
4101 dwc_tt->usb_tt->hcpriv = dwc_tt;
4102 }
4103
4104 dwc_tt->refcount++;
4105 }
4106
4107 return dwc_tt;
4108}
4109
4110/**
4111 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4112 *
4113 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4114 * of the structure are done.
4115 *
4116 * It's OK to call this with NULL.
4117 *
4118 * @hsotg: The HCD state structure for the DWC OTG controller.
4119 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4120 */
4121void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4122{
4123 /* Model kfree and make put of NULL a no-op */
4124 if (dwc_tt == NULL)
4125 return;
4126
4127 WARN_ON(dwc_tt->refcount < 1);
4128
4129 dwc_tt->refcount--;
4130 if (!dwc_tt->refcount) {
4131 dwc_tt->usb_tt->hcpriv = NULL;
4132 kfree(dwc_tt);
4133 }
4134}
4135
4136int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4137{
4138 struct urb *urb = context;
4139
4140 return urb->dev->speed;
4141}
4142
4143static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4144 struct urb *urb)
4145{
4146 struct usb_bus *bus = hcd_to_bus(hcd);
4147
4148 if (urb->interval)
4149 bus->bandwidth_allocated += bw / urb->interval;
4150 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4151 bus->bandwidth_isoc_reqs++;
4152 else
4153 bus->bandwidth_int_reqs++;
4154}
4155
4156static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4157 struct urb *urb)
4158{
4159 struct usb_bus *bus = hcd_to_bus(hcd);
4160
4161 if (urb->interval)
4162 bus->bandwidth_allocated -= bw / urb->interval;
4163 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4164 bus->bandwidth_isoc_reqs--;
4165 else
4166 bus->bandwidth_int_reqs--;
4167}
4168
4169/*
4170 * Sets the final status of an URB and returns it to the upper layer. Any
4171 * required cleanup of the URB is performed.
4172 *
4173 * Must be called with interrupt disabled and spinlock held
4174 */
4175void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4176 int status)
4177{
4178 struct urb *urb;
4179 int i;
4180
4181 if (!qtd) {
4182 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4183 return;
4184 }
4185
4186 if (!qtd->urb) {
4187 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4188 return;
4189 }
4190
4191 urb = qtd->urb->priv;
4192 if (!urb) {
4193 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4194 return;
4195 }
4196
4197 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4198
4199 if (dbg_urb(urb))
4200 dev_vdbg(hsotg->dev,
4201 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4202 __func__, urb, usb_pipedevice(urb->pipe),
4203 usb_pipeendpoint(urb->pipe),
4204 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4205 urb->actual_length);
4206
4207
4208 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4209 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4210 for (i = 0; i < urb->number_of_packets; ++i) {
4211 urb->iso_frame_desc[i].actual_length =
4212 dwc2_hcd_urb_get_iso_desc_actual_length(
4213 qtd->urb, i);
4214 urb->iso_frame_desc[i].status =
4215 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4216 }
4217 }
4218
4219 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4220 for (i = 0; i < urb->number_of_packets; i++)
4221 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4222 i, urb->iso_frame_desc[i].status);
4223 }
4224
4225 urb->status = status;
4226 if (!status) {
4227 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4228 urb->actual_length < urb->transfer_buffer_length)
4229 urb->status = -EREMOTEIO;
4230 }
4231
4232 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4233 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4234 struct usb_host_endpoint *ep = urb->ep;
4235
4236 if (ep)
4237 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4238 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4239 urb);
4240 }
4241
4242 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4243 urb->hcpriv = NULL;
4244 kfree(qtd->urb);
4245 qtd->urb = NULL;
4246
4247 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4248}
4249
4250/*
4251 * Work queue function for starting the HCD when A-Cable is connected
4252 */
4253static void dwc2_hcd_start_func(struct work_struct *work)
4254{
4255 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4256 start_work.work);
4257
4258 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4259 dwc2_host_start(hsotg);
4260}
4261
4262/*
4263 * Reset work queue function
4264 */
4265static void dwc2_hcd_reset_func(struct work_struct *work)
4266{
4267 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4268 reset_work.work);
4269 unsigned long flags;
4270 u32 hprt0;
4271
4272 dev_dbg(hsotg->dev, "USB RESET function called\n");
4273
4274 spin_lock_irqsave(&hsotg->lock, flags);
4275
4276 hprt0 = dwc2_read_hprt0(hsotg);
4277 hprt0 &= ~HPRT0_RST;
4278 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4279 hsotg->flags.b.port_reset_change = 1;
4280
4281 spin_unlock_irqrestore(&hsotg->lock, flags);
4282}
4283
4284/*
4285 * =========================================================================
4286 * Linux HC Driver Functions
4287 * =========================================================================
4288 */
4289
4290/*
4291 * Initializes the DWC_otg controller and its root hub and prepares it for host
4292 * mode operation. Activates the root port. Returns 0 on success and a negative
4293 * error code on failure.
4294 */
4295static int _dwc2_hcd_start(struct usb_hcd *hcd)
4296{
4297 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4298 struct usb_bus *bus = hcd_to_bus(hcd);
4299 unsigned long flags;
4300
4301 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4302
4303 spin_lock_irqsave(&hsotg->lock, flags);
4304 hsotg->lx_state = DWC2_L0;
4305 hcd->state = HC_STATE_RUNNING;
4306 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4307
4308 if (dwc2_is_device_mode(hsotg)) {
4309 spin_unlock_irqrestore(&hsotg->lock, flags);
4310 return 0; /* why 0 ?? */
4311 }
4312
4313 dwc2_hcd_reinit(hsotg);
4314
4315 /* Initialize and connect root hub if one is not already attached */
4316 if (bus->root_hub) {
4317 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4318 /* Inform the HUB driver to resume */
4319 usb_hcd_resume_root_hub(hcd);
4320 }
4321
4322 spin_unlock_irqrestore(&hsotg->lock, flags);
4323 return 0;
4324}
4325
4326/*
4327 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4328 * stopped.
4329 */
4330static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4331{
4332 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4333 unsigned long flags;
4334
4335 /* Turn off all host-specific interrupts */
4336 dwc2_disable_host_interrupts(hsotg);
4337
4338 /* Wait for interrupt processing to finish */
4339 synchronize_irq(hcd->irq);
4340
4341 spin_lock_irqsave(&hsotg->lock, flags);
4342 /* Ensure hcd is disconnected */
4343 dwc2_hcd_disconnect(hsotg, true);
4344 dwc2_hcd_stop(hsotg);
4345 hsotg->lx_state = DWC2_L3;
4346 hcd->state = HC_STATE_HALT;
4347 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4348 spin_unlock_irqrestore(&hsotg->lock, flags);
4349
4350 usleep_range(1000, 3000);
4351}
4352
4353static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4354{
4355 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4356 unsigned long flags;
4357 int ret = 0;
4358 u32 hprt0;
4359
4360 spin_lock_irqsave(&hsotg->lock, flags);
4361
4362 if (hsotg->lx_state != DWC2_L0)
4363 goto unlock;
4364
4365 if (!HCD_HW_ACCESSIBLE(hcd))
4366 goto unlock;
4367
4368 if (!hsotg->core_params->hibernation)
4369 goto skip_power_saving;
4370
4371 /*
4372 * Drive USB suspend and disable port Power
4373 * if usb bus is not suspended.
4374 */
4375 if (!hsotg->bus_suspended) {
4376 hprt0 = dwc2_read_hprt0(hsotg);
4377 hprt0 |= HPRT0_SUSP;
4378 hprt0 &= ~HPRT0_PWR;
4379 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4380 }
4381
4382 /* Enter hibernation */
4383 ret = dwc2_enter_hibernation(hsotg);
4384 if (ret) {
4385 if (ret != -ENOTSUPP)
4386 dev_err(hsotg->dev,
4387 "enter hibernation failed\n");
4388 goto skip_power_saving;
4389 }
4390
4391 /* Ask phy to be suspended */
4392 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4393 spin_unlock_irqrestore(&hsotg->lock, flags);
4394 usb_phy_set_suspend(hsotg->uphy, true);
4395 spin_lock_irqsave(&hsotg->lock, flags);
4396 }
4397
4398 /* After entering hibernation, hardware is no more accessible */
4399 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400
4401skip_power_saving:
4402 hsotg->lx_state = DWC2_L2;
4403unlock:
4404 spin_unlock_irqrestore(&hsotg->lock, flags);
4405
4406 return ret;
4407}
4408
4409static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4410{
4411 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4412 unsigned long flags;
4413 int ret = 0;
4414
4415 spin_lock_irqsave(&hsotg->lock, flags);
4416
4417 if (hsotg->lx_state != DWC2_L2)
4418 goto unlock;
4419
4420 if (!hsotg->core_params->hibernation) {
4421 hsotg->lx_state = DWC2_L0;
4422 goto unlock;
4423 }
4424
4425 /*
4426 * Set HW accessible bit before powering on the controller
4427 * since an interrupt may rise.
4428 */
4429 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4430
4431 /*
4432 * Enable power if not already done.
4433 * This must not be spinlocked since duration
4434 * of this call is unknown.
4435 */
4436 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4437 spin_unlock_irqrestore(&hsotg->lock, flags);
4438 usb_phy_set_suspend(hsotg->uphy, false);
4439 spin_lock_irqsave(&hsotg->lock, flags);
4440 }
4441
4442 /* Exit hibernation */
4443 ret = dwc2_exit_hibernation(hsotg, true);
4444 if (ret && (ret != -ENOTSUPP))
4445 dev_err(hsotg->dev, "exit hibernation failed\n");
4446
4447 hsotg->lx_state = DWC2_L0;
4448
4449 spin_unlock_irqrestore(&hsotg->lock, flags);
4450
4451 if (hsotg->bus_suspended) {
4452 spin_lock_irqsave(&hsotg->lock, flags);
4453 hsotg->flags.b.port_suspend_change = 1;
4454 spin_unlock_irqrestore(&hsotg->lock, flags);
4455 dwc2_port_resume(hsotg);
4456 } else {
4457 /* Wait for controller to correctly update D+/D- level */
4458 usleep_range(3000, 5000);
4459
4460 /*
4461 * Clear Port Enable and Port Status changes.
4462 * Enable Port Power.
4463 */
4464 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4465 HPRT0_ENACHG, hsotg->regs + HPRT0);
4466 /* Wait for controller to detect Port Connect */
4467 usleep_range(5000, 7000);
4468 }
4469
4470 return ret;
4471unlock:
4472 spin_unlock_irqrestore(&hsotg->lock, flags);
4473
4474 return ret;
4475}
4476
4477/* Returns the current frame number */
4478static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4479{
4480 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4481
4482 return dwc2_hcd_get_frame_number(hsotg);
4483}
4484
4485static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4486 char *fn_name)
4487{
4488#ifdef VERBOSE_DEBUG
4489 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4490 char *pipetype;
4491 char *speed;
4492
4493 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4494 dev_vdbg(hsotg->dev, " Device address: %d\n",
4495 usb_pipedevice(urb->pipe));
4496 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4497 usb_pipeendpoint(urb->pipe),
4498 usb_pipein(urb->pipe) ? "IN" : "OUT");
4499
4500 switch (usb_pipetype(urb->pipe)) {
4501 case PIPE_CONTROL:
4502 pipetype = "CONTROL";
4503 break;
4504 case PIPE_BULK:
4505 pipetype = "BULK";
4506 break;
4507 case PIPE_INTERRUPT:
4508 pipetype = "INTERRUPT";
4509 break;
4510 case PIPE_ISOCHRONOUS:
4511 pipetype = "ISOCHRONOUS";
4512 break;
4513 default:
4514 pipetype = "UNKNOWN";
4515 break;
4516 }
4517
4518 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4519 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4520 "IN" : "OUT");
4521
4522 switch (urb->dev->speed) {
4523 case USB_SPEED_HIGH:
4524 speed = "HIGH";
4525 break;
4526 case USB_SPEED_FULL:
4527 speed = "FULL";
4528 break;
4529 case USB_SPEED_LOW:
4530 speed = "LOW";
4531 break;
4532 default:
4533 speed = "UNKNOWN";
4534 break;
4535 }
4536
4537 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4538 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4539 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4540 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4541 urb->transfer_buffer_length);
4542 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4543 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4544 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4545 urb->setup_packet, (unsigned long)urb->setup_dma);
4546 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4547
4548 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4549 int i;
4550
4551 for (i = 0; i < urb->number_of_packets; i++) {
4552 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4553 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4554 urb->iso_frame_desc[i].offset,
4555 urb->iso_frame_desc[i].length);
4556 }
4557 }
4558#endif
4559}
4560
4561/*
4562 * Starts processing a USB transfer request specified by a USB Request Block
4563 * (URB). mem_flags indicates the type of memory allocation to use while
4564 * processing this URB.
4565 */
4566static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4567 gfp_t mem_flags)
4568{
4569 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4570 struct usb_host_endpoint *ep = urb->ep;
4571 struct dwc2_hcd_urb *dwc2_urb;
4572 int i;
4573 int retval;
4574 int alloc_bandwidth = 0;
4575 u8 ep_type = 0;
4576 u32 tflags = 0;
4577 void *buf;
4578 unsigned long flags;
4579 struct dwc2_qh *qh;
4580 bool qh_allocated = false;
4581 struct dwc2_qtd *qtd;
4582
4583 if (dbg_urb(urb)) {
4584 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4585 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4586 }
4587
4588 if (ep == NULL)
4589 return -EINVAL;
4590
4591 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4592 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4593 spin_lock_irqsave(&hsotg->lock, flags);
4594 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4595 alloc_bandwidth = 1;
4596 spin_unlock_irqrestore(&hsotg->lock, flags);
4597 }
4598
4599 switch (usb_pipetype(urb->pipe)) {
4600 case PIPE_CONTROL:
4601 ep_type = USB_ENDPOINT_XFER_CONTROL;
4602 break;
4603 case PIPE_ISOCHRONOUS:
4604 ep_type = USB_ENDPOINT_XFER_ISOC;
4605 break;
4606 case PIPE_BULK:
4607 ep_type = USB_ENDPOINT_XFER_BULK;
4608 break;
4609 case PIPE_INTERRUPT:
4610 ep_type = USB_ENDPOINT_XFER_INT;
4611 break;
4612 default:
4613 dev_warn(hsotg->dev, "Wrong ep type\n");
4614 }
4615
4616 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4617 mem_flags);
4618 if (!dwc2_urb)
4619 return -ENOMEM;
4620
4621 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4622 usb_pipeendpoint(urb->pipe), ep_type,
4623 usb_pipein(urb->pipe),
4624 usb_maxpacket(urb->dev, urb->pipe,
4625 !(usb_pipein(urb->pipe))));
4626
4627 buf = urb->transfer_buffer;
4628
4629 if (hcd->self.uses_dma) {
4630 if (!buf && (urb->transfer_dma & 3)) {
4631 dev_err(hsotg->dev,
4632 "%s: unaligned transfer with no transfer_buffer",
4633 __func__);
4634 retval = -EINVAL;
4635 goto fail0;
4636 }
4637 }
4638
4639 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4640 tflags |= URB_GIVEBACK_ASAP;
4641 if (urb->transfer_flags & URB_ZERO_PACKET)
4642 tflags |= URB_SEND_ZERO_PACKET;
4643
4644 dwc2_urb->priv = urb;
4645 dwc2_urb->buf = buf;
4646 dwc2_urb->dma = urb->transfer_dma;
4647 dwc2_urb->length = urb->transfer_buffer_length;
4648 dwc2_urb->setup_packet = urb->setup_packet;
4649 dwc2_urb->setup_dma = urb->setup_dma;
4650 dwc2_urb->flags = tflags;
4651 dwc2_urb->interval = urb->interval;
4652 dwc2_urb->status = -EINPROGRESS;
4653
4654 for (i = 0; i < urb->number_of_packets; ++i)
4655 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4656 urb->iso_frame_desc[i].offset,
4657 urb->iso_frame_desc[i].length);
4658
4659 urb->hcpriv = dwc2_urb;
4660 qh = (struct dwc2_qh *) ep->hcpriv;
4661 /* Create QH for the endpoint if it doesn't exist */
4662 if (!qh) {
4663 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4664 if (!qh) {
4665 retval = -ENOMEM;
4666 goto fail0;
4667 }
4668 ep->hcpriv = qh;
4669 qh_allocated = true;
4670 }
4671
4672 qtd = kzalloc(sizeof(*qtd), mem_flags);
4673 if (!qtd) {
4674 retval = -ENOMEM;
4675 goto fail1;
4676 }
4677
4678 spin_lock_irqsave(&hsotg->lock, flags);
4679 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4680 if (retval)
4681 goto fail2;
4682
4683 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4684 if (retval)
4685 goto fail3;
4686
4687 if (alloc_bandwidth) {
4688 dwc2_allocate_bus_bandwidth(hcd,
4689 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4690 urb);
4691 }
4692
4693 spin_unlock_irqrestore(&hsotg->lock, flags);
4694
4695 return 0;
4696
4697fail3:
4698 dwc2_urb->priv = NULL;
4699 usb_hcd_unlink_urb_from_ep(hcd, urb);
4700 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4701 qh->channel->qh = NULL;
4702fail2:
4703 spin_unlock_irqrestore(&hsotg->lock, flags);
4704 urb->hcpriv = NULL;
4705 kfree(qtd);
4706fail1:
4707 if (qh_allocated) {
4708 struct dwc2_qtd *qtd2, *qtd2_tmp;
4709
4710 ep->hcpriv = NULL;
4711 dwc2_hcd_qh_unlink(hsotg, qh);
4712 /* Free each QTD in the QH's QTD list */
4713 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4714 qtd_list_entry)
4715 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4716 dwc2_hcd_qh_free(hsotg, qh);
4717 }
4718fail0:
4719 kfree(dwc2_urb);
4720
4721 return retval;
4722}
4723
4724/*
4725 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4726 */
4727static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4728 int status)
4729{
4730 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4731 int rc;
4732 unsigned long flags;
4733
4734 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4735 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4736
4737 spin_lock_irqsave(&hsotg->lock, flags);
4738
4739 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4740 if (rc)
4741 goto out;
4742
4743 if (!urb->hcpriv) {
4744 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4745 goto out;
4746 }
4747
4748 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4749
4750 usb_hcd_unlink_urb_from_ep(hcd, urb);
4751
4752 kfree(urb->hcpriv);
4753 urb->hcpriv = NULL;
4754
4755 /* Higher layer software sets URB status */
4756 spin_unlock(&hsotg->lock);
4757 usb_hcd_giveback_urb(hcd, urb, status);
4758 spin_lock(&hsotg->lock);
4759
4760 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4761 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4762out:
4763 spin_unlock_irqrestore(&hsotg->lock, flags);
4764
4765 return rc;
4766}
4767
4768/*
4769 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4770 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4771 * must already be dequeued.
4772 */
4773static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4774 struct usb_host_endpoint *ep)
4775{
4776 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4777
4778 dev_dbg(hsotg->dev,
4779 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4780 ep->desc.bEndpointAddress, ep->hcpriv);
4781 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4782}
4783
4784/*
4785 * Resets endpoint specific parameter values, in current version used to reset
4786 * the data toggle (as a WA). This function can be called from usb_clear_halt
4787 * routine.
4788 */
4789static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4790 struct usb_host_endpoint *ep)
4791{
4792 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4793 unsigned long flags;
4794
4795 dev_dbg(hsotg->dev,
4796 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4797 ep->desc.bEndpointAddress);
4798
4799 spin_lock_irqsave(&hsotg->lock, flags);
4800 dwc2_hcd_endpoint_reset(hsotg, ep);
4801 spin_unlock_irqrestore(&hsotg->lock, flags);
4802}
4803
4804/*
4805 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4806 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4807 * interrupt.
4808 *
4809 * This function is called by the USB core when an interrupt occurs
4810 */
4811static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4812{
4813 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4814
4815 return dwc2_handle_hcd_intr(hsotg);
4816}
4817
4818/*
4819 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4820 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4821 * is the status change indicator for the single root port. Returns 1 if either
4822 * change indicator is 1, otherwise returns 0.
4823 */
4824static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4825{
4826 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4827
4828 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4829 return buf[0] != 0;
4830}
4831
4832/* Handles hub class-specific requests */
4833static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4834 u16 windex, char *buf, u16 wlength)
4835{
4836 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4837 wvalue, windex, buf, wlength);
4838 return retval;
4839}
4840
4841/* Handles hub TT buffer clear completions */
4842static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4843 struct usb_host_endpoint *ep)
4844{
4845 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846 struct dwc2_qh *qh;
4847 unsigned long flags;
4848
4849 qh = ep->hcpriv;
4850 if (!qh)
4851 return;
4852
4853 spin_lock_irqsave(&hsotg->lock, flags);
4854 qh->tt_buffer_dirty = 0;
4855
4856 if (hsotg->flags.b.port_connect_status)
4857 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4858
4859 spin_unlock_irqrestore(&hsotg->lock, flags);
4860}
4861
4862static struct hc_driver dwc2_hc_driver = {
4863 .description = "dwc2_hsotg",
4864 .product_desc = "DWC OTG Controller",
4865 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4866
4867 .irq = _dwc2_hcd_irq,
4868 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4869
4870 .start = _dwc2_hcd_start,
4871 .stop = _dwc2_hcd_stop,
4872 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4873 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4874 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4875 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4876 .get_frame_number = _dwc2_hcd_get_frame_number,
4877
4878 .hub_status_data = _dwc2_hcd_hub_status_data,
4879 .hub_control = _dwc2_hcd_hub_control,
4880 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4881
4882 .bus_suspend = _dwc2_hcd_suspend,
4883 .bus_resume = _dwc2_hcd_resume,
4884
4885 .map_urb_for_dma = dwc2_map_urb_for_dma,
4886 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4887};
4888
4889/*
4890 * Frees secondary storage associated with the dwc2_hsotg structure contained
4891 * in the struct usb_hcd field
4892 */
4893static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4894{
4895 u32 ahbcfg;
4896 u32 dctl;
4897 int i;
4898
4899 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4900
4901 /* Free memory for QH/QTD lists */
4902 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4903 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4904 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4905 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4906 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4907 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4908
4909 /* Free memory for the host channels */
4910 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4911 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4912
4913 if (chan != NULL) {
4914 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4915 i, chan);
4916 hsotg->hc_ptr_array[i] = NULL;
4917 kfree(chan);
4918 }
4919 }
4920
4921 if (hsotg->core_params->dma_enable > 0) {
4922 if (hsotg->status_buf) {
4923 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4924 hsotg->status_buf,
4925 hsotg->status_buf_dma);
4926 hsotg->status_buf = NULL;
4927 }
4928 } else {
4929 kfree(hsotg->status_buf);
4930 hsotg->status_buf = NULL;
4931 }
4932
4933 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4934
4935 /* Disable all interrupts */
4936 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4937 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4938 dwc2_writel(0, hsotg->regs + GINTMSK);
4939
4940 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4941 dctl = dwc2_readl(hsotg->regs + DCTL);
4942 dctl |= DCTL_SFTDISCON;
4943 dwc2_writel(dctl, hsotg->regs + DCTL);
4944 }
4945
4946 if (hsotg->wq_otg) {
4947 if (!cancel_work_sync(&hsotg->wf_otg))
4948 flush_workqueue(hsotg->wq_otg);
4949 destroy_workqueue(hsotg->wq_otg);
4950 }
4951
4952 del_timer(&hsotg->wkp_timer);
4953}
4954
4955static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4956{
4957 /* Turn off all host-specific interrupts */
4958 dwc2_disable_host_interrupts(hsotg);
4959
4960 dwc2_hcd_free(hsotg);
4961}
4962
4963/*
4964 * Initializes the HCD. This function allocates memory for and initializes the
4965 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4966 * USB bus with the core and calls the hc_driver->start() function. It returns
4967 * a negative error on failure.
4968 */
4969int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4970{
4971 struct usb_hcd *hcd;
4972 struct dwc2_host_chan *channel;
4973 u32 hcfg;
4974 int i, num_channels;
4975 int retval;
4976
4977 if (usb_disabled())
4978 return -ENODEV;
4979
4980 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4981
4982 retval = -ENOMEM;
4983
4984 hcfg = dwc2_readl(hsotg->regs + HCFG);
4985 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4986
4987#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4988 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4989 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4990 if (!hsotg->frame_num_array)
4991 goto error1;
4992 hsotg->last_frame_num_array = kzalloc(
4993 sizeof(*hsotg->last_frame_num_array) *
4994 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4995 if (!hsotg->last_frame_num_array)
4996 goto error1;
4997#endif
4998 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
4999
5000 /* Check if the bus driver or platform code has setup a dma_mask */
5001 if (hsotg->core_params->dma_enable > 0 &&
5002 hsotg->dev->dma_mask == NULL) {
5003 dev_warn(hsotg->dev,
5004 "dma_mask not set, disabling DMA\n");
5005 hsotg->core_params->dma_enable = 0;
5006 hsotg->core_params->dma_desc_enable = 0;
5007 }
5008
5009 /* Set device flags indicating whether the HCD supports DMA */
5010 if (hsotg->core_params->dma_enable > 0) {
5011 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5012 dev_warn(hsotg->dev, "can't set DMA mask\n");
5013 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5014 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5015 }
5016
5017 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5018 if (!hcd)
5019 goto error1;
5020
5021 if (hsotg->core_params->dma_enable <= 0)
5022 hcd->self.uses_dma = 0;
5023
5024 hcd->has_tt = 1;
5025
5026 ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
5027 hsotg->priv = hcd;
5028
5029 /*
5030 * Disable the global interrupt until all the interrupt handlers are
5031 * installed
5032 */
5033 dwc2_disable_global_interrupts(hsotg);
5034
5035 /* Initialize the DWC_otg core, and select the Phy type */
5036 retval = dwc2_core_init(hsotg, true);
5037 if (retval)
5038 goto error2;
5039
5040 /* Create new workqueue and init work */
5041 retval = -ENOMEM;
5042 hsotg->wq_otg = create_singlethread_workqueue("dwc2");
5043 if (!hsotg->wq_otg) {
5044 dev_err(hsotg->dev, "Failed to create workqueue\n");
5045 goto error2;
5046 }
5047 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5048
5049 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5050 (unsigned long)hsotg);
5051
5052 /* Initialize the non-periodic schedule */
5053 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5054 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5055
5056 /* Initialize the periodic schedule */
5057 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5058 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5059 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5060 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5061
5062 INIT_LIST_HEAD(&hsotg->split_order);
5063
5064 /*
5065 * Create a host channel descriptor for each host channel implemented
5066 * in the controller. Initialize the channel descriptor array.
5067 */
5068 INIT_LIST_HEAD(&hsotg->free_hc_list);
5069 num_channels = hsotg->core_params->host_channels;
5070 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5071
5072 for (i = 0; i < num_channels; i++) {
5073 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5074 if (channel == NULL)
5075 goto error3;
5076 channel->hc_num = i;
5077 INIT_LIST_HEAD(&channel->split_order_list_entry);
5078 hsotg->hc_ptr_array[i] = channel;
5079 }
5080
5081 /* Initialize hsotg start work */
5082 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5083
5084 /* Initialize port reset work */
5085 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5086
5087 /*
5088 * Allocate space for storing data on status transactions. Normally no
5089 * data is sent, but this space acts as a bit bucket. This must be
5090 * done after usb_add_hcd since that function allocates the DMA buffer
5091 * pool.
5092 */
5093 if (hsotg->core_params->dma_enable > 0)
5094 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5095 DWC2_HCD_STATUS_BUF_SIZE,
5096 &hsotg->status_buf_dma, GFP_KERNEL);
5097 else
5098 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5099 GFP_KERNEL);
5100
5101 if (!hsotg->status_buf)
5102 goto error3;
5103
5104 /*
5105 * Create kmem caches to handle descriptor buffers in descriptor
5106 * DMA mode.
5107 * Alignment must be set to 512 bytes.
5108 */
5109 if (hsotg->core_params->dma_desc_enable ||
5110 hsotg->core_params->dma_desc_fs_enable) {
5111 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5112 sizeof(struct dwc2_hcd_dma_desc) *
5113 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5114 NULL);
5115 if (!hsotg->desc_gen_cache) {
5116 dev_err(hsotg->dev,
5117 "unable to create dwc2 generic desc cache\n");
5118
5119 /*
5120 * Disable descriptor dma mode since it will not be
5121 * usable.
5122 */
5123 hsotg->core_params->dma_desc_enable = 0;
5124 hsotg->core_params->dma_desc_fs_enable = 0;
5125 }
5126
5127 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5128 sizeof(struct dwc2_hcd_dma_desc) *
5129 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5130 if (!hsotg->desc_hsisoc_cache) {
5131 dev_err(hsotg->dev,
5132 "unable to create dwc2 hs isoc desc cache\n");
5133
5134 kmem_cache_destroy(hsotg->desc_gen_cache);
5135
5136 /*
5137 * Disable descriptor dma mode since it will not be
5138 * usable.
5139 */
5140 hsotg->core_params->dma_desc_enable = 0;
5141 hsotg->core_params->dma_desc_fs_enable = 0;
5142 }
5143 }
5144
5145 hsotg->otg_port = 1;
5146 hsotg->frame_list = NULL;
5147 hsotg->frame_list_dma = 0;
5148 hsotg->periodic_qh_count = 0;
5149
5150 /* Initiate lx_state to L3 disconnected state */
5151 hsotg->lx_state = DWC2_L3;
5152
5153 hcd->self.otg_port = hsotg->otg_port;
5154
5155 /* Don't support SG list at this point */
5156 hcd->self.sg_tablesize = 0;
5157
5158 if (!IS_ERR_OR_NULL(hsotg->uphy))
5159 otg_set_host(hsotg->uphy->otg, &hcd->self);
5160
5161 /*
5162 * Finish generic HCD initialization and start the HCD. This function
5163 * allocates the DMA buffer pool, registers the USB bus, requests the
5164 * IRQ line, and calls hcd_start method.
5165 */
5166 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5167 if (retval < 0)
5168 goto error4;
5169
5170 device_wakeup_enable(hcd->self.controller);
5171
5172 dwc2_hcd_dump_state(hsotg);
5173
5174 dwc2_enable_global_interrupts(hsotg);
5175
5176 return 0;
5177
5178error4:
5179 kmem_cache_destroy(hsotg->desc_gen_cache);
5180 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5181error3:
5182 dwc2_hcd_release(hsotg);
5183error2:
5184 usb_put_hcd(hcd);
5185error1:
5186 kfree(hsotg->core_params);
5187
5188#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5189 kfree(hsotg->last_frame_num_array);
5190 kfree(hsotg->frame_num_array);
5191#endif
5192
5193 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5194 return retval;
5195}
5196
5197/*
5198 * Removes the HCD.
5199 * Frees memory and resources associated with the HCD and deregisters the bus.
5200 */
5201void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5202{
5203 struct usb_hcd *hcd;
5204
5205 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5206
5207 hcd = dwc2_hsotg_to_hcd(hsotg);
5208 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5209
5210 if (!hcd) {
5211 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5212 __func__);
5213 return;
5214 }
5215
5216 if (!IS_ERR_OR_NULL(hsotg->uphy))
5217 otg_set_host(hsotg->uphy->otg, NULL);
5218
5219 usb_remove_hcd(hcd);
5220 hsotg->priv = NULL;
5221
5222 kmem_cache_destroy(hsotg->desc_gen_cache);
5223 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5224
5225 dwc2_hcd_release(hsotg);
5226 usb_put_hcd(hcd);
5227
5228#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5229 kfree(hsotg->last_frame_num_array);
5230 kfree(hsotg->frame_num_array);
5231#endif
5232}
5233
5234/**
5235 * dwc2_backup_host_registers() - Backup controller host registers.
5236 * When suspending usb bus, registers needs to be backuped
5237 * if controller power is disabled once suspended.
5238 *
5239 * @hsotg: Programming view of the DWC_otg controller
5240 */
5241int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5242{
5243 struct dwc2_hregs_backup *hr;
5244 int i;
5245
5246 dev_dbg(hsotg->dev, "%s\n", __func__);
5247
5248 /* Backup Host regs */
5249 hr = &hsotg->hr_backup;
5250 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5251 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5252 for (i = 0; i < hsotg->core_params->host_channels; ++i)
5253 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5254
5255 hr->hprt0 = dwc2_read_hprt0(hsotg);
5256 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5257 hr->valid = true;
5258
5259 return 0;
5260}
5261
5262/**
5263 * dwc2_restore_host_registers() - Restore controller host registers.
5264 * When resuming usb bus, device registers needs to be restored
5265 * if controller power were disabled.
5266 *
5267 * @hsotg: Programming view of the DWC_otg controller
5268 */
5269int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5270{
5271 struct dwc2_hregs_backup *hr;
5272 int i;
5273
5274 dev_dbg(hsotg->dev, "%s\n", __func__);
5275
5276 /* Restore host regs */
5277 hr = &hsotg->hr_backup;
5278 if (!hr->valid) {
5279 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5280 __func__);
5281 return -EINVAL;
5282 }
5283 hr->valid = false;
5284
5285 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5286 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5287
5288 for (i = 0; i < hsotg->core_params->host_channels; ++i)
5289 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5290
5291 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5292 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5293 hsotg->frame_number = 0;
5294
5295 return 0;
5296}
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/spinlock.h>
45#include <linux/interrupt.h>
46#include <linux/platform_device.h>
47#include <linux/dma-mapping.h>
48#include <linux/delay.h>
49#include <linux/io.h>
50#include <linux/slab.h>
51#include <linux/usb.h>
52
53#include <linux/usb/hcd.h>
54#include <linux/usb/ch11.h>
55
56#include "core.h"
57#include "hcd.h"
58
59static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61/*
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
65 */
66
67/**
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
70 *
71 * @hsotg: Programming view of the DWC_otg controller
72 */
73static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74{
75 u32 intmsk;
76
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79
80 /* Clear any pending interrupts */
81 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82
83 /* Enable the interrupts in the GINTMSK */
84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86 if (!hsotg->params.host_dma)
87 intmsk |= GINTSTS_RXFLVL;
88 if (!hsotg->params.external_id_pin_ctl)
89 intmsk |= GINTSTS_CONIDSTSCHNG;
90
91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 GINTSTS_SESSREQINT;
93
94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 intmsk |= GINTSTS_LPMTRANRCVD;
96
97 dwc2_writel(hsotg, intmsk, GINTMSK);
98}
99
100static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101{
102 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103
104 switch (hsotg->hw_params.arch) {
105 case GHWCFG2_EXT_DMA_ARCH:
106 dev_err(hsotg->dev, "External DMA Mode not supported\n");
107 return -EINVAL;
108
109 case GHWCFG2_INT_DMA_ARCH:
110 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111 if (hsotg->params.ahbcfg != -1) {
112 ahbcfg &= GAHBCFG_CTRL_MASK;
113 ahbcfg |= hsotg->params.ahbcfg &
114 ~GAHBCFG_CTRL_MASK;
115 }
116 break;
117
118 case GHWCFG2_SLAVE_ONLY_ARCH:
119 default:
120 dev_dbg(hsotg->dev, "Slave Only Mode\n");
121 break;
122 }
123
124 if (hsotg->params.host_dma)
125 ahbcfg |= GAHBCFG_DMA_EN;
126 else
127 hsotg->params.dma_desc_enable = false;
128
129 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130
131 return 0;
132}
133
134static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135{
136 u32 usbcfg;
137
138 usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140
141 switch (hsotg->hw_params.op_mode) {
142 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143 if (hsotg->params.otg_cap ==
144 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145 usbcfg |= GUSBCFG_HNPCAP;
146 if (hsotg->params.otg_cap !=
147 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148 usbcfg |= GUSBCFG_SRPCAP;
149 break;
150
151 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154 if (hsotg->params.otg_cap !=
155 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156 usbcfg |= GUSBCFG_SRPCAP;
157 break;
158
159 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162 default:
163 break;
164 }
165
166 dwc2_writel(hsotg, usbcfg, GUSBCFG);
167}
168
169static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170{
171 if (hsotg->vbus_supply)
172 return regulator_enable(hsotg->vbus_supply);
173
174 return 0;
175}
176
177static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178{
179 if (hsotg->vbus_supply)
180 return regulator_disable(hsotg->vbus_supply);
181
182 return 0;
183}
184
185/**
186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187 *
188 * @hsotg: Programming view of DWC_otg controller
189 */
190static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191{
192 u32 intmsk;
193
194 dev_dbg(hsotg->dev, "%s()\n", __func__);
195
196 /* Disable all interrupts */
197 dwc2_writel(hsotg, 0, GINTMSK);
198 dwc2_writel(hsotg, 0, HAINTMSK);
199
200 /* Enable the common interrupts */
201 dwc2_enable_common_interrupts(hsotg);
202
203 /* Enable host mode interrupts without disturbing common interrupts */
204 intmsk = dwc2_readl(hsotg, GINTMSK);
205 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206 dwc2_writel(hsotg, intmsk, GINTMSK);
207}
208
209/**
210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211 *
212 * @hsotg: Programming view of DWC_otg controller
213 */
214static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215{
216 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217
218 /* Disable host mode interrupts without disturbing common interrupts */
219 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221 dwc2_writel(hsotg, intmsk, GINTMSK);
222}
223
224/*
225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226 * For system that have a total fifo depth that is smaller than the default
227 * RX + TX fifo size.
228 *
229 * @hsotg: Programming view of DWC_otg controller
230 */
231static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232{
233 struct dwc2_core_params *params = &hsotg->params;
234 struct dwc2_hw_params *hw = &hsotg->hw_params;
235 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236
237 total_fifo_size = hw->total_fifo_size;
238 rxfsiz = params->host_rx_fifo_size;
239 nptxfsiz = params->host_nperio_tx_fifo_size;
240 ptxfsiz = params->host_perio_tx_fifo_size;
241
242 /*
243 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 * allocation with support for high bandwidth endpoints. Synopsys
245 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 * non-periodic as 512.
247 */
248 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249 /*
250 * For Buffer DMA mode/Scatter Gather DMA mode
251 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 * with n = number of host channel.
253 * 2 * ((1024/4) + 2) = 516
254 */
255 rxfsiz = 516 + hw->host_channels;
256
257 /*
258 * min non-periodic tx fifo depth
259 * 2 * (largest non-periodic USB packet used / 4)
260 * 2 * (512/4) = 256
261 */
262 nptxfsiz = 256;
263
264 /*
265 * min periodic tx fifo depth
266 * (largest packet size*MC)/4
267 * (1024 * 3)/4 = 768
268 */
269 ptxfsiz = 768;
270
271 params->host_rx_fifo_size = rxfsiz;
272 params->host_nperio_tx_fifo_size = nptxfsiz;
273 params->host_perio_tx_fifo_size = ptxfsiz;
274 }
275
276 /*
277 * If the summation of RX, NPTX and PTX fifo sizes is still
278 * bigger than the total_fifo_size, then we have a problem.
279 *
280 * We won't be able to allocate as many endpoints. Right now,
281 * we're just printing an error message, but ideally this FIFO
282 * allocation algorithm would be improved in the future.
283 *
284 * FIXME improve this FIFO allocation algorithm.
285 */
286 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287 dev_err(hsotg->dev, "invalid fifo sizes\n");
288}
289
290static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291{
292 struct dwc2_core_params *params = &hsotg->params;
293 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294
295 if (!params->enable_dynamic_fifo)
296 return;
297
298 dwc2_calculate_dynamic_fifo(hsotg);
299
300 /* Rx FIFO */
301 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304 grxfsiz |= params->host_rx_fifo_size <<
305 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308 dwc2_readl(hsotg, GRXFSIZ));
309
310 /* Non-periodic Tx FIFO */
311 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312 dwc2_readl(hsotg, GNPTXFSIZ));
313 nptxfsiz = params->host_nperio_tx_fifo_size <<
314 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315 nptxfsiz |= params->host_rx_fifo_size <<
316 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319 dwc2_readl(hsotg, GNPTXFSIZ));
320
321 /* Periodic Tx FIFO */
322 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323 dwc2_readl(hsotg, HPTXFSIZ));
324 hptxfsiz = params->host_perio_tx_fifo_size <<
325 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326 hptxfsiz |= (params->host_rx_fifo_size +
327 params->host_nperio_tx_fifo_size) <<
328 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331 dwc2_readl(hsotg, HPTXFSIZ));
332
333 if (hsotg->params.en_multiple_tx_fifo &&
334 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335 /*
336 * This feature was implemented in 2.91a version
337 * Global DFIFOCFG calculation for Host mode -
338 * include RxFIFO, NPTXFIFO and HPTXFIFO
339 */
340 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342 dfifocfg |= (params->host_rx_fifo_size +
343 params->host_nperio_tx_fifo_size +
344 params->host_perio_tx_fifo_size) <<
345 GDFIFOCFG_EPINFOBASE_SHIFT &
346 GDFIFOCFG_EPINFOBASE_MASK;
347 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348 }
349}
350
351/**
352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353 * the HFIR register according to PHY type and speed
354 *
355 * @hsotg: Programming view of DWC_otg controller
356 *
357 * NOTE: The caller can modify the value of the HFIR register only after the
358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359 * has been set
360 */
361u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362{
363 u32 usbcfg;
364 u32 hprt0;
365 int clock = 60; /* default value */
366
367 usbcfg = dwc2_readl(hsotg, GUSBCFG);
368 hprt0 = dwc2_readl(hsotg, HPRT0);
369
370 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371 !(usbcfg & GUSBCFG_PHYIF16))
372 clock = 60;
373 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375 clock = 48;
376 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 clock = 30;
379 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381 clock = 60;
382 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384 clock = 48;
385 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387 clock = 48;
388 if ((usbcfg & GUSBCFG_PHYSEL) &&
389 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390 clock = 48;
391
392 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393 /* High speed case */
394 return 125 * clock - 1;
395
396 /* FS/LS case */
397 return 1000 * clock - 1;
398}
399
400/**
401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402 * buffer
403 *
404 * @hsotg: Programming view of DWC_otg controller
405 * @dest: Destination buffer for the packet
406 * @bytes: Number of bytes to copy to the destination
407 */
408void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409{
410 u32 *data_buf = (u32 *)dest;
411 int word_count = (bytes + 3) / 4;
412 int i;
413
414 /*
415 * Todo: Account for the case where dest is not dword aligned. This
416 * requires reading data from the FIFO into a u32 temp buffer, then
417 * moving it into the data buffer.
418 */
419
420 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421
422 for (i = 0; i < word_count; i++, data_buf++)
423 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
424}
425
426/**
427 * dwc2_dump_channel_info() - Prints the state of a host channel
428 *
429 * @hsotg: Programming view of DWC_otg controller
430 * @chan: Pointer to the channel to dump
431 *
432 * Must be called with interrupt disabled and spinlock held
433 *
434 * NOTE: This function will be removed once the peripheral controller code
435 * is integrated and the driver is stable
436 */
437static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438 struct dwc2_host_chan *chan)
439{
440#ifdef VERBOSE_DEBUG
441 int num_channels = hsotg->params.host_channels;
442 struct dwc2_qh *qh;
443 u32 hcchar;
444 u32 hcsplt;
445 u32 hctsiz;
446 u32 hc_dma;
447 int i;
448
449 if (!chan)
450 return;
451
452 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456
457 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
458 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
459 hcchar, hcsplt);
460 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
461 hctsiz, hc_dma);
462 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 chan->dev_addr, chan->ep_num, chan->ep_is_in);
464 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
465 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
466 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
467 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
468 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
469 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
470 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
471 (unsigned long)chan->xfer_dma);
472 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
473 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
474 dev_dbg(hsotg->dev, " NP inactive sched:\n");
475 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476 qh_list_entry)
477 dev_dbg(hsotg->dev, " %p\n", qh);
478 dev_dbg(hsotg->dev, " NP waiting sched:\n");
479 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480 qh_list_entry)
481 dev_dbg(hsotg->dev, " %p\n", qh);
482 dev_dbg(hsotg->dev, " NP active sched:\n");
483 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484 qh_list_entry)
485 dev_dbg(hsotg->dev, " %p\n", qh);
486 dev_dbg(hsotg->dev, " Channels:\n");
487 for (i = 0; i < num_channels; i++) {
488 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489
490 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
491 }
492#endif /* VERBOSE_DEBUG */
493}
494
495static int _dwc2_hcd_start(struct usb_hcd *hcd);
496
497static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498{
499 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500
501 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502 _dwc2_hcd_start(hcd);
503}
504
505static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506{
507 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508
509 hcd->self.is_b_host = 0;
510}
511
512static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513 int *hub_addr, int *hub_port)
514{
515 struct urb *urb = context;
516
517 if (urb->dev->tt)
518 *hub_addr = urb->dev->tt->hub->devnum;
519 else
520 *hub_addr = 0;
521 *hub_port = urb->dev->ttport;
522}
523
524/*
525 * =========================================================================
526 * Low Level Host Channel Access Functions
527 * =========================================================================
528 */
529
530static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531 struct dwc2_host_chan *chan)
532{
533 u32 hcintmsk = HCINTMSK_CHHLTD;
534
535 switch (chan->ep_type) {
536 case USB_ENDPOINT_XFER_CONTROL:
537 case USB_ENDPOINT_XFER_BULK:
538 dev_vdbg(hsotg->dev, "control/bulk\n");
539 hcintmsk |= HCINTMSK_XFERCOMPL;
540 hcintmsk |= HCINTMSK_STALL;
541 hcintmsk |= HCINTMSK_XACTERR;
542 hcintmsk |= HCINTMSK_DATATGLERR;
543 if (chan->ep_is_in) {
544 hcintmsk |= HCINTMSK_BBLERR;
545 } else {
546 hcintmsk |= HCINTMSK_NAK;
547 hcintmsk |= HCINTMSK_NYET;
548 if (chan->do_ping)
549 hcintmsk |= HCINTMSK_ACK;
550 }
551
552 if (chan->do_split) {
553 hcintmsk |= HCINTMSK_NAK;
554 if (chan->complete_split)
555 hcintmsk |= HCINTMSK_NYET;
556 else
557 hcintmsk |= HCINTMSK_ACK;
558 }
559
560 if (chan->error_state)
561 hcintmsk |= HCINTMSK_ACK;
562 break;
563
564 case USB_ENDPOINT_XFER_INT:
565 if (dbg_perio())
566 dev_vdbg(hsotg->dev, "intr\n");
567 hcintmsk |= HCINTMSK_XFERCOMPL;
568 hcintmsk |= HCINTMSK_NAK;
569 hcintmsk |= HCINTMSK_STALL;
570 hcintmsk |= HCINTMSK_XACTERR;
571 hcintmsk |= HCINTMSK_DATATGLERR;
572 hcintmsk |= HCINTMSK_FRMOVRUN;
573
574 if (chan->ep_is_in)
575 hcintmsk |= HCINTMSK_BBLERR;
576 if (chan->error_state)
577 hcintmsk |= HCINTMSK_ACK;
578 if (chan->do_split) {
579 if (chan->complete_split)
580 hcintmsk |= HCINTMSK_NYET;
581 else
582 hcintmsk |= HCINTMSK_ACK;
583 }
584 break;
585
586 case USB_ENDPOINT_XFER_ISOC:
587 if (dbg_perio())
588 dev_vdbg(hsotg->dev, "isoc\n");
589 hcintmsk |= HCINTMSK_XFERCOMPL;
590 hcintmsk |= HCINTMSK_FRMOVRUN;
591 hcintmsk |= HCINTMSK_ACK;
592
593 if (chan->ep_is_in) {
594 hcintmsk |= HCINTMSK_XACTERR;
595 hcintmsk |= HCINTMSK_BBLERR;
596 }
597 break;
598 default:
599 dev_err(hsotg->dev, "## Unknown EP type ##\n");
600 break;
601 }
602
603 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604 if (dbg_hc(chan))
605 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606}
607
608static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609 struct dwc2_host_chan *chan)
610{
611 u32 hcintmsk = HCINTMSK_CHHLTD;
612
613 /*
614 * For Descriptor DMA mode core halts the channel on AHB error.
615 * Interrupt is not required.
616 */
617 if (!hsotg->params.dma_desc_enable) {
618 if (dbg_hc(chan))
619 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620 hcintmsk |= HCINTMSK_AHBERR;
621 } else {
622 if (dbg_hc(chan))
623 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625 hcintmsk |= HCINTMSK_XFERCOMPL;
626 }
627
628 if (chan->error_state && !chan->do_split &&
629 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630 if (dbg_hc(chan))
631 dev_vdbg(hsotg->dev, "setting ACK\n");
632 hcintmsk |= HCINTMSK_ACK;
633 if (chan->ep_is_in) {
634 hcintmsk |= HCINTMSK_DATATGLERR;
635 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636 hcintmsk |= HCINTMSK_NAK;
637 }
638 }
639
640 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641 if (dbg_hc(chan))
642 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643}
644
645static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646 struct dwc2_host_chan *chan)
647{
648 u32 intmsk;
649
650 if (hsotg->params.host_dma) {
651 if (dbg_hc(chan))
652 dev_vdbg(hsotg->dev, "DMA enabled\n");
653 dwc2_hc_enable_dma_ints(hsotg, chan);
654 } else {
655 if (dbg_hc(chan))
656 dev_vdbg(hsotg->dev, "DMA disabled\n");
657 dwc2_hc_enable_slave_ints(hsotg, chan);
658 }
659
660 /* Enable the top level host channel interrupt */
661 intmsk = dwc2_readl(hsotg, HAINTMSK);
662 intmsk |= 1 << chan->hc_num;
663 dwc2_writel(hsotg, intmsk, HAINTMSK);
664 if (dbg_hc(chan))
665 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666
667 /* Make sure host channel interrupts are enabled */
668 intmsk = dwc2_readl(hsotg, GINTMSK);
669 intmsk |= GINTSTS_HCHINT;
670 dwc2_writel(hsotg, intmsk, GINTMSK);
671 if (dbg_hc(chan))
672 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673}
674
675/**
676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677 * a specific endpoint
678 *
679 * @hsotg: Programming view of DWC_otg controller
680 * @chan: Information needed to initialize the host channel
681 *
682 * The HCCHARn register is set up with the characteristics specified in chan.
683 * Host channel interrupts that may need to be serviced while this transfer is
684 * in progress are enabled.
685 */
686static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687{
688 u8 hc_num = chan->hc_num;
689 u32 hcintmsk;
690 u32 hcchar;
691 u32 hcsplt = 0;
692
693 if (dbg_hc(chan))
694 dev_vdbg(hsotg->dev, "%s()\n", __func__);
695
696 /* Clear old interrupt conditions for this host channel */
697 hcintmsk = 0xffffffff;
698 hcintmsk &= ~HCINTMSK_RESERVED14_31;
699 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700
701 /* Enable channel interrupts required for this transfer */
702 dwc2_hc_enable_ints(hsotg, chan);
703
704 /*
705 * Program the HCCHARn register with the endpoint characteristics for
706 * the current transfer
707 */
708 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710 if (chan->ep_is_in)
711 hcchar |= HCCHAR_EPDIR;
712 if (chan->speed == USB_SPEED_LOW)
713 hcchar |= HCCHAR_LSPDDEV;
714 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717 if (dbg_hc(chan)) {
718 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719 hc_num, hcchar);
720
721 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722 __func__, hc_num);
723 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
724 chan->dev_addr);
725 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
726 chan->ep_num);
727 dev_vdbg(hsotg->dev, " Is In: %d\n",
728 chan->ep_is_in);
729 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
730 chan->speed == USB_SPEED_LOW);
731 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
732 chan->ep_type);
733 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
734 chan->max_packet);
735 }
736
737 /* Program the HCSPLT register for SPLITs */
738 if (chan->do_split) {
739 if (dbg_hc(chan))
740 dev_vdbg(hsotg->dev,
741 "Programming HC %d with split --> %s\n",
742 hc_num,
743 chan->complete_split ? "CSPLIT" : "SSPLIT");
744 if (chan->complete_split)
745 hcsplt |= HCSPLT_COMPSPLT;
746 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747 HCSPLT_XACTPOS_MASK;
748 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749 HCSPLT_HUBADDR_MASK;
750 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751 HCSPLT_PRTADDR_MASK;
752 if (dbg_hc(chan)) {
753 dev_vdbg(hsotg->dev, " comp split %d\n",
754 chan->complete_split);
755 dev_vdbg(hsotg->dev, " xact pos %d\n",
756 chan->xact_pos);
757 dev_vdbg(hsotg->dev, " hub addr %d\n",
758 chan->hub_addr);
759 dev_vdbg(hsotg->dev, " hub port %d\n",
760 chan->hub_port);
761 dev_vdbg(hsotg->dev, " is_in %d\n",
762 chan->ep_is_in);
763 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
764 chan->max_packet);
765 dev_vdbg(hsotg->dev, " xferlen %d\n",
766 chan->xfer_len);
767 }
768 }
769
770 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771}
772
773/**
774 * dwc2_hc_halt() - Attempts to halt a host channel
775 *
776 * @hsotg: Controller register interface
777 * @chan: Host channel to halt
778 * @halt_status: Reason for halting the channel
779 *
780 * This function should only be called in Slave mode or to abort a transfer in
781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782 * controller halts the channel when the transfer is complete or a condition
783 * occurs that requires application intervention.
784 *
785 * In slave mode, checks for a free request queue entry, then sets the Channel
786 * Enable and Channel Disable bits of the Host Channel Characteristics
787 * register of the specified channel to intiate the halt. If there is no free
788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
789 * register to flush requests for this channel. In the latter case, sets a
790 * flag to indicate that the host channel needs to be halted when a request
791 * queue slot is open.
792 *
793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794 * HCCHARn register. The controller ensures there is space in the request
795 * queue before submitting the halt request.
796 *
797 * Some time may elapse before the core flushes any posted requests for this
798 * host channel and halts. The Channel Halted interrupt handler completes the
799 * deactivation of the host channel.
800 */
801void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802 enum dwc2_halt_status halt_status)
803{
804 u32 nptxsts, hptxsts, hcchar;
805
806 if (dbg_hc(chan))
807 dev_vdbg(hsotg->dev, "%s()\n", __func__);
808
809 /*
810 * In buffer DMA or external DMA mode channel can't be halted
811 * for non-split periodic channels. At the end of the next
812 * uframe/frame (in the worst case), the core generates a channel
813 * halted and disables the channel automatically.
814 */
815 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817 if (!chan->do_split &&
818 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821 __func__);
822 return;
823 }
824 }
825
826 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828
829 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830 halt_status == DWC2_HC_XFER_AHB_ERR) {
831 /*
832 * Disable all channel interrupts except Ch Halted. The QTD
833 * and QH state associated with this transfer has been cleared
834 * (in the case of URB_DEQUEUE), so the channel needs to be
835 * shut down carefully to prevent crashes.
836 */
837 u32 hcintmsk = HCINTMSK_CHHLTD;
838
839 dev_vdbg(hsotg->dev, "dequeue/error\n");
840 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841
842 /*
843 * Make sure no other interrupts besides halt are currently
844 * pending. Handling another interrupt could cause a crash due
845 * to the QTD and QH state.
846 */
847 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848
849 /*
850 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 * even if the channel was already halted for some other
852 * reason
853 */
854 chan->halt_status = halt_status;
855
856 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857 if (!(hcchar & HCCHAR_CHENA)) {
858 /*
859 * The channel is either already halted or it hasn't
860 * started yet. In DMA mode, the transfer may halt if
861 * it finishes normally or a condition occurs that
862 * requires driver intervention. Don't want to halt
863 * the channel again. In either Slave or DMA mode,
864 * it's possible that the transfer has been assigned
865 * to a channel, but not started yet when an URB is
866 * dequeued. Don't want to halt a channel that hasn't
867 * started yet.
868 */
869 return;
870 }
871 }
872 if (chan->halt_pending) {
873 /*
874 * A halt has already been issued for this channel. This might
875 * happen when a transfer is aborted by a higher level in
876 * the stack.
877 */
878 dev_vdbg(hsotg->dev,
879 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 __func__, chan->hc_num);
881 return;
882 }
883
884 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885
886 /* No need to set the bit in DDMA for disabling the channel */
887 /* TODO check it everywhere channel is disabled */
888 if (!hsotg->params.dma_desc_enable) {
889 if (dbg_hc(chan))
890 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891 hcchar |= HCCHAR_CHENA;
892 } else {
893 if (dbg_hc(chan))
894 dev_dbg(hsotg->dev, "desc DMA enabled\n");
895 }
896 hcchar |= HCCHAR_CHDIS;
897
898 if (!hsotg->params.host_dma) {
899 if (dbg_hc(chan))
900 dev_vdbg(hsotg->dev, "DMA not enabled\n");
901 hcchar |= HCCHAR_CHENA;
902
903 /* Check for space in the request queue to issue the halt */
904 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906 dev_vdbg(hsotg->dev, "control/bulk\n");
907 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909 dev_vdbg(hsotg->dev, "Disabling channel\n");
910 hcchar &= ~HCCHAR_CHENA;
911 }
912 } else {
913 if (dbg_perio())
914 dev_vdbg(hsotg->dev, "isoc/intr\n");
915 hptxsts = dwc2_readl(hsotg, HPTXSTS);
916 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917 hsotg->queuing_high_bandwidth) {
918 if (dbg_perio())
919 dev_vdbg(hsotg->dev, "Disabling channel\n");
920 hcchar &= ~HCCHAR_CHENA;
921 }
922 }
923 } else {
924 if (dbg_hc(chan))
925 dev_vdbg(hsotg->dev, "DMA enabled\n");
926 }
927
928 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929 chan->halt_status = halt_status;
930
931 if (hcchar & HCCHAR_CHENA) {
932 if (dbg_hc(chan))
933 dev_vdbg(hsotg->dev, "Channel enabled\n");
934 chan->halt_pending = 1;
935 chan->halt_on_queue = 0;
936 } else {
937 if (dbg_hc(chan))
938 dev_vdbg(hsotg->dev, "Channel disabled\n");
939 chan->halt_on_queue = 1;
940 }
941
942 if (dbg_hc(chan)) {
943 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944 chan->hc_num);
945 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
946 hcchar);
947 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
948 chan->halt_pending);
949 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
950 chan->halt_on_queue);
951 dev_vdbg(hsotg->dev, " halt_status: %d\n",
952 chan->halt_status);
953 }
954}
955
956/**
957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958 *
959 * @hsotg: Programming view of DWC_otg controller
960 * @chan: Identifies the host channel to clean up
961 *
962 * This function is normally called after a transfer is done and the host
963 * channel is being released
964 */
965void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966{
967 u32 hcintmsk;
968
969 chan->xfer_started = 0;
970
971 list_del_init(&chan->split_order_list_entry);
972
973 /*
974 * Clear channel interrupt enables and any unhandled channel interrupt
975 * conditions
976 */
977 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978 hcintmsk = 0xffffffff;
979 hcintmsk &= ~HCINTMSK_RESERVED14_31;
980 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981}
982
983/**
984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985 * which frame a periodic transfer should occur
986 *
987 * @hsotg: Programming view of DWC_otg controller
988 * @chan: Identifies the host channel to set up and its properties
989 * @hcchar: Current value of the HCCHAR register for the specified host channel
990 *
991 * This function has no effect on non-periodic transfers
992 */
993static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994 struct dwc2_host_chan *chan, u32 *hcchar)
995{
996 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998 int host_speed;
999 int xfer_ns;
1000 int xfer_us;
1001 int bytes_in_fifo;
1002 u16 fifo_space;
1003 u16 frame_number;
1004 u16 wire_frame;
1005
1006 /*
1007 * Try to figure out if we're an even or odd frame. If we set
1008 * even and the current frame number is even the the transfer
1009 * will happen immediately. Similar if both are odd. If one is
1010 * even and the other is odd then the transfer will happen when
1011 * the frame number ticks.
1012 *
1013 * There's a bit of a balancing act to get this right.
1014 * Sometimes we may want to send data in the current frame (AK
1015 * right away). We might want to do this if the frame number
1016 * _just_ ticked, but we might also want to do this in order
1017 * to continue a split transaction that happened late in a
1018 * microframe (so we didn't know to queue the next transfer
1019 * until the frame number had ticked). The problem is that we
1020 * need a lot of knowledge to know if there's actually still
1021 * time to send things or if it would be better to wait until
1022 * the next frame.
1023 *
1024 * We can look at how much time is left in the current frame
1025 * and make a guess about whether we'll have time to transfer.
1026 * We'll do that.
1027 */
1028
1029 /* Get speed host is running at */
1030 host_speed = (chan->speed != USB_SPEED_HIGH &&
1031 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032
1033 /* See how many bytes are in the periodic FIFO right now */
1034 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036 bytes_in_fifo = sizeof(u32) *
1037 (hsotg->params.host_perio_tx_fifo_size -
1038 fifo_space);
1039
1040 /*
1041 * Roughly estimate bus time for everything in the periodic
1042 * queue + our new transfer. This is "rough" because we're
1043 * using a function that makes takes into account IN/OUT
1044 * and INT/ISO and we're just slamming in one value for all
1045 * transfers. This should be an over-estimate and that should
1046 * be OK, but we can probably tighten it.
1047 */
1048 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049 chan->xfer_len + bytes_in_fifo);
1050 xfer_us = NS_TO_US(xfer_ns);
1051
1052 /* See what frame number we'll be at by the time we finish */
1053 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054
1055 /* This is when we were scheduled to be on the wire */
1056 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057
1058 /*
1059 * If we'd finish _after_ the frame we're scheduled in then
1060 * it's hopeless. Just schedule right away and hope for the
1061 * best. Note that it _might_ be wise to call back into the
1062 * scheduler to pick a better frame, but this is better than
1063 * nothing.
1064 */
1065 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066 dwc2_sch_vdbg(hsotg,
1067 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 chan->qh, wire_frame, frame_number,
1069 dwc2_frame_num_dec(frame_number,
1070 wire_frame));
1071 wire_frame = frame_number;
1072
1073 /*
1074 * We picked a different frame number; communicate this
1075 * back to the scheduler so it doesn't try to schedule
1076 * another in the same frame.
1077 *
1078 * Remember that next_active_frame is 1 before the wire
1079 * frame.
1080 */
1081 chan->qh->next_active_frame =
1082 dwc2_frame_num_dec(frame_number, 1);
1083 }
1084
1085 if (wire_frame & 1)
1086 *hcchar |= HCCHAR_ODDFRM;
1087 else
1088 *hcchar &= ~HCCHAR_ODDFRM;
1089 }
1090}
1091
1092static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093{
1094 /* Set up the initial PID for the transfer */
1095 if (chan->speed == USB_SPEED_HIGH) {
1096 if (chan->ep_is_in) {
1097 if (chan->multi_count == 1)
1098 chan->data_pid_start = DWC2_HC_PID_DATA0;
1099 else if (chan->multi_count == 2)
1100 chan->data_pid_start = DWC2_HC_PID_DATA1;
1101 else
1102 chan->data_pid_start = DWC2_HC_PID_DATA2;
1103 } else {
1104 if (chan->multi_count == 1)
1105 chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 else
1107 chan->data_pid_start = DWC2_HC_PID_MDATA;
1108 }
1109 } else {
1110 chan->data_pid_start = DWC2_HC_PID_DATA0;
1111 }
1112}
1113
1114/**
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116 * the Host Channel
1117 *
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan: Information needed to initialize the host channel
1120 *
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1124 *
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1127 */
1128static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129 struct dwc2_host_chan *chan)
1130{
1131 u32 i;
1132 u32 remaining_count;
1133 u32 byte_count;
1134 u32 dword_count;
1135 u32 *data_buf = (u32 *)chan->xfer_buf;
1136
1137 if (dbg_hc(chan))
1138 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139
1140 remaining_count = chan->xfer_len - chan->xfer_count;
1141 if (remaining_count > chan->max_packet)
1142 byte_count = chan->max_packet;
1143 else
1144 byte_count = remaining_count;
1145
1146 dword_count = (byte_count + 3) / 4;
1147
1148 if (((unsigned long)data_buf & 0x3) == 0) {
1149 /* xfer_buf is DWORD aligned */
1150 for (i = 0; i < dword_count; i++, data_buf++)
1151 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152 } else {
1153 /* xfer_buf is not DWORD aligned */
1154 for (i = 0; i < dword_count; i++, data_buf++) {
1155 u32 data = data_buf[0] | data_buf[1] << 8 |
1156 data_buf[2] << 16 | data_buf[3] << 24;
1157 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158 }
1159 }
1160
1161 chan->xfer_count += byte_count;
1162 chan->xfer_buf += byte_count;
1163}
1164
1165/**
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1167 *
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan: Information needed to initialize the host channel
1170 *
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1173 */
1174static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175 struct dwc2_host_chan *chan)
1176{
1177 u32 hcchar;
1178 u32 hctsiz;
1179
1180 if (dbg_hc(chan))
1181 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182 chan->hc_num);
1183
1184 hctsiz = TSIZ_DOPNG;
1185 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187
1188 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189 hcchar |= HCCHAR_CHENA;
1190 hcchar &= ~HCCHAR_CHDIS;
1191 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192}
1193
1194/**
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1197 *
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan: Information needed to initialize the host channel. The xfer_len value
1200 * may be reduced to accommodate the max widths of the XferSize and
1201 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 * changed to reflect the final xfer_len value.
1203 *
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1206 * and Tx Data FIFO.
1207 *
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1210 * Host ISR.
1211 *
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1215 *
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1220 *
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1225 * transfer.
1226 */
1227static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228 struct dwc2_host_chan *chan)
1229{
1230 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232 u32 hcchar;
1233 u32 hctsiz = 0;
1234 u16 num_packets;
1235 u32 ec_mc;
1236
1237 if (dbg_hc(chan))
1238 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239
1240 if (chan->do_ping) {
1241 if (!hsotg->params.host_dma) {
1242 if (dbg_hc(chan))
1243 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244 dwc2_hc_do_ping(hsotg, chan);
1245 chan->xfer_started = 1;
1246 return;
1247 }
1248
1249 if (dbg_hc(chan))
1250 dev_vdbg(hsotg->dev, "ping, DMA\n");
1251
1252 hctsiz |= TSIZ_DOPNG;
1253 }
1254
1255 if (chan->do_split) {
1256 if (dbg_hc(chan))
1257 dev_vdbg(hsotg->dev, "split\n");
1258 num_packets = 1;
1259
1260 if (chan->complete_split && !chan->ep_is_in)
1261 /*
1262 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 * core doesn't expect any data written to the FIFO
1264 */
1265 chan->xfer_len = 0;
1266 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267 chan->xfer_len = chan->max_packet;
1268 else if (!chan->ep_is_in && chan->xfer_len > 188)
1269 chan->xfer_len = 188;
1270
1271 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272 TSIZ_XFERSIZE_MASK;
1273
1274 /* For split set ec_mc for immediate retries */
1275 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277 ec_mc = 3;
1278 else
1279 ec_mc = 1;
1280 } else {
1281 if (dbg_hc(chan))
1282 dev_vdbg(hsotg->dev, "no split\n");
1283 /*
1284 * Ensure that the transfer length and packet count will fit
1285 * in the widths allocated for them in the HCTSIZn register
1286 */
1287 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289 /*
1290 * Make sure the transfer size is no larger than one
1291 * (micro)frame's worth of data. (A check was done
1292 * when the periodic transfer was accepted to ensure
1293 * that a (micro)frame's worth of data can be
1294 * programmed into a channel.)
1295 */
1296 u32 max_periodic_len =
1297 chan->multi_count * chan->max_packet;
1298
1299 if (chan->xfer_len > max_periodic_len)
1300 chan->xfer_len = max_periodic_len;
1301 } else if (chan->xfer_len > max_hc_xfer_size) {
1302 /*
1303 * Make sure that xfer_len is a multiple of max packet
1304 * size
1305 */
1306 chan->xfer_len =
1307 max_hc_xfer_size - chan->max_packet + 1;
1308 }
1309
1310 if (chan->xfer_len > 0) {
1311 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312 chan->max_packet;
1313 if (num_packets > max_hc_pkt_count) {
1314 num_packets = max_hc_pkt_count;
1315 chan->xfer_len = num_packets * chan->max_packet;
1316 }
1317 } else {
1318 /* Need 1 packet for transfer length of 0 */
1319 num_packets = 1;
1320 }
1321
1322 if (chan->ep_is_in)
1323 /*
1324 * Always program an integral # of max packets for IN
1325 * transfers
1326 */
1327 chan->xfer_len = num_packets * chan->max_packet;
1328
1329 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331 /*
1332 * Make sure that the multi_count field matches the
1333 * actual transfer length
1334 */
1335 chan->multi_count = num_packets;
1336
1337 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338 dwc2_set_pid_isoc(chan);
1339
1340 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341 TSIZ_XFERSIZE_MASK;
1342
1343 /* The ec_mc gets the multi_count for non-split */
1344 ec_mc = chan->multi_count;
1345 }
1346
1347 chan->start_pkt_count = num_packets;
1348 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350 TSIZ_SC_MC_PID_MASK;
1351 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352 if (dbg_hc(chan)) {
1353 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354 hctsiz, chan->hc_num);
1355
1356 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357 chan->hc_num);
1358 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1359 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360 TSIZ_XFERSIZE_SHIFT);
1361 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1362 (hctsiz & TSIZ_PKTCNT_MASK) >>
1363 TSIZ_PKTCNT_SHIFT);
1364 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1365 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366 TSIZ_SC_MC_PID_SHIFT);
1367 }
1368
1369 if (hsotg->params.host_dma) {
1370 dma_addr_t dma_addr;
1371
1372 if (chan->align_buf) {
1373 if (dbg_hc(chan))
1374 dev_vdbg(hsotg->dev, "align_buf\n");
1375 dma_addr = chan->align_buf;
1376 } else {
1377 dma_addr = chan->xfer_dma;
1378 }
1379 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380
1381 if (dbg_hc(chan))
1382 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383 (unsigned long)dma_addr, chan->hc_num);
1384 }
1385
1386 /* Start the split */
1387 if (chan->do_split) {
1388 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389
1390 hcsplt |= HCSPLT_SPLTENA;
1391 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392 }
1393
1394 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395 hcchar &= ~HCCHAR_MULTICNT_MASK;
1396 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398
1399 if (hcchar & HCCHAR_CHDIS)
1400 dev_warn(hsotg->dev,
1401 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402 __func__, chan->hc_num, hcchar);
1403
1404 /* Set host channel enable after all other setup is complete */
1405 hcchar |= HCCHAR_CHENA;
1406 hcchar &= ~HCCHAR_CHDIS;
1407
1408 if (dbg_hc(chan))
1409 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1410 (hcchar & HCCHAR_MULTICNT_MASK) >>
1411 HCCHAR_MULTICNT_SHIFT);
1412
1413 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414 if (dbg_hc(chan))
1415 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416 chan->hc_num);
1417
1418 chan->xfer_started = 1;
1419 chan->requests++;
1420
1421 if (!hsotg->params.host_dma &&
1422 !chan->ep_is_in && chan->xfer_len > 0)
1423 /* Load OUT packet into the appropriate Tx FIFO */
1424 dwc2_hc_write_packet(hsotg, chan);
1425}
1426
1427/**
1428 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429 * host channel and starts the transfer in Descriptor DMA mode
1430 *
1431 * @hsotg: Programming view of DWC_otg controller
1432 * @chan: Information needed to initialize the host channel
1433 *
1434 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436 * with micro-frame bitmap.
1437 *
1438 * Initializes HCDMA register with descriptor list address and CTD value then
1439 * starts the transfer via enabling the channel.
1440 */
1441void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442 struct dwc2_host_chan *chan)
1443{
1444 u32 hcchar;
1445 u32 hctsiz = 0;
1446
1447 if (chan->do_ping)
1448 hctsiz |= TSIZ_DOPNG;
1449
1450 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451 dwc2_set_pid_isoc(chan);
1452
1453 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455 TSIZ_SC_MC_PID_MASK;
1456
1457 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459
1460 /* Non-zero only for high-speed interrupt endpoints */
1461 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462
1463 if (dbg_hc(chan)) {
1464 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465 chan->hc_num);
1466 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1467 chan->data_pid_start);
1468 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1469 }
1470
1471 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472
1473 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474 chan->desc_list_sz, DMA_TO_DEVICE);
1475
1476 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477
1478 if (dbg_hc(chan))
1479 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480 &chan->desc_list_addr, chan->hc_num);
1481
1482 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483 hcchar &= ~HCCHAR_MULTICNT_MASK;
1484 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485 HCCHAR_MULTICNT_MASK;
1486
1487 if (hcchar & HCCHAR_CHDIS)
1488 dev_warn(hsotg->dev,
1489 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490 __func__, chan->hc_num, hcchar);
1491
1492 /* Set host channel enable after all other setup is complete */
1493 hcchar |= HCCHAR_CHENA;
1494 hcchar &= ~HCCHAR_CHDIS;
1495
1496 if (dbg_hc(chan))
1497 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1498 (hcchar & HCCHAR_MULTICNT_MASK) >>
1499 HCCHAR_MULTICNT_SHIFT);
1500
1501 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502 if (dbg_hc(chan))
1503 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504 chan->hc_num);
1505
1506 chan->xfer_started = 1;
1507 chan->requests++;
1508}
1509
1510/**
1511 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512 * a previous call to dwc2_hc_start_transfer()
1513 *
1514 * @hsotg: Programming view of DWC_otg controller
1515 * @chan: Information needed to initialize the host channel
1516 *
1517 * The caller must ensure there is sufficient space in the request queue and Tx
1518 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519 * the controller acts autonomously to complete transfers programmed to a host
1520 * channel.
1521 *
1522 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523 * if there is any data remaining to be queued. For an IN transfer, another
1524 * data packet is always requested. For the SETUP phase of a control transfer,
1525 * this function does nothing.
1526 *
1527 * Return: 1 if a new request is queued, 0 if no more requests are required
1528 * for this transfer
1529 */
1530static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531 struct dwc2_host_chan *chan)
1532{
1533 if (dbg_hc(chan))
1534 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535 chan->hc_num);
1536
1537 if (chan->do_split)
1538 /* SPLITs always queue just once per channel */
1539 return 0;
1540
1541 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542 /* SETUPs are queued only once since they can't be NAK'd */
1543 return 0;
1544
1545 if (chan->ep_is_in) {
1546 /*
1547 * Always queue another request for other IN transfers. If
1548 * back-to-back INs are issued and NAKs are received for both,
1549 * the driver may still be processing the first NAK when the
1550 * second NAK is received. When the interrupt handler clears
1551 * the NAK interrupt for the first NAK, the second NAK will
1552 * not be seen. So we can't depend on the NAK interrupt
1553 * handler to requeue a NAK'd request. Instead, IN requests
1554 * are issued each time this function is called. When the
1555 * transfer completes, the extra requests for the channel will
1556 * be flushed.
1557 */
1558 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559
1560 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561 hcchar |= HCCHAR_CHENA;
1562 hcchar &= ~HCCHAR_CHDIS;
1563 if (dbg_hc(chan))
1564 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1565 hcchar);
1566 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567 chan->requests++;
1568 return 1;
1569 }
1570
1571 /* OUT transfers */
1572
1573 if (chan->xfer_count < chan->xfer_len) {
1574 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576 u32 hcchar = dwc2_readl(hsotg,
1577 HCCHAR(chan->hc_num));
1578
1579 dwc2_hc_set_even_odd_frame(hsotg, chan,
1580 &hcchar);
1581 }
1582
1583 /* Load OUT packet into the appropriate Tx FIFO */
1584 dwc2_hc_write_packet(hsotg, chan);
1585 chan->requests++;
1586 return 1;
1587 }
1588
1589 return 0;
1590}
1591
1592/*
1593 * =========================================================================
1594 * HCD
1595 * =========================================================================
1596 */
1597
1598/*
1599 * Processes all the URBs in a single list of QHs. Completes them with
1600 * -ETIMEDOUT and frees the QTD.
1601 *
1602 * Must be called with interrupt disabled and spinlock held
1603 */
1604static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605 struct list_head *qh_list)
1606{
1607 struct dwc2_qh *qh, *qh_tmp;
1608 struct dwc2_qtd *qtd, *qtd_tmp;
1609
1610 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612 qtd_list_entry) {
1613 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615 }
1616 }
1617}
1618
1619static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620 struct list_head *qh_list)
1621{
1622 struct dwc2_qtd *qtd, *qtd_tmp;
1623 struct dwc2_qh *qh, *qh_tmp;
1624 unsigned long flags;
1625
1626 if (!qh_list->next)
1627 /* The list hasn't been initialized yet */
1628 return;
1629
1630 spin_lock_irqsave(&hsotg->lock, flags);
1631
1632 /* Ensure there are no QTDs or URBs left */
1633 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634
1635 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636 dwc2_hcd_qh_unlink(hsotg, qh);
1637
1638 /* Free each QTD in the QH's QTD list */
1639 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640 qtd_list_entry)
1641 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642
1643 if (qh->channel && qh->channel->qh == qh)
1644 qh->channel->qh = NULL;
1645
1646 spin_unlock_irqrestore(&hsotg->lock, flags);
1647 dwc2_hcd_qh_free(hsotg, qh);
1648 spin_lock_irqsave(&hsotg->lock, flags);
1649 }
1650
1651 spin_unlock_irqrestore(&hsotg->lock, flags);
1652}
1653
1654/*
1655 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656 * and periodic schedules. The QTD associated with each URB is removed from
1657 * the schedule and freed. This function may be called when a disconnect is
1658 * detected or when the HCD is being stopped.
1659 *
1660 * Must be called with interrupt disabled and spinlock held
1661 */
1662static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663{
1664 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671}
1672
1673/**
1674 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675 *
1676 * @hsotg: Pointer to struct dwc2_hsotg
1677 */
1678void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679{
1680 u32 hprt0;
1681
1682 if (hsotg->op_state == OTG_STATE_B_HOST) {
1683 /*
1684 * Reset the port. During a HNP mode switch the reset
1685 * needs to occur within 1ms and have a duration of at
1686 * least 50ms.
1687 */
1688 hprt0 = dwc2_read_hprt0(hsotg);
1689 hprt0 |= HPRT0_RST;
1690 dwc2_writel(hsotg, hprt0, HPRT0);
1691 }
1692
1693 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694 msecs_to_jiffies(50));
1695}
1696
1697/* Must be called with interrupt disabled and spinlock held */
1698static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699{
1700 int num_channels = hsotg->params.host_channels;
1701 struct dwc2_host_chan *channel;
1702 u32 hcchar;
1703 int i;
1704
1705 if (!hsotg->params.host_dma) {
1706 /* Flush out any channel requests in slave mode */
1707 for (i = 0; i < num_channels; i++) {
1708 channel = hsotg->hc_ptr_array[i];
1709 if (!list_empty(&channel->hc_list_entry))
1710 continue;
1711 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712 if (hcchar & HCCHAR_CHENA) {
1713 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714 hcchar |= HCCHAR_CHDIS;
1715 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716 }
1717 }
1718 }
1719
1720 for (i = 0; i < num_channels; i++) {
1721 channel = hsotg->hc_ptr_array[i];
1722 if (!list_empty(&channel->hc_list_entry))
1723 continue;
1724 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725 if (hcchar & HCCHAR_CHENA) {
1726 /* Halt the channel */
1727 hcchar |= HCCHAR_CHDIS;
1728 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729 }
1730
1731 dwc2_hc_cleanup(hsotg, channel);
1732 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733 /*
1734 * Added for Descriptor DMA to prevent channel double cleanup in
1735 * release_channel_ddma(), which is called from ep_disable when
1736 * device disconnects
1737 */
1738 channel->qh = NULL;
1739 }
1740 /* All channels have been freed, mark them available */
1741 if (hsotg->params.uframe_sched) {
1742 hsotg->available_host_channels =
1743 hsotg->params.host_channels;
1744 } else {
1745 hsotg->non_periodic_channels = 0;
1746 hsotg->periodic_channels = 0;
1747 }
1748}
1749
1750/**
1751 * dwc2_hcd_connect() - Handles connect of the HCD
1752 *
1753 * @hsotg: Pointer to struct dwc2_hsotg
1754 *
1755 * Must be called with interrupt disabled and spinlock held
1756 */
1757void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758{
1759 if (hsotg->lx_state != DWC2_L0)
1760 usb_hcd_resume_root_hub(hsotg->priv);
1761
1762 hsotg->flags.b.port_connect_status_change = 1;
1763 hsotg->flags.b.port_connect_status = 1;
1764}
1765
1766/**
1767 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768 *
1769 * @hsotg: Pointer to struct dwc2_hsotg
1770 * @force: If true, we won't try to reconnect even if we see device connected.
1771 *
1772 * Must be called with interrupt disabled and spinlock held
1773 */
1774void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775{
1776 u32 intr;
1777 u32 hprt0;
1778
1779 /* Set status flags for the hub driver */
1780 hsotg->flags.b.port_connect_status_change = 1;
1781 hsotg->flags.b.port_connect_status = 0;
1782
1783 /*
1784 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785 * interrupt mask and status bits and disabling subsequent host
1786 * channel interrupts.
1787 */
1788 intr = dwc2_readl(hsotg, GINTMSK);
1789 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790 dwc2_writel(hsotg, intr, GINTMSK);
1791 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792 dwc2_writel(hsotg, intr, GINTSTS);
1793
1794 /*
1795 * Turn off the vbus power only if the core has transitioned to device
1796 * mode. If still in host mode, need to keep power on to detect a
1797 * reconnection.
1798 */
1799 if (dwc2_is_device_mode(hsotg)) {
1800 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802 dwc2_writel(hsotg, 0, HPRT0);
1803 }
1804
1805 dwc2_disable_host_interrupts(hsotg);
1806 }
1807
1808 /* Respond with an error status to all URBs in the schedule */
1809 dwc2_kill_all_urbs(hsotg);
1810
1811 if (dwc2_is_host_mode(hsotg))
1812 /* Clean up any host channels that were in use */
1813 dwc2_hcd_cleanup_channels(hsotg);
1814
1815 dwc2_host_disconnect(hsotg);
1816
1817 /*
1818 * Add an extra check here to see if we're actually connected but
1819 * we don't have a detection interrupt pending. This can happen if:
1820 * 1. hardware sees connect
1821 * 2. hardware sees disconnect
1822 * 3. hardware sees connect
1823 * 4. dwc2_port_intr() - clears connect interrupt
1824 * 5. dwc2_handle_common_intr() - calls here
1825 *
1826 * Without the extra check here we will end calling disconnect
1827 * and won't get any future interrupts to handle the connect.
1828 */
1829 if (!force) {
1830 hprt0 = dwc2_readl(hsotg, HPRT0);
1831 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832 dwc2_hcd_connect(hsotg);
1833 }
1834}
1835
1836/**
1837 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838 *
1839 * @hsotg: Pointer to struct dwc2_hsotg
1840 */
1841static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842{
1843 if (hsotg->bus_suspended) {
1844 hsotg->flags.b.port_suspend_change = 1;
1845 usb_hcd_resume_root_hub(hsotg->priv);
1846 }
1847
1848 if (hsotg->lx_state == DWC2_L1)
1849 hsotg->flags.b.port_l1_change = 1;
1850}
1851
1852/**
1853 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854 *
1855 * @hsotg: Pointer to struct dwc2_hsotg
1856 *
1857 * Must be called with interrupt disabled and spinlock held
1858 */
1859void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860{
1861 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862
1863 /*
1864 * The root hub should be disconnected before this function is called.
1865 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866 * and the QH lists (via ..._hcd_endpoint_disable).
1867 */
1868
1869 /* Turn off all host-specific interrupts */
1870 dwc2_disable_host_interrupts(hsotg);
1871
1872 /* Turn off the vbus power */
1873 dev_dbg(hsotg->dev, "PortPower off\n");
1874 dwc2_writel(hsotg, 0, HPRT0);
1875}
1876
1877/* Caller must hold driver lock */
1878static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880 struct dwc2_qtd *qtd)
1881{
1882 u32 intr_mask;
1883 int retval;
1884 int dev_speed;
1885
1886 if (!hsotg->flags.b.port_connect_status) {
1887 /* No longer connected */
1888 dev_err(hsotg->dev, "Not connected\n");
1889 return -ENODEV;
1890 }
1891
1892 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893
1894 /* Some configurations cannot support LS traffic on a FS root port */
1895 if ((dev_speed == USB_SPEED_LOW) &&
1896 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900
1901 if (prtspd == HPRT0_SPD_FULL_SPEED)
1902 return -ENODEV;
1903 }
1904
1905 if (!qtd)
1906 return -EINVAL;
1907
1908 dwc2_hcd_qtd_init(qtd, urb);
1909 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910 if (retval) {
1911 dev_err(hsotg->dev,
1912 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913 retval);
1914 return retval;
1915 }
1916
1917 intr_mask = dwc2_readl(hsotg, GINTMSK);
1918 if (!(intr_mask & GINTSTS_SOF)) {
1919 enum dwc2_transaction_type tr_type;
1920
1921 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923 /*
1924 * Do not schedule SG transactions until qtd has
1925 * URB_GIVEBACK_ASAP set
1926 */
1927 return 0;
1928
1929 tr_type = dwc2_hcd_select_transactions(hsotg);
1930 if (tr_type != DWC2_TRANSACTION_NONE)
1931 dwc2_hcd_queue_transactions(hsotg, tr_type);
1932 }
1933
1934 return 0;
1935}
1936
1937/* Must be called with interrupt disabled and spinlock held */
1938static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939 struct dwc2_hcd_urb *urb)
1940{
1941 struct dwc2_qh *qh;
1942 struct dwc2_qtd *urb_qtd;
1943
1944 urb_qtd = urb->qtd;
1945 if (!urb_qtd) {
1946 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947 return -EINVAL;
1948 }
1949
1950 qh = urb_qtd->qh;
1951 if (!qh) {
1952 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953 return -EINVAL;
1954 }
1955
1956 urb->priv = NULL;
1957
1958 if (urb_qtd->in_process && qh->channel) {
1959 dwc2_dump_channel_info(hsotg, qh->channel);
1960
1961 /* The QTD is in process (it has been assigned to a channel) */
1962 if (hsotg->flags.b.port_connect_status)
1963 /*
1964 * If still connected (i.e. in host mode), halt the
1965 * channel so it can be used for other transfers. If
1966 * no longer connected, the host registers can't be
1967 * written to halt the channel since the core is in
1968 * device mode.
1969 */
1970 dwc2_hc_halt(hsotg, qh->channel,
1971 DWC2_HC_XFER_URB_DEQUEUE);
1972 }
1973
1974 /*
1975 * Free the QTD and clean up the associated QH. Leave the QH in the
1976 * schedule if it has any remaining QTDs.
1977 */
1978 if (!hsotg->params.dma_desc_enable) {
1979 u8 in_process = urb_qtd->in_process;
1980
1981 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982 if (in_process) {
1983 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984 qh->channel = NULL;
1985 } else if (list_empty(&qh->qtd_list)) {
1986 dwc2_hcd_qh_unlink(hsotg, qh);
1987 }
1988 } else {
1989 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990 }
1991
1992 return 0;
1993}
1994
1995/* Must NOT be called with interrupt disabled or spinlock held */
1996static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997 struct usb_host_endpoint *ep, int retry)
1998{
1999 struct dwc2_qtd *qtd, *qtd_tmp;
2000 struct dwc2_qh *qh;
2001 unsigned long flags;
2002 int rc;
2003
2004 spin_lock_irqsave(&hsotg->lock, flags);
2005
2006 qh = ep->hcpriv;
2007 if (!qh) {
2008 rc = -EINVAL;
2009 goto err;
2010 }
2011
2012 while (!list_empty(&qh->qtd_list) && retry--) {
2013 if (retry == 0) {
2014 dev_err(hsotg->dev,
2015 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016 rc = -EBUSY;
2017 goto err;
2018 }
2019
2020 spin_unlock_irqrestore(&hsotg->lock, flags);
2021 msleep(20);
2022 spin_lock_irqsave(&hsotg->lock, flags);
2023 qh = ep->hcpriv;
2024 if (!qh) {
2025 rc = -EINVAL;
2026 goto err;
2027 }
2028 }
2029
2030 dwc2_hcd_qh_unlink(hsotg, qh);
2031
2032 /* Free each QTD in the QH's QTD list */
2033 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035
2036 ep->hcpriv = NULL;
2037
2038 if (qh->channel && qh->channel->qh == qh)
2039 qh->channel->qh = NULL;
2040
2041 spin_unlock_irqrestore(&hsotg->lock, flags);
2042
2043 dwc2_hcd_qh_free(hsotg, qh);
2044
2045 return 0;
2046
2047err:
2048 ep->hcpriv = NULL;
2049 spin_unlock_irqrestore(&hsotg->lock, flags);
2050
2051 return rc;
2052}
2053
2054/* Must be called with interrupt disabled and spinlock held */
2055static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056 struct usb_host_endpoint *ep)
2057{
2058 struct dwc2_qh *qh = ep->hcpriv;
2059
2060 if (!qh)
2061 return -EINVAL;
2062
2063 qh->data_toggle = DWC2_HC_PID_DATA0;
2064
2065 return 0;
2066}
2067
2068/**
2069 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070 * prepares the core for device mode or host mode operation
2071 *
2072 * @hsotg: Programming view of the DWC_otg controller
2073 * @initial_setup: If true then this is the first init for this instance.
2074 */
2075int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076{
2077 u32 usbcfg, otgctl;
2078 int retval;
2079
2080 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081
2082 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083
2084 /* Set ULPI External VBUS bit if needed */
2085 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086 if (hsotg->params.phy_ulpi_ext_vbus)
2087 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088
2089 /* Set external TS Dline pulsing bit if needed */
2090 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091 if (hsotg->params.ts_dline)
2092 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093
2094 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095
2096 /*
2097 * Reset the Controller
2098 *
2099 * We only need to reset the controller if this is a re-init.
2100 * For the first init we know for sure that earlier code reset us (it
2101 * needed to in order to properly detect various parameters).
2102 */
2103 if (!initial_setup) {
2104 retval = dwc2_core_reset(hsotg, false);
2105 if (retval) {
2106 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107 __func__);
2108 return retval;
2109 }
2110 }
2111
2112 /*
2113 * This needs to happen in FS mode before any other programming occurs
2114 */
2115 retval = dwc2_phy_init(hsotg, initial_setup);
2116 if (retval)
2117 return retval;
2118
2119 /* Program the GAHBCFG Register */
2120 retval = dwc2_gahbcfg_init(hsotg);
2121 if (retval)
2122 return retval;
2123
2124 /* Program the GUSBCFG register */
2125 dwc2_gusbcfg_init(hsotg);
2126
2127 /* Program the GOTGCTL register */
2128 otgctl = dwc2_readl(hsotg, GOTGCTL);
2129 otgctl &= ~GOTGCTL_OTGVER;
2130 dwc2_writel(hsotg, otgctl, GOTGCTL);
2131
2132 /* Clear the SRP success bit for FS-I2c */
2133 hsotg->srp_success = 0;
2134
2135 /* Enable common interrupts */
2136 dwc2_enable_common_interrupts(hsotg);
2137
2138 /*
2139 * Do device or host initialization based on mode during PCD and
2140 * HCD initialization
2141 */
2142 if (dwc2_is_host_mode(hsotg)) {
2143 dev_dbg(hsotg->dev, "Host Mode\n");
2144 hsotg->op_state = OTG_STATE_A_HOST;
2145 } else {
2146 dev_dbg(hsotg->dev, "Device Mode\n");
2147 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148 }
2149
2150 return 0;
2151}
2152
2153/**
2154 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155 * Host mode
2156 *
2157 * @hsotg: Programming view of DWC_otg controller
2158 *
2159 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160 * request queues. Host channels are reset to ensure that they are ready for
2161 * performing transfers.
2162 */
2163static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164{
2165 u32 hcfg, hfir, otgctl, usbcfg;
2166
2167 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168
2169 /* Set HS/FS Timeout Calibration to 7 (max available value).
2170 * The number of PHY clocks that the application programs in
2171 * this field is added to the high/full speed interpacket timeout
2172 * duration in the core to account for any additional delays
2173 * introduced by the PHY. This can be required, because the delay
2174 * introduced by the PHY in generating the linestate condition
2175 * can vary from one PHY to another.
2176 */
2177 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178 usbcfg |= GUSBCFG_TOUTCAL(7);
2179 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180
2181 /* Restart the Phy Clock */
2182 dwc2_writel(hsotg, 0, PCGCTL);
2183
2184 /* Initialize Host Configuration Register */
2185 dwc2_init_fs_ls_pclk_sel(hsotg);
2186 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188 hcfg = dwc2_readl(hsotg, HCFG);
2189 hcfg |= HCFG_FSLSSUPP;
2190 dwc2_writel(hsotg, hcfg, HCFG);
2191 }
2192
2193 /*
2194 * This bit allows dynamic reloading of the HFIR register during
2195 * runtime. This bit needs to be programmed during initial configuration
2196 * and its value must not be changed during runtime.
2197 */
2198 if (hsotg->params.reload_ctl) {
2199 hfir = dwc2_readl(hsotg, HFIR);
2200 hfir |= HFIR_RLDCTRL;
2201 dwc2_writel(hsotg, hfir, HFIR);
2202 }
2203
2204 if (hsotg->params.dma_desc_enable) {
2205 u32 op_mode = hsotg->hw_params.op_mode;
2206
2207 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208 !hsotg->hw_params.dma_desc_enable ||
2209 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212 dev_err(hsotg->dev,
2213 "Hardware does not support descriptor DMA mode -\n");
2214 dev_err(hsotg->dev,
2215 "falling back to buffer DMA mode.\n");
2216 hsotg->params.dma_desc_enable = false;
2217 } else {
2218 hcfg = dwc2_readl(hsotg, HCFG);
2219 hcfg |= HCFG_DESCDMA;
2220 dwc2_writel(hsotg, hcfg, HCFG);
2221 }
2222 }
2223
2224 /* Configure data FIFO sizes */
2225 dwc2_config_fifos(hsotg);
2226
2227 /* TODO - check this */
2228 /* Clear Host Set HNP Enable in the OTG Control Register */
2229 otgctl = dwc2_readl(hsotg, GOTGCTL);
2230 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231 dwc2_writel(hsotg, otgctl, GOTGCTL);
2232
2233 /* Make sure the FIFOs are flushed */
2234 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235 dwc2_flush_rx_fifo(hsotg);
2236
2237 /* Clear Host Set HNP Enable in the OTG Control Register */
2238 otgctl = dwc2_readl(hsotg, GOTGCTL);
2239 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240 dwc2_writel(hsotg, otgctl, GOTGCTL);
2241
2242 if (!hsotg->params.dma_desc_enable) {
2243 int num_channels, i;
2244 u32 hcchar;
2245
2246 /* Flush out any leftover queued requests */
2247 num_channels = hsotg->params.host_channels;
2248 for (i = 0; i < num_channels; i++) {
2249 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250 if (hcchar & HCCHAR_CHENA) {
2251 hcchar &= ~HCCHAR_CHENA;
2252 hcchar |= HCCHAR_CHDIS;
2253 hcchar &= ~HCCHAR_EPDIR;
2254 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255 }
2256 }
2257
2258 /* Halt all channels to put them into a known state */
2259 for (i = 0; i < num_channels; i++) {
2260 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261 if (hcchar & HCCHAR_CHENA) {
2262 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263 hcchar &= ~HCCHAR_EPDIR;
2264 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266 __func__, i);
2267
2268 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269 HCCHAR_CHENA,
2270 1000)) {
2271 dev_warn(hsotg->dev,
2272 "Unable to clear enable on channel %d\n",
2273 i);
2274 }
2275 }
2276 }
2277 }
2278
2279 /* Enable ACG feature in host mode, if supported */
2280 dwc2_enable_acg(hsotg);
2281
2282 /* Turn on the vbus power */
2283 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284 if (hsotg->op_state == OTG_STATE_A_HOST) {
2285 u32 hprt0 = dwc2_read_hprt0(hsotg);
2286
2287 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288 !!(hprt0 & HPRT0_PWR));
2289 if (!(hprt0 & HPRT0_PWR)) {
2290 hprt0 |= HPRT0_PWR;
2291 dwc2_writel(hsotg, hprt0, HPRT0);
2292 }
2293 }
2294
2295 dwc2_enable_host_interrupts(hsotg);
2296}
2297
2298/*
2299 * Initializes dynamic portions of the DWC_otg HCD state
2300 *
2301 * Must be called with interrupt disabled and spinlock held
2302 */
2303static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304{
2305 struct dwc2_host_chan *chan, *chan_tmp;
2306 int num_channels;
2307 int i;
2308
2309 hsotg->flags.d32 = 0;
2310 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311
2312 if (hsotg->params.uframe_sched) {
2313 hsotg->available_host_channels =
2314 hsotg->params.host_channels;
2315 } else {
2316 hsotg->non_periodic_channels = 0;
2317 hsotg->periodic_channels = 0;
2318 }
2319
2320 /*
2321 * Put all channels in the free channel list and clean up channel
2322 * states
2323 */
2324 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325 hc_list_entry)
2326 list_del_init(&chan->hc_list_entry);
2327
2328 num_channels = hsotg->params.host_channels;
2329 for (i = 0; i < num_channels; i++) {
2330 chan = hsotg->hc_ptr_array[i];
2331 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332 dwc2_hc_cleanup(hsotg, chan);
2333 }
2334
2335 /* Initialize the DWC core for host mode operation */
2336 dwc2_core_host_init(hsotg);
2337}
2338
2339static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340 struct dwc2_host_chan *chan,
2341 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342{
2343 int hub_addr, hub_port;
2344
2345 chan->do_split = 1;
2346 chan->xact_pos = qtd->isoc_split_pos;
2347 chan->complete_split = qtd->complete_split;
2348 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349 chan->hub_addr = (u8)hub_addr;
2350 chan->hub_port = (u8)hub_port;
2351}
2352
2353static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354 struct dwc2_host_chan *chan,
2355 struct dwc2_qtd *qtd)
2356{
2357 struct dwc2_hcd_urb *urb = qtd->urb;
2358 struct dwc2_hcd_iso_packet_desc *frame_desc;
2359
2360 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361 case USB_ENDPOINT_XFER_CONTROL:
2362 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363
2364 switch (qtd->control_phase) {
2365 case DWC2_CONTROL_SETUP:
2366 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2367 chan->do_ping = 0;
2368 chan->ep_is_in = 0;
2369 chan->data_pid_start = DWC2_HC_PID_SETUP;
2370 if (hsotg->params.host_dma)
2371 chan->xfer_dma = urb->setup_dma;
2372 else
2373 chan->xfer_buf = urb->setup_packet;
2374 chan->xfer_len = 8;
2375 break;
2376
2377 case DWC2_CONTROL_DATA:
2378 dev_vdbg(hsotg->dev, " Control data transaction\n");
2379 chan->data_pid_start = qtd->data_toggle;
2380 break;
2381
2382 case DWC2_CONTROL_STATUS:
2383 /*
2384 * Direction is opposite of data direction or IN if no
2385 * data
2386 */
2387 dev_vdbg(hsotg->dev, " Control status transaction\n");
2388 if (urb->length == 0)
2389 chan->ep_is_in = 1;
2390 else
2391 chan->ep_is_in =
2392 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393 if (chan->ep_is_in)
2394 chan->do_ping = 0;
2395 chan->data_pid_start = DWC2_HC_PID_DATA1;
2396 chan->xfer_len = 0;
2397 if (hsotg->params.host_dma)
2398 chan->xfer_dma = hsotg->status_buf_dma;
2399 else
2400 chan->xfer_buf = hsotg->status_buf;
2401 break;
2402 }
2403 break;
2404
2405 case USB_ENDPOINT_XFER_BULK:
2406 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407 break;
2408
2409 case USB_ENDPOINT_XFER_INT:
2410 chan->ep_type = USB_ENDPOINT_XFER_INT;
2411 break;
2412
2413 case USB_ENDPOINT_XFER_ISOC:
2414 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415 if (hsotg->params.dma_desc_enable)
2416 break;
2417
2418 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419 frame_desc->status = 0;
2420
2421 if (hsotg->params.host_dma) {
2422 chan->xfer_dma = urb->dma;
2423 chan->xfer_dma += frame_desc->offset +
2424 qtd->isoc_split_offset;
2425 } else {
2426 chan->xfer_buf = urb->buf;
2427 chan->xfer_buf += frame_desc->offset +
2428 qtd->isoc_split_offset;
2429 }
2430
2431 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432
2433 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434 if (chan->xfer_len <= 188)
2435 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436 else
2437 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438 }
2439 break;
2440 }
2441}
2442
2443static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444 struct dwc2_qh *qh,
2445 struct dwc2_host_chan *chan)
2446{
2447 if (!hsotg->unaligned_cache ||
2448 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449 return -ENOMEM;
2450
2451 if (!qh->dw_align_buf) {
2452 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453 GFP_ATOMIC | GFP_DMA);
2454 if (!qh->dw_align_buf)
2455 return -ENOMEM;
2456 }
2457
2458 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460 DMA_FROM_DEVICE);
2461
2462 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463 dev_err(hsotg->dev, "can't map align_buf\n");
2464 chan->align_buf = 0;
2465 return -EINVAL;
2466 }
2467
2468 chan->align_buf = qh->dw_align_buf_dma;
2469 return 0;
2470}
2471
2472#define DWC2_USB_DMA_ALIGN 4
2473
2474static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475{
2476 void *stored_xfer_buffer;
2477 size_t length;
2478
2479 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480 return;
2481
2482 /* Restore urb->transfer_buffer from the end of the allocated area */
2483 memcpy(&stored_xfer_buffer,
2484 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2485 dma_get_cache_alignment()),
2486 sizeof(urb->transfer_buffer));
2487
2488 if (usb_urb_dir_in(urb)) {
2489 if (usb_pipeisoc(urb->pipe))
2490 length = urb->transfer_buffer_length;
2491 else
2492 length = urb->actual_length;
2493
2494 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495 }
2496 kfree(urb->transfer_buffer);
2497 urb->transfer_buffer = stored_xfer_buffer;
2498
2499 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2500}
2501
2502static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2503{
2504 void *kmalloc_ptr;
2505 size_t kmalloc_size;
2506
2507 if (urb->num_sgs || urb->sg ||
2508 urb->transfer_buffer_length == 0 ||
2509 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2510 return 0;
2511
2512 /*
2513 * Allocate a buffer with enough padding for original transfer_buffer
2514 * pointer. This allocation is guaranteed to be aligned properly for
2515 * DMA
2516 */
2517 kmalloc_size = urb->transfer_buffer_length +
2518 (dma_get_cache_alignment() - 1) +
2519 sizeof(urb->transfer_buffer);
2520
2521 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2522 if (!kmalloc_ptr)
2523 return -ENOMEM;
2524
2525 /*
2526 * Position value of original urb->transfer_buffer pointer to the end
2527 * of allocation for later referencing
2528 */
2529 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2530 dma_get_cache_alignment()),
2531 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532
2533 if (usb_urb_dir_out(urb))
2534 memcpy(kmalloc_ptr, urb->transfer_buffer,
2535 urb->transfer_buffer_length);
2536 urb->transfer_buffer = kmalloc_ptr;
2537
2538 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2539
2540 return 0;
2541}
2542
2543static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2544 gfp_t mem_flags)
2545{
2546 int ret;
2547
2548 /* We assume setup_dma is always aligned; warn if not */
2549 WARN_ON_ONCE(urb->setup_dma &&
2550 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551
2552 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2553 if (ret)
2554 return ret;
2555
2556 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557 if (ret)
2558 dwc2_free_dma_aligned_buffer(urb);
2559
2560 return ret;
2561}
2562
2563static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564{
2565 usb_hcd_unmap_urb_for_dma(hcd, urb);
2566 dwc2_free_dma_aligned_buffer(urb);
2567}
2568
2569/**
2570 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571 * channel and initializes the host channel to perform the transactions. The
2572 * host channel is removed from the free list.
2573 *
2574 * @hsotg: The HCD state structure
2575 * @qh: Transactions from the first QTD for this QH are selected and assigned
2576 * to a free host channel
2577 */
2578static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579{
2580 struct dwc2_host_chan *chan;
2581 struct dwc2_hcd_urb *urb;
2582 struct dwc2_qtd *qtd;
2583
2584 if (dbg_qh(qh))
2585 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586
2587 if (list_empty(&qh->qtd_list)) {
2588 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2589 return -ENOMEM;
2590 }
2591
2592 if (list_empty(&hsotg->free_hc_list)) {
2593 dev_dbg(hsotg->dev, "No free channel to assign\n");
2594 return -ENOMEM;
2595 }
2596
2597 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2598 hc_list_entry);
2599
2600 /* Remove host channel from free list */
2601 list_del_init(&chan->hc_list_entry);
2602
2603 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2604 urb = qtd->urb;
2605 qh->channel = chan;
2606 qtd->in_process = 1;
2607
2608 /*
2609 * Use usb_pipedevice to determine device address. This address is
2610 * 0 before the SET_ADDRESS command and the correct address afterward.
2611 */
2612 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2613 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2614 chan->speed = qh->dev_speed;
2615 chan->max_packet = qh->maxp;
2616
2617 chan->xfer_started = 0;
2618 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2619 chan->error_state = (qtd->error_count > 0);
2620 chan->halt_on_queue = 0;
2621 chan->halt_pending = 0;
2622 chan->requests = 0;
2623
2624 /*
2625 * The following values may be modified in the transfer type section
2626 * below. The xfer_len value may be reduced when the transfer is
2627 * started to accommodate the max widths of the XferSize and PktCnt
2628 * fields in the HCTSIZn register.
2629 */
2630
2631 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2632 if (chan->ep_is_in)
2633 chan->do_ping = 0;
2634 else
2635 chan->do_ping = qh->ping_state;
2636
2637 chan->data_pid_start = qh->data_toggle;
2638 chan->multi_count = 1;
2639
2640 if (urb->actual_length > urb->length &&
2641 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2642 urb->actual_length = urb->length;
2643
2644 if (hsotg->params.host_dma)
2645 chan->xfer_dma = urb->dma + urb->actual_length;
2646 else
2647 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648
2649 chan->xfer_len = urb->length - urb->actual_length;
2650 chan->xfer_count = 0;
2651
2652 /* Set the split attributes if required */
2653 if (qh->do_split)
2654 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2655 else
2656 chan->do_split = 0;
2657
2658 /* Set the transfer attributes */
2659 dwc2_hc_init_xfer(hsotg, chan, qtd);
2660
2661 /* For non-dword aligned buffers */
2662 if (hsotg->params.host_dma && qh->do_split &&
2663 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2664 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2665 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666 dev_err(hsotg->dev,
2667 "Failed to allocate memory to handle non-aligned buffer\n");
2668 /* Add channel back to free list */
2669 chan->align_buf = 0;
2670 chan->multi_count = 0;
2671 list_add_tail(&chan->hc_list_entry,
2672 &hsotg->free_hc_list);
2673 qtd->in_process = 0;
2674 qh->channel = NULL;
2675 return -ENOMEM;
2676 }
2677 } else {
2678 /*
2679 * We assume that DMA is always aligned in non-split
2680 * case or split out case. Warn if not.
2681 */
2682 WARN_ON_ONCE(hsotg->params.host_dma &&
2683 (chan->xfer_dma & 0x3));
2684 chan->align_buf = 0;
2685 }
2686
2687 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2688 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689 /*
2690 * This value may be modified when the transfer is started
2691 * to reflect the actual transfer length
2692 */
2693 chan->multi_count = qh->maxp_mult;
2694
2695 if (hsotg->params.dma_desc_enable) {
2696 chan->desc_list_addr = qh->desc_list_dma;
2697 chan->desc_list_sz = qh->desc_list_sz;
2698 }
2699
2700 dwc2_hc_init(hsotg, chan);
2701 chan->qh = qh;
2702
2703 return 0;
2704}
2705
2706/**
2707 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708 * schedule and assigns them to available host channels. Called from the HCD
2709 * interrupt handler functions.
2710 *
2711 * @hsotg: The HCD state structure
2712 *
2713 * Return: The types of new transactions that were assigned to host channels
2714 */
2715enum dwc2_transaction_type dwc2_hcd_select_transactions(
2716 struct dwc2_hsotg *hsotg)
2717{
2718 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2719 struct list_head *qh_ptr;
2720 struct dwc2_qh *qh;
2721 int num_channels;
2722
2723#ifdef DWC2_DEBUG_SOF
2724 dev_vdbg(hsotg->dev, " Select Transactions\n");
2725#endif
2726
2727 /* Process entries in the periodic ready list */
2728 qh_ptr = hsotg->periodic_sched_ready.next;
2729 while (qh_ptr != &hsotg->periodic_sched_ready) {
2730 if (list_empty(&hsotg->free_hc_list))
2731 break;
2732 if (hsotg->params.uframe_sched) {
2733 if (hsotg->available_host_channels <= 1)
2734 break;
2735 hsotg->available_host_channels--;
2736 }
2737 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2738 if (dwc2_assign_and_init_hc(hsotg, qh))
2739 break;
2740
2741 /*
2742 * Move the QH from the periodic ready schedule to the
2743 * periodic assigned schedule
2744 */
2745 qh_ptr = qh_ptr->next;
2746 list_move_tail(&qh->qh_list_entry,
2747 &hsotg->periodic_sched_assigned);
2748 ret_val = DWC2_TRANSACTION_PERIODIC;
2749 }
2750
2751 /*
2752 * Process entries in the inactive portion of the non-periodic
2753 * schedule. Some free host channels may not be used if they are
2754 * reserved for periodic transfers.
2755 */
2756 num_channels = hsotg->params.host_channels;
2757 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2758 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2759 if (!hsotg->params.uframe_sched &&
2760 hsotg->non_periodic_channels >= num_channels -
2761 hsotg->periodic_channels)
2762 break;
2763 if (list_empty(&hsotg->free_hc_list))
2764 break;
2765 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2766 if (hsotg->params.uframe_sched) {
2767 if (hsotg->available_host_channels < 1)
2768 break;
2769 hsotg->available_host_channels--;
2770 }
2771
2772 if (dwc2_assign_and_init_hc(hsotg, qh))
2773 break;
2774
2775 /*
2776 * Move the QH from the non-periodic inactive schedule to the
2777 * non-periodic active schedule
2778 */
2779 qh_ptr = qh_ptr->next;
2780 list_move_tail(&qh->qh_list_entry,
2781 &hsotg->non_periodic_sched_active);
2782
2783 if (ret_val == DWC2_TRANSACTION_NONE)
2784 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785 else
2786 ret_val = DWC2_TRANSACTION_ALL;
2787
2788 if (!hsotg->params.uframe_sched)
2789 hsotg->non_periodic_channels++;
2790 }
2791
2792 return ret_val;
2793}
2794
2795/**
2796 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797 * a host channel associated with either a periodic or non-periodic transfer
2798 *
2799 * @hsotg: The HCD state structure
2800 * @chan: Host channel descriptor associated with either a periodic or
2801 * non-periodic transfer
2802 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803 * for periodic transfers or the non-periodic Tx FIFO
2804 * for non-periodic transfers
2805 *
2806 * Return: 1 if a request is queued and more requests may be needed to
2807 * complete the transfer, 0 if no more requests are required for this
2808 * transfer, -1 if there is insufficient space in the Tx FIFO
2809 *
2810 * This function assumes that there is space available in the appropriate
2811 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812 * it checks whether space is available in the appropriate Tx FIFO.
2813 *
2814 * Must be called with interrupt disabled and spinlock held
2815 */
2816static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2817 struct dwc2_host_chan *chan,
2818 u16 fifo_dwords_avail)
2819{
2820 int retval = 0;
2821
2822 if (chan->do_split)
2823 /* Put ourselves on the list to keep order straight */
2824 list_move_tail(&chan->split_order_list_entry,
2825 &hsotg->split_order);
2826
2827 if (hsotg->params.host_dma && chan->qh) {
2828 if (hsotg->params.dma_desc_enable) {
2829 if (!chan->xfer_started ||
2830 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2831 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2832 chan->qh->ping_state = 0;
2833 }
2834 } else if (!chan->xfer_started) {
2835 dwc2_hc_start_transfer(hsotg, chan);
2836 chan->qh->ping_state = 0;
2837 }
2838 } else if (chan->halt_pending) {
2839 /* Don't queue a request if the channel has been halted */
2840 } else if (chan->halt_on_queue) {
2841 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2842 } else if (chan->do_ping) {
2843 if (!chan->xfer_started)
2844 dwc2_hc_start_transfer(hsotg, chan);
2845 } else if (!chan->ep_is_in ||
2846 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2847 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2848 if (!chan->xfer_started) {
2849 dwc2_hc_start_transfer(hsotg, chan);
2850 retval = 1;
2851 } else {
2852 retval = dwc2_hc_continue_transfer(hsotg, chan);
2853 }
2854 } else {
2855 retval = -1;
2856 }
2857 } else {
2858 if (!chan->xfer_started) {
2859 dwc2_hc_start_transfer(hsotg, chan);
2860 retval = 1;
2861 } else {
2862 retval = dwc2_hc_continue_transfer(hsotg, chan);
2863 }
2864 }
2865
2866 return retval;
2867}
2868
2869/*
2870 * Processes periodic channels for the next frame and queues transactions for
2871 * these channels to the DWC_otg controller. After queueing transactions, the
2872 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873 * to queue as Periodic Tx FIFO or request queue space becomes available.
2874 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875 *
2876 * Must be called with interrupt disabled and spinlock held
2877 */
2878static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879{
2880 struct list_head *qh_ptr;
2881 struct dwc2_qh *qh;
2882 u32 tx_status;
2883 u32 fspcavail;
2884 u32 gintmsk;
2885 int status;
2886 bool no_queue_space = false;
2887 bool no_fifo_space = false;
2888 u32 qspcavail;
2889
2890 /* If empty list then just adjust interrupt enables */
2891 if (list_empty(&hsotg->periodic_sched_assigned))
2892 goto exit;
2893
2894 if (dbg_perio())
2895 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896
2897 tx_status = dwc2_readl(hsotg, HPTXSTS);
2898 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2899 TXSTS_QSPCAVAIL_SHIFT;
2900 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2901 TXSTS_FSPCAVAIL_SHIFT;
2902
2903 if (dbg_perio()) {
2904 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2905 qspcavail);
2906 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2907 fspcavail);
2908 }
2909
2910 qh_ptr = hsotg->periodic_sched_assigned.next;
2911 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2912 tx_status = dwc2_readl(hsotg, HPTXSTS);
2913 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2914 TXSTS_QSPCAVAIL_SHIFT;
2915 if (qspcavail == 0) {
2916 no_queue_space = true;
2917 break;
2918 }
2919
2920 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921 if (!qh->channel) {
2922 qh_ptr = qh_ptr->next;
2923 continue;
2924 }
2925
2926 /* Make sure EP's TT buffer is clean before queueing qtds */
2927 if (qh->tt_buffer_dirty) {
2928 qh_ptr = qh_ptr->next;
2929 continue;
2930 }
2931
2932 /*
2933 * Set a flag if we're queuing high-bandwidth in slave mode.
2934 * The flag prevents any halts to get into the request queue in
2935 * the middle of multiple high-bandwidth packets getting queued.
2936 */
2937 if (!hsotg->params.host_dma &&
2938 qh->channel->multi_count > 1)
2939 hsotg->queuing_high_bandwidth = 1;
2940
2941 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2942 TXSTS_FSPCAVAIL_SHIFT;
2943 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944 if (status < 0) {
2945 no_fifo_space = true;
2946 break;
2947 }
2948
2949 /*
2950 * In Slave mode, stay on the current transfer until there is
2951 * nothing more to do or the high-bandwidth request count is
2952 * reached. In DMA mode, only need to queue one request. The
2953 * controller automatically handles multiple packets for
2954 * high-bandwidth transfers.
2955 */
2956 if (hsotg->params.host_dma || status == 0 ||
2957 qh->channel->requests == qh->channel->multi_count) {
2958 qh_ptr = qh_ptr->next;
2959 /*
2960 * Move the QH from the periodic assigned schedule to
2961 * the periodic queued schedule
2962 */
2963 list_move_tail(&qh->qh_list_entry,
2964 &hsotg->periodic_sched_queued);
2965
2966 /* done queuing high bandwidth */
2967 hsotg->queuing_high_bandwidth = 0;
2968 }
2969 }
2970
2971exit:
2972 if (no_queue_space || no_fifo_space ||
2973 (!hsotg->params.host_dma &&
2974 !list_empty(&hsotg->periodic_sched_assigned))) {
2975 /*
2976 * May need to queue more transactions as the request
2977 * queue or Tx FIFO empties. Enable the periodic Tx
2978 * FIFO empty interrupt. (Always use the half-empty
2979 * level to ensure that new requests are loaded as
2980 * soon as possible.)
2981 */
2982 gintmsk = dwc2_readl(hsotg, GINTMSK);
2983 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2984 gintmsk |= GINTSTS_PTXFEMP;
2985 dwc2_writel(hsotg, gintmsk, GINTMSK);
2986 }
2987 } else {
2988 /*
2989 * Disable the Tx FIFO empty interrupt since there are
2990 * no more transactions that need to be queued right
2991 * now. This function is called from interrupt
2992 * handlers to queue more transactions as transfer
2993 * states change.
2994 */
2995 gintmsk = dwc2_readl(hsotg, GINTMSK);
2996 if (gintmsk & GINTSTS_PTXFEMP) {
2997 gintmsk &= ~GINTSTS_PTXFEMP;
2998 dwc2_writel(hsotg, gintmsk, GINTMSK);
2999 }
3000 }
3001}
3002
3003/*
3004 * Processes active non-periodic channels and queues transactions for these
3005 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008 * FIFO Empty interrupt is disabled.
3009 *
3010 * Must be called with interrupt disabled and spinlock held
3011 */
3012static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013{
3014 struct list_head *orig_qh_ptr;
3015 struct dwc2_qh *qh;
3016 u32 tx_status;
3017 u32 qspcavail;
3018 u32 fspcavail;
3019 u32 gintmsk;
3020 int status;
3021 int no_queue_space = 0;
3022 int no_fifo_space = 0;
3023 int more_to_do = 0;
3024
3025 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026
3027 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3028 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3029 TXSTS_QSPCAVAIL_SHIFT;
3030 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3031 TXSTS_FSPCAVAIL_SHIFT;
3032 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3033 qspcavail);
3034 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3035 fspcavail);
3036
3037 /*
3038 * Keep track of the starting point. Skip over the start-of-list
3039 * entry.
3040 */
3041 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3042 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3043 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3044
3045 /*
3046 * Process once through the active list or until no more space is
3047 * available in the request queue or the Tx FIFO
3048 */
3049 do {
3050 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3051 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052 TXSTS_QSPCAVAIL_SHIFT;
3053 if (!hsotg->params.host_dma && qspcavail == 0) {
3054 no_queue_space = 1;
3055 break;
3056 }
3057
3058 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3059 qh_list_entry);
3060 if (!qh->channel)
3061 goto next;
3062
3063 /* Make sure EP's TT buffer is clean before queueing qtds */
3064 if (qh->tt_buffer_dirty)
3065 goto next;
3066
3067 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3068 TXSTS_FSPCAVAIL_SHIFT;
3069 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3070
3071 if (status > 0) {
3072 more_to_do = 1;
3073 } else if (status < 0) {
3074 no_fifo_space = 1;
3075 break;
3076 }
3077next:
3078 /* Advance to next QH, skipping start-of-list entry */
3079 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3080 if (hsotg->non_periodic_qh_ptr ==
3081 &hsotg->non_periodic_sched_active)
3082 hsotg->non_periodic_qh_ptr =
3083 hsotg->non_periodic_qh_ptr->next;
3084 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085
3086 if (!hsotg->params.host_dma) {
3087 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3088 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089 TXSTS_QSPCAVAIL_SHIFT;
3090 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091 TXSTS_FSPCAVAIL_SHIFT;
3092 dev_vdbg(hsotg->dev,
3093 " NP Tx Req Queue Space Avail (after queue): %d\n",
3094 qspcavail);
3095 dev_vdbg(hsotg->dev,
3096 " NP Tx FIFO Space Avail (after queue): %d\n",
3097 fspcavail);
3098
3099 if (more_to_do || no_queue_space || no_fifo_space) {
3100 /*
3101 * May need to queue more transactions as the request
3102 * queue or Tx FIFO empties. Enable the non-periodic
3103 * Tx FIFO empty interrupt. (Always use the half-empty
3104 * level to ensure that new requests are loaded as
3105 * soon as possible.)
3106 */
3107 gintmsk = dwc2_readl(hsotg, GINTMSK);
3108 gintmsk |= GINTSTS_NPTXFEMP;
3109 dwc2_writel(hsotg, gintmsk, GINTMSK);
3110 } else {
3111 /*
3112 * Disable the Tx FIFO empty interrupt since there are
3113 * no more transactions that need to be queued right
3114 * now. This function is called from interrupt
3115 * handlers to queue more transactions as transfer
3116 * states change.
3117 */
3118 gintmsk = dwc2_readl(hsotg, GINTMSK);
3119 gintmsk &= ~GINTSTS_NPTXFEMP;
3120 dwc2_writel(hsotg, gintmsk, GINTMSK);
3121 }
3122 }
3123}
3124
3125/**
3126 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127 * and queues transactions for these channels to the DWC_otg controller. Called
3128 * from the HCD interrupt handler functions.
3129 *
3130 * @hsotg: The HCD state structure
3131 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3132 * or both)
3133 *
3134 * Must be called with interrupt disabled and spinlock held
3135 */
3136void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3137 enum dwc2_transaction_type tr_type)
3138{
3139#ifdef DWC2_DEBUG_SOF
3140 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141#endif
3142 /* Process host channels associated with periodic transfers */
3143 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3144 tr_type == DWC2_TRANSACTION_ALL)
3145 dwc2_process_periodic_channels(hsotg);
3146
3147 /* Process host channels associated with non-periodic transfers */
3148 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3149 tr_type == DWC2_TRANSACTION_ALL) {
3150 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3151 dwc2_process_non_periodic_channels(hsotg);
3152 } else {
3153 /*
3154 * Ensure NP Tx FIFO empty interrupt is disabled when
3155 * there are no non-periodic transfers to process
3156 */
3157 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158
3159 gintmsk &= ~GINTSTS_NPTXFEMP;
3160 dwc2_writel(hsotg, gintmsk, GINTMSK);
3161 }
3162 }
3163}
3164
3165static void dwc2_conn_id_status_change(struct work_struct *work)
3166{
3167 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3168 wf_otg);
3169 u32 count = 0;
3170 u32 gotgctl;
3171 unsigned long flags;
3172
3173 dev_dbg(hsotg->dev, "%s()\n", __func__);
3174
3175 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3176 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3177 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3178 !!(gotgctl & GOTGCTL_CONID_B));
3179
3180 /* B-Device connector (Device Mode) */
3181 if (gotgctl & GOTGCTL_CONID_B) {
3182 dwc2_vbus_supply_exit(hsotg);
3183 /* Wait for switch to device mode */
3184 dev_dbg(hsotg->dev, "connId B\n");
3185 if (hsotg->bus_suspended) {
3186 dev_info(hsotg->dev,
3187 "Do port resume before switching to device mode\n");
3188 dwc2_port_resume(hsotg);
3189 }
3190 while (!dwc2_is_device_mode(hsotg)) {
3191 dev_info(hsotg->dev,
3192 "Waiting for Peripheral Mode, Mode=%s\n",
3193 dwc2_is_host_mode(hsotg) ? "Host" :
3194 "Peripheral");
3195 msleep(20);
3196 /*
3197 * Sometimes the initial GOTGCTRL read is wrong, so
3198 * check it again and jump to host mode if that was
3199 * the case.
3200 */
3201 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3202 if (!(gotgctl & GOTGCTL_CONID_B))
3203 goto host;
3204 if (++count > 250)
3205 break;
3206 }
3207 if (count > 250)
3208 dev_err(hsotg->dev,
3209 "Connection id status change timed out\n");
3210 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3211 dwc2_core_init(hsotg, false);
3212 dwc2_enable_global_interrupts(hsotg);
3213 spin_lock_irqsave(&hsotg->lock, flags);
3214 dwc2_hsotg_core_init_disconnected(hsotg, false);
3215 spin_unlock_irqrestore(&hsotg->lock, flags);
3216 /* Enable ACG feature in device mode,if supported */
3217 dwc2_enable_acg(hsotg);
3218 dwc2_hsotg_core_connect(hsotg);
3219 } else {
3220host:
3221 /* A-Device connector (Host Mode) */
3222 dev_dbg(hsotg->dev, "connId A\n");
3223 while (!dwc2_is_host_mode(hsotg)) {
3224 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3225 dwc2_is_host_mode(hsotg) ?
3226 "Host" : "Peripheral");
3227 msleep(20);
3228 if (++count > 250)
3229 break;
3230 }
3231 if (count > 250)
3232 dev_err(hsotg->dev,
3233 "Connection id status change timed out\n");
3234
3235 spin_lock_irqsave(&hsotg->lock, flags);
3236 dwc2_hsotg_disconnect(hsotg);
3237 spin_unlock_irqrestore(&hsotg->lock, flags);
3238
3239 hsotg->op_state = OTG_STATE_A_HOST;
3240 /* Initialize the Core for Host mode */
3241 dwc2_core_init(hsotg, false);
3242 dwc2_enable_global_interrupts(hsotg);
3243 dwc2_hcd_start(hsotg);
3244 }
3245}
3246
3247static void dwc2_wakeup_detected(struct timer_list *t)
3248{
3249 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3250 u32 hprt0;
3251
3252 dev_dbg(hsotg->dev, "%s()\n", __func__);
3253
3254 /*
3255 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256 * so that OPT tests pass with all PHYs.)
3257 */
3258 hprt0 = dwc2_read_hprt0(hsotg);
3259 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3260 hprt0 &= ~HPRT0_RES;
3261 dwc2_writel(hsotg, hprt0, HPRT0);
3262 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3263 dwc2_readl(hsotg, HPRT0));
3264
3265 dwc2_hcd_rem_wakeup(hsotg);
3266 hsotg->bus_suspended = false;
3267
3268 /* Change to L0 state */
3269 hsotg->lx_state = DWC2_L0;
3270}
3271
3272static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3273{
3274 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3275
3276 return hcd->self.b_hnp_enable;
3277}
3278
3279/* Must NOT be called with interrupt disabled or spinlock held */
3280static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3281{
3282 unsigned long flags;
3283 u32 hprt0;
3284 u32 pcgctl;
3285 u32 gotgctl;
3286
3287 dev_dbg(hsotg->dev, "%s()\n", __func__);
3288
3289 spin_lock_irqsave(&hsotg->lock, flags);
3290
3291 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3292 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3293 gotgctl |= GOTGCTL_HSTSETHNPEN;
3294 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3295 hsotg->op_state = OTG_STATE_A_SUSPEND;
3296 }
3297
3298 hprt0 = dwc2_read_hprt0(hsotg);
3299 hprt0 |= HPRT0_SUSP;
3300 dwc2_writel(hsotg, hprt0, HPRT0);
3301
3302 hsotg->bus_suspended = true;
3303
3304 /*
3305 * If power_down is supported, Phy clock will be suspended
3306 * after registers are backuped.
3307 */
3308 if (!hsotg->params.power_down) {
3309 /* Suspend the Phy Clock */
3310 pcgctl = dwc2_readl(hsotg, PCGCTL);
3311 pcgctl |= PCGCTL_STOPPCLK;
3312 dwc2_writel(hsotg, pcgctl, PCGCTL);
3313 udelay(10);
3314 }
3315
3316 /* For HNP the bus must be suspended for at least 200ms */
3317 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3318 pcgctl = dwc2_readl(hsotg, PCGCTL);
3319 pcgctl &= ~PCGCTL_STOPPCLK;
3320 dwc2_writel(hsotg, pcgctl, PCGCTL);
3321
3322 spin_unlock_irqrestore(&hsotg->lock, flags);
3323
3324 msleep(200);
3325 } else {
3326 spin_unlock_irqrestore(&hsotg->lock, flags);
3327 }
3328}
3329
3330/* Must NOT be called with interrupt disabled or spinlock held */
3331static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3332{
3333 unsigned long flags;
3334 u32 hprt0;
3335 u32 pcgctl;
3336
3337 spin_lock_irqsave(&hsotg->lock, flags);
3338
3339 /*
3340 * If power_down is supported, Phy clock is already resumed
3341 * after registers restore.
3342 */
3343 if (!hsotg->params.power_down) {
3344 pcgctl = dwc2_readl(hsotg, PCGCTL);
3345 pcgctl &= ~PCGCTL_STOPPCLK;
3346 dwc2_writel(hsotg, pcgctl, PCGCTL);
3347 spin_unlock_irqrestore(&hsotg->lock, flags);
3348 msleep(20);
3349 spin_lock_irqsave(&hsotg->lock, flags);
3350 }
3351
3352 hprt0 = dwc2_read_hprt0(hsotg);
3353 hprt0 |= HPRT0_RES;
3354 hprt0 &= ~HPRT0_SUSP;
3355 dwc2_writel(hsotg, hprt0, HPRT0);
3356 spin_unlock_irqrestore(&hsotg->lock, flags);
3357
3358 msleep(USB_RESUME_TIMEOUT);
3359
3360 spin_lock_irqsave(&hsotg->lock, flags);
3361 hprt0 = dwc2_read_hprt0(hsotg);
3362 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3363 dwc2_writel(hsotg, hprt0, HPRT0);
3364 hsotg->bus_suspended = false;
3365 spin_unlock_irqrestore(&hsotg->lock, flags);
3366}
3367
3368/* Handles hub class-specific requests */
3369static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3370 u16 wvalue, u16 windex, char *buf, u16 wlength)
3371{
3372 struct usb_hub_descriptor *hub_desc;
3373 int retval = 0;
3374 u32 hprt0;
3375 u32 port_status;
3376 u32 speed;
3377 u32 pcgctl;
3378 u32 pwr;
3379
3380 switch (typereq) {
3381 case ClearHubFeature:
3382 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3383
3384 switch (wvalue) {
3385 case C_HUB_LOCAL_POWER:
3386 case C_HUB_OVER_CURRENT:
3387 /* Nothing required here */
3388 break;
3389
3390 default:
3391 retval = -EINVAL;
3392 dev_err(hsotg->dev,
3393 "ClearHubFeature request %1xh unknown\n",
3394 wvalue);
3395 }
3396 break;
3397
3398 case ClearPortFeature:
3399 if (wvalue != USB_PORT_FEAT_L1)
3400 if (!windex || windex > 1)
3401 goto error;
3402 switch (wvalue) {
3403 case USB_PORT_FEAT_ENABLE:
3404 dev_dbg(hsotg->dev,
3405 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406 hprt0 = dwc2_read_hprt0(hsotg);
3407 hprt0 |= HPRT0_ENA;
3408 dwc2_writel(hsotg, hprt0, HPRT0);
3409 break;
3410
3411 case USB_PORT_FEAT_SUSPEND:
3412 dev_dbg(hsotg->dev,
3413 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3414
3415 if (hsotg->bus_suspended) {
3416 if (hsotg->hibernated)
3417 dwc2_exit_hibernation(hsotg, 0, 0, 1);
3418 else
3419 dwc2_port_resume(hsotg);
3420 }
3421 break;
3422
3423 case USB_PORT_FEAT_POWER:
3424 dev_dbg(hsotg->dev,
3425 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3426 hprt0 = dwc2_read_hprt0(hsotg);
3427 pwr = hprt0 & HPRT0_PWR;
3428 hprt0 &= ~HPRT0_PWR;
3429 dwc2_writel(hsotg, hprt0, HPRT0);
3430 if (pwr)
3431 dwc2_vbus_supply_exit(hsotg);
3432 break;
3433
3434 case USB_PORT_FEAT_INDICATOR:
3435 dev_dbg(hsotg->dev,
3436 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437 /* Port indicator not supported */
3438 break;
3439
3440 case USB_PORT_FEAT_C_CONNECTION:
3441 /*
3442 * Clears driver's internal Connect Status Change flag
3443 */
3444 dev_dbg(hsotg->dev,
3445 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446 hsotg->flags.b.port_connect_status_change = 0;
3447 break;
3448
3449 case USB_PORT_FEAT_C_RESET:
3450 /* Clears driver's internal Port Reset Change flag */
3451 dev_dbg(hsotg->dev,
3452 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453 hsotg->flags.b.port_reset_change = 0;
3454 break;
3455
3456 case USB_PORT_FEAT_C_ENABLE:
3457 /*
3458 * Clears the driver's internal Port Enable/Disable
3459 * Change flag
3460 */
3461 dev_dbg(hsotg->dev,
3462 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463 hsotg->flags.b.port_enable_change = 0;
3464 break;
3465
3466 case USB_PORT_FEAT_C_SUSPEND:
3467 /*
3468 * Clears the driver's internal Port Suspend Change
3469 * flag, which is set when resume signaling on the host
3470 * port is complete
3471 */
3472 dev_dbg(hsotg->dev,
3473 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474 hsotg->flags.b.port_suspend_change = 0;
3475 break;
3476
3477 case USB_PORT_FEAT_C_PORT_L1:
3478 dev_dbg(hsotg->dev,
3479 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480 hsotg->flags.b.port_l1_change = 0;
3481 break;
3482
3483 case USB_PORT_FEAT_C_OVER_CURRENT:
3484 dev_dbg(hsotg->dev,
3485 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486 hsotg->flags.b.port_over_current_change = 0;
3487 break;
3488
3489 default:
3490 retval = -EINVAL;
3491 dev_err(hsotg->dev,
3492 "ClearPortFeature request %1xh unknown or unsupported\n",
3493 wvalue);
3494 }
3495 break;
3496
3497 case GetHubDescriptor:
3498 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3499 hub_desc = (struct usb_hub_descriptor *)buf;
3500 hub_desc->bDescLength = 9;
3501 hub_desc->bDescriptorType = USB_DT_HUB;
3502 hub_desc->bNbrPorts = 1;
3503 hub_desc->wHubCharacteristics =
3504 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3505 HUB_CHAR_INDV_PORT_OCPM);
3506 hub_desc->bPwrOn2PwrGood = 1;
3507 hub_desc->bHubContrCurrent = 0;
3508 hub_desc->u.hs.DeviceRemovable[0] = 0;
3509 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3510 break;
3511
3512 case GetHubStatus:
3513 dev_dbg(hsotg->dev, "GetHubStatus\n");
3514 memset(buf, 0, 4);
3515 break;
3516
3517 case GetPortStatus:
3518 dev_vdbg(hsotg->dev,
3519 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3520 hsotg->flags.d32);
3521 if (!windex || windex > 1)
3522 goto error;
3523
3524 port_status = 0;
3525 if (hsotg->flags.b.port_connect_status_change)
3526 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3527 if (hsotg->flags.b.port_enable_change)
3528 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3529 if (hsotg->flags.b.port_suspend_change)
3530 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3531 if (hsotg->flags.b.port_l1_change)
3532 port_status |= USB_PORT_STAT_C_L1 << 16;
3533 if (hsotg->flags.b.port_reset_change)
3534 port_status |= USB_PORT_STAT_C_RESET << 16;
3535 if (hsotg->flags.b.port_over_current_change) {
3536 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3537 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3538 }
3539
3540 if (!hsotg->flags.b.port_connect_status) {
3541 /*
3542 * The port is disconnected, which means the core is
3543 * either in device mode or it soon will be. Just
3544 * return 0's for the remainder of the port status
3545 * since the port register can't be read if the core
3546 * is in device mode.
3547 */
3548 *(__le32 *)buf = cpu_to_le32(port_status);
3549 break;
3550 }
3551
3552 hprt0 = dwc2_readl(hsotg, HPRT0);
3553 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3554
3555 if (hprt0 & HPRT0_CONNSTS)
3556 port_status |= USB_PORT_STAT_CONNECTION;
3557 if (hprt0 & HPRT0_ENA)
3558 port_status |= USB_PORT_STAT_ENABLE;
3559 if (hprt0 & HPRT0_SUSP)
3560 port_status |= USB_PORT_STAT_SUSPEND;
3561 if (hprt0 & HPRT0_OVRCURRACT)
3562 port_status |= USB_PORT_STAT_OVERCURRENT;
3563 if (hprt0 & HPRT0_RST)
3564 port_status |= USB_PORT_STAT_RESET;
3565 if (hprt0 & HPRT0_PWR)
3566 port_status |= USB_PORT_STAT_POWER;
3567
3568 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3569 if (speed == HPRT0_SPD_HIGH_SPEED)
3570 port_status |= USB_PORT_STAT_HIGH_SPEED;
3571 else if (speed == HPRT0_SPD_LOW_SPEED)
3572 port_status |= USB_PORT_STAT_LOW_SPEED;
3573
3574 if (hprt0 & HPRT0_TSTCTL_MASK)
3575 port_status |= USB_PORT_STAT_TEST;
3576 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3577
3578 if (hsotg->params.dma_desc_fs_enable) {
3579 /*
3580 * Enable descriptor DMA only if a full speed
3581 * device is connected.
3582 */
3583 if (hsotg->new_connection &&
3584 ((port_status &
3585 (USB_PORT_STAT_CONNECTION |
3586 USB_PORT_STAT_HIGH_SPEED |
3587 USB_PORT_STAT_LOW_SPEED)) ==
3588 USB_PORT_STAT_CONNECTION)) {
3589 u32 hcfg;
3590
3591 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3592 hsotg->params.dma_desc_enable = true;
3593 hcfg = dwc2_readl(hsotg, HCFG);
3594 hcfg |= HCFG_DESCDMA;
3595 dwc2_writel(hsotg, hcfg, HCFG);
3596 hsotg->new_connection = false;
3597 }
3598 }
3599
3600 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3601 *(__le32 *)buf = cpu_to_le32(port_status);
3602 break;
3603
3604 case SetHubFeature:
3605 dev_dbg(hsotg->dev, "SetHubFeature\n");
3606 /* No HUB features supported */
3607 break;
3608
3609 case SetPortFeature:
3610 dev_dbg(hsotg->dev, "SetPortFeature\n");
3611 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3612 goto error;
3613
3614 if (!hsotg->flags.b.port_connect_status) {
3615 /*
3616 * The port is disconnected, which means the core is
3617 * either in device mode or it soon will be. Just
3618 * return without doing anything since the port
3619 * register can't be written if the core is in device
3620 * mode.
3621 */
3622 break;
3623 }
3624
3625 switch (wvalue) {
3626 case USB_PORT_FEAT_SUSPEND:
3627 dev_dbg(hsotg->dev,
3628 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629 if (windex != hsotg->otg_port)
3630 goto error;
3631 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3632 dwc2_enter_hibernation(hsotg, 1);
3633 else
3634 dwc2_port_suspend(hsotg, windex);
3635 break;
3636
3637 case USB_PORT_FEAT_POWER:
3638 dev_dbg(hsotg->dev,
3639 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3640 hprt0 = dwc2_read_hprt0(hsotg);
3641 pwr = hprt0 & HPRT0_PWR;
3642 hprt0 |= HPRT0_PWR;
3643 dwc2_writel(hsotg, hprt0, HPRT0);
3644 if (!pwr)
3645 dwc2_vbus_supply_init(hsotg);
3646 break;
3647
3648 case USB_PORT_FEAT_RESET:
3649 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3650 hsotg->hibernated)
3651 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3652 hprt0 = dwc2_read_hprt0(hsotg);
3653 dev_dbg(hsotg->dev,
3654 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3655 pcgctl = dwc2_readl(hsotg, PCGCTL);
3656 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3657 dwc2_writel(hsotg, pcgctl, PCGCTL);
3658 /* ??? Original driver does this */
3659 dwc2_writel(hsotg, 0, PCGCTL);
3660
3661 hprt0 = dwc2_read_hprt0(hsotg);
3662 pwr = hprt0 & HPRT0_PWR;
3663 /* Clear suspend bit if resetting from suspend state */
3664 hprt0 &= ~HPRT0_SUSP;
3665
3666 /*
3667 * When B-Host the Port reset bit is set in the Start
3668 * HCD Callback function, so that the reset is started
3669 * within 1ms of the HNP success interrupt
3670 */
3671 if (!dwc2_hcd_is_b_host(hsotg)) {
3672 hprt0 |= HPRT0_PWR | HPRT0_RST;
3673 dev_dbg(hsotg->dev,
3674 "In host mode, hprt0=%08x\n", hprt0);
3675 dwc2_writel(hsotg, hprt0, HPRT0);
3676 if (!pwr)
3677 dwc2_vbus_supply_init(hsotg);
3678 }
3679
3680 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3681 msleep(50);
3682 hprt0 &= ~HPRT0_RST;
3683 dwc2_writel(hsotg, hprt0, HPRT0);
3684 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3685 break;
3686
3687 case USB_PORT_FEAT_INDICATOR:
3688 dev_dbg(hsotg->dev,
3689 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3690 /* Not supported */
3691 break;
3692
3693 case USB_PORT_FEAT_TEST:
3694 hprt0 = dwc2_read_hprt0(hsotg);
3695 dev_dbg(hsotg->dev,
3696 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3697 hprt0 &= ~HPRT0_TSTCTL_MASK;
3698 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3699 dwc2_writel(hsotg, hprt0, HPRT0);
3700 break;
3701
3702 default:
3703 retval = -EINVAL;
3704 dev_err(hsotg->dev,
3705 "SetPortFeature %1xh unknown or unsupported\n",
3706 wvalue);
3707 break;
3708 }
3709 break;
3710
3711 default:
3712error:
3713 retval = -EINVAL;
3714 dev_dbg(hsotg->dev,
3715 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716 typereq, windex, wvalue);
3717 break;
3718 }
3719
3720 return retval;
3721}
3722
3723static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3724{
3725 int retval;
3726
3727 if (port != 1)
3728 return -EINVAL;
3729
3730 retval = (hsotg->flags.b.port_connect_status_change ||
3731 hsotg->flags.b.port_reset_change ||
3732 hsotg->flags.b.port_enable_change ||
3733 hsotg->flags.b.port_suspend_change ||
3734 hsotg->flags.b.port_over_current_change);
3735
3736 if (retval) {
3737 dev_dbg(hsotg->dev,
3738 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3740 hsotg->flags.b.port_connect_status_change);
3741 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3742 hsotg->flags.b.port_reset_change);
3743 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3744 hsotg->flags.b.port_enable_change);
3745 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3746 hsotg->flags.b.port_suspend_change);
3747 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3748 hsotg->flags.b.port_over_current_change);
3749 }
3750
3751 return retval;
3752}
3753
3754int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3755{
3756 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3757
3758#ifdef DWC2_DEBUG_SOF
3759 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3761#endif
3762 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763}
3764
3765int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3766{
3767 u32 hprt = dwc2_readl(hsotg, HPRT0);
3768 u32 hfir = dwc2_readl(hsotg, HFIR);
3769 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3770 unsigned int us_per_frame;
3771 unsigned int frame_number;
3772 unsigned int remaining;
3773 unsigned int interval;
3774 unsigned int phy_clks;
3775
3776 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3777 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3778
3779 /* Extract fields */
3780 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3781 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3782 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3783
3784 /*
3785 * Number of phy clocks since the last tick of the frame number after
3786 * "us" has passed.
3787 */
3788 phy_clks = (interval - remaining) +
3789 DIV_ROUND_UP(interval * us, us_per_frame);
3790
3791 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3792}
3793
3794int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3795{
3796 return hsotg->op_state == OTG_STATE_B_HOST;
3797}
3798
3799static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3800 int iso_desc_count,
3801 gfp_t mem_flags)
3802{
3803 struct dwc2_hcd_urb *urb;
3804
3805 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3806 if (urb)
3807 urb->packet_count = iso_desc_count;
3808 return urb;
3809}
3810
3811static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3812 struct dwc2_hcd_urb *urb, u8 dev_addr,
3813 u8 ep_num, u8 ep_type, u8 ep_dir,
3814 u16 maxp, u16 maxp_mult)
3815{
3816 if (dbg_perio() ||
3817 ep_type == USB_ENDPOINT_XFER_BULK ||
3818 ep_type == USB_ENDPOINT_XFER_CONTROL)
3819 dev_vdbg(hsotg->dev,
3820 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3822 urb->pipe_info.dev_addr = dev_addr;
3823 urb->pipe_info.ep_num = ep_num;
3824 urb->pipe_info.pipe_type = ep_type;
3825 urb->pipe_info.pipe_dir = ep_dir;
3826 urb->pipe_info.maxp = maxp;
3827 urb->pipe_info.maxp_mult = maxp_mult;
3828}
3829
3830/*
3831 * NOTE: This function will be removed once the peripheral controller code
3832 * is integrated and the driver is stable
3833 */
3834void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3835{
3836#ifdef DEBUG
3837 struct dwc2_host_chan *chan;
3838 struct dwc2_hcd_urb *urb;
3839 struct dwc2_qtd *qtd;
3840 int num_channels;
3841 u32 np_tx_status;
3842 u32 p_tx_status;
3843 int i;
3844
3845 num_channels = hsotg->params.host_channels;
3846 dev_dbg(hsotg->dev, "\n");
3847 dev_dbg(hsotg->dev,
3848 "************************************************************\n");
3849 dev_dbg(hsotg->dev, "HCD State:\n");
3850 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3851
3852 for (i = 0; i < num_channels; i++) {
3853 chan = hsotg->hc_ptr_array[i];
3854 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3855 dev_dbg(hsotg->dev,
3856 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3858 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3859 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3860 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3861 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3862 chan->data_pid_start);
3863 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3864 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3865 chan->xfer_started);
3866 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3867 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3868 (unsigned long)chan->xfer_dma);
3869 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3870 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3871 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3872 chan->halt_on_queue);
3873 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3874 chan->halt_pending);
3875 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3876 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3877 dev_dbg(hsotg->dev, " complete_split: %d\n",
3878 chan->complete_split);
3879 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3880 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3881 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3882 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3883 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3884
3885 if (chan->xfer_started) {
3886 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3887
3888 hfnum = dwc2_readl(hsotg, HFNUM);
3889 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3890 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3891 hcint = dwc2_readl(hsotg, HCINT(i));
3892 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3893 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3894 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3895 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3896 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3897 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3898 }
3899
3900 if (!(chan->xfer_started && chan->qh))
3901 continue;
3902
3903 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3904 if (!qtd->in_process)
3905 break;
3906 urb = qtd->urb;
3907 dev_dbg(hsotg->dev, " URB Info:\n");
3908 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3909 qtd, urb);
3910 if (urb) {
3911 dev_dbg(hsotg->dev,
3912 " Dev: %d, EP: %d %s\n",
3913 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3914 dwc2_hcd_get_ep_num(&urb->pipe_info),
3915 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3916 "IN" : "OUT");
3917 dev_dbg(hsotg->dev,
3918 " Max packet size: %d (%d mult)\n",
3919 dwc2_hcd_get_maxp(&urb->pipe_info),
3920 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3921 dev_dbg(hsotg->dev,
3922 " transfer_buffer: %p\n",
3923 urb->buf);
3924 dev_dbg(hsotg->dev,
3925 " transfer_dma: %08lx\n",
3926 (unsigned long)urb->dma);
3927 dev_dbg(hsotg->dev,
3928 " transfer_buffer_length: %d\n",
3929 urb->length);
3930 dev_dbg(hsotg->dev, " actual_length: %d\n",
3931 urb->actual_length);
3932 }
3933 }
3934 }
3935
3936 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3937 hsotg->non_periodic_channels);
3938 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3939 hsotg->periodic_channels);
3940 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3941 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3942 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3943 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3944 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3945 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3946 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3947 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3948 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3949 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3950 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3951 dwc2_dump_global_registers(hsotg);
3952 dwc2_dump_host_registers(hsotg);
3953 dev_dbg(hsotg->dev,
3954 "************************************************************\n");
3955 dev_dbg(hsotg->dev, "\n");
3956#endif
3957}
3958
3959struct wrapper_priv_data {
3960 struct dwc2_hsotg *hsotg;
3961};
3962
3963/* Gets the dwc2_hsotg from a usb_hcd */
3964static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3965{
3966 struct wrapper_priv_data *p;
3967
3968 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3969 return p->hsotg;
3970}
3971
3972/**
3973 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3974 *
3975 * This will get the dwc2_tt structure (and ttport) associated with the given
3976 * context (which is really just a struct urb pointer).
3977 *
3978 * The first time this is called for a given TT we allocate memory for our
3979 * structure. When everyone is done and has called dwc2_host_put_tt_info()
3980 * then the refcount for the structure will go to 0 and we'll free it.
3981 *
3982 * @hsotg: The HCD state structure for the DWC OTG controller.
3983 * @context: The priv pointer from a struct dwc2_hcd_urb.
3984 * @mem_flags: Flags for allocating memory.
3985 * @ttport: We'll return this device's port number here. That's used to
3986 * reference into the bitmap if we're on a multi_tt hub.
3987 *
3988 * Return: a pointer to a struct dwc2_tt. Don't forget to call
3989 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
3990 */
3991
3992struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3993 gfp_t mem_flags, int *ttport)
3994{
3995 struct urb *urb = context;
3996 struct dwc2_tt *dwc_tt = NULL;
3997
3998 if (urb->dev->tt) {
3999 *ttport = urb->dev->ttport;
4000
4001 dwc_tt = urb->dev->tt->hcpriv;
4002 if (!dwc_tt) {
4003 size_t bitmap_size;
4004
4005 /*
4006 * For single_tt we need one schedule. For multi_tt
4007 * we need one per port.
4008 */
4009 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4010 sizeof(dwc_tt->periodic_bitmaps[0]);
4011 if (urb->dev->tt->multi)
4012 bitmap_size *= urb->dev->tt->hub->maxchild;
4013
4014 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4015 mem_flags);
4016 if (!dwc_tt)
4017 return NULL;
4018
4019 dwc_tt->usb_tt = urb->dev->tt;
4020 dwc_tt->usb_tt->hcpriv = dwc_tt;
4021 }
4022
4023 dwc_tt->refcount++;
4024 }
4025
4026 return dwc_tt;
4027}
4028
4029/**
4030 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4031 *
4032 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033 * of the structure are done.
4034 *
4035 * It's OK to call this with NULL.
4036 *
4037 * @hsotg: The HCD state structure for the DWC OTG controller.
4038 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4039 */
4040void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4041{
4042 /* Model kfree and make put of NULL a no-op */
4043 if (!dwc_tt)
4044 return;
4045
4046 WARN_ON(dwc_tt->refcount < 1);
4047
4048 dwc_tt->refcount--;
4049 if (!dwc_tt->refcount) {
4050 dwc_tt->usb_tt->hcpriv = NULL;
4051 kfree(dwc_tt);
4052 }
4053}
4054
4055int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4056{
4057 struct urb *urb = context;
4058
4059 return urb->dev->speed;
4060}
4061
4062static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4063 struct urb *urb)
4064{
4065 struct usb_bus *bus = hcd_to_bus(hcd);
4066
4067 if (urb->interval)
4068 bus->bandwidth_allocated += bw / urb->interval;
4069 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4070 bus->bandwidth_isoc_reqs++;
4071 else
4072 bus->bandwidth_int_reqs++;
4073}
4074
4075static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4076 struct urb *urb)
4077{
4078 struct usb_bus *bus = hcd_to_bus(hcd);
4079
4080 if (urb->interval)
4081 bus->bandwidth_allocated -= bw / urb->interval;
4082 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4083 bus->bandwidth_isoc_reqs--;
4084 else
4085 bus->bandwidth_int_reqs--;
4086}
4087
4088/*
4089 * Sets the final status of an URB and returns it to the upper layer. Any
4090 * required cleanup of the URB is performed.
4091 *
4092 * Must be called with interrupt disabled and spinlock held
4093 */
4094void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4095 int status)
4096{
4097 struct urb *urb;
4098 int i;
4099
4100 if (!qtd) {
4101 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4102 return;
4103 }
4104
4105 if (!qtd->urb) {
4106 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4107 return;
4108 }
4109
4110 urb = qtd->urb->priv;
4111 if (!urb) {
4112 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4113 return;
4114 }
4115
4116 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4117
4118 if (dbg_urb(urb))
4119 dev_vdbg(hsotg->dev,
4120 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121 __func__, urb, usb_pipedevice(urb->pipe),
4122 usb_pipeendpoint(urb->pipe),
4123 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4124 urb->actual_length);
4125
4126 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4127 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4128 for (i = 0; i < urb->number_of_packets; ++i) {
4129 urb->iso_frame_desc[i].actual_length =
4130 dwc2_hcd_urb_get_iso_desc_actual_length(
4131 qtd->urb, i);
4132 urb->iso_frame_desc[i].status =
4133 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4134 }
4135 }
4136
4137 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4138 for (i = 0; i < urb->number_of_packets; i++)
4139 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4140 i, urb->iso_frame_desc[i].status);
4141 }
4142
4143 urb->status = status;
4144 if (!status) {
4145 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4146 urb->actual_length < urb->transfer_buffer_length)
4147 urb->status = -EREMOTEIO;
4148 }
4149
4150 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4151 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4152 struct usb_host_endpoint *ep = urb->ep;
4153
4154 if (ep)
4155 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4156 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4157 urb);
4158 }
4159
4160 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4161 urb->hcpriv = NULL;
4162 kfree(qtd->urb);
4163 qtd->urb = NULL;
4164
4165 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4166}
4167
4168/*
4169 * Work queue function for starting the HCD when A-Cable is connected
4170 */
4171static void dwc2_hcd_start_func(struct work_struct *work)
4172{
4173 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4174 start_work.work);
4175
4176 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4177 dwc2_host_start(hsotg);
4178}
4179
4180/*
4181 * Reset work queue function
4182 */
4183static void dwc2_hcd_reset_func(struct work_struct *work)
4184{
4185 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4186 reset_work.work);
4187 unsigned long flags;
4188 u32 hprt0;
4189
4190 dev_dbg(hsotg->dev, "USB RESET function called\n");
4191
4192 spin_lock_irqsave(&hsotg->lock, flags);
4193
4194 hprt0 = dwc2_read_hprt0(hsotg);
4195 hprt0 &= ~HPRT0_RST;
4196 dwc2_writel(hsotg, hprt0, HPRT0);
4197 hsotg->flags.b.port_reset_change = 1;
4198
4199 spin_unlock_irqrestore(&hsotg->lock, flags);
4200}
4201
4202static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4203{
4204 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205 phy_reset_work);
4206 int ret;
4207
4208 ret = phy_reset(hsotg->phy);
4209 if (ret)
4210 dev_warn(hsotg->dev, "PHY reset failed\n");
4211}
4212
4213/*
4214 * =========================================================================
4215 * Linux HC Driver Functions
4216 * =========================================================================
4217 */
4218
4219/*
4220 * Initializes the DWC_otg controller and its root hub and prepares it for host
4221 * mode operation. Activates the root port. Returns 0 on success and a negative
4222 * error code on failure.
4223 */
4224static int _dwc2_hcd_start(struct usb_hcd *hcd)
4225{
4226 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4227 struct usb_bus *bus = hcd_to_bus(hcd);
4228 unsigned long flags;
4229 u32 hprt0;
4230 int ret;
4231
4232 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4233
4234 spin_lock_irqsave(&hsotg->lock, flags);
4235 hsotg->lx_state = DWC2_L0;
4236 hcd->state = HC_STATE_RUNNING;
4237 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4238
4239 if (dwc2_is_device_mode(hsotg)) {
4240 spin_unlock_irqrestore(&hsotg->lock, flags);
4241 return 0; /* why 0 ?? */
4242 }
4243
4244 dwc2_hcd_reinit(hsotg);
4245
4246 hprt0 = dwc2_read_hprt0(hsotg);
4247 /* Has vbus power been turned on in dwc2_core_host_init ? */
4248 if (hprt0 & HPRT0_PWR) {
4249 /* Enable external vbus supply before resuming root hub */
4250 spin_unlock_irqrestore(&hsotg->lock, flags);
4251 ret = dwc2_vbus_supply_init(hsotg);
4252 if (ret)
4253 return ret;
4254 spin_lock_irqsave(&hsotg->lock, flags);
4255 }
4256
4257 /* Initialize and connect root hub if one is not already attached */
4258 if (bus->root_hub) {
4259 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4260 /* Inform the HUB driver to resume */
4261 usb_hcd_resume_root_hub(hcd);
4262 }
4263
4264 spin_unlock_irqrestore(&hsotg->lock, flags);
4265
4266 return 0;
4267}
4268
4269/*
4270 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4271 * stopped.
4272 */
4273static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4274{
4275 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276 unsigned long flags;
4277 u32 hprt0;
4278
4279 /* Turn off all host-specific interrupts */
4280 dwc2_disable_host_interrupts(hsotg);
4281
4282 /* Wait for interrupt processing to finish */
4283 synchronize_irq(hcd->irq);
4284
4285 spin_lock_irqsave(&hsotg->lock, flags);
4286 hprt0 = dwc2_read_hprt0(hsotg);
4287 /* Ensure hcd is disconnected */
4288 dwc2_hcd_disconnect(hsotg, true);
4289 dwc2_hcd_stop(hsotg);
4290 hsotg->lx_state = DWC2_L3;
4291 hcd->state = HC_STATE_HALT;
4292 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4293 spin_unlock_irqrestore(&hsotg->lock, flags);
4294
4295 /* keep balanced supply init/exit by checking HPRT0_PWR */
4296 if (hprt0 & HPRT0_PWR)
4297 dwc2_vbus_supply_exit(hsotg);
4298
4299 usleep_range(1000, 3000);
4300}
4301
4302static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4303{
4304 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4305 unsigned long flags;
4306 int ret = 0;
4307 u32 hprt0;
4308 u32 pcgctl;
4309
4310 spin_lock_irqsave(&hsotg->lock, flags);
4311
4312 if (dwc2_is_device_mode(hsotg))
4313 goto unlock;
4314
4315 if (hsotg->lx_state != DWC2_L0)
4316 goto unlock;
4317
4318 if (!HCD_HW_ACCESSIBLE(hcd))
4319 goto unlock;
4320
4321 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4322 goto unlock;
4323
4324 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4325 goto skip_power_saving;
4326
4327 /*
4328 * Drive USB suspend and disable port Power
4329 * if usb bus is not suspended.
4330 */
4331 if (!hsotg->bus_suspended) {
4332 hprt0 = dwc2_read_hprt0(hsotg);
4333 if (hprt0 & HPRT0_CONNSTS) {
4334 hprt0 |= HPRT0_SUSP;
4335 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4336 hprt0 &= ~HPRT0_PWR;
4337 dwc2_writel(hsotg, hprt0, HPRT0);
4338 }
4339 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4340 spin_unlock_irqrestore(&hsotg->lock, flags);
4341 dwc2_vbus_supply_exit(hsotg);
4342 spin_lock_irqsave(&hsotg->lock, flags);
4343 } else {
4344 pcgctl = readl(hsotg->regs + PCGCTL);
4345 pcgctl |= PCGCTL_STOPPCLK;
4346 writel(pcgctl, hsotg->regs + PCGCTL);
4347 }
4348 }
4349
4350 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4351 /* Enter partial_power_down */
4352 ret = dwc2_enter_partial_power_down(hsotg);
4353 if (ret) {
4354 if (ret != -ENOTSUPP)
4355 dev_err(hsotg->dev,
4356 "enter partial_power_down failed\n");
4357 goto skip_power_saving;
4358 }
4359
4360 /* After entering partial_power_down, hardware is no more accessible */
4361 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4362 }
4363
4364 /* Ask phy to be suspended */
4365 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4366 spin_unlock_irqrestore(&hsotg->lock, flags);
4367 usb_phy_set_suspend(hsotg->uphy, true);
4368 spin_lock_irqsave(&hsotg->lock, flags);
4369 }
4370
4371skip_power_saving:
4372 hsotg->lx_state = DWC2_L2;
4373unlock:
4374 spin_unlock_irqrestore(&hsotg->lock, flags);
4375
4376 return ret;
4377}
4378
4379static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4380{
4381 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382 unsigned long flags;
4383 u32 pcgctl;
4384 int ret = 0;
4385
4386 spin_lock_irqsave(&hsotg->lock, flags);
4387
4388 if (dwc2_is_device_mode(hsotg))
4389 goto unlock;
4390
4391 if (hsotg->lx_state != DWC2_L2)
4392 goto unlock;
4393
4394 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4395 hsotg->lx_state = DWC2_L0;
4396 goto unlock;
4397 }
4398
4399 /*
4400 * Enable power if not already done.
4401 * This must not be spinlocked since duration
4402 * of this call is unknown.
4403 */
4404 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4405 spin_unlock_irqrestore(&hsotg->lock, flags);
4406 usb_phy_set_suspend(hsotg->uphy, false);
4407 spin_lock_irqsave(&hsotg->lock, flags);
4408 }
4409
4410 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4411 /*
4412 * Set HW accessible bit before powering on the controller
4413 * since an interrupt may rise.
4414 */
4415 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4416
4417
4418 /* Exit partial_power_down */
4419 ret = dwc2_exit_partial_power_down(hsotg, true);
4420 if (ret && (ret != -ENOTSUPP))
4421 dev_err(hsotg->dev, "exit partial_power_down failed\n");
4422 } else {
4423 pcgctl = readl(hsotg->regs + PCGCTL);
4424 pcgctl &= ~PCGCTL_STOPPCLK;
4425 writel(pcgctl, hsotg->regs + PCGCTL);
4426 }
4427
4428 hsotg->lx_state = DWC2_L0;
4429
4430 spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432 if (hsotg->bus_suspended) {
4433 spin_lock_irqsave(&hsotg->lock, flags);
4434 hsotg->flags.b.port_suspend_change = 1;
4435 spin_unlock_irqrestore(&hsotg->lock, flags);
4436 dwc2_port_resume(hsotg);
4437 } else {
4438 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4439 dwc2_vbus_supply_init(hsotg);
4440
4441 /* Wait for controller to correctly update D+/D- level */
4442 usleep_range(3000, 5000);
4443 }
4444
4445 /*
4446 * Clear Port Enable and Port Status changes.
4447 * Enable Port Power.
4448 */
4449 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4450 HPRT0_ENACHG, HPRT0);
4451 /* Wait for controller to detect Port Connect */
4452 usleep_range(5000, 7000);
4453 }
4454
4455 return ret;
4456unlock:
4457 spin_unlock_irqrestore(&hsotg->lock, flags);
4458
4459 return ret;
4460}
4461
4462/* Returns the current frame number */
4463static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4464{
4465 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4466
4467 return dwc2_hcd_get_frame_number(hsotg);
4468}
4469
4470static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4471 char *fn_name)
4472{
4473#ifdef VERBOSE_DEBUG
4474 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4475 char *pipetype = NULL;
4476 char *speed = NULL;
4477
4478 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4479 dev_vdbg(hsotg->dev, " Device address: %d\n",
4480 usb_pipedevice(urb->pipe));
4481 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4482 usb_pipeendpoint(urb->pipe),
4483 usb_pipein(urb->pipe) ? "IN" : "OUT");
4484
4485 switch (usb_pipetype(urb->pipe)) {
4486 case PIPE_CONTROL:
4487 pipetype = "CONTROL";
4488 break;
4489 case PIPE_BULK:
4490 pipetype = "BULK";
4491 break;
4492 case PIPE_INTERRUPT:
4493 pipetype = "INTERRUPT";
4494 break;
4495 case PIPE_ISOCHRONOUS:
4496 pipetype = "ISOCHRONOUS";
4497 break;
4498 }
4499
4500 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4501 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4502 "IN" : "OUT");
4503
4504 switch (urb->dev->speed) {
4505 case USB_SPEED_HIGH:
4506 speed = "HIGH";
4507 break;
4508 case USB_SPEED_FULL:
4509 speed = "FULL";
4510 break;
4511 case USB_SPEED_LOW:
4512 speed = "LOW";
4513 break;
4514 default:
4515 speed = "UNKNOWN";
4516 break;
4517 }
4518
4519 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4520 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4521 usb_endpoint_maxp(&urb->ep->desc),
4522 usb_endpoint_maxp_mult(&urb->ep->desc));
4523
4524 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4525 urb->transfer_buffer_length);
4526 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4527 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4528 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4529 urb->setup_packet, (unsigned long)urb->setup_dma);
4530 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4531
4532 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4533 int i;
4534
4535 for (i = 0; i < urb->number_of_packets; i++) {
4536 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4537 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4538 urb->iso_frame_desc[i].offset,
4539 urb->iso_frame_desc[i].length);
4540 }
4541 }
4542#endif
4543}
4544
4545/*
4546 * Starts processing a USB transfer request specified by a USB Request Block
4547 * (URB). mem_flags indicates the type of memory allocation to use while
4548 * processing this URB.
4549 */
4550static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4551 gfp_t mem_flags)
4552{
4553 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554 struct usb_host_endpoint *ep = urb->ep;
4555 struct dwc2_hcd_urb *dwc2_urb;
4556 int i;
4557 int retval;
4558 int alloc_bandwidth = 0;
4559 u8 ep_type = 0;
4560 u32 tflags = 0;
4561 void *buf;
4562 unsigned long flags;
4563 struct dwc2_qh *qh;
4564 bool qh_allocated = false;
4565 struct dwc2_qtd *qtd;
4566
4567 if (dbg_urb(urb)) {
4568 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4569 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4570 }
4571
4572 if (!ep)
4573 return -EINVAL;
4574
4575 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4576 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4577 spin_lock_irqsave(&hsotg->lock, flags);
4578 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4579 alloc_bandwidth = 1;
4580 spin_unlock_irqrestore(&hsotg->lock, flags);
4581 }
4582
4583 switch (usb_pipetype(urb->pipe)) {
4584 case PIPE_CONTROL:
4585 ep_type = USB_ENDPOINT_XFER_CONTROL;
4586 break;
4587 case PIPE_ISOCHRONOUS:
4588 ep_type = USB_ENDPOINT_XFER_ISOC;
4589 break;
4590 case PIPE_BULK:
4591 ep_type = USB_ENDPOINT_XFER_BULK;
4592 break;
4593 case PIPE_INTERRUPT:
4594 ep_type = USB_ENDPOINT_XFER_INT;
4595 break;
4596 }
4597
4598 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4599 mem_flags);
4600 if (!dwc2_urb)
4601 return -ENOMEM;
4602
4603 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4604 usb_pipeendpoint(urb->pipe), ep_type,
4605 usb_pipein(urb->pipe),
4606 usb_endpoint_maxp(&ep->desc),
4607 usb_endpoint_maxp_mult(&ep->desc));
4608
4609 buf = urb->transfer_buffer;
4610
4611 if (hcd_uses_dma(hcd)) {
4612 if (!buf && (urb->transfer_dma & 3)) {
4613 dev_err(hsotg->dev,
4614 "%s: unaligned transfer with no transfer_buffer",
4615 __func__);
4616 retval = -EINVAL;
4617 goto fail0;
4618 }
4619 }
4620
4621 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4622 tflags |= URB_GIVEBACK_ASAP;
4623 if (urb->transfer_flags & URB_ZERO_PACKET)
4624 tflags |= URB_SEND_ZERO_PACKET;
4625
4626 dwc2_urb->priv = urb;
4627 dwc2_urb->buf = buf;
4628 dwc2_urb->dma = urb->transfer_dma;
4629 dwc2_urb->length = urb->transfer_buffer_length;
4630 dwc2_urb->setup_packet = urb->setup_packet;
4631 dwc2_urb->setup_dma = urb->setup_dma;
4632 dwc2_urb->flags = tflags;
4633 dwc2_urb->interval = urb->interval;
4634 dwc2_urb->status = -EINPROGRESS;
4635
4636 for (i = 0; i < urb->number_of_packets; ++i)
4637 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4638 urb->iso_frame_desc[i].offset,
4639 urb->iso_frame_desc[i].length);
4640
4641 urb->hcpriv = dwc2_urb;
4642 qh = (struct dwc2_qh *)ep->hcpriv;
4643 /* Create QH for the endpoint if it doesn't exist */
4644 if (!qh) {
4645 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4646 if (!qh) {
4647 retval = -ENOMEM;
4648 goto fail0;
4649 }
4650 ep->hcpriv = qh;
4651 qh_allocated = true;
4652 }
4653
4654 qtd = kzalloc(sizeof(*qtd), mem_flags);
4655 if (!qtd) {
4656 retval = -ENOMEM;
4657 goto fail1;
4658 }
4659
4660 spin_lock_irqsave(&hsotg->lock, flags);
4661 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4662 if (retval)
4663 goto fail2;
4664
4665 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4666 if (retval)
4667 goto fail3;
4668
4669 if (alloc_bandwidth) {
4670 dwc2_allocate_bus_bandwidth(hcd,
4671 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4672 urb);
4673 }
4674
4675 spin_unlock_irqrestore(&hsotg->lock, flags);
4676
4677 return 0;
4678
4679fail3:
4680 dwc2_urb->priv = NULL;
4681 usb_hcd_unlink_urb_from_ep(hcd, urb);
4682 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4683 qh->channel->qh = NULL;
4684fail2:
4685 spin_unlock_irqrestore(&hsotg->lock, flags);
4686 urb->hcpriv = NULL;
4687 kfree(qtd);
4688fail1:
4689 if (qh_allocated) {
4690 struct dwc2_qtd *qtd2, *qtd2_tmp;
4691
4692 ep->hcpriv = NULL;
4693 dwc2_hcd_qh_unlink(hsotg, qh);
4694 /* Free each QTD in the QH's QTD list */
4695 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4696 qtd_list_entry)
4697 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4698 dwc2_hcd_qh_free(hsotg, qh);
4699 }
4700fail0:
4701 kfree(dwc2_urb);
4702
4703 return retval;
4704}
4705
4706/*
4707 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4708 */
4709static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4710 int status)
4711{
4712 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4713 int rc;
4714 unsigned long flags;
4715
4716 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4717 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4718
4719 spin_lock_irqsave(&hsotg->lock, flags);
4720
4721 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4722 if (rc)
4723 goto out;
4724
4725 if (!urb->hcpriv) {
4726 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4727 goto out;
4728 }
4729
4730 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4731
4732 usb_hcd_unlink_urb_from_ep(hcd, urb);
4733
4734 kfree(urb->hcpriv);
4735 urb->hcpriv = NULL;
4736
4737 /* Higher layer software sets URB status */
4738 spin_unlock(&hsotg->lock);
4739 usb_hcd_giveback_urb(hcd, urb, status);
4740 spin_lock(&hsotg->lock);
4741
4742 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4743 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4744out:
4745 spin_unlock_irqrestore(&hsotg->lock, flags);
4746
4747 return rc;
4748}
4749
4750/*
4751 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4752 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4753 * must already be dequeued.
4754 */
4755static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4756 struct usb_host_endpoint *ep)
4757{
4758 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759
4760 dev_dbg(hsotg->dev,
4761 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4762 ep->desc.bEndpointAddress, ep->hcpriv);
4763 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4764}
4765
4766/*
4767 * Resets endpoint specific parameter values, in current version used to reset
4768 * the data toggle (as a WA). This function can be called from usb_clear_halt
4769 * routine.
4770 */
4771static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4772 struct usb_host_endpoint *ep)
4773{
4774 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4775 unsigned long flags;
4776
4777 dev_dbg(hsotg->dev,
4778 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4779 ep->desc.bEndpointAddress);
4780
4781 spin_lock_irqsave(&hsotg->lock, flags);
4782 dwc2_hcd_endpoint_reset(hsotg, ep);
4783 spin_unlock_irqrestore(&hsotg->lock, flags);
4784}
4785
4786/*
4787 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4788 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4789 * interrupt.
4790 *
4791 * This function is called by the USB core when an interrupt occurs
4792 */
4793static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4794{
4795 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4796
4797 return dwc2_handle_hcd_intr(hsotg);
4798}
4799
4800/*
4801 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4802 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4803 * is the status change indicator for the single root port. Returns 1 if either
4804 * change indicator is 1, otherwise returns 0.
4805 */
4806static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4807{
4808 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4809
4810 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4811 return buf[0] != 0;
4812}
4813
4814/* Handles hub class-specific requests */
4815static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4816 u16 windex, char *buf, u16 wlength)
4817{
4818 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4819 wvalue, windex, buf, wlength);
4820 return retval;
4821}
4822
4823/* Handles hub TT buffer clear completions */
4824static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4825 struct usb_host_endpoint *ep)
4826{
4827 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828 struct dwc2_qh *qh;
4829 unsigned long flags;
4830
4831 qh = ep->hcpriv;
4832 if (!qh)
4833 return;
4834
4835 spin_lock_irqsave(&hsotg->lock, flags);
4836 qh->tt_buffer_dirty = 0;
4837
4838 if (hsotg->flags.b.port_connect_status)
4839 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4840
4841 spin_unlock_irqrestore(&hsotg->lock, flags);
4842}
4843
4844/*
4845 * HPRT0_SPD_HIGH_SPEED: high speed
4846 * HPRT0_SPD_FULL_SPEED: full speed
4847 */
4848static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4849{
4850 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852 if (hsotg->params.speed == speed)
4853 return;
4854
4855 hsotg->params.speed = speed;
4856 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4857}
4858
4859static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4860{
4861 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862
4863 if (!hsotg->params.change_speed_quirk)
4864 return;
4865
4866 /*
4867 * On removal, set speed to default high-speed.
4868 */
4869 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4870 udev->parent->speed < USB_SPEED_HIGH) {
4871 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4872 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4873 }
4874}
4875
4876static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4877{
4878 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879
4880 if (!hsotg->params.change_speed_quirk)
4881 return 0;
4882
4883 if (udev->speed == USB_SPEED_HIGH) {
4884 dev_info(hsotg->dev, "Set speed to high-speed\n");
4885 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4886 } else if ((udev->speed == USB_SPEED_FULL ||
4887 udev->speed == USB_SPEED_LOW)) {
4888 /*
4889 * Change speed setting to full-speed if there's
4890 * a full-speed or low-speed device plugged in.
4891 */
4892 dev_info(hsotg->dev, "Set speed to full-speed\n");
4893 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4894 }
4895
4896 return 0;
4897}
4898
4899static struct hc_driver dwc2_hc_driver = {
4900 .description = "dwc2_hsotg",
4901 .product_desc = "DWC OTG Controller",
4902 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4903
4904 .irq = _dwc2_hcd_irq,
4905 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4906
4907 .start = _dwc2_hcd_start,
4908 .stop = _dwc2_hcd_stop,
4909 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4910 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4911 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4912 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4913 .get_frame_number = _dwc2_hcd_get_frame_number,
4914
4915 .hub_status_data = _dwc2_hcd_hub_status_data,
4916 .hub_control = _dwc2_hcd_hub_control,
4917 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4918
4919 .bus_suspend = _dwc2_hcd_suspend,
4920 .bus_resume = _dwc2_hcd_resume,
4921
4922 .map_urb_for_dma = dwc2_map_urb_for_dma,
4923 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4924};
4925
4926/*
4927 * Frees secondary storage associated with the dwc2_hsotg structure contained
4928 * in the struct usb_hcd field
4929 */
4930static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4931{
4932 u32 ahbcfg;
4933 u32 dctl;
4934 int i;
4935
4936 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4937
4938 /* Free memory for QH/QTD lists */
4939 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4940 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4941 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4942 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4943 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4944 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4945 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4946
4947 /* Free memory for the host channels */
4948 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4949 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4950
4951 if (chan) {
4952 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4953 i, chan);
4954 hsotg->hc_ptr_array[i] = NULL;
4955 kfree(chan);
4956 }
4957 }
4958
4959 if (hsotg->params.host_dma) {
4960 if (hsotg->status_buf) {
4961 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4962 hsotg->status_buf,
4963 hsotg->status_buf_dma);
4964 hsotg->status_buf = NULL;
4965 }
4966 } else {
4967 kfree(hsotg->status_buf);
4968 hsotg->status_buf = NULL;
4969 }
4970
4971 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4972
4973 /* Disable all interrupts */
4974 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4975 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4976 dwc2_writel(hsotg, 0, GINTMSK);
4977
4978 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4979 dctl = dwc2_readl(hsotg, DCTL);
4980 dctl |= DCTL_SFTDISCON;
4981 dwc2_writel(hsotg, dctl, DCTL);
4982 }
4983
4984 if (hsotg->wq_otg) {
4985 if (!cancel_work_sync(&hsotg->wf_otg))
4986 flush_workqueue(hsotg->wq_otg);
4987 destroy_workqueue(hsotg->wq_otg);
4988 }
4989
4990 cancel_work_sync(&hsotg->phy_reset_work);
4991
4992 del_timer(&hsotg->wkp_timer);
4993}
4994
4995static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4996{
4997 /* Turn off all host-specific interrupts */
4998 dwc2_disable_host_interrupts(hsotg);
4999
5000 dwc2_hcd_free(hsotg);
5001}
5002
5003/*
5004 * Initializes the HCD. This function allocates memory for and initializes the
5005 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5006 * USB bus with the core and calls the hc_driver->start() function. It returns
5007 * a negative error on failure.
5008 */
5009int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5010{
5011 struct platform_device *pdev = to_platform_device(hsotg->dev);
5012 struct resource *res;
5013 struct usb_hcd *hcd;
5014 struct dwc2_host_chan *channel;
5015 u32 hcfg;
5016 int i, num_channels;
5017 int retval;
5018
5019 if (usb_disabled())
5020 return -ENODEV;
5021
5022 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5023
5024 retval = -ENOMEM;
5025
5026 hcfg = dwc2_readl(hsotg, HCFG);
5027 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5028
5029#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5030 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5031 sizeof(*hsotg->frame_num_array),
5032 GFP_KERNEL);
5033 if (!hsotg->frame_num_array)
5034 goto error1;
5035 hsotg->last_frame_num_array =
5036 kcalloc(FRAME_NUM_ARRAY_SIZE,
5037 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5038 if (!hsotg->last_frame_num_array)
5039 goto error1;
5040#endif
5041 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5042
5043 /* Check if the bus driver or platform code has setup a dma_mask */
5044 if (hsotg->params.host_dma &&
5045 !hsotg->dev->dma_mask) {
5046 dev_warn(hsotg->dev,
5047 "dma_mask not set, disabling DMA\n");
5048 hsotg->params.host_dma = false;
5049 hsotg->params.dma_desc_enable = false;
5050 }
5051
5052 /* Set device flags indicating whether the HCD supports DMA */
5053 if (hsotg->params.host_dma) {
5054 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5055 dev_warn(hsotg->dev, "can't set DMA mask\n");
5056 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5058 }
5059
5060 if (hsotg->params.change_speed_quirk) {
5061 dwc2_hc_driver.free_dev = dwc2_free_dev;
5062 dwc2_hc_driver.reset_device = dwc2_reset_device;
5063 }
5064
5065 if (hsotg->params.host_dma)
5066 dwc2_hc_driver.flags |= HCD_DMA;
5067
5068 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5069 if (!hcd)
5070 goto error1;
5071
5072 hcd->has_tt = 1;
5073
5074 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5075 hcd->rsrc_start = res->start;
5076 hcd->rsrc_len = resource_size(res);
5077
5078 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5079 hsotg->priv = hcd;
5080
5081 /*
5082 * Disable the global interrupt until all the interrupt handlers are
5083 * installed
5084 */
5085 dwc2_disable_global_interrupts(hsotg);
5086
5087 /* Initialize the DWC_otg core, and select the Phy type */
5088 retval = dwc2_core_init(hsotg, true);
5089 if (retval)
5090 goto error2;
5091
5092 /* Create new workqueue and init work */
5093 retval = -ENOMEM;
5094 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5095 if (!hsotg->wq_otg) {
5096 dev_err(hsotg->dev, "Failed to create workqueue\n");
5097 goto error2;
5098 }
5099 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5100
5101 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5102
5103 /* Initialize the non-periodic schedule */
5104 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5105 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5106 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5107
5108 /* Initialize the periodic schedule */
5109 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5110 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5111 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5112 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5113
5114 INIT_LIST_HEAD(&hsotg->split_order);
5115
5116 /*
5117 * Create a host channel descriptor for each host channel implemented
5118 * in the controller. Initialize the channel descriptor array.
5119 */
5120 INIT_LIST_HEAD(&hsotg->free_hc_list);
5121 num_channels = hsotg->params.host_channels;
5122 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5123
5124 for (i = 0; i < num_channels; i++) {
5125 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5126 if (!channel)
5127 goto error3;
5128 channel->hc_num = i;
5129 INIT_LIST_HEAD(&channel->split_order_list_entry);
5130 hsotg->hc_ptr_array[i] = channel;
5131 }
5132
5133 /* Initialize work */
5134 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5135 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5136 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5137
5138 /*
5139 * Allocate space for storing data on status transactions. Normally no
5140 * data is sent, but this space acts as a bit bucket. This must be
5141 * done after usb_add_hcd since that function allocates the DMA buffer
5142 * pool.
5143 */
5144 if (hsotg->params.host_dma)
5145 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5146 DWC2_HCD_STATUS_BUF_SIZE,
5147 &hsotg->status_buf_dma, GFP_KERNEL);
5148 else
5149 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5150 GFP_KERNEL);
5151
5152 if (!hsotg->status_buf)
5153 goto error3;
5154
5155 /*
5156 * Create kmem caches to handle descriptor buffers in descriptor
5157 * DMA mode.
5158 * Alignment must be set to 512 bytes.
5159 */
5160 if (hsotg->params.dma_desc_enable ||
5161 hsotg->params.dma_desc_fs_enable) {
5162 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5163 sizeof(struct dwc2_dma_desc) *
5164 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5165 NULL);
5166 if (!hsotg->desc_gen_cache) {
5167 dev_err(hsotg->dev,
5168 "unable to create dwc2 generic desc cache\n");
5169
5170 /*
5171 * Disable descriptor dma mode since it will not be
5172 * usable.
5173 */
5174 hsotg->params.dma_desc_enable = false;
5175 hsotg->params.dma_desc_fs_enable = false;
5176 }
5177
5178 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5179 sizeof(struct dwc2_dma_desc) *
5180 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5181 if (!hsotg->desc_hsisoc_cache) {
5182 dev_err(hsotg->dev,
5183 "unable to create dwc2 hs isoc desc cache\n");
5184
5185 kmem_cache_destroy(hsotg->desc_gen_cache);
5186
5187 /*
5188 * Disable descriptor dma mode since it will not be
5189 * usable.
5190 */
5191 hsotg->params.dma_desc_enable = false;
5192 hsotg->params.dma_desc_fs_enable = false;
5193 }
5194 }
5195
5196 if (hsotg->params.host_dma) {
5197 /*
5198 * Create kmem caches to handle non-aligned buffer
5199 * in Buffer DMA mode.
5200 */
5201 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5202 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5203 SLAB_CACHE_DMA, NULL);
5204 if (!hsotg->unaligned_cache)
5205 dev_err(hsotg->dev,
5206 "unable to create dwc2 unaligned cache\n");
5207 }
5208
5209 hsotg->otg_port = 1;
5210 hsotg->frame_list = NULL;
5211 hsotg->frame_list_dma = 0;
5212 hsotg->periodic_qh_count = 0;
5213
5214 /* Initiate lx_state to L3 disconnected state */
5215 hsotg->lx_state = DWC2_L3;
5216
5217 hcd->self.otg_port = hsotg->otg_port;
5218
5219 /* Don't support SG list at this point */
5220 hcd->self.sg_tablesize = 0;
5221
5222 if (!IS_ERR_OR_NULL(hsotg->uphy))
5223 otg_set_host(hsotg->uphy->otg, &hcd->self);
5224
5225 /*
5226 * Finish generic HCD initialization and start the HCD. This function
5227 * allocates the DMA buffer pool, registers the USB bus, requests the
5228 * IRQ line, and calls hcd_start method.
5229 */
5230 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5231 if (retval < 0)
5232 goto error4;
5233
5234 device_wakeup_enable(hcd->self.controller);
5235
5236 dwc2_hcd_dump_state(hsotg);
5237
5238 dwc2_enable_global_interrupts(hsotg);
5239
5240 return 0;
5241
5242error4:
5243 kmem_cache_destroy(hsotg->unaligned_cache);
5244 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5245 kmem_cache_destroy(hsotg->desc_gen_cache);
5246error3:
5247 dwc2_hcd_release(hsotg);
5248error2:
5249 usb_put_hcd(hcd);
5250error1:
5251
5252#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5253 kfree(hsotg->last_frame_num_array);
5254 kfree(hsotg->frame_num_array);
5255#endif
5256
5257 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5258 return retval;
5259}
5260
5261/*
5262 * Removes the HCD.
5263 * Frees memory and resources associated with the HCD and deregisters the bus.
5264 */
5265void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5266{
5267 struct usb_hcd *hcd;
5268
5269 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5270
5271 hcd = dwc2_hsotg_to_hcd(hsotg);
5272 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5273
5274 if (!hcd) {
5275 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5276 __func__);
5277 return;
5278 }
5279
5280 if (!IS_ERR_OR_NULL(hsotg->uphy))
5281 otg_set_host(hsotg->uphy->otg, NULL);
5282
5283 usb_remove_hcd(hcd);
5284 hsotg->priv = NULL;
5285
5286 kmem_cache_destroy(hsotg->unaligned_cache);
5287 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5288 kmem_cache_destroy(hsotg->desc_gen_cache);
5289
5290 dwc2_hcd_release(hsotg);
5291 usb_put_hcd(hcd);
5292
5293#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5294 kfree(hsotg->last_frame_num_array);
5295 kfree(hsotg->frame_num_array);
5296#endif
5297}
5298
5299/**
5300 * dwc2_backup_host_registers() - Backup controller host registers.
5301 * When suspending usb bus, registers needs to be backuped
5302 * if controller power is disabled once suspended.
5303 *
5304 * @hsotg: Programming view of the DWC_otg controller
5305 */
5306int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5307{
5308 struct dwc2_hregs_backup *hr;
5309 int i;
5310
5311 dev_dbg(hsotg->dev, "%s\n", __func__);
5312
5313 /* Backup Host regs */
5314 hr = &hsotg->hr_backup;
5315 hr->hcfg = dwc2_readl(hsotg, HCFG);
5316 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5317 for (i = 0; i < hsotg->params.host_channels; ++i)
5318 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5319
5320 hr->hprt0 = dwc2_read_hprt0(hsotg);
5321 hr->hfir = dwc2_readl(hsotg, HFIR);
5322 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5323 hr->valid = true;
5324
5325 return 0;
5326}
5327
5328/**
5329 * dwc2_restore_host_registers() - Restore controller host registers.
5330 * When resuming usb bus, device registers needs to be restored
5331 * if controller power were disabled.
5332 *
5333 * @hsotg: Programming view of the DWC_otg controller
5334 */
5335int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5336{
5337 struct dwc2_hregs_backup *hr;
5338 int i;
5339
5340 dev_dbg(hsotg->dev, "%s\n", __func__);
5341
5342 /* Restore host regs */
5343 hr = &hsotg->hr_backup;
5344 if (!hr->valid) {
5345 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5346 __func__);
5347 return -EINVAL;
5348 }
5349 hr->valid = false;
5350
5351 dwc2_writel(hsotg, hr->hcfg, HCFG);
5352 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5353
5354 for (i = 0; i < hsotg->params.host_channels; ++i)
5355 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5356
5357 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5358 dwc2_writel(hsotg, hr->hfir, HFIR);
5359 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5360 hsotg->frame_number = 0;
5361
5362 return 0;
5363}
5364
5365/**
5366 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5367 *
5368 * @hsotg: Programming view of the DWC_otg controller
5369 */
5370int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5371{
5372 unsigned long flags;
5373 int ret = 0;
5374 u32 hprt0;
5375 u32 pcgcctl;
5376 u32 gusbcfg;
5377 u32 gpwrdn;
5378
5379 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5380 ret = dwc2_backup_global_registers(hsotg);
5381 if (ret) {
5382 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5383 __func__);
5384 return ret;
5385 }
5386 ret = dwc2_backup_host_registers(hsotg);
5387 if (ret) {
5388 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5389 __func__);
5390 return ret;
5391 }
5392
5393 /* Enter USB Suspend Mode */
5394 hprt0 = dwc2_readl(hsotg, HPRT0);
5395 hprt0 |= HPRT0_SUSP;
5396 hprt0 &= ~HPRT0_ENA;
5397 dwc2_writel(hsotg, hprt0, HPRT0);
5398
5399 /* Wait for the HPRT0.PrtSusp register field to be set */
5400 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5401 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5402
5403 /*
5404 * We need to disable interrupts to prevent servicing of any IRQ
5405 * during going to hibernation
5406 */
5407 spin_lock_irqsave(&hsotg->lock, flags);
5408 hsotg->lx_state = DWC2_L2;
5409
5410 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5411 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5412 /* ULPI interface */
5413 /* Suspend the Phy Clock */
5414 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415 pcgcctl |= PCGCTL_STOPPCLK;
5416 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417 udelay(10);
5418
5419 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5420 gpwrdn |= GPWRDN_PMUACTV;
5421 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5422 udelay(10);
5423 } else {
5424 /* UTMI+ Interface */
5425 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426 gpwrdn |= GPWRDN_PMUACTV;
5427 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428 udelay(10);
5429
5430 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5431 pcgcctl |= PCGCTL_STOPPCLK;
5432 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5433 udelay(10);
5434 }
5435
5436 /* Enable interrupts from wake up logic */
5437 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5438 gpwrdn |= GPWRDN_PMUINTSEL;
5439 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440 udelay(10);
5441
5442 /* Unmask host mode interrupts in GPWRDN */
5443 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5445 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5446 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5447 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5448 udelay(10);
5449
5450 /* Enable Power Down Clamp */
5451 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5452 gpwrdn |= GPWRDN_PWRDNCLMP;
5453 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454 udelay(10);
5455
5456 /* Switch off VDD */
5457 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458 gpwrdn |= GPWRDN_PWRDNSWTCH;
5459 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460
5461 hsotg->hibernated = 1;
5462 hsotg->bus_suspended = 1;
5463 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5464 spin_unlock_irqrestore(&hsotg->lock, flags);
5465 return ret;
5466}
5467
5468/*
5469 * dwc2_host_exit_hibernation()
5470 *
5471 * @hsotg: Programming view of the DWC_otg controller
5472 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5473 * @param reset: indicates whether resume is initiated by Reset.
5474 *
5475 * Return: non-zero if failed to enter to hibernation.
5476 *
5477 * This function is for exiting from Host mode hibernation by
5478 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5479 */
5480int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5481 int reset)
5482{
5483 u32 gpwrdn;
5484 u32 hprt0;
5485 int ret = 0;
5486 struct dwc2_gregs_backup *gr;
5487 struct dwc2_hregs_backup *hr;
5488
5489 gr = &hsotg->gr_backup;
5490 hr = &hsotg->hr_backup;
5491
5492 dev_dbg(hsotg->dev,
5493 "%s: called with rem_wakeup = %d reset = %d\n",
5494 __func__, rem_wakeup, reset);
5495
5496 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5497 hsotg->hibernated = 0;
5498
5499 /*
5500 * This step is not described in functional spec but if not wait for
5501 * this delay, mismatch interrupts occurred because just after restore
5502 * core is in Device mode(gintsts.curmode == 0)
5503 */
5504 mdelay(100);
5505
5506 /* Clear all pending interupts */
5507 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5508
5509 /* De-assert Restore */
5510 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5511 gpwrdn &= ~GPWRDN_RESTORE;
5512 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5513 udelay(10);
5514
5515 /* Restore GUSBCFG, HCFG */
5516 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5517 dwc2_writel(hsotg, hr->hcfg, HCFG);
5518
5519 /* De-assert Wakeup Logic */
5520 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5521 gpwrdn &= ~GPWRDN_PMUACTV;
5522 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5523 udelay(10);
5524
5525 hprt0 = hr->hprt0;
5526 hprt0 |= HPRT0_PWR;
5527 hprt0 &= ~HPRT0_ENA;
5528 hprt0 &= ~HPRT0_SUSP;
5529 dwc2_writel(hsotg, hprt0, HPRT0);
5530
5531 hprt0 = hr->hprt0;
5532 hprt0 |= HPRT0_PWR;
5533 hprt0 &= ~HPRT0_ENA;
5534 hprt0 &= ~HPRT0_SUSP;
5535
5536 if (reset) {
5537 hprt0 |= HPRT0_RST;
5538 dwc2_writel(hsotg, hprt0, HPRT0);
5539
5540 /* Wait for Resume time and then program HPRT again */
5541 mdelay(60);
5542 hprt0 &= ~HPRT0_RST;
5543 dwc2_writel(hsotg, hprt0, HPRT0);
5544 } else {
5545 hprt0 |= HPRT0_RES;
5546 dwc2_writel(hsotg, hprt0, HPRT0);
5547
5548 /* Wait for Resume time and then program HPRT again */
5549 mdelay(100);
5550 hprt0 &= ~HPRT0_RES;
5551 dwc2_writel(hsotg, hprt0, HPRT0);
5552 }
5553 /* Clear all interrupt status */
5554 hprt0 = dwc2_readl(hsotg, HPRT0);
5555 hprt0 |= HPRT0_CONNDET;
5556 hprt0 |= HPRT0_ENACHG;
5557 hprt0 &= ~HPRT0_ENA;
5558 dwc2_writel(hsotg, hprt0, HPRT0);
5559
5560 hprt0 = dwc2_readl(hsotg, HPRT0);
5561
5562 /* Clear all pending interupts */
5563 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5564
5565 /* Restore global registers */
5566 ret = dwc2_restore_global_registers(hsotg);
5567 if (ret) {
5568 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5569 __func__);
5570 return ret;
5571 }
5572
5573 /* Restore host registers */
5574 ret = dwc2_restore_host_registers(hsotg);
5575 if (ret) {
5576 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5577 __func__);
5578 return ret;
5579 }
5580
5581 dwc2_hcd_rem_wakeup(hsotg);
5582
5583 hsotg->hibernated = 0;
5584 hsotg->bus_suspended = 0;
5585 hsotg->lx_state = DWC2_L0;
5586 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5587 return ret;
5588}
5589
5590bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5591{
5592 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5593
5594 /* If the controller isn't allowed to wakeup then we can power off. */
5595 if (!device_may_wakeup(dwc2->dev))
5596 return true;
5597
5598 /*
5599 * We don't want to power off the PHY if something under the
5600 * root hub has wakeup enabled.
5601 */
5602 if (usb_wakeup_enabled_descendants(root_hub))
5603 return false;
5604
5605 /* No reason to keep the PHY powered, so allow poweroff */
5606 return true;
5607}