Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* QLogic qede NIC Driver
   2* Copyright (c) 2015 QLogic Corporation
   3*
   4* This software is available under the terms of the GNU General Public License
   5* (GPL) Version 2, available from the file COPYING in the main directory of
   6* this source tree.
   7*/
   8
 
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/version.h>
  12#include <linux/device.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/skbuff.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/string.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/interrupt.h>
  21#include <asm/byteorder.h>
  22#include <asm/param.h>
  23#include <linux/io.h>
  24#include <linux/netdev_features.h>
  25#include <linux/udp.h>
  26#include <linux/tcp.h>
  27#include <net/vxlan.h>
  28#include <linux/ip.h>
  29#include <net/ipv6.h>
  30#include <net/tcp.h>
  31#include <linux/if_ether.h>
  32#include <linux/if_vlan.h>
  33#include <linux/pkt_sched.h>
  34#include <linux/ethtool.h>
  35#include <linux/in.h>
  36#include <linux/random.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/bitops.h>
  39
 
  40#include "qede.h"
 
  41
  42static char version[] =
  43	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  44
  45MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49static uint debug;
  50module_param(debug, uint, 0);
  51MODULE_PARM_DESC(debug, " Default debug msglevel");
  52
  53static const struct qed_eth_ops *qed_ops;
  54
  55#define CHIP_NUM_57980S_40		0x1634
  56#define CHIP_NUM_57980S_10		0x1666
  57#define CHIP_NUM_57980S_MF		0x1636
  58#define CHIP_NUM_57980S_100		0x1644
  59#define CHIP_NUM_57980S_50		0x1654
  60#define CHIP_NUM_57980S_25		0x1656
 
 
 
  61
  62#ifndef PCI_DEVICE_ID_NX2_57980E
  63#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  64#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  65#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  66#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  67#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  68#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
 
 
 
 
  69#endif
  70
 
 
 
 
 
  71static const struct pci_device_id qede_pci_tbl[] = {
  72	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
  73	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
  74	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
  75	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
  76	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
  77	{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
 
 
 
 
 
 
 
  78	{ 0 }
  79};
  80
  81MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  82
  83static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 
 
  84
  85#define TX_TIMEOUT		(5 * HZ)
  86
 
 
 
  87static void qede_remove(struct pci_dev *pdev);
  88static int qede_alloc_rx_buffer(struct qede_dev *edev,
  89				struct qede_rx_queue *rxq);
  90static void qede_link_update(void *dev, struct qed_link_output *link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92static struct pci_driver qede_pci_driver = {
  93	.name = "qede",
  94	.id_table = qede_pci_tbl,
  95	.probe = qede_probe,
  96	.remove = qede_remove,
 
 
 
 
 
  97};
  98
  99static struct qed_eth_cb_ops qede_ll_ops = {
 100	{
 
 
 
 101		.link_update = qede_link_update,
 
 
 
 
 102	},
 
 
 103};
 104
 105static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 106			     void *ptr)
 107{
 108	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 109	struct ethtool_drvinfo drvinfo;
 110	struct qede_dev *edev;
 111
 112	/* Currently only support name change */
 113	if (event != NETDEV_CHANGENAME)
 114		goto done;
 115
 116	/* Check whether this is a qede device */
 117	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 118		goto done;
 119
 120	memset(&drvinfo, 0, sizeof(drvinfo));
 121	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 122	if (strcmp(drvinfo.driver, "qede"))
 123		goto done;
 124	edev = netdev_priv(ndev);
 125
 126	/* Notify qed of the name change */
 127	if (!edev->ops || !edev->ops->common)
 128		goto done;
 129	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
 130				  "qede");
 
 
 
 
 
 
 
 131
 132done:
 133	return NOTIFY_DONE;
 134}
 135
 136static struct notifier_block qede_netdev_notifier = {
 137	.notifier_call = qede_netdev_event,
 138};
 139
 140static
 141int __init qede_init(void)
 142{
 143	int ret;
 144	u32 qed_ver;
 145
 146	pr_notice("qede_init: %s\n", version);
 147
 148	qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
 149	if (qed_ver !=  QEDE_ETH_INTERFACE_VERSION) {
 150		pr_notice("Version mismatch [%08x != %08x]\n",
 151			  qed_ver,
 152			  QEDE_ETH_INTERFACE_VERSION);
 153		return -EINVAL;
 154	}
 155
 156	qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
 157	if (!qed_ops) {
 158		pr_notice("Failed to get qed ethtool operations\n");
 159		return -EINVAL;
 160	}
 161
 162	/* Must register notifier before pci ops, since we might miss
 163	 * interface rename after pci probe and netdev registeration.
 164	 */
 165	ret = register_netdevice_notifier(&qede_netdev_notifier);
 166	if (ret) {
 167		pr_notice("Failed to register netdevice_notifier\n");
 168		qed_put_eth_ops();
 169		return -EINVAL;
 170	}
 171
 172	ret = pci_register_driver(&qede_pci_driver);
 173	if (ret) {
 174		pr_notice("Failed to register driver\n");
 175		unregister_netdevice_notifier(&qede_netdev_notifier);
 176		qed_put_eth_ops();
 177		return -EINVAL;
 178	}
 179
 180	return 0;
 181}
 182
 183static void __exit qede_cleanup(void)
 184{
 185	pr_notice("qede_cleanup called\n");
 
 186
 187	unregister_netdevice_notifier(&qede_netdev_notifier);
 188	pci_unregister_driver(&qede_pci_driver);
 189	qed_put_eth_ops();
 190}
 191
 192module_init(qede_init);
 193module_exit(qede_cleanup);
 194
 195/* -------------------------------------------------------------------------
 196 * START OF FAST-PATH
 197 * -------------------------------------------------------------------------
 198 */
 199
 200/* Unmap the data and free skb */
 201static int qede_free_tx_pkt(struct qede_dev *edev,
 202			    struct qede_tx_queue *txq,
 203			    int *len)
 204{
 205	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
 206	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 207	struct eth_tx_1st_bd *first_bd;
 208	struct eth_tx_bd *tx_data_bd;
 209	int bds_consumed = 0;
 210	int nbds;
 211	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
 212	int i, split_bd_len = 0;
 213
 214	if (unlikely(!skb)) {
 215		DP_ERR(edev,
 216		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 217		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 218		return -1;
 219	}
 220
 221	*len = skb->len;
 222
 223	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 224
 225	bds_consumed++;
 226
 227	nbds = first_bd->data.nbds;
 228
 229	if (data_split) {
 230		struct eth_tx_bd *split = (struct eth_tx_bd *)
 231			qed_chain_consume(&txq->tx_pbl);
 232		split_bd_len = BD_UNMAP_LEN(split);
 233		bds_consumed++;
 234	}
 235	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 236		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 237
 238	/* Unmap the data of the skb frags */
 239	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 240		tx_data_bd = (struct eth_tx_bd *)
 241			qed_chain_consume(&txq->tx_pbl);
 242		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 243			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 244	}
 245
 246	while (bds_consumed++ < nbds)
 247		qed_chain_consume(&txq->tx_pbl);
 248
 249	/* Free skb */
 250	dev_kfree_skb_any(skb);
 251	txq->sw_tx_ring[idx].skb = NULL;
 252	txq->sw_tx_ring[idx].flags = 0;
 253
 254	return 0;
 255}
 256
 257/* Unmap the data and free skb when mapping failed during start_xmit */
 258static void qede_free_failed_tx_pkt(struct qede_dev *edev,
 259				    struct qede_tx_queue *txq,
 260				    struct eth_tx_1st_bd *first_bd,
 261				    int nbd,
 262				    bool data_split)
 263{
 264	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 265	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
 266	struct eth_tx_bd *tx_data_bd;
 267	int i, split_bd_len = 0;
 268
 269	/* Return prod to its position before this skb was handled */
 270	qed_chain_set_prod(&txq->tx_pbl,
 271			   le16_to_cpu(txq->tx_db.data.bd_prod),
 272			   first_bd);
 273
 274	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 275
 276	if (data_split) {
 277		struct eth_tx_bd *split = (struct eth_tx_bd *)
 278					  qed_chain_produce(&txq->tx_pbl);
 279		split_bd_len = BD_UNMAP_LEN(split);
 280		nbd--;
 281	}
 282
 283	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 284		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 285
 286	/* Unmap the data of the skb frags */
 287	for (i = 0; i < nbd; i++) {
 288		tx_data_bd = (struct eth_tx_bd *)
 289			qed_chain_produce(&txq->tx_pbl);
 290		if (tx_data_bd->nbytes)
 291			dma_unmap_page(&edev->pdev->dev,
 292				       BD_UNMAP_ADDR(tx_data_bd),
 293				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 294	}
 295
 296	/* Return again prod to its position before this skb was handled */
 297	qed_chain_set_prod(&txq->tx_pbl,
 298			   le16_to_cpu(txq->tx_db.data.bd_prod),
 299			   first_bd);
 300
 301	/* Free skb */
 302	dev_kfree_skb_any(skb);
 303	txq->sw_tx_ring[idx].skb = NULL;
 304	txq->sw_tx_ring[idx].flags = 0;
 305}
 306
 307static u32 qede_xmit_type(struct qede_dev *edev,
 308			  struct sk_buff *skb,
 309			  int *ipv6_ext)
 310{
 311	u32 rc = XMIT_L4_CSUM;
 312	__be16 l3_proto;
 313
 314	if (skb->ip_summed != CHECKSUM_PARTIAL)
 315		return XMIT_PLAIN;
 316
 317	l3_proto = vlan_get_protocol(skb);
 318	if (l3_proto == htons(ETH_P_IPV6) &&
 319	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 320		*ipv6_ext = 1;
 321
 322	if (skb_is_gso(skb))
 323		rc |= XMIT_LSO;
 324
 325	return rc;
 326}
 327
 328static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 329					 struct eth_tx_2nd_bd *second_bd,
 330					 struct eth_tx_3rd_bd *third_bd)
 331{
 332	u8 l4_proto;
 333	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 334
 335	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 336
 337	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 338		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 339		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 340
 341	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 342		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 343
 344	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 345		l4_proto = ipv6_hdr(skb)->nexthdr;
 346	else
 347		l4_proto = ip_hdr(skb)->protocol;
 348
 349	if (l4_proto == IPPROTO_UDP)
 350		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 351
 352	if (third_bd)
 353		third_bd->data.bitfields |=
 354			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 355				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 356				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 357
 358	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 359	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 360}
 361
 362static int map_frag_to_bd(struct qede_dev *edev,
 363			  skb_frag_t *frag,
 364			  struct eth_tx_bd *bd)
 365{
 366	dma_addr_t mapping;
 367
 368	/* Map skb non-linear frag data for DMA */
 369	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
 370				   skb_frag_size(frag),
 371				   DMA_TO_DEVICE);
 372	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 373		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
 374		return -ENOMEM;
 375	}
 376
 377	/* Setup the data pointer of the frag data */
 378	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 379
 380	return 0;
 381}
 382
 383/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 384#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 385static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
 386			     u8 xmit_type)
 387{
 388	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 389
 390	if (xmit_type & XMIT_LSO) {
 391		int hlen;
 392
 393		hlen = skb_transport_header(skb) +
 394		       tcp_hdrlen(skb) - skb->data;
 395
 396		/* linear payload would require its own BD */
 397		if (skb_headlen(skb) > hlen)
 398			allowed_frags--;
 399	}
 400
 401	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 402}
 403#endif
 404
 405/* Main transmit function */
 406static
 407netdev_tx_t qede_start_xmit(struct sk_buff *skb,
 408			    struct net_device *ndev)
 409{
 410	struct qede_dev *edev = netdev_priv(ndev);
 411	struct netdev_queue *netdev_txq;
 412	struct qede_tx_queue *txq;
 413	struct eth_tx_1st_bd *first_bd;
 414	struct eth_tx_2nd_bd *second_bd = NULL;
 415	struct eth_tx_3rd_bd *third_bd = NULL;
 416	struct eth_tx_bd *tx_data_bd = NULL;
 417	u16 txq_index;
 418	u8 nbd = 0;
 419	dma_addr_t mapping;
 420	int rc, frag_idx = 0, ipv6_ext = 0;
 421	u8 xmit_type;
 422	u16 idx;
 423	u16 hlen;
 424	bool data_split = false;
 425
 426	/* Get tx-queue context and netdev index */
 427	txq_index = skb_get_queue_mapping(skb);
 428	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
 429	txq = QEDE_TX_QUEUE(edev, txq_index);
 430	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 431
 432	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
 433			       (MAX_SKB_FRAGS + 1));
 434
 435	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
 436
 437#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 438	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
 439		if (skb_linearize(skb)) {
 440			DP_NOTICE(edev,
 441				  "SKB linearization failed - silently dropping this SKB\n");
 442			dev_kfree_skb_any(skb);
 443			return NETDEV_TX_OK;
 444		}
 445	}
 446#endif
 447
 448	/* Fill the entry in the SW ring and the BDs in the FW ring */
 449	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 450	txq->sw_tx_ring[idx].skb = skb;
 451	first_bd = (struct eth_tx_1st_bd *)
 452		   qed_chain_produce(&txq->tx_pbl);
 453	memset(first_bd, 0, sizeof(*first_bd));
 454	first_bd->data.bd_flags.bitfields =
 455		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 456
 457	/* Map skb linear data for DMA and set in the first BD */
 458	mapping = dma_map_single(&edev->pdev->dev, skb->data,
 459				 skb_headlen(skb), DMA_TO_DEVICE);
 460	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
 461		DP_NOTICE(edev, "SKB mapping failed\n");
 462		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
 463		return NETDEV_TX_OK;
 464	}
 465	nbd++;
 466	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 467
 468	/* In case there is IPv6 with extension headers or LSO we need 2nd and
 469	 * 3rd BDs.
 470	 */
 471	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 472		second_bd = (struct eth_tx_2nd_bd *)
 473			qed_chain_produce(&txq->tx_pbl);
 474		memset(second_bd, 0, sizeof(*second_bd));
 475
 476		nbd++;
 477		third_bd = (struct eth_tx_3rd_bd *)
 478			qed_chain_produce(&txq->tx_pbl);
 479		memset(third_bd, 0, sizeof(*third_bd));
 480
 481		nbd++;
 482		/* We need to fill in additional data in second_bd... */
 483		tx_data_bd = (struct eth_tx_bd *)second_bd;
 484	}
 485
 486	if (skb_vlan_tag_present(skb)) {
 487		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 488		first_bd->data.bd_flags.bitfields |=
 489			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 490	}
 491
 492	/* Fill the parsing flags & params according to the requested offload */
 493	if (xmit_type & XMIT_L4_CSUM) {
 494		u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
 495
 496		/* We don't re-calculate IP checksum as it is already done by
 497		 * the upper stack
 498		 */
 499		first_bd->data.bd_flags.bitfields |=
 500			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 501
 502		first_bd->data.bitfields |= cpu_to_le16(temp);
 503
 504		/* If the packet is IPv6 with extension header, indicate that
 505		 * to FW and pass few params, since the device cracker doesn't
 506		 * support parsing IPv6 with extension header/s.
 507		 */
 508		if (unlikely(ipv6_ext))
 509			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 510	}
 511
 512	if (xmit_type & XMIT_LSO) {
 513		first_bd->data.bd_flags.bitfields |=
 514			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 515		third_bd->data.lso_mss =
 516			cpu_to_le16(skb_shinfo(skb)->gso_size);
 517
 518		first_bd->data.bd_flags.bitfields |=
 519		1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 520		hlen = skb_transport_header(skb) +
 521		       tcp_hdrlen(skb) - skb->data;
 522
 523		/* @@@TBD - if will not be removed need to check */
 524		third_bd->data.bitfields |=
 525			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
 526
 527		/* Make life easier for FW guys who can't deal with header and
 528		 * data on same BD. If we need to split, use the second bd...
 529		 */
 530		if (unlikely(skb_headlen(skb) > hlen)) {
 531			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 532				   "TSO split header size is %d (%x:%x)\n",
 533				   first_bd->nbytes, first_bd->addr.hi,
 534				   first_bd->addr.lo);
 535
 536			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 537					   le32_to_cpu(first_bd->addr.lo)) +
 538					   hlen;
 539
 540			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 541					      le16_to_cpu(first_bd->nbytes) -
 542					      hlen);
 543
 544			/* this marks the BD as one that has no
 545			 * individual mapping
 546			 */
 547			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
 548
 549			first_bd->nbytes = cpu_to_le16(hlen);
 550
 551			tx_data_bd = (struct eth_tx_bd *)third_bd;
 552			data_split = true;
 553		}
 554	}
 555
 556	/* Handle fragmented skb */
 557	/* special handle for frags inside 2nd and 3rd bds.. */
 558	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 559		rc = map_frag_to_bd(edev,
 560				    &skb_shinfo(skb)->frags[frag_idx],
 561				    tx_data_bd);
 562		if (rc) {
 563			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 564						data_split);
 565			return NETDEV_TX_OK;
 566		}
 567
 568		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 569			tx_data_bd = (struct eth_tx_bd *)third_bd;
 570		else
 571			tx_data_bd = NULL;
 572
 573		frag_idx++;
 574	}
 575
 576	/* map last frags into 4th, 5th .... */
 577	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 578		tx_data_bd = (struct eth_tx_bd *)
 579			     qed_chain_produce(&txq->tx_pbl);
 580
 581		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 582
 583		rc = map_frag_to_bd(edev,
 584				    &skb_shinfo(skb)->frags[frag_idx],
 585				    tx_data_bd);
 586		if (rc) {
 587			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
 588						data_split);
 589			return NETDEV_TX_OK;
 590		}
 591	}
 592
 593	/* update the first BD with the actual num BDs */
 594	first_bd->data.nbds = nbd;
 595
 596	netdev_tx_sent_queue(netdev_txq, skb->len);
 597
 598	skb_tx_timestamp(skb);
 599
 600	/* Advance packet producer only before sending the packet since mapping
 601	 * of pages may fail.
 602	 */
 603	txq->sw_tx_prod++;
 604
 605	/* 'next page' entries are counted in the producer value */
 606	txq->tx_db.data.bd_prod =
 607		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 608
 609	/* wmb makes sure that the BDs data is updated before updating the
 610	 * producer, otherwise FW may read old data from the BDs.
 611	 */
 612	wmb();
 613	barrier();
 614	writel(txq->tx_db.raw, txq->doorbell_addr);
 615
 616	/* mmiowb is needed to synchronize doorbell writes from more than one
 617	 * processor. It guarantees that the write arrives to the device before
 618	 * the queue lock is released and another start_xmit is called (possibly
 619	 * on another CPU). Without this barrier, the next doorbell can bypass
 620	 * this doorbell. This is applicable to IA64/Altix systems.
 621	 */
 622	mmiowb();
 623
 624	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 625		      < (MAX_SKB_FRAGS + 1))) {
 626		netif_tx_stop_queue(netdev_txq);
 627		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 628			   "Stop queue was called\n");
 629		/* paired memory barrier is in qede_tx_int(), we have to keep
 630		 * ordering of set_bit() in netif_tx_stop_queue() and read of
 631		 * fp->bd_tx_cons
 632		 */
 633		smp_mb();
 634
 635		if (qed_chain_get_elem_left(&txq->tx_pbl)
 636		     >= (MAX_SKB_FRAGS + 1) &&
 637		    (edev->state == QEDE_STATE_OPEN)) {
 638			netif_tx_wake_queue(netdev_txq);
 639			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 640				   "Wake queue was called\n");
 641		}
 642	}
 643
 644	return NETDEV_TX_OK;
 645}
 646
 647static int qede_txq_has_work(struct qede_tx_queue *txq)
 648{
 649	u16 hw_bd_cons;
 650
 651	/* Tell compiler that consumer and producer can change */
 652	barrier();
 653	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 654	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 655		return 0;
 656
 657	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 658}
 659
 660static int qede_tx_int(struct qede_dev *edev,
 661		       struct qede_tx_queue *txq)
 662{
 663	struct netdev_queue *netdev_txq;
 664	u16 hw_bd_cons;
 665	unsigned int pkts_compl = 0, bytes_compl = 0;
 666	int rc;
 667
 668	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 669
 670	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 671	barrier();
 672
 673	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 674		int len = 0;
 675
 676		rc = qede_free_tx_pkt(edev, txq, &len);
 677		if (rc) {
 678			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 679				  hw_bd_cons,
 680				  qed_chain_get_cons_idx(&txq->tx_pbl));
 681			break;
 682		}
 683
 684		bytes_compl += len;
 685		pkts_compl++;
 686		txq->sw_tx_cons++;
 687	}
 688
 689	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 690
 691	/* Need to make the tx_bd_cons update visible to start_xmit()
 692	 * before checking for netif_tx_queue_stopped().  Without the
 693	 * memory barrier, there is a small possibility that
 694	 * start_xmit() will miss it and cause the queue to be stopped
 695	 * forever.
 696	 * On the other hand we need an rmb() here to ensure the proper
 697	 * ordering of bit testing in the following
 698	 * netif_tx_queue_stopped(txq) call.
 699	 */
 700	smp_mb();
 701
 702	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 703		/* Taking tx_lock is needed to prevent reenabling the queue
 704		 * while it's empty. This could have happen if rx_action() gets
 705		 * suspended in qede_tx_int() after the condition before
 706		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 707		 *
 708		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 709		 * sends some packets consuming the whole queue again->
 710		 * stops the queue
 711		 */
 712
 713		__netif_tx_lock(netdev_txq, smp_processor_id());
 714
 715		if ((netif_tx_queue_stopped(netdev_txq)) &&
 716		    (edev->state == QEDE_STATE_OPEN) &&
 717		    (qed_chain_get_elem_left(&txq->tx_pbl)
 718		      >= (MAX_SKB_FRAGS + 1))) {
 719			netif_tx_wake_queue(netdev_txq);
 720			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 721				   "Wake queue was called\n");
 722		}
 723
 724		__netif_tx_unlock(netdev_txq);
 725	}
 726
 727	return 0;
 728}
 729
 730static bool qede_has_rx_work(struct qede_rx_queue *rxq)
 731{
 732	u16 hw_comp_cons, sw_comp_cons;
 733
 734	/* Tell compiler that status block fields can change */
 735	barrier();
 736
 737	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 738	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 739
 740	return hw_comp_cons != sw_comp_cons;
 741}
 742
 743static bool qede_has_tx_work(struct qede_fastpath *fp)
 744{
 745	u8 tc;
 746
 747	for (tc = 0; tc < fp->edev->num_tc; tc++)
 748		if (qede_txq_has_work(&fp->txqs[tc]))
 749			return true;
 750	return false;
 751}
 752
 753static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 754{
 755	qed_chain_consume(&rxq->rx_bd_ring);
 756	rxq->sw_rx_cons++;
 757}
 758
 759/* This function reuses the buffer(from an offset) from
 760 * consumer index to producer index in the bd ring
 761 */
 762static inline void qede_reuse_page(struct qede_dev *edev,
 763				   struct qede_rx_queue *rxq,
 764				   struct sw_rx_data *curr_cons)
 765{
 766	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 767	struct sw_rx_data *curr_prod;
 768	dma_addr_t new_mapping;
 769
 770	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 771	*curr_prod = *curr_cons;
 772
 773	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 774
 775	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 776	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
 777
 778	rxq->sw_rx_prod++;
 779	curr_cons->data = NULL;
 780}
 781
 782/* In case of allocation failures reuse buffers
 783 * from consumer index to produce buffers for firmware
 784 */
 785static void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
 786				    struct qede_dev *edev, u8 count)
 787{
 788	struct sw_rx_data *curr_cons;
 789
 790	for (; count > 0; count--) {
 791		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 792		qede_reuse_page(edev, rxq, curr_cons);
 793		qede_rx_bd_ring_consume(rxq);
 794	}
 795}
 796
 797static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
 798					 struct qede_rx_queue *rxq,
 799					 struct sw_rx_data *curr_cons)
 800{
 801	/* Move to the next segment in the page */
 802	curr_cons->page_offset += rxq->rx_buf_seg_size;
 803
 804	if (curr_cons->page_offset == PAGE_SIZE) {
 805		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
 806			/* Since we failed to allocate new buffer
 807			 * current buffer can be used again.
 808			 */
 809			curr_cons->page_offset -= rxq->rx_buf_seg_size;
 810
 811			return -ENOMEM;
 812		}
 813
 814		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
 815			       PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816	} else {
 817		/* Increment refcount of the page as we don't want
 818		 * network stack to take the ownership of the page
 819		 * which can be recycled multiple times by the driver.
 820		 */
 821		atomic_inc(&curr_cons->data->_count);
 822		qede_reuse_page(edev, rxq, curr_cons);
 823	}
 824
 825	return 0;
 826}
 827
 828static inline void qede_update_rx_prod(struct qede_dev *edev,
 829				       struct qede_rx_queue *rxq)
 830{
 831	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 832	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 833	struct eth_rx_prod_data rx_prods = {0};
 834
 835	/* Update producers */
 836	rx_prods.bd_prod = cpu_to_le16(bd_prod);
 837	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 838
 839	/* Make sure that the BD and SGE data is updated before updating the
 840	 * producers since FW might read the BD/SGE right after the producer
 841	 * is updated.
 842	 */
 843	wmb();
 844
 845	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 846			(u32 *)&rx_prods);
 847
 848	/* mmiowb is needed to synchronize doorbell writes from more than one
 849	 * processor. It guarantees that the write arrives to the device before
 850	 * the napi lock is released and another qede_poll is called (possibly
 851	 * on another CPU). Without this barrier, the next doorbell can bypass
 852	 * this doorbell. This is applicable to IA64/Altix systems.
 853	 */
 854	mmiowb();
 855}
 856
 857static u32 qede_get_rxhash(struct qede_dev *edev,
 858			   u8 bitfields,
 859			   __le32 rss_hash,
 860			   enum pkt_hash_types *rxhash_type)
 861{
 862	enum rss_hash_type htype;
 863
 864	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 865
 866	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
 867		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 868				(htype == RSS_HASH_TYPE_IPV6)) ?
 869				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 870		return le32_to_cpu(rss_hash);
 871	}
 872	*rxhash_type = PKT_HASH_TYPE_NONE;
 873	return 0;
 874}
 875
 876static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 877{
 878	skb_checksum_none_assert(skb);
 879
 880	if (csum_flag & QEDE_CSUM_UNNECESSARY)
 881		skb->ip_summed = CHECKSUM_UNNECESSARY;
 882}
 883
 884static inline void qede_skb_receive(struct qede_dev *edev,
 885				    struct qede_fastpath *fp,
 886				    struct sk_buff *skb,
 887				    u16 vlan_tag)
 888{
 889	if (vlan_tag)
 890		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 891				       vlan_tag);
 892
 893	napi_gro_receive(&fp->napi, skb);
 894}
 895
 896static void qede_set_gro_params(struct qede_dev *edev,
 897				struct sk_buff *skb,
 898				struct eth_fast_path_rx_tpa_start_cqe *cqe)
 899{
 900	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 901
 902	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 903	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 904		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 905	else
 906		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 907
 908	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 909					cqe->header_len;
 910}
 911
 912static int qede_fill_frag_skb(struct qede_dev *edev,
 913			      struct qede_rx_queue *rxq,
 914			      u8 tpa_agg_index,
 915			      u16 len_on_bd)
 916{
 917	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 918							 NUM_RX_BDS_MAX];
 919	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 920	struct sk_buff *skb = tpa_info->skb;
 921
 922	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
 923		goto out;
 924
 925	/* Add one frag and update the appropriate fields in the skb */
 926	skb_fill_page_desc(skb, tpa_info->frag_id++,
 927			   current_bd->data, current_bd->page_offset,
 928			   len_on_bd);
 929
 930	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
 931		/* Incr page ref count to reuse on allocation failure
 932		 * so that it doesn't get freed while freeing SKB.
 933		 */
 934		atomic_inc(&current_bd->data->_count);
 935		goto out;
 936	}
 937
 938	qed_chain_consume(&rxq->rx_bd_ring);
 939	rxq->sw_rx_cons++;
 940
 941	skb->data_len += len_on_bd;
 942	skb->truesize += rxq->rx_buf_seg_size;
 943	skb->len += len_on_bd;
 944
 945	return 0;
 946
 947out:
 948	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
 949	qede_recycle_rx_bd_ring(rxq, edev, 1);
 950	return -ENOMEM;
 951}
 952
 953static void qede_tpa_start(struct qede_dev *edev,
 954			   struct qede_rx_queue *rxq,
 955			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
 956{
 957	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 958	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
 959	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 960	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
 961	dma_addr_t mapping = tpa_info->replace_buf_mapping;
 962	struct sw_rx_data *sw_rx_data_cons;
 963	struct sw_rx_data *sw_rx_data_prod;
 964	enum pkt_hash_types rxhash_type;
 965	u32 rxhash;
 966
 967	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 968	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 969
 970	/* Use pre-allocated replacement buffer - we can't release the agg.
 971	 * start until its over and we don't want to risk allocation failing
 972	 * here, so re-allocate when aggregation will be over.
 973	 */
 974	dma_unmap_addr_set(sw_rx_data_prod, mapping,
 975			   dma_unmap_addr(replace_buf, mapping));
 976
 977	sw_rx_data_prod->data = replace_buf->data;
 978	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
 979	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
 980	sw_rx_data_prod->page_offset = replace_buf->page_offset;
 981
 982	rxq->sw_rx_prod++;
 
 
 
 983
 984	/* move partial skb from cons to pool (don't unmap yet)
 985	 * save mapping, incase we drop the packet later on.
 986	 */
 987	tpa_info->start_buf = *sw_rx_data_cons;
 988	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
 989			   le32_to_cpu(rx_bd_cons->addr.lo));
 990
 991	tpa_info->start_buf_mapping = mapping;
 992	rxq->sw_rx_cons++;
 993
 994	/* set tpa state to start only if we are able to allocate skb
 995	 * for this aggregation, otherwise mark as error and aggregation will
 996	 * be dropped
 997	 */
 998	tpa_info->skb = netdev_alloc_skb(edev->ndev,
 999					 le16_to_cpu(cqe->len_on_first_bd));
1000	if (unlikely(!tpa_info->skb)) {
1001		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1002		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1003		goto cons_buf;
1004	}
1005
1006	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1007	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1008
1009	/* Start filling in the aggregation info */
1010	tpa_info->frag_id = 0;
1011	tpa_info->agg_state = QEDE_AGG_STATE_START;
1012
1013	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1014				 cqe->rss_hash, &rxhash_type);
1015	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1016	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1017	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1018		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1019		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1020	else
1021		tpa_info->vlan_tag = 0;
1022
1023	/* This is needed in order to enable forwarding support */
1024	qede_set_gro_params(edev, tpa_info->skb, cqe);
1025
1026cons_buf: /* We still need to handle bd_len_list to consume buffers */
1027	if (likely(cqe->ext_bd_len_list[0]))
1028		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1029				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1030
1031	if (unlikely(cqe->ext_bd_len_list[1])) {
1032		DP_ERR(edev,
1033		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1034		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1035	}
1036}
1037
1038#ifdef CONFIG_INET
1039static void qede_gro_ip_csum(struct sk_buff *skb)
 
1040{
1041	const struct iphdr *iph = ip_hdr(skb);
1042	struct tcphdr *th;
1043
1044	skb_set_transport_header(skb, sizeof(struct iphdr));
1045	th = tcp_hdr(skb);
1046
1047	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1048				  iph->saddr, iph->daddr, 0);
1049
1050	tcp_gro_complete(skb);
1051}
1052
1053static void qede_gro_ipv6_csum(struct sk_buff *skb)
 
1054{
1055	struct ipv6hdr *iph = ipv6_hdr(skb);
1056	struct tcphdr *th;
1057
1058	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1059	th = tcp_hdr(skb);
1060
1061	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1062				  &iph->saddr, &iph->daddr, 0);
1063	tcp_gro_complete(skb);
1064}
1065#endif
1066
1067static void qede_gro_receive(struct qede_dev *edev,
1068			     struct qede_fastpath *fp,
1069			     struct sk_buff *skb,
1070			     u16 vlan_tag)
1071{
1072	/* FW can send a single MTU sized packet from gro flow
1073	 * due to aggregation timeout/last segment etc. which
1074	 * is not expected to be a gro packet. If a skb has zero
1075	 * frags then simply push it in the stack as non gso skb.
1076	 */
1077	if (unlikely(!skb->data_len)) {
1078		skb_shinfo(skb)->gso_type = 0;
1079		skb_shinfo(skb)->gso_size = 0;
1080		goto send_skb;
1081	}
1082
1083#ifdef CONFIG_INET
1084	if (skb_shinfo(skb)->gso_size) {
1085		skb_set_network_header(skb, 0);
1086
1087		switch (skb->protocol) {
1088		case htons(ETH_P_IP):
1089			qede_gro_ip_csum(skb);
1090			break;
1091		case htons(ETH_P_IPV6):
1092			qede_gro_ipv6_csum(skb);
1093			break;
1094		default:
1095			DP_ERR(edev,
1096			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1097			       ntohs(skb->protocol));
1098		}
1099	}
1100#endif
1101
1102send_skb:
1103	skb_record_rx_queue(skb, fp->rss_id);
1104	qede_skb_receive(edev, fp, skb, vlan_tag);
1105}
1106
1107static inline void qede_tpa_cont(struct qede_dev *edev,
1108				 struct qede_rx_queue *rxq,
1109				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1110{
1111	int i;
1112
1113	for (i = 0; cqe->len_list[i]; i++)
1114		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1115				   le16_to_cpu(cqe->len_list[i]));
1116
1117	if (unlikely(i > 1))
1118		DP_ERR(edev,
1119		       "Strange - TPA cont with more than a single len_list entry\n");
1120}
1121
1122static void qede_tpa_end(struct qede_dev *edev,
1123			 struct qede_fastpath *fp,
1124			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1125{
1126	struct qede_rx_queue *rxq = fp->rxq;
1127	struct qede_agg_info *tpa_info;
1128	struct sk_buff *skb;
1129	int i;
1130
1131	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1132	skb = tpa_info->skb;
1133
1134	for (i = 0; cqe->len_list[i]; i++)
1135		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1136				   le16_to_cpu(cqe->len_list[i]));
1137	if (unlikely(i > 1))
1138		DP_ERR(edev,
1139		       "Strange - TPA emd with more than a single len_list entry\n");
1140
1141	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1142		goto err;
1143
1144	/* Sanity */
1145	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1146		DP_ERR(edev,
1147		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1148		       cqe->num_of_bds, tpa_info->frag_id);
1149	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1150		DP_ERR(edev,
1151		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1152		       le16_to_cpu(cqe->total_packet_len), skb->len);
1153
1154	memcpy(skb->data,
1155	       page_address(tpa_info->start_buf.data) +
1156		tpa_info->start_cqe.placement_offset +
1157		tpa_info->start_buf.page_offset,
1158	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1159
1160	/* Recycle [mapped] start buffer for the next replacement */
1161	tpa_info->replace_buf = tpa_info->start_buf;
1162	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1163
1164	/* Finalize the SKB */
1165	skb->protocol = eth_type_trans(skb, edev->ndev);
1166	skb->ip_summed = CHECKSUM_UNNECESSARY;
1167
1168	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1169	 * to skb_shinfo(skb)->gso_segs
1170	 */
1171	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1172
1173	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1174
1175	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
 
1176
1177	return;
1178err:
1179	/* The BD starting the aggregation is still mapped; Re-use it for
1180	 * future aggregations [as replacement buffer]
1181	 */
1182	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1183	       sizeof(struct sw_rx_data));
1184	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1185	tpa_info->start_buf.data = NULL;
1186	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1187	dev_kfree_skb_any(tpa_info->skb);
1188	tpa_info->skb = NULL;
1189}
1190
1191static u8 qede_check_csum(u16 flag)
1192{
1193	u16 csum_flag = 0;
1194	u8 csum = 0;
1195
1196	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1197	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
1198		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1199			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1200		csum = QEDE_CSUM_UNNECESSARY;
1201	}
1202
1203	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1204		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1205
1206	if (csum_flag & flag)
1207		return QEDE_CSUM_ERROR;
1208
1209	return csum;
1210}
 
1211
1212static int qede_rx_int(struct qede_fastpath *fp, int budget)
1213{
1214	struct qede_dev *edev = fp->edev;
1215	struct qede_rx_queue *rxq = fp->rxq;
1216
1217	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1218	int rx_pkt = 0;
1219	u8 csum_flag;
1220
1221	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1222	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1223
1224	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1225	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1226	 * read before it is written by FW, then FW writes CQE and SB, and then
1227	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1228	 */
1229	rmb();
1230
1231	/* Loop to complete all indicated BDs */
1232	while (sw_comp_cons != hw_comp_cons) {
1233		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1234		enum pkt_hash_types rxhash_type;
1235		enum eth_rx_cqe_type cqe_type;
1236		struct sw_rx_data *sw_rx_data;
1237		union eth_rx_cqe *cqe;
1238		struct sk_buff *skb;
1239		struct page *data;
1240		__le16 flags;
1241		u16 len, pad;
1242		u32 rx_hash;
1243
1244		/* Get the CQE from the completion ring */
1245		cqe = (union eth_rx_cqe *)
1246			qed_chain_consume(&rxq->rx_comp_ring);
1247		cqe_type = cqe->fast_path_regular.type;
1248
1249		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1250			edev->ops->eth_cqe_completion(
1251					edev->cdev, fp->rss_id,
1252					(struct eth_slow_path_rx_cqe *)cqe);
1253			goto next_cqe;
1254		}
1255
1256		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1257			switch (cqe_type) {
1258			case ETH_RX_CQE_TYPE_TPA_START:
1259				qede_tpa_start(edev, rxq,
1260					       &cqe->fast_path_tpa_start);
1261				goto next_cqe;
1262			case ETH_RX_CQE_TYPE_TPA_CONT:
1263				qede_tpa_cont(edev, rxq,
1264					      &cqe->fast_path_tpa_cont);
1265				goto next_cqe;
1266			case ETH_RX_CQE_TYPE_TPA_END:
1267				qede_tpa_end(edev, fp,
1268					     &cqe->fast_path_tpa_end);
1269				goto next_rx_only;
1270			default:
1271				break;
1272			}
1273		}
1274
1275		/* Get the data from the SW ring */
1276		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1277		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1278		data = sw_rx_data->data;
1279
1280		fp_cqe = &cqe->fast_path_regular;
1281		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1282		pad = fp_cqe->placement_offset;
1283		flags = cqe->fast_path_regular.pars_flags.flags;
1284
1285		/* If this is an error packet then drop it */
1286		parse_flag = le16_to_cpu(flags);
1287
1288		csum_flag = qede_check_csum(parse_flag);
1289		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1290			DP_NOTICE(edev,
1291				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1292				  sw_comp_cons, parse_flag);
1293			rxq->rx_hw_errors++;
1294			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1295			goto next_cqe;
1296		}
1297
1298		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1299		if (unlikely(!skb)) {
1300			DP_NOTICE(edev,
1301				  "Build_skb failed, dropping incoming packet\n");
1302			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1303			rxq->rx_alloc_errors++;
1304			goto next_cqe;
1305		}
1306
1307		/* Copy data into SKB */
1308		if (len + pad <= QEDE_RX_HDR_SIZE) {
1309			memcpy(skb_put(skb, len),
1310			       page_address(data) + pad +
1311				sw_rx_data->page_offset, len);
1312			qede_reuse_page(edev, rxq, sw_rx_data);
1313		} else {
1314			struct skb_frag_struct *frag;
1315			unsigned int pull_len;
1316			unsigned char *va;
1317
1318			frag = &skb_shinfo(skb)->frags[0];
1319
1320			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1321					pad + sw_rx_data->page_offset,
1322					len, rxq->rx_buf_seg_size);
1323
1324			va = skb_frag_address(frag);
1325			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1326
1327			/* Align the pull_len to optimize memcpy */
1328			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1329
1330			skb_frag_size_sub(frag, pull_len);
1331			frag->page_offset += pull_len;
1332			skb->data_len -= pull_len;
1333			skb->tail += pull_len;
1334
1335			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1336							    sw_rx_data))) {
1337				DP_ERR(edev, "Failed to allocate rx buffer\n");
1338				/* Incr page ref count to reuse on allocation
1339				 * failure so that it doesn't get freed while
1340				 * freeing SKB.
1341				 */
1342
1343				atomic_inc(&sw_rx_data->data->_count);
1344				rxq->rx_alloc_errors++;
1345				qede_recycle_rx_bd_ring(rxq, edev,
1346							fp_cqe->bd_num);
1347				dev_kfree_skb_any(skb);
1348				goto next_cqe;
1349			}
1350		}
1351
1352		qede_rx_bd_ring_consume(rxq);
1353
1354		if (fp_cqe->bd_num != 1) {
1355			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1356			u8 num_frags;
1357
1358			pkt_len -= len;
1359
1360			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1361			     num_frags--) {
1362				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1363						rxq->rx_buf_size : pkt_len;
1364				if (unlikely(!cur_size)) {
1365					DP_ERR(edev,
1366					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1367					       num_frags);
1368					qede_recycle_rx_bd_ring(rxq, edev,
1369								num_frags);
1370					dev_kfree_skb_any(skb);
1371					goto next_cqe;
1372				}
1373
1374				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1375					qede_recycle_rx_bd_ring(rxq, edev,
1376								num_frags);
1377					dev_kfree_skb_any(skb);
1378					goto next_cqe;
1379				}
1380
1381				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1382				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1383				qede_rx_bd_ring_consume(rxq);
1384
1385				dma_unmap_page(&edev->pdev->dev,
1386					       sw_rx_data->mapping,
1387					       PAGE_SIZE, DMA_FROM_DEVICE);
1388
1389				skb_fill_page_desc(skb,
1390						   skb_shinfo(skb)->nr_frags++,
1391						   sw_rx_data->data, 0,
1392						   cur_size);
1393
1394				skb->truesize += PAGE_SIZE;
1395				skb->data_len += cur_size;
1396				skb->len += cur_size;
1397				pkt_len -= cur_size;
1398			}
1399
1400			if (unlikely(pkt_len))
1401				DP_ERR(edev,
1402				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1403				       pkt_len);
1404		}
1405
1406		skb->protocol = eth_type_trans(skb, edev->ndev);
1407
1408		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1409					  fp_cqe->rss_hash,
1410					  &rxhash_type);
1411
1412		skb_set_hash(skb, rx_hash, rxhash_type);
1413
1414		qede_set_skb_csum(skb, csum_flag);
1415
1416		skb_record_rx_queue(skb, fp->rss_id);
1417
1418		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1419next_rx_only:
1420		rx_pkt++;
1421
1422next_cqe: /* don't consume bd rx buffer */
1423		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1424		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1425		/* CR TPA - revisit how to handle budget in TPA perhaps
1426		 * increase on "end"
1427		 */
1428		if (rx_pkt == budget)
1429			break;
1430	} /* repeat while sw_comp_cons != hw_comp_cons... */
1431
1432	/* Update producers */
1433	qede_update_rx_prod(edev, rxq);
1434
1435	return rx_pkt;
1436}
1437
1438static int qede_poll(struct napi_struct *napi, int budget)
1439{
1440	int work_done = 0;
1441	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1442						 napi);
1443	struct qede_dev *edev = fp->edev;
1444
1445	while (1) {
1446		u8 tc;
1447
1448		for (tc = 0; tc < edev->num_tc; tc++)
1449			if (qede_txq_has_work(&fp->txqs[tc]))
1450				qede_tx_int(edev, &fp->txqs[tc]);
1451
1452		if (qede_has_rx_work(fp->rxq)) {
1453			work_done += qede_rx_int(fp, budget - work_done);
1454
1455			/* must not complete if we consumed full budget */
1456			if (work_done >= budget)
1457				break;
1458		}
1459
1460		/* Fall out from the NAPI loop if needed */
1461		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1462			qed_sb_update_sb_idx(fp->sb_info);
1463			/* *_has_*_work() reads the status block,
1464			 * thus we need to ensure that status block indices
1465			 * have been actually read (qed_sb_update_sb_idx)
1466			 * prior to this check (*_has_*_work) so that
1467			 * we won't write the "newer" value of the status block
1468			 * to HW (if there was a DMA right after
1469			 * qede_has_rx_work and if there is no rmb, the memory
1470			 * reading (qed_sb_update_sb_idx) may be postponed
1471			 * to right before *_ack_sb). In this case there
1472			 * will never be another interrupt until there is
1473			 * another update of the status block, while there
1474			 * is still unhandled work.
1475			 */
1476			rmb();
1477
1478			if (!(qede_has_rx_work(fp->rxq) ||
1479			      qede_has_tx_work(fp))) {
1480				napi_complete(napi);
1481				/* Update and reenable interrupts */
1482				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1483					   1 /*update*/);
1484				break;
1485			}
1486		}
1487	}
1488
1489	return work_done;
1490}
1491
1492static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1493{
1494	struct qede_fastpath *fp = fp_cookie;
1495
1496	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1497
1498	napi_schedule_irqoff(&fp->napi);
1499	return IRQ_HANDLED;
1500}
1501
1502/* -------------------------------------------------------------------------
1503 * END OF FAST-PATH
1504 * -------------------------------------------------------------------------
1505 */
1506
1507static int qede_open(struct net_device *ndev);
1508static int qede_close(struct net_device *ndev);
1509static int qede_set_mac_addr(struct net_device *ndev, void *p);
1510static void qede_set_rx_mode(struct net_device *ndev);
1511static void qede_config_rx_mode(struct net_device *ndev);
1512
1513static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1514				 enum qed_filter_xcast_params_type opcode,
1515				 unsigned char mac[ETH_ALEN])
1516{
1517	struct qed_filter_params filter_cmd;
1518
1519	memset(&filter_cmd, 0, sizeof(filter_cmd));
1520	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1521	filter_cmd.filter.ucast.type = opcode;
1522	filter_cmd.filter.ucast.mac_valid = 1;
1523	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1524
1525	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1526}
1527
1528static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1529				  enum qed_filter_xcast_params_type opcode,
1530				  u16 vid)
1531{
1532	struct qed_filter_params filter_cmd;
1533
1534	memset(&filter_cmd, 0, sizeof(filter_cmd));
1535	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1536	filter_cmd.filter.ucast.type = opcode;
1537	filter_cmd.filter.ucast.vlan_valid = 1;
1538	filter_cmd.filter.ucast.vlan = vid;
1539
1540	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1541}
1542
1543void qede_fill_by_demand_stats(struct qede_dev *edev)
1544{
1545	struct qed_eth_stats stats;
1546
1547	edev->ops->get_vport_stats(edev->cdev, &stats);
1548	edev->stats.no_buff_discards = stats.no_buff_discards;
1549	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1550	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1551	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1552	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1553	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1554	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1555	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1556	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1557
1558	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1559	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1560	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1561	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1562	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1563	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1564	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1565	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1566	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1567	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1568	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1569	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1570
1571	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1572	edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1573	edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1574	edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1575	edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1576	edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1577	edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1578	edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1579	edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1580	edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1581	edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1582	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1583	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1584	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1585	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1586	edev->stats.rx_align_errors = stats.rx_align_errors;
1587	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1588	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1589	edev->stats.rx_jabbers = stats.rx_jabbers;
1590	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1591	edev->stats.rx_fragments = stats.rx_fragments;
1592	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1593	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1594	edev->stats.tx_128_to_255_byte_packets =
1595				stats.tx_128_to_255_byte_packets;
1596	edev->stats.tx_256_to_511_byte_packets =
1597				stats.tx_256_to_511_byte_packets;
1598	edev->stats.tx_512_to_1023_byte_packets =
1599				stats.tx_512_to_1023_byte_packets;
1600	edev->stats.tx_1024_to_1518_byte_packets =
1601				stats.tx_1024_to_1518_byte_packets;
1602	edev->stats.tx_1519_to_2047_byte_packets =
1603				stats.tx_1519_to_2047_byte_packets;
1604	edev->stats.tx_2048_to_4095_byte_packets =
1605				stats.tx_2048_to_4095_byte_packets;
1606	edev->stats.tx_4096_to_9216_byte_packets =
1607				stats.tx_4096_to_9216_byte_packets;
1608	edev->stats.tx_9217_to_16383_byte_packets =
1609				stats.tx_9217_to_16383_byte_packets;
1610	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1611	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1612	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1613	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1614	edev->stats.brb_truncates = stats.brb_truncates;
1615	edev->stats.brb_discards = stats.brb_discards;
1616	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1617}
1618
1619static struct rtnl_link_stats64 *qede_get_stats64(
1620			    struct net_device *dev,
1621			    struct rtnl_link_stats64 *stats)
1622{
1623	struct qede_dev *edev = netdev_priv(dev);
 
 
1624
1625	qede_fill_by_demand_stats(edev);
1626
1627	stats->rx_packets = edev->stats.rx_ucast_pkts +
1628			    edev->stats.rx_mcast_pkts +
1629			    edev->stats.rx_bcast_pkts;
1630	stats->tx_packets = edev->stats.tx_ucast_pkts +
1631			    edev->stats.tx_mcast_pkts +
1632			    edev->stats.tx_bcast_pkts;
1633
1634	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1635			  edev->stats.rx_mcast_bytes +
1636			  edev->stats.rx_bcast_bytes;
1637
1638	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1639			  edev->stats.tx_mcast_bytes +
1640			  edev->stats.tx_bcast_bytes;
1641
1642	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1643	stats->multicast = edev->stats.rx_mcast_pkts +
1644			   edev->stats.rx_bcast_pkts;
1645
1646	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1647
1648	stats->collisions = edev->stats.tx_total_collisions;
1649	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1650	stats->rx_frame_errors = edev->stats.rx_align_errors;
1651
1652	return stats;
1653}
1654
1655static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1656{
1657	struct qed_update_vport_params params;
1658	int rc;
1659
1660	/* Proceed only if action actually needs to be performed */
1661	if (edev->accept_any_vlan == action)
1662		return;
1663
1664	memset(&params, 0, sizeof(params));
1665
1666	params.vport_id = 0;
1667	params.accept_any_vlan = action;
1668	params.update_accept_any_vlan_flg = 1;
1669
1670	rc = edev->ops->vport_update(edev->cdev, &params);
1671	if (rc) {
1672		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1673		       action ? "enable" : "disable");
1674	} else {
1675		DP_INFO(edev, "%s accept-any-vlan\n",
1676			action ? "enabled" : "disabled");
1677		edev->accept_any_vlan = action;
1678	}
 
 
 
 
1679}
1680
1681static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1682{
1683	struct qede_dev *edev = netdev_priv(dev);
1684	struct qede_vlan *vlan, *tmp;
1685	int rc;
1686
1687	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1688
1689	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1690	if (!vlan) {
1691		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1692		return -ENOMEM;
1693	}
1694	INIT_LIST_HEAD(&vlan->list);
1695	vlan->vid = vid;
1696	vlan->configured = false;
1697
1698	/* Verify vlan isn't already configured */
1699	list_for_each_entry(tmp, &edev->vlan_list, list) {
1700		if (tmp->vid == vlan->vid) {
1701			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1702				   "vlan already configured\n");
1703			kfree(vlan);
1704			return -EEXIST;
1705		}
1706	}
1707
1708	/* If interface is down, cache this VLAN ID and return */
1709	if (edev->state != QEDE_STATE_OPEN) {
1710		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1711			   "Interface is down, VLAN %d will be configured when interface is up\n",
1712			   vid);
1713		if (vid != 0)
1714			edev->non_configured_vlans++;
1715		list_add(&vlan->list, &edev->vlan_list);
1716
1717		return 0;
1718	}
1719
1720	/* Check for the filter limit.
1721	 * Note - vlan0 has a reserved filter and can be added without
1722	 * worrying about quota
1723	 */
1724	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1725	    (vlan->vid == 0)) {
1726		rc = qede_set_ucast_rx_vlan(edev,
1727					    QED_FILTER_XCAST_TYPE_ADD,
1728					    vlan->vid);
1729		if (rc) {
1730			DP_ERR(edev, "Failed to configure VLAN %d\n",
1731			       vlan->vid);
1732			kfree(vlan);
1733			return -EINVAL;
1734		}
1735		vlan->configured = true;
1736
1737		/* vlan0 filter isn't consuming out of our quota */
1738		if (vlan->vid != 0)
1739			edev->configured_vlans++;
1740	} else {
1741		/* Out of quota; Activate accept-any-VLAN mode */
1742		if (!edev->non_configured_vlans)
1743			qede_config_accept_any_vlan(edev, true);
1744
1745		edev->non_configured_vlans++;
 
 
 
1746	}
1747
1748	list_add(&vlan->list, &edev->vlan_list);
1749
1750	return 0;
1751}
1752
1753static void qede_del_vlan_from_list(struct qede_dev *edev,
1754				    struct qede_vlan *vlan)
 
1755{
1756	/* vlan0 filter isn't consuming out of our quota */
1757	if (vlan->vid != 0) {
1758		if (vlan->configured)
1759			edev->configured_vlans--;
1760		else
1761			edev->non_configured_vlans--;
 
1762	}
1763
1764	list_del(&vlan->list);
1765	kfree(vlan);
1766}
1767
1768static int qede_configure_vlan_filters(struct qede_dev *edev)
 
1769{
1770	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1771	struct qed_dev_eth_info *dev_info;
1772	struct qede_vlan *vlan = NULL;
1773
1774	if (list_empty(&edev->vlan_list))
1775		return 0;
1776
1777	dev_info = &edev->dev_info;
1778
1779	/* Configure non-configured vlans */
1780	list_for_each_entry(vlan, &edev->vlan_list, list) {
1781		if (vlan->configured)
1782			continue;
1783
1784		/* We have used all our credits, now enable accept_any_vlan */
1785		if ((vlan->vid != 0) &&
1786		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
1787			accept_any_vlan = 1;
1788			continue;
1789		}
1790
1791		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1792
1793		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1794					    vlan->vid);
1795		if (rc) {
1796			DP_ERR(edev, "Failed to configure VLAN %u\n",
1797			       vlan->vid);
1798			real_rc = rc;
1799			continue;
1800		}
1801
1802		vlan->configured = true;
1803		/* vlan0 filter doesn't consume our VLAN filter's quota */
1804		if (vlan->vid != 0) {
1805			edev->non_configured_vlans--;
1806			edev->configured_vlans++;
1807		}
1808	}
1809
1810	/* enable accept_any_vlan mode if we have more VLANs than credits,
1811	 * or remove accept_any_vlan mode if we've actually removed
1812	 * a non-configured vlan, and all remaining vlans are truly configured.
1813	 */
1814
1815	if (accept_any_vlan)
1816		qede_config_accept_any_vlan(edev, true);
1817	else if (!edev->non_configured_vlans)
1818		qede_config_accept_any_vlan(edev, false);
1819
1820	return real_rc;
1821}
1822
1823static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
 
 
 
 
1824{
1825	struct qede_dev *edev = netdev_priv(dev);
1826	struct qede_vlan *vlan = NULL;
1827	int rc;
1828
1829	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1830
1831	/* Find whether entry exists */
1832	list_for_each_entry(vlan, &edev->vlan_list, list)
1833		if (vlan->vid == vid)
1834			break;
1835
1836	if (!vlan || (vlan->vid != vid)) {
1837		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1838			   "Vlan isn't configured\n");
1839		return 0;
1840	}
1841
1842	if (edev->state != QEDE_STATE_OPEN) {
1843		/* As interface is already down, we don't have a VPORT
1844		 * instance to remove vlan filter. So just update vlan list
1845		 */
1846		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1847			   "Interface is down, removing VLAN from list only\n");
1848		qede_del_vlan_from_list(edev, vlan);
1849		return 0;
1850	}
1851
1852	/* Remove vlan */
1853	rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1854	if (rc) {
1855		DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1856		return -EINVAL;
 
 
 
 
 
 
 
 
1857	}
1858
1859	qede_del_vlan_from_list(edev, vlan);
1860
1861	/* We have removed a VLAN - try to see if we can
1862	 * configure non-configured VLAN from the list.
1863	 */
1864	rc = qede_configure_vlan_filters(edev);
1865
1866	return rc;
1867}
1868
1869static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1870{
1871	struct qede_vlan *vlan = NULL;
1872
1873	if (list_empty(&edev->vlan_list))
1874		return;
1875
1876	list_for_each_entry(vlan, &edev->vlan_list, list) {
1877		if (!vlan->configured)
1878			continue;
1879
1880		vlan->configured = false;
1881
1882		/* vlan0 filter isn't consuming out of our quota */
1883		if (vlan->vid != 0) {
1884			edev->non_configured_vlans++;
1885			edev->configured_vlans--;
1886		}
1887
1888		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1889			   "marked vlan %d as non-configured\n",
1890			   vlan->vid);
1891	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892
1893	edev->accept_any_vlan = false;
1894}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895
1896static const struct net_device_ops qede_netdev_ops = {
1897	.ndo_open = qede_open,
1898	.ndo_stop = qede_close,
1899	.ndo_start_xmit = qede_start_xmit,
1900	.ndo_set_rx_mode = qede_set_rx_mode,
1901	.ndo_set_mac_address = qede_set_mac_addr,
1902	.ndo_validate_addr = eth_validate_addr,
1903	.ndo_change_mtu = qede_change_mtu,
1904	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1905	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
1906	.ndo_get_stats64 = qede_get_stats64,
 
 
 
 
 
 
 
 
1907};
1908
1909/* -------------------------------------------------------------------------
1910 * START OF PROBE / REMOVE
1911 * -------------------------------------------------------------------------
1912 */
1913
1914static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1915					    struct pci_dev *pdev,
1916					    struct qed_dev_eth_info *info,
1917					    u32 dp_module,
1918					    u8 dp_level)
1919{
1920	struct net_device *ndev;
1921	struct qede_dev *edev;
1922
1923	ndev = alloc_etherdev_mqs(sizeof(*edev),
1924				  info->num_queues,
1925				  info->num_queues);
1926	if (!ndev) {
1927		pr_err("etherdev allocation failed\n");
1928		return NULL;
1929	}
1930
1931	edev = netdev_priv(ndev);
1932	edev->ndev = ndev;
1933	edev->cdev = cdev;
1934	edev->pdev = pdev;
1935	edev->dp_module = dp_module;
1936	edev->dp_level = dp_level;
1937	edev->ops = qed_ops;
1938	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1939	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 
 
 
 
 
 
 
 
 
1940
1941	SET_NETDEV_DEV(ndev, &pdev->dev);
1942
1943	memset(&edev->stats, 0, sizeof(edev->stats));
1944	memcpy(&edev->dev_info, info, sizeof(*info));
1945
1946	edev->num_tc = edev->dev_info.num_tc;
 
 
 
 
1947
1948	INIT_LIST_HEAD(&edev->vlan_list);
1949
1950	return edev;
1951}
1952
1953static void qede_init_ndev(struct qede_dev *edev)
1954{
1955	struct net_device *ndev = edev->ndev;
1956	struct pci_dev *pdev = edev->pdev;
1957	u32 hw_features;
 
1958
1959	pci_set_drvdata(pdev, ndev);
1960
1961	ndev->mem_start = edev->dev_info.common.pci_mem_start;
1962	ndev->base_addr = ndev->mem_start;
1963	ndev->mem_end = edev->dev_info.common.pci_mem_end;
1964	ndev->irq = edev->dev_info.common.pci_irq;
1965
1966	ndev->watchdog_timeo = TX_TIMEOUT;
1967
1968	ndev->netdev_ops = &qede_netdev_ops;
 
 
 
 
 
 
 
1969
1970	qede_set_ethtool_ops(ndev);
1971
 
 
1972	/* user-changeble features */
1973	hw_features = NETIF_F_GRO | NETIF_F_SG |
1974		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1975		      NETIF_F_TSO | NETIF_F_TSO6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976
1977	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1978			      NETIF_F_HIGHDMA;
1979	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1980			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1981			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1982
1983	ndev->hw_features = hw_features;
1984
 
 
 
 
1985	/* Set network device HW mac */
1986	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 
 
1987}
1988
1989/* This function converts from 32b param to two params of level and module
1990 * Input 32b decoding:
1991 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1992 * 'happy' flow, e.g. memory allocation failed.
1993 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1994 * and provide important parameters.
1995 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1996 * module. VERBOSE prints are for tracking the specific flow in low level.
1997 *
1998 * Notice that the level should be that of the lowest required logs.
1999 */
2000void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2001{
2002	*p_dp_level = QED_LEVEL_NOTICE;
2003	*p_dp_module = 0;
2004
2005	if (debug & QED_LOG_VERBOSE_MASK) {
2006		*p_dp_level = QED_LEVEL_VERBOSE;
2007		*p_dp_module = (debug & 0x3FFFFFFF);
2008	} else if (debug & QED_LOG_INFO_MASK) {
2009		*p_dp_level = QED_LEVEL_INFO;
2010	} else if (debug & QED_LOG_NOTICE_MASK) {
2011		*p_dp_level = QED_LEVEL_NOTICE;
2012	}
2013}
2014
2015static void qede_free_fp_array(struct qede_dev *edev)
2016{
2017	if (edev->fp_array) {
2018		struct qede_fastpath *fp;
2019		int i;
2020
2021		for_each_rss(i) {
2022			fp = &edev->fp_array[i];
2023
2024			kfree(fp->sb_info);
 
 
 
 
 
 
2025			kfree(fp->rxq);
2026			kfree(fp->txqs);
 
2027		}
2028		kfree(edev->fp_array);
2029	}
2030	edev->num_rss = 0;
 
 
 
2031}
2032
2033static int qede_alloc_fp_array(struct qede_dev *edev)
2034{
 
2035	struct qede_fastpath *fp;
2036	int i;
2037
2038	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2039				 sizeof(*edev->fp_array), GFP_KERNEL);
2040	if (!edev->fp_array) {
2041		DP_NOTICE(edev, "fp array allocation failed\n");
2042		goto err;
2043	}
2044
2045	for_each_rss(i) {
 
 
 
 
 
 
 
2046		fp = &edev->fp_array[i];
2047
2048		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2049		if (!fp->sb_info) {
2050			DP_NOTICE(edev, "sb info struct allocation failed\n");
2051			goto err;
2052		}
2053
2054		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2055		if (!fp->rxq) {
2056			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2057			goto err;
 
 
 
 
2058		}
2059
2060		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2061		if (!fp->txqs) {
2062			DP_NOTICE(edev, "TXQ array allocation failed\n");
2063			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064		}
2065	}
2066
2067	return 0;
2068err:
2069	qede_free_fp_array(edev);
2070	return -ENOMEM;
2071}
2072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073static void qede_sp_task(struct work_struct *work)
2074{
2075	struct qede_dev *edev = container_of(work, struct qede_dev,
2076					     sp_task.work);
2077	mutex_lock(&edev->qede_lock);
2078
2079	if (edev->state == QEDE_STATE_OPEN) {
2080		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2081			qede_config_rx_mode(edev->ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082	}
2083
2084	mutex_unlock(&edev->qede_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085}
2086
2087static void qede_update_pf_params(struct qed_dev *cdev)
2088{
2089	struct qed_pf_params pf_params;
 
2090
2091	/* 64 rx + 64 tx */
2092	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2093	pf_params.eth_pf_params.num_cons = 128;
 
 
 
 
 
 
 
 
 
 
 
2094	qed_ops->common->update_pf_params(cdev, &pf_params);
2095}
2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097enum qede_probe_mode {
2098	QEDE_PROBE_NORMAL,
 
2099};
2100
2101static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2102			enum qede_probe_mode mode)
2103{
2104	struct qed_slowpath_params params;
 
2105	struct qed_dev_eth_info dev_info;
2106	struct qede_dev *edev;
2107	struct qed_dev *cdev;
2108	int rc;
2109
2110	if (unlikely(dp_level & QED_LEVEL_INFO))
2111		pr_notice("Starting qede probe\n");
2112
2113	cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
2114				      dp_module, dp_level);
 
 
 
 
 
2115	if (!cdev) {
2116		rc = -ENODEV;
2117		goto err0;
2118	}
2119
2120	qede_update_pf_params(cdev);
2121
2122	/* Start the Slowpath-process */
2123	memset(&params, 0, sizeof(struct qed_slowpath_params));
2124	params.int_mode = QED_INT_MODE_MSIX;
2125	params.drv_major = QEDE_MAJOR_VERSION;
2126	params.drv_minor = QEDE_MINOR_VERSION;
2127	params.drv_rev = QEDE_REVISION_VERSION;
2128	params.drv_eng = QEDE_ENGINEERING_VERSION;
2129	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2130	rc = qed_ops->common->slowpath_start(cdev, &params);
2131	if (rc) {
2132		pr_notice("Cannot start slowpath\n");
2133		goto err1;
2134	}
2135
2136	/* Learn information crucial for qede to progress */
2137	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2138	if (rc)
2139		goto err2;
2140
2141	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2142				   dp_level);
2143	if (!edev) {
2144		rc = -ENOMEM;
2145		goto err2;
 
 
 
 
 
 
 
 
 
2146	}
2147
 
 
 
2148	qede_init_ndev(edev);
2149
2150	rc = register_netdev(edev->ndev);
2151	if (rc) {
2152		DP_NOTICE(edev, "Cannot register net-device\n");
2153		goto err3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154	}
2155
2156	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
 
 
 
 
2157
2158	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2159
2160	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2161	mutex_init(&edev->qede_lock);
 
 
2162
2163	DP_INFO(edev, "Ending successfully qede probe\n");
2164
 
2165	return 0;
2166
 
 
2167err3:
2168	free_netdev(edev->ndev);
2169err2:
2170	qed_ops->common->slowpath_stop(cdev);
2171err1:
2172	qed_ops->common->remove(cdev);
2173err0:
2174	return rc;
2175}
2176
2177static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2178{
 
2179	u32 dp_module = 0;
2180	u8 dp_level = 0;
2181
 
 
 
 
 
 
 
 
 
 
 
2182	qede_config_debug(debug, &dp_module, &dp_level);
2183
2184	return __qede_probe(pdev, dp_module, dp_level,
2185			    QEDE_PROBE_NORMAL);
2186}
2187
2188enum qede_remove_mode {
2189	QEDE_REMOVE_NORMAL,
 
2190};
2191
2192static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2193{
2194	struct net_device *ndev = pci_get_drvdata(pdev);
2195	struct qede_dev *edev = netdev_priv(ndev);
2196	struct qed_dev *cdev = edev->cdev;
 
 
 
 
 
 
 
 
2197
2198	DP_INFO(edev, "Starting qede_remove\n");
2199
2200	cancel_delayed_work_sync(&edev->sp_task);
2201	unregister_netdev(ndev);
2202
2203	edev->ops->common->set_power_state(cdev, PCI_D0);
 
2204
2205	pci_set_drvdata(pdev, NULL);
2206
2207	free_netdev(ndev);
 
 
 
 
 
2208
2209	/* Use global ops since we've freed edev */
2210	qed_ops->common->slowpath_stop(cdev);
 
 
2211	qed_ops->common->remove(cdev);
 
2212
2213	pr_notice("Ending successfully qede_remove\n");
 
 
 
 
 
 
 
 
 
2214}
2215
2216static void qede_remove(struct pci_dev *pdev)
2217{
2218	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2219}
2220
 
 
 
 
 
2221/* -------------------------------------------------------------------------
2222 * START OF LOAD / UNLOAD
2223 * -------------------------------------------------------------------------
2224 */
2225
2226static int qede_set_num_queues(struct qede_dev *edev)
2227{
2228	int rc;
2229	u16 rss_num;
2230
2231	/* Setup queues according to possible resources*/
2232	if (edev->req_rss)
2233		rss_num = edev->req_rss;
2234	else
2235		rss_num = netif_get_num_default_rss_queues() *
2236			  edev->dev_info.common.num_hwfns;
2237
2238	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2239
2240	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2241	if (rc > 0) {
2242		/* Managed to request interrupts for our queues */
2243		edev->num_rss = rc;
2244		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2245			QEDE_RSS_CNT(edev), rss_num);
2246		rc = 0;
2247	}
 
 
 
 
2248	return rc;
2249}
2250
2251static void qede_free_mem_sb(struct qede_dev *edev,
2252			     struct qed_sb_info *sb_info)
2253{
2254	if (sb_info->sb_virt)
 
 
2255		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2256				  (void *)sb_info->sb_virt, sb_info->sb_phys);
 
 
2257}
2258
2259/* This function allocates fast-path status block memory */
2260static int qede_alloc_mem_sb(struct qede_dev *edev,
2261			     struct qed_sb_info *sb_info,
2262			     u16 sb_id)
2263{
2264	struct status_block *sb_virt;
2265	dma_addr_t sb_phys;
2266	int rc;
2267
2268	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2269				     sizeof(*sb_virt),
2270				     &sb_phys, GFP_KERNEL);
2271	if (!sb_virt) {
2272		DP_ERR(edev, "Status block allocation failed\n");
2273		return -ENOMEM;
2274	}
2275
2276	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2277					sb_virt, sb_phys, sb_id,
2278					QED_SB_TYPE_L2_QUEUE);
2279	if (rc) {
2280		DP_ERR(edev, "Status block initialization failed\n");
2281		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2282				  sb_virt, sb_phys);
2283		return rc;
2284	}
2285
2286	return 0;
2287}
2288
2289static void qede_free_rx_buffers(struct qede_dev *edev,
2290				 struct qede_rx_queue *rxq)
2291{
2292	u16 i;
2293
2294	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2295		struct sw_rx_data *rx_buf;
2296		struct page *data;
2297
2298		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2299		data = rx_buf->data;
2300
2301		dma_unmap_page(&edev->pdev->dev,
2302			       rx_buf->mapping,
2303			       PAGE_SIZE, DMA_FROM_DEVICE);
2304
2305		rx_buf->data = NULL;
2306		__free_page(data);
2307	}
2308}
2309
2310static void qede_free_sge_mem(struct qede_dev *edev,
2311			      struct qede_rx_queue *rxq) {
2312	int i;
2313
2314	if (edev->gro_disable)
2315		return;
2316
2317	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2318		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2319		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2320
2321		if (replace_buf->data) {
2322			dma_unmap_page(&edev->pdev->dev,
2323				       dma_unmap_addr(replace_buf, mapping),
2324				       PAGE_SIZE, DMA_FROM_DEVICE);
2325			__free_page(replace_buf->data);
2326		}
2327	}
2328}
2329
2330static void qede_free_mem_rxq(struct qede_dev *edev,
2331			      struct qede_rx_queue *rxq)
2332{
2333	qede_free_sge_mem(edev, rxq);
2334
2335	/* Free rx buffers */
2336	qede_free_rx_buffers(edev, rxq);
2337
2338	/* Free the parallel SW ring */
2339	kfree(rxq->sw_rx_ring);
2340
2341	/* Free the real RQ ring used by FW */
2342	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2343	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2344}
2345
2346static int qede_alloc_rx_buffer(struct qede_dev *edev,
2347				struct qede_rx_queue *rxq)
2348{
2349	struct sw_rx_data *sw_rx_data;
2350	struct eth_rx_bd *rx_bd;
2351	dma_addr_t mapping;
2352	struct page *data;
2353	u16 rx_buf_size;
2354
2355	rx_buf_size = rxq->rx_buf_size;
2356
2357	data = alloc_pages(GFP_ATOMIC, 0);
2358	if (unlikely(!data)) {
2359		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2360		return -ENOMEM;
2361	}
2362
2363	/* Map the entire page as it would be used
2364	 * for multiple RX buffer segment size mapping.
2365	 */
2366	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2367			       PAGE_SIZE, DMA_FROM_DEVICE);
2368	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2369		__free_page(data);
2370		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2371		return -ENOMEM;
2372	}
2373
2374	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2375	sw_rx_data->page_offset = 0;
2376	sw_rx_data->data = data;
2377	sw_rx_data->mapping = mapping;
2378
2379	/* Advance PROD and get BD pointer */
2380	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2381	WARN_ON(!rx_bd);
2382	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2383	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2384
2385	rxq->sw_rx_prod++;
2386
2387	return 0;
2388}
2389
2390static int qede_alloc_sge_mem(struct qede_dev *edev,
2391			      struct qede_rx_queue *rxq)
2392{
2393	dma_addr_t mapping;
2394	int i;
2395
2396	if (edev->gro_disable)
2397		return 0;
2398
2399	if (edev->ndev->mtu > PAGE_SIZE) {
2400		edev->gro_disable = 1;
2401		return 0;
2402	}
2403
2404	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2405		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2406		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2407
2408		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2409		if (unlikely(!replace_buf->data)) {
2410			DP_NOTICE(edev,
2411				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2412			goto err;
2413		}
2414
2415		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2416				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2417		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2418			DP_NOTICE(edev,
2419				  "Failed to map TPA replacement buffer\n");
2420			goto err;
2421		}
2422
2423		dma_unmap_addr_set(replace_buf, mapping, mapping);
2424		tpa_info->replace_buf.page_offset = 0;
2425
2426		tpa_info->replace_buf_mapping = mapping;
2427		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2428	}
2429
2430	return 0;
2431err:
2432	qede_free_sge_mem(edev, rxq);
2433	edev->gro_disable = 1;
2434	return -ENOMEM;
2435}
2436
2437/* This function allocates all memory needed per Rx queue */
2438static int qede_alloc_mem_rxq(struct qede_dev *edev,
2439			      struct qede_rx_queue *rxq)
2440{
 
 
 
 
 
2441	int i, rc, size;
2442
2443	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2444
2445	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2446			   edev->ndev->mtu;
2447	if (rxq->rx_buf_size > PAGE_SIZE)
2448		rxq->rx_buf_size = PAGE_SIZE;
2449
2450	/* Segment size to spilt a page in multiple equal parts */
2451	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452
2453	/* Allocate the parallel driver ring for Rx buffers */
2454	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2455	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2456	if (!rxq->sw_rx_ring) {
2457		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2458		rc = -ENOMEM;
2459		goto err;
2460	}
2461
2462	/* Allocate FW Rx ring  */
2463	rc = edev->ops->common->chain_alloc(edev->cdev,
2464					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2465					    QED_CHAIN_MODE_NEXT_PTR,
2466					    RX_RING_SIZE,
2467					    sizeof(struct eth_rx_bd),
2468					    &rxq->rx_bd_ring);
2469
 
2470	if (rc)
2471		goto err;
2472
2473	/* Allocate FW completion ring */
2474	rc = edev->ops->common->chain_alloc(edev->cdev,
2475					    QED_CHAIN_USE_TO_CONSUME,
2476					    QED_CHAIN_MODE_PBL,
2477					    RX_RING_SIZE,
2478					    sizeof(union eth_rx_cqe),
2479					    &rxq->rx_comp_ring);
2480	if (rc)
2481		goto err;
2482
2483	/* Allocate buffers for the Rx ring */
 
2484	for (i = 0; i < rxq->num_rx_buffers; i++) {
2485		rc = qede_alloc_rx_buffer(edev, rxq);
2486		if (rc) {
2487			DP_ERR(edev,
2488			       "Rx buffers allocation failed at index %d\n", i);
2489			goto err;
2490		}
2491	}
2492
2493	rc = qede_alloc_sge_mem(edev, rxq);
 
 
2494err:
2495	return rc;
2496}
2497
2498static void qede_free_mem_txq(struct qede_dev *edev,
2499			      struct qede_tx_queue *txq)
2500{
2501	/* Free the parallel SW ring */
2502	kfree(txq->sw_tx_ring);
 
 
 
2503
2504	/* Free the real RQ ring used by FW */
2505	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2506}
2507
2508/* This function allocates all memory needed per Tx queue */
2509static int qede_alloc_mem_txq(struct qede_dev *edev,
2510			      struct qede_tx_queue *txq)
2511{
 
 
 
 
 
 
 
2512	int size, rc;
2513	union eth_tx_bd_types *p_virt;
2514
2515	txq->num_tx_buffers = edev->q_num_tx_buffers;
2516
2517	/* Allocate the parallel driver ring for Tx buffers */
2518	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2519	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2520	if (!txq->sw_tx_ring) {
2521		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2522		goto err;
 
 
 
 
 
2523	}
2524
2525	rc = edev->ops->common->chain_alloc(edev->cdev,
2526					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2527					    QED_CHAIN_MODE_PBL,
2528					    NUM_TX_BDS_MAX,
2529					    sizeof(*p_virt),
2530					    &txq->tx_pbl);
2531	if (rc)
2532		goto err;
2533
2534	return 0;
2535
2536err:
2537	qede_free_mem_txq(edev, txq);
2538	return -ENOMEM;
2539}
2540
2541/* This function frees all memory of a single fp */
2542static void qede_free_mem_fp(struct qede_dev *edev,
2543			     struct qede_fastpath *fp)
2544{
2545	int tc;
2546
2547	qede_free_mem_sb(edev, fp->sb_info);
 
2548
2549	qede_free_mem_rxq(edev, fp->rxq);
 
2550
2551	for (tc = 0; tc < edev->num_tc; tc++)
2552		qede_free_mem_txq(edev, &fp->txqs[tc]);
 
 
 
 
2553}
2554
2555/* This function allocates all memory needed for a single fp (i.e. an entity
2556 * which contains status block, one rx queue and multiple per-TC tx queues.
2557 */
2558static int qede_alloc_mem_fp(struct qede_dev *edev,
2559			     struct qede_fastpath *fp)
2560{
2561	int rc, tc;
2562
2563	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2564	if (rc)
2565		goto err;
2566
2567	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2568	if (rc)
2569		goto err;
 
 
2570
2571	for (tc = 0; tc < edev->num_tc; tc++) {
2572		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2573		if (rc)
2574			goto err;
2575	}
2576
2577	return 0;
2578err:
 
 
 
 
 
 
 
 
 
2579	return rc;
2580}
2581
2582static void qede_free_mem_load(struct qede_dev *edev)
2583{
2584	int i;
2585
2586	for_each_rss(i) {
2587		struct qede_fastpath *fp = &edev->fp_array[i];
2588
2589		qede_free_mem_fp(edev, fp);
2590	}
2591}
2592
2593/* This function allocates all qede memory at NIC load. */
2594static int qede_alloc_mem_load(struct qede_dev *edev)
2595{
2596	int rc = 0, rss_id;
2597
2598	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2599		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2600
2601		rc = qede_alloc_mem_fp(edev, fp);
2602		if (rc) {
2603			DP_ERR(edev,
2604			       "Failed to allocate memory for fastpath - rss id = %d\n",
2605			       rss_id);
2606			qede_free_mem_load(edev);
2607			return rc;
2608		}
2609	}
2610
2611	return 0;
2612}
2613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614/* This function inits fp content and resets the SB, RXQ and TXQ structures */
2615static void qede_init_fp(struct qede_dev *edev)
2616{
2617	int rss_id, txq_index, tc;
2618	struct qede_fastpath *fp;
 
2619
2620	for_each_rss(rss_id) {
2621		fp = &edev->fp_array[rss_id];
2622
2623		fp->edev = edev;
2624		fp->rss_id = rss_id;
2625
2626		memset((void *)&fp->napi, 0, sizeof(fp->napi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
 
2629
2630		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2631		fp->rxq->rxq_id = rss_id;
 
 
 
 
 
 
 
 
 
 
 
2632
2633		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2634		for (tc = 0; tc < edev->num_tc; tc++) {
2635			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2636			fp->txqs[tc].index = txq_index;
2637		}
2638
2639		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2640			 edev->ndev->name, rss_id);
2641	}
2642
2643	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
 
 
 
2644}
2645
2646static int qede_set_real_num_queues(struct qede_dev *edev)
2647{
2648	int rc = 0;
2649
2650	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
 
 
2651	if (rc) {
2652		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2653		return rc;
2654	}
2655	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
 
2656	if (rc) {
2657		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2658		return rc;
2659	}
2660
2661	return 0;
2662}
2663
2664static void qede_napi_disable_remove(struct qede_dev *edev)
2665{
2666	int i;
2667
2668	for_each_rss(i) {
2669		napi_disable(&edev->fp_array[i].napi);
2670
2671		netif_napi_del(&edev->fp_array[i].napi);
2672	}
2673}
2674
2675static void qede_napi_add_enable(struct qede_dev *edev)
2676{
2677	int i;
2678
2679	/* Add NAPI objects */
2680	for_each_rss(i) {
2681		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2682			       qede_poll, NAPI_POLL_WEIGHT);
2683		napi_enable(&edev->fp_array[i].napi);
2684	}
2685}
2686
2687static void qede_sync_free_irqs(struct qede_dev *edev)
2688{
2689	int i;
2690
2691	for (i = 0; i < edev->int_info.used_cnt; i++) {
2692		if (edev->int_info.msix_cnt) {
2693			synchronize_irq(edev->int_info.msix[i].vector);
2694			free_irq(edev->int_info.msix[i].vector,
2695				 &edev->fp_array[i]);
2696		} else {
2697			edev->ops->common->simd_handler_clean(edev->cdev, i);
2698		}
2699	}
2700
2701	edev->int_info.used_cnt = 0;
2702}
2703
2704static int qede_req_msix_irqs(struct qede_dev *edev)
2705{
2706	int i, rc;
2707
2708	/* Sanitize number of interrupts == number of prepared RSS queues */
2709	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2710		DP_ERR(edev,
2711		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2712		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2713		return -EINVAL;
2714	}
2715
2716	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
 
 
 
 
 
 
 
 
 
 
 
 
2717		rc = request_irq(edev->int_info.msix[i].vector,
2718				 qede_msix_fp_int, 0, edev->fp_array[i].name,
2719				 &edev->fp_array[i]);
2720		if (rc) {
2721			DP_ERR(edev, "Request fp %d irq failed\n", i);
2722			qede_sync_free_irqs(edev);
2723			return rc;
2724		}
2725		DP_VERBOSE(edev, NETIF_MSG_INTR,
2726			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2727			   edev->fp_array[i].name, i,
2728			   &edev->fp_array[i]);
2729		edev->int_info.used_cnt++;
2730	}
2731
2732	return 0;
2733}
2734
2735static void qede_simd_fp_handler(void *cookie)
2736{
2737	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2738
2739	napi_schedule_irqoff(&fp->napi);
2740}
2741
2742static int qede_setup_irqs(struct qede_dev *edev)
2743{
2744	int i, rc = 0;
2745
2746	/* Learn Interrupt configuration */
2747	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2748	if (rc)
2749		return rc;
2750
2751	if (edev->int_info.msix_cnt) {
2752		rc = qede_req_msix_irqs(edev);
2753		if (rc)
2754			return rc;
2755		edev->ndev->irq = edev->int_info.msix[0].vector;
2756	} else {
2757		const struct qed_common_ops *ops;
2758
2759		/* qed should learn receive the RSS ids and callbacks */
2760		ops = edev->ops->common;
2761		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2762			ops->simd_handler_config(edev->cdev,
2763						 &edev->fp_array[i], i,
2764						 qede_simd_fp_handler);
2765		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2766	}
2767	return 0;
2768}
2769
2770static int qede_drain_txq(struct qede_dev *edev,
2771			  struct qede_tx_queue *txq,
2772			  bool allow_drain)
2773{
2774	int rc, cnt = 1000;
2775
2776	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2777		if (!cnt) {
2778			if (allow_drain) {
2779				DP_NOTICE(edev,
2780					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2781					  txq->index);
2782				rc = edev->ops->common->drain(edev->cdev);
2783				if (rc)
2784					return rc;
2785				return qede_drain_txq(edev, txq, false);
2786			}
2787			DP_NOTICE(edev,
2788				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2789				  txq->index, txq->sw_tx_prod,
2790				  txq->sw_tx_cons);
2791			return -ENODEV;
2792		}
2793		cnt--;
2794		usleep_range(1000, 2000);
2795		barrier();
2796	}
2797
2798	/* FW finished processing, wait for HW to transmit all tx packets */
2799	usleep_range(1000, 2000);
2800
2801	return 0;
2802}
2803
 
 
 
 
 
 
 
 
 
 
2804static int qede_stop_queues(struct qede_dev *edev)
2805{
2806	struct qed_update_vport_params vport_update_params;
2807	struct qed_dev *cdev = edev->cdev;
2808	int rc, tc, i;
 
2809
2810	/* Disable the vport */
2811	memset(&vport_update_params, 0, sizeof(vport_update_params));
2812	vport_update_params.vport_id = 0;
2813	vport_update_params.update_vport_active_flg = 1;
2814	vport_update_params.vport_active_flg = 0;
2815	vport_update_params.update_rss_flg = 0;
 
 
 
 
 
 
2816
2817	rc = edev->ops->vport_update(cdev, &vport_update_params);
2818	if (rc) {
2819		DP_ERR(edev, "Failed to update vport\n");
2820		return rc;
2821	}
2822
2823	/* Flush Tx queues. If needed, request drain from MCP */
2824	for_each_rss(i) {
2825		struct qede_fastpath *fp = &edev->fp_array[i];
2826
2827		for (tc = 0; tc < edev->num_tc; tc++) {
2828			struct qede_tx_queue *txq = &fp->txqs[tc];
 
 
 
 
 
 
 
2829
2830			rc = qede_drain_txq(edev, txq, true);
 
2831			if (rc)
2832				return rc;
2833		}
2834	}
2835
2836	/* Stop all Queues in reverse order*/
2837	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2838		struct qed_stop_rxq_params rx_params;
2839
2840		/* Stop the Tx Queue(s)*/
2841		for (tc = 0; tc < edev->num_tc; tc++) {
2842			struct qed_stop_txq_params tx_params;
2843
2844			tx_params.rss_id = i;
2845			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2846			rc = edev->ops->q_tx_stop(cdev, &tx_params);
 
 
 
 
 
 
 
2847			if (rc) {
2848				DP_ERR(edev, "Failed to stop TXQ #%d\n",
2849				       tx_params.tx_queue_id);
2850				return rc;
2851			}
2852		}
2853
2854		/* Stop the Rx Queue*/
2855		memset(&rx_params, 0, sizeof(rx_params));
2856		rx_params.rss_id = i;
2857		rx_params.rx_queue_id = i;
 
2858
2859		rc = edev->ops->q_rx_stop(cdev, &rx_params);
2860		if (rc) {
2861			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2862			return rc;
2863		}
2864	}
2865
2866	/* Stop the vport */
2867	rc = edev->ops->vport_stop(cdev, 0);
2868	if (rc)
2869		DP_ERR(edev, "Failed to stop VPORT\n");
2870
2871	return rc;
2872}
2873
2874static int qede_start_queues(struct qede_dev *edev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875{
2876	int rc, tc, i;
2877	int vlan_removal_en = 1;
2878	struct qed_dev *cdev = edev->cdev;
2879	struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2880	struct qed_update_vport_params vport_update_params;
2881	struct qed_queue_start_common_params q_params;
2882	struct qed_start_vport_params start = {0};
 
2883
2884	if (!edev->num_rss) {
2885		DP_ERR(edev,
2886		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2887		return -EINVAL;
2888	}
2889
 
 
 
 
 
2890	start.gro_enable = !edev->gro_disable;
2891	start.mtu = edev->ndev->mtu;
2892	start.vport_id = 0;
2893	start.drop_ttl0 = true;
2894	start.remove_inner_vlan = vlan_removal_en;
 
2895
2896	rc = edev->ops->vport_start(cdev, &start);
2897
2898	if (rc) {
2899		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2900		return rc;
2901	}
2902
2903	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2904		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2905		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2906
2907	for_each_rss(i) {
2908		struct qede_fastpath *fp = &edev->fp_array[i];
2909		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2910
2911		memset(&q_params, 0, sizeof(q_params));
2912		q_params.rss_id = i;
2913		q_params.queue_id = i;
2914		q_params.vport_id = 0;
2915		q_params.sb = fp->sb_info->igu_sb_id;
2916		q_params.sb_idx = RX_PI;
2917
2918		rc = edev->ops->q_rx_start(cdev, &q_params,
2919					   fp->rxq->rx_buf_size,
2920					   fp->rxq->rx_bd_ring.p_phys_addr,
2921					   phys_table,
2922					   fp->rxq->rx_comp_ring.page_cnt,
2923					   &fp->rxq->hw_rxq_prod_addr);
2924		if (rc) {
2925			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2926			return rc;
2927		}
2928
2929		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2930
2931		qede_update_rx_prod(edev, fp->rxq);
2932
2933		for (tc = 0; tc < edev->num_tc; tc++) {
2934			struct qede_tx_queue *txq = &fp->txqs[tc];
2935			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2936
 
2937			memset(&q_params, 0, sizeof(q_params));
2938			q_params.rss_id = i;
2939			q_params.queue_id = txq_index;
2940			q_params.vport_id = 0;
2941			q_params.sb = fp->sb_info->igu_sb_id;
2942			q_params.sb_idx = TX_PI(tc);
2943
2944			rc = edev->ops->q_tx_start(cdev, &q_params,
2945						   txq->tx_pbl.pbl.p_phys_table,
2946						   txq->tx_pbl.page_cnt,
2947						   &txq->doorbell_addr);
 
 
 
 
 
2948			if (rc) {
2949				DP_ERR(edev, "Start TXQ #%d failed %d\n",
2950				       txq_index, rc);
2951				return rc;
2952			}
2953
2954			txq->hw_cons_ptr =
2955				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2956			SET_FIELD(txq->tx_db.data.params,
2957				  ETH_DB_DATA_DEST, DB_DEST_XCM);
2958			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2959				  DB_AGG_CMD_SET);
2960			SET_FIELD(txq->tx_db.data.params,
2961				  ETH_DB_DATA_AGG_VAL_SEL,
2962				  DQ_XCM_ETH_TX_BD_PROD_CMD);
2963
2964			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
 
 
 
2965		}
2966	}
2967
2968	/* Prepare and send the vport enable */
2969	memset(&vport_update_params, 0, sizeof(vport_update_params));
2970	vport_update_params.vport_id = start.vport_id;
2971	vport_update_params.update_vport_active_flg = 1;
2972	vport_update_params.vport_active_flg = 1;
2973
2974	/* Fill struct with RSS params */
2975	if (QEDE_RSS_CNT(edev) > 1) {
2976		vport_update_params.update_rss_flg = 1;
2977		for (i = 0; i < 128; i++)
2978			rss_params->rss_ind_table[i] =
2979			ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2980		netdev_rss_key_fill(rss_params->rss_key,
2981				    sizeof(rss_params->rss_key));
2982	} else {
2983		memset(rss_params, 0, sizeof(*rss_params));
2984	}
2985	memcpy(&vport_update_params.rss_params, rss_params,
2986	       sizeof(*rss_params));
2987
2988	rc = edev->ops->vport_update(cdev, &vport_update_params);
2989	if (rc) {
2990		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2991		return rc;
 
 
 
 
 
 
 
 
 
 
2992	}
2993
2994	return 0;
2995}
 
 
2996
2997static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2998				 enum qed_filter_xcast_params_type opcode,
2999				 unsigned char *mac, int num_macs)
3000{
3001	struct qed_filter_params filter_cmd;
3002	int i;
3003
3004	memset(&filter_cmd, 0, sizeof(filter_cmd));
3005	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3006	filter_cmd.filter.mcast.type = opcode;
3007	filter_cmd.filter.mcast.num = num_macs;
3008
3009	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3010		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
 
3011
3012	return edev->ops->filter_config(edev->cdev, &filter_cmd);
 
 
3013}
3014
3015enum qede_unload_mode {
3016	QEDE_UNLOAD_NORMAL,
 
3017};
3018
3019static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
 
3020{
3021	struct qed_link_params link_params;
3022	int rc;
3023
3024	DP_INFO(edev, "Starting qede unload\n");
3025
3026	mutex_lock(&edev->qede_lock);
3027	edev->state = QEDE_STATE_CLOSED;
 
 
 
 
 
 
 
3028
3029	/* Close OS Tx */
3030	netif_tx_disable(edev->ndev);
3031	netif_carrier_off(edev->ndev);
3032
3033	/* Reset the link */
3034	memset(&link_params, 0, sizeof(link_params));
3035	link_params.link_up = false;
3036	edev->ops->common->set_link(edev->cdev, &link_params);
3037	rc = qede_stop_queues(edev);
3038	if (rc) {
3039		qede_sync_free_irqs(edev);
3040		goto out;
3041	}
3042
3043	DP_INFO(edev, "Stopped Queues\n");
 
 
 
 
 
 
 
3044
3045	qede_vlan_mark_nonconfigured(edev);
3046	edev->ops->fastpath_stop(edev->cdev);
3047
 
 
 
 
 
3048	/* Release the interrupts */
3049	qede_sync_free_irqs(edev);
3050	edev->ops->common->set_fp_int(edev->cdev, 0);
3051
3052	qede_napi_disable_remove(edev);
3053
 
 
 
3054	qede_free_mem_load(edev);
3055	qede_free_fp_array(edev);
3056
3057out:
3058	mutex_unlock(&edev->qede_lock);
 
 
 
 
 
 
 
3059	DP_INFO(edev, "Ending qede unload\n");
3060}
3061
3062enum qede_load_mode {
3063	QEDE_LOAD_NORMAL,
 
 
3064};
3065
3066static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
 
3067{
3068	struct qed_link_params link_params;
3069	struct qed_link_output link_output;
3070	int rc;
3071
3072	DP_INFO(edev, "Starting qede load\n");
3073
 
 
 
3074	rc = qede_set_num_queues(edev);
3075	if (rc)
3076		goto err0;
3077
3078	rc = qede_alloc_fp_array(edev);
3079	if (rc)
3080		goto err0;
3081
3082	qede_init_fp(edev);
3083
3084	rc = qede_alloc_mem_load(edev);
3085	if (rc)
3086		goto err1;
3087	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3088		QEDE_RSS_CNT(edev), edev->num_tc);
3089
3090	rc = qede_set_real_num_queues(edev);
3091	if (rc)
3092		goto err2;
3093
 
 
 
 
 
3094	qede_napi_add_enable(edev);
3095	DP_INFO(edev, "Napi added and enabled\n");
3096
3097	rc = qede_setup_irqs(edev);
3098	if (rc)
3099		goto err3;
3100	DP_INFO(edev, "Setup IRQs succeeded\n");
3101
3102	rc = qede_start_queues(edev);
3103	if (rc)
3104		goto err4;
3105	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3106
3107	/* Add primary mac and set Rx filters */
3108	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3109
3110	mutex_lock(&edev->qede_lock);
3111	edev->state = QEDE_STATE_OPEN;
3112	mutex_unlock(&edev->qede_lock);
3113
3114	/* Program un-configured VLANs */
3115	qede_configure_vlan_filters(edev);
3116
 
 
3117	/* Ask for link-up using current configuration */
3118	memset(&link_params, 0, sizeof(link_params));
3119	link_params.link_up = true;
3120	edev->ops->common->set_link(edev->cdev, &link_params);
3121
3122	/* Query whether link is already-up */
3123	memset(&link_output, 0, sizeof(link_output));
3124	edev->ops->common->get_link(edev->cdev, &link_output);
3125	qede_link_update(edev, &link_output);
3126
3127	DP_INFO(edev, "Ending successfully qede load\n");
3128
3129	return 0;
3130
3131err4:
3132	qede_sync_free_irqs(edev);
3133	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3134err3:
3135	qede_napi_disable_remove(edev);
3136err2:
3137	qede_free_mem_load(edev);
3138err1:
3139	edev->ops->common->set_fp_int(edev->cdev, 0);
3140	qede_free_fp_array(edev);
3141	edev->num_rss = 0;
3142err0:
 
 
 
 
 
3143	return rc;
3144}
3145
 
 
 
3146void qede_reload(struct qede_dev *edev,
3147		 void (*func)(struct qede_dev *, union qede_reload_args *),
3148		 union qede_reload_args *args)
3149{
3150	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3151	/* Call function handler to update parameters
3152	 * needed for function load.
3153	 */
3154	if (func)
3155		func(edev, args);
3156
3157	qede_load(edev, QEDE_LOAD_NORMAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158
3159	mutex_lock(&edev->qede_lock);
3160	qede_config_rx_mode(edev->ndev);
3161	mutex_unlock(&edev->qede_lock);
3162}
3163
3164/* called with rtnl_lock */
3165static int qede_open(struct net_device *ndev)
3166{
3167	struct qede_dev *edev = netdev_priv(ndev);
 
3168
3169	netif_carrier_off(ndev);
3170
3171	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3172
3173	return qede_load(edev, QEDE_LOAD_NORMAL);
 
 
 
 
 
 
 
 
3174}
3175
3176static int qede_close(struct net_device *ndev)
3177{
3178	struct qede_dev *edev = netdev_priv(ndev);
3179
3180	qede_unload(edev, QEDE_UNLOAD_NORMAL);
 
 
3181
3182	return 0;
3183}
3184
3185static void qede_link_update(void *dev, struct qed_link_output *link)
3186{
3187	struct qede_dev *edev = dev;
3188
3189	if (!netif_running(edev->ndev)) {
3190		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3191		return;
3192	}
3193
3194	if (link->link_up) {
3195		if (!netif_carrier_ok(edev->ndev)) {
3196			DP_NOTICE(edev, "Link is up\n");
3197			netif_tx_start_all_queues(edev->ndev);
3198			netif_carrier_on(edev->ndev);
 
3199		}
3200	} else {
3201		if (netif_carrier_ok(edev->ndev)) {
3202			DP_NOTICE(edev, "Link is down\n");
3203			netif_tx_disable(edev->ndev);
3204			netif_carrier_off(edev->ndev);
 
3205		}
3206	}
3207}
3208
3209static int qede_set_mac_addr(struct net_device *ndev, void *p)
3210{
3211	struct qede_dev *edev = netdev_priv(ndev);
3212	struct sockaddr *addr = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213	int rc;
3214
3215	ASSERT_RTNL(); /* @@@TBD To be removed */
 
 
 
 
 
 
 
 
 
 
3216
3217	DP_INFO(edev, "Set_mac_addr called\n");
3218
3219	if (!is_valid_ether_addr(addr->sa_data)) {
3220		DP_NOTICE(edev, "The MAC address is not valid\n");
3221		return -EFAULT;
 
 
3222	}
3223
3224	ether_addr_copy(ndev->dev_addr, addr->sa_data);
 
 
 
3225
3226	if (!netif_running(ndev))  {
3227		DP_NOTICE(edev, "The device is currently down\n");
3228		return 0;
3229	}
3230
3231	/* Remove the previous primary mac */
3232	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3233				   edev->primary_mac);
3234	if (rc)
3235		return rc;
3236
3237	/* Add MAC filter according to the new unicast HW MAC address */
3238	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3239	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3240				      edev->primary_mac);
 
 
3241}
3242
3243static int
3244qede_configure_mcast_filtering(struct net_device *ndev,
3245			       enum qed_filter_rx_mode_type *accept_flags)
3246{
3247	struct qede_dev *edev = netdev_priv(ndev);
3248	unsigned char *mc_macs, *temp;
3249	struct netdev_hw_addr *ha;
3250	int rc = 0, mc_count;
3251	size_t size;
3252
3253	size = 64 * ETH_ALEN;
 
 
3254
3255	mc_macs = kzalloc(size, GFP_KERNEL);
3256	if (!mc_macs) {
3257		DP_NOTICE(edev,
3258			  "Failed to allocate memory for multicast MACs\n");
3259		rc = -ENOMEM;
3260		goto exit;
3261	}
3262
3263	temp = mc_macs;
 
 
3264
3265	/* Remove all previously configured MAC filters */
3266	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3267				   mc_macs, 1);
3268	if (rc)
3269		goto exit;
3270
3271	netif_addr_lock_bh(ndev);
 
 
3272
3273	mc_count = netdev_mc_count(ndev);
3274	if (mc_count < 64) {
3275		netdev_for_each_mc_addr(ha, ndev) {
3276			ether_addr_copy(temp, ha->addr);
3277			temp += ETH_ALEN;
3278		}
3279	}
3280
3281	netif_addr_unlock_bh(ndev);
 
 
 
 
 
 
3282
3283	/* Check for all multicast @@@TBD resource allocation */
3284	if ((ndev->flags & IFF_ALLMULTI) ||
3285	    (mc_count > 64)) {
3286		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3287			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3288	} else {
3289		/* Add all multicast MAC filters */
3290		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3291					   mc_macs, mc_count);
3292	}
3293
3294exit:
3295	kfree(mc_macs);
3296	return rc;
3297}
3298
3299static void qede_set_rx_mode(struct net_device *ndev)
 
3300{
3301	struct qede_dev *edev = netdev_priv(ndev);
3302
3303	DP_INFO(edev, "qede_set_rx_mode called\n");
 
 
 
 
 
 
 
 
 
 
3304
3305	if (edev->state != QEDE_STATE_OPEN) {
3306		DP_INFO(edev,
3307			"qede_set_rx_mode called while interface is down\n");
3308	} else {
3309		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3310		schedule_delayed_work(&edev->sp_task, 0);
3311	}
 
 
3312}
3313
3314/* Must be called with qede_lock held */
3315static void qede_config_rx_mode(struct net_device *ndev)
3316{
3317	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3318	struct qede_dev *edev = netdev_priv(ndev);
3319	struct qed_filter_params rx_mode;
3320	unsigned char *uc_macs, *temp;
3321	struct netdev_hw_addr *ha;
3322	int rc, uc_count;
3323	size_t size;
3324
3325	netif_addr_lock_bh(ndev);
3326
3327	uc_count = netdev_uc_count(ndev);
3328	size = uc_count * ETH_ALEN;
3329
3330	uc_macs = kzalloc(size, GFP_ATOMIC);
3331	if (!uc_macs) {
3332		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3333		netif_addr_unlock_bh(ndev);
 
 
 
 
3334		return;
3335	}
3336
3337	temp = uc_macs;
3338	netdev_for_each_uc_addr(ha, ndev) {
3339		ether_addr_copy(temp, ha->addr);
3340		temp += ETH_ALEN;
3341	}
3342
3343	netif_addr_unlock_bh(ndev);
 
 
 
3344
3345	/* Configure the struct for the Rx mode */
3346	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3347	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3348
3349	/* Remove all previous unicast secondary macs and multicast macs
3350	 * (configrue / leave the primary mac)
3351	 */
3352	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3353				   edev->primary_mac);
3354	if (rc)
3355		goto out;
3356
3357	/* Check for promiscuous */
3358	if ((ndev->flags & IFF_PROMISC) ||
3359	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3360		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3361	} else {
3362		/* Add MAC filters according to the unicast secondary macs */
3363		int i;
3364
3365		temp = uc_macs;
3366		for (i = 0; i < uc_count; i++) {
3367			rc = qede_set_ucast_rx_mac(edev,
3368						   QED_FILTER_XCAST_TYPE_ADD,
3369						   temp);
3370			if (rc)
3371				goto out;
3372
3373			temp += ETH_ALEN;
3374		}
 
 
 
3375
3376		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3377		if (rc)
3378			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
3379	}
3380
3381	/* take care of VLAN mode */
3382	if (ndev->flags & IFF_PROMISC) {
3383		qede_config_accept_any_vlan(edev, true);
3384	} else if (!edev->non_configured_vlans) {
3385		/* It's possible that accept_any_vlan mode is set due to a
3386		 * previous setting of IFF_PROMISC. If vlan credits are
3387		 * sufficient, disable accept_any_vlan.
3388		 */
3389		qede_config_accept_any_vlan(edev, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3390	}
 
3391
3392	rx_mode.filter.accept_flags = accept_flags;
3393	edev->ops->filter_config(edev->cdev, &rx_mode);
3394out:
3395	kfree(uc_macs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396}
v5.9
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qede NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
   5 */
 
 
 
   6
   7#include <linux/crash_dump.h>
   8#include <linux/module.h>
   9#include <linux/pci.h>
  10#include <linux/version.h>
  11#include <linux/device.h>
  12#include <linux/netdevice.h>
  13#include <linux/etherdevice.h>
  14#include <linux/skbuff.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/string.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/interrupt.h>
  20#include <asm/byteorder.h>
  21#include <asm/param.h>
  22#include <linux/io.h>
  23#include <linux/netdev_features.h>
  24#include <linux/udp.h>
  25#include <linux/tcp.h>
  26#include <net/udp_tunnel.h>
  27#include <linux/ip.h>
  28#include <net/ipv6.h>
  29#include <net/tcp.h>
  30#include <linux/if_ether.h>
  31#include <linux/if_vlan.h>
  32#include <linux/pkt_sched.h>
  33#include <linux/ethtool.h>
  34#include <linux/in.h>
  35#include <linux/random.h>
  36#include <net/ip6_checksum.h>
  37#include <linux/bitops.h>
  38#include <linux/vmalloc.h>
  39#include <linux/aer.h>
  40#include "qede.h"
  41#include "qede_ptp.h"
  42
  43static char version[] =
  44	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  45
  46MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  47MODULE_LICENSE("GPL");
  48MODULE_VERSION(DRV_MODULE_VERSION);
  49
  50static uint debug;
  51module_param(debug, uint, 0);
  52MODULE_PARM_DESC(debug, " Default debug msglevel");
  53
  54static const struct qed_eth_ops *qed_ops;
  55
  56#define CHIP_NUM_57980S_40		0x1634
  57#define CHIP_NUM_57980S_10		0x1666
  58#define CHIP_NUM_57980S_MF		0x1636
  59#define CHIP_NUM_57980S_100		0x1644
  60#define CHIP_NUM_57980S_50		0x1654
  61#define CHIP_NUM_57980S_25		0x1656
  62#define CHIP_NUM_57980S_IOV		0x1664
  63#define CHIP_NUM_AH			0x8070
  64#define CHIP_NUM_AH_IOV			0x8090
  65
  66#ifndef PCI_DEVICE_ID_NX2_57980E
  67#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  68#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  69#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  70#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  71#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  72#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  73#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
  74#define PCI_DEVICE_ID_AH		CHIP_NUM_AH
  75#define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
  76
  77#endif
  78
  79enum qede_pci_private {
  80	QEDE_PRIVATE_PF,
  81	QEDE_PRIVATE_VF
  82};
  83
  84static const struct pci_device_id qede_pci_tbl[] = {
  85	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
  86	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
  87	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
  88	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
  89	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
  90	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
  91#ifdef CONFIG_QED_SRIOV
  92	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
  93#endif
  94	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
  95#ifdef CONFIG_QED_SRIOV
  96	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
  97#endif
  98	{ 0 }
  99};
 100
 101MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
 102
 103static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 104static pci_ers_result_t
 105qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
 106
 107#define TX_TIMEOUT		(5 * HZ)
 108
 109/* Utilize last protocol index for XDP */
 110#define XDP_PI	11
 111
 112static void qede_remove(struct pci_dev *pdev);
 113static void qede_shutdown(struct pci_dev *pdev);
 
 114static void qede_link_update(void *dev, struct qed_link_output *link);
 115static void qede_schedule_recovery_handler(void *dev);
 116static void qede_recovery_handler(struct qede_dev *edev);
 117static void qede_schedule_hw_err_handler(void *dev,
 118					 enum qed_hw_err_type err_type);
 119static void qede_get_eth_tlv_data(void *edev, void *data);
 120static void qede_get_generic_tlv_data(void *edev,
 121				      struct qed_generic_tlvs *data);
 122static void qede_generic_hw_err_handler(struct qede_dev *edev);
 123#ifdef CONFIG_QED_SRIOV
 124static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 125			    __be16 vlan_proto)
 126{
 127	struct qede_dev *edev = netdev_priv(ndev);
 128
 129	if (vlan > 4095) {
 130		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 131		return -EINVAL;
 132	}
 133
 134	if (vlan_proto != htons(ETH_P_8021Q))
 135		return -EPROTONOSUPPORT;
 136
 137	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 138		   vlan, vf);
 139
 140	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 141}
 142
 143static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 144{
 145	struct qede_dev *edev = netdev_priv(ndev);
 146
 147	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
 148
 149	if (!is_valid_ether_addr(mac)) {
 150		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 151		return -EINVAL;
 152	}
 153
 154	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 155}
 156
 157static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 158{
 159	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 160	struct qed_dev_info *qed_info = &edev->dev_info.common;
 161	struct qed_update_vport_params *vport_params;
 162	int rc;
 163
 164	vport_params = vzalloc(sizeof(*vport_params));
 165	if (!vport_params)
 166		return -ENOMEM;
 167	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 168
 169	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 170
 171	/* Enable/Disable Tx switching for PF */
 172	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 173	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
 174		vport_params->vport_id = 0;
 175		vport_params->update_tx_switching_flg = 1;
 176		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 177		edev->ops->vport_update(edev->cdev, vport_params);
 178	}
 179
 180	vfree(vport_params);
 181	return rc;
 182}
 183#endif
 184
 185static const struct pci_error_handlers qede_err_handler = {
 186	.error_detected = qede_io_error_detected,
 187};
 188
 189static struct pci_driver qede_pci_driver = {
 190	.name = "qede",
 191	.id_table = qede_pci_tbl,
 192	.probe = qede_probe,
 193	.remove = qede_remove,
 194	.shutdown = qede_shutdown,
 195#ifdef CONFIG_QED_SRIOV
 196	.sriov_configure = qede_sriov_configure,
 197#endif
 198	.err_handler = &qede_err_handler,
 199};
 200
 201static struct qed_eth_cb_ops qede_ll_ops = {
 202	{
 203#ifdef CONFIG_RFS_ACCEL
 204		.arfs_filter_op = qede_arfs_filter_op,
 205#endif
 206		.link_update = qede_link_update,
 207		.schedule_recovery_handler = qede_schedule_recovery_handler,
 208		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
 209		.get_generic_tlv_data = qede_get_generic_tlv_data,
 210		.get_protocol_tlv_data = qede_get_eth_tlv_data,
 211	},
 212	.force_mac = qede_force_mac,
 213	.ports_update = qede_udp_ports_update,
 214};
 215
 216static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 217			     void *ptr)
 218{
 219	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 220	struct ethtool_drvinfo drvinfo;
 221	struct qede_dev *edev;
 222
 223	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 
 224		goto done;
 225
 226	/* Check whether this is a qede device */
 227	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 228		goto done;
 229
 230	memset(&drvinfo, 0, sizeof(drvinfo));
 231	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 232	if (strcmp(drvinfo.driver, "qede"))
 233		goto done;
 234	edev = netdev_priv(ndev);
 235
 236	switch (event) {
 237	case NETDEV_CHANGENAME:
 238		/* Notify qed of the name change */
 239		if (!edev->ops || !edev->ops->common)
 240			goto done;
 241		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 242		break;
 243	case NETDEV_CHANGEADDR:
 244		edev = netdev_priv(ndev);
 245		qede_rdma_event_changeaddr(edev);
 246		break;
 247	}
 248
 249done:
 250	return NOTIFY_DONE;
 251}
 252
 253static struct notifier_block qede_netdev_notifier = {
 254	.notifier_call = qede_netdev_event,
 255};
 256
 257static
 258int __init qede_init(void)
 259{
 260	int ret;
 
 261
 262	pr_info("qede_init: %s\n", version);
 263
 264	qede_forced_speed_maps_init();
 
 
 
 
 
 
 265
 266	qed_ops = qed_get_eth_ops();
 267	if (!qed_ops) {
 268		pr_notice("Failed to get qed ethtool operations\n");
 269		return -EINVAL;
 270	}
 271
 272	/* Must register notifier before pci ops, since we might miss
 273	 * interface rename after pci probe and netdev registration.
 274	 */
 275	ret = register_netdevice_notifier(&qede_netdev_notifier);
 276	if (ret) {
 277		pr_notice("Failed to register netdevice_notifier\n");
 278		qed_put_eth_ops();
 279		return -EINVAL;
 280	}
 281
 282	ret = pci_register_driver(&qede_pci_driver);
 283	if (ret) {
 284		pr_notice("Failed to register driver\n");
 285		unregister_netdevice_notifier(&qede_netdev_notifier);
 286		qed_put_eth_ops();
 287		return -EINVAL;
 288	}
 289
 290	return 0;
 291}
 292
 293static void __exit qede_cleanup(void)
 294{
 295	if (debug & QED_LOG_INFO_MASK)
 296		pr_info("qede_cleanup called\n");
 297
 298	unregister_netdevice_notifier(&qede_netdev_notifier);
 299	pci_unregister_driver(&qede_pci_driver);
 300	qed_put_eth_ops();
 301}
 302
 303module_init(qede_init);
 304module_exit(qede_cleanup);
 305
 306static int qede_open(struct net_device *ndev);
 307static int qede_close(struct net_device *ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308
 309void qede_fill_by_demand_stats(struct qede_dev *edev)
 
 
 310{
 311	struct qede_stats_common *p_common = &edev->stats.common;
 312	struct qed_eth_stats stats;
 
 
 
 
 
 
 
 313
 314	edev->ops->get_vport_stats(edev->cdev, &stats);
 
 315
 316	p_common->no_buff_discards = stats.common.no_buff_discards;
 317	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 318	p_common->ttl0_discard = stats.common.ttl0_discard;
 319	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 320	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 321	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 322	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 323	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 324	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 325	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 326	p_common->mac_filter_discards = stats.common.mac_filter_discards;
 327	p_common->gft_filter_drop = stats.common.gft_filter_drop;
 328
 329	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 330	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 331	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 332	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 333	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 334	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 335	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 336	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 337	p_common->coalesced_events = stats.common.tpa_coalesced_events;
 338	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 339	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 340	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 341
 342	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 343	p_common->rx_65_to_127_byte_packets =
 344	    stats.common.rx_65_to_127_byte_packets;
 345	p_common->rx_128_to_255_byte_packets =
 346	    stats.common.rx_128_to_255_byte_packets;
 347	p_common->rx_256_to_511_byte_packets =
 348	    stats.common.rx_256_to_511_byte_packets;
 349	p_common->rx_512_to_1023_byte_packets =
 350	    stats.common.rx_512_to_1023_byte_packets;
 351	p_common->rx_1024_to_1518_byte_packets =
 352	    stats.common.rx_1024_to_1518_byte_packets;
 353	p_common->rx_crc_errors = stats.common.rx_crc_errors;
 354	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 355	p_common->rx_pause_frames = stats.common.rx_pause_frames;
 356	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 357	p_common->rx_align_errors = stats.common.rx_align_errors;
 358	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 359	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 360	p_common->rx_jabbers = stats.common.rx_jabbers;
 361	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 362	p_common->rx_fragments = stats.common.rx_fragments;
 363	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 364	p_common->tx_65_to_127_byte_packets =
 365	    stats.common.tx_65_to_127_byte_packets;
 366	p_common->tx_128_to_255_byte_packets =
 367	    stats.common.tx_128_to_255_byte_packets;
 368	p_common->tx_256_to_511_byte_packets =
 369	    stats.common.tx_256_to_511_byte_packets;
 370	p_common->tx_512_to_1023_byte_packets =
 371	    stats.common.tx_512_to_1023_byte_packets;
 372	p_common->tx_1024_to_1518_byte_packets =
 373	    stats.common.tx_1024_to_1518_byte_packets;
 374	p_common->tx_pause_frames = stats.common.tx_pause_frames;
 375	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 376	p_common->brb_truncates = stats.common.brb_truncates;
 377	p_common->brb_discards = stats.common.brb_discards;
 378	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 379	p_common->link_change_count = stats.common.link_change_count;
 380	p_common->ptp_skip_txts = edev->ptp_skip_txts;
 381
 382	if (QEDE_IS_BB(edev)) {
 383		struct qede_stats_bb *p_bb = &edev->stats.bb;
 384
 385		p_bb->rx_1519_to_1522_byte_packets =
 386		    stats.bb.rx_1519_to_1522_byte_packets;
 387		p_bb->rx_1519_to_2047_byte_packets =
 388		    stats.bb.rx_1519_to_2047_byte_packets;
 389		p_bb->rx_2048_to_4095_byte_packets =
 390		    stats.bb.rx_2048_to_4095_byte_packets;
 391		p_bb->rx_4096_to_9216_byte_packets =
 392		    stats.bb.rx_4096_to_9216_byte_packets;
 393		p_bb->rx_9217_to_16383_byte_packets =
 394		    stats.bb.rx_9217_to_16383_byte_packets;
 395		p_bb->tx_1519_to_2047_byte_packets =
 396		    stats.bb.tx_1519_to_2047_byte_packets;
 397		p_bb->tx_2048_to_4095_byte_packets =
 398		    stats.bb.tx_2048_to_4095_byte_packets;
 399		p_bb->tx_4096_to_9216_byte_packets =
 400		    stats.bb.tx_4096_to_9216_byte_packets;
 401		p_bb->tx_9217_to_16383_byte_packets =
 402		    stats.bb.tx_9217_to_16383_byte_packets;
 403		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 404		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 405	} else {
 406		struct qede_stats_ah *p_ah = &edev->stats.ah;
 
 
 
 
 
 
 407
 408		p_ah->rx_1519_to_max_byte_packets =
 409		    stats.ah.rx_1519_to_max_byte_packets;
 410		p_ah->tx_1519_to_max_byte_packets =
 411		    stats.ah.tx_1519_to_max_byte_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413}
 414
 415static void qede_get_stats64(struct net_device *dev,
 416			     struct rtnl_link_stats64 *stats)
 
 417{
 418	struct qede_dev *edev = netdev_priv(dev);
 419	struct qede_stats_common *p_common;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420
 421	qede_fill_by_demand_stats(edev);
 422	p_common = &edev->stats.common;
 
 
 423
 424	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 425			    p_common->rx_bcast_pkts;
 426	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 427			    p_common->tx_bcast_pkts;
 428
 429	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 430			  p_common->rx_bcast_bytes;
 431	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 432			  p_common->tx_bcast_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	stats->tx_errors = p_common->tx_err_drop_pkts;
 435	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 436
 437	stats->rx_fifo_errors = p_common->no_buff_discards;
 
 
 
 438
 439	if (QEDE_IS_BB(edev))
 440		stats->collisions = edev->stats.bb.tx_total_collisions;
 441	stats->rx_crc_errors = p_common->rx_crc_errors;
 442	stats->rx_frame_errors = p_common->rx_align_errors;
 
 443}
 444
 445#ifdef CONFIG_QED_SRIOV
 446static int qede_get_vf_config(struct net_device *dev, int vfidx,
 447			      struct ifla_vf_info *ivi)
 448{
 449	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 450
 451	if (!edev->ops)
 452		return -EINVAL;
 453
 454	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 455}
 456
 457static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 458			    int min_tx_rate, int max_tx_rate)
 459{
 460	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 463					max_tx_rate);
 
 464}
 465
 466static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 
 
 467{
 468	struct qede_dev *edev = netdev_priv(dev);
 469
 470	if (!edev->ops)
 471		return -EINVAL;
 
 472
 473	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 
 
 474}
 475
 476static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 477				  int link_state)
 
 478{
 479	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480
 481	if (!edev->ops)
 482		return -EINVAL;
 483
 484	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 
 
 
 
 
 
 
 
 
 
 
 485}
 486
 487static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 488{
 489	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 490
 491	if (!edev->ops)
 492		return -EINVAL;
 493
 494	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 495}
 496#endif
 497
 498static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 499{
 500	struct qede_dev *edev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501
 502	if (!netif_running(dev))
 503		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505	switch (cmd) {
 506	case SIOCSHWTSTAMP:
 507		return qede_ptp_hw_ts(edev, ifr);
 508	default:
 509		DP_VERBOSE(edev, QED_MSG_DEBUG,
 510			   "default IOCTL cmd 0x%x\n", cmd);
 511		return -EOPNOTSUPP;
 
 
 512	}
 513
 514	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515}
 516
 517static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
 
 
 518{
 519	DP_NOTICE(edev,
 520		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
 521		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
 522		  qed_chain_get_cons_idx(&txq->tx_pbl),
 523		  qed_chain_get_prod_idx(&txq->tx_pbl),
 524		  jiffies);
 
 
 
 525}
 526
 527static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528{
 529	struct qede_dev *edev = netdev_priv(dev);
 530	struct qede_tx_queue *txq;
 531	int cos;
 532
 533	netif_carrier_off(dev);
 534	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535
 536	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
 537		return;
 
 538
 539	for_each_cos_in_txq(edev, cos) {
 540		txq = &edev->fp_array[txqueue].txq[cos];
 541
 542		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
 543		    qed_chain_get_prod_idx(&txq->tx_pbl))
 544			qede_tx_log_print(edev, txq);
 545	}
 546
 547	if (IS_VF(edev))
 
 548		return;
 549
 550	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
 551	    edev->state == QEDE_STATE_RECOVERY) {
 552		DP_INFO(edev,
 553			"Avoid handling a Tx timeout while another HW error is being handled\n");
 554		return;
 
 
 
 
 
 
 
 
 
 555	}
 556
 557	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
 558	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
 559	schedule_delayed_work(&edev->sp_task, 0);
 560}
 561
 562static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
 563{
 564	struct qede_dev *edev = netdev_priv(ndev);
 565	int cos, count, offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	if (num_tc > edev->dev_info.num_tc)
 568		return -EINVAL;
 
 
 
 
 
 
 
 
 
 569
 570	netdev_reset_tc(ndev);
 571	netdev_set_num_tc(ndev, num_tc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573	for_each_cos_in_txq(edev, cos) {
 574		count = QEDE_TSS_COUNT(edev);
 575		offset = cos * QEDE_TSS_COUNT(edev);
 576		netdev_set_tc_queue(ndev, cos, count, offset);
 577	}
 578
 
 
 579	return 0;
 580}
 581
 582static int
 583qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
 584		__be16 proto)
 585{
 586	switch (f->command) {
 587	case FLOW_CLS_REPLACE:
 588		return qede_add_tc_flower_fltr(edev, proto, f);
 589	case FLOW_CLS_DESTROY:
 590		return qede_delete_flow_filter(edev, f->cookie);
 591	default:
 592		return -EOPNOTSUPP;
 593	}
 
 
 
 594}
 595
 596static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 597				  void *cb_priv)
 598{
 599	struct flow_cls_offload *f;
 600	struct qede_dev *edev = cb_priv;
 
 
 
 
 
 
 601
 602	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
 603		return -EOPNOTSUPP;
 
 
 604
 605	switch (type) {
 606	case TC_SETUP_CLSFLOWER:
 607		f = type_data;
 608		return qede_set_flower(edev, f, f->common.protocol);
 609	default:
 610		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611	}
 
 
 
 
 
 
 
 
 
 
 
 
 612}
 613
 614static LIST_HEAD(qede_block_cb_list);
 615
 616static int
 617qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
 618		      void *type_data)
 619{
 620	struct qede_dev *edev = netdev_priv(dev);
 621	struct tc_mqprio_qopt *mqprio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	switch (type) {
 624	case TC_SETUP_BLOCK:
 625		return flow_block_cb_setup_simple(type_data,
 626						  &qede_block_cb_list,
 627						  qede_setup_tc_block_cb,
 628						  edev, edev, true);
 629	case TC_SETUP_QDISC_MQPRIO:
 630		mqprio = type_data;
 631
 632		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 633		return qede_setup_tc(dev, mqprio->num_tc);
 634	default:
 635		return -EOPNOTSUPP;
 636	}
 
 
 
 
 
 
 
 
 
 637}
 638
 639static const struct net_device_ops qede_netdev_ops = {
 640	.ndo_open		= qede_open,
 641	.ndo_stop		= qede_close,
 642	.ndo_start_xmit		= qede_start_xmit,
 643	.ndo_select_queue	= qede_select_queue,
 644	.ndo_set_rx_mode	= qede_set_rx_mode,
 645	.ndo_set_mac_address	= qede_set_mac_addr,
 646	.ndo_validate_addr	= eth_validate_addr,
 647	.ndo_change_mtu		= qede_change_mtu,
 648	.ndo_do_ioctl		= qede_ioctl,
 649	.ndo_tx_timeout		= qede_tx_timeout,
 650#ifdef CONFIG_QED_SRIOV
 651	.ndo_set_vf_mac		= qede_set_vf_mac,
 652	.ndo_set_vf_vlan	= qede_set_vf_vlan,
 653	.ndo_set_vf_trust	= qede_set_vf_trust,
 654#endif
 655	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 656	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 657	.ndo_fix_features	= qede_fix_features,
 658	.ndo_set_features	= qede_set_features,
 659	.ndo_get_stats64	= qede_get_stats64,
 660#ifdef CONFIG_QED_SRIOV
 661	.ndo_set_vf_link_state	= qede_set_vf_link_state,
 662	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
 663	.ndo_get_vf_config	= qede_get_vf_config,
 664	.ndo_set_vf_rate	= qede_set_vf_rate,
 665#endif
 666	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
 667	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
 668	.ndo_features_check	= qede_features_check,
 669	.ndo_bpf		= qede_xdp,
 670#ifdef CONFIG_RFS_ACCEL
 671	.ndo_rx_flow_steer	= qede_rx_flow_steer,
 672#endif
 673	.ndo_xdp_xmit		= qede_xdp_transmit,
 674	.ndo_setup_tc		= qede_setup_tc_offload,
 675};
 676
 677static const struct net_device_ops qede_netdev_vf_ops = {
 678	.ndo_open		= qede_open,
 679	.ndo_stop		= qede_close,
 680	.ndo_start_xmit		= qede_start_xmit,
 681	.ndo_select_queue	= qede_select_queue,
 682	.ndo_set_rx_mode	= qede_set_rx_mode,
 683	.ndo_set_mac_address	= qede_set_mac_addr,
 684	.ndo_validate_addr	= eth_validate_addr,
 685	.ndo_change_mtu		= qede_change_mtu,
 686	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 687	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 688	.ndo_fix_features	= qede_fix_features,
 689	.ndo_set_features	= qede_set_features,
 690	.ndo_get_stats64	= qede_get_stats64,
 691	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
 692	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
 693	.ndo_features_check	= qede_features_check,
 694};
 695
 696static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 697	.ndo_open		= qede_open,
 698	.ndo_stop		= qede_close,
 699	.ndo_start_xmit		= qede_start_xmit,
 700	.ndo_select_queue	= qede_select_queue,
 701	.ndo_set_rx_mode	= qede_set_rx_mode,
 702	.ndo_set_mac_address	= qede_set_mac_addr,
 703	.ndo_validate_addr	= eth_validate_addr,
 704	.ndo_change_mtu		= qede_change_mtu,
 705	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 706	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 707	.ndo_fix_features	= qede_fix_features,
 708	.ndo_set_features	= qede_set_features,
 709	.ndo_get_stats64	= qede_get_stats64,
 710	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
 711	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
 712	.ndo_features_check	= qede_features_check,
 713	.ndo_bpf		= qede_xdp,
 714	.ndo_xdp_xmit		= qede_xdp_transmit,
 715};
 716
 717/* -------------------------------------------------------------------------
 718 * START OF PROBE / REMOVE
 719 * -------------------------------------------------------------------------
 720 */
 721
 722static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 723					    struct pci_dev *pdev,
 724					    struct qed_dev_eth_info *info,
 725					    u32 dp_module, u8 dp_level)
 
 726{
 727	struct net_device *ndev;
 728	struct qede_dev *edev;
 729
 730	ndev = alloc_etherdev_mqs(sizeof(*edev),
 731				  info->num_queues * info->num_tc,
 732				  info->num_queues);
 733	if (!ndev) {
 734		pr_err("etherdev allocation failed\n");
 735		return NULL;
 736	}
 737
 738	edev = netdev_priv(ndev);
 739	edev->ndev = ndev;
 740	edev->cdev = cdev;
 741	edev->pdev = pdev;
 742	edev->dp_module = dp_module;
 743	edev->dp_level = dp_level;
 744	edev->ops = qed_ops;
 745
 746	if (is_kdump_kernel()) {
 747		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
 748		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
 749	} else {
 750		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 751		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 752	}
 753
 754	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 755		info->num_queues, info->num_queues);
 756
 757	SET_NETDEV_DEV(ndev, &pdev->dev);
 758
 759	memset(&edev->stats, 0, sizeof(edev->stats));
 760	memcpy(&edev->dev_info, info, sizeof(*info));
 761
 762	/* As ethtool doesn't have the ability to show WoL behavior as
 763	 * 'default', if device supports it declare it's enabled.
 764	 */
 765	if (edev->dev_info.common.wol_support)
 766		edev->wol_enabled = true;
 767
 768	INIT_LIST_HEAD(&edev->vlan_list);
 769
 770	return edev;
 771}
 772
 773static void qede_init_ndev(struct qede_dev *edev)
 774{
 775	struct net_device *ndev = edev->ndev;
 776	struct pci_dev *pdev = edev->pdev;
 777	bool udp_tunnel_enable = false;
 778	netdev_features_t hw_features;
 779
 780	pci_set_drvdata(pdev, ndev);
 781
 782	ndev->mem_start = edev->dev_info.common.pci_mem_start;
 783	ndev->base_addr = ndev->mem_start;
 784	ndev->mem_end = edev->dev_info.common.pci_mem_end;
 785	ndev->irq = edev->dev_info.common.pci_irq;
 786
 787	ndev->watchdog_timeo = TX_TIMEOUT;
 788
 789	if (IS_VF(edev)) {
 790		if (edev->dev_info.xdp_supported)
 791			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 792		else
 793			ndev->netdev_ops = &qede_netdev_vf_ops;
 794	} else {
 795		ndev->netdev_ops = &qede_netdev_ops;
 796	}
 797
 798	qede_set_ethtool_ops(ndev);
 799
 800	ndev->priv_flags |= IFF_UNICAST_FLT;
 801
 802	/* user-changeble features */
 803	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 804		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 805		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
 806
 807	if (edev->dev_info.common.b_arfs_capable)
 808		hw_features |= NETIF_F_NTUPLE;
 809
 810	if (edev->dev_info.common.vxlan_enable ||
 811	    edev->dev_info.common.geneve_enable)
 812		udp_tunnel_enable = true;
 813
 814	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 815		hw_features |= NETIF_F_TSO_ECN;
 816		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 817					NETIF_F_SG | NETIF_F_TSO |
 818					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 819					NETIF_F_RXCSUM;
 820	}
 821
 822	if (udp_tunnel_enable) {
 823		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 824				NETIF_F_GSO_UDP_TUNNEL_CSUM);
 825		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 826					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
 827
 828		qede_set_udp_tunnels(edev);
 829	}
 830
 831	if (edev->dev_info.common.gre_enable) {
 832		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 833		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 834					  NETIF_F_GSO_GRE_CSUM);
 835	}
 836
 837	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 838			      NETIF_F_HIGHDMA;
 839	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 840			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 841			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 842
 843	ndev->hw_features = hw_features;
 844
 845	/* MTU range: 46 - 9600 */
 846	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 847	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 848
 849	/* Set network device HW mac */
 850	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 851
 852	ndev->mtu = edev->dev_info.common.mtu;
 853}
 854
 855/* This function converts from 32b param to two params of level and module
 856 * Input 32b decoding:
 857 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 858 * 'happy' flow, e.g. memory allocation failed.
 859 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 860 * and provide important parameters.
 861 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 862 * module. VERBOSE prints are for tracking the specific flow in low level.
 863 *
 864 * Notice that the level should be that of the lowest required logs.
 865 */
 866void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 867{
 868	*p_dp_level = QED_LEVEL_NOTICE;
 869	*p_dp_module = 0;
 870
 871	if (debug & QED_LOG_VERBOSE_MASK) {
 872		*p_dp_level = QED_LEVEL_VERBOSE;
 873		*p_dp_module = (debug & 0x3FFFFFFF);
 874	} else if (debug & QED_LOG_INFO_MASK) {
 875		*p_dp_level = QED_LEVEL_INFO;
 876	} else if (debug & QED_LOG_NOTICE_MASK) {
 877		*p_dp_level = QED_LEVEL_NOTICE;
 878	}
 879}
 880
 881static void qede_free_fp_array(struct qede_dev *edev)
 882{
 883	if (edev->fp_array) {
 884		struct qede_fastpath *fp;
 885		int i;
 886
 887		for_each_queue(i) {
 888			fp = &edev->fp_array[i];
 889
 890			kfree(fp->sb_info);
 891			/* Handle mem alloc failure case where qede_init_fp
 892			 * didn't register xdp_rxq_info yet.
 893			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
 894			 */
 895			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 896				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 897			kfree(fp->rxq);
 898			kfree(fp->xdp_tx);
 899			kfree(fp->txq);
 900		}
 901		kfree(edev->fp_array);
 902	}
 903
 904	edev->num_queues = 0;
 905	edev->fp_num_tx = 0;
 906	edev->fp_num_rx = 0;
 907}
 908
 909static int qede_alloc_fp_array(struct qede_dev *edev)
 910{
 911	u8 fp_combined, fp_rx = edev->fp_num_rx;
 912	struct qede_fastpath *fp;
 913	int i;
 914
 915	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 916				 sizeof(*edev->fp_array), GFP_KERNEL);
 917	if (!edev->fp_array) {
 918		DP_NOTICE(edev, "fp array allocation failed\n");
 919		goto err;
 920	}
 921
 922	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
 923
 924	/* Allocate the FP elements for Rx queues followed by combined and then
 925	 * the Tx. This ordering should be maintained so that the respective
 926	 * queues (Rx or Tx) will be together in the fastpath array and the
 927	 * associated ids will be sequential.
 928	 */
 929	for_each_queue(i) {
 930		fp = &edev->fp_array[i];
 931
 932		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
 933		if (!fp->sb_info) {
 934			DP_NOTICE(edev, "sb info struct allocation failed\n");
 935			goto err;
 936		}
 937
 938		if (fp_rx) {
 939			fp->type = QEDE_FASTPATH_RX;
 940			fp_rx--;
 941		} else if (fp_combined) {
 942			fp->type = QEDE_FASTPATH_COMBINED;
 943			fp_combined--;
 944		} else {
 945			fp->type = QEDE_FASTPATH_TX;
 946		}
 947
 948		if (fp->type & QEDE_FASTPATH_TX) {
 949			fp->txq = kcalloc(edev->dev_info.num_tc,
 950					  sizeof(*fp->txq), GFP_KERNEL);
 951			if (!fp->txq)
 952				goto err;
 953		}
 954
 955		if (fp->type & QEDE_FASTPATH_RX) {
 956			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
 957			if (!fp->rxq)
 958				goto err;
 959
 960			if (edev->xdp_prog) {
 961				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
 962						     GFP_KERNEL);
 963				if (!fp->xdp_tx)
 964					goto err;
 965				fp->type |= QEDE_FASTPATH_XDP;
 966			}
 967		}
 968	}
 969
 970	return 0;
 971err:
 972	qede_free_fp_array(edev);
 973	return -ENOMEM;
 974}
 975
 976/* The qede lock is used to protect driver state change and driver flows that
 977 * are not reentrant.
 978 */
 979void __qede_lock(struct qede_dev *edev)
 980{
 981	mutex_lock(&edev->qede_lock);
 982}
 983
 984void __qede_unlock(struct qede_dev *edev)
 985{
 986	mutex_unlock(&edev->qede_lock);
 987}
 988
 989/* This version of the lock should be used when acquiring the RTNL lock is also
 990 * needed in addition to the internal qede lock.
 991 */
 992static void qede_lock(struct qede_dev *edev)
 993{
 994	rtnl_lock();
 995	__qede_lock(edev);
 996}
 997
 998static void qede_unlock(struct qede_dev *edev)
 999{
1000	__qede_unlock(edev);
1001	rtnl_unlock();
1002}
1003
1004static void qede_sp_task(struct work_struct *work)
1005{
1006	struct qede_dev *edev = container_of(work, struct qede_dev,
1007					     sp_task.work);
 
1008
1009	/* The locking scheme depends on the specific flag:
1010	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1011	 * ensure that ongoing flows are ended and new ones are not started.
1012	 * In other cases - only the internal qede lock should be acquired.
1013	 */
1014
1015	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1016#ifdef CONFIG_QED_SRIOV
1017		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1018		 * The recovery of the active VFs is currently not supported.
1019		 */
1020		if (pci_num_vf(edev->pdev))
1021			qede_sriov_configure(edev->pdev, 0);
1022#endif
1023		qede_lock(edev);
1024		qede_recovery_handler(edev);
1025		qede_unlock(edev);
1026	}
1027
1028	__qede_lock(edev);
1029
1030	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1031		if (edev->state == QEDE_STATE_OPEN)
1032			qede_config_rx_mode(edev->ndev);
1033
1034#ifdef CONFIG_RFS_ACCEL
1035	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1036		if (edev->state == QEDE_STATE_OPEN)
1037			qede_process_arfs_filters(edev, false);
1038	}
1039#endif
1040	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1041		qede_generic_hw_err_handler(edev);
1042	__qede_unlock(edev);
1043
1044	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1045#ifdef CONFIG_QED_SRIOV
1046		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1047		 * The recovery of the active VFs is currently not supported.
1048		 */
1049		if (pci_num_vf(edev->pdev))
1050			qede_sriov_configure(edev->pdev, 0);
1051#endif
1052		edev->ops->common->recovery_process(edev->cdev);
1053	}
1054}
1055
1056static void qede_update_pf_params(struct qed_dev *cdev)
1057{
1058	struct qed_pf_params pf_params;
1059	u16 num_cons;
1060
1061	/* 64 rx + 64 tx + 64 XDP */
1062	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1063
1064	/* 1 rx + 1 xdp + max tx cos */
1065	num_cons = QED_MIN_L2_CONS;
1066
1067	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1068
1069	/* Same for VFs - make sure they'll have sufficient connections
1070	 * to support XDP Tx queues.
1071	 */
1072	pf_params.eth_pf_params.num_vf_cons = 48;
1073
1074	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1075	qed_ops->common->update_pf_params(cdev, &pf_params);
1076}
1077
1078#define QEDE_FW_VER_STR_SIZE	80
1079
1080static void qede_log_probe(struct qede_dev *edev)
1081{
1082	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1083	u8 buf[QEDE_FW_VER_STR_SIZE];
1084	size_t left_size;
1085
1086	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1087		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1088		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1089		 p_dev_info->fw_eng,
1090		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1091		 QED_MFW_VERSION_3_OFFSET,
1092		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1093		 QED_MFW_VERSION_2_OFFSET,
1094		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1095		 QED_MFW_VERSION_1_OFFSET,
1096		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1097		 QED_MFW_VERSION_0_OFFSET);
1098
1099	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1100	if (p_dev_info->mbi_version && left_size)
1101		snprintf(buf + strlen(buf), left_size,
1102			 " [MBI %d.%d.%d]",
1103			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1104			 QED_MBI_VERSION_2_OFFSET,
1105			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1106			 QED_MBI_VERSION_1_OFFSET,
1107			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1108			 QED_MBI_VERSION_0_OFFSET);
1109
1110	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1111		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1112		buf, edev->ndev->name);
1113}
1114
1115enum qede_probe_mode {
1116	QEDE_PROBE_NORMAL,
1117	QEDE_PROBE_RECOVERY,
1118};
1119
1120static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1121			bool is_vf, enum qede_probe_mode mode)
1122{
1123	struct qed_probe_params probe_params;
1124	struct qed_slowpath_params sp_params;
1125	struct qed_dev_eth_info dev_info;
1126	struct qede_dev *edev;
1127	struct qed_dev *cdev;
1128	int rc;
1129
1130	if (unlikely(dp_level & QED_LEVEL_INFO))
1131		pr_notice("Starting qede probe\n");
1132
1133	memset(&probe_params, 0, sizeof(probe_params));
1134	probe_params.protocol = QED_PROTOCOL_ETH;
1135	probe_params.dp_module = dp_module;
1136	probe_params.dp_level = dp_level;
1137	probe_params.is_vf = is_vf;
1138	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1139	cdev = qed_ops->common->probe(pdev, &probe_params);
1140	if (!cdev) {
1141		rc = -ENODEV;
1142		goto err0;
1143	}
1144
1145	qede_update_pf_params(cdev);
1146
1147	/* Start the Slowpath-process */
1148	memset(&sp_params, 0, sizeof(sp_params));
1149	sp_params.int_mode = QED_INT_MODE_MSIX;
1150	sp_params.drv_major = QEDE_MAJOR_VERSION;
1151	sp_params.drv_minor = QEDE_MINOR_VERSION;
1152	sp_params.drv_rev = QEDE_REVISION_VERSION;
1153	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1154	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1155	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1156	if (rc) {
1157		pr_notice("Cannot start slowpath\n");
1158		goto err1;
1159	}
1160
1161	/* Learn information crucial for qede to progress */
1162	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1163	if (rc)
1164		goto err2;
1165
1166	if (mode != QEDE_PROBE_RECOVERY) {
1167		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1168					   dp_level);
1169		if (!edev) {
1170			rc = -ENOMEM;
1171			goto err2;
1172		}
1173	} else {
1174		struct net_device *ndev = pci_get_drvdata(pdev);
1175
1176		edev = netdev_priv(ndev);
1177		edev->cdev = cdev;
1178		memset(&edev->stats, 0, sizeof(edev->stats));
1179		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1180	}
1181
1182	if (is_vf)
1183		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1184
1185	qede_init_ndev(edev);
1186
1187	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1188	if (rc)
 
1189		goto err3;
1190
1191	if (mode != QEDE_PROBE_RECOVERY) {
1192		/* Prepare the lock prior to the registration of the netdev,
1193		 * as once it's registered we might reach flows requiring it
1194		 * [it's even possible to reach a flow needing it directly
1195		 * from there, although it's unlikely].
1196		 */
1197		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1198		mutex_init(&edev->qede_lock);
1199
1200		rc = register_netdev(edev->ndev);
1201		if (rc) {
1202			DP_NOTICE(edev, "Cannot register net-device\n");
1203			goto err4;
1204		}
1205	}
1206
1207	edev->ops->common->set_name(cdev, edev->ndev->name);
1208
1209	/* PTP not supported on VFs */
1210	if (!is_vf)
1211		qede_ptp_enable(edev);
1212
1213	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1214
1215#ifdef CONFIG_DCB
1216	if (!IS_VF(edev))
1217		qede_set_dcbnl_ops(edev->ndev);
1218#endif
1219
1220	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1221
1222	qede_log_probe(edev);
1223	return 0;
1224
1225err4:
1226	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1227err3:
1228	free_netdev(edev->ndev);
1229err2:
1230	qed_ops->common->slowpath_stop(cdev);
1231err1:
1232	qed_ops->common->remove(cdev);
1233err0:
1234	return rc;
1235}
1236
1237static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1238{
1239	bool is_vf = false;
1240	u32 dp_module = 0;
1241	u8 dp_level = 0;
1242
1243	switch ((enum qede_pci_private)id->driver_data) {
1244	case QEDE_PRIVATE_VF:
1245		if (debug & QED_LOG_VERBOSE_MASK)
1246			dev_err(&pdev->dev, "Probing a VF\n");
1247		is_vf = true;
1248		break;
1249	default:
1250		if (debug & QED_LOG_VERBOSE_MASK)
1251			dev_err(&pdev->dev, "Probing a PF\n");
1252	}
1253
1254	qede_config_debug(debug, &dp_module, &dp_level);
1255
1256	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1257			    QEDE_PROBE_NORMAL);
1258}
1259
1260enum qede_remove_mode {
1261	QEDE_REMOVE_NORMAL,
1262	QEDE_REMOVE_RECOVERY,
1263};
1264
1265static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1266{
1267	struct net_device *ndev = pci_get_drvdata(pdev);
1268	struct qede_dev *edev;
1269	struct qed_dev *cdev;
1270
1271	if (!ndev) {
1272		dev_info(&pdev->dev, "Device has already been removed\n");
1273		return;
1274	}
1275
1276	edev = netdev_priv(ndev);
1277	cdev = edev->cdev;
1278
1279	DP_INFO(edev, "Starting qede_remove\n");
1280
1281	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
 
1282
1283	if (mode != QEDE_REMOVE_RECOVERY) {
1284		unregister_netdev(ndev);
1285
1286		cancel_delayed_work_sync(&edev->sp_task);
1287
1288		edev->ops->common->set_power_state(cdev, PCI_D0);
1289
1290		pci_set_drvdata(pdev, NULL);
1291	}
1292
1293	qede_ptp_disable(edev);
1294
1295	/* Use global ops since we've freed edev */
1296	qed_ops->common->slowpath_stop(cdev);
1297	if (system_state == SYSTEM_POWER_OFF)
1298		return;
1299	qed_ops->common->remove(cdev);
1300	edev->cdev = NULL;
1301
1302	/* Since this can happen out-of-sync with other flows,
1303	 * don't release the netdevice until after slowpath stop
1304	 * has been called to guarantee various other contexts
1305	 * [e.g., QED register callbacks] won't break anything when
1306	 * accessing the netdevice.
1307	 */
1308	if (mode != QEDE_REMOVE_RECOVERY)
1309		free_netdev(ndev);
1310
1311	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1312}
1313
1314static void qede_remove(struct pci_dev *pdev)
1315{
1316	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1317}
1318
1319static void qede_shutdown(struct pci_dev *pdev)
1320{
1321	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1322}
1323
1324/* -------------------------------------------------------------------------
1325 * START OF LOAD / UNLOAD
1326 * -------------------------------------------------------------------------
1327 */
1328
1329static int qede_set_num_queues(struct qede_dev *edev)
1330{
1331	int rc;
1332	u16 rss_num;
1333
1334	/* Setup queues according to possible resources*/
1335	if (edev->req_queues)
1336		rss_num = edev->req_queues;
1337	else
1338		rss_num = netif_get_num_default_rss_queues() *
1339			  edev->dev_info.common.num_hwfns;
1340
1341	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1342
1343	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1344	if (rc > 0) {
1345		/* Managed to request interrupts for our queues */
1346		edev->num_queues = rc;
1347		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1348			QEDE_QUEUE_CNT(edev), rss_num);
1349		rc = 0;
1350	}
1351
1352	edev->fp_num_tx = edev->req_num_tx;
1353	edev->fp_num_rx = edev->req_num_rx;
1354
1355	return rc;
1356}
1357
1358static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1359			     u16 sb_id)
1360{
1361	if (sb_info->sb_virt) {
1362		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1363					      QED_SB_TYPE_L2_QUEUE);
1364		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1365				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1366		memset(sb_info, 0, sizeof(*sb_info));
1367	}
1368}
1369
1370/* This function allocates fast-path status block memory */
1371static int qede_alloc_mem_sb(struct qede_dev *edev,
1372			     struct qed_sb_info *sb_info, u16 sb_id)
 
1373{
1374	struct status_block_e4 *sb_virt;
1375	dma_addr_t sb_phys;
1376	int rc;
1377
1378	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1379				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
 
1380	if (!sb_virt) {
1381		DP_ERR(edev, "Status block allocation failed\n");
1382		return -ENOMEM;
1383	}
1384
1385	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1386					sb_virt, sb_phys, sb_id,
1387					QED_SB_TYPE_L2_QUEUE);
1388	if (rc) {
1389		DP_ERR(edev, "Status block initialization failed\n");
1390		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1391				  sb_virt, sb_phys);
1392		return rc;
1393	}
1394
1395	return 0;
1396}
1397
1398static void qede_free_rx_buffers(struct qede_dev *edev,
1399				 struct qede_rx_queue *rxq)
1400{
1401	u16 i;
1402
1403	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1404		struct sw_rx_data *rx_buf;
1405		struct page *data;
1406
1407		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1408		data = rx_buf->data;
1409
1410		dma_unmap_page(&edev->pdev->dev,
1411			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
 
1412
1413		rx_buf->data = NULL;
1414		__free_page(data);
1415	}
1416}
1417
1418static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419{
 
 
1420	/* Free rx buffers */
1421	qede_free_rx_buffers(edev, rxq);
1422
1423	/* Free the parallel SW ring */
1424	kfree(rxq->sw_rx_ring);
1425
1426	/* Free the real RQ ring used by FW */
1427	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1428	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1429}
1430
1431static void qede_set_tpa_param(struct qede_rx_queue *rxq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432{
 
1433	int i;
1434
 
 
 
 
 
 
 
 
1435	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1436		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437
1438		tpa_info->state = QEDE_AGG_STATE_NONE;
 
1439	}
 
 
 
 
 
 
1440}
1441
1442/* This function allocates all memory needed per Rx queue */
1443static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
 
1444{
1445	struct qed_chain_init_params params = {
1446		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1447		.num_elems	= RX_RING_SIZE,
1448	};
1449	struct qed_dev *cdev = edev->cdev;
1450	int i, rc, size;
1451
1452	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1453
1454	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
 
 
 
1455
1456	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1457	size = rxq->rx_headroom +
1458	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1459
1460	/* Make sure that the headroom and  payload fit in a single page */
1461	if (rxq->rx_buf_size + size > PAGE_SIZE)
1462		rxq->rx_buf_size = PAGE_SIZE - size;
1463
1464	/* Segment size to split a page in multiple equal parts,
1465	 * unless XDP is used in which case we'd use the entire page.
1466	 */
1467	if (!edev->xdp_prog) {
1468		size = size + rxq->rx_buf_size;
1469		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1470	} else {
1471		rxq->rx_buf_seg_size = PAGE_SIZE;
1472		edev->ndev->features &= ~NETIF_F_GRO_HW;
1473	}
1474
1475	/* Allocate the parallel driver ring for Rx buffers */
1476	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1477	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1478	if (!rxq->sw_rx_ring) {
1479		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1480		rc = -ENOMEM;
1481		goto err;
1482	}
1483
1484	/* Allocate FW Rx ring  */
1485	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1486	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1487	params.elem_size = sizeof(struct eth_rx_bd);
 
 
 
1488
1489	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1490	if (rc)
1491		goto err;
1492
1493	/* Allocate FW completion ring */
1494	params.mode = QED_CHAIN_MODE_PBL;
1495	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1496	params.elem_size = sizeof(union eth_rx_cqe);
1497
1498	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
 
1499	if (rc)
1500		goto err;
1501
1502	/* Allocate buffers for the Rx ring */
1503	rxq->filled_buffers = 0;
1504	for (i = 0; i < rxq->num_rx_buffers; i++) {
1505		rc = qede_alloc_rx_buffer(rxq, false);
1506		if (rc) {
1507			DP_ERR(edev,
1508			       "Rx buffers allocation failed at index %d\n", i);
1509			goto err;
1510		}
1511	}
1512
1513	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1514	if (!edev->gro_disable)
1515		qede_set_tpa_param(rxq);
1516err:
1517	return rc;
1518}
1519
1520static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
 
1521{
1522	/* Free the parallel SW ring */
1523	if (txq->is_xdp)
1524		kfree(txq->sw_tx_ring.xdp);
1525	else
1526		kfree(txq->sw_tx_ring.skbs);
1527
1528	/* Free the real RQ ring used by FW */
1529	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1530}
1531
1532/* This function allocates all memory needed per Tx queue */
1533static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
 
1534{
1535	struct qed_chain_init_params params = {
1536		.mode		= QED_CHAIN_MODE_PBL,
1537		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1538		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1539		.num_elems	= edev->q_num_tx_buffers,
1540		.elem_size	= sizeof(union eth_tx_bd_types),
1541	};
1542	int size, rc;
 
1543
1544	txq->num_tx_buffers = edev->q_num_tx_buffers;
1545
1546	/* Allocate the parallel driver ring for Tx buffers */
1547	if (txq->is_xdp) {
1548		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1549		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1550		if (!txq->sw_tx_ring.xdp)
1551			goto err;
1552	} else {
1553		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1554		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1555		if (!txq->sw_tx_ring.skbs)
1556			goto err;
1557	}
1558
1559	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
 
 
 
 
 
1560	if (rc)
1561		goto err;
1562
1563	return 0;
1564
1565err:
1566	qede_free_mem_txq(edev, txq);
1567	return -ENOMEM;
1568}
1569
1570/* This function frees all memory of a single fp */
1571static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
 
1572{
1573	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1574
1575	if (fp->type & QEDE_FASTPATH_RX)
1576		qede_free_mem_rxq(edev, fp->rxq);
1577
1578	if (fp->type & QEDE_FASTPATH_XDP)
1579		qede_free_mem_txq(edev, fp->xdp_tx);
1580
1581	if (fp->type & QEDE_FASTPATH_TX) {
1582		int cos;
1583
1584		for_each_cos_in_txq(edev, cos)
1585			qede_free_mem_txq(edev, &fp->txq[cos]);
1586	}
1587}
1588
1589/* This function allocates all memory needed for a single fp (i.e. an entity
1590 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1591 */
1592static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
 
1593{
1594	int rc = 0;
1595
1596	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1597	if (rc)
1598		goto out;
1599
1600	if (fp->type & QEDE_FASTPATH_RX) {
1601		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1602		if (rc)
1603			goto out;
1604	}
1605
1606	if (fp->type & QEDE_FASTPATH_XDP) {
1607		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1608		if (rc)
1609			goto out;
1610	}
1611
1612	if (fp->type & QEDE_FASTPATH_TX) {
1613		int cos;
1614
1615		for_each_cos_in_txq(edev, cos) {
1616			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1617			if (rc)
1618				goto out;
1619		}
1620	}
1621
1622out:
1623	return rc;
1624}
1625
1626static void qede_free_mem_load(struct qede_dev *edev)
1627{
1628	int i;
1629
1630	for_each_queue(i) {
1631		struct qede_fastpath *fp = &edev->fp_array[i];
1632
1633		qede_free_mem_fp(edev, fp);
1634	}
1635}
1636
1637/* This function allocates all qede memory at NIC load. */
1638static int qede_alloc_mem_load(struct qede_dev *edev)
1639{
1640	int rc = 0, queue_id;
1641
1642	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1643		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1644
1645		rc = qede_alloc_mem_fp(edev, fp);
1646		if (rc) {
1647			DP_ERR(edev,
1648			       "Failed to allocate memory for fastpath - rss id = %d\n",
1649			       queue_id);
1650			qede_free_mem_load(edev);
1651			return rc;
1652		}
1653	}
1654
1655	return 0;
1656}
1657
1658static void qede_empty_tx_queue(struct qede_dev *edev,
1659				struct qede_tx_queue *txq)
1660{
1661	unsigned int pkts_compl = 0, bytes_compl = 0;
1662	struct netdev_queue *netdev_txq;
1663	int rc, len = 0;
1664
1665	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1666
1667	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1668	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1669		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1670			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1671			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1672			   qed_chain_get_prod_idx(&txq->tx_pbl));
1673
1674		rc = qede_free_tx_pkt(edev, txq, &len);
1675		if (rc) {
1676			DP_NOTICE(edev,
1677				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1678				  txq->index,
1679				  qed_chain_get_cons_idx(&txq->tx_pbl),
1680				  qed_chain_get_prod_idx(&txq->tx_pbl));
1681			break;
1682		}
1683
1684		bytes_compl += len;
1685		pkts_compl++;
1686		txq->sw_tx_cons++;
1687	}
1688
1689	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1690}
1691
1692static void qede_empty_tx_queues(struct qede_dev *edev)
1693{
1694	int i;
1695
1696	for_each_queue(i)
1697		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1698			int cos;
1699
1700			for_each_cos_in_txq(edev, cos) {
1701				struct qede_fastpath *fp;
1702
1703				fp = &edev->fp_array[i];
1704				qede_empty_tx_queue(edev,
1705						    &fp->txq[cos]);
1706			}
1707		}
1708}
1709
1710/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1711static void qede_init_fp(struct qede_dev *edev)
1712{
1713	int queue_id, rxq_index = 0, txq_index = 0;
1714	struct qede_fastpath *fp;
1715	bool init_xdp = false;
1716
1717	for_each_queue(queue_id) {
1718		fp = &edev->fp_array[queue_id];
1719
1720		fp->edev = edev;
1721		fp->id = queue_id;
1722
1723		if (fp->type & QEDE_FASTPATH_XDP) {
1724			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1725								rxq_index);
1726			fp->xdp_tx->is_xdp = 1;
1727
1728			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1729			init_xdp = true;
1730		}
1731
1732		if (fp->type & QEDE_FASTPATH_RX) {
1733			fp->rxq->rxq_id = rxq_index++;
1734
1735			/* Determine how to map buffers for this queue */
1736			if (fp->type & QEDE_FASTPATH_XDP)
1737				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1738			else
1739				fp->rxq->data_direction = DMA_FROM_DEVICE;
1740			fp->rxq->dev = &edev->pdev->dev;
1741
1742			/* Driver have no error path from here */
1743			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1744						 fp->rxq->rxq_id) < 0);
1745
1746			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1747						       MEM_TYPE_PAGE_ORDER0,
1748						       NULL)) {
1749				DP_NOTICE(edev,
1750					  "Failed to register XDP memory model\n");
1751			}
1752		}
1753
1754		if (fp->type & QEDE_FASTPATH_TX) {
1755			int cos;
1756
1757			for_each_cos_in_txq(edev, cos) {
1758				struct qede_tx_queue *txq = &fp->txq[cos];
1759				u16 ndev_tx_id;
1760
1761				txq->cos = cos;
1762				txq->index = txq_index;
1763				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1764				txq->ndev_txq_id = ndev_tx_id;
1765
1766				if (edev->dev_info.is_legacy)
1767					txq->is_legacy = true;
1768				txq->dev = &edev->pdev->dev;
1769			}
1770
1771			txq_index++;
 
 
 
1772		}
1773
1774		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1775			 edev->ndev->name, queue_id);
1776	}
1777
1778	if (init_xdp) {
1779		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1780		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1781	}
1782}
1783
1784static int qede_set_real_num_queues(struct qede_dev *edev)
1785{
1786	int rc = 0;
1787
1788	rc = netif_set_real_num_tx_queues(edev->ndev,
1789					  QEDE_TSS_COUNT(edev) *
1790					  edev->dev_info.num_tc);
1791	if (rc) {
1792		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1793		return rc;
1794	}
1795
1796	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1797	if (rc) {
1798		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1799		return rc;
1800	}
1801
1802	return 0;
1803}
1804
1805static void qede_napi_disable_remove(struct qede_dev *edev)
1806{
1807	int i;
1808
1809	for_each_queue(i) {
1810		napi_disable(&edev->fp_array[i].napi);
1811
1812		netif_napi_del(&edev->fp_array[i].napi);
1813	}
1814}
1815
1816static void qede_napi_add_enable(struct qede_dev *edev)
1817{
1818	int i;
1819
1820	/* Add NAPI objects */
1821	for_each_queue(i) {
1822		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1823			       qede_poll, NAPI_POLL_WEIGHT);
1824		napi_enable(&edev->fp_array[i].napi);
1825	}
1826}
1827
1828static void qede_sync_free_irqs(struct qede_dev *edev)
1829{
1830	int i;
1831
1832	for (i = 0; i < edev->int_info.used_cnt; i++) {
1833		if (edev->int_info.msix_cnt) {
1834			synchronize_irq(edev->int_info.msix[i].vector);
1835			free_irq(edev->int_info.msix[i].vector,
1836				 &edev->fp_array[i]);
1837		} else {
1838			edev->ops->common->simd_handler_clean(edev->cdev, i);
1839		}
1840	}
1841
1842	edev->int_info.used_cnt = 0;
1843}
1844
1845static int qede_req_msix_irqs(struct qede_dev *edev)
1846{
1847	int i, rc;
1848
1849	/* Sanitize number of interrupts == number of prepared RSS queues */
1850	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1851		DP_ERR(edev,
1852		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1853		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1854		return -EINVAL;
1855	}
1856
1857	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1858#ifdef CONFIG_RFS_ACCEL
1859		struct qede_fastpath *fp = &edev->fp_array[i];
1860
1861		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1862			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1863					      edev->int_info.msix[i].vector);
1864			if (rc) {
1865				DP_ERR(edev, "Failed to add CPU rmap\n");
1866				qede_free_arfs(edev);
1867			}
1868		}
1869#endif
1870		rc = request_irq(edev->int_info.msix[i].vector,
1871				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1872				 &edev->fp_array[i]);
1873		if (rc) {
1874			DP_ERR(edev, "Request fp %d irq failed\n", i);
1875			qede_sync_free_irqs(edev);
1876			return rc;
1877		}
1878		DP_VERBOSE(edev, NETIF_MSG_INTR,
1879			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1880			   edev->fp_array[i].name, i,
1881			   &edev->fp_array[i]);
1882		edev->int_info.used_cnt++;
1883	}
1884
1885	return 0;
1886}
1887
1888static void qede_simd_fp_handler(void *cookie)
1889{
1890	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1891
1892	napi_schedule_irqoff(&fp->napi);
1893}
1894
1895static int qede_setup_irqs(struct qede_dev *edev)
1896{
1897	int i, rc = 0;
1898
1899	/* Learn Interrupt configuration */
1900	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1901	if (rc)
1902		return rc;
1903
1904	if (edev->int_info.msix_cnt) {
1905		rc = qede_req_msix_irqs(edev);
1906		if (rc)
1907			return rc;
1908		edev->ndev->irq = edev->int_info.msix[0].vector;
1909	} else {
1910		const struct qed_common_ops *ops;
1911
1912		/* qed should learn receive the RSS ids and callbacks */
1913		ops = edev->ops->common;
1914		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1915			ops->simd_handler_config(edev->cdev,
1916						 &edev->fp_array[i], i,
1917						 qede_simd_fp_handler);
1918		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1919	}
1920	return 0;
1921}
1922
1923static int qede_drain_txq(struct qede_dev *edev,
1924			  struct qede_tx_queue *txq, bool allow_drain)
 
1925{
1926	int rc, cnt = 1000;
1927
1928	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1929		if (!cnt) {
1930			if (allow_drain) {
1931				DP_NOTICE(edev,
1932					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1933					  txq->index);
1934				rc = edev->ops->common->drain(edev->cdev);
1935				if (rc)
1936					return rc;
1937				return qede_drain_txq(edev, txq, false);
1938			}
1939			DP_NOTICE(edev,
1940				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1941				  txq->index, txq->sw_tx_prod,
1942				  txq->sw_tx_cons);
1943			return -ENODEV;
1944		}
1945		cnt--;
1946		usleep_range(1000, 2000);
1947		barrier();
1948	}
1949
1950	/* FW finished processing, wait for HW to transmit all tx packets */
1951	usleep_range(1000, 2000);
1952
1953	return 0;
1954}
1955
1956static int qede_stop_txq(struct qede_dev *edev,
1957			 struct qede_tx_queue *txq, int rss_id)
1958{
1959	/* delete doorbell from doorbell recovery mechanism */
1960	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1961					   &txq->tx_db);
1962
1963	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1964}
1965
1966static int qede_stop_queues(struct qede_dev *edev)
1967{
1968	struct qed_update_vport_params *vport_update_params;
1969	struct qed_dev *cdev = edev->cdev;
1970	struct qede_fastpath *fp;
1971	int rc, i;
1972
1973	/* Disable the vport */
1974	vport_update_params = vzalloc(sizeof(*vport_update_params));
1975	if (!vport_update_params)
1976		return -ENOMEM;
1977
1978	vport_update_params->vport_id = 0;
1979	vport_update_params->update_vport_active_flg = 1;
1980	vport_update_params->vport_active_flg = 0;
1981	vport_update_params->update_rss_flg = 0;
1982
1983	rc = edev->ops->vport_update(cdev, vport_update_params);
1984	vfree(vport_update_params);
1985
 
1986	if (rc) {
1987		DP_ERR(edev, "Failed to update vport\n");
1988		return rc;
1989	}
1990
1991	/* Flush Tx queues. If needed, request drain from MCP */
1992	for_each_queue(i) {
1993		fp = &edev->fp_array[i];
1994
1995		if (fp->type & QEDE_FASTPATH_TX) {
1996			int cos;
1997
1998			for_each_cos_in_txq(edev, cos) {
1999				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2000				if (rc)
2001					return rc;
2002			}
2003		}
2004
2005		if (fp->type & QEDE_FASTPATH_XDP) {
2006			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2007			if (rc)
2008				return rc;
2009		}
2010	}
2011
2012	/* Stop all Queues in reverse order */
2013	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2014		fp = &edev->fp_array[i];
2015
2016		/* Stop the Tx Queue(s) */
2017		if (fp->type & QEDE_FASTPATH_TX) {
2018			int cos;
2019
2020			for_each_cos_in_txq(edev, cos) {
2021				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2022				if (rc)
2023					return rc;
2024			}
2025		}
2026
2027		/* Stop the Rx Queue */
2028		if (fp->type & QEDE_FASTPATH_RX) {
2029			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2030			if (rc) {
2031				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
 
2032				return rc;
2033			}
2034		}
2035
2036		/* Stop the XDP forwarding queue */
2037		if (fp->type & QEDE_FASTPATH_XDP) {
2038			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2039			if (rc)
2040				return rc;
2041
2042			bpf_prog_put(fp->rxq->xdp_prog);
 
 
 
2043		}
2044	}
2045
2046	/* Stop the vport */
2047	rc = edev->ops->vport_stop(cdev, 0);
2048	if (rc)
2049		DP_ERR(edev, "Failed to stop VPORT\n");
2050
2051	return rc;
2052}
2053
2054static int qede_start_txq(struct qede_dev *edev,
2055			  struct qede_fastpath *fp,
2056			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2057{
2058	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2059	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2060	struct qed_queue_start_common_params params;
2061	struct qed_txq_start_ret_params ret_params;
2062	int rc;
2063
2064	memset(&params, 0, sizeof(params));
2065	memset(&ret_params, 0, sizeof(ret_params));
2066
2067	/* Let the XDP queue share the queue-zone with one of the regular txq.
2068	 * We don't really care about its coalescing.
2069	 */
2070	if (txq->is_xdp)
2071		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2072	else
2073		params.queue_id = txq->index;
2074
2075	params.p_sb = fp->sb_info;
2076	params.sb_idx = sb_idx;
2077	params.tc = txq->cos;
2078
2079	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2080				   page_cnt, &ret_params);
2081	if (rc) {
2082		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2083		return rc;
2084	}
2085
2086	txq->doorbell_addr = ret_params.p_doorbell;
2087	txq->handle = ret_params.p_handle;
2088
2089	/* Determine the FW consumer address associated */
2090	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2091
2092	/* Prepare the doorbell parameters */
2093	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2094	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2095	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2096		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2097	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2098
2099	/* register doorbell with doorbell recovery mechanism */
2100	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2101						&txq->tx_db, DB_REC_WIDTH_32B,
2102						DB_REC_KERNEL);
2103
2104	return rc;
2105}
2106
2107static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2108{
 
2109	int vlan_removal_en = 1;
2110	struct qed_dev *cdev = edev->cdev;
2111	struct qed_dev_info *qed_info = &edev->dev_info.common;
2112	struct qed_update_vport_params *vport_update_params;
2113	struct qed_queue_start_common_params q_params;
2114	struct qed_start_vport_params start = {0};
2115	int rc, i;
2116
2117	if (!edev->num_queues) {
2118		DP_ERR(edev,
2119		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2120		return -EINVAL;
2121	}
2122
2123	vport_update_params = vzalloc(sizeof(*vport_update_params));
2124	if (!vport_update_params)
2125		return -ENOMEM;
2126
2127	start.handle_ptp_pkts = !!(edev->ptp);
2128	start.gro_enable = !edev->gro_disable;
2129	start.mtu = edev->ndev->mtu;
2130	start.vport_id = 0;
2131	start.drop_ttl0 = true;
2132	start.remove_inner_vlan = vlan_removal_en;
2133	start.clear_stats = clear_stats;
2134
2135	rc = edev->ops->vport_start(cdev, &start);
2136
2137	if (rc) {
2138		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2139		goto out;
2140	}
2141
2142	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2143		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2144		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2145
2146	for_each_queue(i) {
2147		struct qede_fastpath *fp = &edev->fp_array[i];
2148		dma_addr_t p_phys_table;
2149		u32 page_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150
2151		if (fp->type & QEDE_FASTPATH_RX) {
2152			struct qed_rxq_start_ret_params ret_params;
2153			struct qede_rx_queue *rxq = fp->rxq;
2154			__le16 *val;
 
 
 
2155
2156			memset(&ret_params, 0, sizeof(ret_params));
2157			memset(&q_params, 0, sizeof(q_params));
2158			q_params.queue_id = rxq->rxq_id;
 
2159			q_params.vport_id = 0;
2160			q_params.p_sb = fp->sb_info;
2161			q_params.sb_idx = RX_PI;
2162
2163			p_phys_table =
2164			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2165			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2166
2167			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2168						   rxq->rx_buf_size,
2169						   rxq->rx_bd_ring.p_phys_addr,
2170						   p_phys_table,
2171						   page_cnt, &ret_params);
2172			if (rc) {
2173				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2174				       rc);
2175				goto out;
2176			}
2177
2178			/* Use the return parameters */
2179			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2180			rxq->handle = ret_params.p_handle;
 
 
 
 
 
 
2181
2182			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2183			rxq->hw_cons_ptr = val;
2184
2185			qede_update_rx_prod(edev, rxq);
2186		}
 
2187
2188		if (fp->type & QEDE_FASTPATH_XDP) {
2189			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2190			if (rc)
2191				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2192
2193			bpf_prog_add(edev->xdp_prog, 1);
2194			fp->rxq->xdp_prog = edev->xdp_prog;
2195		}
2196
2197		if (fp->type & QEDE_FASTPATH_TX) {
2198			int cos;
2199
2200			for_each_cos_in_txq(edev, cos) {
2201				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2202						    TX_PI(cos));
2203				if (rc)
2204					goto out;
2205			}
2206		}
2207	}
2208
2209	/* Prepare and send the vport enable */
2210	vport_update_params->vport_id = start.vport_id;
2211	vport_update_params->update_vport_active_flg = 1;
2212	vport_update_params->vport_active_flg = 1;
2213
2214	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2215	    qed_info->tx_switching) {
2216		vport_update_params->update_tx_switching_flg = 1;
2217		vport_update_params->tx_switching_flg = 1;
2218	}
 
2219
2220	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2221			     &vport_update_params->update_rss_flg);
 
 
2222
2223	rc = edev->ops->vport_update(cdev, vport_update_params);
2224	if (rc)
2225		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2226
2227out:
2228	vfree(vport_update_params);
2229	return rc;
2230}
2231
2232enum qede_unload_mode {
2233	QEDE_UNLOAD_NORMAL,
2234	QEDE_UNLOAD_RECOVERY,
2235};
2236
2237static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2238			bool is_locked)
2239{
2240	struct qed_link_params link_params;
2241	int rc;
2242
2243	DP_INFO(edev, "Starting qede unload\n");
2244
2245	if (!is_locked)
2246		__qede_lock(edev);
2247
2248	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2249
2250	if (mode != QEDE_UNLOAD_RECOVERY)
2251		edev->state = QEDE_STATE_CLOSED;
2252
2253	qede_rdma_dev_event_close(edev);
2254
2255	/* Close OS Tx */
2256	netif_tx_disable(edev->ndev);
2257	netif_carrier_off(edev->ndev);
2258
2259	if (mode != QEDE_UNLOAD_RECOVERY) {
2260		/* Reset the link */
2261		memset(&link_params, 0, sizeof(link_params));
2262		link_params.link_up = false;
2263		edev->ops->common->set_link(edev->cdev, &link_params);
 
 
 
 
2264
2265		rc = qede_stop_queues(edev);
2266		if (rc) {
2267			qede_sync_free_irqs(edev);
2268			goto out;
2269		}
2270
2271		DP_INFO(edev, "Stopped Queues\n");
2272	}
2273
2274	qede_vlan_mark_nonconfigured(edev);
2275	edev->ops->fastpath_stop(edev->cdev);
2276
2277	if (edev->dev_info.common.b_arfs_capable) {
2278		qede_poll_for_freeing_arfs_filters(edev);
2279		qede_free_arfs(edev);
2280	}
2281
2282	/* Release the interrupts */
2283	qede_sync_free_irqs(edev);
2284	edev->ops->common->set_fp_int(edev->cdev, 0);
2285
2286	qede_napi_disable_remove(edev);
2287
2288	if (mode == QEDE_UNLOAD_RECOVERY)
2289		qede_empty_tx_queues(edev);
2290
2291	qede_free_mem_load(edev);
2292	qede_free_fp_array(edev);
2293
2294out:
2295	if (!is_locked)
2296		__qede_unlock(edev);
2297
2298	if (mode != QEDE_UNLOAD_RECOVERY)
2299		DP_NOTICE(edev, "Link is down\n");
2300
2301	edev->ptp_skip_txts = 0;
2302
2303	DP_INFO(edev, "Ending qede unload\n");
2304}
2305
2306enum qede_load_mode {
2307	QEDE_LOAD_NORMAL,
2308	QEDE_LOAD_RELOAD,
2309	QEDE_LOAD_RECOVERY,
2310};
2311
2312static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2313		     bool is_locked)
2314{
2315	struct qed_link_params link_params;
2316	u8 num_tc;
2317	int rc;
2318
2319	DP_INFO(edev, "Starting qede load\n");
2320
2321	if (!is_locked)
2322		__qede_lock(edev);
2323
2324	rc = qede_set_num_queues(edev);
2325	if (rc)
2326		goto out;
2327
2328	rc = qede_alloc_fp_array(edev);
2329	if (rc)
2330		goto out;
2331
2332	qede_init_fp(edev);
2333
2334	rc = qede_alloc_mem_load(edev);
2335	if (rc)
2336		goto err1;
2337	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2338		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2339
2340	rc = qede_set_real_num_queues(edev);
2341	if (rc)
2342		goto err2;
2343
2344	if (qede_alloc_arfs(edev)) {
2345		edev->ndev->features &= ~NETIF_F_NTUPLE;
2346		edev->dev_info.common.b_arfs_capable = false;
2347	}
2348
2349	qede_napi_add_enable(edev);
2350	DP_INFO(edev, "Napi added and enabled\n");
2351
2352	rc = qede_setup_irqs(edev);
2353	if (rc)
2354		goto err3;
2355	DP_INFO(edev, "Setup IRQs succeeded\n");
2356
2357	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2358	if (rc)
2359		goto err4;
2360	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2361
2362	num_tc = netdev_get_num_tc(edev->ndev);
2363	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2364	qede_setup_tc(edev->ndev, num_tc);
 
 
 
2365
2366	/* Program un-configured VLANs */
2367	qede_configure_vlan_filters(edev);
2368
2369	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2370
2371	/* Ask for link-up using current configuration */
2372	memset(&link_params, 0, sizeof(link_params));
2373	link_params.link_up = true;
2374	edev->ops->common->set_link(edev->cdev, &link_params);
2375
2376	edev->state = QEDE_STATE_OPEN;
 
 
 
2377
2378	DP_INFO(edev, "Ending successfully qede load\n");
2379
2380	goto out;
 
2381err4:
2382	qede_sync_free_irqs(edev);
2383	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2384err3:
2385	qede_napi_disable_remove(edev);
2386err2:
2387	qede_free_mem_load(edev);
2388err1:
2389	edev->ops->common->set_fp_int(edev->cdev, 0);
2390	qede_free_fp_array(edev);
2391	edev->num_queues = 0;
2392	edev->fp_num_tx = 0;
2393	edev->fp_num_rx = 0;
2394out:
2395	if (!is_locked)
2396		__qede_unlock(edev);
2397
2398	return rc;
2399}
2400
2401/* 'func' should be able to run between unload and reload assuming interface
2402 * is actually running, or afterwards in case it's currently DOWN.
2403 */
2404void qede_reload(struct qede_dev *edev,
2405		 struct qede_reload_args *args, bool is_locked)
 
2406{
2407	if (!is_locked)
2408		__qede_lock(edev);
 
 
 
 
2409
2410	/* Since qede_lock is held, internal state wouldn't change even
2411	 * if netdev state would start transitioning. Check whether current
2412	 * internal configuration indicates device is up, then reload.
2413	 */
2414	if (edev->state == QEDE_STATE_OPEN) {
2415		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2416		if (args)
2417			args->func(edev, args);
2418		qede_load(edev, QEDE_LOAD_RELOAD, true);
2419
2420		/* Since no one is going to do it for us, re-configure */
2421		qede_config_rx_mode(edev->ndev);
2422	} else if (args) {
2423		args->func(edev, args);
2424	}
2425
2426	if (!is_locked)
2427		__qede_unlock(edev);
 
2428}
2429
2430/* called with rtnl_lock */
2431static int qede_open(struct net_device *ndev)
2432{
2433	struct qede_dev *edev = netdev_priv(ndev);
2434	int rc;
2435
2436	netif_carrier_off(ndev);
2437
2438	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2439
2440	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2441	if (rc)
2442		return rc;
2443
2444	udp_tunnel_nic_reset_ntf(ndev);
2445
2446	edev->ops->common->update_drv_state(edev->cdev, true);
2447
2448	return 0;
2449}
2450
2451static int qede_close(struct net_device *ndev)
2452{
2453	struct qede_dev *edev = netdev_priv(ndev);
2454
2455	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2456
2457	edev->ops->common->update_drv_state(edev->cdev, false);
2458
2459	return 0;
2460}
2461
2462static void qede_link_update(void *dev, struct qed_link_output *link)
2463{
2464	struct qede_dev *edev = dev;
2465
2466	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2467		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2468		return;
2469	}
2470
2471	if (link->link_up) {
2472		if (!netif_carrier_ok(edev->ndev)) {
2473			DP_NOTICE(edev, "Link is up\n");
2474			netif_tx_start_all_queues(edev->ndev);
2475			netif_carrier_on(edev->ndev);
2476			qede_rdma_dev_event_open(edev);
2477		}
2478	} else {
2479		if (netif_carrier_ok(edev->ndev)) {
2480			DP_NOTICE(edev, "Link is down\n");
2481			netif_tx_disable(edev->ndev);
2482			netif_carrier_off(edev->ndev);
2483			qede_rdma_dev_event_close(edev);
2484		}
2485	}
2486}
2487
2488static void qede_schedule_recovery_handler(void *dev)
2489{
2490	struct qede_dev *edev = dev;
2491
2492	if (edev->state == QEDE_STATE_RECOVERY) {
2493		DP_NOTICE(edev,
2494			  "Avoid scheduling a recovery handling since already in recovery state\n");
2495		return;
2496	}
2497
2498	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2499	schedule_delayed_work(&edev->sp_task, 0);
2500
2501	DP_INFO(edev, "Scheduled a recovery handler\n");
2502}
2503
2504static void qede_recovery_failed(struct qede_dev *edev)
2505{
2506	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2507
2508	netif_device_detach(edev->ndev);
2509
2510	if (edev->cdev)
2511		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2512}
2513
2514static void qede_recovery_handler(struct qede_dev *edev)
2515{
2516	u32 curr_state = edev->state;
2517	int rc;
2518
2519	DP_NOTICE(edev, "Starting a recovery process\n");
2520
2521	/* No need to acquire first the qede_lock since is done by qede_sp_task
2522	 * before calling this function.
2523	 */
2524	edev->state = QEDE_STATE_RECOVERY;
2525
2526	edev->ops->common->recovery_prolog(edev->cdev);
2527
2528	if (curr_state == QEDE_STATE_OPEN)
2529		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2530
2531	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2532
2533	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2534			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2535	if (rc) {
2536		edev->cdev = NULL;
2537		goto err;
2538	}
2539
2540	if (curr_state == QEDE_STATE_OPEN) {
2541		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2542		if (rc)
2543			goto err;
2544
2545		qede_config_rx_mode(edev->ndev);
2546		udp_tunnel_nic_reset_ntf(edev->ndev);
 
2547	}
2548
2549	edev->state = curr_state;
 
 
 
 
2550
2551	DP_NOTICE(edev, "Recovery handling is done\n");
2552
2553	return;
2554
2555err:
2556	qede_recovery_failed(edev);
2557}
2558
2559static void qede_atomic_hw_err_handler(struct qede_dev *edev)
 
 
2560{
2561	struct qed_dev *cdev = edev->cdev;
 
 
 
 
2562
2563	DP_NOTICE(edev,
2564		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2565		  edev->err_flags);
2566
2567	/* Get a call trace of the flow that led to the error */
2568	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
 
 
 
 
 
2569
2570	/* Prevent HW attentions from being reasserted */
2571	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2572		edev->ops->common->attn_clr_enable(cdev, true);
2573
2574	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2575}
 
 
 
2576
2577static void qede_generic_hw_err_handler(struct qede_dev *edev)
2578{
2579	struct qed_dev *cdev = edev->cdev;
2580
2581	DP_NOTICE(edev,
2582		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2583		  edev->err_flags);
 
 
 
 
2584
2585	/* Trigger a recovery process.
2586	 * This is placed in the sleep requiring section just to make
2587	 * sure it is the last one, and that all the other operations
2588	 * were completed.
2589	 */
2590	if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2591		edev->ops->common->recovery_process(cdev);
2592
2593	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
 
 
 
 
 
 
 
 
 
2594
2595	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
 
 
2596}
2597
2598static void qede_set_hw_err_flags(struct qede_dev *edev,
2599				  enum qed_hw_err_type err_type)
2600{
2601	unsigned long err_flags = 0;
2602
2603	switch (err_type) {
2604	case QED_HW_ERR_DMAE_FAIL:
2605		set_bit(QEDE_ERR_WARN, &err_flags);
2606		fallthrough;
2607	case QED_HW_ERR_MFW_RESP_FAIL:
2608	case QED_HW_ERR_HW_ATTN:
2609	case QED_HW_ERR_RAMROD_FAIL:
2610	case QED_HW_ERR_FW_ASSERT:
2611		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2612		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2613		break;
2614
2615	default:
2616		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2617		break;
 
 
 
2618	}
2619
2620	edev->err_flags |= err_flags;
2621}
2622
2623static void qede_schedule_hw_err_handler(void *dev,
2624					 enum qed_hw_err_type err_type)
2625{
2626	struct qede_dev *edev = dev;
 
 
 
 
 
 
 
 
 
 
 
2627
2628	/* Fan failure cannot be masked by handling of another HW error or by a
2629	 * concurrent recovery process.
2630	 */
2631	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2632	     edev->state == QEDE_STATE_RECOVERY) &&
2633	     err_type != QED_HW_ERR_FAN_FAIL) {
2634		DP_INFO(edev,
2635			"Avoid scheduling an error handling while another HW error is being handled\n");
2636		return;
2637	}
2638
2639	if (err_type >= QED_HW_ERR_LAST) {
2640		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2641		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2642		return;
2643	}
2644
2645	qede_set_hw_err_flags(edev, err_type);
2646	qede_atomic_hw_err_handler(edev);
2647	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2648	schedule_delayed_work(&edev->sp_task, 0);
2649
2650	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2651}
 
2652
2653static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2654{
2655	struct netdev_queue *netdev_txq;
 
 
 
 
2656
2657	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2658	if (netif_xmit_stopped(netdev_txq))
2659		return true;
 
 
 
 
2660
2661	return false;
2662}
 
 
 
 
 
2663
2664static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2665{
2666	struct qede_dev *edev = dev;
2667	struct netdev_hw_addr *ha;
2668	int i;
2669
2670	if (edev->ndev->features & NETIF_F_IP_CSUM)
2671		data->feat_flags |= QED_TLV_IP_CSUM;
2672	if (edev->ndev->features & NETIF_F_TSO)
2673		data->feat_flags |= QED_TLV_LSO;
2674
2675	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2676	eth_zero_addr(data->mac[1]);
2677	eth_zero_addr(data->mac[2]);
2678	/* Copy the first two UC macs */
2679	netif_addr_lock_bh(edev->ndev);
2680	i = 1;
2681	netdev_for_each_uc_addr(ha, edev->ndev) {
2682		ether_addr_copy(data->mac[i++], ha->addr);
2683		if (i == QED_TLV_MAC_COUNT)
2684			break;
2685	}
2686
2687	netif_addr_unlock_bh(edev->ndev);
2688}
2689
2690static void qede_get_eth_tlv_data(void *dev, void *data)
2691{
2692	struct qed_mfw_tlv_eth *etlv = data;
2693	struct qede_dev *edev = dev;
2694	struct qede_fastpath *fp;
2695	int i;
2696
2697	etlv->lso_maxoff_size = 0XFFFF;
2698	etlv->lso_maxoff_size_set = true;
2699	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2700	etlv->lso_minseg_size_set = true;
2701	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2702	etlv->prom_mode_set = true;
2703	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2704	etlv->tx_descr_size_set = true;
2705	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2706	etlv->rx_descr_size_set = true;
2707	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2708	etlv->iov_offload_set = true;
2709
2710	/* Fill information regarding queues; Should be done under the qede
2711	 * lock to guarantee those don't change beneath our feet.
2712	 */
2713	etlv->txqs_empty = true;
2714	etlv->rxqs_empty = true;
2715	etlv->num_txqs_full = 0;
2716	etlv->num_rxqs_full = 0;
2717
2718	__qede_lock(edev);
2719	for_each_queue(i) {
2720		fp = &edev->fp_array[i];
2721		if (fp->type & QEDE_FASTPATH_TX) {
2722			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2723
2724			if (txq->sw_tx_cons != txq->sw_tx_prod)
2725				etlv->txqs_empty = false;
2726			if (qede_is_txq_full(edev, txq))
2727				etlv->num_txqs_full++;
2728		}
2729		if (fp->type & QEDE_FASTPATH_RX) {
2730			if (qede_has_rx_work(fp->rxq))
2731				etlv->rxqs_empty = false;
2732
2733			/* This one is a bit tricky; Firmware might stop
2734			 * placing packets if ring is not yet full.
2735			 * Give an approximation.
2736			 */
2737			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2738			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2739			    RX_RING_SIZE - 100)
2740				etlv->num_rxqs_full++;
2741		}
2742	}
2743	__qede_unlock(edev);
2744
2745	etlv->txqs_empty_set = true;
2746	etlv->rxqs_empty_set = true;
2747	etlv->num_txqs_full_set = true;
2748	etlv->num_rxqs_full_set = true;
2749}
2750
2751/**
2752 * qede_io_error_detected - called when PCI error is detected
2753 * @pdev: Pointer to PCI device
2754 * @state: The current pci connection state
2755 *
2756 * This function is called after a PCI bus error affecting
2757 * this device has been detected.
2758 */
2759static pci_ers_result_t
2760qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2761{
2762	struct net_device *dev = pci_get_drvdata(pdev);
2763	struct qede_dev *edev = netdev_priv(dev);
2764
2765	if (!edev)
2766		return PCI_ERS_RESULT_NONE;
2767
2768	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2769
2770	__qede_lock(edev);
2771	if (edev->state == QEDE_STATE_RECOVERY) {
2772		DP_NOTICE(edev, "Device already in the recovery state\n");
2773		__qede_unlock(edev);
2774		return PCI_ERS_RESULT_NONE;
2775	}
2776
2777	/* PF handles the recovery of its VFs */
2778	if (IS_VF(edev)) {
2779		DP_VERBOSE(edev, QED_MSG_IOV,
2780			   "VF recovery is handled by its PF\n");
2781		__qede_unlock(edev);
2782		return PCI_ERS_RESULT_RECOVERED;
2783	}
2784
2785	/* Close OS Tx */
2786	netif_tx_disable(edev->ndev);
2787	netif_carrier_off(edev->ndev);
2788
2789	set_bit(QEDE_SP_AER, &edev->sp_flags);
2790	schedule_delayed_work(&edev->sp_task, 0);
2791
2792	__qede_unlock(edev);
2793
2794	return PCI_ERS_RESULT_CAN_RECOVER;
2795}