Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
  3 * Provides Bus interface for MIIM regs
  4 *
  5 * Author: Andy Fleming <afleming@freescale.com>
  6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  7 *
  8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
  9 *
 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
 11 *
 12 * This program is free software; you can redistribute  it and/or modify it
 13 * under  the terms of  the GNU General  Public License as published by the
 14 * Free Software Foundation;  either version 2 of the  License, or (at your
 15 * option) any later version.
 16 *
 17 */
 18
 19#include <linux/kernel.h>
 20#include <linux/string.h>
 21#include <linux/errno.h>
 22#include <linux/slab.h>
 23#include <linux/delay.h>
 24#include <linux/module.h>
 25#include <linux/mii.h>
 26#include <linux/of_address.h>
 27#include <linux/of_mdio.h>
 28#include <linux/of_device.h>
 29
 30#include <asm/io.h>
 31#if IS_ENABLED(CONFIG_UCC_GETH)
 32#include <soc/fsl/qe/ucc.h>
 33#endif
 34
 35#include "gianfar.h"
 36
 37#define MIIMIND_BUSY		0x00000001
 38#define MIIMIND_NOTVALID	0x00000004
 39#define MIIMCFG_INIT_VALUE	0x00000007
 40#define MIIMCFG_RESET		0x80000000
 41
 42#define MII_READ_COMMAND	0x00000001
 43
 44struct fsl_pq_mii {
 45	u32 miimcfg;	/* MII management configuration reg */
 46	u32 miimcom;	/* MII management command reg */
 47	u32 miimadd;	/* MII management address reg */
 48	u32 miimcon;	/* MII management control reg */
 49	u32 miimstat;	/* MII management status reg */
 50	u32 miimind;	/* MII management indication reg */
 51};
 52
 53struct fsl_pq_mdio {
 54	u8 res1[16];
 55	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
 56	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
 57	u8 res2[4];
 58	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
 59	u8 res3[1280];
 60	struct fsl_pq_mii mii;
 61	u8 res4[28];
 62	u32 utbipar;	/* TBI phy address reg (only on UCC) */
 63	u8 res5[2728];
 64} __packed;
 65
 66/* Number of microseconds to wait for an MII register to respond */
 67#define MII_TIMEOUT	1000
 68
 69struct fsl_pq_mdio_priv {
 70	void __iomem *map;
 71	struct fsl_pq_mii __iomem *regs;
 72};
 73
 74/*
 75 * Per-device-type data.  Each type of device tree node that we support gets
 76 * one of these.
 77 *
 78 * @mii_offset: the offset of the MII registers within the memory map of the
 79 * node.  Some nodes define only the MII registers, and some define the whole
 80 * MAC (which includes the MII registers).
 81 *
 82 * @get_tbipa: determines the address of the TBIPA register
 83 *
 84 * @ucc_configure: a special function for extra QE configuration
 85 */
 86struct fsl_pq_mdio_data {
 87	unsigned int mii_offset;	/* offset of the MII registers */
 88	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
 89	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
 90};
 91
 92/*
 93 * Write value to the PHY at mii_id at register regnum, on the bus attached
 94 * to the local interface, which may be different from the generic mdio bus
 95 * (tied to a single interface), waiting until the write is done before
 96 * returning. This is helpful in programming interfaces like the TBI which
 97 * control interfaces like onchip SERDES and are always tied to the local
 98 * mdio pins, which may not be the same as system mdio bus, used for
 99 * controlling the external PHYs, for example.
100 */
101static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
102		u16 value)
103{
104	struct fsl_pq_mdio_priv *priv = bus->priv;
105	struct fsl_pq_mii __iomem *regs = priv->regs;
106	unsigned int timeout;
107
108	/* Set the PHY address and the register address we want to write */
109	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
110
111	/* Write out the value we want */
112	iowrite32be(value, &regs->miimcon);
113
114	/* Wait for the transaction to finish */
115	timeout = MII_TIMEOUT;
116	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
117		cpu_relax();
118		timeout--;
119	}
120
121	return timeout ? 0 : -ETIMEDOUT;
122}
123
124/*
125 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
126 * Clears miimcom first.
127 *
128 * All PHY operation done on the bus attached to the local interface, which
129 * may be different from the generic mdio bus.  This is helpful in programming
130 * interfaces like the TBI which, in turn, control interfaces like on-chip
131 * SERDES and are always tied to the local mdio pins, which may not be the
132 * same as system mdio bus, used for controlling the external PHYs, for eg.
133 */
134static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
135{
136	struct fsl_pq_mdio_priv *priv = bus->priv;
137	struct fsl_pq_mii __iomem *regs = priv->regs;
138	unsigned int timeout;
139	u16 value;
140
141	/* Set the PHY address and the register address we want to read */
142	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
143
144	/* Clear miimcom, and then initiate a read */
145	iowrite32be(0, &regs->miimcom);
146	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
147
148	/* Wait for the transaction to finish, normally less than 100us */
149	timeout = MII_TIMEOUT;
150	while ((ioread32be(&regs->miimind) &
151	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
152		cpu_relax();
153		timeout--;
154	}
155
156	if (!timeout)
157		return -ETIMEDOUT;
158
159	/* Grab the value of the register from miimstat */
160	value = ioread32be(&regs->miimstat);
161
162	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
163	return value;
164}
165
166/* Reset the MIIM registers, and wait for the bus to free */
167static int fsl_pq_mdio_reset(struct mii_bus *bus)
168{
169	struct fsl_pq_mdio_priv *priv = bus->priv;
170	struct fsl_pq_mii __iomem *regs = priv->regs;
171	unsigned int timeout;
172
173	mutex_lock(&bus->mdio_lock);
174
175	/* Reset the management interface */
176	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
177
178	/* Setup the MII Mgmt clock speed */
179	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
180
181	/* Wait until the bus is free */
182	timeout = MII_TIMEOUT;
183	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
184		cpu_relax();
185		timeout--;
186	}
187
188	mutex_unlock(&bus->mdio_lock);
189
190	if (!timeout) {
191		dev_err(&bus->dev, "timeout waiting for MII bus\n");
192		return -EBUSY;
193	}
194
195	return 0;
196}
197
198#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
199/*
200 * Return the TBIPA address, starting from the address
201 * of the mapped GFAR MDIO registers (struct gfar)
202 * This is mildly evil, but so is our hardware for doing this.
203 * Also, we have to cast back to struct gfar because of
204 * definition weirdness done in gianfar.h.
205 */
206static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
207{
208	struct gfar __iomem *enet_regs = p;
209
210	return &enet_regs->tbipa;
211}
212
213/*
214 * Return the TBIPA address, starting from the address
215 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
216 */
217static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
218{
219	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
220}
221
222/*
223 * Return the TBIPAR address for an eTSEC2 node
224 */
225static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
226{
227	return p;
228}
229#endif
230
231#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
232/*
233 * Return the TBIPAR address for a QE MDIO node, starting from the address
234 * of the mapped MII registers (struct fsl_pq_mii)
235 */
236static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
237{
238	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
239
240	return &mdio->utbipar;
241}
242
243/*
244 * Find the UCC node that controls the given MDIO node
245 *
246 * For some reason, the QE MDIO nodes are not children of the UCC devices
247 * that control them.  Therefore, we need to scan all UCC nodes looking for
248 * the one that encompases the given MDIO node.  We do this by comparing
249 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
250 * passed, and the correct UCC node will cover the entire address range.
251 *
252 * This assumes that there is only one QE MDIO node in the entire device tree.
253 */
254static void ucc_configure(phys_addr_t start, phys_addr_t end)
255{
256	static bool found_mii_master;
257	struct device_node *np = NULL;
258
259	if (found_mii_master)
260		return;
261
262	for_each_compatible_node(np, NULL, "ucc_geth") {
263		struct resource res;
264		const uint32_t *iprop;
265		uint32_t id;
266		int ret;
267
268		ret = of_address_to_resource(np, 0, &res);
269		if (ret < 0) {
270			pr_debug("fsl-pq-mdio: no address range in node %s\n",
271				 np->full_name);
272			continue;
273		}
274
275		/* if our mdio regs fall within this UCC regs range */
276		if ((start < res.start) || (end > res.end))
277			continue;
278
279		iprop = of_get_property(np, "cell-index", NULL);
280		if (!iprop) {
281			iprop = of_get_property(np, "device-id", NULL);
282			if (!iprop) {
283				pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
284					 np->full_name);
285				continue;
286			}
287		}
288
289		id = be32_to_cpup(iprop);
290
291		/*
292		 * cell-index and device-id for QE nodes are
293		 * numbered from 1, not 0.
294		 */
295		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
296			pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
297				 np->full_name);
298			continue;
299		}
300
301		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
302		found_mii_master = true;
303	}
304}
305
306#endif
307
308static const struct of_device_id fsl_pq_mdio_match[] = {
309#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
310	{
311		.compatible = "fsl,gianfar-tbi",
312		.data = &(struct fsl_pq_mdio_data) {
313			.mii_offset = 0,
314			.get_tbipa = get_gfar_tbipa_from_mii,
315		},
316	},
317	{
318		.compatible = "fsl,gianfar-mdio",
319		.data = &(struct fsl_pq_mdio_data) {
320			.mii_offset = 0,
321			.get_tbipa = get_gfar_tbipa_from_mii,
322		},
323	},
324	{
325		.type = "mdio",
326		.compatible = "gianfar",
327		.data = &(struct fsl_pq_mdio_data) {
328			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
329			.get_tbipa = get_gfar_tbipa_from_mdio,
330		},
331	},
332	{
333		.compatible = "fsl,etsec2-tbi",
334		.data = &(struct fsl_pq_mdio_data) {
335			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
336			.get_tbipa = get_etsec_tbipa,
337		},
338	},
339	{
340		.compatible = "fsl,etsec2-mdio",
341		.data = &(struct fsl_pq_mdio_data) {
342			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
343			.get_tbipa = get_etsec_tbipa,
344		},
345	},
346#endif
347#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
348	{
349		.compatible = "fsl,ucc-mdio",
350		.data = &(struct fsl_pq_mdio_data) {
351			.mii_offset = 0,
352			.get_tbipa = get_ucc_tbipa,
353			.ucc_configure = ucc_configure,
354		},
355	},
356	{
357		/* Legacy UCC MDIO node */
358		.type = "mdio",
359		.compatible = "ucc_geth_phy",
360		.data = &(struct fsl_pq_mdio_data) {
361			.mii_offset = 0,
362			.get_tbipa = get_ucc_tbipa,
363			.ucc_configure = ucc_configure,
364		},
365	},
366#endif
367	/* No Kconfig option for Fman support yet */
368	{
369		.compatible = "fsl,fman-mdio",
370		.data = &(struct fsl_pq_mdio_data) {
371			.mii_offset = 0,
372			/* Fman TBI operations are handled elsewhere */
373		},
374	},
375
376	{},
377};
378MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380static int fsl_pq_mdio_probe(struct platform_device *pdev)
381{
382	const struct of_device_id *id =
383		of_match_device(fsl_pq_mdio_match, &pdev->dev);
384	const struct fsl_pq_mdio_data *data = id->data;
385	struct device_node *np = pdev->dev.of_node;
386	struct resource res;
387	struct device_node *tbi;
388	struct fsl_pq_mdio_priv *priv;
389	struct mii_bus *new_bus;
390	int err;
391
 
 
 
 
 
 
 
392	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
393
394	new_bus = mdiobus_alloc_size(sizeof(*priv));
395	if (!new_bus)
396		return -ENOMEM;
397
398	priv = new_bus->priv;
399	new_bus->name = "Freescale PowerQUICC MII Bus",
400	new_bus->read = &fsl_pq_mdio_read;
401	new_bus->write = &fsl_pq_mdio_write;
402	new_bus->reset = &fsl_pq_mdio_reset;
403
404	err = of_address_to_resource(np, 0, &res);
405	if (err < 0) {
406		dev_err(&pdev->dev, "could not obtain address information\n");
407		goto error;
408	}
409
410	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
411		(unsigned long long)res.start);
412
413	priv->map = of_iomap(np, 0);
414	if (!priv->map) {
415		err = -ENOMEM;
416		goto error;
417	}
418
419	/*
420	 * Some device tree nodes represent only the MII registers, and
421	 * others represent the MAC and MII registers.  The 'mii_offset' field
422	 * contains the offset of the MII registers inside the mapped register
423	 * space.
424	 */
425	if (data->mii_offset > resource_size(&res)) {
426		dev_err(&pdev->dev, "invalid register map\n");
427		err = -EINVAL;
428		goto error;
429	}
430	priv->regs = priv->map + data->mii_offset;
431
432	new_bus->parent = &pdev->dev;
433	platform_set_drvdata(pdev, new_bus);
434
435	if (data->get_tbipa) {
436		for_each_child_of_node(np, tbi) {
437			if (strcmp(tbi->type, "tbi-phy") == 0) {
438				dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
439					strrchr(tbi->full_name, '/') + 1);
440				break;
441			}
442		}
443
444		if (tbi) {
445			const u32 *prop = of_get_property(tbi, "reg", NULL);
446			uint32_t __iomem *tbipa;
447
448			if (!prop) {
449				dev_err(&pdev->dev,
450					"missing 'reg' property in node %s\n",
451					tbi->full_name);
452				err = -EBUSY;
453				goto error;
454			}
455
456			tbipa = data->get_tbipa(priv->map);
457
458			/*
459			 * Add consistency check to make sure TBI is contained
460			 * within the mapped range (not because we would get a
461			 * segfault, rather to catch bugs in computing TBI
462			 * address). Print error message but continue anyway.
463			 */
464			if ((void *)tbipa > priv->map + resource_size(&res) - 4)
465				dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
466					((void *)tbipa - priv->map) + 4);
467
468			iowrite32be(be32_to_cpup(prop), tbipa);
469		}
470	}
471
472	if (data->ucc_configure)
473		data->ucc_configure(res.start, res.end);
474
475	err = of_mdiobus_register(new_bus, np);
476	if (err) {
477		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
478			new_bus->name);
479		goto error;
480	}
481
482	return 0;
483
484error:
485	if (priv->map)
486		iounmap(priv->map);
487
488	kfree(new_bus);
489
490	return err;
491}
492
493
494static int fsl_pq_mdio_remove(struct platform_device *pdev)
495{
496	struct device *device = &pdev->dev;
497	struct mii_bus *bus = dev_get_drvdata(device);
498	struct fsl_pq_mdio_priv *priv = bus->priv;
499
500	mdiobus_unregister(bus);
501
502	iounmap(priv->map);
503	mdiobus_free(bus);
504
505	return 0;
506}
507
508static struct platform_driver fsl_pq_mdio_driver = {
509	.driver = {
510		.name = "fsl-pq_mdio",
511		.of_match_table = fsl_pq_mdio_match,
512	},
513	.probe = fsl_pq_mdio_probe,
514	.remove = fsl_pq_mdio_remove,
515};
516
517module_platform_driver(fsl_pq_mdio_driver);
518
519MODULE_LICENSE("GPL");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
  4 * Provides Bus interface for MIIM regs
  5 *
  6 * Author: Andy Fleming <afleming@freescale.com>
  7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  8 *
  9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
 10 *
 11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
 
 
 
 
 
 
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 16#include <linux/errno.h>
 17#include <linux/slab.h>
 18#include <linux/delay.h>
 19#include <linux/module.h>
 20#include <linux/mii.h>
 21#include <linux/of_address.h>
 22#include <linux/of_mdio.h>
 23#include <linux/of_device.h>
 24
 25#include <asm/io.h>
 26#if IS_ENABLED(CONFIG_UCC_GETH)
 27#include <soc/fsl/qe/ucc.h>
 28#endif
 29
 30#include "gianfar.h"
 31
 32#define MIIMIND_BUSY		0x00000001
 33#define MIIMIND_NOTVALID	0x00000004
 34#define MIIMCFG_INIT_VALUE	0x00000007
 35#define MIIMCFG_RESET		0x80000000
 36
 37#define MII_READ_COMMAND	0x00000001
 38
 39struct fsl_pq_mii {
 40	u32 miimcfg;	/* MII management configuration reg */
 41	u32 miimcom;	/* MII management command reg */
 42	u32 miimadd;	/* MII management address reg */
 43	u32 miimcon;	/* MII management control reg */
 44	u32 miimstat;	/* MII management status reg */
 45	u32 miimind;	/* MII management indication reg */
 46};
 47
 48struct fsl_pq_mdio {
 49	u8 res1[16];
 50	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
 51	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
 52	u8 res2[4];
 53	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
 54	u8 res3[1280];
 55	struct fsl_pq_mii mii;
 56	u8 res4[28];
 57	u32 utbipar;	/* TBI phy address reg (only on UCC) */
 58	u8 res5[2728];
 59} __packed;
 60
 61/* Number of microseconds to wait for an MII register to respond */
 62#define MII_TIMEOUT	1000
 63
 64struct fsl_pq_mdio_priv {
 65	void __iomem *map;
 66	struct fsl_pq_mii __iomem *regs;
 67};
 68
 69/*
 70 * Per-device-type data.  Each type of device tree node that we support gets
 71 * one of these.
 72 *
 73 * @mii_offset: the offset of the MII registers within the memory map of the
 74 * node.  Some nodes define only the MII registers, and some define the whole
 75 * MAC (which includes the MII registers).
 76 *
 77 * @get_tbipa: determines the address of the TBIPA register
 78 *
 79 * @ucc_configure: a special function for extra QE configuration
 80 */
 81struct fsl_pq_mdio_data {
 82	unsigned int mii_offset;	/* offset of the MII registers */
 83	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
 84	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
 85};
 86
 87/*
 88 * Write value to the PHY at mii_id at register regnum, on the bus attached
 89 * to the local interface, which may be different from the generic mdio bus
 90 * (tied to a single interface), waiting until the write is done before
 91 * returning. This is helpful in programming interfaces like the TBI which
 92 * control interfaces like onchip SERDES and are always tied to the local
 93 * mdio pins, which may not be the same as system mdio bus, used for
 94 * controlling the external PHYs, for example.
 95 */
 96static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 97		u16 value)
 98{
 99	struct fsl_pq_mdio_priv *priv = bus->priv;
100	struct fsl_pq_mii __iomem *regs = priv->regs;
101	unsigned int timeout;
102
103	/* Set the PHY address and the register address we want to write */
104	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
105
106	/* Write out the value we want */
107	iowrite32be(value, &regs->miimcon);
108
109	/* Wait for the transaction to finish */
110	timeout = MII_TIMEOUT;
111	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
112		cpu_relax();
113		timeout--;
114	}
115
116	return timeout ? 0 : -ETIMEDOUT;
117}
118
119/*
120 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
121 * Clears miimcom first.
122 *
123 * All PHY operation done on the bus attached to the local interface, which
124 * may be different from the generic mdio bus.  This is helpful in programming
125 * interfaces like the TBI which, in turn, control interfaces like on-chip
126 * SERDES and are always tied to the local mdio pins, which may not be the
127 * same as system mdio bus, used for controlling the external PHYs, for eg.
128 */
129static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
130{
131	struct fsl_pq_mdio_priv *priv = bus->priv;
132	struct fsl_pq_mii __iomem *regs = priv->regs;
133	unsigned int timeout;
134	u16 value;
135
136	/* Set the PHY address and the register address we want to read */
137	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
138
139	/* Clear miimcom, and then initiate a read */
140	iowrite32be(0, &regs->miimcom);
141	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
142
143	/* Wait for the transaction to finish, normally less than 100us */
144	timeout = MII_TIMEOUT;
145	while ((ioread32be(&regs->miimind) &
146	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
147		cpu_relax();
148		timeout--;
149	}
150
151	if (!timeout)
152		return -ETIMEDOUT;
153
154	/* Grab the value of the register from miimstat */
155	value = ioread32be(&regs->miimstat);
156
157	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
158	return value;
159}
160
161/* Reset the MIIM registers, and wait for the bus to free */
162static int fsl_pq_mdio_reset(struct mii_bus *bus)
163{
164	struct fsl_pq_mdio_priv *priv = bus->priv;
165	struct fsl_pq_mii __iomem *regs = priv->regs;
166	unsigned int timeout;
167
168	mutex_lock(&bus->mdio_lock);
169
170	/* Reset the management interface */
171	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
172
173	/* Setup the MII Mgmt clock speed */
174	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
175
176	/* Wait until the bus is free */
177	timeout = MII_TIMEOUT;
178	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
179		cpu_relax();
180		timeout--;
181	}
182
183	mutex_unlock(&bus->mdio_lock);
184
185	if (!timeout) {
186		dev_err(&bus->dev, "timeout waiting for MII bus\n");
187		return -EBUSY;
188	}
189
190	return 0;
191}
192
193#if IS_ENABLED(CONFIG_GIANFAR)
194/*
195 * Return the TBIPA address, starting from the address
196 * of the mapped GFAR MDIO registers (struct gfar)
197 * This is mildly evil, but so is our hardware for doing this.
198 * Also, we have to cast back to struct gfar because of
199 * definition weirdness done in gianfar.h.
200 */
201static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
202{
203	struct gfar __iomem *enet_regs = p;
204
205	return &enet_regs->tbipa;
206}
207
208/*
209 * Return the TBIPA address, starting from the address
210 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
211 */
212static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
213{
214	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
215}
216
217/*
218 * Return the TBIPAR address for an eTSEC2 node
219 */
220static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
221{
222	return p;
223}
224#endif
225
226#if IS_ENABLED(CONFIG_UCC_GETH)
227/*
228 * Return the TBIPAR address for a QE MDIO node, starting from the address
229 * of the mapped MII registers (struct fsl_pq_mii)
230 */
231static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
232{
233	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
234
235	return &mdio->utbipar;
236}
237
238/*
239 * Find the UCC node that controls the given MDIO node
240 *
241 * For some reason, the QE MDIO nodes are not children of the UCC devices
242 * that control them.  Therefore, we need to scan all UCC nodes looking for
243 * the one that encompases the given MDIO node.  We do this by comparing
244 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
245 * passed, and the correct UCC node will cover the entire address range.
246 *
247 * This assumes that there is only one QE MDIO node in the entire device tree.
248 */
249static void ucc_configure(phys_addr_t start, phys_addr_t end)
250{
251	static bool found_mii_master;
252	struct device_node *np = NULL;
253
254	if (found_mii_master)
255		return;
256
257	for_each_compatible_node(np, NULL, "ucc_geth") {
258		struct resource res;
259		const uint32_t *iprop;
260		uint32_t id;
261		int ret;
262
263		ret = of_address_to_resource(np, 0, &res);
264		if (ret < 0) {
265			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
266				 np);
267			continue;
268		}
269
270		/* if our mdio regs fall within this UCC regs range */
271		if ((start < res.start) || (end > res.end))
272			continue;
273
274		iprop = of_get_property(np, "cell-index", NULL);
275		if (!iprop) {
276			iprop = of_get_property(np, "device-id", NULL);
277			if (!iprop) {
278				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
279					 np);
280				continue;
281			}
282		}
283
284		id = be32_to_cpup(iprop);
285
286		/*
287		 * cell-index and device-id for QE nodes are
288		 * numbered from 1, not 0.
289		 */
290		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
291			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
292				 np);
293			continue;
294		}
295
296		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
297		found_mii_master = true;
298	}
299}
300
301#endif
302
303static const struct of_device_id fsl_pq_mdio_match[] = {
304#if IS_ENABLED(CONFIG_GIANFAR)
305	{
306		.compatible = "fsl,gianfar-tbi",
307		.data = &(struct fsl_pq_mdio_data) {
308			.mii_offset = 0,
309			.get_tbipa = get_gfar_tbipa_from_mii,
310		},
311	},
312	{
313		.compatible = "fsl,gianfar-mdio",
314		.data = &(struct fsl_pq_mdio_data) {
315			.mii_offset = 0,
316			.get_tbipa = get_gfar_tbipa_from_mii,
317		},
318	},
319	{
320		.type = "mdio",
321		.compatible = "gianfar",
322		.data = &(struct fsl_pq_mdio_data) {
323			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
324			.get_tbipa = get_gfar_tbipa_from_mdio,
325		},
326	},
327	{
328		.compatible = "fsl,etsec2-tbi",
329		.data = &(struct fsl_pq_mdio_data) {
330			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
331			.get_tbipa = get_etsec_tbipa,
332		},
333	},
334	{
335		.compatible = "fsl,etsec2-mdio",
336		.data = &(struct fsl_pq_mdio_data) {
337			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
338			.get_tbipa = get_etsec_tbipa,
339		},
340	},
341#endif
342#if IS_ENABLED(CONFIG_UCC_GETH)
343	{
344		.compatible = "fsl,ucc-mdio",
345		.data = &(struct fsl_pq_mdio_data) {
346			.mii_offset = 0,
347			.get_tbipa = get_ucc_tbipa,
348			.ucc_configure = ucc_configure,
349		},
350	},
351	{
352		/* Legacy UCC MDIO node */
353		.type = "mdio",
354		.compatible = "ucc_geth_phy",
355		.data = &(struct fsl_pq_mdio_data) {
356			.mii_offset = 0,
357			.get_tbipa = get_ucc_tbipa,
358			.ucc_configure = ucc_configure,
359		},
360	},
361#endif
362	/* No Kconfig option for Fman support yet */
363	{
364		.compatible = "fsl,fman-mdio",
365		.data = &(struct fsl_pq_mdio_data) {
366			.mii_offset = 0,
367			/* Fman TBI operations are handled elsewhere */
368		},
369	},
370
371	{},
372};
373MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
374
375static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
376		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
377		      void __iomem *reg_map, struct resource *reg_res)
378{
379	struct device_node *np = pdev->dev.of_node;
380	uint32_t __iomem *tbipa;
381	bool tbipa_mapped;
382
383	tbipa = of_iomap(np, 1);
384	if (tbipa) {
385		tbipa_mapped = true;
386	} else {
387		tbipa_mapped = false;
388		tbipa = (*get_tbipa)(reg_map);
389
390		/*
391		 * Add consistency check to make sure TBI is contained within
392		 * the mapped range (not because we would get a segfault,
393		 * rather to catch bugs in computing TBI address). Print error
394		 * message but continue anyway.
395		 */
396		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
397			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
398				((void *)tbipa - reg_map) + 4);
399	}
400
401	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
402
403	if (tbipa_mapped)
404		iounmap(tbipa);
405}
406
407static int fsl_pq_mdio_probe(struct platform_device *pdev)
408{
409	const struct of_device_id *id =
410		of_match_device(fsl_pq_mdio_match, &pdev->dev);
411	const struct fsl_pq_mdio_data *data;
412	struct device_node *np = pdev->dev.of_node;
413	struct resource res;
414	struct device_node *tbi;
415	struct fsl_pq_mdio_priv *priv;
416	struct mii_bus *new_bus;
417	int err;
418
419	if (!id) {
420		dev_err(&pdev->dev, "Failed to match device\n");
421		return -ENODEV;
422	}
423
424	data = id->data;
425
426	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
427
428	new_bus = mdiobus_alloc_size(sizeof(*priv));
429	if (!new_bus)
430		return -ENOMEM;
431
432	priv = new_bus->priv;
433	new_bus->name = "Freescale PowerQUICC MII Bus",
434	new_bus->read = &fsl_pq_mdio_read;
435	new_bus->write = &fsl_pq_mdio_write;
436	new_bus->reset = &fsl_pq_mdio_reset;
437
438	err = of_address_to_resource(np, 0, &res);
439	if (err < 0) {
440		dev_err(&pdev->dev, "could not obtain address information\n");
441		goto error;
442	}
443
444	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
445		 (unsigned long long)res.start);
446
447	priv->map = of_iomap(np, 0);
448	if (!priv->map) {
449		err = -ENOMEM;
450		goto error;
451	}
452
453	/*
454	 * Some device tree nodes represent only the MII registers, and
455	 * others represent the MAC and MII registers.  The 'mii_offset' field
456	 * contains the offset of the MII registers inside the mapped register
457	 * space.
458	 */
459	if (data->mii_offset > resource_size(&res)) {
460		dev_err(&pdev->dev, "invalid register map\n");
461		err = -EINVAL;
462		goto error;
463	}
464	priv->regs = priv->map + data->mii_offset;
465
466	new_bus->parent = &pdev->dev;
467	platform_set_drvdata(pdev, new_bus);
468
469	if (data->get_tbipa) {
470		for_each_child_of_node(np, tbi) {
471			if (of_node_is_type(tbi, "tbi-phy")) {
472				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
473					tbi);
474				break;
475			}
476		}
477
478		if (tbi) {
479			const u32 *prop = of_get_property(tbi, "reg", NULL);
 
 
480			if (!prop) {
481				dev_err(&pdev->dev,
482					"missing 'reg' property in node %pOF\n",
483					tbi);
484				err = -EBUSY;
485				goto error;
486			}
487			set_tbipa(*prop, pdev,
488				  data->get_tbipa, priv->map, &res);
 
 
 
 
 
 
 
 
 
 
 
 
489		}
490	}
491
492	if (data->ucc_configure)
493		data->ucc_configure(res.start, res.end);
494
495	err = of_mdiobus_register(new_bus, np);
496	if (err) {
497		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
498			new_bus->name);
499		goto error;
500	}
501
502	return 0;
503
504error:
505	if (priv->map)
506		iounmap(priv->map);
507
508	kfree(new_bus);
509
510	return err;
511}
512
513
514static int fsl_pq_mdio_remove(struct platform_device *pdev)
515{
516	struct device *device = &pdev->dev;
517	struct mii_bus *bus = dev_get_drvdata(device);
518	struct fsl_pq_mdio_priv *priv = bus->priv;
519
520	mdiobus_unregister(bus);
521
522	iounmap(priv->map);
523	mdiobus_free(bus);
524
525	return 0;
526}
527
528static struct platform_driver fsl_pq_mdio_driver = {
529	.driver = {
530		.name = "fsl-pq_mdio",
531		.of_match_table = fsl_pq_mdio_match,
532	},
533	.probe = fsl_pq_mdio_probe,
534	.remove = fsl_pq_mdio_remove,
535};
536
537module_platform_driver(fsl_pq_mdio_driver);
538
539MODULE_LICENSE("GPL");