Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  3 *
  4 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc.,
 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18 */
 19
 20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 21
 22#include <linux/module.h>
 23#include <linux/kernel.h>
 24#include <linux/string.h>
 25#include <linux/ptrace.h>
 26#include <linux/errno.h>
 27#include <linux/ioport.h>
 28#include <linux/slab.h>
 29#include <linux/interrupt.h>
 30#include <linux/pci.h>
 31#include <linux/delay.h>
 32#include <linux/netdevice.h>
 33#include <linux/etherdevice.h>
 34#include <linux/skbuff.h>
 35#include <linux/spinlock.h>
 36#include <linux/workqueue.h>
 37#include <linux/bitops.h>
 38#include <linux/io.h>
 39#include <linux/irq.h>
 40#include <linux/clk.h>
 41#include <linux/platform_device.h>
 42#include <linux/phy.h>
 43#include <linux/fec.h>
 44#include <linux/of.h>
 45#include <linux/of_device.h>
 46#include <linux/of_gpio.h>
 47#include <linux/of_net.h>
 48
 49#include "fec.h"
 50
 51/* FEC 1588 register bits */
 52#define FEC_T_CTRL_SLAVE                0x00002000
 53#define FEC_T_CTRL_CAPTURE              0x00000800
 54#define FEC_T_CTRL_RESTART              0x00000200
 55#define FEC_T_CTRL_PERIOD_RST           0x00000030
 56#define FEC_T_CTRL_PERIOD_EN		0x00000010
 57#define FEC_T_CTRL_ENABLE               0x00000001
 58
 59#define FEC_T_INC_MASK                  0x0000007f
 60#define FEC_T_INC_OFFSET                0
 61#define FEC_T_INC_CORR_MASK             0x00007f00
 62#define FEC_T_INC_CORR_OFFSET           8
 63
 64#define FEC_T_CTRL_PINPER		0x00000080
 65#define FEC_T_TF0_MASK			0x00000001
 66#define FEC_T_TF0_OFFSET		0
 67#define FEC_T_TF1_MASK			0x00000002
 68#define FEC_T_TF1_OFFSET		1
 69#define FEC_T_TF2_MASK			0x00000004
 70#define FEC_T_TF2_OFFSET		2
 71#define FEC_T_TF3_MASK			0x00000008
 72#define FEC_T_TF3_OFFSET		3
 73#define FEC_T_TDRE_MASK			0x00000001
 74#define FEC_T_TDRE_OFFSET		0
 75#define FEC_T_TMODE_MASK		0x0000003C
 76#define FEC_T_TMODE_OFFSET		2
 77#define FEC_T_TIE_MASK			0x00000040
 78#define FEC_T_TIE_OFFSET		6
 79#define FEC_T_TF_MASK			0x00000080
 80#define FEC_T_TF_OFFSET			7
 81
 82#define FEC_ATIME_CTRL		0x400
 83#define FEC_ATIME		0x404
 84#define FEC_ATIME_EVT_OFFSET	0x408
 85#define FEC_ATIME_EVT_PERIOD	0x40c
 86#define FEC_ATIME_CORR		0x410
 87#define FEC_ATIME_INC		0x414
 88#define FEC_TS_TIMESTAMP	0x418
 89
 90#define FEC_TGSR		0x604
 91#define FEC_TCSR(n)		(0x608 + n * 0x08)
 92#define FEC_TCCR(n)		(0x60C + n * 0x08)
 93#define MAX_TIMER_CHANNEL	3
 94#define FEC_TMODE_TOGGLE	0x05
 95#define FEC_HIGH_PULSE		0x0F
 96
 97#define FEC_CC_MULT	(1 << 31)
 98#define FEC_COUNTER_PERIOD	(1 << 31)
 99#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
100#define FEC_CHANNLE_0		0
101#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
102
103/**
104 * fec_ptp_enable_pps
105 * @fep: the fec_enet_private structure handle
106 * @enable: enable the channel pps output
107 *
108 * This function enble the PPS ouput on the timer channel.
109 */
110static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
111{
112	unsigned long flags;
113	u32 val, tempval;
114	int inc;
115	struct timespec64 ts;
116	u64 ns;
117	val = 0;
118
119	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
120		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
121		return -EINVAL;
122	}
123
124	if (fep->pps_enable == enable)
125		return 0;
126
127	fep->pps_channel = DEFAULT_PPS_CHANNEL;
128	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
129	inc = fep->ptp_inc;
130
131	spin_lock_irqsave(&fep->tmreg_lock, flags);
132
133	if (enable) {
134		/* clear capture or output compare interrupt status if have.
135		 */
136		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
137
138		/* It is recommended to double check the TMODE field in the
139		 * TCSR register to be cleared before the first compare counter
140		 * is written into TCCR register. Just add a double check.
141		 */
142		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
143		do {
144			val &= ~(FEC_T_TMODE_MASK);
145			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
146			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
147		} while (val & FEC_T_TMODE_MASK);
148
149		/* Dummy read counter to update the counter */
150		timecounter_read(&fep->tc);
151		/* We want to find the first compare event in the next
152		 * second point. So we need to know what the ptp time
153		 * is now and how many nanoseconds is ahead to get next second.
154		 * The remaining nanosecond ahead before the next second would be
155		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
156		 * to current timer would be next second.
157		 */
158		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
159		tempval |= FEC_T_CTRL_CAPTURE;
160		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
161
162		tempval = readl(fep->hwp + FEC_ATIME);
163		/* Convert the ptp local counter to 1588 timestamp */
164		ns = timecounter_cyc2time(&fep->tc, tempval);
165		ts = ns_to_timespec64(ns);
166
167		/* The tempval is  less than 3 seconds, and  so val is less than
168		 * 4 seconds. No overflow for 32bit calculation.
169		 */
170		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
171
172		/* Need to consider the situation that the current time is
173		 * very close to the second point, which means NSEC_PER_SEC
174		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
175		 * is still running when we calculate the first compare event, it is
176		 * possible that the remaining nanoseonds run out before the compare
177		 * counter is calculated and written into TCCR register. To avoid
178		 * this possibility, we will set the compare event to be the next
179		 * of next second. The current setting is 31-bit timer and wrap
180		 * around over 2 seconds. So it is okay to set the next of next
181		 * seond for the timer.
182		 */
183		val += NSEC_PER_SEC;
184
185		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
186		 * ptp counter, which maybe cause 32-bit wrap. Since the
187		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
188		 * We can ensure the wrap will not cause issue. If the offset
189		 * is bigger than fep->cc.mask would be a error.
190		 */
191		val &= fep->cc.mask;
192		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
193
194		/* Calculate the second the compare event timestamp */
195		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
196
197		/* * Enable compare event when overflow */
198		val = readl(fep->hwp + FEC_ATIME_CTRL);
199		val |= FEC_T_CTRL_PINPER;
200		writel(val, fep->hwp + FEC_ATIME_CTRL);
201
202		/* Compare channel setting. */
203		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
204		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
205		val &= ~(1 << FEC_T_TDRE_OFFSET);
206		val &= ~(FEC_T_TMODE_MASK);
207		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
208		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
209
210		/* Write the second compare event timestamp and calculate
211		 * the third timestamp. Refer the TCCR register detail in the spec.
212		 */
213		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
214		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
215	} else {
216		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
217	}
218
219	fep->pps_enable = enable;
220	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
221
222	return 0;
223}
224
225/**
226 * fec_ptp_read - read raw cycle counter (to be used by time counter)
227 * @cc: the cyclecounter structure
228 *
229 * this function reads the cyclecounter registers and is called by the
230 * cyclecounter structure used to construct a ns counter from the
231 * arbitrary fixed point registers
232 */
233static cycle_t fec_ptp_read(const struct cyclecounter *cc)
234{
235	struct fec_enet_private *fep =
236		container_of(cc, struct fec_enet_private, cc);
237	const struct platform_device_id *id_entry =
238		platform_get_device_id(fep->pdev);
239	u32 tempval;
240
241	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
242	tempval |= FEC_T_CTRL_CAPTURE;
243	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
244
245	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
246		udelay(1);
247
248	return readl(fep->hwp + FEC_ATIME);
249}
250
251/**
252 * fec_ptp_start_cyclecounter - create the cycle counter from hw
253 * @ndev: network device
254 *
255 * this function initializes the timecounter and cyclecounter
256 * structures for use in generated a ns counter from the arbitrary
257 * fixed point cycles registers in the hardware.
258 */
259void fec_ptp_start_cyclecounter(struct net_device *ndev)
260{
261	struct fec_enet_private *fep = netdev_priv(ndev);
262	unsigned long flags;
263	int inc;
264
265	inc = 1000000000 / fep->cycle_speed;
266
267	/* grab the ptp lock */
268	spin_lock_irqsave(&fep->tmreg_lock, flags);
269
270	/* 1ns counter */
271	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
272
273	/* use 31-bit timer counter */
274	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
275
276	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
277		fep->hwp + FEC_ATIME_CTRL);
278
279	memset(&fep->cc, 0, sizeof(fep->cc));
280	fep->cc.read = fec_ptp_read;
281	fep->cc.mask = CLOCKSOURCE_MASK(31);
282	fep->cc.shift = 31;
283	fep->cc.mult = FEC_CC_MULT;
284
285	/* reset the ns time counter */
286	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
287
288	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
289}
290
291/**
292 * fec_ptp_adjfreq - adjust ptp cycle frequency
293 * @ptp: the ptp clock structure
294 * @ppb: parts per billion adjustment from base
295 *
296 * Adjust the frequency of the ptp cycle counter by the
297 * indicated ppb from the base frequency.
298 *
299 * Because ENET hardware frequency adjust is complex,
300 * using software method to do that.
301 */
302static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
303{
304	unsigned long flags;
305	int neg_adj = 0;
306	u32 i, tmp;
307	u32 corr_inc, corr_period;
308	u32 corr_ns;
309	u64 lhs, rhs;
310
311	struct fec_enet_private *fep =
312	    container_of(ptp, struct fec_enet_private, ptp_caps);
313
314	if (ppb == 0)
315		return 0;
316
317	if (ppb < 0) {
318		ppb = -ppb;
319		neg_adj = 1;
320	}
321
322	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
323	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
324	 * meet adjustment requirement.
325	 */
326	lhs = NSEC_PER_SEC;
327	rhs = (u64)ppb * (u64)fep->ptp_inc;
328	for (i = 1; i <= fep->ptp_inc; i++) {
329		if (lhs >= rhs) {
330			corr_inc = i;
331			corr_period = div_u64(lhs, rhs);
332			break;
333		}
334		lhs += NSEC_PER_SEC;
335	}
336	/* Not found? Set it to high value - double speed
337	 * correct in every clock step.
338	 */
339	if (i > fep->ptp_inc) {
340		corr_inc = fep->ptp_inc;
341		corr_period = 1;
342	}
343
344	if (neg_adj)
345		corr_ns = fep->ptp_inc - corr_inc;
346	else
347		corr_ns = fep->ptp_inc + corr_inc;
348
349	spin_lock_irqsave(&fep->tmreg_lock, flags);
350
351	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
352	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
353	writel(tmp, fep->hwp + FEC_ATIME_INC);
354	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
355	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
356	/* dummy read to update the timer. */
357	timecounter_read(&fep->tc);
358
359	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
360
361	return 0;
362}
363
364/**
365 * fec_ptp_adjtime
366 * @ptp: the ptp clock structure
367 * @delta: offset to adjust the cycle counter by
368 *
369 * adjust the timer by resetting the timecounter structure.
370 */
371static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
372{
373	struct fec_enet_private *fep =
374	    container_of(ptp, struct fec_enet_private, ptp_caps);
375	unsigned long flags;
376
377	spin_lock_irqsave(&fep->tmreg_lock, flags);
378	timecounter_adjtime(&fep->tc, delta);
379	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
380
381	return 0;
382}
383
384/**
385 * fec_ptp_gettime
386 * @ptp: the ptp clock structure
387 * @ts: timespec structure to hold the current time value
388 *
389 * read the timecounter and return the correct value on ns,
390 * after converting it into a struct timespec.
391 */
392static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
393{
394	struct fec_enet_private *adapter =
395	    container_of(ptp, struct fec_enet_private, ptp_caps);
396	u64 ns;
397	unsigned long flags;
398
399	spin_lock_irqsave(&adapter->tmreg_lock, flags);
400	ns = timecounter_read(&adapter->tc);
401	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
402
403	*ts = ns_to_timespec64(ns);
404
405	return 0;
406}
407
408/**
409 * fec_ptp_settime
410 * @ptp: the ptp clock structure
411 * @ts: the timespec containing the new time for the cycle counter
412 *
413 * reset the timecounter to use a new base value instead of the kernel
414 * wall timer value.
415 */
416static int fec_ptp_settime(struct ptp_clock_info *ptp,
417			   const struct timespec64 *ts)
418{
419	struct fec_enet_private *fep =
420	    container_of(ptp, struct fec_enet_private, ptp_caps);
421
422	u64 ns;
423	unsigned long flags;
424	u32 counter;
425
426	mutex_lock(&fep->ptp_clk_mutex);
427	/* Check the ptp clock */
428	if (!fep->ptp_clk_on) {
429		mutex_unlock(&fep->ptp_clk_mutex);
430		return -EINVAL;
431	}
432
433	ns = timespec64_to_ns(ts);
434	/* Get the timer value based on timestamp.
435	 * Update the counter with the masked value.
436	 */
437	counter = ns & fep->cc.mask;
438
439	spin_lock_irqsave(&fep->tmreg_lock, flags);
440	writel(counter, fep->hwp + FEC_ATIME);
441	timecounter_init(&fep->tc, &fep->cc, ns);
442	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
443	mutex_unlock(&fep->ptp_clk_mutex);
444	return 0;
445}
446
447/**
448 * fec_ptp_enable
449 * @ptp: the ptp clock structure
450 * @rq: the requested feature to change
451 * @on: whether to enable or disable the feature
452 *
453 */
454static int fec_ptp_enable(struct ptp_clock_info *ptp,
455			  struct ptp_clock_request *rq, int on)
456{
457	struct fec_enet_private *fep =
458	    container_of(ptp, struct fec_enet_private, ptp_caps);
459	int ret = 0;
460
461	if (rq->type == PTP_CLK_REQ_PPS) {
462		ret = fec_ptp_enable_pps(fep, on);
463
464		return ret;
465	}
466	return -EOPNOTSUPP;
467}
468
469/**
470 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
471 * @ndev: pointer to net_device
472 * @ifreq: ioctl data
473 * @cmd: particular ioctl requested
474 */
 
 
 
 
 
 
 
 
475int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
476{
477	struct fec_enet_private *fep = netdev_priv(ndev);
478
479	struct hwtstamp_config config;
480
481	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
482		return -EFAULT;
483
484	/* reserved for future extensions */
485	if (config.flags)
486		return -EINVAL;
487
488	switch (config.tx_type) {
489	case HWTSTAMP_TX_OFF:
490		fep->hwts_tx_en = 0;
491		break;
492	case HWTSTAMP_TX_ON:
493		fep->hwts_tx_en = 1;
494		break;
495	default:
496		return -ERANGE;
497	}
498
499	switch (config.rx_filter) {
500	case HWTSTAMP_FILTER_NONE:
501		if (fep->hwts_rx_en)
502			fep->hwts_rx_en = 0;
503		config.rx_filter = HWTSTAMP_FILTER_NONE;
504		break;
505
506	default:
507		fep->hwts_rx_en = 1;
508		config.rx_filter = HWTSTAMP_FILTER_ALL;
509		break;
510	}
511
512	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
513	    -EFAULT : 0;
514}
515
516int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
517{
518	struct fec_enet_private *fep = netdev_priv(ndev);
519	struct hwtstamp_config config;
520
521	config.flags = 0;
522	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
523	config.rx_filter = (fep->hwts_rx_en ?
524			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
525
526	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
527		-EFAULT : 0;
528}
529
530/**
531 * fec_time_keep - call timecounter_read every second to avoid timer overrun
532 *                 because ENET just support 32bit counter, will timeout in 4s
533 */
534static void fec_time_keep(struct work_struct *work)
535{
536	struct delayed_work *dwork = to_delayed_work(work);
537	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
538	u64 ns;
539	unsigned long flags;
540
541	mutex_lock(&fep->ptp_clk_mutex);
542	if (fep->ptp_clk_on) {
543		spin_lock_irqsave(&fep->tmreg_lock, flags);
544		ns = timecounter_read(&fep->tc);
545		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
546	}
547	mutex_unlock(&fep->ptp_clk_mutex);
548
549	schedule_delayed_work(&fep->time_keep, HZ);
550}
551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552/**
553 * fec_ptp_init
554 * @ndev: The FEC network adapter
555 *
556 * This function performs the required steps for enabling ptp
557 * support. If ptp support has already been loaded it simply calls the
558 * cyclecounter init routine and exits.
559 */
560
561void fec_ptp_init(struct platform_device *pdev)
562{
563	struct net_device *ndev = platform_get_drvdata(pdev);
564	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
565
566	fep->ptp_caps.owner = THIS_MODULE;
567	snprintf(fep->ptp_caps.name, 16, "fec ptp");
568
569	fep->ptp_caps.max_adj = 250000000;
570	fep->ptp_caps.n_alarm = 0;
571	fep->ptp_caps.n_ext_ts = 0;
572	fep->ptp_caps.n_per_out = 0;
573	fep->ptp_caps.n_pins = 0;
574	fep->ptp_caps.pps = 1;
575	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
576	fep->ptp_caps.adjtime = fec_ptp_adjtime;
577	fep->ptp_caps.gettime64 = fec_ptp_gettime;
578	fep->ptp_caps.settime64 = fec_ptp_settime;
579	fep->ptp_caps.enable = fec_ptp_enable;
580
581	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
582	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
583
584	spin_lock_init(&fep->tmreg_lock);
585
586	fec_ptp_start_cyclecounter(ndev);
587
588	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
591	if (IS_ERR(fep->ptp_clock)) {
592		fep->ptp_clock = NULL;
593		pr_err("ptp_clock_register failed\n");
594	}
595
596	schedule_delayed_work(&fep->time_keep, HZ);
597}
598
599void fec_ptp_stop(struct platform_device *pdev)
600{
601	struct net_device *ndev = platform_get_drvdata(pdev);
602	struct fec_enet_private *fep = netdev_priv(ndev);
603
604	cancel_delayed_work_sync(&fep->time_keep);
605	if (fep->ptp_clock)
606		ptp_clock_unregister(fep->ptp_clock);
607}
608
609/**
610 * fec_ptp_check_pps_event
611 * @fep: the fec_enet_private structure handle
612 *
613 * This function check the pps event and reload the timer compare counter.
614 */
615uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
616{
617	u32 val;
618	u8 channel = fep->pps_channel;
619	struct ptp_clock_event event;
620
621	val = readl(fep->hwp + FEC_TCSR(channel));
622	if (val & FEC_T_TF_MASK) {
623		/* Write the next next compare(not the next according the spec)
624		 * value to the register
625		 */
626		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
627		do {
628			writel(val, fep->hwp + FEC_TCSR(channel));
629		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
630
631		/* Update the counter; */
632		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
633
634		event.type = PTP_CLOCK_PPS;
635		ptp_clock_event(fep->ptp_clock, &event);
636		return 1;
637	}
638
639	return 0;
640}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_device.h>
 34#include <linux/of_gpio.h>
 35#include <linux/of_net.h>
 36
 37#include "fec.h"
 38
 39/* FEC 1588 register bits */
 40#define FEC_T_CTRL_SLAVE                0x00002000
 41#define FEC_T_CTRL_CAPTURE              0x00000800
 42#define FEC_T_CTRL_RESTART              0x00000200
 43#define FEC_T_CTRL_PERIOD_RST           0x00000030
 44#define FEC_T_CTRL_PERIOD_EN		0x00000010
 45#define FEC_T_CTRL_ENABLE               0x00000001
 46
 47#define FEC_T_INC_MASK                  0x0000007f
 48#define FEC_T_INC_OFFSET                0
 49#define FEC_T_INC_CORR_MASK             0x00007f00
 50#define FEC_T_INC_CORR_OFFSET           8
 51
 52#define FEC_T_CTRL_PINPER		0x00000080
 53#define FEC_T_TF0_MASK			0x00000001
 54#define FEC_T_TF0_OFFSET		0
 55#define FEC_T_TF1_MASK			0x00000002
 56#define FEC_T_TF1_OFFSET		1
 57#define FEC_T_TF2_MASK			0x00000004
 58#define FEC_T_TF2_OFFSET		2
 59#define FEC_T_TF3_MASK			0x00000008
 60#define FEC_T_TF3_OFFSET		3
 61#define FEC_T_TDRE_MASK			0x00000001
 62#define FEC_T_TDRE_OFFSET		0
 63#define FEC_T_TMODE_MASK		0x0000003C
 64#define FEC_T_TMODE_OFFSET		2
 65#define FEC_T_TIE_MASK			0x00000040
 66#define FEC_T_TIE_OFFSET		6
 67#define FEC_T_TF_MASK			0x00000080
 68#define FEC_T_TF_OFFSET			7
 69
 70#define FEC_ATIME_CTRL		0x400
 71#define FEC_ATIME		0x404
 72#define FEC_ATIME_EVT_OFFSET	0x408
 73#define FEC_ATIME_EVT_PERIOD	0x40c
 74#define FEC_ATIME_CORR		0x410
 75#define FEC_ATIME_INC		0x414
 76#define FEC_TS_TIMESTAMP	0x418
 77
 78#define FEC_TGSR		0x604
 79#define FEC_TCSR(n)		(0x608 + n * 0x08)
 80#define FEC_TCCR(n)		(0x60C + n * 0x08)
 81#define MAX_TIMER_CHANNEL	3
 82#define FEC_TMODE_TOGGLE	0x05
 83#define FEC_HIGH_PULSE		0x0F
 84
 85#define FEC_CC_MULT	(1 << 31)
 86#define FEC_COUNTER_PERIOD	(1 << 31)
 87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 88#define FEC_CHANNLE_0		0
 89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 90
 91/**
 92 * fec_ptp_enable_pps
 93 * @fep: the fec_enet_private structure handle
 94 * @enable: enable the channel pps output
 95 *
 96 * This function enble the PPS ouput on the timer channel.
 97 */
 98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 99{
100	unsigned long flags;
101	u32 val, tempval;
 
102	struct timespec64 ts;
103	u64 ns;
104	val = 0;
105
 
 
 
 
 
106	if (fep->pps_enable == enable)
107		return 0;
108
109	fep->pps_channel = DEFAULT_PPS_CHANNEL;
110	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
 
111
112	spin_lock_irqsave(&fep->tmreg_lock, flags);
113
114	if (enable) {
115		/* clear capture or output compare interrupt status if have.
116		 */
117		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118
119		/* It is recommended to double check the TMODE field in the
120		 * TCSR register to be cleared before the first compare counter
121		 * is written into TCCR register. Just add a double check.
122		 */
123		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124		do {
125			val &= ~(FEC_T_TMODE_MASK);
126			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128		} while (val & FEC_T_TMODE_MASK);
129
130		/* Dummy read counter to update the counter */
131		timecounter_read(&fep->tc);
132		/* We want to find the first compare event in the next
133		 * second point. So we need to know what the ptp time
134		 * is now and how many nanoseconds is ahead to get next second.
135		 * The remaining nanosecond ahead before the next second would be
136		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137		 * to current timer would be next second.
138		 */
139		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
140		tempval |= FEC_T_CTRL_CAPTURE;
141		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
142
143		tempval = readl(fep->hwp + FEC_ATIME);
144		/* Convert the ptp local counter to 1588 timestamp */
145		ns = timecounter_cyc2time(&fep->tc, tempval);
146		ts = ns_to_timespec64(ns);
147
148		/* The tempval is  less than 3 seconds, and  so val is less than
149		 * 4 seconds. No overflow for 32bit calculation.
150		 */
151		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
152
153		/* Need to consider the situation that the current time is
154		 * very close to the second point, which means NSEC_PER_SEC
155		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
156		 * is still running when we calculate the first compare event, it is
157		 * possible that the remaining nanoseonds run out before the compare
158		 * counter is calculated and written into TCCR register. To avoid
159		 * this possibility, we will set the compare event to be the next
160		 * of next second. The current setting is 31-bit timer and wrap
161		 * around over 2 seconds. So it is okay to set the next of next
162		 * seond for the timer.
163		 */
164		val += NSEC_PER_SEC;
165
166		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
167		 * ptp counter, which maybe cause 32-bit wrap. Since the
168		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
169		 * We can ensure the wrap will not cause issue. If the offset
170		 * is bigger than fep->cc.mask would be a error.
171		 */
172		val &= fep->cc.mask;
173		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
174
175		/* Calculate the second the compare event timestamp */
176		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
177
178		/* * Enable compare event when overflow */
179		val = readl(fep->hwp + FEC_ATIME_CTRL);
180		val |= FEC_T_CTRL_PINPER;
181		writel(val, fep->hwp + FEC_ATIME_CTRL);
182
183		/* Compare channel setting. */
184		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
185		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
186		val &= ~(1 << FEC_T_TDRE_OFFSET);
187		val &= ~(FEC_T_TMODE_MASK);
188		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
189		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
190
191		/* Write the second compare event timestamp and calculate
192		 * the third timestamp. Refer the TCCR register detail in the spec.
193		 */
194		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
195		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
196	} else {
197		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
198	}
199
200	fep->pps_enable = enable;
201	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
202
203	return 0;
204}
205
206/**
207 * fec_ptp_read - read raw cycle counter (to be used by time counter)
208 * @cc: the cyclecounter structure
209 *
210 * this function reads the cyclecounter registers and is called by the
211 * cyclecounter structure used to construct a ns counter from the
212 * arbitrary fixed point registers
213 */
214static u64 fec_ptp_read(const struct cyclecounter *cc)
215{
216	struct fec_enet_private *fep =
217		container_of(cc, struct fec_enet_private, cc);
218	const struct platform_device_id *id_entry =
219		platform_get_device_id(fep->pdev);
220	u32 tempval;
221
222	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
223	tempval |= FEC_T_CTRL_CAPTURE;
224	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
225
226	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
227		udelay(1);
228
229	return readl(fep->hwp + FEC_ATIME);
230}
231
232/**
233 * fec_ptp_start_cyclecounter - create the cycle counter from hw
234 * @ndev: network device
235 *
236 * this function initializes the timecounter and cyclecounter
237 * structures for use in generated a ns counter from the arbitrary
238 * fixed point cycles registers in the hardware.
239 */
240void fec_ptp_start_cyclecounter(struct net_device *ndev)
241{
242	struct fec_enet_private *fep = netdev_priv(ndev);
243	unsigned long flags;
244	int inc;
245
246	inc = 1000000000 / fep->cycle_speed;
247
248	/* grab the ptp lock */
249	spin_lock_irqsave(&fep->tmreg_lock, flags);
250
251	/* 1ns counter */
252	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
253
254	/* use 31-bit timer counter */
255	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
256
257	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
258		fep->hwp + FEC_ATIME_CTRL);
259
260	memset(&fep->cc, 0, sizeof(fep->cc));
261	fep->cc.read = fec_ptp_read;
262	fep->cc.mask = CLOCKSOURCE_MASK(31);
263	fep->cc.shift = 31;
264	fep->cc.mult = FEC_CC_MULT;
265
266	/* reset the ns time counter */
267	timecounter_init(&fep->tc, &fep->cc, 0);
268
269	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
270}
271
272/**
273 * fec_ptp_adjfreq - adjust ptp cycle frequency
274 * @ptp: the ptp clock structure
275 * @ppb: parts per billion adjustment from base
276 *
277 * Adjust the frequency of the ptp cycle counter by the
278 * indicated ppb from the base frequency.
279 *
280 * Because ENET hardware frequency adjust is complex,
281 * using software method to do that.
282 */
283static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
284{
285	unsigned long flags;
286	int neg_adj = 0;
287	u32 i, tmp;
288	u32 corr_inc, corr_period;
289	u32 corr_ns;
290	u64 lhs, rhs;
291
292	struct fec_enet_private *fep =
293	    container_of(ptp, struct fec_enet_private, ptp_caps);
294
295	if (ppb == 0)
296		return 0;
297
298	if (ppb < 0) {
299		ppb = -ppb;
300		neg_adj = 1;
301	}
302
303	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
304	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
305	 * meet adjustment requirement.
306	 */
307	lhs = NSEC_PER_SEC;
308	rhs = (u64)ppb * (u64)fep->ptp_inc;
309	for (i = 1; i <= fep->ptp_inc; i++) {
310		if (lhs >= rhs) {
311			corr_inc = i;
312			corr_period = div_u64(lhs, rhs);
313			break;
314		}
315		lhs += NSEC_PER_SEC;
316	}
317	/* Not found? Set it to high value - double speed
318	 * correct in every clock step.
319	 */
320	if (i > fep->ptp_inc) {
321		corr_inc = fep->ptp_inc;
322		corr_period = 1;
323	}
324
325	if (neg_adj)
326		corr_ns = fep->ptp_inc - corr_inc;
327	else
328		corr_ns = fep->ptp_inc + corr_inc;
329
330	spin_lock_irqsave(&fep->tmreg_lock, flags);
331
332	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
333	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
334	writel(tmp, fep->hwp + FEC_ATIME_INC);
335	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
336	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
337	/* dummy read to update the timer. */
338	timecounter_read(&fep->tc);
339
340	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
341
342	return 0;
343}
344
345/**
346 * fec_ptp_adjtime
347 * @ptp: the ptp clock structure
348 * @delta: offset to adjust the cycle counter by
349 *
350 * adjust the timer by resetting the timecounter structure.
351 */
352static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
353{
354	struct fec_enet_private *fep =
355	    container_of(ptp, struct fec_enet_private, ptp_caps);
356	unsigned long flags;
357
358	spin_lock_irqsave(&fep->tmreg_lock, flags);
359	timecounter_adjtime(&fep->tc, delta);
360	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
361
362	return 0;
363}
364
365/**
366 * fec_ptp_gettime
367 * @ptp: the ptp clock structure
368 * @ts: timespec structure to hold the current time value
369 *
370 * read the timecounter and return the correct value on ns,
371 * after converting it into a struct timespec.
372 */
373static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
374{
375	struct fec_enet_private *adapter =
376	    container_of(ptp, struct fec_enet_private, ptp_caps);
377	u64 ns;
378	unsigned long flags;
379
380	spin_lock_irqsave(&adapter->tmreg_lock, flags);
381	ns = timecounter_read(&adapter->tc);
382	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
383
384	*ts = ns_to_timespec64(ns);
385
386	return 0;
387}
388
389/**
390 * fec_ptp_settime
391 * @ptp: the ptp clock structure
392 * @ts: the timespec containing the new time for the cycle counter
393 *
394 * reset the timecounter to use a new base value instead of the kernel
395 * wall timer value.
396 */
397static int fec_ptp_settime(struct ptp_clock_info *ptp,
398			   const struct timespec64 *ts)
399{
400	struct fec_enet_private *fep =
401	    container_of(ptp, struct fec_enet_private, ptp_caps);
402
403	u64 ns;
404	unsigned long flags;
405	u32 counter;
406
407	mutex_lock(&fep->ptp_clk_mutex);
408	/* Check the ptp clock */
409	if (!fep->ptp_clk_on) {
410		mutex_unlock(&fep->ptp_clk_mutex);
411		return -EINVAL;
412	}
413
414	ns = timespec64_to_ns(ts);
415	/* Get the timer value based on timestamp.
416	 * Update the counter with the masked value.
417	 */
418	counter = ns & fep->cc.mask;
419
420	spin_lock_irqsave(&fep->tmreg_lock, flags);
421	writel(counter, fep->hwp + FEC_ATIME);
422	timecounter_init(&fep->tc, &fep->cc, ns);
423	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
424	mutex_unlock(&fep->ptp_clk_mutex);
425	return 0;
426}
427
428/**
429 * fec_ptp_enable
430 * @ptp: the ptp clock structure
431 * @rq: the requested feature to change
432 * @on: whether to enable or disable the feature
433 *
434 */
435static int fec_ptp_enable(struct ptp_clock_info *ptp,
436			  struct ptp_clock_request *rq, int on)
437{
438	struct fec_enet_private *fep =
439	    container_of(ptp, struct fec_enet_private, ptp_caps);
440	int ret = 0;
441
442	if (rq->type == PTP_CLK_REQ_PPS) {
443		ret = fec_ptp_enable_pps(fep, on);
444
445		return ret;
446	}
447	return -EOPNOTSUPP;
448}
449
450/**
451 * fec_ptp_disable_hwts - disable hardware time stamping
452 * @ndev: pointer to net_device
 
 
453 */
454void fec_ptp_disable_hwts(struct net_device *ndev)
455{
456	struct fec_enet_private *fep = netdev_priv(ndev);
457
458	fep->hwts_tx_en = 0;
459	fep->hwts_rx_en = 0;
460}
461
462int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
463{
464	struct fec_enet_private *fep = netdev_priv(ndev);
465
466	struct hwtstamp_config config;
467
468	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
469		return -EFAULT;
470
471	/* reserved for future extensions */
472	if (config.flags)
473		return -EINVAL;
474
475	switch (config.tx_type) {
476	case HWTSTAMP_TX_OFF:
477		fep->hwts_tx_en = 0;
478		break;
479	case HWTSTAMP_TX_ON:
480		fep->hwts_tx_en = 1;
481		break;
482	default:
483		return -ERANGE;
484	}
485
486	switch (config.rx_filter) {
487	case HWTSTAMP_FILTER_NONE:
488		fep->hwts_rx_en = 0;
 
 
489		break;
490
491	default:
492		fep->hwts_rx_en = 1;
493		config.rx_filter = HWTSTAMP_FILTER_ALL;
494		break;
495	}
496
497	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
498	    -EFAULT : 0;
499}
500
501int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
502{
503	struct fec_enet_private *fep = netdev_priv(ndev);
504	struct hwtstamp_config config;
505
506	config.flags = 0;
507	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
508	config.rx_filter = (fep->hwts_rx_en ?
509			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
510
511	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
512		-EFAULT : 0;
513}
514
515/**
516 * fec_time_keep - call timecounter_read every second to avoid timer overrun
517 *                 because ENET just support 32bit counter, will timeout in 4s
518 */
519static void fec_time_keep(struct work_struct *work)
520{
521	struct delayed_work *dwork = to_delayed_work(work);
522	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
523	u64 ns;
524	unsigned long flags;
525
526	mutex_lock(&fep->ptp_clk_mutex);
527	if (fep->ptp_clk_on) {
528		spin_lock_irqsave(&fep->tmreg_lock, flags);
529		ns = timecounter_read(&fep->tc);
530		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
531	}
532	mutex_unlock(&fep->ptp_clk_mutex);
533
534	schedule_delayed_work(&fep->time_keep, HZ);
535}
536
537/* This function checks the pps event and reloads the timer compare counter. */
538static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
539{
540	struct net_device *ndev = dev_id;
541	struct fec_enet_private *fep = netdev_priv(ndev);
542	u32 val;
543	u8 channel = fep->pps_channel;
544	struct ptp_clock_event event;
545
546	val = readl(fep->hwp + FEC_TCSR(channel));
547	if (val & FEC_T_TF_MASK) {
548		/* Write the next next compare(not the next according the spec)
549		 * value to the register
550		 */
551		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
552		do {
553			writel(val, fep->hwp + FEC_TCSR(channel));
554		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
555
556		/* Update the counter; */
557		fep->next_counter = (fep->next_counter + fep->reload_period) &
558				fep->cc.mask;
559
560		event.type = PTP_CLOCK_PPS;
561		ptp_clock_event(fep->ptp_clock, &event);
562		return IRQ_HANDLED;
563	}
564
565	return IRQ_NONE;
566}
567
568/**
569 * fec_ptp_init
570 * @ndev: The FEC network adapter
571 *
572 * This function performs the required steps for enabling ptp
573 * support. If ptp support has already been loaded it simply calls the
574 * cyclecounter init routine and exits.
575 */
576
577void fec_ptp_init(struct platform_device *pdev, int irq_idx)
578{
579	struct net_device *ndev = platform_get_drvdata(pdev);
580	struct fec_enet_private *fep = netdev_priv(ndev);
581	int irq;
582	int ret;
583
584	fep->ptp_caps.owner = THIS_MODULE;
585	strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
586
587	fep->ptp_caps.max_adj = 250000000;
588	fep->ptp_caps.n_alarm = 0;
589	fep->ptp_caps.n_ext_ts = 0;
590	fep->ptp_caps.n_per_out = 0;
591	fep->ptp_caps.n_pins = 0;
592	fep->ptp_caps.pps = 1;
593	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
594	fep->ptp_caps.adjtime = fec_ptp_adjtime;
595	fep->ptp_caps.gettime64 = fec_ptp_gettime;
596	fep->ptp_caps.settime64 = fec_ptp_settime;
597	fep->ptp_caps.enable = fec_ptp_enable;
598
599	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
600	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
601
602	spin_lock_init(&fep->tmreg_lock);
603
604	fec_ptp_start_cyclecounter(ndev);
605
606	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
607
608	irq = platform_get_irq_byname_optional(pdev, "pps");
609	if (irq < 0)
610		irq = platform_get_irq_optional(pdev, irq_idx);
611	/* Failure to get an irq is not fatal,
612	 * only the PTP_CLOCK_PPS clock events should stop
613	 */
614	if (irq >= 0) {
615		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
616				       0, pdev->name, ndev);
617		if (ret < 0)
618			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
619				 ret);
620	}
621
622	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
623	if (IS_ERR(fep->ptp_clock)) {
624		fep->ptp_clock = NULL;
625		dev_err(&pdev->dev, "ptp_clock_register failed\n");
626	}
627
628	schedule_delayed_work(&fep->time_keep, HZ);
629}
630
631void fec_ptp_stop(struct platform_device *pdev)
632{
633	struct net_device *ndev = platform_get_drvdata(pdev);
634	struct fec_enet_private *fep = netdev_priv(ndev);
635
636	cancel_delayed_work_sync(&fep->time_keep);
637	if (fep->ptp_clock)
638		ptp_clock_unregister(fep->ptp_clock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639}