Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/ptrace.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/in.h>
  38#include <linux/ip.h>
  39#include <net/ip.h>
  40#include <net/tso.h>
  41#include <linux/tcp.h>
  42#include <linux/udp.h>
  43#include <linux/icmp.h>
  44#include <linux/spinlock.h>
  45#include <linux/workqueue.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/irq.h>
  49#include <linux/clk.h>
 
  50#include <linux/platform_device.h>
  51#include <linux/mdio.h>
  52#include <linux/phy.h>
  53#include <linux/fec.h>
  54#include <linux/of.h>
  55#include <linux/of_device.h>
  56#include <linux/of_gpio.h>
  57#include <linux/of_mdio.h>
  58#include <linux/of_net.h>
  59#include <linux/regulator/consumer.h>
  60#include <linux/if_vlan.h>
  61#include <linux/pinctrl/consumer.h>
  62#include <linux/prefetch.h>
 
 
 
  63
  64#include <asm/cacheflush.h>
  65
  66#include "fec.h"
  67
  68static void set_multicast_list(struct net_device *ndev);
  69static void fec_enet_itr_coal_init(struct net_device *ndev);
  70
  71#define DRIVER_NAME	"fec"
  72
  73#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  74
  75/* Pause frame feild and FIFO threshold */
  76#define FEC_ENET_FCE	(1 << 5)
  77#define FEC_ENET_RSEM_V	0x84
  78#define FEC_ENET_RSFL_V	16
  79#define FEC_ENET_RAEM_V	0x8
  80#define FEC_ENET_RAFL_V	0x8
  81#define FEC_ENET_OPD_V	0xFFF0
  82#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84static struct platform_device_id fec_devtype[] = {
  85	{
  86		/* keep it for coldfire */
  87		.name = DRIVER_NAME,
  88		.driver_data = 0,
  89	}, {
  90		.name = "imx25-fec",
  91		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
  92	}, {
  93		.name = "imx27-fec",
  94		.driver_data = FEC_QUIRK_HAS_RACC,
  95	}, {
  96		.name = "imx28-fec",
  97		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  98				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
  99	}, {
 100		.name = "imx6q-fec",
 101		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 102				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 103				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 104				FEC_QUIRK_HAS_RACC,
 105	}, {
 106		.name = "mvf600-fec",
 107		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 108	}, {
 109		.name = "imx6sx-fec",
 110		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 111				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 112				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 113				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 114				FEC_QUIRK_HAS_RACC,
 115	}, {
 116		/* sentinel */
 117	}
 118};
 119MODULE_DEVICE_TABLE(platform, fec_devtype);
 120
 121enum imx_fec_type {
 122	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 123	IMX27_FEC,	/* runs on i.mx27/35/51 */
 124	IMX28_FEC,
 125	IMX6Q_FEC,
 126	MVF600_FEC,
 127	IMX6SX_FEC,
 
 128};
 129
 130static const struct of_device_id fec_dt_ids[] = {
 131	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 132	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 133	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 134	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 135	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 136	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 
 137	{ /* sentinel */ }
 138};
 139MODULE_DEVICE_TABLE(of, fec_dt_ids);
 140
 141static unsigned char macaddr[ETH_ALEN];
 142module_param_array(macaddr, byte, NULL, 0);
 143MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 144
 145#if defined(CONFIG_M5272)
 146/*
 147 * Some hardware gets it MAC address out of local flash memory.
 148 * if this is non-zero then assume it is the address to get MAC from.
 149 */
 150#if defined(CONFIG_NETtel)
 151#define	FEC_FLASHMAC	0xf0006006
 152#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 153#define	FEC_FLASHMAC	0xf0006000
 154#elif defined(CONFIG_CANCam)
 155#define	FEC_FLASHMAC	0xf0020000
 156#elif defined (CONFIG_M5272C3)
 157#define	FEC_FLASHMAC	(0xffe04000 + 4)
 158#elif defined(CONFIG_MOD5272)
 159#define FEC_FLASHMAC	0xffc0406b
 160#else
 161#define	FEC_FLASHMAC	0
 162#endif
 163#endif /* CONFIG_M5272 */
 164
 165/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 
 
 
 166 */
 167#define PKT_MAXBUF_SIZE		1522
 168#define PKT_MINBUF_SIZE		64
 169#define PKT_MAXBLR_SIZE		1536
 170
 171/* FEC receive acceleration */
 172#define FEC_RACC_IPDIS		(1 << 1)
 173#define FEC_RACC_PRODIS		(1 << 2)
 
 174#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 175
 
 
 
 176/*
 177 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 178 * size bits. Other FEC hardware does not, so we need to take that into
 179 * account when setting it.
 180 */
 181#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 182    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 183#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 184#else
 185#define	OPT_FRAME_SIZE	0
 186#endif
 187
 188/* FEC MII MMFR bits definition */
 189#define FEC_MMFR_ST		(1 << 30)
 
 190#define FEC_MMFR_OP_READ	(2 << 28)
 
 191#define FEC_MMFR_OP_WRITE	(1 << 28)
 
 192#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 193#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 194#define FEC_MMFR_TA		(2 << 16)
 195#define FEC_MMFR_DATA(v)	(v & 0xffff)
 196/* FEC ECR bits definition */
 197#define FEC_ECR_MAGICEN		(1 << 2)
 198#define FEC_ECR_SLEEP		(1 << 3)
 199
 200#define FEC_MII_TIMEOUT		30000 /* us */
 201
 202/* Transmitter timeout */
 203#define TX_TIMEOUT (2 * HZ)
 204
 205#define FEC_PAUSE_FLAG_AUTONEG	0x1
 206#define FEC_PAUSE_FLAG_ENABLE	0x2
 207#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 208#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 209#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 210
 211#define COPYBREAK_DEFAULT	256
 212
 213#define TSO_HEADER_SIZE		128
 214/* Max number of allowed TCP segments for software TSO */
 215#define FEC_MAX_TSO_SEGS	100
 216#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 217
 218#define IS_TSO_HEADER(txq, addr) \
 219	((addr >= txq->tso_hdrs_dma) && \
 220	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 221
 222static int mii_cnt;
 223
 224static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 225					     struct bufdesc_prop *bd)
 226{
 227	return (bdp >= bd->last) ? bd->base
 228			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
 229}
 230
 231static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 232					     struct bufdesc_prop *bd)
 233{
 234	return (bdp <= bd->base) ? bd->last
 235			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
 236}
 237
 238static int fec_enet_get_bd_index(struct bufdesc *bdp,
 239				 struct bufdesc_prop *bd)
 240{
 241	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 242}
 243
 244static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 245{
 246	int entries;
 247
 248	entries = (((const char *)txq->dirty_tx -
 249			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 250
 251	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 252}
 253
 254static void swap_buffer(void *bufaddr, int len)
 255{
 256	int i;
 257	unsigned int *buf = bufaddr;
 258
 259	for (i = 0; i < len; i += 4, buf++)
 260		swab32s(buf);
 261}
 262
 263static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 264{
 265	int i;
 266	unsigned int *src = src_buf;
 267	unsigned int *dst = dst_buf;
 268
 269	for (i = 0; i < len; i += 4, src++, dst++)
 270		*dst = swab32p(src);
 271}
 272
 273static void fec_dump(struct net_device *ndev)
 274{
 275	struct fec_enet_private *fep = netdev_priv(ndev);
 276	struct bufdesc *bdp;
 277	struct fec_enet_priv_tx_q *txq;
 278	int index = 0;
 279
 280	netdev_info(ndev, "TX ring dump\n");
 281	pr_info("Nr     SC     addr       len  SKB\n");
 282
 283	txq = fep->tx_queue[0];
 284	bdp = txq->bd.base;
 285
 286	do {
 287		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 288			index,
 289			bdp == txq->bd.cur ? 'S' : ' ',
 290			bdp == txq->dirty_tx ? 'H' : ' ',
 291			fec16_to_cpu(bdp->cbd_sc),
 292			fec32_to_cpu(bdp->cbd_bufaddr),
 293			fec16_to_cpu(bdp->cbd_datlen),
 294			txq->tx_skbuff[index]);
 295		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 296		index++;
 297	} while (bdp != txq->bd.base);
 298}
 299
 300static inline bool is_ipv4_pkt(struct sk_buff *skb)
 301{
 302	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 303}
 304
 305static int
 306fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 307{
 308	/* Only run for packets requiring a checksum. */
 309	if (skb->ip_summed != CHECKSUM_PARTIAL)
 310		return 0;
 311
 312	if (unlikely(skb_cow_head(skb, 0)))
 313		return -1;
 314
 315	if (is_ipv4_pkt(skb))
 316		ip_hdr(skb)->check = 0;
 317	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 318
 319	return 0;
 320}
 321
 322static struct bufdesc *
 323fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 324			     struct sk_buff *skb,
 325			     struct net_device *ndev)
 326{
 327	struct fec_enet_private *fep = netdev_priv(ndev);
 328	struct bufdesc *bdp = txq->bd.cur;
 329	struct bufdesc_ex *ebdp;
 330	int nr_frags = skb_shinfo(skb)->nr_frags;
 331	int frag, frag_len;
 332	unsigned short status;
 333	unsigned int estatus = 0;
 334	skb_frag_t *this_frag;
 335	unsigned int index;
 336	void *bufaddr;
 337	dma_addr_t addr;
 338	int i;
 339
 340	for (frag = 0; frag < nr_frags; frag++) {
 341		this_frag = &skb_shinfo(skb)->frags[frag];
 342		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 343		ebdp = (struct bufdesc_ex *)bdp;
 344
 345		status = fec16_to_cpu(bdp->cbd_sc);
 346		status &= ~BD_ENET_TX_STATS;
 347		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 348		frag_len = skb_shinfo(skb)->frags[frag].size;
 349
 350		/* Handle the last BD specially */
 351		if (frag == nr_frags - 1) {
 352			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 353			if (fep->bufdesc_ex) {
 354				estatus |= BD_ENET_TX_INT;
 355				if (unlikely(skb_shinfo(skb)->tx_flags &
 356					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 357					estatus |= BD_ENET_TX_TS;
 358			}
 359		}
 360
 361		if (fep->bufdesc_ex) {
 362			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 363				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 364			if (skb->ip_summed == CHECKSUM_PARTIAL)
 365				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 366			ebdp->cbd_bdu = 0;
 367			ebdp->cbd_esc = cpu_to_fec32(estatus);
 368		}
 369
 370		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 371
 372		index = fec_enet_get_bd_index(bdp, &txq->bd);
 373		if (((unsigned long) bufaddr) & fep->tx_align ||
 374			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 375			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 376			bufaddr = txq->tx_bounce[index];
 377
 378			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 379				swap_buffer(bufaddr, frag_len);
 380		}
 381
 382		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 383				      DMA_TO_DEVICE);
 384		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 385			if (net_ratelimit())
 386				netdev_err(ndev, "Tx DMA memory map failed\n");
 387			goto dma_mapping_error;
 388		}
 389
 390		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 391		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 392		/* Make sure the updates to rest of the descriptor are
 393		 * performed before transferring ownership.
 394		 */
 395		wmb();
 396		bdp->cbd_sc = cpu_to_fec16(status);
 397	}
 398
 399	return bdp;
 400dma_mapping_error:
 401	bdp = txq->bd.cur;
 402	for (i = 0; i < frag; i++) {
 403		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 404		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 405				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 406	}
 407	return ERR_PTR(-ENOMEM);
 408}
 409
 410static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 411				   struct sk_buff *skb, struct net_device *ndev)
 412{
 413	struct fec_enet_private *fep = netdev_priv(ndev);
 414	int nr_frags = skb_shinfo(skb)->nr_frags;
 415	struct bufdesc *bdp, *last_bdp;
 416	void *bufaddr;
 417	dma_addr_t addr;
 418	unsigned short status;
 419	unsigned short buflen;
 420	unsigned int estatus = 0;
 421	unsigned int index;
 422	int entries_free;
 423
 424	entries_free = fec_enet_get_free_txdesc_num(txq);
 425	if (entries_free < MAX_SKB_FRAGS + 1) {
 426		dev_kfree_skb_any(skb);
 427		if (net_ratelimit())
 428			netdev_err(ndev, "NOT enough BD for SG!\n");
 429		return NETDEV_TX_OK;
 430	}
 431
 432	/* Protocol checksum off-load for TCP and UDP. */
 433	if (fec_enet_clear_csum(skb, ndev)) {
 434		dev_kfree_skb_any(skb);
 435		return NETDEV_TX_OK;
 436	}
 437
 438	/* Fill in a Tx ring entry */
 439	bdp = txq->bd.cur;
 440	last_bdp = bdp;
 441	status = fec16_to_cpu(bdp->cbd_sc);
 442	status &= ~BD_ENET_TX_STATS;
 443
 444	/* Set buffer length and buffer pointer */
 445	bufaddr = skb->data;
 446	buflen = skb_headlen(skb);
 447
 448	index = fec_enet_get_bd_index(bdp, &txq->bd);
 449	if (((unsigned long) bufaddr) & fep->tx_align ||
 450		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 451		memcpy(txq->tx_bounce[index], skb->data, buflen);
 452		bufaddr = txq->tx_bounce[index];
 453
 454		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 455			swap_buffer(bufaddr, buflen);
 456	}
 457
 458	/* Push the data cache so the CPM does not get stale memory data. */
 459	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 460	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 461		dev_kfree_skb_any(skb);
 462		if (net_ratelimit())
 463			netdev_err(ndev, "Tx DMA memory map failed\n");
 464		return NETDEV_TX_OK;
 465	}
 466
 467	if (nr_frags) {
 468		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 469		if (IS_ERR(last_bdp)) {
 470			dma_unmap_single(&fep->pdev->dev, addr,
 471					 buflen, DMA_TO_DEVICE);
 472			dev_kfree_skb_any(skb);
 473			return NETDEV_TX_OK;
 474		}
 475	} else {
 476		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 477		if (fep->bufdesc_ex) {
 478			estatus = BD_ENET_TX_INT;
 479			if (unlikely(skb_shinfo(skb)->tx_flags &
 480				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 481				estatus |= BD_ENET_TX_TS;
 482		}
 483	}
 484	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 485	bdp->cbd_datlen = cpu_to_fec16(buflen);
 486
 487	if (fep->bufdesc_ex) {
 488
 489		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 490
 491		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 492			fep->hwts_tx_en))
 493			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 494
 495		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 496			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 497
 498		if (skb->ip_summed == CHECKSUM_PARTIAL)
 499			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 500
 501		ebdp->cbd_bdu = 0;
 502		ebdp->cbd_esc = cpu_to_fec32(estatus);
 503	}
 504
 505	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 506	/* Save skb pointer */
 507	txq->tx_skbuff[index] = skb;
 508
 509	/* Make sure the updates to rest of the descriptor are performed before
 510	 * transferring ownership.
 511	 */
 512	wmb();
 513
 514	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 515	 * it's the last BD of the frame, and to put the CRC on the end.
 516	 */
 517	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 518	bdp->cbd_sc = cpu_to_fec16(status);
 519
 520	/* If this was the last BD in the ring, start at the beginning again. */
 521	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 522
 523	skb_tx_timestamp(skb);
 524
 525	/* Make sure the update to bdp and tx_skbuff are performed before
 526	 * txq->bd.cur.
 527	 */
 528	wmb();
 529	txq->bd.cur = bdp;
 530
 531	/* Trigger transmission start */
 532	writel(0, txq->bd.reg_desc_active);
 533
 534	return 0;
 535}
 536
 537static int
 538fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 539			  struct net_device *ndev,
 540			  struct bufdesc *bdp, int index, char *data,
 541			  int size, bool last_tcp, bool is_last)
 542{
 543	struct fec_enet_private *fep = netdev_priv(ndev);
 544	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 545	unsigned short status;
 546	unsigned int estatus = 0;
 547	dma_addr_t addr;
 548
 549	status = fec16_to_cpu(bdp->cbd_sc);
 550	status &= ~BD_ENET_TX_STATS;
 551
 552	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 553
 554	if (((unsigned long) data) & fep->tx_align ||
 555		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 556		memcpy(txq->tx_bounce[index], data, size);
 557		data = txq->tx_bounce[index];
 558
 559		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 560			swap_buffer(data, size);
 561	}
 562
 563	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 564	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 565		dev_kfree_skb_any(skb);
 566		if (net_ratelimit())
 567			netdev_err(ndev, "Tx DMA memory map failed\n");
 568		return NETDEV_TX_BUSY;
 569	}
 570
 571	bdp->cbd_datlen = cpu_to_fec16(size);
 572	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 573
 574	if (fep->bufdesc_ex) {
 575		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 576			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 577		if (skb->ip_summed == CHECKSUM_PARTIAL)
 578			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 579		ebdp->cbd_bdu = 0;
 580		ebdp->cbd_esc = cpu_to_fec32(estatus);
 581	}
 582
 583	/* Handle the last BD specially */
 584	if (last_tcp)
 585		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 586	if (is_last) {
 587		status |= BD_ENET_TX_INTR;
 588		if (fep->bufdesc_ex)
 589			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 590	}
 591
 592	bdp->cbd_sc = cpu_to_fec16(status);
 593
 594	return 0;
 595}
 596
 597static int
 598fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 599			 struct sk_buff *skb, struct net_device *ndev,
 600			 struct bufdesc *bdp, int index)
 601{
 602	struct fec_enet_private *fep = netdev_priv(ndev);
 603	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 604	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 605	void *bufaddr;
 606	unsigned long dmabuf;
 607	unsigned short status;
 608	unsigned int estatus = 0;
 609
 610	status = fec16_to_cpu(bdp->cbd_sc);
 611	status &= ~BD_ENET_TX_STATS;
 612	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 613
 614	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 615	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 616	if (((unsigned long)bufaddr) & fep->tx_align ||
 617		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 618		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 619		bufaddr = txq->tx_bounce[index];
 620
 621		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 622			swap_buffer(bufaddr, hdr_len);
 623
 624		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 625					hdr_len, DMA_TO_DEVICE);
 626		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 627			dev_kfree_skb_any(skb);
 628			if (net_ratelimit())
 629				netdev_err(ndev, "Tx DMA memory map failed\n");
 630			return NETDEV_TX_BUSY;
 631		}
 632	}
 633
 634	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 635	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 636
 637	if (fep->bufdesc_ex) {
 638		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 639			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 640		if (skb->ip_summed == CHECKSUM_PARTIAL)
 641			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 642		ebdp->cbd_bdu = 0;
 643		ebdp->cbd_esc = cpu_to_fec32(estatus);
 644	}
 645
 646	bdp->cbd_sc = cpu_to_fec16(status);
 647
 648	return 0;
 649}
 650
 651static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 652				   struct sk_buff *skb,
 653				   struct net_device *ndev)
 654{
 655	struct fec_enet_private *fep = netdev_priv(ndev);
 656	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 657	int total_len, data_left;
 658	struct bufdesc *bdp = txq->bd.cur;
 659	struct tso_t tso;
 660	unsigned int index = 0;
 661	int ret;
 662
 663	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 664		dev_kfree_skb_any(skb);
 665		if (net_ratelimit())
 666			netdev_err(ndev, "NOT enough BD for TSO!\n");
 667		return NETDEV_TX_OK;
 668	}
 669
 670	/* Protocol checksum off-load for TCP and UDP. */
 671	if (fec_enet_clear_csum(skb, ndev)) {
 672		dev_kfree_skb_any(skb);
 673		return NETDEV_TX_OK;
 674	}
 675
 676	/* Initialize the TSO handler, and prepare the first payload */
 677	tso_start(skb, &tso);
 678
 679	total_len = skb->len - hdr_len;
 680	while (total_len > 0) {
 681		char *hdr;
 682
 683		index = fec_enet_get_bd_index(bdp, &txq->bd);
 684		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 685		total_len -= data_left;
 686
 687		/* prepare packet headers: MAC + IP + TCP */
 688		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 689		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 690		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 691		if (ret)
 692			goto err_release;
 693
 694		while (data_left > 0) {
 695			int size;
 696
 697			size = min_t(int, tso.size, data_left);
 698			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 699			index = fec_enet_get_bd_index(bdp, &txq->bd);
 700			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 701							bdp, index,
 702							tso.data, size,
 703							size == data_left,
 704							total_len == 0);
 705			if (ret)
 706				goto err_release;
 707
 708			data_left -= size;
 709			tso_build_data(skb, &tso, size);
 710		}
 711
 712		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 713	}
 714
 715	/* Save skb pointer */
 716	txq->tx_skbuff[index] = skb;
 717
 718	skb_tx_timestamp(skb);
 719	txq->bd.cur = bdp;
 720
 721	/* Trigger transmission start */
 722	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 723	    !readl(txq->bd.reg_desc_active) ||
 724	    !readl(txq->bd.reg_desc_active) ||
 725	    !readl(txq->bd.reg_desc_active) ||
 726	    !readl(txq->bd.reg_desc_active))
 727		writel(0, txq->bd.reg_desc_active);
 728
 729	return 0;
 730
 731err_release:
 732	/* TODO: Release all used data descriptors for TSO */
 733	return ret;
 734}
 735
 736static netdev_tx_t
 737fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 738{
 739	struct fec_enet_private *fep = netdev_priv(ndev);
 740	int entries_free;
 741	unsigned short queue;
 742	struct fec_enet_priv_tx_q *txq;
 743	struct netdev_queue *nq;
 744	int ret;
 745
 746	queue = skb_get_queue_mapping(skb);
 747	txq = fep->tx_queue[queue];
 748	nq = netdev_get_tx_queue(ndev, queue);
 749
 750	if (skb_is_gso(skb))
 751		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 752	else
 753		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 754	if (ret)
 755		return ret;
 756
 757	entries_free = fec_enet_get_free_txdesc_num(txq);
 758	if (entries_free <= txq->tx_stop_threshold)
 759		netif_tx_stop_queue(nq);
 760
 761	return NETDEV_TX_OK;
 762}
 763
 764/* Init RX & TX buffer descriptors
 765 */
 766static void fec_enet_bd_init(struct net_device *dev)
 767{
 768	struct fec_enet_private *fep = netdev_priv(dev);
 769	struct fec_enet_priv_tx_q *txq;
 770	struct fec_enet_priv_rx_q *rxq;
 771	struct bufdesc *bdp;
 772	unsigned int i;
 773	unsigned int q;
 774
 775	for (q = 0; q < fep->num_rx_queues; q++) {
 776		/* Initialize the receive buffer descriptors. */
 777		rxq = fep->rx_queue[q];
 778		bdp = rxq->bd.base;
 779
 780		for (i = 0; i < rxq->bd.ring_size; i++) {
 781
 782			/* Initialize the BD for every fragment in the page. */
 783			if (bdp->cbd_bufaddr)
 784				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 785			else
 786				bdp->cbd_sc = cpu_to_fec16(0);
 787			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 788		}
 789
 790		/* Set the last buffer to wrap */
 791		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 792		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 793
 794		rxq->bd.cur = rxq->bd.base;
 795	}
 796
 797	for (q = 0; q < fep->num_tx_queues; q++) {
 798		/* ...and the same for transmit */
 799		txq = fep->tx_queue[q];
 800		bdp = txq->bd.base;
 801		txq->bd.cur = bdp;
 802
 803		for (i = 0; i < txq->bd.ring_size; i++) {
 804			/* Initialize the BD for every fragment in the page. */
 805			bdp->cbd_sc = cpu_to_fec16(0);
 
 
 
 
 
 
 806			if (txq->tx_skbuff[i]) {
 807				dev_kfree_skb_any(txq->tx_skbuff[i]);
 808				txq->tx_skbuff[i] = NULL;
 809			}
 810			bdp->cbd_bufaddr = cpu_to_fec32(0);
 811			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 812		}
 813
 814		/* Set the last buffer to wrap */
 815		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 816		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 817		txq->dirty_tx = bdp;
 818	}
 819}
 820
 821static void fec_enet_active_rxring(struct net_device *ndev)
 822{
 823	struct fec_enet_private *fep = netdev_priv(ndev);
 824	int i;
 825
 826	for (i = 0; i < fep->num_rx_queues; i++)
 827		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 828}
 829
 830static void fec_enet_enable_ring(struct net_device *ndev)
 831{
 832	struct fec_enet_private *fep = netdev_priv(ndev);
 833	struct fec_enet_priv_tx_q *txq;
 834	struct fec_enet_priv_rx_q *rxq;
 835	int i;
 836
 837	for (i = 0; i < fep->num_rx_queues; i++) {
 838		rxq = fep->rx_queue[i];
 839		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 840		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 841
 842		/* enable DMA1/2 */
 843		if (i)
 844			writel(RCMR_MATCHEN | RCMR_CMP(i),
 845			       fep->hwp + FEC_RCMR(i));
 846	}
 847
 848	for (i = 0; i < fep->num_tx_queues; i++) {
 849		txq = fep->tx_queue[i];
 850		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 851
 852		/* enable DMA1/2 */
 853		if (i)
 854			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 855			       fep->hwp + FEC_DMA_CFG(i));
 856	}
 857}
 858
 859static void fec_enet_reset_skb(struct net_device *ndev)
 860{
 861	struct fec_enet_private *fep = netdev_priv(ndev);
 862	struct fec_enet_priv_tx_q *txq;
 863	int i, j;
 864
 865	for (i = 0; i < fep->num_tx_queues; i++) {
 866		txq = fep->tx_queue[i];
 867
 868		for (j = 0; j < txq->bd.ring_size; j++) {
 869			if (txq->tx_skbuff[j]) {
 870				dev_kfree_skb_any(txq->tx_skbuff[j]);
 871				txq->tx_skbuff[j] = NULL;
 872			}
 873		}
 874	}
 875}
 876
 877/*
 878 * This function is called to start or restart the FEC during a link
 879 * change, transmit timeout, or to reconfigure the FEC.  The network
 880 * packet processing for this device must be stopped before this call.
 881 */
 882static void
 883fec_restart(struct net_device *ndev)
 884{
 885	struct fec_enet_private *fep = netdev_priv(ndev);
 886	u32 val;
 887	u32 temp_mac[2];
 888	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 889	u32 ecntl = 0x2; /* ETHEREN */
 890
 891	/* Whack a reset.  We should wait for this.
 892	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 893	 * instead of reset MAC itself.
 894	 */
 895	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 896		writel(0, fep->hwp + FEC_ECNTRL);
 897	} else {
 898		writel(1, fep->hwp + FEC_ECNTRL);
 899		udelay(10);
 900	}
 901
 902	/*
 903	 * enet-mac reset will reset mac address registers too,
 904	 * so need to reconfigure it.
 905	 */
 906	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 907		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 908		writel((__force u32)cpu_to_be32(temp_mac[0]),
 909		       fep->hwp + FEC_ADDR_LOW);
 910		writel((__force u32)cpu_to_be32(temp_mac[1]),
 911		       fep->hwp + FEC_ADDR_HIGH);
 912	}
 913
 914	/* Clear any outstanding interrupt. */
 915	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 916
 917	fec_enet_bd_init(ndev);
 918
 919	fec_enet_enable_ring(ndev);
 920
 921	/* Reset tx SKB buffers. */
 922	fec_enet_reset_skb(ndev);
 923
 924	/* Enable MII mode */
 925	if (fep->full_duplex == DUPLEX_FULL) {
 926		/* FD enable */
 927		writel(0x04, fep->hwp + FEC_X_CNTRL);
 928	} else {
 929		/* No Rcv on Xmit */
 930		rcntl |= 0x02;
 931		writel(0x0, fep->hwp + FEC_X_CNTRL);
 932	}
 933
 934	/* Set MII speed */
 935	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 936
 937#if !defined(CONFIG_M5272)
 938	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 939		/* set RX checksum */
 940		val = readl(fep->hwp + FEC_RACC);
 
 
 941		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 
 942			val |= FEC_RACC_OPTIONS;
 943		else
 944			val &= ~FEC_RACC_OPTIONS;
 945		writel(val, fep->hwp + FEC_RACC);
 946		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 947	}
 948#endif
 949
 950	/*
 951	 * The phy interface and speed need to get configured
 952	 * differently on enet-mac.
 953	 */
 954	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 955		/* Enable flow control and length check */
 956		rcntl |= 0x40000000 | 0x00000020;
 957
 958		/* RGMII, RMII or MII */
 959		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 960		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 961		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 962		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 963			rcntl |= (1 << 6);
 964		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 965			rcntl |= (1 << 8);
 966		else
 967			rcntl &= ~(1 << 8);
 968
 969		/* 1G, 100M or 10M */
 970		if (fep->phy_dev) {
 971			if (fep->phy_dev->speed == SPEED_1000)
 972				ecntl |= (1 << 5);
 973			else if (fep->phy_dev->speed == SPEED_100)
 974				rcntl &= ~(1 << 9);
 975			else
 976				rcntl |= (1 << 9);
 977		}
 978	} else {
 979#ifdef FEC_MIIGSK_ENR
 980		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
 981			u32 cfgr;
 982			/* disable the gasket and wait */
 983			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 984			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 985				udelay(1);
 986
 987			/*
 988			 * configure the gasket:
 989			 *   RMII, 50 MHz, no loopback, no echo
 990			 *   MII, 25 MHz, no loopback, no echo
 991			 */
 992			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 993				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 994			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 995				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 996			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 997
 998			/* re-enable the gasket */
 999			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000		}
1001#endif
1002	}
1003
1004#if !defined(CONFIG_M5272)
1005	/* enable pause frame*/
1006	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008	     fep->phy_dev && fep->phy_dev->pause)) {
1009		rcntl |= FEC_ENET_FCE;
1010
1011		/* set FIFO threshold parameter to reduce overrun */
1012		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016
1017		/* OPD */
1018		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019	} else {
1020		rcntl &= ~FEC_ENET_FCE;
1021	}
1022#endif /* !defined(CONFIG_M5272) */
1023
1024	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025
1026	/* Setup multicast filter. */
1027	set_multicast_list(ndev);
1028#ifndef CONFIG_M5272
1029	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031#endif
1032
1033	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034		/* enable ENET endian swap */
1035		ecntl |= (1 << 8);
1036		/* enable ENET store and forward mode */
1037		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038	}
1039
1040	if (fep->bufdesc_ex)
1041		ecntl |= (1 << 4);
1042
1043#ifndef CONFIG_M5272
1044	/* Enable the MIB statistic event counters */
1045	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046#endif
1047
1048	/* And last, enable the transmit and receive processing */
1049	writel(ecntl, fep->hwp + FEC_ECNTRL);
1050	fec_enet_active_rxring(ndev);
1051
1052	if (fep->bufdesc_ex)
1053		fec_ptp_start_cyclecounter(ndev);
1054
1055	/* Enable interrupts we wish to service */
1056	if (fep->link)
1057		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058	else
1059		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060
1061	/* Init the interrupt coalescing */
1062	fec_enet_itr_coal_init(ndev);
1063
1064}
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066static void
1067fec_stop(struct net_device *ndev)
1068{
1069	struct fec_enet_private *fep = netdev_priv(ndev);
1070	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072	u32 val;
1073
1074	/* We cannot expect a graceful transmit stop without link !!! */
1075	if (fep->link) {
1076		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077		udelay(10);
1078		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080	}
1081
1082	/* Whack a reset.  We should wait for this.
1083	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084	 * instead of reset MAC itself.
1085	 */
1086	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088			writel(0, fep->hwp + FEC_ECNTRL);
1089		} else {
1090			writel(1, fep->hwp + FEC_ECNTRL);
1091			udelay(10);
1092		}
1093		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094	} else {
1095		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096		val = readl(fep->hwp + FEC_ECNTRL);
1097		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098		writel(val, fep->hwp + FEC_ECNTRL);
1099
1100		if (pdata && pdata->sleep_mode_enable)
1101			pdata->sleep_mode_enable(true);
1102	}
1103	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104
1105	/* We have to keep ENET enabled to have MII interrupt stay working */
1106	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108		writel(2, fep->hwp + FEC_ECNTRL);
1109		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110	}
1111}
1112
1113
1114static void
1115fec_timeout(struct net_device *ndev)
1116{
1117	struct fec_enet_private *fep = netdev_priv(ndev);
1118
1119	fec_dump(ndev);
1120
1121	ndev->stats.tx_errors++;
1122
1123	schedule_work(&fep->tx_timeout_work);
1124}
1125
1126static void fec_enet_timeout_work(struct work_struct *work)
1127{
1128	struct fec_enet_private *fep =
1129		container_of(work, struct fec_enet_private, tx_timeout_work);
1130	struct net_device *ndev = fep->netdev;
1131
1132	rtnl_lock();
1133	if (netif_device_present(ndev) || netif_running(ndev)) {
1134		napi_disable(&fep->napi);
1135		netif_tx_lock_bh(ndev);
1136		fec_restart(ndev);
1137		netif_wake_queue(ndev);
1138		netif_tx_unlock_bh(ndev);
1139		napi_enable(&fep->napi);
1140	}
1141	rtnl_unlock();
1142}
1143
1144static void
1145fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146	struct skb_shared_hwtstamps *hwtstamps)
1147{
1148	unsigned long flags;
1149	u64 ns;
1150
1151	spin_lock_irqsave(&fep->tmreg_lock, flags);
1152	ns = timecounter_cyc2time(&fep->tc, ts);
1153	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154
1155	memset(hwtstamps, 0, sizeof(*hwtstamps));
1156	hwtstamps->hwtstamp = ns_to_ktime(ns);
1157}
1158
1159static void
1160fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161{
1162	struct	fec_enet_private *fep;
1163	struct bufdesc *bdp;
1164	unsigned short status;
1165	struct	sk_buff	*skb;
1166	struct fec_enet_priv_tx_q *txq;
1167	struct netdev_queue *nq;
1168	int	index = 0;
1169	int	entries_free;
1170
1171	fep = netdev_priv(ndev);
1172
1173	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174
1175	txq = fep->tx_queue[queue_id];
1176	/* get next bdp of dirty_tx */
1177	nq = netdev_get_tx_queue(ndev, queue_id);
1178	bdp = txq->dirty_tx;
1179
1180	/* get next bdp of dirty_tx */
1181	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182
1183	while (bdp != READ_ONCE(txq->bd.cur)) {
1184		/* Order the load of bd.cur and cbd_sc */
1185		rmb();
1186		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187		if (status & BD_ENET_TX_READY)
1188			break;
1189
1190		index = fec_enet_get_bd_index(bdp, &txq->bd);
1191
1192		skb = txq->tx_skbuff[index];
1193		txq->tx_skbuff[index] = NULL;
1194		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195			dma_unmap_single(&fep->pdev->dev,
1196					 fec32_to_cpu(bdp->cbd_bufaddr),
1197					 fec16_to_cpu(bdp->cbd_datlen),
1198					 DMA_TO_DEVICE);
1199		bdp->cbd_bufaddr = cpu_to_fec32(0);
1200		if (!skb) {
1201			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1202			continue;
1203		}
1204
1205		/* Check for errors. */
1206		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1207				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1208				   BD_ENET_TX_CSL)) {
1209			ndev->stats.tx_errors++;
1210			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1211				ndev->stats.tx_heartbeat_errors++;
1212			if (status & BD_ENET_TX_LC)  /* Late collision */
1213				ndev->stats.tx_window_errors++;
1214			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1215				ndev->stats.tx_aborted_errors++;
1216			if (status & BD_ENET_TX_UN)  /* Underrun */
1217				ndev->stats.tx_fifo_errors++;
1218			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1219				ndev->stats.tx_carrier_errors++;
1220		} else {
1221			ndev->stats.tx_packets++;
1222			ndev->stats.tx_bytes += skb->len;
1223		}
1224
1225		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1226			fep->bufdesc_ex) {
 
 
 
 
 
1227			struct skb_shared_hwtstamps shhwtstamps;
1228			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1229
1230			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1231			skb_tstamp_tx(skb, &shhwtstamps);
1232		}
1233
1234		/* Deferred means some collisions occurred during transmit,
1235		 * but we eventually sent the packet OK.
1236		 */
1237		if (status & BD_ENET_TX_DEF)
1238			ndev->stats.collisions++;
1239
1240		/* Free the sk buffer associated with this last transmit */
1241		dev_kfree_skb_any(skb);
1242
1243		/* Make sure the update to bdp and tx_skbuff are performed
1244		 * before dirty_tx
1245		 */
1246		wmb();
1247		txq->dirty_tx = bdp;
1248
1249		/* Update pointer to next buffer descriptor to be transmitted */
1250		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1251
1252		/* Since we have freed up a buffer, the ring is no longer full
1253		 */
1254		if (netif_queue_stopped(ndev)) {
1255			entries_free = fec_enet_get_free_txdesc_num(txq);
1256			if (entries_free >= txq->tx_wake_threshold)
1257				netif_tx_wake_queue(nq);
1258		}
1259	}
1260
1261	/* ERR006538: Keep the transmitter going */
1262	if (bdp != txq->bd.cur &&
1263	    readl(txq->bd.reg_desc_active) == 0)
1264		writel(0, txq->bd.reg_desc_active);
1265}
1266
1267static void
1268fec_enet_tx(struct net_device *ndev)
1269{
1270	struct fec_enet_private *fep = netdev_priv(ndev);
1271	u16 queue_id;
1272	/* First process class A queue, then Class B and Best Effort queue */
1273	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1274		clear_bit(queue_id, &fep->work_tx);
1275		fec_enet_tx_queue(ndev, queue_id);
1276	}
1277	return;
1278}
1279
1280static int
1281fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1282{
1283	struct  fec_enet_private *fep = netdev_priv(ndev);
1284	int off;
1285
1286	off = ((unsigned long)skb->data) & fep->rx_align;
1287	if (off)
1288		skb_reserve(skb, fep->rx_align + 1 - off);
1289
1290	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1291	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1292		if (net_ratelimit())
1293			netdev_err(ndev, "Rx DMA memory map failed\n");
1294		return -ENOMEM;
1295	}
1296
1297	return 0;
1298}
1299
1300static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1301			       struct bufdesc *bdp, u32 length, bool swap)
1302{
1303	struct  fec_enet_private *fep = netdev_priv(ndev);
1304	struct sk_buff *new_skb;
1305
1306	if (length > fep->rx_copybreak)
1307		return false;
1308
1309	new_skb = netdev_alloc_skb(ndev, length);
1310	if (!new_skb)
1311		return false;
1312
1313	dma_sync_single_for_cpu(&fep->pdev->dev,
1314				fec32_to_cpu(bdp->cbd_bufaddr),
1315				FEC_ENET_RX_FRSIZE - fep->rx_align,
1316				DMA_FROM_DEVICE);
1317	if (!swap)
1318		memcpy(new_skb->data, (*skb)->data, length);
1319	else
1320		swap_buffer2(new_skb->data, (*skb)->data, length);
1321	*skb = new_skb;
1322
1323	return true;
1324}
1325
1326/* During a receive, the bd_rx.cur points to the current incoming buffer.
1327 * When we update through the ring, if the next incoming buffer has
1328 * not been given to the system, we just set the empty indicator,
1329 * effectively tossing the packet.
1330 */
1331static int
1332fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1333{
1334	struct fec_enet_private *fep = netdev_priv(ndev);
1335	struct fec_enet_priv_rx_q *rxq;
1336	struct bufdesc *bdp;
1337	unsigned short status;
1338	struct  sk_buff *skb_new = NULL;
1339	struct  sk_buff *skb;
1340	ushort	pkt_len;
1341	__u8 *data;
1342	int	pkt_received = 0;
1343	struct	bufdesc_ex *ebdp = NULL;
1344	bool	vlan_packet_rcvd = false;
1345	u16	vlan_tag;
1346	int	index = 0;
1347	bool	is_copybreak;
1348	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1349
1350#ifdef CONFIG_M532x
1351	flush_cache_all();
1352#endif
1353	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1354	rxq = fep->rx_queue[queue_id];
1355
1356	/* First, grab all of the stats for the incoming packet.
1357	 * These get messed up if we get called due to a busy condition.
1358	 */
1359	bdp = rxq->bd.cur;
1360
1361	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1362
1363		if (pkt_received >= budget)
1364			break;
1365		pkt_received++;
1366
1367		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1368
1369		/* Check for errors. */
1370		status ^= BD_ENET_RX_LAST;
1371		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1372			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1373			   BD_ENET_RX_CL)) {
1374			ndev->stats.rx_errors++;
1375			if (status & BD_ENET_RX_OV) {
1376				/* FIFO overrun */
1377				ndev->stats.rx_fifo_errors++;
1378				goto rx_processing_done;
1379			}
1380			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1381						| BD_ENET_RX_LAST)) {
1382				/* Frame too long or too short. */
1383				ndev->stats.rx_length_errors++;
1384				if (status & BD_ENET_RX_LAST)
1385					netdev_err(ndev, "rcv is not +last\n");
1386			}
1387			if (status & BD_ENET_RX_CR)	/* CRC Error */
1388				ndev->stats.rx_crc_errors++;
1389			/* Report late collisions as a frame error. */
1390			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1391				ndev->stats.rx_frame_errors++;
1392			goto rx_processing_done;
1393		}
1394
1395		/* Process the incoming frame. */
1396		ndev->stats.rx_packets++;
1397		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1398		ndev->stats.rx_bytes += pkt_len;
1399
1400		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1401		skb = rxq->rx_skbuff[index];
1402
1403		/* The packet length includes FCS, but we don't want to
1404		 * include that when passing upstream as it messes up
1405		 * bridging applications.
1406		 */
1407		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1408						  need_swap);
1409		if (!is_copybreak) {
1410			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1411			if (unlikely(!skb_new)) {
1412				ndev->stats.rx_dropped++;
1413				goto rx_processing_done;
1414			}
1415			dma_unmap_single(&fep->pdev->dev,
1416					 fec32_to_cpu(bdp->cbd_bufaddr),
1417					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1418					 DMA_FROM_DEVICE);
1419		}
1420
1421		prefetch(skb->data - NET_IP_ALIGN);
1422		skb_put(skb, pkt_len - 4);
1423		data = skb->data;
 
1424		if (!is_copybreak && need_swap)
1425			swap_buffer(data, pkt_len);
1426
 
 
 
 
 
1427		/* Extract the enhanced buffer descriptor */
1428		ebdp = NULL;
1429		if (fep->bufdesc_ex)
1430			ebdp = (struct bufdesc_ex *)bdp;
1431
1432		/* If this is a VLAN packet remove the VLAN Tag */
1433		vlan_packet_rcvd = false;
1434		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1435		    fep->bufdesc_ex &&
1436		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1437			/* Push and remove the vlan tag */
1438			struct vlan_hdr *vlan_header =
1439					(struct vlan_hdr *) (data + ETH_HLEN);
1440			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1441
1442			vlan_packet_rcvd = true;
1443
1444			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1445			skb_pull(skb, VLAN_HLEN);
1446		}
1447
1448		skb->protocol = eth_type_trans(skb, ndev);
1449
1450		/* Get receive timestamp from the skb */
1451		if (fep->hwts_rx_en && fep->bufdesc_ex)
1452			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1453					  skb_hwtstamps(skb));
1454
1455		if (fep->bufdesc_ex &&
1456		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1457			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1458				/* don't check it */
1459				skb->ip_summed = CHECKSUM_UNNECESSARY;
1460			} else {
1461				skb_checksum_none_assert(skb);
1462			}
1463		}
1464
1465		/* Handle received VLAN packets */
1466		if (vlan_packet_rcvd)
1467			__vlan_hwaccel_put_tag(skb,
1468					       htons(ETH_P_8021Q),
1469					       vlan_tag);
1470
 
1471		napi_gro_receive(&fep->napi, skb);
1472
1473		if (is_copybreak) {
1474			dma_sync_single_for_device(&fep->pdev->dev,
1475						   fec32_to_cpu(bdp->cbd_bufaddr),
1476						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1477						   DMA_FROM_DEVICE);
1478		} else {
1479			rxq->rx_skbuff[index] = skb_new;
1480			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1481		}
1482
1483rx_processing_done:
1484		/* Clear the status flags for this buffer */
1485		status &= ~BD_ENET_RX_STATS;
1486
1487		/* Mark the buffer empty */
1488		status |= BD_ENET_RX_EMPTY;
1489
1490		if (fep->bufdesc_ex) {
1491			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1492
1493			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1494			ebdp->cbd_prot = 0;
1495			ebdp->cbd_bdu = 0;
1496		}
1497		/* Make sure the updates to rest of the descriptor are
1498		 * performed before transferring ownership.
1499		 */
1500		wmb();
1501		bdp->cbd_sc = cpu_to_fec16(status);
1502
1503		/* Update BD pointer to next entry */
1504		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1505
1506		/* Doing this here will keep the FEC running while we process
1507		 * incoming frames.  On a heavily loaded network, we should be
1508		 * able to keep up at the expense of system resources.
1509		 */
1510		writel(0, rxq->bd.reg_desc_active);
1511	}
1512	rxq->bd.cur = bdp;
1513	return pkt_received;
1514}
1515
1516static int
1517fec_enet_rx(struct net_device *ndev, int budget)
1518{
1519	int     pkt_received = 0;
1520	u16	queue_id;
1521	struct fec_enet_private *fep = netdev_priv(ndev);
 
1522
1523	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1524		int ret;
 
1525
1526		ret = fec_enet_rx_queue(ndev,
1527					budget - pkt_received, queue_id);
1528
1529		if (ret < budget - pkt_received)
1530			clear_bit(queue_id, &fep->work_rx);
1531
1532		pkt_received += ret;
1533	}
1534	return pkt_received;
1535}
1536
1537static bool
1538fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1539{
1540	if (int_events == 0)
1541		return false;
1542
1543	if (int_events & FEC_ENET_RXF)
1544		fep->work_rx |= (1 << 2);
1545	if (int_events & FEC_ENET_RXF_1)
1546		fep->work_rx |= (1 << 0);
1547	if (int_events & FEC_ENET_RXF_2)
1548		fep->work_rx |= (1 << 1);
1549
1550	if (int_events & FEC_ENET_TXF)
1551		fep->work_tx |= (1 << 2);
1552	if (int_events & FEC_ENET_TXF_1)
1553		fep->work_tx |= (1 << 0);
1554	if (int_events & FEC_ENET_TXF_2)
1555		fep->work_tx |= (1 << 1);
1556
1557	return true;
 
 
 
 
 
1558}
1559
1560static irqreturn_t
1561fec_enet_interrupt(int irq, void *dev_id)
1562{
1563	struct net_device *ndev = dev_id;
1564	struct fec_enet_private *fep = netdev_priv(ndev);
1565	uint int_events;
1566	irqreturn_t ret = IRQ_NONE;
1567
1568	int_events = readl(fep->hwp + FEC_IEVENT);
1569	writel(int_events, fep->hwp + FEC_IEVENT);
1570	fec_enet_collect_events(fep, int_events);
1571
1572	if ((fep->work_tx || fep->work_rx) && fep->link) {
1573		ret = IRQ_HANDLED;
1574
1575		if (napi_schedule_prep(&fep->napi)) {
1576			/* Disable the NAPI interrupts */
1577			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1578			__napi_schedule(&fep->napi);
1579		}
1580	}
1581
1582	if (int_events & FEC_ENET_MII) {
1583		ret = IRQ_HANDLED;
1584		complete(&fep->mdio_done);
1585	}
1586
1587	if (fep->ptp_clock)
1588		fec_ptp_check_pps_event(fep);
1589
1590	return ret;
1591}
1592
1593static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1594{
1595	struct net_device *ndev = napi->dev;
1596	struct fec_enet_private *fep = netdev_priv(ndev);
1597	int pkts;
1598
1599	pkts = fec_enet_rx(ndev, budget);
1600
1601	fec_enet_tx(ndev);
 
 
 
1602
1603	if (pkts < budget) {
1604		napi_complete(napi);
1605		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1606	}
1607	return pkts;
 
1608}
1609
1610/* ------------------------------------------------------------------------- */
1611static void fec_get_mac(struct net_device *ndev)
1612{
1613	struct fec_enet_private *fep = netdev_priv(ndev);
1614	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1615	unsigned char *iap, tmpaddr[ETH_ALEN];
1616
1617	/*
1618	 * try to get mac address in following order:
1619	 *
1620	 * 1) module parameter via kernel command line in form
1621	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1622	 */
1623	iap = macaddr;
1624
1625	/*
1626	 * 2) from device tree data
1627	 */
1628	if (!is_valid_ether_addr(iap)) {
1629		struct device_node *np = fep->pdev->dev.of_node;
1630		if (np) {
1631			const char *mac = of_get_mac_address(np);
1632			if (mac)
1633				iap = (unsigned char *) mac;
1634		}
1635	}
1636
1637	/*
1638	 * 3) from flash or fuse (via platform data)
1639	 */
1640	if (!is_valid_ether_addr(iap)) {
1641#ifdef CONFIG_M5272
1642		if (FEC_FLASHMAC)
1643			iap = (unsigned char *)FEC_FLASHMAC;
1644#else
1645		if (pdata)
1646			iap = (unsigned char *)&pdata->mac;
1647#endif
1648	}
1649
1650	/*
1651	 * 4) FEC mac registers set by bootloader
1652	 */
1653	if (!is_valid_ether_addr(iap)) {
1654		*((__be32 *) &tmpaddr[0]) =
1655			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1656		*((__be16 *) &tmpaddr[4]) =
1657			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1658		iap = &tmpaddr[0];
1659	}
1660
1661	/*
1662	 * 5) random mac address
1663	 */
1664	if (!is_valid_ether_addr(iap)) {
1665		/* Report it and use a random ethernet address instead */
1666		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1667		eth_hw_addr_random(ndev);
1668		netdev_info(ndev, "Using random MAC address: %pM\n",
1669			    ndev->dev_addr);
1670		return;
1671	}
1672
1673	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1674
1675	/* Adjust MAC if using macaddr */
1676	if (iap == macaddr)
1677		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1678}
1679
1680/* ------------------------------------------------------------------------- */
1681
1682/*
1683 * Phy section
1684 */
1685static void fec_enet_adjust_link(struct net_device *ndev)
1686{
1687	struct fec_enet_private *fep = netdev_priv(ndev);
1688	struct phy_device *phy_dev = fep->phy_dev;
1689	int status_change = 0;
1690
1691	/* Prevent a state halted on mii error */
1692	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1693		phy_dev->state = PHY_RESUMING;
1694		return;
1695	}
1696
1697	/*
1698	 * If the netdev is down, or is going down, we're not interested
1699	 * in link state events, so just mark our idea of the link as down
1700	 * and ignore the event.
1701	 */
1702	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1703		fep->link = 0;
1704	} else if (phy_dev->link) {
1705		if (!fep->link) {
1706			fep->link = phy_dev->link;
1707			status_change = 1;
1708		}
1709
1710		if (fep->full_duplex != phy_dev->duplex) {
1711			fep->full_duplex = phy_dev->duplex;
1712			status_change = 1;
1713		}
1714
1715		if (phy_dev->speed != fep->speed) {
1716			fep->speed = phy_dev->speed;
1717			status_change = 1;
1718		}
1719
1720		/* if any of the above changed restart the FEC */
1721		if (status_change) {
1722			napi_disable(&fep->napi);
1723			netif_tx_lock_bh(ndev);
1724			fec_restart(ndev);
1725			netif_wake_queue(ndev);
1726			netif_tx_unlock_bh(ndev);
1727			napi_enable(&fep->napi);
1728		}
1729	} else {
1730		if (fep->link) {
1731			napi_disable(&fep->napi);
1732			netif_tx_lock_bh(ndev);
1733			fec_stop(ndev);
1734			netif_tx_unlock_bh(ndev);
1735			napi_enable(&fep->napi);
1736			fep->link = phy_dev->link;
1737			status_change = 1;
1738		}
1739	}
1740
1741	if (status_change)
1742		phy_print_status(phy_dev);
1743}
1744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1746{
1747	struct fec_enet_private *fep = bus->priv;
1748	struct device *dev = &fep->pdev->dev;
1749	unsigned long time_left;
1750	int ret = 0;
1751
1752	ret = pm_runtime_get_sync(dev);
1753	if (ret < 0)
1754		return ret;
1755
1756	fep->mii_timeout = 0;
1757	reinit_completion(&fep->mdio_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758
1759	/* start a read op */
1760	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1761		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1762		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1763
1764	/* wait for end of transfer */
1765	time_left = wait_for_completion_timeout(&fep->mdio_done,
1766			usecs_to_jiffies(FEC_MII_TIMEOUT));
1767	if (time_left == 0) {
1768		fep->mii_timeout = 1;
1769		netdev_err(fep->netdev, "MDIO read timeout\n");
1770		ret = -ETIMEDOUT;
1771		goto out;
1772	}
1773
1774	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1775
1776out:
1777	pm_runtime_mark_last_busy(dev);
1778	pm_runtime_put_autosuspend(dev);
1779
1780	return ret;
1781}
1782
1783static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1784			   u16 value)
1785{
1786	struct fec_enet_private *fep = bus->priv;
1787	struct device *dev = &fep->pdev->dev;
1788	unsigned long time_left;
1789	int ret;
1790
1791	ret = pm_runtime_get_sync(dev);
1792	if (ret < 0)
1793		return ret;
1794	else
1795		ret = 0;
1796
1797	fep->mii_timeout = 0;
1798	reinit_completion(&fep->mdio_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799
1800	/* start a write op */
1801	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1802		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1803		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1804		fep->hwp + FEC_MII_DATA);
1805
1806	/* wait for end of transfer */
1807	time_left = wait_for_completion_timeout(&fep->mdio_done,
1808			usecs_to_jiffies(FEC_MII_TIMEOUT));
1809	if (time_left == 0) {
1810		fep->mii_timeout = 1;
1811		netdev_err(fep->netdev, "MDIO write timeout\n");
1812		ret  = -ETIMEDOUT;
1813	}
1814
 
1815	pm_runtime_mark_last_busy(dev);
1816	pm_runtime_put_autosuspend(dev);
1817
1818	return ret;
1819}
1820
1821static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1822{
1823	struct fec_enet_private *fep = netdev_priv(ndev);
1824	int ret;
1825
1826	if (enable) {
1827		ret = clk_prepare_enable(fep->clk_ahb);
1828		if (ret)
1829			return ret;
1830		if (fep->clk_enet_out) {
1831			ret = clk_prepare_enable(fep->clk_enet_out);
1832			if (ret)
1833				goto failed_clk_enet_out;
1834		}
1835		if (fep->clk_ptp) {
1836			mutex_lock(&fep->ptp_clk_mutex);
1837			ret = clk_prepare_enable(fep->clk_ptp);
1838			if (ret) {
1839				mutex_unlock(&fep->ptp_clk_mutex);
1840				goto failed_clk_ptp;
1841			} else {
1842				fep->ptp_clk_on = true;
1843			}
1844			mutex_unlock(&fep->ptp_clk_mutex);
1845		}
1846		if (fep->clk_ref) {
1847			ret = clk_prepare_enable(fep->clk_ref);
1848			if (ret)
1849				goto failed_clk_ref;
1850		}
 
1851	} else {
1852		clk_disable_unprepare(fep->clk_ahb);
1853		if (fep->clk_enet_out)
1854			clk_disable_unprepare(fep->clk_enet_out);
1855		if (fep->clk_ptp) {
1856			mutex_lock(&fep->ptp_clk_mutex);
1857			clk_disable_unprepare(fep->clk_ptp);
1858			fep->ptp_clk_on = false;
1859			mutex_unlock(&fep->ptp_clk_mutex);
1860		}
1861		if (fep->clk_ref)
1862			clk_disable_unprepare(fep->clk_ref);
1863	}
1864
1865	return 0;
1866
1867failed_clk_ref:
1868	if (fep->clk_ref)
1869		clk_disable_unprepare(fep->clk_ref);
 
 
 
 
1870failed_clk_ptp:
1871	if (fep->clk_enet_out)
1872		clk_disable_unprepare(fep->clk_enet_out);
1873failed_clk_enet_out:
1874		clk_disable_unprepare(fep->clk_ahb);
1875
1876	return ret;
1877}
1878
1879static int fec_enet_mii_probe(struct net_device *ndev)
1880{
1881	struct fec_enet_private *fep = netdev_priv(ndev);
1882	struct phy_device *phy_dev = NULL;
1883	char mdio_bus_id[MII_BUS_ID_SIZE];
1884	char phy_name[MII_BUS_ID_SIZE + 3];
1885	int phy_id;
1886	int dev_id = fep->dev_id;
1887
1888	fep->phy_dev = NULL;
1889
1890	if (fep->phy_node) {
1891		phy_dev = of_phy_connect(ndev, fep->phy_node,
1892					 &fec_enet_adjust_link, 0,
1893					 fep->phy_interface);
1894		if (!phy_dev)
 
1895			return -ENODEV;
 
1896	} else {
1897		/* check for attached phy */
1898		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1899			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1900				continue;
1901			if (dev_id--)
1902				continue;
1903			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1904			break;
1905		}
1906
1907		if (phy_id >= PHY_MAX_ADDR) {
1908			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1909			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1910			phy_id = 0;
1911		}
1912
1913		snprintf(phy_name, sizeof(phy_name),
1914			 PHY_ID_FMT, mdio_bus_id, phy_id);
1915		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1916				      fep->phy_interface);
1917	}
1918
1919	if (IS_ERR(phy_dev)) {
1920		netdev_err(ndev, "could not attach to PHY\n");
1921		return PTR_ERR(phy_dev);
1922	}
1923
1924	/* mask with MAC supported features */
1925	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1926		phy_dev->supported &= PHY_GBIT_FEATURES;
1927		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
 
1928#if !defined(CONFIG_M5272)
1929		phy_dev->supported |= SUPPORTED_Pause;
1930#endif
1931	}
1932	else
1933		phy_dev->supported &= PHY_BASIC_FEATURES;
1934
1935	phy_dev->advertising = phy_dev->supported;
1936
1937	fep->phy_dev = phy_dev;
1938	fep->link = 0;
1939	fep->full_duplex = 0;
1940
1941	phy_attached_info(phy_dev);
1942
1943	return 0;
1944}
1945
1946static int fec_enet_mii_init(struct platform_device *pdev)
1947{
1948	static struct mii_bus *fec0_mii_bus;
1949	struct net_device *ndev = platform_get_drvdata(pdev);
1950	struct fec_enet_private *fep = netdev_priv(ndev);
 
1951	struct device_node *node;
1952	int err = -ENXIO;
1953	u32 mii_speed, holdtime;
 
1954
1955	/*
1956	 * The i.MX28 dual fec interfaces are not equal.
1957	 * Here are the differences:
1958	 *
1959	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1960	 *  - fec0 acts as the 1588 time master while fec1 is slave
1961	 *  - external phys can only be configured by fec0
1962	 *
1963	 * That is to say fec1 can not work independently. It only works
1964	 * when fec0 is working. The reason behind this design is that the
1965	 * second interface is added primarily for Switch mode.
1966	 *
1967	 * Because of the last point above, both phys are attached on fec0
1968	 * mdio interface in board design, and need to be configured by
1969	 * fec0 mii_bus.
1970	 */
1971	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1972		/* fec1 uses fec0 mii_bus */
1973		if (mii_cnt && fec0_mii_bus) {
1974			fep->mii_bus = fec0_mii_bus;
1975			mii_cnt++;
1976			return 0;
1977		}
1978		return -ENOENT;
1979	}
1980
1981	fep->mii_timeout = 0;
 
 
 
 
 
 
1982
1983	/*
1984	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1985	 *
1986	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1987	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1988	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1989	 * document.
1990	 */
1991	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1992	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1993		mii_speed--;
1994	if (mii_speed > 63) {
1995		dev_err(&pdev->dev,
1996			"fec clock (%lu) to fast to get right mii speed\n",
1997			clk_get_rate(fep->clk_ipg));
1998		err = -EINVAL;
1999		goto err_out;
2000	}
2001
2002	/*
2003	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2004	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2005	 * versions are RAZ there, so just ignore the difference and write the
2006	 * register always.
2007	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2008	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2009	 * output.
2010	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2011	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2012	 * holdtime cannot result in a value greater than 3.
2013	 */
2014	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2015
2016	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2017
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2019
 
 
 
2020	fep->mii_bus = mdiobus_alloc();
2021	if (fep->mii_bus == NULL) {
2022		err = -ENOMEM;
2023		goto err_out;
2024	}
2025
2026	fep->mii_bus->name = "fec_enet_mii_bus";
2027	fep->mii_bus->read = fec_enet_mdio_read;
2028	fep->mii_bus->write = fec_enet_mdio_write;
2029	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2030		pdev->name, fep->dev_id + 1);
2031	fep->mii_bus->priv = fep;
2032	fep->mii_bus->parent = &pdev->dev;
2033
2034	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2035	if (node) {
2036		err = of_mdiobus_register(fep->mii_bus, node);
2037		of_node_put(node);
2038	} else {
2039		err = mdiobus_register(fep->mii_bus);
2040	}
2041
2042	if (err)
2043		goto err_out_free_mdiobus;
2044
2045	mii_cnt++;
2046
2047	/* save fec0 mii_bus */
2048	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2049		fec0_mii_bus = fep->mii_bus;
2050
2051	return 0;
2052
2053err_out_free_mdiobus:
2054	mdiobus_free(fep->mii_bus);
2055err_out:
2056	return err;
2057}
2058
2059static void fec_enet_mii_remove(struct fec_enet_private *fep)
2060{
2061	if (--mii_cnt == 0) {
2062		mdiobus_unregister(fep->mii_bus);
2063		mdiobus_free(fep->mii_bus);
2064	}
2065}
2066
2067static int fec_enet_get_settings(struct net_device *ndev,
2068				  struct ethtool_cmd *cmd)
2069{
2070	struct fec_enet_private *fep = netdev_priv(ndev);
2071	struct phy_device *phydev = fep->phy_dev;
2072
2073	if (!phydev)
2074		return -ENODEV;
2075
2076	return phy_ethtool_gset(phydev, cmd);
2077}
2078
2079static int fec_enet_set_settings(struct net_device *ndev,
2080				 struct ethtool_cmd *cmd)
2081{
2082	struct fec_enet_private *fep = netdev_priv(ndev);
2083	struct phy_device *phydev = fep->phy_dev;
2084
2085	if (!phydev)
2086		return -ENODEV;
2087
2088	return phy_ethtool_sset(phydev, cmd);
2089}
2090
2091static void fec_enet_get_drvinfo(struct net_device *ndev,
2092				 struct ethtool_drvinfo *info)
2093{
2094	struct fec_enet_private *fep = netdev_priv(ndev);
2095
2096	strlcpy(info->driver, fep->pdev->dev.driver->name,
2097		sizeof(info->driver));
2098	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2099	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2100}
2101
2102static int fec_enet_get_regs_len(struct net_device *ndev)
2103{
2104	struct fec_enet_private *fep = netdev_priv(ndev);
2105	struct resource *r;
2106	int s = 0;
2107
2108	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2109	if (r)
2110		s = resource_size(r);
2111
2112	return s;
2113}
2114
2115/* List of registers that can be safety be read to dump them with ethtool */
2116#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2117	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 
2118static u32 fec_enet_register_offset[] = {
2119	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2120	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2121	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2122	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2123	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2124	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2125	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2126	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2127	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2128	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2129	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2130	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2131	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2132	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2133	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2134	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2135	RMON_T_P_GTE2048, RMON_T_OCTETS,
2136	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2137	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2138	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2139	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2140	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2141	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2142	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2143	RMON_R_P_GTE2048, RMON_R_OCTETS,
2144	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2145	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2146};
2147#else
 
2148static u32 fec_enet_register_offset[] = {
2149	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2150	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2151	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2152	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2153	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2154	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2155	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2156	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2157	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2158};
2159#endif
2160
2161static void fec_enet_get_regs(struct net_device *ndev,
2162			      struct ethtool_regs *regs, void *regbuf)
2163{
2164	struct fec_enet_private *fep = netdev_priv(ndev);
2165	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
 
2166	u32 *buf = (u32 *)regbuf;
2167	u32 i, off;
 
 
 
 
 
 
 
2168
2169	memset(buf, 0, regs->len);
2170
2171	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2172		off = fec_enet_register_offset[i] / 4;
 
 
 
 
 
 
2173		buf[off] = readl(&theregs[off]);
2174	}
 
 
 
2175}
2176
2177static int fec_enet_get_ts_info(struct net_device *ndev,
2178				struct ethtool_ts_info *info)
2179{
2180	struct fec_enet_private *fep = netdev_priv(ndev);
2181
2182	if (fep->bufdesc_ex) {
2183
2184		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2185					SOF_TIMESTAMPING_RX_SOFTWARE |
2186					SOF_TIMESTAMPING_SOFTWARE |
2187					SOF_TIMESTAMPING_TX_HARDWARE |
2188					SOF_TIMESTAMPING_RX_HARDWARE |
2189					SOF_TIMESTAMPING_RAW_HARDWARE;
2190		if (fep->ptp_clock)
2191			info->phc_index = ptp_clock_index(fep->ptp_clock);
2192		else
2193			info->phc_index = -1;
2194
2195		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2196				 (1 << HWTSTAMP_TX_ON);
2197
2198		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2199				   (1 << HWTSTAMP_FILTER_ALL);
2200		return 0;
2201	} else {
2202		return ethtool_op_get_ts_info(ndev, info);
2203	}
2204}
2205
2206#if !defined(CONFIG_M5272)
2207
2208static void fec_enet_get_pauseparam(struct net_device *ndev,
2209				    struct ethtool_pauseparam *pause)
2210{
2211	struct fec_enet_private *fep = netdev_priv(ndev);
2212
2213	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2214	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2215	pause->rx_pause = pause->tx_pause;
2216}
2217
2218static int fec_enet_set_pauseparam(struct net_device *ndev,
2219				   struct ethtool_pauseparam *pause)
2220{
2221	struct fec_enet_private *fep = netdev_priv(ndev);
2222
2223	if (!fep->phy_dev)
2224		return -ENODEV;
2225
2226	if (pause->tx_pause != pause->rx_pause) {
2227		netdev_info(ndev,
2228			"hardware only support enable/disable both tx and rx");
2229		return -EINVAL;
2230	}
2231
2232	fep->pause_flag = 0;
2233
2234	/* tx pause must be same as rx pause */
2235	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2236	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2237
2238	if (pause->rx_pause || pause->autoneg) {
2239		fep->phy_dev->supported |= ADVERTISED_Pause;
2240		fep->phy_dev->advertising |= ADVERTISED_Pause;
2241	} else {
2242		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2243		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2244	}
2245
2246	if (pause->autoneg) {
2247		if (netif_running(ndev))
2248			fec_stop(ndev);
2249		phy_start_aneg(fep->phy_dev);
2250	}
2251	if (netif_running(ndev)) {
2252		napi_disable(&fep->napi);
2253		netif_tx_lock_bh(ndev);
2254		fec_restart(ndev);
2255		netif_wake_queue(ndev);
2256		netif_tx_unlock_bh(ndev);
2257		napi_enable(&fep->napi);
2258	}
2259
2260	return 0;
2261}
2262
2263static const struct fec_stat {
2264	char name[ETH_GSTRING_LEN];
2265	u16 offset;
2266} fec_stats[] = {
2267	/* RMON TX */
2268	{ "tx_dropped", RMON_T_DROP },
2269	{ "tx_packets", RMON_T_PACKETS },
2270	{ "tx_broadcast", RMON_T_BC_PKT },
2271	{ "tx_multicast", RMON_T_MC_PKT },
2272	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2273	{ "tx_undersize", RMON_T_UNDERSIZE },
2274	{ "tx_oversize", RMON_T_OVERSIZE },
2275	{ "tx_fragment", RMON_T_FRAG },
2276	{ "tx_jabber", RMON_T_JAB },
2277	{ "tx_collision", RMON_T_COL },
2278	{ "tx_64byte", RMON_T_P64 },
2279	{ "tx_65to127byte", RMON_T_P65TO127 },
2280	{ "tx_128to255byte", RMON_T_P128TO255 },
2281	{ "tx_256to511byte", RMON_T_P256TO511 },
2282	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2283	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2284	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2285	{ "tx_octets", RMON_T_OCTETS },
2286
2287	/* IEEE TX */
2288	{ "IEEE_tx_drop", IEEE_T_DROP },
2289	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2290	{ "IEEE_tx_1col", IEEE_T_1COL },
2291	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2292	{ "IEEE_tx_def", IEEE_T_DEF },
2293	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2294	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2295	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2296	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2297	{ "IEEE_tx_sqe", IEEE_T_SQE },
2298	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2299	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2300
2301	/* RMON RX */
2302	{ "rx_packets", RMON_R_PACKETS },
2303	{ "rx_broadcast", RMON_R_BC_PKT },
2304	{ "rx_multicast", RMON_R_MC_PKT },
2305	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2306	{ "rx_undersize", RMON_R_UNDERSIZE },
2307	{ "rx_oversize", RMON_R_OVERSIZE },
2308	{ "rx_fragment", RMON_R_FRAG },
2309	{ "rx_jabber", RMON_R_JAB },
2310	{ "rx_64byte", RMON_R_P64 },
2311	{ "rx_65to127byte", RMON_R_P65TO127 },
2312	{ "rx_128to255byte", RMON_R_P128TO255 },
2313	{ "rx_256to511byte", RMON_R_P256TO511 },
2314	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2315	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2316	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2317	{ "rx_octets", RMON_R_OCTETS },
2318
2319	/* IEEE RX */
2320	{ "IEEE_rx_drop", IEEE_R_DROP },
2321	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2322	{ "IEEE_rx_crc", IEEE_R_CRC },
2323	{ "IEEE_rx_align", IEEE_R_ALIGN },
2324	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2325	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2326	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2327};
2328
2329static void fec_enet_get_ethtool_stats(struct net_device *dev,
2330	struct ethtool_stats *stats, u64 *data)
 
2331{
2332	struct fec_enet_private *fep = netdev_priv(dev);
2333	int i;
2334
2335	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2336		data[i] = readl(fep->hwp + fec_stats[i].offset);
 
 
 
 
 
 
 
 
 
 
 
2337}
2338
2339static void fec_enet_get_strings(struct net_device *netdev,
2340	u32 stringset, u8 *data)
2341{
2342	int i;
2343	switch (stringset) {
2344	case ETH_SS_STATS:
2345		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346			memcpy(data + i * ETH_GSTRING_LEN,
2347				fec_stats[i].name, ETH_GSTRING_LEN);
2348		break;
2349	}
2350}
2351
2352static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2353{
2354	switch (sset) {
2355	case ETH_SS_STATS:
2356		return ARRAY_SIZE(fec_stats);
2357	default:
2358		return -EOPNOTSUPP;
2359	}
2360}
2361#endif /* !defined(CONFIG_M5272) */
2362
2363static int fec_enet_nway_reset(struct net_device *dev)
2364{
2365	struct fec_enet_private *fep = netdev_priv(dev);
2366	struct phy_device *phydev = fep->phy_dev;
2367
2368	if (!phydev)
2369		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
2370
2371	return genphy_restart_aneg(phydev);
 
2372}
 
2373
2374/* ITR clock source is enet system clock (clk_ahb).
2375 * TCTT unit is cycle_ns * 64 cycle
2376 * So, the ICTT value = X us / (cycle_ns * 64)
2377 */
2378static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2379{
2380	struct fec_enet_private *fep = netdev_priv(ndev);
2381
2382	return us * (fep->itr_clk_rate / 64000) / 1000;
2383}
2384
2385/* Set threshold for interrupt coalescing */
2386static void fec_enet_itr_coal_set(struct net_device *ndev)
2387{
2388	struct fec_enet_private *fep = netdev_priv(ndev);
2389	int rx_itr, tx_itr;
2390
2391	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2392		return;
2393
2394	/* Must be greater than zero to avoid unpredictable behavior */
2395	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2396	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2397		return;
2398
2399	/* Select enet system clock as Interrupt Coalescing
2400	 * timer Clock Source
2401	 */
2402	rx_itr = FEC_ITR_CLK_SEL;
2403	tx_itr = FEC_ITR_CLK_SEL;
2404
2405	/* set ICFT and ICTT */
2406	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2407	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2408	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2409	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2410
2411	rx_itr |= FEC_ITR_EN;
2412	tx_itr |= FEC_ITR_EN;
2413
2414	writel(tx_itr, fep->hwp + FEC_TXIC0);
2415	writel(rx_itr, fep->hwp + FEC_RXIC0);
2416	writel(tx_itr, fep->hwp + FEC_TXIC1);
2417	writel(rx_itr, fep->hwp + FEC_RXIC1);
2418	writel(tx_itr, fep->hwp + FEC_TXIC2);
2419	writel(rx_itr, fep->hwp + FEC_RXIC2);
 
 
2420}
2421
2422static int
2423fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2424{
2425	struct fec_enet_private *fep = netdev_priv(ndev);
2426
2427	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2428		return -EOPNOTSUPP;
2429
2430	ec->rx_coalesce_usecs = fep->rx_time_itr;
2431	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2432
2433	ec->tx_coalesce_usecs = fep->tx_time_itr;
2434	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2435
2436	return 0;
2437}
2438
2439static int
2440fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2441{
2442	struct fec_enet_private *fep = netdev_priv(ndev);
 
2443	unsigned int cycle;
2444
2445	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2446		return -EOPNOTSUPP;
2447
2448	if (ec->rx_max_coalesced_frames > 255) {
2449		pr_err("Rx coalesced frames exceed hardware limiation");
2450		return -EINVAL;
2451	}
2452
2453	if (ec->tx_max_coalesced_frames > 255) {
2454		pr_err("Tx coalesced frame exceed hardware limiation");
2455		return -EINVAL;
2456	}
2457
2458	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2459	if (cycle > 0xFFFF) {
2460		pr_err("Rx coalesed usec exceeed hardware limiation");
2461		return -EINVAL;
2462	}
2463
2464	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2465	if (cycle > 0xFFFF) {
2466		pr_err("Rx coalesed usec exceeed hardware limiation");
2467		return -EINVAL;
2468	}
2469
2470	fep->rx_time_itr = ec->rx_coalesce_usecs;
2471	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2472
2473	fep->tx_time_itr = ec->tx_coalesce_usecs;
2474	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2475
2476	fec_enet_itr_coal_set(ndev);
2477
2478	return 0;
2479}
2480
2481static void fec_enet_itr_coal_init(struct net_device *ndev)
2482{
2483	struct ethtool_coalesce ec;
2484
2485	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2486	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2487
2488	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2489	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2490
2491	fec_enet_set_coalesce(ndev, &ec);
2492}
2493
2494static int fec_enet_get_tunable(struct net_device *netdev,
2495				const struct ethtool_tunable *tuna,
2496				void *data)
2497{
2498	struct fec_enet_private *fep = netdev_priv(netdev);
2499	int ret = 0;
2500
2501	switch (tuna->id) {
2502	case ETHTOOL_RX_COPYBREAK:
2503		*(u32 *)data = fep->rx_copybreak;
2504		break;
2505	default:
2506		ret = -EINVAL;
2507		break;
2508	}
2509
2510	return ret;
2511}
2512
2513static int fec_enet_set_tunable(struct net_device *netdev,
2514				const struct ethtool_tunable *tuna,
2515				const void *data)
2516{
2517	struct fec_enet_private *fep = netdev_priv(netdev);
2518	int ret = 0;
2519
2520	switch (tuna->id) {
2521	case ETHTOOL_RX_COPYBREAK:
2522		fep->rx_copybreak = *(u32 *)data;
2523		break;
2524	default:
2525		ret = -EINVAL;
2526		break;
2527	}
2528
2529	return ret;
2530}
2531
2532static void
2533fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534{
2535	struct fec_enet_private *fep = netdev_priv(ndev);
2536
2537	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2538		wol->supported = WAKE_MAGIC;
2539		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2540	} else {
2541		wol->supported = wol->wolopts = 0;
2542	}
2543}
2544
2545static int
2546fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2547{
2548	struct fec_enet_private *fep = netdev_priv(ndev);
2549
2550	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2551		return -EINVAL;
2552
2553	if (wol->wolopts & ~WAKE_MAGIC)
2554		return -EINVAL;
2555
2556	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2557	if (device_may_wakeup(&ndev->dev)) {
2558		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2559		if (fep->irq[0] > 0)
2560			enable_irq_wake(fep->irq[0]);
2561	} else {
2562		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2563		if (fep->irq[0] > 0)
2564			disable_irq_wake(fep->irq[0]);
2565	}
2566
2567	return 0;
2568}
2569
2570static const struct ethtool_ops fec_enet_ethtool_ops = {
2571	.get_settings		= fec_enet_get_settings,
2572	.set_settings		= fec_enet_set_settings,
2573	.get_drvinfo		= fec_enet_get_drvinfo,
2574	.get_regs_len		= fec_enet_get_regs_len,
2575	.get_regs		= fec_enet_get_regs,
2576	.nway_reset		= fec_enet_nway_reset,
2577	.get_link		= ethtool_op_get_link,
2578	.get_coalesce		= fec_enet_get_coalesce,
2579	.set_coalesce		= fec_enet_set_coalesce,
2580#ifndef CONFIG_M5272
2581	.get_pauseparam		= fec_enet_get_pauseparam,
2582	.set_pauseparam		= fec_enet_set_pauseparam,
2583	.get_strings		= fec_enet_get_strings,
2584	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2585	.get_sset_count		= fec_enet_get_sset_count,
2586#endif
2587	.get_ts_info		= fec_enet_get_ts_info,
2588	.get_tunable		= fec_enet_get_tunable,
2589	.set_tunable		= fec_enet_set_tunable,
2590	.get_wol		= fec_enet_get_wol,
2591	.set_wol		= fec_enet_set_wol,
 
 
2592};
2593
2594static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2595{
2596	struct fec_enet_private *fep = netdev_priv(ndev);
2597	struct phy_device *phydev = fep->phy_dev;
2598
2599	if (!netif_running(ndev))
2600		return -EINVAL;
2601
2602	if (!phydev)
2603		return -ENODEV;
2604
2605	if (fep->bufdesc_ex) {
2606		if (cmd == SIOCSHWTSTAMP)
2607			return fec_ptp_set(ndev, rq);
2608		if (cmd == SIOCGHWTSTAMP)
2609			return fec_ptp_get(ndev, rq);
 
 
 
 
 
 
2610	}
2611
2612	return phy_mii_ioctl(phydev, rq, cmd);
2613}
2614
2615static void fec_enet_free_buffers(struct net_device *ndev)
2616{
2617	struct fec_enet_private *fep = netdev_priv(ndev);
2618	unsigned int i;
2619	struct sk_buff *skb;
2620	struct bufdesc	*bdp;
2621	struct fec_enet_priv_tx_q *txq;
2622	struct fec_enet_priv_rx_q *rxq;
2623	unsigned int q;
2624
2625	for (q = 0; q < fep->num_rx_queues; q++) {
2626		rxq = fep->rx_queue[q];
2627		bdp = rxq->bd.base;
2628		for (i = 0; i < rxq->bd.ring_size; i++) {
2629			skb = rxq->rx_skbuff[i];
2630			rxq->rx_skbuff[i] = NULL;
2631			if (skb) {
2632				dma_unmap_single(&fep->pdev->dev,
2633						 fec32_to_cpu(bdp->cbd_bufaddr),
2634						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2635						 DMA_FROM_DEVICE);
2636				dev_kfree_skb(skb);
2637			}
2638			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2639		}
2640	}
2641
2642	for (q = 0; q < fep->num_tx_queues; q++) {
2643		txq = fep->tx_queue[q];
2644		bdp = txq->bd.base;
2645		for (i = 0; i < txq->bd.ring_size; i++) {
2646			kfree(txq->tx_bounce[i]);
2647			txq->tx_bounce[i] = NULL;
2648			skb = txq->tx_skbuff[i];
2649			txq->tx_skbuff[i] = NULL;
2650			dev_kfree_skb(skb);
2651		}
2652	}
2653}
2654
2655static void fec_enet_free_queue(struct net_device *ndev)
2656{
2657	struct fec_enet_private *fep = netdev_priv(ndev);
2658	int i;
2659	struct fec_enet_priv_tx_q *txq;
2660
2661	for (i = 0; i < fep->num_tx_queues; i++)
2662		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2663			txq = fep->tx_queue[i];
2664			dma_free_coherent(NULL,
2665					  txq->bd.ring_size * TSO_HEADER_SIZE,
2666					  txq->tso_hdrs,
2667					  txq->tso_hdrs_dma);
2668		}
2669
2670	for (i = 0; i < fep->num_rx_queues; i++)
2671		kfree(fep->rx_queue[i]);
2672	for (i = 0; i < fep->num_tx_queues; i++)
2673		kfree(fep->tx_queue[i]);
2674}
2675
2676static int fec_enet_alloc_queue(struct net_device *ndev)
2677{
2678	struct fec_enet_private *fep = netdev_priv(ndev);
2679	int i;
2680	int ret = 0;
2681	struct fec_enet_priv_tx_q *txq;
2682
2683	for (i = 0; i < fep->num_tx_queues; i++) {
2684		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2685		if (!txq) {
2686			ret = -ENOMEM;
2687			goto alloc_failed;
2688		}
2689
2690		fep->tx_queue[i] = txq;
2691		txq->bd.ring_size = TX_RING_SIZE;
2692		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2693
2694		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2695		txq->tx_wake_threshold =
2696			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2697
2698		txq->tso_hdrs = dma_alloc_coherent(NULL,
2699					txq->bd.ring_size * TSO_HEADER_SIZE,
2700					&txq->tso_hdrs_dma,
2701					GFP_KERNEL);
2702		if (!txq->tso_hdrs) {
2703			ret = -ENOMEM;
2704			goto alloc_failed;
2705		}
2706	}
2707
2708	for (i = 0; i < fep->num_rx_queues; i++) {
2709		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2710					   GFP_KERNEL);
2711		if (!fep->rx_queue[i]) {
2712			ret = -ENOMEM;
2713			goto alloc_failed;
2714		}
2715
2716		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2717		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2718	}
2719	return ret;
2720
2721alloc_failed:
2722	fec_enet_free_queue(ndev);
2723	return ret;
2724}
2725
2726static int
2727fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2728{
2729	struct fec_enet_private *fep = netdev_priv(ndev);
2730	unsigned int i;
2731	struct sk_buff *skb;
2732	struct bufdesc	*bdp;
2733	struct fec_enet_priv_rx_q *rxq;
2734
2735	rxq = fep->rx_queue[queue];
2736	bdp = rxq->bd.base;
2737	for (i = 0; i < rxq->bd.ring_size; i++) {
2738		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2739		if (!skb)
2740			goto err_alloc;
2741
2742		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2743			dev_kfree_skb(skb);
2744			goto err_alloc;
2745		}
2746
2747		rxq->rx_skbuff[i] = skb;
2748		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2749
2750		if (fep->bufdesc_ex) {
2751			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2752			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2753		}
2754
2755		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2756	}
2757
2758	/* Set the last buffer to wrap. */
2759	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2760	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2761	return 0;
2762
2763 err_alloc:
2764	fec_enet_free_buffers(ndev);
2765	return -ENOMEM;
2766}
2767
2768static int
2769fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2770{
2771	struct fec_enet_private *fep = netdev_priv(ndev);
2772	unsigned int i;
2773	struct bufdesc  *bdp;
2774	struct fec_enet_priv_tx_q *txq;
2775
2776	txq = fep->tx_queue[queue];
2777	bdp = txq->bd.base;
2778	for (i = 0; i < txq->bd.ring_size; i++) {
2779		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2780		if (!txq->tx_bounce[i])
2781			goto err_alloc;
2782
2783		bdp->cbd_sc = cpu_to_fec16(0);
2784		bdp->cbd_bufaddr = cpu_to_fec32(0);
2785
2786		if (fep->bufdesc_ex) {
2787			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2788			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2789		}
2790
2791		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2792	}
2793
2794	/* Set the last buffer to wrap. */
2795	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2796	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2797
2798	return 0;
2799
2800 err_alloc:
2801	fec_enet_free_buffers(ndev);
2802	return -ENOMEM;
2803}
2804
2805static int fec_enet_alloc_buffers(struct net_device *ndev)
2806{
2807	struct fec_enet_private *fep = netdev_priv(ndev);
2808	unsigned int i;
2809
2810	for (i = 0; i < fep->num_rx_queues; i++)
2811		if (fec_enet_alloc_rxq_buffers(ndev, i))
2812			return -ENOMEM;
2813
2814	for (i = 0; i < fep->num_tx_queues; i++)
2815		if (fec_enet_alloc_txq_buffers(ndev, i))
2816			return -ENOMEM;
2817	return 0;
2818}
2819
2820static int
2821fec_enet_open(struct net_device *ndev)
2822{
2823	struct fec_enet_private *fep = netdev_priv(ndev);
2824	int ret;
 
2825
2826	ret = pm_runtime_get_sync(&fep->pdev->dev);
2827	if (ret < 0)
2828		return ret;
2829
2830	pinctrl_pm_select_default_state(&fep->pdev->dev);
2831	ret = fec_enet_clk_enable(ndev, true);
2832	if (ret)
2833		goto clk_enable;
2834
 
 
 
 
 
 
 
 
 
 
 
2835	/* I should reset the ring buffers here, but I don't yet know
2836	 * a simple way to do that.
2837	 */
2838
2839	ret = fec_enet_alloc_buffers(ndev);
2840	if (ret)
2841		goto err_enet_alloc;
2842
2843	/* Init MAC prior to mii bus probe */
2844	fec_restart(ndev);
2845
2846	/* Probe and connect to PHY when open the interface */
2847	ret = fec_enet_mii_probe(ndev);
2848	if (ret)
2849		goto err_enet_mii_probe;
2850
 
 
 
 
 
 
 
 
 
2851	napi_enable(&fep->napi);
2852	phy_start(fep->phy_dev);
2853	netif_tx_start_all_queues(ndev);
2854
2855	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2856				 FEC_WOL_FLAG_ENABLE);
2857
2858	return 0;
2859
2860err_enet_mii_probe:
2861	fec_enet_free_buffers(ndev);
2862err_enet_alloc:
2863	fec_enet_clk_enable(ndev, false);
2864clk_enable:
2865	pm_runtime_mark_last_busy(&fep->pdev->dev);
2866	pm_runtime_put_autosuspend(&fep->pdev->dev);
2867	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2868	return ret;
2869}
2870
2871static int
2872fec_enet_close(struct net_device *ndev)
2873{
2874	struct fec_enet_private *fep = netdev_priv(ndev);
2875
2876	phy_stop(fep->phy_dev);
2877
2878	if (netif_device_present(ndev)) {
2879		napi_disable(&fep->napi);
2880		netif_tx_disable(ndev);
2881		fec_stop(ndev);
2882	}
2883
2884	phy_disconnect(fep->phy_dev);
2885	fep->phy_dev = NULL;
 
 
 
 
2886
2887	fec_enet_clk_enable(ndev, false);
2888	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2889	pm_runtime_mark_last_busy(&fep->pdev->dev);
2890	pm_runtime_put_autosuspend(&fep->pdev->dev);
2891
2892	fec_enet_free_buffers(ndev);
2893
2894	return 0;
2895}
2896
2897/* Set or clear the multicast filter for this adaptor.
2898 * Skeleton taken from sunlance driver.
2899 * The CPM Ethernet implementation allows Multicast as well as individual
2900 * MAC address filtering.  Some of the drivers check to make sure it is
2901 * a group multicast address, and discard those that are not.  I guess I
2902 * will do the same for now, but just remove the test if you want
2903 * individual filtering as well (do the upper net layers want or support
2904 * this kind of feature?).
2905 */
2906
2907#define HASH_BITS	6		/* #bits in hash */
2908#define CRC32_POLY	0xEDB88320
2909
2910static void set_multicast_list(struct net_device *ndev)
2911{
2912	struct fec_enet_private *fep = netdev_priv(ndev);
2913	struct netdev_hw_addr *ha;
2914	unsigned int i, bit, data, crc, tmp;
2915	unsigned char hash;
 
2916
2917	if (ndev->flags & IFF_PROMISC) {
2918		tmp = readl(fep->hwp + FEC_R_CNTRL);
2919		tmp |= 0x8;
2920		writel(tmp, fep->hwp + FEC_R_CNTRL);
2921		return;
2922	}
2923
2924	tmp = readl(fep->hwp + FEC_R_CNTRL);
2925	tmp &= ~0x8;
2926	writel(tmp, fep->hwp + FEC_R_CNTRL);
2927
2928	if (ndev->flags & IFF_ALLMULTI) {
2929		/* Catch all multicast addresses, so set the
2930		 * filter to all 1's
2931		 */
2932		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934
2935		return;
2936	}
2937
2938	/* Clear filter and add the addresses in hash register
2939	 */
2940	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2941	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942
2943	netdev_for_each_mc_addr(ha, ndev) {
2944		/* calculate crc32 value of mac address */
2945		crc = 0xffffffff;
2946
2947		for (i = 0; i < ndev->addr_len; i++) {
2948			data = ha->addr[i];
2949			for (bit = 0; bit < 8; bit++, data >>= 1) {
2950				crc = (crc >> 1) ^
2951				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2952			}
2953		}
2954
2955		/* only upper 6 bits (HASH_BITS) are used
2956		 * which point to specific bit in he hash registers
2957		 */
2958		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2959
2960		if (hash > 31) {
2961			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2962			tmp |= 1 << (hash - 32);
2963			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2964		} else {
2965			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966			tmp |= 1 << hash;
2967			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2968		}
2969	}
 
 
 
2970}
2971
2972/* Set a MAC change in hardware. */
2973static int
2974fec_set_mac_address(struct net_device *ndev, void *p)
2975{
2976	struct fec_enet_private *fep = netdev_priv(ndev);
2977	struct sockaddr *addr = p;
2978
2979	if (addr) {
2980		if (!is_valid_ether_addr(addr->sa_data))
2981			return -EADDRNOTAVAIL;
2982		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2983	}
2984
2985	/* Add netif status check here to avoid system hang in below case:
2986	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2987	 * After ethx down, fec all clocks are gated off and then register
2988	 * access causes system hang.
2989	 */
2990	if (!netif_running(ndev))
2991		return 0;
2992
2993	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2994		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2995		fep->hwp + FEC_ADDR_LOW);
2996	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2997		fep->hwp + FEC_ADDR_HIGH);
2998	return 0;
2999}
3000
3001#ifdef CONFIG_NET_POLL_CONTROLLER
3002/**
3003 * fec_poll_controller - FEC Poll controller function
3004 * @dev: The FEC network adapter
3005 *
3006 * Polled functionality used by netconsole and others in non interrupt mode
3007 *
3008 */
3009static void fec_poll_controller(struct net_device *dev)
3010{
3011	int i;
3012	struct fec_enet_private *fep = netdev_priv(dev);
3013
3014	for (i = 0; i < FEC_IRQ_NUM; i++) {
3015		if (fep->irq[i] > 0) {
3016			disable_irq(fep->irq[i]);
3017			fec_enet_interrupt(fep->irq[i], dev);
3018			enable_irq(fep->irq[i]);
3019		}
3020	}
3021}
3022#endif
3023
3024static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3025	netdev_features_t features)
3026{
3027	struct fec_enet_private *fep = netdev_priv(netdev);
3028	netdev_features_t changed = features ^ netdev->features;
3029
3030	netdev->features = features;
3031
3032	/* Receive checksum has been changed */
3033	if (changed & NETIF_F_RXCSUM) {
3034		if (features & NETIF_F_RXCSUM)
3035			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3036		else
3037			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3038	}
3039}
3040
3041static int fec_set_features(struct net_device *netdev,
3042	netdev_features_t features)
3043{
3044	struct fec_enet_private *fep = netdev_priv(netdev);
3045	netdev_features_t changed = features ^ netdev->features;
3046
3047	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3048		napi_disable(&fep->napi);
3049		netif_tx_lock_bh(netdev);
3050		fec_stop(netdev);
3051		fec_enet_set_netdev_features(netdev, features);
3052		fec_restart(netdev);
3053		netif_tx_wake_all_queues(netdev);
3054		netif_tx_unlock_bh(netdev);
3055		napi_enable(&fep->napi);
3056	} else {
3057		fec_enet_set_netdev_features(netdev, features);
3058	}
3059
3060	return 0;
3061}
3062
3063static const struct net_device_ops fec_netdev_ops = {
3064	.ndo_open		= fec_enet_open,
3065	.ndo_stop		= fec_enet_close,
3066	.ndo_start_xmit		= fec_enet_start_xmit,
3067	.ndo_set_rx_mode	= set_multicast_list,
3068	.ndo_change_mtu		= eth_change_mtu,
3069	.ndo_validate_addr	= eth_validate_addr,
3070	.ndo_tx_timeout		= fec_timeout,
3071	.ndo_set_mac_address	= fec_set_mac_address,
3072	.ndo_do_ioctl		= fec_enet_ioctl,
3073#ifdef CONFIG_NET_POLL_CONTROLLER
3074	.ndo_poll_controller	= fec_poll_controller,
3075#endif
3076	.ndo_set_features	= fec_set_features,
3077};
3078
3079static const unsigned short offset_des_active_rxq[] = {
3080	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3081};
3082
3083static const unsigned short offset_des_active_txq[] = {
3084	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3085};
3086
3087 /*
3088  * XXX:  We need to clean up on failure exits here.
3089  *
3090  */
3091static int fec_enet_init(struct net_device *ndev)
3092{
3093	struct fec_enet_private *fep = netdev_priv(ndev);
3094	struct bufdesc *cbd_base;
3095	dma_addr_t bd_dma;
3096	int bd_size;
3097	unsigned int i;
3098	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3099			sizeof(struct bufdesc);
3100	unsigned dsize_log2 = __fls(dsize);
 
3101
3102	WARN_ON(dsize != (1 << dsize_log2));
3103#if defined(CONFIG_ARM)
3104	fep->rx_align = 0xf;
3105	fep->tx_align = 0xf;
3106#else
3107	fep->rx_align = 0x3;
3108	fep->tx_align = 0x3;
3109#endif
3110
 
 
 
 
 
 
 
3111	fec_enet_alloc_queue(ndev);
3112
3113	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3114
3115	/* Allocate memory for buffer descriptors. */
3116	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3117				       GFP_KERNEL);
3118	if (!cbd_base) {
3119		return -ENOMEM;
3120	}
3121
3122	memset(cbd_base, 0, bd_size);
3123
3124	/* Get the Ethernet address */
3125	fec_get_mac(ndev);
3126	/* make sure MAC we just acquired is programmed into the hw */
3127	fec_set_mac_address(ndev, NULL);
3128
3129	/* Set receive and transmit descriptor base. */
3130	for (i = 0; i < fep->num_rx_queues; i++) {
3131		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3132		unsigned size = dsize * rxq->bd.ring_size;
3133
3134		rxq->bd.qid = i;
3135		rxq->bd.base = cbd_base;
3136		rxq->bd.cur = cbd_base;
3137		rxq->bd.dma = bd_dma;
3138		rxq->bd.dsize = dsize;
3139		rxq->bd.dsize_log2 = dsize_log2;
3140		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3141		bd_dma += size;
3142		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3143		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3144	}
3145
3146	for (i = 0; i < fep->num_tx_queues; i++) {
3147		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3148		unsigned size = dsize * txq->bd.ring_size;
3149
3150		txq->bd.qid = i;
3151		txq->bd.base = cbd_base;
3152		txq->bd.cur = cbd_base;
3153		txq->bd.dma = bd_dma;
3154		txq->bd.dsize = dsize;
3155		txq->bd.dsize_log2 = dsize_log2;
3156		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3157		bd_dma += size;
3158		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3159		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3160	}
3161
3162
3163	/* The FEC Ethernet specific entries in the device structure */
3164	ndev->watchdog_timeo = TX_TIMEOUT;
3165	ndev->netdev_ops = &fec_netdev_ops;
3166	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3167
3168	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3169	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3170
3171	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3172		/* enable hw VLAN support */
3173		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3174
3175	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3176		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3177
3178		/* enable hw accelerator */
3179		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3180				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3181		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3182	}
3183
3184	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3185		fep->tx_align = 0;
3186		fep->rx_align = 0x3f;
3187	}
3188
3189	ndev->hw_features = ndev->features;
3190
3191	fec_restart(ndev);
3192
 
 
 
 
 
3193	return 0;
3194}
3195
3196#ifdef CONFIG_OF
3197static void fec_reset_phy(struct platform_device *pdev)
3198{
3199	int err, phy_reset;
3200	bool active_high = false;
3201	int msec = 1;
3202	struct device_node *np = pdev->dev.of_node;
3203
3204	if (!np)
3205		return;
3206
3207	of_property_read_u32(np, "phy-reset-duration", &msec);
3208	/* A sane reset duration should not be longer than 1s */
3209	if (msec > 1000)
3210		msec = 1;
3211
3212	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3213	if (!gpio_is_valid(phy_reset))
3214		return;
 
 
 
 
 
 
 
3215
3216	active_high = of_property_read_bool(np, "phy-reset-active-high");
3217
3218	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3219			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3220			"phy-reset");
3221	if (err) {
3222		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3223		return;
3224	}
3225	msleep(msec);
 
 
 
 
 
3226	gpio_set_value_cansleep(phy_reset, !active_high);
 
 
 
 
 
 
 
 
 
 
 
3227}
3228#else /* CONFIG_OF */
3229static void fec_reset_phy(struct platform_device *pdev)
3230{
3231	/*
3232	 * In case of platform probe, the reset has been done
3233	 * by machine code.
3234	 */
 
3235}
3236#endif /* CONFIG_OF */
3237
3238static void
3239fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3240{
3241	struct device_node *np = pdev->dev.of_node;
3242
3243	*num_tx = *num_rx = 1;
3244
3245	if (!np || !of_device_is_available(np))
3246		return;
3247
3248	/* parse the num of tx and rx queues */
3249	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3250
3251	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3252
3253	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3254		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3255			 *num_tx);
3256		*num_tx = 1;
3257		return;
3258	}
3259
3260	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3261		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3262			 *num_rx);
3263		*num_rx = 1;
3264		return;
3265	}
3266
3267}
3268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269static int
3270fec_probe(struct platform_device *pdev)
3271{
3272	struct fec_enet_private *fep;
3273	struct fec_platform_data *pdata;
 
3274	struct net_device *ndev;
3275	int i, irq, ret = 0;
3276	struct resource *r;
3277	const struct of_device_id *of_id;
3278	static int dev_id;
3279	struct device_node *np = pdev->dev.of_node, *phy_node;
3280	int num_tx_qs;
3281	int num_rx_qs;
 
 
 
3282
3283	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3284
3285	/* Init network device */
3286	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3287				  num_tx_qs, num_rx_qs);
3288	if (!ndev)
3289		return -ENOMEM;
3290
3291	SET_NETDEV_DEV(ndev, &pdev->dev);
3292
3293	/* setup board info structure */
3294	fep = netdev_priv(ndev);
3295
3296	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3297	if (of_id)
3298		pdev->id_entry = of_id->data;
3299	fep->quirks = pdev->id_entry->driver_data;
 
 
3300
3301	fep->netdev = ndev;
3302	fep->num_rx_queues = num_rx_qs;
3303	fep->num_tx_queues = num_tx_qs;
3304
3305#if !defined(CONFIG_M5272)
3306	/* default enable pause frame auto negotiation */
3307	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3308		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3309#endif
3310
3311	/* Select default pin state */
3312	pinctrl_pm_select_default_state(&pdev->dev);
3313
3314	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3315	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3316	if (IS_ERR(fep->hwp)) {
3317		ret = PTR_ERR(fep->hwp);
3318		goto failed_ioremap;
3319	}
3320
3321	fep->pdev = pdev;
3322	fep->dev_id = dev_id++;
3323
3324	platform_set_drvdata(pdev, ndev);
3325
 
 
 
 
 
3326	if (of_get_property(np, "fsl,magic-packet", NULL))
3327		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3328
 
 
 
 
3329	phy_node = of_parse_phandle(np, "phy-handle", 0);
3330	if (!phy_node && of_phy_is_fixed_link(np)) {
3331		ret = of_phy_register_fixed_link(np);
3332		if (ret < 0) {
3333			dev_err(&pdev->dev,
3334				"broken fixed-link specification\n");
3335			goto failed_phy;
3336		}
3337		phy_node = of_node_get(np);
3338	}
3339	fep->phy_node = phy_node;
3340
3341	ret = of_get_phy_mode(pdev->dev.of_node);
3342	if (ret < 0) {
3343		pdata = dev_get_platdata(&pdev->dev);
3344		if (pdata)
3345			fep->phy_interface = pdata->phy;
3346		else
3347			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3348	} else {
3349		fep->phy_interface = ret;
3350	}
3351
3352	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3353	if (IS_ERR(fep->clk_ipg)) {
3354		ret = PTR_ERR(fep->clk_ipg);
3355		goto failed_clk;
3356	}
3357
3358	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3359	if (IS_ERR(fep->clk_ahb)) {
3360		ret = PTR_ERR(fep->clk_ahb);
3361		goto failed_clk;
3362	}
3363
3364	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3365
3366	/* enet_out is optional, depends on board */
3367	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3368	if (IS_ERR(fep->clk_enet_out))
3369		fep->clk_enet_out = NULL;
3370
3371	fep->ptp_clk_on = false;
3372	mutex_init(&fep->ptp_clk_mutex);
3373
3374	/* clk_ref is optional, depends on board */
3375	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3376	if (IS_ERR(fep->clk_ref))
3377		fep->clk_ref = NULL;
3378
3379	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3380	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3381	if (IS_ERR(fep->clk_ptp)) {
3382		fep->clk_ptp = NULL;
3383		fep->bufdesc_ex = false;
3384	}
3385
3386	ret = fec_enet_clk_enable(ndev, true);
3387	if (ret)
3388		goto failed_clk;
3389
3390	ret = clk_prepare_enable(fep->clk_ipg);
3391	if (ret)
3392		goto failed_clk_ipg;
 
 
 
3393
3394	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3395	if (!IS_ERR(fep->reg_phy)) {
3396		ret = regulator_enable(fep->reg_phy);
3397		if (ret) {
3398			dev_err(&pdev->dev,
3399				"Failed to enable phy regulator: %d\n", ret);
3400			goto failed_regulator;
3401		}
3402	} else {
 
 
 
 
3403		fep->reg_phy = NULL;
3404	}
3405
3406	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3407	pm_runtime_use_autosuspend(&pdev->dev);
3408	pm_runtime_get_noresume(&pdev->dev);
3409	pm_runtime_set_active(&pdev->dev);
3410	pm_runtime_enable(&pdev->dev);
3411
3412	fec_reset_phy(pdev);
 
 
3413
 
3414	if (fep->bufdesc_ex)
3415		fec_ptp_init(pdev);
3416
3417	ret = fec_enet_init(ndev);
3418	if (ret)
3419		goto failed_init;
3420
3421	for (i = 0; i < FEC_IRQ_NUM; i++) {
3422		irq = platform_get_irq(pdev, i);
 
 
 
3423		if (irq < 0) {
3424			if (i)
3425				break;
3426			ret = irq;
3427			goto failed_irq;
3428		}
3429		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3430				       0, pdev->name, ndev);
3431		if (ret)
3432			goto failed_irq;
3433
3434		fep->irq[i] = irq;
3435	}
3436
3437	init_completion(&fep->mdio_done);
3438	ret = fec_enet_mii_init(pdev);
3439	if (ret)
3440		goto failed_mii_init;
3441
3442	/* Carrier starts down, phylib will bring it up */
3443	netif_carrier_off(ndev);
3444	fec_enet_clk_enable(ndev, false);
3445	pinctrl_pm_select_sleep_state(&pdev->dev);
3446
 
 
3447	ret = register_netdev(ndev);
3448	if (ret)
3449		goto failed_register;
3450
3451	device_init_wakeup(&ndev->dev, fep->wol_flag &
3452			   FEC_WOL_HAS_MAGIC_PACKET);
3453
3454	if (fep->bufdesc_ex && fep->ptp_clock)
3455		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3456
3457	fep->rx_copybreak = COPYBREAK_DEFAULT;
3458	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3459
3460	pm_runtime_mark_last_busy(&pdev->dev);
3461	pm_runtime_put_autosuspend(&pdev->dev);
3462
3463	return 0;
3464
3465failed_register:
3466	fec_enet_mii_remove(fep);
3467failed_mii_init:
3468failed_irq:
3469failed_init:
3470	fec_ptp_stop(pdev);
 
 
 
3471	if (fep->reg_phy)
3472		regulator_disable(fep->reg_phy);
3473failed_regulator:
 
 
3474	clk_disable_unprepare(fep->clk_ipg);
3475failed_clk_ipg:
3476	fec_enet_clk_enable(ndev, false);
3477failed_clk:
3478failed_phy:
 
3479	of_node_put(phy_node);
 
 
 
3480failed_ioremap:
3481	free_netdev(ndev);
3482
3483	return ret;
3484}
3485
3486static int
3487fec_drv_remove(struct platform_device *pdev)
3488{
3489	struct net_device *ndev = platform_get_drvdata(pdev);
3490	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
 
 
3491
3492	cancel_work_sync(&fep->tx_timeout_work);
3493	fec_ptp_stop(pdev);
3494	unregister_netdev(ndev);
3495	fec_enet_mii_remove(fep);
3496	if (fep->reg_phy)
3497		regulator_disable(fep->reg_phy);
 
 
 
3498	of_node_put(fep->phy_node);
3499	free_netdev(ndev);
3500
 
 
 
 
 
3501	return 0;
3502}
3503
3504static int __maybe_unused fec_suspend(struct device *dev)
3505{
3506	struct net_device *ndev = dev_get_drvdata(dev);
3507	struct fec_enet_private *fep = netdev_priv(ndev);
3508
3509	rtnl_lock();
3510	if (netif_running(ndev)) {
3511		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3512			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3513		phy_stop(fep->phy_dev);
3514		napi_disable(&fep->napi);
3515		netif_tx_lock_bh(ndev);
3516		netif_device_detach(ndev);
3517		netif_tx_unlock_bh(ndev);
3518		fec_stop(ndev);
3519		fec_enet_clk_enable(ndev, false);
3520		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3521			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3522	}
3523	rtnl_unlock();
3524
3525	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3526		regulator_disable(fep->reg_phy);
3527
3528	/* SOC supply clock to phy, when clock is disabled, phy link down
3529	 * SOC control phy regulator, when regulator is disabled, phy link down
3530	 */
3531	if (fep->clk_enet_out || fep->reg_phy)
3532		fep->link = 0;
3533
3534	return 0;
3535}
3536
3537static int __maybe_unused fec_resume(struct device *dev)
3538{
3539	struct net_device *ndev = dev_get_drvdata(dev);
3540	struct fec_enet_private *fep = netdev_priv(ndev);
3541	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3542	int ret;
3543	int val;
3544
3545	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3546		ret = regulator_enable(fep->reg_phy);
3547		if (ret)
3548			return ret;
3549	}
3550
3551	rtnl_lock();
3552	if (netif_running(ndev)) {
3553		ret = fec_enet_clk_enable(ndev, true);
3554		if (ret) {
3555			rtnl_unlock();
3556			goto failed_clk;
3557		}
3558		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3559			if (pdata && pdata->sleep_mode_enable)
3560				pdata->sleep_mode_enable(false);
3561			val = readl(fep->hwp + FEC_ECNTRL);
3562			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3563			writel(val, fep->hwp + FEC_ECNTRL);
3564			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3565		} else {
3566			pinctrl_pm_select_default_state(&fep->pdev->dev);
3567		}
3568		fec_restart(ndev);
3569		netif_tx_lock_bh(ndev);
3570		netif_device_attach(ndev);
3571		netif_tx_unlock_bh(ndev);
3572		napi_enable(&fep->napi);
3573		phy_start(fep->phy_dev);
3574	}
3575	rtnl_unlock();
3576
3577	return 0;
3578
3579failed_clk:
3580	if (fep->reg_phy)
3581		regulator_disable(fep->reg_phy);
3582	return ret;
3583}
3584
3585static int __maybe_unused fec_runtime_suspend(struct device *dev)
3586{
3587	struct net_device *ndev = dev_get_drvdata(dev);
3588	struct fec_enet_private *fep = netdev_priv(ndev);
3589
 
3590	clk_disable_unprepare(fep->clk_ipg);
3591
3592	return 0;
3593}
3594
3595static int __maybe_unused fec_runtime_resume(struct device *dev)
3596{
3597	struct net_device *ndev = dev_get_drvdata(dev);
3598	struct fec_enet_private *fep = netdev_priv(ndev);
 
3599
3600	return clk_prepare_enable(fep->clk_ipg);
 
 
 
 
 
 
 
 
 
 
 
3601}
3602
3603static const struct dev_pm_ops fec_pm_ops = {
3604	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3605	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3606};
3607
3608static struct platform_driver fec_driver = {
3609	.driver	= {
3610		.name	= DRIVER_NAME,
3611		.pm	= &fec_pm_ops,
3612		.of_match_table = fec_dt_ids,
 
3613	},
3614	.id_table = fec_devtype,
3615	.probe	= fec_probe,
3616	.remove	= fec_drv_remove,
3617};
3618
3619module_platform_driver(fec_driver);
3620
3621MODULE_ALIAS("platform:"DRIVER_NAME);
3622MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/crc32.h>
  52#include <linux/platform_device.h>
  53#include <linux/mdio.h>
  54#include <linux/phy.h>
  55#include <linux/fec.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/of_gpio.h>
  59#include <linux/of_mdio.h>
  60#include <linux/of_net.h>
  61#include <linux/regulator/consumer.h>
  62#include <linux/if_vlan.h>
  63#include <linux/pinctrl/consumer.h>
  64#include <linux/prefetch.h>
  65#include <linux/mfd/syscon.h>
  66#include <linux/regmap.h>
  67#include <soc/imx/cpuidle.h>
  68
  69#include <asm/cacheflush.h>
  70
  71#include "fec.h"
  72
  73static void set_multicast_list(struct net_device *ndev);
  74static void fec_enet_itr_coal_init(struct net_device *ndev);
  75
  76#define DRIVER_NAME	"fec"
  77
 
 
  78/* Pause frame feild and FIFO threshold */
  79#define FEC_ENET_FCE	(1 << 5)
  80#define FEC_ENET_RSEM_V	0x84
  81#define FEC_ENET_RSFL_V	16
  82#define FEC_ENET_RAEM_V	0x8
  83#define FEC_ENET_RAFL_V	0x8
  84#define FEC_ENET_OPD_V	0xFFF0
  85#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  86
  87struct fec_devinfo {
  88	u32 quirks;
  89};
  90
  91static const struct fec_devinfo fec_imx25_info = {
  92	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  93		  FEC_QUIRK_HAS_FRREG,
  94};
  95
  96static const struct fec_devinfo fec_imx27_info = {
  97	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
  98};
  99
 100static const struct fec_devinfo fec_imx28_info = {
 101	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 102		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 103		  FEC_QUIRK_HAS_FRREG,
 104};
 105
 106static const struct fec_devinfo fec_imx6q_info = {
 107	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 108		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 109		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 110		  FEC_QUIRK_HAS_RACC,
 111};
 112
 113static const struct fec_devinfo fec_mvf600_info = {
 114	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 115};
 116
 117static const struct fec_devinfo fec_imx6x_info = {
 118	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 119		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 120		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 121		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 122		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 123};
 124
 125static const struct fec_devinfo fec_imx6ul_info = {
 126	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 127		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 128		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 129		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 130		  FEC_QUIRK_HAS_COALESCE,
 131};
 132
 133static struct platform_device_id fec_devtype[] = {
 134	{
 135		/* keep it for coldfire */
 136		.name = DRIVER_NAME,
 137		.driver_data = 0,
 138	}, {
 139		.name = "imx25-fec",
 140		.driver_data = (kernel_ulong_t)&fec_imx25_info,
 141	}, {
 142		.name = "imx27-fec",
 143		.driver_data = (kernel_ulong_t)&fec_imx27_info,
 144	}, {
 145		.name = "imx28-fec",
 146		.driver_data = (kernel_ulong_t)&fec_imx28_info,
 
 147	}, {
 148		.name = "imx6q-fec",
 149		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
 
 
 
 150	}, {
 151		.name = "mvf600-fec",
 152		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
 153	}, {
 154		.name = "imx6sx-fec",
 155		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
 156	}, {
 157		.name = "imx6ul-fec",
 158		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
 
 159	}, {
 160		/* sentinel */
 161	}
 162};
 163MODULE_DEVICE_TABLE(platform, fec_devtype);
 164
 165enum imx_fec_type {
 166	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 167	IMX27_FEC,	/* runs on i.mx27/35/51 */
 168	IMX28_FEC,
 169	IMX6Q_FEC,
 170	MVF600_FEC,
 171	IMX6SX_FEC,
 172	IMX6UL_FEC,
 173};
 174
 175static const struct of_device_id fec_dt_ids[] = {
 176	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 177	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 178	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 179	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 180	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 181	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 182	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 183	{ /* sentinel */ }
 184};
 185MODULE_DEVICE_TABLE(of, fec_dt_ids);
 186
 187static unsigned char macaddr[ETH_ALEN];
 188module_param_array(macaddr, byte, NULL, 0);
 189MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 190
 191#if defined(CONFIG_M5272)
 192/*
 193 * Some hardware gets it MAC address out of local flash memory.
 194 * if this is non-zero then assume it is the address to get MAC from.
 195 */
 196#if defined(CONFIG_NETtel)
 197#define	FEC_FLASHMAC	0xf0006006
 198#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 199#define	FEC_FLASHMAC	0xf0006000
 200#elif defined(CONFIG_CANCam)
 201#define	FEC_FLASHMAC	0xf0020000
 202#elif defined (CONFIG_M5272C3)
 203#define	FEC_FLASHMAC	(0xffe04000 + 4)
 204#elif defined(CONFIG_MOD5272)
 205#define FEC_FLASHMAC	0xffc0406b
 206#else
 207#define	FEC_FLASHMAC	0
 208#endif
 209#endif /* CONFIG_M5272 */
 210
 211/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 212 *
 213 * 2048 byte skbufs are allocated. However, alignment requirements
 214 * varies between FEC variants. Worst case is 64, so round down by 64.
 215 */
 216#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 217#define PKT_MINBUF_SIZE		64
 
 218
 219/* FEC receive acceleration */
 220#define FEC_RACC_IPDIS		(1 << 1)
 221#define FEC_RACC_PRODIS		(1 << 2)
 222#define FEC_RACC_SHIFT16	BIT(7)
 223#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 224
 225/* MIB Control Register */
 226#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 227
 228/*
 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 230 * size bits. Other FEC hardware does not, so we need to take that into
 231 * account when setting it.
 232 */
 233#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 234    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 235    defined(CONFIG_ARM64)
 236#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 237#else
 238#define	OPT_FRAME_SIZE	0
 239#endif
 240
 241/* FEC MII MMFR bits definition */
 242#define FEC_MMFR_ST		(1 << 30)
 243#define FEC_MMFR_ST_C45		(0)
 244#define FEC_MMFR_OP_READ	(2 << 28)
 245#define FEC_MMFR_OP_READ_C45	(3 << 28)
 246#define FEC_MMFR_OP_WRITE	(1 << 28)
 247#define FEC_MMFR_OP_ADDR_WRITE	(0)
 248#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 249#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 250#define FEC_MMFR_TA		(2 << 16)
 251#define FEC_MMFR_DATA(v)	(v & 0xffff)
 252/* FEC ECR bits definition */
 253#define FEC_ECR_MAGICEN		(1 << 2)
 254#define FEC_ECR_SLEEP		(1 << 3)
 255
 256#define FEC_MII_TIMEOUT		30000 /* us */
 257
 258/* Transmitter timeout */
 259#define TX_TIMEOUT (2 * HZ)
 260
 261#define FEC_PAUSE_FLAG_AUTONEG	0x1
 262#define FEC_PAUSE_FLAG_ENABLE	0x2
 263#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 264#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 265#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 266
 267#define COPYBREAK_DEFAULT	256
 268
 
 269/* Max number of allowed TCP segments for software TSO */
 270#define FEC_MAX_TSO_SEGS	100
 271#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 272
 273#define IS_TSO_HEADER(txq, addr) \
 274	((addr >= txq->tso_hdrs_dma) && \
 275	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 276
 277static int mii_cnt;
 278
 279static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 280					     struct bufdesc_prop *bd)
 281{
 282	return (bdp >= bd->last) ? bd->base
 283			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 284}
 285
 286static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 287					     struct bufdesc_prop *bd)
 288{
 289	return (bdp <= bd->base) ? bd->last
 290			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 291}
 292
 293static int fec_enet_get_bd_index(struct bufdesc *bdp,
 294				 struct bufdesc_prop *bd)
 295{
 296	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 297}
 298
 299static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 300{
 301	int entries;
 302
 303	entries = (((const char *)txq->dirty_tx -
 304			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 305
 306	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 307}
 308
 309static void swap_buffer(void *bufaddr, int len)
 310{
 311	int i;
 312	unsigned int *buf = bufaddr;
 313
 314	for (i = 0; i < len; i += 4, buf++)
 315		swab32s(buf);
 316}
 317
 318static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 319{
 320	int i;
 321	unsigned int *src = src_buf;
 322	unsigned int *dst = dst_buf;
 323
 324	for (i = 0; i < len; i += 4, src++, dst++)
 325		*dst = swab32p(src);
 326}
 327
 328static void fec_dump(struct net_device *ndev)
 329{
 330	struct fec_enet_private *fep = netdev_priv(ndev);
 331	struct bufdesc *bdp;
 332	struct fec_enet_priv_tx_q *txq;
 333	int index = 0;
 334
 335	netdev_info(ndev, "TX ring dump\n");
 336	pr_info("Nr     SC     addr       len  SKB\n");
 337
 338	txq = fep->tx_queue[0];
 339	bdp = txq->bd.base;
 340
 341	do {
 342		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 343			index,
 344			bdp == txq->bd.cur ? 'S' : ' ',
 345			bdp == txq->dirty_tx ? 'H' : ' ',
 346			fec16_to_cpu(bdp->cbd_sc),
 347			fec32_to_cpu(bdp->cbd_bufaddr),
 348			fec16_to_cpu(bdp->cbd_datlen),
 349			txq->tx_skbuff[index]);
 350		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 351		index++;
 352	} while (bdp != txq->bd.base);
 353}
 354
 355static inline bool is_ipv4_pkt(struct sk_buff *skb)
 356{
 357	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 358}
 359
 360static int
 361fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 362{
 363	/* Only run for packets requiring a checksum. */
 364	if (skb->ip_summed != CHECKSUM_PARTIAL)
 365		return 0;
 366
 367	if (unlikely(skb_cow_head(skb, 0)))
 368		return -1;
 369
 370	if (is_ipv4_pkt(skb))
 371		ip_hdr(skb)->check = 0;
 372	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 373
 374	return 0;
 375}
 376
 377static struct bufdesc *
 378fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 379			     struct sk_buff *skb,
 380			     struct net_device *ndev)
 381{
 382	struct fec_enet_private *fep = netdev_priv(ndev);
 383	struct bufdesc *bdp = txq->bd.cur;
 384	struct bufdesc_ex *ebdp;
 385	int nr_frags = skb_shinfo(skb)->nr_frags;
 386	int frag, frag_len;
 387	unsigned short status;
 388	unsigned int estatus = 0;
 389	skb_frag_t *this_frag;
 390	unsigned int index;
 391	void *bufaddr;
 392	dma_addr_t addr;
 393	int i;
 394
 395	for (frag = 0; frag < nr_frags; frag++) {
 396		this_frag = &skb_shinfo(skb)->frags[frag];
 397		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 398		ebdp = (struct bufdesc_ex *)bdp;
 399
 400		status = fec16_to_cpu(bdp->cbd_sc);
 401		status &= ~BD_ENET_TX_STATS;
 402		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 403		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 404
 405		/* Handle the last BD specially */
 406		if (frag == nr_frags - 1) {
 407			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 408			if (fep->bufdesc_ex) {
 409				estatus |= BD_ENET_TX_INT;
 410				if (unlikely(skb_shinfo(skb)->tx_flags &
 411					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 412					estatus |= BD_ENET_TX_TS;
 413			}
 414		}
 415
 416		if (fep->bufdesc_ex) {
 417			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 418				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 419			if (skb->ip_summed == CHECKSUM_PARTIAL)
 420				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 421			ebdp->cbd_bdu = 0;
 422			ebdp->cbd_esc = cpu_to_fec32(estatus);
 423		}
 424
 425		bufaddr = skb_frag_address(this_frag);
 426
 427		index = fec_enet_get_bd_index(bdp, &txq->bd);
 428		if (((unsigned long) bufaddr) & fep->tx_align ||
 429			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 430			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 431			bufaddr = txq->tx_bounce[index];
 432
 433			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 434				swap_buffer(bufaddr, frag_len);
 435		}
 436
 437		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 438				      DMA_TO_DEVICE);
 439		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 440			if (net_ratelimit())
 441				netdev_err(ndev, "Tx DMA memory map failed\n");
 442			goto dma_mapping_error;
 443		}
 444
 445		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 446		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 447		/* Make sure the updates to rest of the descriptor are
 448		 * performed before transferring ownership.
 449		 */
 450		wmb();
 451		bdp->cbd_sc = cpu_to_fec16(status);
 452	}
 453
 454	return bdp;
 455dma_mapping_error:
 456	bdp = txq->bd.cur;
 457	for (i = 0; i < frag; i++) {
 458		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 459		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 460				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 461	}
 462	return ERR_PTR(-ENOMEM);
 463}
 464
 465static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 466				   struct sk_buff *skb, struct net_device *ndev)
 467{
 468	struct fec_enet_private *fep = netdev_priv(ndev);
 469	int nr_frags = skb_shinfo(skb)->nr_frags;
 470	struct bufdesc *bdp, *last_bdp;
 471	void *bufaddr;
 472	dma_addr_t addr;
 473	unsigned short status;
 474	unsigned short buflen;
 475	unsigned int estatus = 0;
 476	unsigned int index;
 477	int entries_free;
 478
 479	entries_free = fec_enet_get_free_txdesc_num(txq);
 480	if (entries_free < MAX_SKB_FRAGS + 1) {
 481		dev_kfree_skb_any(skb);
 482		if (net_ratelimit())
 483			netdev_err(ndev, "NOT enough BD for SG!\n");
 484		return NETDEV_TX_OK;
 485	}
 486
 487	/* Protocol checksum off-load for TCP and UDP. */
 488	if (fec_enet_clear_csum(skb, ndev)) {
 489		dev_kfree_skb_any(skb);
 490		return NETDEV_TX_OK;
 491	}
 492
 493	/* Fill in a Tx ring entry */
 494	bdp = txq->bd.cur;
 495	last_bdp = bdp;
 496	status = fec16_to_cpu(bdp->cbd_sc);
 497	status &= ~BD_ENET_TX_STATS;
 498
 499	/* Set buffer length and buffer pointer */
 500	bufaddr = skb->data;
 501	buflen = skb_headlen(skb);
 502
 503	index = fec_enet_get_bd_index(bdp, &txq->bd);
 504	if (((unsigned long) bufaddr) & fep->tx_align ||
 505		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 506		memcpy(txq->tx_bounce[index], skb->data, buflen);
 507		bufaddr = txq->tx_bounce[index];
 508
 509		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 510			swap_buffer(bufaddr, buflen);
 511	}
 512
 513	/* Push the data cache so the CPM does not get stale memory data. */
 514	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 515	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 516		dev_kfree_skb_any(skb);
 517		if (net_ratelimit())
 518			netdev_err(ndev, "Tx DMA memory map failed\n");
 519		return NETDEV_TX_OK;
 520	}
 521
 522	if (nr_frags) {
 523		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 524		if (IS_ERR(last_bdp)) {
 525			dma_unmap_single(&fep->pdev->dev, addr,
 526					 buflen, DMA_TO_DEVICE);
 527			dev_kfree_skb_any(skb);
 528			return NETDEV_TX_OK;
 529		}
 530	} else {
 531		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 532		if (fep->bufdesc_ex) {
 533			estatus = BD_ENET_TX_INT;
 534			if (unlikely(skb_shinfo(skb)->tx_flags &
 535				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 536				estatus |= BD_ENET_TX_TS;
 537		}
 538	}
 539	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 540	bdp->cbd_datlen = cpu_to_fec16(buflen);
 541
 542	if (fep->bufdesc_ex) {
 543
 544		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 545
 546		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 547			fep->hwts_tx_en))
 548			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 549
 550		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 551			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 552
 553		if (skb->ip_summed == CHECKSUM_PARTIAL)
 554			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 555
 556		ebdp->cbd_bdu = 0;
 557		ebdp->cbd_esc = cpu_to_fec32(estatus);
 558	}
 559
 560	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 561	/* Save skb pointer */
 562	txq->tx_skbuff[index] = skb;
 563
 564	/* Make sure the updates to rest of the descriptor are performed before
 565	 * transferring ownership.
 566	 */
 567	wmb();
 568
 569	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 570	 * it's the last BD of the frame, and to put the CRC on the end.
 571	 */
 572	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 573	bdp->cbd_sc = cpu_to_fec16(status);
 574
 575	/* If this was the last BD in the ring, start at the beginning again. */
 576	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 577
 578	skb_tx_timestamp(skb);
 579
 580	/* Make sure the update to bdp and tx_skbuff are performed before
 581	 * txq->bd.cur.
 582	 */
 583	wmb();
 584	txq->bd.cur = bdp;
 585
 586	/* Trigger transmission start */
 587	writel(0, txq->bd.reg_desc_active);
 588
 589	return 0;
 590}
 591
 592static int
 593fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 594			  struct net_device *ndev,
 595			  struct bufdesc *bdp, int index, char *data,
 596			  int size, bool last_tcp, bool is_last)
 597{
 598	struct fec_enet_private *fep = netdev_priv(ndev);
 599	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 600	unsigned short status;
 601	unsigned int estatus = 0;
 602	dma_addr_t addr;
 603
 604	status = fec16_to_cpu(bdp->cbd_sc);
 605	status &= ~BD_ENET_TX_STATS;
 606
 607	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 608
 609	if (((unsigned long) data) & fep->tx_align ||
 610		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 611		memcpy(txq->tx_bounce[index], data, size);
 612		data = txq->tx_bounce[index];
 613
 614		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 615			swap_buffer(data, size);
 616	}
 617
 618	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 619	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 620		dev_kfree_skb_any(skb);
 621		if (net_ratelimit())
 622			netdev_err(ndev, "Tx DMA memory map failed\n");
 623		return NETDEV_TX_BUSY;
 624	}
 625
 626	bdp->cbd_datlen = cpu_to_fec16(size);
 627	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 628
 629	if (fep->bufdesc_ex) {
 630		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 631			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 632		if (skb->ip_summed == CHECKSUM_PARTIAL)
 633			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 634		ebdp->cbd_bdu = 0;
 635		ebdp->cbd_esc = cpu_to_fec32(estatus);
 636	}
 637
 638	/* Handle the last BD specially */
 639	if (last_tcp)
 640		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 641	if (is_last) {
 642		status |= BD_ENET_TX_INTR;
 643		if (fep->bufdesc_ex)
 644			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 645	}
 646
 647	bdp->cbd_sc = cpu_to_fec16(status);
 648
 649	return 0;
 650}
 651
 652static int
 653fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 654			 struct sk_buff *skb, struct net_device *ndev,
 655			 struct bufdesc *bdp, int index)
 656{
 657	struct fec_enet_private *fep = netdev_priv(ndev);
 658	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 659	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 660	void *bufaddr;
 661	unsigned long dmabuf;
 662	unsigned short status;
 663	unsigned int estatus = 0;
 664
 665	status = fec16_to_cpu(bdp->cbd_sc);
 666	status &= ~BD_ENET_TX_STATS;
 667	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 668
 669	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 670	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 671	if (((unsigned long)bufaddr) & fep->tx_align ||
 672		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 673		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 674		bufaddr = txq->tx_bounce[index];
 675
 676		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 677			swap_buffer(bufaddr, hdr_len);
 678
 679		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 680					hdr_len, DMA_TO_DEVICE);
 681		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 682			dev_kfree_skb_any(skb);
 683			if (net_ratelimit())
 684				netdev_err(ndev, "Tx DMA memory map failed\n");
 685			return NETDEV_TX_BUSY;
 686		}
 687	}
 688
 689	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 690	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 691
 692	if (fep->bufdesc_ex) {
 693		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 694			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 695		if (skb->ip_summed == CHECKSUM_PARTIAL)
 696			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 697		ebdp->cbd_bdu = 0;
 698		ebdp->cbd_esc = cpu_to_fec32(estatus);
 699	}
 700
 701	bdp->cbd_sc = cpu_to_fec16(status);
 702
 703	return 0;
 704}
 705
 706static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 707				   struct sk_buff *skb,
 708				   struct net_device *ndev)
 709{
 710	struct fec_enet_private *fep = netdev_priv(ndev);
 711	int hdr_len, total_len, data_left;
 
 712	struct bufdesc *bdp = txq->bd.cur;
 713	struct tso_t tso;
 714	unsigned int index = 0;
 715	int ret;
 716
 717	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 718		dev_kfree_skb_any(skb);
 719		if (net_ratelimit())
 720			netdev_err(ndev, "NOT enough BD for TSO!\n");
 721		return NETDEV_TX_OK;
 722	}
 723
 724	/* Protocol checksum off-load for TCP and UDP. */
 725	if (fec_enet_clear_csum(skb, ndev)) {
 726		dev_kfree_skb_any(skb);
 727		return NETDEV_TX_OK;
 728	}
 729
 730	/* Initialize the TSO handler, and prepare the first payload */
 731	hdr_len = tso_start(skb, &tso);
 732
 733	total_len = skb->len - hdr_len;
 734	while (total_len > 0) {
 735		char *hdr;
 736
 737		index = fec_enet_get_bd_index(bdp, &txq->bd);
 738		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 739		total_len -= data_left;
 740
 741		/* prepare packet headers: MAC + IP + TCP */
 742		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 743		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 744		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 745		if (ret)
 746			goto err_release;
 747
 748		while (data_left > 0) {
 749			int size;
 750
 751			size = min_t(int, tso.size, data_left);
 752			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 753			index = fec_enet_get_bd_index(bdp, &txq->bd);
 754			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 755							bdp, index,
 756							tso.data, size,
 757							size == data_left,
 758							total_len == 0);
 759			if (ret)
 760				goto err_release;
 761
 762			data_left -= size;
 763			tso_build_data(skb, &tso, size);
 764		}
 765
 766		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 767	}
 768
 769	/* Save skb pointer */
 770	txq->tx_skbuff[index] = skb;
 771
 772	skb_tx_timestamp(skb);
 773	txq->bd.cur = bdp;
 774
 775	/* Trigger transmission start */
 776	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 777	    !readl(txq->bd.reg_desc_active) ||
 778	    !readl(txq->bd.reg_desc_active) ||
 779	    !readl(txq->bd.reg_desc_active) ||
 780	    !readl(txq->bd.reg_desc_active))
 781		writel(0, txq->bd.reg_desc_active);
 782
 783	return 0;
 784
 785err_release:
 786	/* TODO: Release all used data descriptors for TSO */
 787	return ret;
 788}
 789
 790static netdev_tx_t
 791fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 792{
 793	struct fec_enet_private *fep = netdev_priv(ndev);
 794	int entries_free;
 795	unsigned short queue;
 796	struct fec_enet_priv_tx_q *txq;
 797	struct netdev_queue *nq;
 798	int ret;
 799
 800	queue = skb_get_queue_mapping(skb);
 801	txq = fep->tx_queue[queue];
 802	nq = netdev_get_tx_queue(ndev, queue);
 803
 804	if (skb_is_gso(skb))
 805		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 806	else
 807		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 808	if (ret)
 809		return ret;
 810
 811	entries_free = fec_enet_get_free_txdesc_num(txq);
 812	if (entries_free <= txq->tx_stop_threshold)
 813		netif_tx_stop_queue(nq);
 814
 815	return NETDEV_TX_OK;
 816}
 817
 818/* Init RX & TX buffer descriptors
 819 */
 820static void fec_enet_bd_init(struct net_device *dev)
 821{
 822	struct fec_enet_private *fep = netdev_priv(dev);
 823	struct fec_enet_priv_tx_q *txq;
 824	struct fec_enet_priv_rx_q *rxq;
 825	struct bufdesc *bdp;
 826	unsigned int i;
 827	unsigned int q;
 828
 829	for (q = 0; q < fep->num_rx_queues; q++) {
 830		/* Initialize the receive buffer descriptors. */
 831		rxq = fep->rx_queue[q];
 832		bdp = rxq->bd.base;
 833
 834		for (i = 0; i < rxq->bd.ring_size; i++) {
 835
 836			/* Initialize the BD for every fragment in the page. */
 837			if (bdp->cbd_bufaddr)
 838				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 839			else
 840				bdp->cbd_sc = cpu_to_fec16(0);
 841			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 842		}
 843
 844		/* Set the last buffer to wrap */
 845		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 846		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 847
 848		rxq->bd.cur = rxq->bd.base;
 849	}
 850
 851	for (q = 0; q < fep->num_tx_queues; q++) {
 852		/* ...and the same for transmit */
 853		txq = fep->tx_queue[q];
 854		bdp = txq->bd.base;
 855		txq->bd.cur = bdp;
 856
 857		for (i = 0; i < txq->bd.ring_size; i++) {
 858			/* Initialize the BD for every fragment in the page. */
 859			bdp->cbd_sc = cpu_to_fec16(0);
 860			if (bdp->cbd_bufaddr &&
 861			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 862				dma_unmap_single(&fep->pdev->dev,
 863						 fec32_to_cpu(bdp->cbd_bufaddr),
 864						 fec16_to_cpu(bdp->cbd_datlen),
 865						 DMA_TO_DEVICE);
 866			if (txq->tx_skbuff[i]) {
 867				dev_kfree_skb_any(txq->tx_skbuff[i]);
 868				txq->tx_skbuff[i] = NULL;
 869			}
 870			bdp->cbd_bufaddr = cpu_to_fec32(0);
 871			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 872		}
 873
 874		/* Set the last buffer to wrap */
 875		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 876		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 877		txq->dirty_tx = bdp;
 878	}
 879}
 880
 881static void fec_enet_active_rxring(struct net_device *ndev)
 882{
 883	struct fec_enet_private *fep = netdev_priv(ndev);
 884	int i;
 885
 886	for (i = 0; i < fep->num_rx_queues; i++)
 887		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 888}
 889
 890static void fec_enet_enable_ring(struct net_device *ndev)
 891{
 892	struct fec_enet_private *fep = netdev_priv(ndev);
 893	struct fec_enet_priv_tx_q *txq;
 894	struct fec_enet_priv_rx_q *rxq;
 895	int i;
 896
 897	for (i = 0; i < fep->num_rx_queues; i++) {
 898		rxq = fep->rx_queue[i];
 899		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 900		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 901
 902		/* enable DMA1/2 */
 903		if (i)
 904			writel(RCMR_MATCHEN | RCMR_CMP(i),
 905			       fep->hwp + FEC_RCMR(i));
 906	}
 907
 908	for (i = 0; i < fep->num_tx_queues; i++) {
 909		txq = fep->tx_queue[i];
 910		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 911
 912		/* enable DMA1/2 */
 913		if (i)
 914			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 915			       fep->hwp + FEC_DMA_CFG(i));
 916	}
 917}
 918
 919static void fec_enet_reset_skb(struct net_device *ndev)
 920{
 921	struct fec_enet_private *fep = netdev_priv(ndev);
 922	struct fec_enet_priv_tx_q *txq;
 923	int i, j;
 924
 925	for (i = 0; i < fep->num_tx_queues; i++) {
 926		txq = fep->tx_queue[i];
 927
 928		for (j = 0; j < txq->bd.ring_size; j++) {
 929			if (txq->tx_skbuff[j]) {
 930				dev_kfree_skb_any(txq->tx_skbuff[j]);
 931				txq->tx_skbuff[j] = NULL;
 932			}
 933		}
 934	}
 935}
 936
 937/*
 938 * This function is called to start or restart the FEC during a link
 939 * change, transmit timeout, or to reconfigure the FEC.  The network
 940 * packet processing for this device must be stopped before this call.
 941 */
 942static void
 943fec_restart(struct net_device *ndev)
 944{
 945	struct fec_enet_private *fep = netdev_priv(ndev);
 946	u32 val;
 947	u32 temp_mac[2];
 948	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 949	u32 ecntl = 0x2; /* ETHEREN */
 950
 951	/* Whack a reset.  We should wait for this.
 952	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 953	 * instead of reset MAC itself.
 954	 */
 955	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 956		writel(0, fep->hwp + FEC_ECNTRL);
 957	} else {
 958		writel(1, fep->hwp + FEC_ECNTRL);
 959		udelay(10);
 960	}
 961
 962	/*
 963	 * enet-mac reset will reset mac address registers too,
 964	 * so need to reconfigure it.
 965	 */
 966	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 967	writel((__force u32)cpu_to_be32(temp_mac[0]),
 968	       fep->hwp + FEC_ADDR_LOW);
 969	writel((__force u32)cpu_to_be32(temp_mac[1]),
 970	       fep->hwp + FEC_ADDR_HIGH);
 
 
 971
 972	/* Clear any outstanding interrupt, except MDIO. */
 973	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
 974
 975	fec_enet_bd_init(ndev);
 976
 977	fec_enet_enable_ring(ndev);
 978
 979	/* Reset tx SKB buffers. */
 980	fec_enet_reset_skb(ndev);
 981
 982	/* Enable MII mode */
 983	if (fep->full_duplex == DUPLEX_FULL) {
 984		/* FD enable */
 985		writel(0x04, fep->hwp + FEC_X_CNTRL);
 986	} else {
 987		/* No Rcv on Xmit */
 988		rcntl |= 0x02;
 989		writel(0x0, fep->hwp + FEC_X_CNTRL);
 990	}
 991
 992	/* Set MII speed */
 993	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 994
 995#if !defined(CONFIG_M5272)
 996	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 
 997		val = readl(fep->hwp + FEC_RACC);
 998		/* align IP header */
 999		val |= FEC_RACC_SHIFT16;
1000		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1001			/* set RX checksum */
1002			val |= FEC_RACC_OPTIONS;
1003		else
1004			val &= ~FEC_RACC_OPTIONS;
1005		writel(val, fep->hwp + FEC_RACC);
1006		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1007	}
1008#endif
1009
1010	/*
1011	 * The phy interface and speed need to get configured
1012	 * differently on enet-mac.
1013	 */
1014	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1015		/* Enable flow control and length check */
1016		rcntl |= 0x40000000 | 0x00000020;
1017
1018		/* RGMII, RMII or MII */
1019		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1020		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1021		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1022		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1023			rcntl |= (1 << 6);
1024		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025			rcntl |= (1 << 8);
1026		else
1027			rcntl &= ~(1 << 8);
1028
1029		/* 1G, 100M or 10M */
1030		if (ndev->phydev) {
1031			if (ndev->phydev->speed == SPEED_1000)
1032				ecntl |= (1 << 5);
1033			else if (ndev->phydev->speed == SPEED_100)
1034				rcntl &= ~(1 << 9);
1035			else
1036				rcntl |= (1 << 9);
1037		}
1038	} else {
1039#ifdef FEC_MIIGSK_ENR
1040		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1041			u32 cfgr;
1042			/* disable the gasket and wait */
1043			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1044			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1045				udelay(1);
1046
1047			/*
1048			 * configure the gasket:
1049			 *   RMII, 50 MHz, no loopback, no echo
1050			 *   MII, 25 MHz, no loopback, no echo
1051			 */
1052			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1053				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1054			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1055				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1056			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1057
1058			/* re-enable the gasket */
1059			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1060		}
1061#endif
1062	}
1063
1064#if !defined(CONFIG_M5272)
1065	/* enable pause frame*/
1066	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1067	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1068	     ndev->phydev && ndev->phydev->pause)) {
1069		rcntl |= FEC_ENET_FCE;
1070
1071		/* set FIFO threshold parameter to reduce overrun */
1072		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1073		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1074		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1075		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1076
1077		/* OPD */
1078		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1079	} else {
1080		rcntl &= ~FEC_ENET_FCE;
1081	}
1082#endif /* !defined(CONFIG_M5272) */
1083
1084	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1085
1086	/* Setup multicast filter. */
1087	set_multicast_list(ndev);
1088#ifndef CONFIG_M5272
1089	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1090	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1091#endif
1092
1093	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1094		/* enable ENET endian swap */
1095		ecntl |= (1 << 8);
1096		/* enable ENET store and forward mode */
1097		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1098	}
1099
1100	if (fep->bufdesc_ex)
1101		ecntl |= (1 << 4);
1102
1103#ifndef CONFIG_M5272
1104	/* Enable the MIB statistic event counters */
1105	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1106#endif
1107
1108	/* And last, enable the transmit and receive processing */
1109	writel(ecntl, fep->hwp + FEC_ECNTRL);
1110	fec_enet_active_rxring(ndev);
1111
1112	if (fep->bufdesc_ex)
1113		fec_ptp_start_cyclecounter(ndev);
1114
1115	/* Enable interrupts we wish to service */
1116	if (fep->link)
1117		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1118	else
1119		writel(0, fep->hwp + FEC_IMASK);
1120
1121	/* Init the interrupt coalescing */
1122	fec_enet_itr_coal_init(ndev);
1123
1124}
1125
1126static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1127{
1128	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1129	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1130
1131	if (stop_gpr->gpr) {
1132		if (enabled)
1133			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1134					   BIT(stop_gpr->bit),
1135					   BIT(stop_gpr->bit));
1136		else
1137			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1138					   BIT(stop_gpr->bit), 0);
1139	} else if (pdata && pdata->sleep_mode_enable) {
1140		pdata->sleep_mode_enable(enabled);
1141	}
1142}
1143
1144static void
1145fec_stop(struct net_device *ndev)
1146{
1147	struct fec_enet_private *fep = netdev_priv(ndev);
 
1148	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1149	u32 val;
1150
1151	/* We cannot expect a graceful transmit stop without link !!! */
1152	if (fep->link) {
1153		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1154		udelay(10);
1155		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1156			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1157	}
1158
1159	/* Whack a reset.  We should wait for this.
1160	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1161	 * instead of reset MAC itself.
1162	 */
1163	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1164		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1165			writel(0, fep->hwp + FEC_ECNTRL);
1166		} else {
1167			writel(1, fep->hwp + FEC_ECNTRL);
1168			udelay(10);
1169		}
1170		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1171	} else {
1172		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1173		val = readl(fep->hwp + FEC_ECNTRL);
1174		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1175		writel(val, fep->hwp + FEC_ECNTRL);
1176		fec_enet_stop_mode(fep, true);
 
 
1177	}
1178	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1179
1180	/* We have to keep ENET enabled to have MII interrupt stay working */
1181	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1182		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1183		writel(2, fep->hwp + FEC_ECNTRL);
1184		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1185	}
1186}
1187
1188
1189static void
1190fec_timeout(struct net_device *ndev, unsigned int txqueue)
1191{
1192	struct fec_enet_private *fep = netdev_priv(ndev);
1193
1194	fec_dump(ndev);
1195
1196	ndev->stats.tx_errors++;
1197
1198	schedule_work(&fep->tx_timeout_work);
1199}
1200
1201static void fec_enet_timeout_work(struct work_struct *work)
1202{
1203	struct fec_enet_private *fep =
1204		container_of(work, struct fec_enet_private, tx_timeout_work);
1205	struct net_device *ndev = fep->netdev;
1206
1207	rtnl_lock();
1208	if (netif_device_present(ndev) || netif_running(ndev)) {
1209		napi_disable(&fep->napi);
1210		netif_tx_lock_bh(ndev);
1211		fec_restart(ndev);
1212		netif_tx_wake_all_queues(ndev);
1213		netif_tx_unlock_bh(ndev);
1214		napi_enable(&fep->napi);
1215	}
1216	rtnl_unlock();
1217}
1218
1219static void
1220fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1221	struct skb_shared_hwtstamps *hwtstamps)
1222{
1223	unsigned long flags;
1224	u64 ns;
1225
1226	spin_lock_irqsave(&fep->tmreg_lock, flags);
1227	ns = timecounter_cyc2time(&fep->tc, ts);
1228	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1229
1230	memset(hwtstamps, 0, sizeof(*hwtstamps));
1231	hwtstamps->hwtstamp = ns_to_ktime(ns);
1232}
1233
1234static void
1235fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1236{
1237	struct	fec_enet_private *fep;
1238	struct bufdesc *bdp;
1239	unsigned short status;
1240	struct	sk_buff	*skb;
1241	struct fec_enet_priv_tx_q *txq;
1242	struct netdev_queue *nq;
1243	int	index = 0;
1244	int	entries_free;
1245
1246	fep = netdev_priv(ndev);
1247
 
 
1248	txq = fep->tx_queue[queue_id];
1249	/* get next bdp of dirty_tx */
1250	nq = netdev_get_tx_queue(ndev, queue_id);
1251	bdp = txq->dirty_tx;
1252
1253	/* get next bdp of dirty_tx */
1254	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1255
1256	while (bdp != READ_ONCE(txq->bd.cur)) {
1257		/* Order the load of bd.cur and cbd_sc */
1258		rmb();
1259		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1260		if (status & BD_ENET_TX_READY)
1261			break;
1262
1263		index = fec_enet_get_bd_index(bdp, &txq->bd);
1264
1265		skb = txq->tx_skbuff[index];
1266		txq->tx_skbuff[index] = NULL;
1267		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1268			dma_unmap_single(&fep->pdev->dev,
1269					 fec32_to_cpu(bdp->cbd_bufaddr),
1270					 fec16_to_cpu(bdp->cbd_datlen),
1271					 DMA_TO_DEVICE);
1272		bdp->cbd_bufaddr = cpu_to_fec32(0);
1273		if (!skb)
1274			goto skb_done;
 
 
1275
1276		/* Check for errors. */
1277		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1278				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1279				   BD_ENET_TX_CSL)) {
1280			ndev->stats.tx_errors++;
1281			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1282				ndev->stats.tx_heartbeat_errors++;
1283			if (status & BD_ENET_TX_LC)  /* Late collision */
1284				ndev->stats.tx_window_errors++;
1285			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1286				ndev->stats.tx_aborted_errors++;
1287			if (status & BD_ENET_TX_UN)  /* Underrun */
1288				ndev->stats.tx_fifo_errors++;
1289			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1290				ndev->stats.tx_carrier_errors++;
1291		} else {
1292			ndev->stats.tx_packets++;
1293			ndev->stats.tx_bytes += skb->len;
1294		}
1295
1296		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1297		 * are to time stamp the packet, so we still need to check time
1298		 * stamping enabled flag.
1299		 */
1300		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1301			     fep->hwts_tx_en) &&
1302		    fep->bufdesc_ex) {
1303			struct skb_shared_hwtstamps shhwtstamps;
1304			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1305
1306			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1307			skb_tstamp_tx(skb, &shhwtstamps);
1308		}
1309
1310		/* Deferred means some collisions occurred during transmit,
1311		 * but we eventually sent the packet OK.
1312		 */
1313		if (status & BD_ENET_TX_DEF)
1314			ndev->stats.collisions++;
1315
1316		/* Free the sk buffer associated with this last transmit */
1317		dev_kfree_skb_any(skb);
1318skb_done:
1319		/* Make sure the update to bdp and tx_skbuff are performed
1320		 * before dirty_tx
1321		 */
1322		wmb();
1323		txq->dirty_tx = bdp;
1324
1325		/* Update pointer to next buffer descriptor to be transmitted */
1326		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1327
1328		/* Since we have freed up a buffer, the ring is no longer full
1329		 */
1330		if (netif_tx_queue_stopped(nq)) {
1331			entries_free = fec_enet_get_free_txdesc_num(txq);
1332			if (entries_free >= txq->tx_wake_threshold)
1333				netif_tx_wake_queue(nq);
1334		}
1335	}
1336
1337	/* ERR006358: Keep the transmitter going */
1338	if (bdp != txq->bd.cur &&
1339	    readl(txq->bd.reg_desc_active) == 0)
1340		writel(0, txq->bd.reg_desc_active);
1341}
1342
1343static void fec_enet_tx(struct net_device *ndev)
 
1344{
1345	struct fec_enet_private *fep = netdev_priv(ndev);
1346	int i;
1347
1348	/* Make sure that AVB queues are processed first. */
1349	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1350		fec_enet_tx_queue(ndev, i);
 
 
1351}
1352
1353static int
1354fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1355{
1356	struct  fec_enet_private *fep = netdev_priv(ndev);
1357	int off;
1358
1359	off = ((unsigned long)skb->data) & fep->rx_align;
1360	if (off)
1361		skb_reserve(skb, fep->rx_align + 1 - off);
1362
1363	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1364	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1365		if (net_ratelimit())
1366			netdev_err(ndev, "Rx DMA memory map failed\n");
1367		return -ENOMEM;
1368	}
1369
1370	return 0;
1371}
1372
1373static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1374			       struct bufdesc *bdp, u32 length, bool swap)
1375{
1376	struct  fec_enet_private *fep = netdev_priv(ndev);
1377	struct sk_buff *new_skb;
1378
1379	if (length > fep->rx_copybreak)
1380		return false;
1381
1382	new_skb = netdev_alloc_skb(ndev, length);
1383	if (!new_skb)
1384		return false;
1385
1386	dma_sync_single_for_cpu(&fep->pdev->dev,
1387				fec32_to_cpu(bdp->cbd_bufaddr),
1388				FEC_ENET_RX_FRSIZE - fep->rx_align,
1389				DMA_FROM_DEVICE);
1390	if (!swap)
1391		memcpy(new_skb->data, (*skb)->data, length);
1392	else
1393		swap_buffer2(new_skb->data, (*skb)->data, length);
1394	*skb = new_skb;
1395
1396	return true;
1397}
1398
1399/* During a receive, the bd_rx.cur points to the current incoming buffer.
1400 * When we update through the ring, if the next incoming buffer has
1401 * not been given to the system, we just set the empty indicator,
1402 * effectively tossing the packet.
1403 */
1404static int
1405fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1406{
1407	struct fec_enet_private *fep = netdev_priv(ndev);
1408	struct fec_enet_priv_rx_q *rxq;
1409	struct bufdesc *bdp;
1410	unsigned short status;
1411	struct  sk_buff *skb_new = NULL;
1412	struct  sk_buff *skb;
1413	ushort	pkt_len;
1414	__u8 *data;
1415	int	pkt_received = 0;
1416	struct	bufdesc_ex *ebdp = NULL;
1417	bool	vlan_packet_rcvd = false;
1418	u16	vlan_tag;
1419	int	index = 0;
1420	bool	is_copybreak;
1421	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1422
1423#ifdef CONFIG_M532x
1424	flush_cache_all();
1425#endif
 
1426	rxq = fep->rx_queue[queue_id];
1427
1428	/* First, grab all of the stats for the incoming packet.
1429	 * These get messed up if we get called due to a busy condition.
1430	 */
1431	bdp = rxq->bd.cur;
1432
1433	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1434
1435		if (pkt_received >= budget)
1436			break;
1437		pkt_received++;
1438
1439		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1440
1441		/* Check for errors. */
1442		status ^= BD_ENET_RX_LAST;
1443		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1444			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1445			   BD_ENET_RX_CL)) {
1446			ndev->stats.rx_errors++;
1447			if (status & BD_ENET_RX_OV) {
1448				/* FIFO overrun */
1449				ndev->stats.rx_fifo_errors++;
1450				goto rx_processing_done;
1451			}
1452			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1453						| BD_ENET_RX_LAST)) {
1454				/* Frame too long or too short. */
1455				ndev->stats.rx_length_errors++;
1456				if (status & BD_ENET_RX_LAST)
1457					netdev_err(ndev, "rcv is not +last\n");
1458			}
1459			if (status & BD_ENET_RX_CR)	/* CRC Error */
1460				ndev->stats.rx_crc_errors++;
1461			/* Report late collisions as a frame error. */
1462			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1463				ndev->stats.rx_frame_errors++;
1464			goto rx_processing_done;
1465		}
1466
1467		/* Process the incoming frame. */
1468		ndev->stats.rx_packets++;
1469		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1470		ndev->stats.rx_bytes += pkt_len;
1471
1472		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1473		skb = rxq->rx_skbuff[index];
1474
1475		/* The packet length includes FCS, but we don't want to
1476		 * include that when passing upstream as it messes up
1477		 * bridging applications.
1478		 */
1479		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1480						  need_swap);
1481		if (!is_copybreak) {
1482			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1483			if (unlikely(!skb_new)) {
1484				ndev->stats.rx_dropped++;
1485				goto rx_processing_done;
1486			}
1487			dma_unmap_single(&fep->pdev->dev,
1488					 fec32_to_cpu(bdp->cbd_bufaddr),
1489					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1490					 DMA_FROM_DEVICE);
1491		}
1492
1493		prefetch(skb->data - NET_IP_ALIGN);
1494		skb_put(skb, pkt_len - 4);
1495		data = skb->data;
1496
1497		if (!is_copybreak && need_swap)
1498			swap_buffer(data, pkt_len);
1499
1500#if !defined(CONFIG_M5272)
1501		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1502			data = skb_pull_inline(skb, 2);
1503#endif
1504
1505		/* Extract the enhanced buffer descriptor */
1506		ebdp = NULL;
1507		if (fep->bufdesc_ex)
1508			ebdp = (struct bufdesc_ex *)bdp;
1509
1510		/* If this is a VLAN packet remove the VLAN Tag */
1511		vlan_packet_rcvd = false;
1512		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1513		    fep->bufdesc_ex &&
1514		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1515			/* Push and remove the vlan tag */
1516			struct vlan_hdr *vlan_header =
1517					(struct vlan_hdr *) (data + ETH_HLEN);
1518			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1519
1520			vlan_packet_rcvd = true;
1521
1522			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1523			skb_pull(skb, VLAN_HLEN);
1524		}
1525
1526		skb->protocol = eth_type_trans(skb, ndev);
1527
1528		/* Get receive timestamp from the skb */
1529		if (fep->hwts_rx_en && fep->bufdesc_ex)
1530			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1531					  skb_hwtstamps(skb));
1532
1533		if (fep->bufdesc_ex &&
1534		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1535			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1536				/* don't check it */
1537				skb->ip_summed = CHECKSUM_UNNECESSARY;
1538			} else {
1539				skb_checksum_none_assert(skb);
1540			}
1541		}
1542
1543		/* Handle received VLAN packets */
1544		if (vlan_packet_rcvd)
1545			__vlan_hwaccel_put_tag(skb,
1546					       htons(ETH_P_8021Q),
1547					       vlan_tag);
1548
1549		skb_record_rx_queue(skb, queue_id);
1550		napi_gro_receive(&fep->napi, skb);
1551
1552		if (is_copybreak) {
1553			dma_sync_single_for_device(&fep->pdev->dev,
1554						   fec32_to_cpu(bdp->cbd_bufaddr),
1555						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1556						   DMA_FROM_DEVICE);
1557		} else {
1558			rxq->rx_skbuff[index] = skb_new;
1559			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1560		}
1561
1562rx_processing_done:
1563		/* Clear the status flags for this buffer */
1564		status &= ~BD_ENET_RX_STATS;
1565
1566		/* Mark the buffer empty */
1567		status |= BD_ENET_RX_EMPTY;
1568
1569		if (fep->bufdesc_ex) {
1570			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1571
1572			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1573			ebdp->cbd_prot = 0;
1574			ebdp->cbd_bdu = 0;
1575		}
1576		/* Make sure the updates to rest of the descriptor are
1577		 * performed before transferring ownership.
1578		 */
1579		wmb();
1580		bdp->cbd_sc = cpu_to_fec16(status);
1581
1582		/* Update BD pointer to next entry */
1583		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1584
1585		/* Doing this here will keep the FEC running while we process
1586		 * incoming frames.  On a heavily loaded network, we should be
1587		 * able to keep up at the expense of system resources.
1588		 */
1589		writel(0, rxq->bd.reg_desc_active);
1590	}
1591	rxq->bd.cur = bdp;
1592	return pkt_received;
1593}
1594
1595static int fec_enet_rx(struct net_device *ndev, int budget)
 
1596{
 
 
1597	struct fec_enet_private *fep = netdev_priv(ndev);
1598	int i, done = 0;
1599
1600	/* Make sure that AVB queues are processed first. */
1601	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1602		done += fec_enet_rx_queue(ndev, budget - done, i);
1603
1604	return done;
 
 
 
 
 
 
 
 
1605}
1606
1607static bool fec_enet_collect_events(struct fec_enet_private *fep)
 
1608{
1609	uint int_events;
 
1610
1611	int_events = readl(fep->hwp + FEC_IEVENT);
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613	/* Don't clear MDIO events, we poll for those */
1614	int_events &= ~FEC_ENET_MII;
1615
1616	writel(int_events, fep->hwp + FEC_IEVENT);
1617
1618	return int_events != 0;
1619}
1620
1621static irqreturn_t
1622fec_enet_interrupt(int irq, void *dev_id)
1623{
1624	struct net_device *ndev = dev_id;
1625	struct fec_enet_private *fep = netdev_priv(ndev);
 
1626	irqreturn_t ret = IRQ_NONE;
1627
1628	if (fec_enet_collect_events(fep) && fep->link) {
 
 
 
 
1629		ret = IRQ_HANDLED;
1630
1631		if (napi_schedule_prep(&fep->napi)) {
1632			/* Disable interrupts */
1633			writel(0, fep->hwp + FEC_IMASK);
1634			__napi_schedule(&fep->napi);
1635		}
1636	}
1637
 
 
 
 
 
 
 
 
1638	return ret;
1639}
1640
1641static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1642{
1643	struct net_device *ndev = napi->dev;
1644	struct fec_enet_private *fep = netdev_priv(ndev);
1645	int done = 0;
 
 
1646
1647	do {
1648		done += fec_enet_rx(ndev, budget - done);
1649		fec_enet_tx(ndev);
1650	} while ((done < budget) && fec_enet_collect_events(fep));
1651
1652	if (done < budget) {
1653		napi_complete_done(napi, done);
1654		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1655	}
1656
1657	return done;
1658}
1659
1660/* ------------------------------------------------------------------------- */
1661static void fec_get_mac(struct net_device *ndev)
1662{
1663	struct fec_enet_private *fep = netdev_priv(ndev);
1664	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1665	unsigned char *iap, tmpaddr[ETH_ALEN];
1666
1667	/*
1668	 * try to get mac address in following order:
1669	 *
1670	 * 1) module parameter via kernel command line in form
1671	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1672	 */
1673	iap = macaddr;
1674
1675	/*
1676	 * 2) from device tree data
1677	 */
1678	if (!is_valid_ether_addr(iap)) {
1679		struct device_node *np = fep->pdev->dev.of_node;
1680		if (np) {
1681			const char *mac = of_get_mac_address(np);
1682			if (!IS_ERR(mac))
1683				iap = (unsigned char *) mac;
1684		}
1685	}
1686
1687	/*
1688	 * 3) from flash or fuse (via platform data)
1689	 */
1690	if (!is_valid_ether_addr(iap)) {
1691#ifdef CONFIG_M5272
1692		if (FEC_FLASHMAC)
1693			iap = (unsigned char *)FEC_FLASHMAC;
1694#else
1695		if (pdata)
1696			iap = (unsigned char *)&pdata->mac;
1697#endif
1698	}
1699
1700	/*
1701	 * 4) FEC mac registers set by bootloader
1702	 */
1703	if (!is_valid_ether_addr(iap)) {
1704		*((__be32 *) &tmpaddr[0]) =
1705			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1706		*((__be16 *) &tmpaddr[4]) =
1707			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1708		iap = &tmpaddr[0];
1709	}
1710
1711	/*
1712	 * 5) random mac address
1713	 */
1714	if (!is_valid_ether_addr(iap)) {
1715		/* Report it and use a random ethernet address instead */
1716		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1717		eth_hw_addr_random(ndev);
1718		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1719			 ndev->dev_addr);
1720		return;
1721	}
1722
1723	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1724
1725	/* Adjust MAC if using macaddr */
1726	if (iap == macaddr)
1727		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1728}
1729
1730/* ------------------------------------------------------------------------- */
1731
1732/*
1733 * Phy section
1734 */
1735static void fec_enet_adjust_link(struct net_device *ndev)
1736{
1737	struct fec_enet_private *fep = netdev_priv(ndev);
1738	struct phy_device *phy_dev = ndev->phydev;
1739	int status_change = 0;
1740
 
 
 
 
 
 
1741	/*
1742	 * If the netdev is down, or is going down, we're not interested
1743	 * in link state events, so just mark our idea of the link as down
1744	 * and ignore the event.
1745	 */
1746	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1747		fep->link = 0;
1748	} else if (phy_dev->link) {
1749		if (!fep->link) {
1750			fep->link = phy_dev->link;
1751			status_change = 1;
1752		}
1753
1754		if (fep->full_duplex != phy_dev->duplex) {
1755			fep->full_duplex = phy_dev->duplex;
1756			status_change = 1;
1757		}
1758
1759		if (phy_dev->speed != fep->speed) {
1760			fep->speed = phy_dev->speed;
1761			status_change = 1;
1762		}
1763
1764		/* if any of the above changed restart the FEC */
1765		if (status_change) {
1766			napi_disable(&fep->napi);
1767			netif_tx_lock_bh(ndev);
1768			fec_restart(ndev);
1769			netif_tx_wake_all_queues(ndev);
1770			netif_tx_unlock_bh(ndev);
1771			napi_enable(&fep->napi);
1772		}
1773	} else {
1774		if (fep->link) {
1775			napi_disable(&fep->napi);
1776			netif_tx_lock_bh(ndev);
1777			fec_stop(ndev);
1778			netif_tx_unlock_bh(ndev);
1779			napi_enable(&fep->napi);
1780			fep->link = phy_dev->link;
1781			status_change = 1;
1782		}
1783	}
1784
1785	if (status_change)
1786		phy_print_status(phy_dev);
1787}
1788
1789static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1790{
1791	uint ievent;
1792	int ret;
1793
1794	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1795					ievent & FEC_ENET_MII, 2, 30000);
1796
1797	if (!ret)
1798		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1799
1800	return ret;
1801}
1802
1803static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1804{
1805	struct fec_enet_private *fep = bus->priv;
1806	struct device *dev = &fep->pdev->dev;
1807	int ret = 0, frame_start, frame_addr, frame_op;
1808	bool is_c45 = !!(regnum & MII_ADDR_C45);
1809
1810	ret = pm_runtime_get_sync(dev);
1811	if (ret < 0)
1812		return ret;
1813
1814	if (is_c45) {
1815		frame_start = FEC_MMFR_ST_C45;
1816
1817		/* write address */
1818		frame_addr = (regnum >> 16);
1819		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1820		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1821		       FEC_MMFR_TA | (regnum & 0xFFFF),
1822		       fep->hwp + FEC_MII_DATA);
1823
1824		/* wait for end of transfer */
1825		ret = fec_enet_mdio_wait(fep);
1826		if (ret) {
1827			netdev_err(fep->netdev, "MDIO address write timeout\n");
1828			goto out;
1829		}
1830
1831		frame_op = FEC_MMFR_OP_READ_C45;
1832
1833	} else {
1834		/* C22 read */
1835		frame_op = FEC_MMFR_OP_READ;
1836		frame_start = FEC_MMFR_ST;
1837		frame_addr = regnum;
1838	}
1839
1840	/* start a read op */
1841	writel(frame_start | frame_op |
1842		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1843		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1844
1845	/* wait for end of transfer */
1846	ret = fec_enet_mdio_wait(fep);
1847	if (ret) {
 
 
1848		netdev_err(fep->netdev, "MDIO read timeout\n");
 
1849		goto out;
1850	}
1851
1852	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1853
1854out:
1855	pm_runtime_mark_last_busy(dev);
1856	pm_runtime_put_autosuspend(dev);
1857
1858	return ret;
1859}
1860
1861static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1862			   u16 value)
1863{
1864	struct fec_enet_private *fep = bus->priv;
1865	struct device *dev = &fep->pdev->dev;
1866	int ret, frame_start, frame_addr;
1867	bool is_c45 = !!(regnum & MII_ADDR_C45);
1868
1869	ret = pm_runtime_get_sync(dev);
1870	if (ret < 0)
1871		return ret;
1872	else
1873		ret = 0;
1874
1875	if (is_c45) {
1876		frame_start = FEC_MMFR_ST_C45;
1877
1878		/* write address */
1879		frame_addr = (regnum >> 16);
1880		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1881		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1882		       FEC_MMFR_TA | (regnum & 0xFFFF),
1883		       fep->hwp + FEC_MII_DATA);
1884
1885		/* wait for end of transfer */
1886		ret = fec_enet_mdio_wait(fep);
1887		if (ret) {
1888			netdev_err(fep->netdev, "MDIO address write timeout\n");
1889			goto out;
1890		}
1891	} else {
1892		/* C22 write */
1893		frame_start = FEC_MMFR_ST;
1894		frame_addr = regnum;
1895	}
1896
1897	/* start a write op */
1898	writel(frame_start | FEC_MMFR_OP_WRITE |
1899		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1900		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1901		fep->hwp + FEC_MII_DATA);
1902
1903	/* wait for end of transfer */
1904	ret = fec_enet_mdio_wait(fep);
1905	if (ret)
 
 
1906		netdev_err(fep->netdev, "MDIO write timeout\n");
 
 
1907
1908out:
1909	pm_runtime_mark_last_busy(dev);
1910	pm_runtime_put_autosuspend(dev);
1911
1912	return ret;
1913}
1914
1915static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1916{
1917	struct fec_enet_private *fep = netdev_priv(ndev);
1918	int ret;
1919
1920	if (enable) {
1921		ret = clk_prepare_enable(fep->clk_enet_out);
1922		if (ret)
1923			return ret;
1924
 
 
 
 
1925		if (fep->clk_ptp) {
1926			mutex_lock(&fep->ptp_clk_mutex);
1927			ret = clk_prepare_enable(fep->clk_ptp);
1928			if (ret) {
1929				mutex_unlock(&fep->ptp_clk_mutex);
1930				goto failed_clk_ptp;
1931			} else {
1932				fep->ptp_clk_on = true;
1933			}
1934			mutex_unlock(&fep->ptp_clk_mutex);
1935		}
1936
1937		ret = clk_prepare_enable(fep->clk_ref);
1938		if (ret)
1939			goto failed_clk_ref;
1940
1941		phy_reset_after_clk_enable(ndev->phydev);
1942	} else {
1943		clk_disable_unprepare(fep->clk_enet_out);
 
 
1944		if (fep->clk_ptp) {
1945			mutex_lock(&fep->ptp_clk_mutex);
1946			clk_disable_unprepare(fep->clk_ptp);
1947			fep->ptp_clk_on = false;
1948			mutex_unlock(&fep->ptp_clk_mutex);
1949		}
1950		clk_disable_unprepare(fep->clk_ref);
 
1951	}
1952
1953	return 0;
1954
1955failed_clk_ref:
1956	if (fep->clk_ptp) {
1957		mutex_lock(&fep->ptp_clk_mutex);
1958		clk_disable_unprepare(fep->clk_ptp);
1959		fep->ptp_clk_on = false;
1960		mutex_unlock(&fep->ptp_clk_mutex);
1961	}
1962failed_clk_ptp:
1963	if (fep->clk_enet_out)
1964		clk_disable_unprepare(fep->clk_enet_out);
 
 
1965
1966	return ret;
1967}
1968
1969static int fec_enet_mii_probe(struct net_device *ndev)
1970{
1971	struct fec_enet_private *fep = netdev_priv(ndev);
1972	struct phy_device *phy_dev = NULL;
1973	char mdio_bus_id[MII_BUS_ID_SIZE];
1974	char phy_name[MII_BUS_ID_SIZE + 3];
1975	int phy_id;
1976	int dev_id = fep->dev_id;
1977
 
 
1978	if (fep->phy_node) {
1979		phy_dev = of_phy_connect(ndev, fep->phy_node,
1980					 &fec_enet_adjust_link, 0,
1981					 fep->phy_interface);
1982		if (!phy_dev) {
1983			netdev_err(ndev, "Unable to connect to phy\n");
1984			return -ENODEV;
1985		}
1986	} else {
1987		/* check for attached phy */
1988		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1989			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1990				continue;
1991			if (dev_id--)
1992				continue;
1993			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1994			break;
1995		}
1996
1997		if (phy_id >= PHY_MAX_ADDR) {
1998			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1999			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2000			phy_id = 0;
2001		}
2002
2003		snprintf(phy_name, sizeof(phy_name),
2004			 PHY_ID_FMT, mdio_bus_id, phy_id);
2005		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2006				      fep->phy_interface);
2007	}
2008
2009	if (IS_ERR(phy_dev)) {
2010		netdev_err(ndev, "could not attach to PHY\n");
2011		return PTR_ERR(phy_dev);
2012	}
2013
2014	/* mask with MAC supported features */
2015	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2016		phy_set_max_speed(phy_dev, 1000);
2017		phy_remove_link_mode(phy_dev,
2018				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2019#if !defined(CONFIG_M5272)
2020		phy_support_sym_pause(phy_dev);
2021#endif
2022	}
2023	else
2024		phy_set_max_speed(phy_dev, 100);
 
 
2025
 
2026	fep->link = 0;
2027	fep->full_duplex = 0;
2028
2029	phy_attached_info(phy_dev);
2030
2031	return 0;
2032}
2033
2034static int fec_enet_mii_init(struct platform_device *pdev)
2035{
2036	static struct mii_bus *fec0_mii_bus;
2037	struct net_device *ndev = platform_get_drvdata(pdev);
2038	struct fec_enet_private *fep = netdev_priv(ndev);
2039	bool suppress_preamble = false;
2040	struct device_node *node;
2041	int err = -ENXIO;
2042	u32 mii_speed, holdtime;
2043	u32 bus_freq;
2044
2045	/*
2046	 * The i.MX28 dual fec interfaces are not equal.
2047	 * Here are the differences:
2048	 *
2049	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2050	 *  - fec0 acts as the 1588 time master while fec1 is slave
2051	 *  - external phys can only be configured by fec0
2052	 *
2053	 * That is to say fec1 can not work independently. It only works
2054	 * when fec0 is working. The reason behind this design is that the
2055	 * second interface is added primarily for Switch mode.
2056	 *
2057	 * Because of the last point above, both phys are attached on fec0
2058	 * mdio interface in board design, and need to be configured by
2059	 * fec0 mii_bus.
2060	 */
2061	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2062		/* fec1 uses fec0 mii_bus */
2063		if (mii_cnt && fec0_mii_bus) {
2064			fep->mii_bus = fec0_mii_bus;
2065			mii_cnt++;
2066			return 0;
2067		}
2068		return -ENOENT;
2069	}
2070
2071	bus_freq = 2500000; /* 2.5MHz by default */
2072	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2073	if (node) {
2074		of_property_read_u32(node, "clock-frequency", &bus_freq);
2075		suppress_preamble = of_property_read_bool(node,
2076							  "suppress-preamble");
2077	}
2078
2079	/*
2080	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2081	 *
2082	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2083	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2084	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2085	 * document.
2086	 */
2087	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2088	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2089		mii_speed--;
2090	if (mii_speed > 63) {
2091		dev_err(&pdev->dev,
2092			"fec clock (%lu) too fast to get right mii speed\n",
2093			clk_get_rate(fep->clk_ipg));
2094		err = -EINVAL;
2095		goto err_out;
2096	}
2097
2098	/*
2099	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2100	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2101	 * versions are RAZ there, so just ignore the difference and write the
2102	 * register always.
2103	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2104	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2105	 * output.
2106	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2107	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2108	 * holdtime cannot result in a value greater than 3.
2109	 */
2110	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2111
2112	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2113
2114	if (suppress_preamble)
2115		fep->phy_speed |= BIT(7);
2116
2117	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2118	 * MII event generation condition:
2119	 * - writing MSCR:
2120	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2121	 *	  mscr_reg_data_in[7:0] != 0
2122	 * - writing MMFR:
2123	 *	- mscr[7:0]_not_zero
2124	 */
2125	writel(0, fep->hwp + FEC_MII_DATA);
2126
2127	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2128
2129	/* Clear any pending transaction complete indication */
2130	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2131
2132	fep->mii_bus = mdiobus_alloc();
2133	if (fep->mii_bus == NULL) {
2134		err = -ENOMEM;
2135		goto err_out;
2136	}
2137
2138	fep->mii_bus->name = "fec_enet_mii_bus";
2139	fep->mii_bus->read = fec_enet_mdio_read;
2140	fep->mii_bus->write = fec_enet_mdio_write;
2141	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2142		pdev->name, fep->dev_id + 1);
2143	fep->mii_bus->priv = fep;
2144	fep->mii_bus->parent = &pdev->dev;
2145
2146	err = of_mdiobus_register(fep->mii_bus, node);
2147	of_node_put(node);
 
 
 
 
 
 
2148	if (err)
2149		goto err_out_free_mdiobus;
2150
2151	mii_cnt++;
2152
2153	/* save fec0 mii_bus */
2154	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2155		fec0_mii_bus = fep->mii_bus;
2156
2157	return 0;
2158
2159err_out_free_mdiobus:
2160	mdiobus_free(fep->mii_bus);
2161err_out:
2162	return err;
2163}
2164
2165static void fec_enet_mii_remove(struct fec_enet_private *fep)
2166{
2167	if (--mii_cnt == 0) {
2168		mdiobus_unregister(fep->mii_bus);
2169		mdiobus_free(fep->mii_bus);
2170	}
2171}
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173static void fec_enet_get_drvinfo(struct net_device *ndev,
2174				 struct ethtool_drvinfo *info)
2175{
2176	struct fec_enet_private *fep = netdev_priv(ndev);
2177
2178	strlcpy(info->driver, fep->pdev->dev.driver->name,
2179		sizeof(info->driver));
 
2180	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2181}
2182
2183static int fec_enet_get_regs_len(struct net_device *ndev)
2184{
2185	struct fec_enet_private *fep = netdev_priv(ndev);
2186	struct resource *r;
2187	int s = 0;
2188
2189	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2190	if (r)
2191		s = resource_size(r);
2192
2193	return s;
2194}
2195
2196/* List of registers that can be safety be read to dump them with ethtool */
2197#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2198	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2199	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2200static __u32 fec_enet_register_version = 2;
2201static u32 fec_enet_register_offset[] = {
2202	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2203	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2204	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2205	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2206	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2207	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2208	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2209	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2210	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2211	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2212	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2213	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2214	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2215	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2216	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2217	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2218	RMON_T_P_GTE2048, RMON_T_OCTETS,
2219	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2220	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2221	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2222	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2223	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2224	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2225	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2226	RMON_R_P_GTE2048, RMON_R_OCTETS,
2227	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2228	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2229};
2230#else
2231static __u32 fec_enet_register_version = 1;
2232static u32 fec_enet_register_offset[] = {
2233	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2234	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2235	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2236	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2237	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2238	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2239	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2240	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2241	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2242};
2243#endif
2244
2245static void fec_enet_get_regs(struct net_device *ndev,
2246			      struct ethtool_regs *regs, void *regbuf)
2247{
2248	struct fec_enet_private *fep = netdev_priv(ndev);
2249	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2250	struct device *dev = &fep->pdev->dev;
2251	u32 *buf = (u32 *)regbuf;
2252	u32 i, off;
2253	int ret;
2254
2255	ret = pm_runtime_get_sync(dev);
2256	if (ret < 0)
2257		return;
2258
2259	regs->version = fec_enet_register_version;
2260
2261	memset(buf, 0, regs->len);
2262
2263	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2264		off = fec_enet_register_offset[i];
2265
2266		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2267		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2268			continue;
2269
2270		off >>= 2;
2271		buf[off] = readl(&theregs[off]);
2272	}
2273
2274	pm_runtime_mark_last_busy(dev);
2275	pm_runtime_put_autosuspend(dev);
2276}
2277
2278static int fec_enet_get_ts_info(struct net_device *ndev,
2279				struct ethtool_ts_info *info)
2280{
2281	struct fec_enet_private *fep = netdev_priv(ndev);
2282
2283	if (fep->bufdesc_ex) {
2284
2285		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2286					SOF_TIMESTAMPING_RX_SOFTWARE |
2287					SOF_TIMESTAMPING_SOFTWARE |
2288					SOF_TIMESTAMPING_TX_HARDWARE |
2289					SOF_TIMESTAMPING_RX_HARDWARE |
2290					SOF_TIMESTAMPING_RAW_HARDWARE;
2291		if (fep->ptp_clock)
2292			info->phc_index = ptp_clock_index(fep->ptp_clock);
2293		else
2294			info->phc_index = -1;
2295
2296		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2297				 (1 << HWTSTAMP_TX_ON);
2298
2299		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2300				   (1 << HWTSTAMP_FILTER_ALL);
2301		return 0;
2302	} else {
2303		return ethtool_op_get_ts_info(ndev, info);
2304	}
2305}
2306
2307#if !defined(CONFIG_M5272)
2308
2309static void fec_enet_get_pauseparam(struct net_device *ndev,
2310				    struct ethtool_pauseparam *pause)
2311{
2312	struct fec_enet_private *fep = netdev_priv(ndev);
2313
2314	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2315	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2316	pause->rx_pause = pause->tx_pause;
2317}
2318
2319static int fec_enet_set_pauseparam(struct net_device *ndev,
2320				   struct ethtool_pauseparam *pause)
2321{
2322	struct fec_enet_private *fep = netdev_priv(ndev);
2323
2324	if (!ndev->phydev)
2325		return -ENODEV;
2326
2327	if (pause->tx_pause != pause->rx_pause) {
2328		netdev_info(ndev,
2329			"hardware only support enable/disable both tx and rx");
2330		return -EINVAL;
2331	}
2332
2333	fep->pause_flag = 0;
2334
2335	/* tx pause must be same as rx pause */
2336	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2337	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2338
2339	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2340			  pause->autoneg);
 
 
 
 
 
2341
2342	if (pause->autoneg) {
2343		if (netif_running(ndev))
2344			fec_stop(ndev);
2345		phy_start_aneg(ndev->phydev);
2346	}
2347	if (netif_running(ndev)) {
2348		napi_disable(&fep->napi);
2349		netif_tx_lock_bh(ndev);
2350		fec_restart(ndev);
2351		netif_tx_wake_all_queues(ndev);
2352		netif_tx_unlock_bh(ndev);
2353		napi_enable(&fep->napi);
2354	}
2355
2356	return 0;
2357}
2358
2359static const struct fec_stat {
2360	char name[ETH_GSTRING_LEN];
2361	u16 offset;
2362} fec_stats[] = {
2363	/* RMON TX */
2364	{ "tx_dropped", RMON_T_DROP },
2365	{ "tx_packets", RMON_T_PACKETS },
2366	{ "tx_broadcast", RMON_T_BC_PKT },
2367	{ "tx_multicast", RMON_T_MC_PKT },
2368	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2369	{ "tx_undersize", RMON_T_UNDERSIZE },
2370	{ "tx_oversize", RMON_T_OVERSIZE },
2371	{ "tx_fragment", RMON_T_FRAG },
2372	{ "tx_jabber", RMON_T_JAB },
2373	{ "tx_collision", RMON_T_COL },
2374	{ "tx_64byte", RMON_T_P64 },
2375	{ "tx_65to127byte", RMON_T_P65TO127 },
2376	{ "tx_128to255byte", RMON_T_P128TO255 },
2377	{ "tx_256to511byte", RMON_T_P256TO511 },
2378	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2379	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2380	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2381	{ "tx_octets", RMON_T_OCTETS },
2382
2383	/* IEEE TX */
2384	{ "IEEE_tx_drop", IEEE_T_DROP },
2385	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2386	{ "IEEE_tx_1col", IEEE_T_1COL },
2387	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2388	{ "IEEE_tx_def", IEEE_T_DEF },
2389	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2390	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2391	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2392	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2393	{ "IEEE_tx_sqe", IEEE_T_SQE },
2394	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2395	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2396
2397	/* RMON RX */
2398	{ "rx_packets", RMON_R_PACKETS },
2399	{ "rx_broadcast", RMON_R_BC_PKT },
2400	{ "rx_multicast", RMON_R_MC_PKT },
2401	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2402	{ "rx_undersize", RMON_R_UNDERSIZE },
2403	{ "rx_oversize", RMON_R_OVERSIZE },
2404	{ "rx_fragment", RMON_R_FRAG },
2405	{ "rx_jabber", RMON_R_JAB },
2406	{ "rx_64byte", RMON_R_P64 },
2407	{ "rx_65to127byte", RMON_R_P65TO127 },
2408	{ "rx_128to255byte", RMON_R_P128TO255 },
2409	{ "rx_256to511byte", RMON_R_P256TO511 },
2410	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2411	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2412	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2413	{ "rx_octets", RMON_R_OCTETS },
2414
2415	/* IEEE RX */
2416	{ "IEEE_rx_drop", IEEE_R_DROP },
2417	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2418	{ "IEEE_rx_crc", IEEE_R_CRC },
2419	{ "IEEE_rx_align", IEEE_R_ALIGN },
2420	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2421	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2422	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2423};
2424
2425#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2426
2427static void fec_enet_update_ethtool_stats(struct net_device *dev)
2428{
2429	struct fec_enet_private *fep = netdev_priv(dev);
2430	int i;
2431
2432	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2433		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2434}
2435
2436static void fec_enet_get_ethtool_stats(struct net_device *dev,
2437				       struct ethtool_stats *stats, u64 *data)
2438{
2439	struct fec_enet_private *fep = netdev_priv(dev);
2440
2441	if (netif_running(dev))
2442		fec_enet_update_ethtool_stats(dev);
2443
2444	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2445}
2446
2447static void fec_enet_get_strings(struct net_device *netdev,
2448	u32 stringset, u8 *data)
2449{
2450	int i;
2451	switch (stringset) {
2452	case ETH_SS_STATS:
2453		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2454			memcpy(data + i * ETH_GSTRING_LEN,
2455				fec_stats[i].name, ETH_GSTRING_LEN);
2456		break;
2457	}
2458}
2459
2460static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2461{
2462	switch (sset) {
2463	case ETH_SS_STATS:
2464		return ARRAY_SIZE(fec_stats);
2465	default:
2466		return -EOPNOTSUPP;
2467	}
2468}
 
2469
2470static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2471{
2472	struct fec_enet_private *fep = netdev_priv(dev);
2473	int i;
2474
2475	/* Disable MIB statistics counters */
2476	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2477
2478	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2479		writel(0, fep->hwp + fec_stats[i].offset);
2480
2481	/* Don't disable MIB statistics counters */
2482	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2483}
2484
2485#else	/* !defined(CONFIG_M5272) */
2486#define FEC_STATS_SIZE	0
2487static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2488{
2489}
2490
2491static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2492{
2493}
2494#endif /* !defined(CONFIG_M5272) */
2495
2496/* ITR clock source is enet system clock (clk_ahb).
2497 * TCTT unit is cycle_ns * 64 cycle
2498 * So, the ICTT value = X us / (cycle_ns * 64)
2499 */
2500static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2501{
2502	struct fec_enet_private *fep = netdev_priv(ndev);
2503
2504	return us * (fep->itr_clk_rate / 64000) / 1000;
2505}
2506
2507/* Set threshold for interrupt coalescing */
2508static void fec_enet_itr_coal_set(struct net_device *ndev)
2509{
2510	struct fec_enet_private *fep = netdev_priv(ndev);
2511	int rx_itr, tx_itr;
2512
 
 
 
2513	/* Must be greater than zero to avoid unpredictable behavior */
2514	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2515	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2516		return;
2517
2518	/* Select enet system clock as Interrupt Coalescing
2519	 * timer Clock Source
2520	 */
2521	rx_itr = FEC_ITR_CLK_SEL;
2522	tx_itr = FEC_ITR_CLK_SEL;
2523
2524	/* set ICFT and ICTT */
2525	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2526	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2527	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2528	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2529
2530	rx_itr |= FEC_ITR_EN;
2531	tx_itr |= FEC_ITR_EN;
2532
2533	writel(tx_itr, fep->hwp + FEC_TXIC0);
2534	writel(rx_itr, fep->hwp + FEC_RXIC0);
2535	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2536		writel(tx_itr, fep->hwp + FEC_TXIC1);
2537		writel(rx_itr, fep->hwp + FEC_RXIC1);
2538		writel(tx_itr, fep->hwp + FEC_TXIC2);
2539		writel(rx_itr, fep->hwp + FEC_RXIC2);
2540	}
2541}
2542
2543static int
2544fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2545{
2546	struct fec_enet_private *fep = netdev_priv(ndev);
2547
2548	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2549		return -EOPNOTSUPP;
2550
2551	ec->rx_coalesce_usecs = fep->rx_time_itr;
2552	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2553
2554	ec->tx_coalesce_usecs = fep->tx_time_itr;
2555	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2556
2557	return 0;
2558}
2559
2560static int
2561fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2562{
2563	struct fec_enet_private *fep = netdev_priv(ndev);
2564	struct device *dev = &fep->pdev->dev;
2565	unsigned int cycle;
2566
2567	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2568		return -EOPNOTSUPP;
2569
2570	if (ec->rx_max_coalesced_frames > 255) {
2571		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2572		return -EINVAL;
2573	}
2574
2575	if (ec->tx_max_coalesced_frames > 255) {
2576		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2577		return -EINVAL;
2578	}
2579
2580	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2581	if (cycle > 0xFFFF) {
2582		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2583		return -EINVAL;
2584	}
2585
2586	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2587	if (cycle > 0xFFFF) {
2588		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2589		return -EINVAL;
2590	}
2591
2592	fep->rx_time_itr = ec->rx_coalesce_usecs;
2593	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2594
2595	fep->tx_time_itr = ec->tx_coalesce_usecs;
2596	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2597
2598	fec_enet_itr_coal_set(ndev);
2599
2600	return 0;
2601}
2602
2603static void fec_enet_itr_coal_init(struct net_device *ndev)
2604{
2605	struct ethtool_coalesce ec;
2606
2607	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2608	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2609
2610	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2611	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2612
2613	fec_enet_set_coalesce(ndev, &ec);
2614}
2615
2616static int fec_enet_get_tunable(struct net_device *netdev,
2617				const struct ethtool_tunable *tuna,
2618				void *data)
2619{
2620	struct fec_enet_private *fep = netdev_priv(netdev);
2621	int ret = 0;
2622
2623	switch (tuna->id) {
2624	case ETHTOOL_RX_COPYBREAK:
2625		*(u32 *)data = fep->rx_copybreak;
2626		break;
2627	default:
2628		ret = -EINVAL;
2629		break;
2630	}
2631
2632	return ret;
2633}
2634
2635static int fec_enet_set_tunable(struct net_device *netdev,
2636				const struct ethtool_tunable *tuna,
2637				const void *data)
2638{
2639	struct fec_enet_private *fep = netdev_priv(netdev);
2640	int ret = 0;
2641
2642	switch (tuna->id) {
2643	case ETHTOOL_RX_COPYBREAK:
2644		fep->rx_copybreak = *(u32 *)data;
2645		break;
2646	default:
2647		ret = -EINVAL;
2648		break;
2649	}
2650
2651	return ret;
2652}
2653
2654static void
2655fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2656{
2657	struct fec_enet_private *fep = netdev_priv(ndev);
2658
2659	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2660		wol->supported = WAKE_MAGIC;
2661		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2662	} else {
2663		wol->supported = wol->wolopts = 0;
2664	}
2665}
2666
2667static int
2668fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2669{
2670	struct fec_enet_private *fep = netdev_priv(ndev);
2671
2672	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2673		return -EINVAL;
2674
2675	if (wol->wolopts & ~WAKE_MAGIC)
2676		return -EINVAL;
2677
2678	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2679	if (device_may_wakeup(&ndev->dev)) {
2680		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2681		if (fep->irq[0] > 0)
2682			enable_irq_wake(fep->irq[0]);
2683	} else {
2684		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2685		if (fep->irq[0] > 0)
2686			disable_irq_wake(fep->irq[0]);
2687	}
2688
2689	return 0;
2690}
2691
2692static const struct ethtool_ops fec_enet_ethtool_ops = {
2693	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2694				     ETHTOOL_COALESCE_MAX_FRAMES,
2695	.get_drvinfo		= fec_enet_get_drvinfo,
2696	.get_regs_len		= fec_enet_get_regs_len,
2697	.get_regs		= fec_enet_get_regs,
2698	.nway_reset		= phy_ethtool_nway_reset,
2699	.get_link		= ethtool_op_get_link,
2700	.get_coalesce		= fec_enet_get_coalesce,
2701	.set_coalesce		= fec_enet_set_coalesce,
2702#ifndef CONFIG_M5272
2703	.get_pauseparam		= fec_enet_get_pauseparam,
2704	.set_pauseparam		= fec_enet_set_pauseparam,
2705	.get_strings		= fec_enet_get_strings,
2706	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2707	.get_sset_count		= fec_enet_get_sset_count,
2708#endif
2709	.get_ts_info		= fec_enet_get_ts_info,
2710	.get_tunable		= fec_enet_get_tunable,
2711	.set_tunable		= fec_enet_set_tunable,
2712	.get_wol		= fec_enet_get_wol,
2713	.set_wol		= fec_enet_set_wol,
2714	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2715	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2716};
2717
2718static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2719{
2720	struct fec_enet_private *fep = netdev_priv(ndev);
2721	struct phy_device *phydev = ndev->phydev;
2722
2723	if (!netif_running(ndev))
2724		return -EINVAL;
2725
2726	if (!phydev)
2727		return -ENODEV;
2728
2729	if (fep->bufdesc_ex) {
2730		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2731
2732		if (cmd == SIOCSHWTSTAMP) {
2733			if (use_fec_hwts)
2734				return fec_ptp_set(ndev, rq);
2735			fec_ptp_disable_hwts(ndev);
2736		} else if (cmd == SIOCGHWTSTAMP) {
2737			if (use_fec_hwts)
2738				return fec_ptp_get(ndev, rq);
2739		}
2740	}
2741
2742	return phy_mii_ioctl(phydev, rq, cmd);
2743}
2744
2745static void fec_enet_free_buffers(struct net_device *ndev)
2746{
2747	struct fec_enet_private *fep = netdev_priv(ndev);
2748	unsigned int i;
2749	struct sk_buff *skb;
2750	struct bufdesc	*bdp;
2751	struct fec_enet_priv_tx_q *txq;
2752	struct fec_enet_priv_rx_q *rxq;
2753	unsigned int q;
2754
2755	for (q = 0; q < fep->num_rx_queues; q++) {
2756		rxq = fep->rx_queue[q];
2757		bdp = rxq->bd.base;
2758		for (i = 0; i < rxq->bd.ring_size; i++) {
2759			skb = rxq->rx_skbuff[i];
2760			rxq->rx_skbuff[i] = NULL;
2761			if (skb) {
2762				dma_unmap_single(&fep->pdev->dev,
2763						 fec32_to_cpu(bdp->cbd_bufaddr),
2764						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2765						 DMA_FROM_DEVICE);
2766				dev_kfree_skb(skb);
2767			}
2768			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2769		}
2770	}
2771
2772	for (q = 0; q < fep->num_tx_queues; q++) {
2773		txq = fep->tx_queue[q];
 
2774		for (i = 0; i < txq->bd.ring_size; i++) {
2775			kfree(txq->tx_bounce[i]);
2776			txq->tx_bounce[i] = NULL;
2777			skb = txq->tx_skbuff[i];
2778			txq->tx_skbuff[i] = NULL;
2779			dev_kfree_skb(skb);
2780		}
2781	}
2782}
2783
2784static void fec_enet_free_queue(struct net_device *ndev)
2785{
2786	struct fec_enet_private *fep = netdev_priv(ndev);
2787	int i;
2788	struct fec_enet_priv_tx_q *txq;
2789
2790	for (i = 0; i < fep->num_tx_queues; i++)
2791		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2792			txq = fep->tx_queue[i];
2793			dma_free_coherent(&fep->pdev->dev,
2794					  txq->bd.ring_size * TSO_HEADER_SIZE,
2795					  txq->tso_hdrs,
2796					  txq->tso_hdrs_dma);
2797		}
2798
2799	for (i = 0; i < fep->num_rx_queues; i++)
2800		kfree(fep->rx_queue[i]);
2801	for (i = 0; i < fep->num_tx_queues; i++)
2802		kfree(fep->tx_queue[i]);
2803}
2804
2805static int fec_enet_alloc_queue(struct net_device *ndev)
2806{
2807	struct fec_enet_private *fep = netdev_priv(ndev);
2808	int i;
2809	int ret = 0;
2810	struct fec_enet_priv_tx_q *txq;
2811
2812	for (i = 0; i < fep->num_tx_queues; i++) {
2813		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2814		if (!txq) {
2815			ret = -ENOMEM;
2816			goto alloc_failed;
2817		}
2818
2819		fep->tx_queue[i] = txq;
2820		txq->bd.ring_size = TX_RING_SIZE;
2821		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2822
2823		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2824		txq->tx_wake_threshold =
2825			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2826
2827		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2828					txq->bd.ring_size * TSO_HEADER_SIZE,
2829					&txq->tso_hdrs_dma,
2830					GFP_KERNEL);
2831		if (!txq->tso_hdrs) {
2832			ret = -ENOMEM;
2833			goto alloc_failed;
2834		}
2835	}
2836
2837	for (i = 0; i < fep->num_rx_queues; i++) {
2838		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2839					   GFP_KERNEL);
2840		if (!fep->rx_queue[i]) {
2841			ret = -ENOMEM;
2842			goto alloc_failed;
2843		}
2844
2845		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2846		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2847	}
2848	return ret;
2849
2850alloc_failed:
2851	fec_enet_free_queue(ndev);
2852	return ret;
2853}
2854
2855static int
2856fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2857{
2858	struct fec_enet_private *fep = netdev_priv(ndev);
2859	unsigned int i;
2860	struct sk_buff *skb;
2861	struct bufdesc	*bdp;
2862	struct fec_enet_priv_rx_q *rxq;
2863
2864	rxq = fep->rx_queue[queue];
2865	bdp = rxq->bd.base;
2866	for (i = 0; i < rxq->bd.ring_size; i++) {
2867		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2868		if (!skb)
2869			goto err_alloc;
2870
2871		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2872			dev_kfree_skb(skb);
2873			goto err_alloc;
2874		}
2875
2876		rxq->rx_skbuff[i] = skb;
2877		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2878
2879		if (fep->bufdesc_ex) {
2880			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2881			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2882		}
2883
2884		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2885	}
2886
2887	/* Set the last buffer to wrap. */
2888	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2889	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2890	return 0;
2891
2892 err_alloc:
2893	fec_enet_free_buffers(ndev);
2894	return -ENOMEM;
2895}
2896
2897static int
2898fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2899{
2900	struct fec_enet_private *fep = netdev_priv(ndev);
2901	unsigned int i;
2902	struct bufdesc  *bdp;
2903	struct fec_enet_priv_tx_q *txq;
2904
2905	txq = fep->tx_queue[queue];
2906	bdp = txq->bd.base;
2907	for (i = 0; i < txq->bd.ring_size; i++) {
2908		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2909		if (!txq->tx_bounce[i])
2910			goto err_alloc;
2911
2912		bdp->cbd_sc = cpu_to_fec16(0);
2913		bdp->cbd_bufaddr = cpu_to_fec32(0);
2914
2915		if (fep->bufdesc_ex) {
2916			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2917			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2918		}
2919
2920		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2921	}
2922
2923	/* Set the last buffer to wrap. */
2924	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2925	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2926
2927	return 0;
2928
2929 err_alloc:
2930	fec_enet_free_buffers(ndev);
2931	return -ENOMEM;
2932}
2933
2934static int fec_enet_alloc_buffers(struct net_device *ndev)
2935{
2936	struct fec_enet_private *fep = netdev_priv(ndev);
2937	unsigned int i;
2938
2939	for (i = 0; i < fep->num_rx_queues; i++)
2940		if (fec_enet_alloc_rxq_buffers(ndev, i))
2941			return -ENOMEM;
2942
2943	for (i = 0; i < fep->num_tx_queues; i++)
2944		if (fec_enet_alloc_txq_buffers(ndev, i))
2945			return -ENOMEM;
2946	return 0;
2947}
2948
2949static int
2950fec_enet_open(struct net_device *ndev)
2951{
2952	struct fec_enet_private *fep = netdev_priv(ndev);
2953	int ret;
2954	bool reset_again;
2955
2956	ret = pm_runtime_get_sync(&fep->pdev->dev);
2957	if (ret < 0)
2958		return ret;
2959
2960	pinctrl_pm_select_default_state(&fep->pdev->dev);
2961	ret = fec_enet_clk_enable(ndev, true);
2962	if (ret)
2963		goto clk_enable;
2964
2965	/* During the first fec_enet_open call the PHY isn't probed at this
2966	 * point. Therefore the phy_reset_after_clk_enable() call within
2967	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2968	 * sure the PHY is working correctly we check if we need to reset again
2969	 * later when the PHY is probed
2970	 */
2971	if (ndev->phydev && ndev->phydev->drv)
2972		reset_again = false;
2973	else
2974		reset_again = true;
2975
2976	/* I should reset the ring buffers here, but I don't yet know
2977	 * a simple way to do that.
2978	 */
2979
2980	ret = fec_enet_alloc_buffers(ndev);
2981	if (ret)
2982		goto err_enet_alloc;
2983
2984	/* Init MAC prior to mii bus probe */
2985	fec_restart(ndev);
2986
2987	/* Probe and connect to PHY when open the interface */
2988	ret = fec_enet_mii_probe(ndev);
2989	if (ret)
2990		goto err_enet_mii_probe;
2991
2992	/* Call phy_reset_after_clk_enable() again if it failed during
2993	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2994	 */
2995	if (reset_again)
2996		phy_reset_after_clk_enable(ndev->phydev);
2997
2998	if (fep->quirks & FEC_QUIRK_ERR006687)
2999		imx6q_cpuidle_fec_irqs_used();
3000
3001	napi_enable(&fep->napi);
3002	phy_start(ndev->phydev);
3003	netif_tx_start_all_queues(ndev);
3004
3005	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3006				 FEC_WOL_FLAG_ENABLE);
3007
3008	return 0;
3009
3010err_enet_mii_probe:
3011	fec_enet_free_buffers(ndev);
3012err_enet_alloc:
3013	fec_enet_clk_enable(ndev, false);
3014clk_enable:
3015	pm_runtime_mark_last_busy(&fep->pdev->dev);
3016	pm_runtime_put_autosuspend(&fep->pdev->dev);
3017	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3018	return ret;
3019}
3020
3021static int
3022fec_enet_close(struct net_device *ndev)
3023{
3024	struct fec_enet_private *fep = netdev_priv(ndev);
3025
3026	phy_stop(ndev->phydev);
3027
3028	if (netif_device_present(ndev)) {
3029		napi_disable(&fep->napi);
3030		netif_tx_disable(ndev);
3031		fec_stop(ndev);
3032	}
3033
3034	phy_disconnect(ndev->phydev);
3035
3036	if (fep->quirks & FEC_QUIRK_ERR006687)
3037		imx6q_cpuidle_fec_irqs_unused();
3038
3039	fec_enet_update_ethtool_stats(ndev);
3040
3041	fec_enet_clk_enable(ndev, false);
3042	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3043	pm_runtime_mark_last_busy(&fep->pdev->dev);
3044	pm_runtime_put_autosuspend(&fep->pdev->dev);
3045
3046	fec_enet_free_buffers(ndev);
3047
3048	return 0;
3049}
3050
3051/* Set or clear the multicast filter for this adaptor.
3052 * Skeleton taken from sunlance driver.
3053 * The CPM Ethernet implementation allows Multicast as well as individual
3054 * MAC address filtering.  Some of the drivers check to make sure it is
3055 * a group multicast address, and discard those that are not.  I guess I
3056 * will do the same for now, but just remove the test if you want
3057 * individual filtering as well (do the upper net layers want or support
3058 * this kind of feature?).
3059 */
3060
3061#define FEC_HASH_BITS	6		/* #bits in hash */
 
3062
3063static void set_multicast_list(struct net_device *ndev)
3064{
3065	struct fec_enet_private *fep = netdev_priv(ndev);
3066	struct netdev_hw_addr *ha;
3067	unsigned int crc, tmp;
3068	unsigned char hash;
3069	unsigned int hash_high = 0, hash_low = 0;
3070
3071	if (ndev->flags & IFF_PROMISC) {
3072		tmp = readl(fep->hwp + FEC_R_CNTRL);
3073		tmp |= 0x8;
3074		writel(tmp, fep->hwp + FEC_R_CNTRL);
3075		return;
3076	}
3077
3078	tmp = readl(fep->hwp + FEC_R_CNTRL);
3079	tmp &= ~0x8;
3080	writel(tmp, fep->hwp + FEC_R_CNTRL);
3081
3082	if (ndev->flags & IFF_ALLMULTI) {
3083		/* Catch all multicast addresses, so set the
3084		 * filter to all 1's
3085		 */
3086		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3087		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3088
3089		return;
3090	}
3091
3092	/* Add the addresses in hash register */
 
 
 
 
3093	netdev_for_each_mc_addr(ha, ndev) {
3094		/* calculate crc32 value of mac address */
3095		crc = ether_crc_le(ndev->addr_len, ha->addr);
 
 
 
 
 
 
 
 
3096
3097		/* only upper 6 bits (FEC_HASH_BITS) are used
3098		 * which point to specific bit in the hash registers
3099		 */
3100		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3101
3102		if (hash > 31)
3103			hash_high |= 1 << (hash - 32);
3104		else
3105			hash_low |= 1 << hash;
 
 
 
 
 
3106	}
3107
3108	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3109	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3110}
3111
3112/* Set a MAC change in hardware. */
3113static int
3114fec_set_mac_address(struct net_device *ndev, void *p)
3115{
3116	struct fec_enet_private *fep = netdev_priv(ndev);
3117	struct sockaddr *addr = p;
3118
3119	if (addr) {
3120		if (!is_valid_ether_addr(addr->sa_data))
3121			return -EADDRNOTAVAIL;
3122		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3123	}
3124
3125	/* Add netif status check here to avoid system hang in below case:
3126	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3127	 * After ethx down, fec all clocks are gated off and then register
3128	 * access causes system hang.
3129	 */
3130	if (!netif_running(ndev))
3131		return 0;
3132
3133	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3134		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3135		fep->hwp + FEC_ADDR_LOW);
3136	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3137		fep->hwp + FEC_ADDR_HIGH);
3138	return 0;
3139}
3140
3141#ifdef CONFIG_NET_POLL_CONTROLLER
3142/**
3143 * fec_poll_controller - FEC Poll controller function
3144 * @dev: The FEC network adapter
3145 *
3146 * Polled functionality used by netconsole and others in non interrupt mode
3147 *
3148 */
3149static void fec_poll_controller(struct net_device *dev)
3150{
3151	int i;
3152	struct fec_enet_private *fep = netdev_priv(dev);
3153
3154	for (i = 0; i < FEC_IRQ_NUM; i++) {
3155		if (fep->irq[i] > 0) {
3156			disable_irq(fep->irq[i]);
3157			fec_enet_interrupt(fep->irq[i], dev);
3158			enable_irq(fep->irq[i]);
3159		}
3160	}
3161}
3162#endif
3163
3164static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3165	netdev_features_t features)
3166{
3167	struct fec_enet_private *fep = netdev_priv(netdev);
3168	netdev_features_t changed = features ^ netdev->features;
3169
3170	netdev->features = features;
3171
3172	/* Receive checksum has been changed */
3173	if (changed & NETIF_F_RXCSUM) {
3174		if (features & NETIF_F_RXCSUM)
3175			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3176		else
3177			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3178	}
3179}
3180
3181static int fec_set_features(struct net_device *netdev,
3182	netdev_features_t features)
3183{
3184	struct fec_enet_private *fep = netdev_priv(netdev);
3185	netdev_features_t changed = features ^ netdev->features;
3186
3187	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3188		napi_disable(&fep->napi);
3189		netif_tx_lock_bh(netdev);
3190		fec_stop(netdev);
3191		fec_enet_set_netdev_features(netdev, features);
3192		fec_restart(netdev);
3193		netif_tx_wake_all_queues(netdev);
3194		netif_tx_unlock_bh(netdev);
3195		napi_enable(&fep->napi);
3196	} else {
3197		fec_enet_set_netdev_features(netdev, features);
3198	}
3199
3200	return 0;
3201}
3202
3203static const struct net_device_ops fec_netdev_ops = {
3204	.ndo_open		= fec_enet_open,
3205	.ndo_stop		= fec_enet_close,
3206	.ndo_start_xmit		= fec_enet_start_xmit,
3207	.ndo_set_rx_mode	= set_multicast_list,
 
3208	.ndo_validate_addr	= eth_validate_addr,
3209	.ndo_tx_timeout		= fec_timeout,
3210	.ndo_set_mac_address	= fec_set_mac_address,
3211	.ndo_do_ioctl		= fec_enet_ioctl,
3212#ifdef CONFIG_NET_POLL_CONTROLLER
3213	.ndo_poll_controller	= fec_poll_controller,
3214#endif
3215	.ndo_set_features	= fec_set_features,
3216};
3217
3218static const unsigned short offset_des_active_rxq[] = {
3219	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3220};
3221
3222static const unsigned short offset_des_active_txq[] = {
3223	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3224};
3225
3226 /*
3227  * XXX:  We need to clean up on failure exits here.
3228  *
3229  */
3230static int fec_enet_init(struct net_device *ndev)
3231{
3232	struct fec_enet_private *fep = netdev_priv(ndev);
3233	struct bufdesc *cbd_base;
3234	dma_addr_t bd_dma;
3235	int bd_size;
3236	unsigned int i;
3237	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3238			sizeof(struct bufdesc);
3239	unsigned dsize_log2 = __fls(dsize);
3240	int ret;
3241
3242	WARN_ON(dsize != (1 << dsize_log2));
3243#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3244	fep->rx_align = 0xf;
3245	fep->tx_align = 0xf;
3246#else
3247	fep->rx_align = 0x3;
3248	fep->tx_align = 0x3;
3249#endif
3250
3251	/* Check mask of the streaming and coherent API */
3252	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3253	if (ret < 0) {
3254		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3255		return ret;
3256	}
3257
3258	fec_enet_alloc_queue(ndev);
3259
3260	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3261
3262	/* Allocate memory for buffer descriptors. */
3263	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3264				       GFP_KERNEL);
3265	if (!cbd_base) {
3266		return -ENOMEM;
3267	}
3268
 
 
3269	/* Get the Ethernet address */
3270	fec_get_mac(ndev);
3271	/* make sure MAC we just acquired is programmed into the hw */
3272	fec_set_mac_address(ndev, NULL);
3273
3274	/* Set receive and transmit descriptor base. */
3275	for (i = 0; i < fep->num_rx_queues; i++) {
3276		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3277		unsigned size = dsize * rxq->bd.ring_size;
3278
3279		rxq->bd.qid = i;
3280		rxq->bd.base = cbd_base;
3281		rxq->bd.cur = cbd_base;
3282		rxq->bd.dma = bd_dma;
3283		rxq->bd.dsize = dsize;
3284		rxq->bd.dsize_log2 = dsize_log2;
3285		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3286		bd_dma += size;
3287		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3288		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3289	}
3290
3291	for (i = 0; i < fep->num_tx_queues; i++) {
3292		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3293		unsigned size = dsize * txq->bd.ring_size;
3294
3295		txq->bd.qid = i;
3296		txq->bd.base = cbd_base;
3297		txq->bd.cur = cbd_base;
3298		txq->bd.dma = bd_dma;
3299		txq->bd.dsize = dsize;
3300		txq->bd.dsize_log2 = dsize_log2;
3301		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3302		bd_dma += size;
3303		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3304		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3305	}
3306
3307
3308	/* The FEC Ethernet specific entries in the device structure */
3309	ndev->watchdog_timeo = TX_TIMEOUT;
3310	ndev->netdev_ops = &fec_netdev_ops;
3311	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3312
3313	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3314	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3315
3316	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3317		/* enable hw VLAN support */
3318		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3319
3320	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3321		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3322
3323		/* enable hw accelerator */
3324		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3325				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3326		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3327	}
3328
3329	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3330		fep->tx_align = 0;
3331		fep->rx_align = 0x3f;
3332	}
3333
3334	ndev->hw_features = ndev->features;
3335
3336	fec_restart(ndev);
3337
3338	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3339		fec_enet_clear_ethtool_stats(ndev);
3340	else
3341		fec_enet_update_ethtool_stats(ndev);
3342
3343	return 0;
3344}
3345
3346#ifdef CONFIG_OF
3347static int fec_reset_phy(struct platform_device *pdev)
3348{
3349	int err, phy_reset;
3350	bool active_high = false;
3351	int msec = 1, phy_post_delay = 0;
3352	struct device_node *np = pdev->dev.of_node;
3353
3354	if (!np)
3355		return 0;
3356
3357	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3358	/* A sane reset duration should not be longer than 1s */
3359	if (!err && msec > 1000)
3360		msec = 1;
3361
3362	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3363	if (phy_reset == -EPROBE_DEFER)
3364		return phy_reset;
3365	else if (!gpio_is_valid(phy_reset))
3366		return 0;
3367
3368	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3369	/* valid reset duration should be less than 1s */
3370	if (!err && phy_post_delay > 1000)
3371		return -EINVAL;
3372
3373	active_high = of_property_read_bool(np, "phy-reset-active-high");
3374
3375	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3376			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3377			"phy-reset");
3378	if (err) {
3379		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3380		return err;
3381	}
3382
3383	if (msec > 20)
3384		msleep(msec);
3385	else
3386		usleep_range(msec * 1000, msec * 1000 + 1000);
3387
3388	gpio_set_value_cansleep(phy_reset, !active_high);
3389
3390	if (!phy_post_delay)
3391		return 0;
3392
3393	if (phy_post_delay > 20)
3394		msleep(phy_post_delay);
3395	else
3396		usleep_range(phy_post_delay * 1000,
3397			     phy_post_delay * 1000 + 1000);
3398
3399	return 0;
3400}
3401#else /* CONFIG_OF */
3402static int fec_reset_phy(struct platform_device *pdev)
3403{
3404	/*
3405	 * In case of platform probe, the reset has been done
3406	 * by machine code.
3407	 */
3408	return 0;
3409}
3410#endif /* CONFIG_OF */
3411
3412static void
3413fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3414{
3415	struct device_node *np = pdev->dev.of_node;
3416
3417	*num_tx = *num_rx = 1;
3418
3419	if (!np || !of_device_is_available(np))
3420		return;
3421
3422	/* parse the num of tx and rx queues */
3423	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3424
3425	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3426
3427	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3428		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3429			 *num_tx);
3430		*num_tx = 1;
3431		return;
3432	}
3433
3434	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3435		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3436			 *num_rx);
3437		*num_rx = 1;
3438		return;
3439	}
3440
3441}
3442
3443static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3444{
3445	int irq_cnt = platform_irq_count(pdev);
3446
3447	if (irq_cnt > FEC_IRQ_NUM)
3448		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3449	else if (irq_cnt == 2)
3450		irq_cnt = 1;	/* last for pps */
3451	else if (irq_cnt <= 0)
3452		irq_cnt = 1;	/* At least 1 irq is needed */
3453	return irq_cnt;
3454}
3455
3456static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3457				   struct device_node *np)
3458{
3459	struct device_node *gpr_np;
3460	u32 out_val[3];
3461	int ret = 0;
3462
3463	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3464	if (!gpr_np)
3465		return 0;
3466
3467	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3468					 ARRAY_SIZE(out_val));
3469	if (ret) {
3470		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3471		return ret;
3472	}
3473
3474	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3475	if (IS_ERR(fep->stop_gpr.gpr)) {
3476		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3477		ret = PTR_ERR(fep->stop_gpr.gpr);
3478		fep->stop_gpr.gpr = NULL;
3479		goto out;
3480	}
3481
3482	fep->stop_gpr.reg = out_val[1];
3483	fep->stop_gpr.bit = out_val[2];
3484
3485out:
3486	of_node_put(gpr_np);
3487
3488	return ret;
3489}
3490
3491static int
3492fec_probe(struct platform_device *pdev)
3493{
3494	struct fec_enet_private *fep;
3495	struct fec_platform_data *pdata;
3496	phy_interface_t interface;
3497	struct net_device *ndev;
3498	int i, irq, ret = 0;
 
3499	const struct of_device_id *of_id;
3500	static int dev_id;
3501	struct device_node *np = pdev->dev.of_node, *phy_node;
3502	int num_tx_qs;
3503	int num_rx_qs;
3504	char irq_name[8];
3505	int irq_cnt;
3506	struct fec_devinfo *dev_info;
3507
3508	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3509
3510	/* Init network device */
3511	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3512				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3513	if (!ndev)
3514		return -ENOMEM;
3515
3516	SET_NETDEV_DEV(ndev, &pdev->dev);
3517
3518	/* setup board info structure */
3519	fep = netdev_priv(ndev);
3520
3521	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3522	if (of_id)
3523		pdev->id_entry = of_id->data;
3524	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3525	if (dev_info)
3526		fep->quirks = dev_info->quirks;
3527
3528	fep->netdev = ndev;
3529	fep->num_rx_queues = num_rx_qs;
3530	fep->num_tx_queues = num_tx_qs;
3531
3532#if !defined(CONFIG_M5272)
3533	/* default enable pause frame auto negotiation */
3534	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3535		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3536#endif
3537
3538	/* Select default pin state */
3539	pinctrl_pm_select_default_state(&pdev->dev);
3540
3541	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
 
3542	if (IS_ERR(fep->hwp)) {
3543		ret = PTR_ERR(fep->hwp);
3544		goto failed_ioremap;
3545	}
3546
3547	fep->pdev = pdev;
3548	fep->dev_id = dev_id++;
3549
3550	platform_set_drvdata(pdev, ndev);
3551
3552	if ((of_machine_is_compatible("fsl,imx6q") ||
3553	     of_machine_is_compatible("fsl,imx6dl")) &&
3554	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3555		fep->quirks |= FEC_QUIRK_ERR006687;
3556
3557	if (of_get_property(np, "fsl,magic-packet", NULL))
3558		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3559
3560	ret = fec_enet_init_stop_mode(fep, np);
3561	if (ret)
3562		goto failed_stop_mode;
3563
3564	phy_node = of_parse_phandle(np, "phy-handle", 0);
3565	if (!phy_node && of_phy_is_fixed_link(np)) {
3566		ret = of_phy_register_fixed_link(np);
3567		if (ret < 0) {
3568			dev_err(&pdev->dev,
3569				"broken fixed-link specification\n");
3570			goto failed_phy;
3571		}
3572		phy_node = of_node_get(np);
3573	}
3574	fep->phy_node = phy_node;
3575
3576	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3577	if (ret) {
3578		pdata = dev_get_platdata(&pdev->dev);
3579		if (pdata)
3580			fep->phy_interface = pdata->phy;
3581		else
3582			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3583	} else {
3584		fep->phy_interface = interface;
3585	}
3586
3587	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3588	if (IS_ERR(fep->clk_ipg)) {
3589		ret = PTR_ERR(fep->clk_ipg);
3590		goto failed_clk;
3591	}
3592
3593	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3594	if (IS_ERR(fep->clk_ahb)) {
3595		ret = PTR_ERR(fep->clk_ahb);
3596		goto failed_clk;
3597	}
3598
3599	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3600
3601	/* enet_out is optional, depends on board */
3602	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3603	if (IS_ERR(fep->clk_enet_out))
3604		fep->clk_enet_out = NULL;
3605
3606	fep->ptp_clk_on = false;
3607	mutex_init(&fep->ptp_clk_mutex);
3608
3609	/* clk_ref is optional, depends on board */
3610	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3611	if (IS_ERR(fep->clk_ref))
3612		fep->clk_ref = NULL;
3613
3614	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3615	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3616	if (IS_ERR(fep->clk_ptp)) {
3617		fep->clk_ptp = NULL;
3618		fep->bufdesc_ex = false;
3619	}
3620
3621	ret = fec_enet_clk_enable(ndev, true);
3622	if (ret)
3623		goto failed_clk;
3624
3625	ret = clk_prepare_enable(fep->clk_ipg);
3626	if (ret)
3627		goto failed_clk_ipg;
3628	ret = clk_prepare_enable(fep->clk_ahb);
3629	if (ret)
3630		goto failed_clk_ahb;
3631
3632	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3633	if (!IS_ERR(fep->reg_phy)) {
3634		ret = regulator_enable(fep->reg_phy);
3635		if (ret) {
3636			dev_err(&pdev->dev,
3637				"Failed to enable phy regulator: %d\n", ret);
3638			goto failed_regulator;
3639		}
3640	} else {
3641		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3642			ret = -EPROBE_DEFER;
3643			goto failed_regulator;
3644		}
3645		fep->reg_phy = NULL;
3646	}
3647
3648	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3649	pm_runtime_use_autosuspend(&pdev->dev);
3650	pm_runtime_get_noresume(&pdev->dev);
3651	pm_runtime_set_active(&pdev->dev);
3652	pm_runtime_enable(&pdev->dev);
3653
3654	ret = fec_reset_phy(pdev);
3655	if (ret)
3656		goto failed_reset;
3657
3658	irq_cnt = fec_enet_get_irq_cnt(pdev);
3659	if (fep->bufdesc_ex)
3660		fec_ptp_init(pdev, irq_cnt);
3661
3662	ret = fec_enet_init(ndev);
3663	if (ret)
3664		goto failed_init;
3665
3666	for (i = 0; i < irq_cnt; i++) {
3667		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3668		irq = platform_get_irq_byname_optional(pdev, irq_name);
3669		if (irq < 0)
3670			irq = platform_get_irq(pdev, i);
3671		if (irq < 0) {
 
 
3672			ret = irq;
3673			goto failed_irq;
3674		}
3675		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3676				       0, pdev->name, ndev);
3677		if (ret)
3678			goto failed_irq;
3679
3680		fep->irq[i] = irq;
3681	}
3682
 
3683	ret = fec_enet_mii_init(pdev);
3684	if (ret)
3685		goto failed_mii_init;
3686
3687	/* Carrier starts down, phylib will bring it up */
3688	netif_carrier_off(ndev);
3689	fec_enet_clk_enable(ndev, false);
3690	pinctrl_pm_select_sleep_state(&pdev->dev);
3691
3692	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3693
3694	ret = register_netdev(ndev);
3695	if (ret)
3696		goto failed_register;
3697
3698	device_init_wakeup(&ndev->dev, fep->wol_flag &
3699			   FEC_WOL_HAS_MAGIC_PACKET);
3700
3701	if (fep->bufdesc_ex && fep->ptp_clock)
3702		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3703
3704	fep->rx_copybreak = COPYBREAK_DEFAULT;
3705	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3706
3707	pm_runtime_mark_last_busy(&pdev->dev);
3708	pm_runtime_put_autosuspend(&pdev->dev);
3709
3710	return 0;
3711
3712failed_register:
3713	fec_enet_mii_remove(fep);
3714failed_mii_init:
3715failed_irq:
3716failed_init:
3717	fec_ptp_stop(pdev);
3718failed_reset:
3719	pm_runtime_put_noidle(&pdev->dev);
3720	pm_runtime_disable(&pdev->dev);
3721	if (fep->reg_phy)
3722		regulator_disable(fep->reg_phy);
3723failed_regulator:
3724	clk_disable_unprepare(fep->clk_ahb);
3725failed_clk_ahb:
3726	clk_disable_unprepare(fep->clk_ipg);
3727failed_clk_ipg:
3728	fec_enet_clk_enable(ndev, false);
3729failed_clk:
3730	if (of_phy_is_fixed_link(np))
3731		of_phy_deregister_fixed_link(np);
3732	of_node_put(phy_node);
3733failed_stop_mode:
3734failed_phy:
3735	dev_id--;
3736failed_ioremap:
3737	free_netdev(ndev);
3738
3739	return ret;
3740}
3741
3742static int
3743fec_drv_remove(struct platform_device *pdev)
3744{
3745	struct net_device *ndev = platform_get_drvdata(pdev);
3746	struct fec_enet_private *fep = netdev_priv(ndev);
3747	struct device_node *np = pdev->dev.of_node;
3748	int ret;
3749
3750	ret = pm_runtime_get_sync(&pdev->dev);
3751	if (ret < 0)
3752		return ret;
3753
3754	cancel_work_sync(&fep->tx_timeout_work);
3755	fec_ptp_stop(pdev);
3756	unregister_netdev(ndev);
3757	fec_enet_mii_remove(fep);
3758	if (fep->reg_phy)
3759		regulator_disable(fep->reg_phy);
3760
3761	if (of_phy_is_fixed_link(np))
3762		of_phy_deregister_fixed_link(np);
3763	of_node_put(fep->phy_node);
3764	free_netdev(ndev);
3765
3766	clk_disable_unprepare(fep->clk_ahb);
3767	clk_disable_unprepare(fep->clk_ipg);
3768	pm_runtime_put_noidle(&pdev->dev);
3769	pm_runtime_disable(&pdev->dev);
3770
3771	return 0;
3772}
3773
3774static int __maybe_unused fec_suspend(struct device *dev)
3775{
3776	struct net_device *ndev = dev_get_drvdata(dev);
3777	struct fec_enet_private *fep = netdev_priv(ndev);
3778
3779	rtnl_lock();
3780	if (netif_running(ndev)) {
3781		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3782			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3783		phy_stop(ndev->phydev);
3784		napi_disable(&fep->napi);
3785		netif_tx_lock_bh(ndev);
3786		netif_device_detach(ndev);
3787		netif_tx_unlock_bh(ndev);
3788		fec_stop(ndev);
3789		fec_enet_clk_enable(ndev, false);
3790		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3791			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3792	}
3793	rtnl_unlock();
3794
3795	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3796		regulator_disable(fep->reg_phy);
3797
3798	/* SOC supply clock to phy, when clock is disabled, phy link down
3799	 * SOC control phy regulator, when regulator is disabled, phy link down
3800	 */
3801	if (fep->clk_enet_out || fep->reg_phy)
3802		fep->link = 0;
3803
3804	return 0;
3805}
3806
3807static int __maybe_unused fec_resume(struct device *dev)
3808{
3809	struct net_device *ndev = dev_get_drvdata(dev);
3810	struct fec_enet_private *fep = netdev_priv(ndev);
 
3811	int ret;
3812	int val;
3813
3814	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3815		ret = regulator_enable(fep->reg_phy);
3816		if (ret)
3817			return ret;
3818	}
3819
3820	rtnl_lock();
3821	if (netif_running(ndev)) {
3822		ret = fec_enet_clk_enable(ndev, true);
3823		if (ret) {
3824			rtnl_unlock();
3825			goto failed_clk;
3826		}
3827		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3828			fec_enet_stop_mode(fep, false);
3829
3830			val = readl(fep->hwp + FEC_ECNTRL);
3831			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3832			writel(val, fep->hwp + FEC_ECNTRL);
3833			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3834		} else {
3835			pinctrl_pm_select_default_state(&fep->pdev->dev);
3836		}
3837		fec_restart(ndev);
3838		netif_tx_lock_bh(ndev);
3839		netif_device_attach(ndev);
3840		netif_tx_unlock_bh(ndev);
3841		napi_enable(&fep->napi);
3842		phy_start(ndev->phydev);
3843	}
3844	rtnl_unlock();
3845
3846	return 0;
3847
3848failed_clk:
3849	if (fep->reg_phy)
3850		regulator_disable(fep->reg_phy);
3851	return ret;
3852}
3853
3854static int __maybe_unused fec_runtime_suspend(struct device *dev)
3855{
3856	struct net_device *ndev = dev_get_drvdata(dev);
3857	struct fec_enet_private *fep = netdev_priv(ndev);
3858
3859	clk_disable_unprepare(fep->clk_ahb);
3860	clk_disable_unprepare(fep->clk_ipg);
3861
3862	return 0;
3863}
3864
3865static int __maybe_unused fec_runtime_resume(struct device *dev)
3866{
3867	struct net_device *ndev = dev_get_drvdata(dev);
3868	struct fec_enet_private *fep = netdev_priv(ndev);
3869	int ret;
3870
3871	ret = clk_prepare_enable(fep->clk_ahb);
3872	if (ret)
3873		return ret;
3874	ret = clk_prepare_enable(fep->clk_ipg);
3875	if (ret)
3876		goto failed_clk_ipg;
3877
3878	return 0;
3879
3880failed_clk_ipg:
3881	clk_disable_unprepare(fep->clk_ahb);
3882	return ret;
3883}
3884
3885static const struct dev_pm_ops fec_pm_ops = {
3886	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3887	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3888};
3889
3890static struct platform_driver fec_driver = {
3891	.driver	= {
3892		.name	= DRIVER_NAME,
3893		.pm	= &fec_pm_ops,
3894		.of_match_table = fec_dt_ids,
3895		.suppress_bind_attrs = true,
3896	},
3897	.id_table = fec_devtype,
3898	.probe	= fec_probe,
3899	.remove	= fec_drv_remove,
3900};
3901
3902module_platform_driver(fec_driver);
3903
3904MODULE_ALIAS("platform:"DRIVER_NAME);
3905MODULE_LICENSE("GPL");