Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * MMCIF eMMC driver.
   3 *
   4 * Copyright (C) 2010 Renesas Solutions Corp.
   5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License.
  10 *
  11 *
  12 * TODO
  13 *  1. DMA
  14 *  2. Power management
  15 *  3. Handle MMC errors better
  16 *
  17 */
  18
  19/*
  20 * The MMCIF driver is now processing MMC requests asynchronously, according
  21 * to the Linux MMC API requirement.
  22 *
  23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  24 * data, and optional stop. To achieve asynchronous processing each of these
  25 * stages is split into two halves: a top and a bottom half. The top half
  26 * initialises the hardware, installs a timeout handler to handle completion
  27 * timeouts, and returns. In case of the command stage this immediately returns
  28 * control to the caller, leaving all further processing to run asynchronously.
  29 * All further request processing is performed by the bottom halves.
  30 *
  31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  33 * request- and stage-specific handler methods.
  34 *
  35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  36 * invocation, or a timeout work run. In case of an error or a successful
  37 * processing completion, the MMC core is informed and the request processing is
  38 * finished. In case processing has to continue, i.e., if data has to be read
  39 * from or written to the card, or if a stop command has to be sent, the next
  40 * top half is called, which performs the necessary hardware handling and
  41 * reschedules the timeout work. This returns the driver state machine into the
  42 * bottom half waiting state.
  43 */
  44
  45#include <linux/bitops.h>
  46#include <linux/clk.h>
  47#include <linux/completion.h>
  48#include <linux/delay.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/dmaengine.h>
  51#include <linux/mmc/card.h>
  52#include <linux/mmc/core.h>
  53#include <linux/mmc/host.h>
  54#include <linux/mmc/mmc.h>
  55#include <linux/mmc/sdio.h>
  56#include <linux/mmc/sh_mmcif.h>
  57#include <linux/mmc/slot-gpio.h>
  58#include <linux/mod_devicetable.h>
  59#include <linux/mutex.h>
  60#include <linux/of_device.h>
  61#include <linux/pagemap.h>
  62#include <linux/platform_device.h>
  63#include <linux/pm_qos.h>
  64#include <linux/pm_runtime.h>
  65#include <linux/sh_dma.h>
  66#include <linux/spinlock.h>
  67#include <linux/module.h>
  68
  69#define DRIVER_NAME	"sh_mmcif"
  70#define DRIVER_VERSION	"2010-04-28"
  71
  72/* CE_CMD_SET */
  73#define CMD_MASK		0x3f000000
  74#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  75#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  76#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  77#define CMD_SET_RBSY		(1 << 21) /* R1b */
  78#define CMD_SET_CCSEN		(1 << 20)
  79#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  80#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  81#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  82#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  83#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  84#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  85#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  86#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  87#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  88#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  89#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  90#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  91#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  92#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  93#define CMD_SET_CCSH		(1 << 5)
  94#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  95#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  96#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  97#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  98
  99/* CE_CMD_CTRL */
 100#define CMD_CTRL_BREAK		(1 << 0)
 101
 102/* CE_BLOCK_SET */
 103#define BLOCK_SIZE_MASK		0x0000ffff
 104
 105/* CE_INT */
 106#define INT_CCSDE		(1 << 29)
 107#define INT_CMD12DRE		(1 << 26)
 108#define INT_CMD12RBE		(1 << 25)
 109#define INT_CMD12CRE		(1 << 24)
 110#define INT_DTRANE		(1 << 23)
 111#define INT_BUFRE		(1 << 22)
 112#define INT_BUFWEN		(1 << 21)
 113#define INT_BUFREN		(1 << 20)
 114#define INT_CCSRCV		(1 << 19)
 115#define INT_RBSYE		(1 << 17)
 116#define INT_CRSPE		(1 << 16)
 117#define INT_CMDVIO		(1 << 15)
 118#define INT_BUFVIO		(1 << 14)
 119#define INT_WDATERR		(1 << 11)
 120#define INT_RDATERR		(1 << 10)
 121#define INT_RIDXERR		(1 << 9)
 122#define INT_RSPERR		(1 << 8)
 123#define INT_CCSTO		(1 << 5)
 124#define INT_CRCSTO		(1 << 4)
 125#define INT_WDATTO		(1 << 3)
 126#define INT_RDATTO		(1 << 2)
 127#define INT_RBSYTO		(1 << 1)
 128#define INT_RSPTO		(1 << 0)
 129#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 130				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 131				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 132				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 133
 134#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 135				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 136				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 137
 138#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 139
 140/* CE_INT_MASK */
 141#define MASK_ALL		0x00000000
 142#define MASK_MCCSDE		(1 << 29)
 143#define MASK_MCMD12DRE		(1 << 26)
 144#define MASK_MCMD12RBE		(1 << 25)
 145#define MASK_MCMD12CRE		(1 << 24)
 146#define MASK_MDTRANE		(1 << 23)
 147#define MASK_MBUFRE		(1 << 22)
 148#define MASK_MBUFWEN		(1 << 21)
 149#define MASK_MBUFREN		(1 << 20)
 150#define MASK_MCCSRCV		(1 << 19)
 151#define MASK_MRBSYE		(1 << 17)
 152#define MASK_MCRSPE		(1 << 16)
 153#define MASK_MCMDVIO		(1 << 15)
 154#define MASK_MBUFVIO		(1 << 14)
 155#define MASK_MWDATERR		(1 << 11)
 156#define MASK_MRDATERR		(1 << 10)
 157#define MASK_MRIDXERR		(1 << 9)
 158#define MASK_MRSPERR		(1 << 8)
 159#define MASK_MCCSTO		(1 << 5)
 160#define MASK_MCRCSTO		(1 << 4)
 161#define MASK_MWDATTO		(1 << 3)
 162#define MASK_MRDATTO		(1 << 2)
 163#define MASK_MRBSYTO		(1 << 1)
 164#define MASK_MRSPTO		(1 << 0)
 165
 166#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 167				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 168				 MASK_MCRCSTO | MASK_MWDATTO | \
 169				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 170
 171#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 172				 MASK_MBUFREN | MASK_MBUFWEN |			\
 173				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 174				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 175
 176/* CE_HOST_STS1 */
 177#define STS1_CMDSEQ		(1 << 31)
 178
 179/* CE_HOST_STS2 */
 180#define STS2_CRCSTE		(1 << 31)
 181#define STS2_CRC16E		(1 << 30)
 182#define STS2_AC12CRCE		(1 << 29)
 183#define STS2_RSPCRC7E		(1 << 28)
 184#define STS2_CRCSTEBE		(1 << 27)
 185#define STS2_RDATEBE		(1 << 26)
 186#define STS2_AC12REBE		(1 << 25)
 187#define STS2_RSPEBE		(1 << 24)
 188#define STS2_AC12IDXE		(1 << 23)
 189#define STS2_RSPIDXE		(1 << 22)
 190#define STS2_CCSTO		(1 << 15)
 191#define STS2_RDATTO		(1 << 14)
 192#define STS2_DATBSYTO		(1 << 13)
 193#define STS2_CRCSTTO		(1 << 12)
 194#define STS2_AC12BSYTO		(1 << 11)
 195#define STS2_RSPBSYTO		(1 << 10)
 196#define STS2_AC12RSPTO		(1 << 9)
 197#define STS2_RSPTO		(1 << 8)
 198#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 199				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 200#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 201				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 202				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 203				 STS2_AC12RSPTO | STS2_RSPTO)
 204
 205#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 206#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 207#define CLKDEV_INIT		400000   /* 400 KHz */
 208
 209enum sh_mmcif_state {
 210	STATE_IDLE,
 211	STATE_REQUEST,
 212	STATE_IOS,
 213	STATE_TIMEOUT,
 214};
 215
 216enum sh_mmcif_wait_for {
 217	MMCIF_WAIT_FOR_REQUEST,
 218	MMCIF_WAIT_FOR_CMD,
 219	MMCIF_WAIT_FOR_MREAD,
 220	MMCIF_WAIT_FOR_MWRITE,
 221	MMCIF_WAIT_FOR_READ,
 222	MMCIF_WAIT_FOR_WRITE,
 223	MMCIF_WAIT_FOR_READ_END,
 224	MMCIF_WAIT_FOR_WRITE_END,
 225	MMCIF_WAIT_FOR_STOP,
 226};
 227
 228/*
 229 * difference for each SoC
 230 */
 231struct sh_mmcif_host {
 232	struct mmc_host *mmc;
 233	struct mmc_request *mrq;
 234	struct platform_device *pd;
 235	struct clk *clk;
 236	int bus_width;
 237	unsigned char timing;
 238	bool sd_error;
 239	bool dying;
 240	long timeout;
 241	void __iomem *addr;
 242	u32 *pio_ptr;
 243	spinlock_t lock;		/* protect sh_mmcif_host::state */
 244	enum sh_mmcif_state state;
 245	enum sh_mmcif_wait_for wait_for;
 246	struct delayed_work timeout_work;
 247	size_t blocksize;
 248	int sg_idx;
 249	int sg_blkidx;
 250	bool power;
 251	bool card_present;
 252	bool ccs_enable;		/* Command Completion Signal support */
 253	bool clk_ctrl2_enable;
 254	struct mutex thread_lock;
 255	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 256
 257	/* DMA support */
 258	struct dma_chan		*chan_rx;
 259	struct dma_chan		*chan_tx;
 260	struct completion	dma_complete;
 261	bool			dma_active;
 262};
 263
 264static const struct of_device_id sh_mmcif_of_match[] = {
 265	{ .compatible = "renesas,sh-mmcif" },
 266	{ }
 267};
 268MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 269
 270#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 271
 272static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 273					unsigned int reg, u32 val)
 274{
 275	writel(val | readl(host->addr + reg), host->addr + reg);
 276}
 277
 278static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 279					unsigned int reg, u32 val)
 280{
 281	writel(~val & readl(host->addr + reg), host->addr + reg);
 282}
 283
 284static void sh_mmcif_dma_complete(void *arg)
 285{
 286	struct sh_mmcif_host *host = arg;
 287	struct mmc_request *mrq = host->mrq;
 288	struct device *dev = sh_mmcif_host_to_dev(host);
 289
 290	dev_dbg(dev, "Command completed\n");
 291
 292	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 293		 dev_name(dev)))
 294		return;
 295
 296	complete(&host->dma_complete);
 297}
 298
 299static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 300{
 301	struct mmc_data *data = host->mrq->data;
 302	struct scatterlist *sg = data->sg;
 303	struct dma_async_tx_descriptor *desc = NULL;
 304	struct dma_chan *chan = host->chan_rx;
 305	struct device *dev = sh_mmcif_host_to_dev(host);
 306	dma_cookie_t cookie = -EINVAL;
 307	int ret;
 308
 309	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 310			 DMA_FROM_DEVICE);
 311	if (ret > 0) {
 312		host->dma_active = true;
 313		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 314			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 315	}
 316
 317	if (desc) {
 318		desc->callback = sh_mmcif_dma_complete;
 319		desc->callback_param = host;
 320		cookie = dmaengine_submit(desc);
 321		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 322		dma_async_issue_pending(chan);
 323	}
 324	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 325		__func__, data->sg_len, ret, cookie);
 326
 327	if (!desc) {
 328		/* DMA failed, fall back to PIO */
 329		if (ret >= 0)
 330			ret = -EIO;
 331		host->chan_rx = NULL;
 332		host->dma_active = false;
 333		dma_release_channel(chan);
 334		/* Free the Tx channel too */
 335		chan = host->chan_tx;
 336		if (chan) {
 337			host->chan_tx = NULL;
 338			dma_release_channel(chan);
 339		}
 340		dev_warn(dev,
 341			 "DMA failed: %d, falling back to PIO\n", ret);
 342		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 343	}
 344
 345	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 346		desc, cookie, data->sg_len);
 347}
 348
 349static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 350{
 351	struct mmc_data *data = host->mrq->data;
 352	struct scatterlist *sg = data->sg;
 353	struct dma_async_tx_descriptor *desc = NULL;
 354	struct dma_chan *chan = host->chan_tx;
 355	struct device *dev = sh_mmcif_host_to_dev(host);
 356	dma_cookie_t cookie = -EINVAL;
 357	int ret;
 358
 359	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 360			 DMA_TO_DEVICE);
 361	if (ret > 0) {
 362		host->dma_active = true;
 363		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 364			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 365	}
 366
 367	if (desc) {
 368		desc->callback = sh_mmcif_dma_complete;
 369		desc->callback_param = host;
 370		cookie = dmaengine_submit(desc);
 371		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 372		dma_async_issue_pending(chan);
 373	}
 374	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 375		__func__, data->sg_len, ret, cookie);
 376
 377	if (!desc) {
 378		/* DMA failed, fall back to PIO */
 379		if (ret >= 0)
 380			ret = -EIO;
 381		host->chan_tx = NULL;
 382		host->dma_active = false;
 383		dma_release_channel(chan);
 384		/* Free the Rx channel too */
 385		chan = host->chan_rx;
 386		if (chan) {
 387			host->chan_rx = NULL;
 388			dma_release_channel(chan);
 389		}
 390		dev_warn(dev,
 391			 "DMA failed: %d, falling back to PIO\n", ret);
 392		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 393	}
 394
 395	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 396		desc, cookie);
 397}
 398
 399static struct dma_chan *
 400sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 401{
 402	dma_cap_mask_t mask;
 403
 404	dma_cap_zero(mask);
 405	dma_cap_set(DMA_SLAVE, mask);
 406	if (slave_id <= 0)
 407		return NULL;
 408
 409	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 410}
 411
 412static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 413				     struct dma_chan *chan,
 414				     enum dma_transfer_direction direction)
 415{
 416	struct resource *res;
 417	struct dma_slave_config cfg = { 0, };
 418
 419	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 420	cfg.direction = direction;
 421
 422	if (direction == DMA_DEV_TO_MEM) {
 423		cfg.src_addr = res->start + MMCIF_CE_DATA;
 424		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 425	} else {
 426		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 427		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 428	}
 429
 430	return dmaengine_slave_config(chan, &cfg);
 431}
 432
 433static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 434{
 435	struct device *dev = sh_mmcif_host_to_dev(host);
 436	host->dma_active = false;
 437
 438	/* We can only either use DMA for both Tx and Rx or not use it at all */
 439	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 440		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 441
 442		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 443							pdata->slave_id_tx);
 444		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 445							pdata->slave_id_rx);
 446	} else {
 447		host->chan_tx = dma_request_slave_channel(dev, "tx");
 448		host->chan_rx = dma_request_slave_channel(dev, "rx");
 
 
 
 
 449	}
 450	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 451		host->chan_rx);
 452
 453	if (!host->chan_tx || !host->chan_rx ||
 454	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 455	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 456		goto error;
 457
 458	return;
 459
 460error:
 461	if (host->chan_tx)
 462		dma_release_channel(host->chan_tx);
 463	if (host->chan_rx)
 464		dma_release_channel(host->chan_rx);
 465	host->chan_tx = host->chan_rx = NULL;
 466}
 467
 468static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 469{
 470	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 471	/* Descriptors are freed automatically */
 472	if (host->chan_tx) {
 473		struct dma_chan *chan = host->chan_tx;
 474		host->chan_tx = NULL;
 475		dma_release_channel(chan);
 476	}
 477	if (host->chan_rx) {
 478		struct dma_chan *chan = host->chan_rx;
 479		host->chan_rx = NULL;
 480		dma_release_channel(chan);
 481	}
 482
 483	host->dma_active = false;
 484}
 485
 486static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 487{
 488	struct device *dev = sh_mmcif_host_to_dev(host);
 489	struct sh_mmcif_plat_data *p = dev->platform_data;
 490	bool sup_pclk = p ? p->sup_pclk : false;
 491	unsigned int current_clk = clk_get_rate(host->clk);
 492	unsigned int clkdiv;
 493
 494	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 495	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 496
 497	if (!clk)
 498		return;
 499
 500	if (host->clkdiv_map) {
 501		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 502		int i;
 503
 504		clkdiv = 0;
 505		diff_min = ~0;
 506		best_freq = 0;
 507		for (i = 31; i >= 0; i--) {
 508			if (!((1 << i) & host->clkdiv_map))
 509				continue;
 510
 511			/*
 512			 * clk = parent_freq / div
 513			 * -> parent_freq = clk x div
 514			 */
 515
 516			div = 1 << (i + 1);
 517			freq = clk_round_rate(host->clk, clk * div);
 518			myclk = freq / div;
 519			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 520
 521			if (diff <= diff_min) {
 522				best_freq = freq;
 523				clkdiv = i;
 524				diff_min = diff;
 525			}
 526		}
 527
 528		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 529			(best_freq / (1 << (clkdiv + 1))), clk,
 530			best_freq, clkdiv);
 531
 532		clk_set_rate(host->clk, best_freq);
 533		clkdiv = clkdiv << 16;
 534	} else if (sup_pclk && clk == current_clk) {
 535		clkdiv = CLK_SUP_PCLK;
 536	} else {
 537		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 538	}
 539
 540	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 541	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 542}
 543
 544static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 545{
 546	u32 tmp;
 547
 548	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 549
 550	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 551	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 552	if (host->ccs_enable)
 553		tmp |= SCCSTO_29;
 554	if (host->clk_ctrl2_enable)
 555		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 556	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 557		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 558	/* byte swap on */
 559	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 560}
 561
 562static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 563{
 564	struct device *dev = sh_mmcif_host_to_dev(host);
 565	u32 state1, state2;
 566	int ret, timeout;
 567
 568	host->sd_error = false;
 569
 570	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 571	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 572	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 573	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 574
 575	if (state1 & STS1_CMDSEQ) {
 576		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 577		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 578		for (timeout = 10000000; timeout; timeout--) {
 579			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 580			      & STS1_CMDSEQ))
 581				break;
 582			mdelay(1);
 583		}
 584		if (!timeout) {
 585			dev_err(dev,
 586				"Forced end of command sequence timeout err\n");
 587			return -EIO;
 588		}
 589		sh_mmcif_sync_reset(host);
 590		dev_dbg(dev, "Forced end of command sequence\n");
 591		return -EIO;
 592	}
 593
 594	if (state2 & STS2_CRC_ERR) {
 595		dev_err(dev, " CRC error: state %u, wait %u\n",
 596			host->state, host->wait_for);
 597		ret = -EIO;
 598	} else if (state2 & STS2_TIMEOUT_ERR) {
 599		dev_err(dev, " Timeout: state %u, wait %u\n",
 600			host->state, host->wait_for);
 601		ret = -ETIMEDOUT;
 602	} else {
 603		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 604			host->state, host->wait_for);
 605		ret = -EIO;
 606	}
 607	return ret;
 608}
 609
 610static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 611{
 612	struct mmc_data *data = host->mrq->data;
 613
 614	host->sg_blkidx += host->blocksize;
 615
 616	/* data->sg->length must be a multiple of host->blocksize? */
 617	BUG_ON(host->sg_blkidx > data->sg->length);
 618
 619	if (host->sg_blkidx == data->sg->length) {
 620		host->sg_blkidx = 0;
 621		if (++host->sg_idx < data->sg_len)
 622			host->pio_ptr = sg_virt(++data->sg);
 623	} else {
 624		host->pio_ptr = p;
 625	}
 626
 627	return host->sg_idx != data->sg_len;
 628}
 629
 630static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 631				 struct mmc_request *mrq)
 632{
 633	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 634			   BLOCK_SIZE_MASK) + 3;
 635
 636	host->wait_for = MMCIF_WAIT_FOR_READ;
 637
 638	/* buf read enable */
 639	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 640}
 641
 642static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 643{
 644	struct device *dev = sh_mmcif_host_to_dev(host);
 645	struct mmc_data *data = host->mrq->data;
 646	u32 *p = sg_virt(data->sg);
 647	int i;
 648
 649	if (host->sd_error) {
 650		data->error = sh_mmcif_error_manage(host);
 651		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 652		return false;
 653	}
 654
 655	for (i = 0; i < host->blocksize / 4; i++)
 656		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 657
 658	/* buffer read end */
 659	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 660	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 661
 662	return true;
 663}
 664
 665static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 666				struct mmc_request *mrq)
 667{
 668	struct mmc_data *data = mrq->data;
 669
 670	if (!data->sg_len || !data->sg->length)
 671		return;
 672
 673	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 674		BLOCK_SIZE_MASK;
 675
 676	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 677	host->sg_idx = 0;
 678	host->sg_blkidx = 0;
 679	host->pio_ptr = sg_virt(data->sg);
 680
 681	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 682}
 683
 684static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 685{
 686	struct device *dev = sh_mmcif_host_to_dev(host);
 687	struct mmc_data *data = host->mrq->data;
 688	u32 *p = host->pio_ptr;
 689	int i;
 690
 691	if (host->sd_error) {
 692		data->error = sh_mmcif_error_manage(host);
 693		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 694		return false;
 695	}
 696
 697	BUG_ON(!data->sg->length);
 698
 699	for (i = 0; i < host->blocksize / 4; i++)
 700		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 701
 702	if (!sh_mmcif_next_block(host, p))
 703		return false;
 704
 705	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 706
 707	return true;
 708}
 709
 710static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 711					struct mmc_request *mrq)
 712{
 713	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 714			   BLOCK_SIZE_MASK) + 3;
 715
 716	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 717
 718	/* buf write enable */
 719	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 720}
 721
 722static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 723{
 724	struct device *dev = sh_mmcif_host_to_dev(host);
 725	struct mmc_data *data = host->mrq->data;
 726	u32 *p = sg_virt(data->sg);
 727	int i;
 728
 729	if (host->sd_error) {
 730		data->error = sh_mmcif_error_manage(host);
 731		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 732		return false;
 733	}
 734
 735	for (i = 0; i < host->blocksize / 4; i++)
 736		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 737
 738	/* buffer write end */
 739	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 740	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 741
 742	return true;
 743}
 744
 745static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 746				struct mmc_request *mrq)
 747{
 748	struct mmc_data *data = mrq->data;
 749
 750	if (!data->sg_len || !data->sg->length)
 751		return;
 752
 753	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 754		BLOCK_SIZE_MASK;
 755
 756	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 757	host->sg_idx = 0;
 758	host->sg_blkidx = 0;
 759	host->pio_ptr = sg_virt(data->sg);
 760
 761	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 762}
 763
 764static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 765{
 766	struct device *dev = sh_mmcif_host_to_dev(host);
 767	struct mmc_data *data = host->mrq->data;
 768	u32 *p = host->pio_ptr;
 769	int i;
 770
 771	if (host->sd_error) {
 772		data->error = sh_mmcif_error_manage(host);
 773		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 774		return false;
 775	}
 776
 777	BUG_ON(!data->sg->length);
 778
 779	for (i = 0; i < host->blocksize / 4; i++)
 780		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 781
 782	if (!sh_mmcif_next_block(host, p))
 783		return false;
 784
 785	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 786
 787	return true;
 788}
 789
 790static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 791						struct mmc_command *cmd)
 792{
 793	if (cmd->flags & MMC_RSP_136) {
 794		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 795		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 796		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 797		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 798	} else
 799		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 800}
 801
 802static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 803						struct mmc_command *cmd)
 804{
 805	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 806}
 807
 808static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 809			    struct mmc_request *mrq)
 810{
 811	struct device *dev = sh_mmcif_host_to_dev(host);
 812	struct mmc_data *data = mrq->data;
 813	struct mmc_command *cmd = mrq->cmd;
 814	u32 opc = cmd->opcode;
 815	u32 tmp = 0;
 816
 817	/* Response Type check */
 818	switch (mmc_resp_type(cmd)) {
 819	case MMC_RSP_NONE:
 820		tmp |= CMD_SET_RTYP_NO;
 821		break;
 822	case MMC_RSP_R1:
 823	case MMC_RSP_R1B:
 824	case MMC_RSP_R3:
 825		tmp |= CMD_SET_RTYP_6B;
 826		break;
 
 
 
 827	case MMC_RSP_R2:
 828		tmp |= CMD_SET_RTYP_17B;
 829		break;
 830	default:
 831		dev_err(dev, "Unsupported response type.\n");
 832		break;
 833	}
 834	switch (opc) {
 835	/* RBSY */
 836	case MMC_SLEEP_AWAKE:
 837	case MMC_SWITCH:
 838	case MMC_STOP_TRANSMISSION:
 839	case MMC_SET_WRITE_PROT:
 840	case MMC_CLR_WRITE_PROT:
 841	case MMC_ERASE:
 842		tmp |= CMD_SET_RBSY;
 843		break;
 844	}
 845	/* WDAT / DATW */
 846	if (data) {
 847		tmp |= CMD_SET_WDAT;
 848		switch (host->bus_width) {
 849		case MMC_BUS_WIDTH_1:
 850			tmp |= CMD_SET_DATW_1;
 851			break;
 852		case MMC_BUS_WIDTH_4:
 853			tmp |= CMD_SET_DATW_4;
 854			break;
 855		case MMC_BUS_WIDTH_8:
 856			tmp |= CMD_SET_DATW_8;
 857			break;
 858		default:
 859			dev_err(dev, "Unsupported bus width.\n");
 860			break;
 861		}
 862		switch (host->timing) {
 863		case MMC_TIMING_MMC_DDR52:
 864			/*
 865			 * MMC core will only set this timing, if the host
 866			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 867			 * capability. MMCIF implementations with this
 868			 * capability, e.g. sh73a0, will have to set it
 869			 * in their platform data.
 870			 */
 871			tmp |= CMD_SET_DARS;
 872			break;
 873		}
 874	}
 875	/* DWEN */
 876	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 877		tmp |= CMD_SET_DWEN;
 878	/* CMLTE/CMD12EN */
 879	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 880		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 881		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 882				data->blocks << 16);
 883	}
 884	/* RIDXC[1:0] check bits */
 885	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 886	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 887		tmp |= CMD_SET_RIDXC_BITS;
 888	/* RCRC7C[1:0] check bits */
 889	if (opc == MMC_SEND_OP_COND)
 890		tmp |= CMD_SET_CRC7C_BITS;
 891	/* RCRC7C[1:0] internal CRC7 */
 892	if (opc == MMC_ALL_SEND_CID ||
 893		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 894		tmp |= CMD_SET_CRC7C_INTERNAL;
 895
 896	return (opc << 24) | tmp;
 897}
 898
 899static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 900			       struct mmc_request *mrq, u32 opc)
 901{
 902	struct device *dev = sh_mmcif_host_to_dev(host);
 903
 904	switch (opc) {
 905	case MMC_READ_MULTIPLE_BLOCK:
 906		sh_mmcif_multi_read(host, mrq);
 907		return 0;
 908	case MMC_WRITE_MULTIPLE_BLOCK:
 909		sh_mmcif_multi_write(host, mrq);
 910		return 0;
 911	case MMC_WRITE_BLOCK:
 912		sh_mmcif_single_write(host, mrq);
 913		return 0;
 914	case MMC_READ_SINGLE_BLOCK:
 915	case MMC_SEND_EXT_CSD:
 916		sh_mmcif_single_read(host, mrq);
 917		return 0;
 918	default:
 919		dev_err(dev, "Unsupported CMD%d\n", opc);
 920		return -EINVAL;
 921	}
 922}
 923
 924static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 925			       struct mmc_request *mrq)
 926{
 927	struct mmc_command *cmd = mrq->cmd;
 928	u32 opc = cmd->opcode;
 929	u32 mask;
 930	unsigned long flags;
 931
 932	switch (opc) {
 933	/* response busy check */
 934	case MMC_SLEEP_AWAKE:
 935	case MMC_SWITCH:
 936	case MMC_STOP_TRANSMISSION:
 937	case MMC_SET_WRITE_PROT:
 938	case MMC_CLR_WRITE_PROT:
 939	case MMC_ERASE:
 940		mask = MASK_START_CMD | MASK_MRBSYE;
 941		break;
 942	default:
 943		mask = MASK_START_CMD | MASK_MCRSPE;
 944		break;
 945	}
 946
 947	if (host->ccs_enable)
 948		mask |= MASK_MCCSTO;
 949
 950	if (mrq->data) {
 951		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 952		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 953				mrq->data->blksz);
 954	}
 955	opc = sh_mmcif_set_cmd(host, mrq);
 956
 957	if (host->ccs_enable)
 958		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 959	else
 960		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 961	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 962	/* set arg */
 963	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 964	/* set cmd */
 965	spin_lock_irqsave(&host->lock, flags);
 966	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 967
 968	host->wait_for = MMCIF_WAIT_FOR_CMD;
 969	schedule_delayed_work(&host->timeout_work, host->timeout);
 970	spin_unlock_irqrestore(&host->lock, flags);
 971}
 972
 973static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 974			      struct mmc_request *mrq)
 975{
 976	struct device *dev = sh_mmcif_host_to_dev(host);
 977
 978	switch (mrq->cmd->opcode) {
 979	case MMC_READ_MULTIPLE_BLOCK:
 980		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 981		break;
 982	case MMC_WRITE_MULTIPLE_BLOCK:
 983		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 984		break;
 985	default:
 986		dev_err(dev, "unsupported stop cmd\n");
 987		mrq->stop->error = sh_mmcif_error_manage(host);
 988		return;
 989	}
 990
 991	host->wait_for = MMCIF_WAIT_FOR_STOP;
 992}
 993
 994static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 995{
 996	struct sh_mmcif_host *host = mmc_priv(mmc);
 997	struct device *dev = sh_mmcif_host_to_dev(host);
 998	unsigned long flags;
 999
1000	spin_lock_irqsave(&host->lock, flags);
1001	if (host->state != STATE_IDLE) {
1002		dev_dbg(dev, "%s() rejected, state %u\n",
1003			__func__, host->state);
1004		spin_unlock_irqrestore(&host->lock, flags);
1005		mrq->cmd->error = -EAGAIN;
1006		mmc_request_done(mmc, mrq);
1007		return;
1008	}
1009
1010	host->state = STATE_REQUEST;
1011	spin_unlock_irqrestore(&host->lock, flags);
1012
1013	switch (mrq->cmd->opcode) {
1014	/* MMCIF does not support SD/SDIO command */
1015	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1016	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1017		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1018			break;
1019	case MMC_APP_CMD:
1020	case SD_IO_RW_DIRECT:
1021		host->state = STATE_IDLE;
1022		mrq->cmd->error = -ETIMEDOUT;
1023		mmc_request_done(mmc, mrq);
1024		return;
1025	default:
1026		break;
1027	}
1028
1029	host->mrq = mrq;
1030
1031	sh_mmcif_start_cmd(host, mrq);
1032}
1033
1034static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1035{
1036	struct device *dev = sh_mmcif_host_to_dev(host);
1037
1038	if (host->mmc->f_max) {
1039		unsigned int f_max, f_min = 0, f_min_old;
1040
1041		f_max = host->mmc->f_max;
1042		for (f_min_old = f_max; f_min_old > 2;) {
1043			f_min = clk_round_rate(host->clk, f_min_old / 2);
1044			if (f_min == f_min_old)
1045				break;
1046			f_min_old = f_min;
1047		}
1048
1049		/*
1050		 * This driver assumes this SoC is R-Car Gen2 or later
1051		 */
1052		host->clkdiv_map = 0x3ff;
1053
1054		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1055		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1056	} else {
1057		unsigned int clk = clk_get_rate(host->clk);
1058
1059		host->mmc->f_max = clk / 2;
1060		host->mmc->f_min = clk / 512;
1061	}
1062
1063	dev_dbg(dev, "clk max/min = %d/%d\n",
1064		host->mmc->f_max, host->mmc->f_min);
1065}
1066
1067static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1068{
1069	struct mmc_host *mmc = host->mmc;
1070
1071	if (!IS_ERR(mmc->supply.vmmc))
1072		/* Errors ignored... */
1073		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1074				      ios->power_mode ? ios->vdd : 0);
1075}
1076
1077static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1078{
1079	struct sh_mmcif_host *host = mmc_priv(mmc);
1080	struct device *dev = sh_mmcif_host_to_dev(host);
1081	unsigned long flags;
1082
1083	spin_lock_irqsave(&host->lock, flags);
1084	if (host->state != STATE_IDLE) {
1085		dev_dbg(dev, "%s() rejected, state %u\n",
1086			__func__, host->state);
1087		spin_unlock_irqrestore(&host->lock, flags);
1088		return;
1089	}
1090
1091	host->state = STATE_IOS;
1092	spin_unlock_irqrestore(&host->lock, flags);
1093
1094	if (ios->power_mode == MMC_POWER_UP) {
1095		if (!host->card_present) {
1096			/* See if we also get DMA */
 
 
 
 
 
1097			sh_mmcif_request_dma(host);
1098			host->card_present = true;
1099		}
1100		sh_mmcif_set_power(host, ios);
1101	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1102		/* clock stop */
1103		sh_mmcif_clock_control(host, 0);
1104		if (ios->power_mode == MMC_POWER_OFF) {
1105			if (host->card_present) {
1106				sh_mmcif_release_dma(host);
1107				host->card_present = false;
1108			}
1109		}
 
 
 
 
1110		if (host->power) {
1111			pm_runtime_put_sync(dev);
 
 
1112			clk_disable_unprepare(host->clk);
1113			host->power = false;
1114			if (ios->power_mode == MMC_POWER_OFF)
1115				sh_mmcif_set_power(host, ios);
1116		}
1117		host->state = STATE_IDLE;
1118		return;
1119	}
1120
1121	if (ios->clock) {
1122		if (!host->power) {
1123			clk_prepare_enable(host->clk);
1124
1125			pm_runtime_get_sync(dev);
1126			host->power = true;
1127			sh_mmcif_sync_reset(host);
1128		}
 
 
1129		sh_mmcif_clock_control(host, ios->clock);
 
1130	}
1131
1132	host->timing = ios->timing;
1133	host->bus_width = ios->bus_width;
1134	host->state = STATE_IDLE;
1135}
1136
1137static int sh_mmcif_get_cd(struct mmc_host *mmc)
1138{
1139	struct sh_mmcif_host *host = mmc_priv(mmc);
1140	struct device *dev = sh_mmcif_host_to_dev(host);
1141	struct sh_mmcif_plat_data *p = dev->platform_data;
1142	int ret = mmc_gpio_get_cd(mmc);
1143
1144	if (ret >= 0)
1145		return ret;
1146
1147	if (!p || !p->get_cd)
1148		return -ENOSYS;
1149	else
1150		return p->get_cd(host->pd);
1151}
1152
1153static struct mmc_host_ops sh_mmcif_ops = {
1154	.request	= sh_mmcif_request,
1155	.set_ios	= sh_mmcif_set_ios,
1156	.get_cd		= sh_mmcif_get_cd,
1157};
1158
1159static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1160{
1161	struct mmc_command *cmd = host->mrq->cmd;
1162	struct mmc_data *data = host->mrq->data;
1163	struct device *dev = sh_mmcif_host_to_dev(host);
1164	long time;
1165
1166	if (host->sd_error) {
1167		switch (cmd->opcode) {
1168		case MMC_ALL_SEND_CID:
1169		case MMC_SELECT_CARD:
1170		case MMC_APP_CMD:
1171			cmd->error = -ETIMEDOUT;
1172			break;
1173		default:
1174			cmd->error = sh_mmcif_error_manage(host);
1175			break;
1176		}
1177		dev_dbg(dev, "CMD%d error %d\n",
1178			cmd->opcode, cmd->error);
1179		host->sd_error = false;
1180		return false;
1181	}
1182	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1183		cmd->error = 0;
1184		return false;
1185	}
1186
1187	sh_mmcif_get_response(host, cmd);
1188
1189	if (!data)
1190		return false;
1191
1192	/*
1193	 * Completion can be signalled from DMA callback and error, so, have to
1194	 * reset here, before setting .dma_active
1195	 */
1196	init_completion(&host->dma_complete);
1197
1198	if (data->flags & MMC_DATA_READ) {
1199		if (host->chan_rx)
1200			sh_mmcif_start_dma_rx(host);
1201	} else {
1202		if (host->chan_tx)
1203			sh_mmcif_start_dma_tx(host);
1204	}
1205
1206	if (!host->dma_active) {
1207		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1208		return !data->error;
1209	}
1210
1211	/* Running in the IRQ thread, can sleep */
1212	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1213							 host->timeout);
1214
1215	if (data->flags & MMC_DATA_READ)
1216		dma_unmap_sg(host->chan_rx->device->dev,
1217			     data->sg, data->sg_len,
1218			     DMA_FROM_DEVICE);
1219	else
1220		dma_unmap_sg(host->chan_tx->device->dev,
1221			     data->sg, data->sg_len,
1222			     DMA_TO_DEVICE);
1223
1224	if (host->sd_error) {
1225		dev_err(host->mmc->parent,
1226			"Error IRQ while waiting for DMA completion!\n");
1227		/* Woken up by an error IRQ: abort DMA */
1228		data->error = sh_mmcif_error_manage(host);
1229	} else if (!time) {
1230		dev_err(host->mmc->parent, "DMA timeout!\n");
1231		data->error = -ETIMEDOUT;
1232	} else if (time < 0) {
1233		dev_err(host->mmc->parent,
1234			"wait_for_completion_...() error %ld!\n", time);
1235		data->error = time;
1236	}
1237	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1238			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1239	host->dma_active = false;
1240
1241	if (data->error) {
1242		data->bytes_xfered = 0;
1243		/* Abort DMA */
1244		if (data->flags & MMC_DATA_READ)
1245			dmaengine_terminate_all(host->chan_rx);
1246		else
1247			dmaengine_terminate_all(host->chan_tx);
1248	}
1249
1250	return false;
1251}
1252
1253static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1254{
1255	struct sh_mmcif_host *host = dev_id;
1256	struct mmc_request *mrq;
1257	struct device *dev = sh_mmcif_host_to_dev(host);
1258	bool wait = false;
1259	unsigned long flags;
1260	int wait_work;
1261
1262	spin_lock_irqsave(&host->lock, flags);
1263	wait_work = host->wait_for;
1264	spin_unlock_irqrestore(&host->lock, flags);
1265
1266	cancel_delayed_work_sync(&host->timeout_work);
1267
1268	mutex_lock(&host->thread_lock);
1269
1270	mrq = host->mrq;
1271	if (!mrq) {
1272		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1273			host->state, host->wait_for);
1274		mutex_unlock(&host->thread_lock);
1275		return IRQ_HANDLED;
1276	}
1277
1278	/*
1279	 * All handlers return true, if processing continues, and false, if the
1280	 * request has to be completed - successfully or not
1281	 */
1282	switch (wait_work) {
1283	case MMCIF_WAIT_FOR_REQUEST:
1284		/* We're too late, the timeout has already kicked in */
1285		mutex_unlock(&host->thread_lock);
1286		return IRQ_HANDLED;
1287	case MMCIF_WAIT_FOR_CMD:
1288		/* Wait for data? */
1289		wait = sh_mmcif_end_cmd(host);
1290		break;
1291	case MMCIF_WAIT_FOR_MREAD:
1292		/* Wait for more data? */
1293		wait = sh_mmcif_mread_block(host);
1294		break;
1295	case MMCIF_WAIT_FOR_READ:
1296		/* Wait for data end? */
1297		wait = sh_mmcif_read_block(host);
1298		break;
1299	case MMCIF_WAIT_FOR_MWRITE:
1300		/* Wait data to write? */
1301		wait = sh_mmcif_mwrite_block(host);
1302		break;
1303	case MMCIF_WAIT_FOR_WRITE:
1304		/* Wait for data end? */
1305		wait = sh_mmcif_write_block(host);
1306		break;
1307	case MMCIF_WAIT_FOR_STOP:
1308		if (host->sd_error) {
1309			mrq->stop->error = sh_mmcif_error_manage(host);
1310			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1311			break;
1312		}
1313		sh_mmcif_get_cmd12response(host, mrq->stop);
1314		mrq->stop->error = 0;
1315		break;
1316	case MMCIF_WAIT_FOR_READ_END:
1317	case MMCIF_WAIT_FOR_WRITE_END:
1318		if (host->sd_error) {
1319			mrq->data->error = sh_mmcif_error_manage(host);
1320			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1321		}
1322		break;
1323	default:
1324		BUG();
1325	}
1326
1327	if (wait) {
1328		schedule_delayed_work(&host->timeout_work, host->timeout);
1329		/* Wait for more data */
1330		mutex_unlock(&host->thread_lock);
1331		return IRQ_HANDLED;
1332	}
1333
1334	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1335		struct mmc_data *data = mrq->data;
1336		if (!mrq->cmd->error && data && !data->error)
1337			data->bytes_xfered =
1338				data->blocks * data->blksz;
1339
1340		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1341			sh_mmcif_stop_cmd(host, mrq);
1342			if (!mrq->stop->error) {
1343				schedule_delayed_work(&host->timeout_work, host->timeout);
1344				mutex_unlock(&host->thread_lock);
1345				return IRQ_HANDLED;
1346			}
1347		}
1348	}
1349
1350	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1351	host->state = STATE_IDLE;
1352	host->mrq = NULL;
1353	mmc_request_done(host->mmc, mrq);
1354
1355	mutex_unlock(&host->thread_lock);
1356
1357	return IRQ_HANDLED;
1358}
1359
1360static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1361{
1362	struct sh_mmcif_host *host = dev_id;
1363	struct device *dev = sh_mmcif_host_to_dev(host);
1364	u32 state, mask;
1365
1366	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1367	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1368	if (host->ccs_enable)
1369		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1370	else
1371		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1372	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1373
1374	if (state & ~MASK_CLEAN)
1375		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1376			state);
1377
1378	if (state & INT_ERR_STS || state & ~INT_ALL) {
1379		host->sd_error = true;
1380		dev_dbg(dev, "int err state = 0x%08x\n", state);
1381	}
1382	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1383		if (!host->mrq)
1384			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1385		if (!host->dma_active)
1386			return IRQ_WAKE_THREAD;
1387		else if (host->sd_error)
1388			sh_mmcif_dma_complete(host);
1389	} else {
1390		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1391	}
1392
1393	return IRQ_HANDLED;
1394}
1395
1396static void sh_mmcif_timeout_work(struct work_struct *work)
1397{
1398	struct delayed_work *d = to_delayed_work(work);
1399	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1400	struct mmc_request *mrq = host->mrq;
1401	struct device *dev = sh_mmcif_host_to_dev(host);
1402	unsigned long flags;
1403
1404	if (host->dying)
1405		/* Don't run after mmc_remove_host() */
1406		return;
1407
1408	spin_lock_irqsave(&host->lock, flags);
1409	if (host->state == STATE_IDLE) {
1410		spin_unlock_irqrestore(&host->lock, flags);
1411		return;
1412	}
1413
1414	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1415		host->wait_for, mrq->cmd->opcode);
1416
1417	host->state = STATE_TIMEOUT;
1418	spin_unlock_irqrestore(&host->lock, flags);
1419
1420	/*
1421	 * Handle races with cancel_delayed_work(), unless
1422	 * cancel_delayed_work_sync() is used
1423	 */
1424	switch (host->wait_for) {
1425	case MMCIF_WAIT_FOR_CMD:
1426		mrq->cmd->error = sh_mmcif_error_manage(host);
1427		break;
1428	case MMCIF_WAIT_FOR_STOP:
1429		mrq->stop->error = sh_mmcif_error_manage(host);
1430		break;
1431	case MMCIF_WAIT_FOR_MREAD:
1432	case MMCIF_WAIT_FOR_MWRITE:
1433	case MMCIF_WAIT_FOR_READ:
1434	case MMCIF_WAIT_FOR_WRITE:
1435	case MMCIF_WAIT_FOR_READ_END:
1436	case MMCIF_WAIT_FOR_WRITE_END:
1437		mrq->data->error = sh_mmcif_error_manage(host);
1438		break;
1439	default:
1440		BUG();
1441	}
1442
1443	host->state = STATE_IDLE;
1444	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1445	host->mrq = NULL;
1446	mmc_request_done(host->mmc, mrq);
1447}
1448
1449static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1450{
1451	struct device *dev = sh_mmcif_host_to_dev(host);
1452	struct sh_mmcif_plat_data *pd = dev->platform_data;
1453	struct mmc_host *mmc = host->mmc;
1454
1455	mmc_regulator_get_supply(mmc);
1456
1457	if (!pd)
1458		return;
1459
1460	if (!mmc->ocr_avail)
1461		mmc->ocr_avail = pd->ocr;
1462	else if (pd->ocr)
1463		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1464}
1465
1466static int sh_mmcif_probe(struct platform_device *pdev)
1467{
1468	int ret = 0, irq[2];
1469	struct mmc_host *mmc;
1470	struct sh_mmcif_host *host;
1471	struct device *dev = &pdev->dev;
1472	struct sh_mmcif_plat_data *pd = dev->platform_data;
1473	struct resource *res;
1474	void __iomem *reg;
1475	const char *name;
1476
1477	irq[0] = platform_get_irq(pdev, 0);
1478	irq[1] = platform_get_irq(pdev, 1);
1479	if (irq[0] < 0) {
1480		dev_err(dev, "Get irq error\n");
1481		return -ENXIO;
1482	}
1483
1484	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485	reg = devm_ioremap_resource(dev, res);
1486	if (IS_ERR(reg))
1487		return PTR_ERR(reg);
1488
1489	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1490	if (!mmc)
1491		return -ENOMEM;
1492
1493	ret = mmc_of_parse(mmc);
1494	if (ret < 0)
1495		goto err_host;
1496
1497	host		= mmc_priv(mmc);
1498	host->mmc	= mmc;
1499	host->addr	= reg;
1500	host->timeout	= msecs_to_jiffies(10000);
1501	host->ccs_enable = !pd || !pd->ccs_unsupported;
1502	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1503
1504	host->pd = pdev;
1505
1506	spin_lock_init(&host->lock);
1507
1508	mmc->ops = &sh_mmcif_ops;
1509	sh_mmcif_init_ocr(host);
1510
1511	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
 
 
 
1512	if (pd && pd->caps)
1513		mmc->caps |= pd->caps;
1514	mmc->max_segs = 32;
1515	mmc->max_blk_size = 512;
1516	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1517	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1518	mmc->max_seg_size = mmc->max_req_size;
1519
1520	platform_set_drvdata(pdev, host);
1521
1522	pm_runtime_enable(dev);
1523	host->power = false;
1524
1525	host->clk = devm_clk_get(dev, NULL);
1526	if (IS_ERR(host->clk)) {
1527		ret = PTR_ERR(host->clk);
1528		dev_err(dev, "cannot get clock: %d\n", ret);
1529		goto err_pm;
1530	}
1531
1532	ret = clk_prepare_enable(host->clk);
1533	if (ret < 0)
1534		goto err_pm;
1535
1536	sh_mmcif_clk_setup(host);
1537
1538	ret = pm_runtime_resume(dev);
 
 
 
1539	if (ret < 0)
1540		goto err_clk;
1541
1542	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1543
1544	sh_mmcif_sync_reset(host);
1545	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1546
1547	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1548	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1549					sh_mmcif_irqt, 0, name, host);
1550	if (ret) {
1551		dev_err(dev, "request_irq error (%s)\n", name);
1552		goto err_clk;
1553	}
1554	if (irq[1] >= 0) {
1555		ret = devm_request_threaded_irq(dev, irq[1],
1556						sh_mmcif_intr, sh_mmcif_irqt,
1557						0, "sh_mmc:int", host);
1558		if (ret) {
1559			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1560			goto err_clk;
1561		}
1562	}
1563
1564	if (pd && pd->use_cd_gpio) {
1565		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1566		if (ret < 0)
1567			goto err_clk;
1568	}
1569
1570	mutex_init(&host->thread_lock);
1571
1572	ret = mmc_add_host(mmc);
1573	if (ret < 0)
1574		goto err_clk;
1575
1576	dev_pm_qos_expose_latency_limit(dev, 100);
1577
1578	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1579		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1580		 clk_get_rate(host->clk) / 1000000UL);
1581
 
1582	clk_disable_unprepare(host->clk);
1583	return ret;
1584
1585err_clk:
1586	clk_disable_unprepare(host->clk);
1587err_pm:
1588	pm_runtime_disable(dev);
1589err_host:
1590	mmc_free_host(mmc);
1591	return ret;
1592}
1593
1594static int sh_mmcif_remove(struct platform_device *pdev)
1595{
1596	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1597
1598	host->dying = true;
1599	clk_prepare_enable(host->clk);
1600	pm_runtime_get_sync(&pdev->dev);
1601
1602	dev_pm_qos_hide_latency_limit(&pdev->dev);
1603
1604	mmc_remove_host(host->mmc);
1605	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1606
1607	/*
1608	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1609	 * mmc_remove_host() call above. But swapping order doesn't help either
1610	 * (a query on the linux-mmc mailing list didn't bring any replies).
1611	 */
1612	cancel_delayed_work_sync(&host->timeout_work);
1613
1614	clk_disable_unprepare(host->clk);
1615	mmc_free_host(host->mmc);
1616	pm_runtime_put_sync(&pdev->dev);
1617	pm_runtime_disable(&pdev->dev);
1618
1619	return 0;
1620}
1621
1622#ifdef CONFIG_PM_SLEEP
1623static int sh_mmcif_suspend(struct device *dev)
1624{
1625	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1626
1627	pm_runtime_get_sync(dev);
1628	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1629	pm_runtime_put(dev);
1630
1631	return 0;
1632}
1633
1634static int sh_mmcif_resume(struct device *dev)
1635{
1636	return 0;
1637}
1638#endif
1639
1640static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1641	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1642};
1643
1644static struct platform_driver sh_mmcif_driver = {
1645	.probe		= sh_mmcif_probe,
1646	.remove		= sh_mmcif_remove,
1647	.driver		= {
1648		.name	= DRIVER_NAME,
1649		.pm	= &sh_mmcif_dev_pm_ops,
1650		.of_match_table = sh_mmcif_of_match,
1651	},
1652};
1653
1654module_platform_driver(sh_mmcif_driver);
1655
1656MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1657MODULE_LICENSE("GPL");
1658MODULE_ALIAS("platform:" DRIVER_NAME);
1659MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
 
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	cfg.direction = direction;
 409
 410	if (direction == DMA_DEV_TO_MEM) {
 411		cfg.src_addr = res->start + MMCIF_CE_DATA;
 412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413	} else {
 414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	}
 417
 418	return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423	struct device *dev = sh_mmcif_host_to_dev(host);
 424	host->dma_active = false;
 425
 426	/* We can only either use DMA for both Tx and Rx or not use it at all */
 427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431							pdata->slave_id_tx);
 432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433							pdata->slave_id_rx);
 434	} else {
 435		host->chan_tx = dma_request_chan(dev, "tx");
 436		if (IS_ERR(host->chan_tx))
 437			host->chan_tx = NULL;
 438		host->chan_rx = dma_request_chan(dev, "rx");
 439		if (IS_ERR(host->chan_rx))
 440			host->chan_rx = NULL;
 441	}
 442	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 443		host->chan_rx);
 444
 445	if (!host->chan_tx || !host->chan_rx ||
 446	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 447	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 448		goto error;
 449
 450	return;
 451
 452error:
 453	if (host->chan_tx)
 454		dma_release_channel(host->chan_tx);
 455	if (host->chan_rx)
 456		dma_release_channel(host->chan_rx);
 457	host->chan_tx = host->chan_rx = NULL;
 458}
 459
 460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 461{
 462	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 463	/* Descriptors are freed automatically */
 464	if (host->chan_tx) {
 465		struct dma_chan *chan = host->chan_tx;
 466		host->chan_tx = NULL;
 467		dma_release_channel(chan);
 468	}
 469	if (host->chan_rx) {
 470		struct dma_chan *chan = host->chan_rx;
 471		host->chan_rx = NULL;
 472		dma_release_channel(chan);
 473	}
 474
 475	host->dma_active = false;
 476}
 477
 478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 479{
 480	struct device *dev = sh_mmcif_host_to_dev(host);
 481	struct sh_mmcif_plat_data *p = dev->platform_data;
 482	bool sup_pclk = p ? p->sup_pclk : false;
 483	unsigned int current_clk = clk_get_rate(host->clk);
 484	unsigned int clkdiv;
 485
 486	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 487	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 488
 489	if (!clk)
 490		return;
 491
 492	if (host->clkdiv_map) {
 493		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 494		int i;
 495
 496		clkdiv = 0;
 497		diff_min = ~0;
 498		best_freq = 0;
 499		for (i = 31; i >= 0; i--) {
 500			if (!((1 << i) & host->clkdiv_map))
 501				continue;
 502
 503			/*
 504			 * clk = parent_freq / div
 505			 * -> parent_freq = clk x div
 506			 */
 507
 508			div = 1 << (i + 1);
 509			freq = clk_round_rate(host->clk, clk * div);
 510			myclk = freq / div;
 511			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 512
 513			if (diff <= diff_min) {
 514				best_freq = freq;
 515				clkdiv = i;
 516				diff_min = diff;
 517			}
 518		}
 519
 520		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 521			(best_freq / (1 << (clkdiv + 1))), clk,
 522			best_freq, clkdiv);
 523
 524		clk_set_rate(host->clk, best_freq);
 525		clkdiv = clkdiv << 16;
 526	} else if (sup_pclk && clk == current_clk) {
 527		clkdiv = CLK_SUP_PCLK;
 528	} else {
 529		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 530	}
 531
 532	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 533	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 534}
 535
 536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 537{
 538	u32 tmp;
 539
 540	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 541
 542	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 543	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 544	if (host->ccs_enable)
 545		tmp |= SCCSTO_29;
 546	if (host->clk_ctrl2_enable)
 547		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 548	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 549		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 550	/* byte swap on */
 551	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 552}
 553
 554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 555{
 556	struct device *dev = sh_mmcif_host_to_dev(host);
 557	u32 state1, state2;
 558	int ret, timeout;
 559
 560	host->sd_error = false;
 561
 562	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 563	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 564	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 565	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 566
 567	if (state1 & STS1_CMDSEQ) {
 568		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 569		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 570		for (timeout = 10000; timeout; timeout--) {
 571			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 572			      & STS1_CMDSEQ))
 573				break;
 574			mdelay(1);
 575		}
 576		if (!timeout) {
 577			dev_err(dev,
 578				"Forced end of command sequence timeout err\n");
 579			return -EIO;
 580		}
 581		sh_mmcif_sync_reset(host);
 582		dev_dbg(dev, "Forced end of command sequence\n");
 583		return -EIO;
 584	}
 585
 586	if (state2 & STS2_CRC_ERR) {
 587		dev_err(dev, " CRC error: state %u, wait %u\n",
 588			host->state, host->wait_for);
 589		ret = -EIO;
 590	} else if (state2 & STS2_TIMEOUT_ERR) {
 591		dev_err(dev, " Timeout: state %u, wait %u\n",
 592			host->state, host->wait_for);
 593		ret = -ETIMEDOUT;
 594	} else {
 595		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 596			host->state, host->wait_for);
 597		ret = -EIO;
 598	}
 599	return ret;
 600}
 601
 602static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 603{
 604	struct mmc_data *data = host->mrq->data;
 605
 606	host->sg_blkidx += host->blocksize;
 607
 608	/* data->sg->length must be a multiple of host->blocksize? */
 609	BUG_ON(host->sg_blkidx > data->sg->length);
 610
 611	if (host->sg_blkidx == data->sg->length) {
 612		host->sg_blkidx = 0;
 613		if (++host->sg_idx < data->sg_len)
 614			host->pio_ptr = sg_virt(++data->sg);
 615	} else {
 616		host->pio_ptr = p;
 617	}
 618
 619	return host->sg_idx != data->sg_len;
 620}
 621
 622static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 623				 struct mmc_request *mrq)
 624{
 625	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 626			   BLOCK_SIZE_MASK) + 3;
 627
 628	host->wait_for = MMCIF_WAIT_FOR_READ;
 629
 630	/* buf read enable */
 631	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 632}
 633
 634static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 635{
 636	struct device *dev = sh_mmcif_host_to_dev(host);
 637	struct mmc_data *data = host->mrq->data;
 638	u32 *p = sg_virt(data->sg);
 639	int i;
 640
 641	if (host->sd_error) {
 642		data->error = sh_mmcif_error_manage(host);
 643		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 644		return false;
 645	}
 646
 647	for (i = 0; i < host->blocksize / 4; i++)
 648		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 649
 650	/* buffer read end */
 651	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 652	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 653
 654	return true;
 655}
 656
 657static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 658				struct mmc_request *mrq)
 659{
 660	struct mmc_data *data = mrq->data;
 661
 662	if (!data->sg_len || !data->sg->length)
 663		return;
 664
 665	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 666		BLOCK_SIZE_MASK;
 667
 668	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 669	host->sg_idx = 0;
 670	host->sg_blkidx = 0;
 671	host->pio_ptr = sg_virt(data->sg);
 672
 673	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 674}
 675
 676static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 677{
 678	struct device *dev = sh_mmcif_host_to_dev(host);
 679	struct mmc_data *data = host->mrq->data;
 680	u32 *p = host->pio_ptr;
 681	int i;
 682
 683	if (host->sd_error) {
 684		data->error = sh_mmcif_error_manage(host);
 685		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 686		return false;
 687	}
 688
 689	BUG_ON(!data->sg->length);
 690
 691	for (i = 0; i < host->blocksize / 4; i++)
 692		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 693
 694	if (!sh_mmcif_next_block(host, p))
 695		return false;
 696
 697	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 698
 699	return true;
 700}
 701
 702static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 703					struct mmc_request *mrq)
 704{
 705	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 706			   BLOCK_SIZE_MASK) + 3;
 707
 708	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 709
 710	/* buf write enable */
 711	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 712}
 713
 714static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 715{
 716	struct device *dev = sh_mmcif_host_to_dev(host);
 717	struct mmc_data *data = host->mrq->data;
 718	u32 *p = sg_virt(data->sg);
 719	int i;
 720
 721	if (host->sd_error) {
 722		data->error = sh_mmcif_error_manage(host);
 723		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 724		return false;
 725	}
 726
 727	for (i = 0; i < host->blocksize / 4; i++)
 728		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 729
 730	/* buffer write end */
 731	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 732	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 733
 734	return true;
 735}
 736
 737static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 738				struct mmc_request *mrq)
 739{
 740	struct mmc_data *data = mrq->data;
 741
 742	if (!data->sg_len || !data->sg->length)
 743		return;
 744
 745	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 746		BLOCK_SIZE_MASK;
 747
 748	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 749	host->sg_idx = 0;
 750	host->sg_blkidx = 0;
 751	host->pio_ptr = sg_virt(data->sg);
 752
 753	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 754}
 755
 756static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 757{
 758	struct device *dev = sh_mmcif_host_to_dev(host);
 759	struct mmc_data *data = host->mrq->data;
 760	u32 *p = host->pio_ptr;
 761	int i;
 762
 763	if (host->sd_error) {
 764		data->error = sh_mmcif_error_manage(host);
 765		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 766		return false;
 767	}
 768
 769	BUG_ON(!data->sg->length);
 770
 771	for (i = 0; i < host->blocksize / 4; i++)
 772		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 773
 774	if (!sh_mmcif_next_block(host, p))
 775		return false;
 776
 777	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 778
 779	return true;
 780}
 781
 782static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 783						struct mmc_command *cmd)
 784{
 785	if (cmd->flags & MMC_RSP_136) {
 786		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 787		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 788		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 789		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 790	} else
 791		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792}
 793
 794static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 795						struct mmc_command *cmd)
 796{
 797	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 798}
 799
 800static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 801			    struct mmc_request *mrq)
 802{
 803	struct device *dev = sh_mmcif_host_to_dev(host);
 804	struct mmc_data *data = mrq->data;
 805	struct mmc_command *cmd = mrq->cmd;
 806	u32 opc = cmd->opcode;
 807	u32 tmp = 0;
 808
 809	/* Response Type check */
 810	switch (mmc_resp_type(cmd)) {
 811	case MMC_RSP_NONE:
 812		tmp |= CMD_SET_RTYP_NO;
 813		break;
 814	case MMC_RSP_R1:
 
 815	case MMC_RSP_R3:
 816		tmp |= CMD_SET_RTYP_6B;
 817		break;
 818	case MMC_RSP_R1B:
 819		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 820		break;
 821	case MMC_RSP_R2:
 822		tmp |= CMD_SET_RTYP_17B;
 823		break;
 824	default:
 825		dev_err(dev, "Unsupported response type.\n");
 826		break;
 827	}
 828
 
 
 
 
 
 
 
 
 
 
 829	/* WDAT / DATW */
 830	if (data) {
 831		tmp |= CMD_SET_WDAT;
 832		switch (host->bus_width) {
 833		case MMC_BUS_WIDTH_1:
 834			tmp |= CMD_SET_DATW_1;
 835			break;
 836		case MMC_BUS_WIDTH_4:
 837			tmp |= CMD_SET_DATW_4;
 838			break;
 839		case MMC_BUS_WIDTH_8:
 840			tmp |= CMD_SET_DATW_8;
 841			break;
 842		default:
 843			dev_err(dev, "Unsupported bus width.\n");
 844			break;
 845		}
 846		switch (host->timing) {
 847		case MMC_TIMING_MMC_DDR52:
 848			/*
 849			 * MMC core will only set this timing, if the host
 850			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 851			 * capability. MMCIF implementations with this
 852			 * capability, e.g. sh73a0, will have to set it
 853			 * in their platform data.
 854			 */
 855			tmp |= CMD_SET_DARS;
 856			break;
 857		}
 858	}
 859	/* DWEN */
 860	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 861		tmp |= CMD_SET_DWEN;
 862	/* CMLTE/CMD12EN */
 863	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 864		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 865		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 866				data->blocks << 16);
 867	}
 868	/* RIDXC[1:0] check bits */
 869	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 870	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 871		tmp |= CMD_SET_RIDXC_BITS;
 872	/* RCRC7C[1:0] check bits */
 873	if (opc == MMC_SEND_OP_COND)
 874		tmp |= CMD_SET_CRC7C_BITS;
 875	/* RCRC7C[1:0] internal CRC7 */
 876	if (opc == MMC_ALL_SEND_CID ||
 877		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 878		tmp |= CMD_SET_CRC7C_INTERNAL;
 879
 880	return (opc << 24) | tmp;
 881}
 882
 883static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 884			       struct mmc_request *mrq, u32 opc)
 885{
 886	struct device *dev = sh_mmcif_host_to_dev(host);
 887
 888	switch (opc) {
 889	case MMC_READ_MULTIPLE_BLOCK:
 890		sh_mmcif_multi_read(host, mrq);
 891		return 0;
 892	case MMC_WRITE_MULTIPLE_BLOCK:
 893		sh_mmcif_multi_write(host, mrq);
 894		return 0;
 895	case MMC_WRITE_BLOCK:
 896		sh_mmcif_single_write(host, mrq);
 897		return 0;
 898	case MMC_READ_SINGLE_BLOCK:
 899	case MMC_SEND_EXT_CSD:
 900		sh_mmcif_single_read(host, mrq);
 901		return 0;
 902	default:
 903		dev_err(dev, "Unsupported CMD%d\n", opc);
 904		return -EINVAL;
 905	}
 906}
 907
 908static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 909			       struct mmc_request *mrq)
 910{
 911	struct mmc_command *cmd = mrq->cmd;
 912	u32 opc;
 913	u32 mask = 0;
 914	unsigned long flags;
 915
 916	if (cmd->flags & MMC_RSP_BUSY)
 
 
 
 
 
 
 
 917		mask = MASK_START_CMD | MASK_MRBSYE;
 918	else
 
 919		mask = MASK_START_CMD | MASK_MCRSPE;
 
 
 920
 921	if (host->ccs_enable)
 922		mask |= MASK_MCCSTO;
 923
 924	if (mrq->data) {
 925		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 926		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 927				mrq->data->blksz);
 928	}
 929	opc = sh_mmcif_set_cmd(host, mrq);
 930
 931	if (host->ccs_enable)
 932		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 933	else
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 935	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 936	/* set arg */
 937	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 938	/* set cmd */
 939	spin_lock_irqsave(&host->lock, flags);
 940	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 941
 942	host->wait_for = MMCIF_WAIT_FOR_CMD;
 943	schedule_delayed_work(&host->timeout_work, host->timeout);
 944	spin_unlock_irqrestore(&host->lock, flags);
 945}
 946
 947static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 948			      struct mmc_request *mrq)
 949{
 950	struct device *dev = sh_mmcif_host_to_dev(host);
 951
 952	switch (mrq->cmd->opcode) {
 953	case MMC_READ_MULTIPLE_BLOCK:
 954		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 955		break;
 956	case MMC_WRITE_MULTIPLE_BLOCK:
 957		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 958		break;
 959	default:
 960		dev_err(dev, "unsupported stop cmd\n");
 961		mrq->stop->error = sh_mmcif_error_manage(host);
 962		return;
 963	}
 964
 965	host->wait_for = MMCIF_WAIT_FOR_STOP;
 966}
 967
 968static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 969{
 970	struct sh_mmcif_host *host = mmc_priv(mmc);
 971	struct device *dev = sh_mmcif_host_to_dev(host);
 972	unsigned long flags;
 973
 974	spin_lock_irqsave(&host->lock, flags);
 975	if (host->state != STATE_IDLE) {
 976		dev_dbg(dev, "%s() rejected, state %u\n",
 977			__func__, host->state);
 978		spin_unlock_irqrestore(&host->lock, flags);
 979		mrq->cmd->error = -EAGAIN;
 980		mmc_request_done(mmc, mrq);
 981		return;
 982	}
 983
 984	host->state = STATE_REQUEST;
 985	spin_unlock_irqrestore(&host->lock, flags);
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987	host->mrq = mrq;
 988
 989	sh_mmcif_start_cmd(host, mrq);
 990}
 991
 992static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 993{
 994	struct device *dev = sh_mmcif_host_to_dev(host);
 995
 996	if (host->mmc->f_max) {
 997		unsigned int f_max, f_min = 0, f_min_old;
 998
 999		f_max = host->mmc->f_max;
1000		for (f_min_old = f_max; f_min_old > 2;) {
1001			f_min = clk_round_rate(host->clk, f_min_old / 2);
1002			if (f_min == f_min_old)
1003				break;
1004			f_min_old = f_min;
1005		}
1006
1007		/*
1008		 * This driver assumes this SoC is R-Car Gen2 or later
1009		 */
1010		host->clkdiv_map = 0x3ff;
1011
1012		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014	} else {
1015		unsigned int clk = clk_get_rate(host->clk);
1016
1017		host->mmc->f_max = clk / 2;
1018		host->mmc->f_min = clk / 512;
1019	}
1020
1021	dev_dbg(dev, "clk max/min = %d/%d\n",
1022		host->mmc->f_max, host->mmc->f_min);
1023}
1024
 
 
 
 
 
 
 
 
 
 
1025static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026{
1027	struct sh_mmcif_host *host = mmc_priv(mmc);
1028	struct device *dev = sh_mmcif_host_to_dev(host);
1029	unsigned long flags;
1030
1031	spin_lock_irqsave(&host->lock, flags);
1032	if (host->state != STATE_IDLE) {
1033		dev_dbg(dev, "%s() rejected, state %u\n",
1034			__func__, host->state);
1035		spin_unlock_irqrestore(&host->lock, flags);
1036		return;
1037	}
1038
1039	host->state = STATE_IOS;
1040	spin_unlock_irqrestore(&host->lock, flags);
1041
1042	switch (ios->power_mode) {
1043	case MMC_POWER_UP:
1044		if (!IS_ERR(mmc->supply.vmmc))
1045			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046		if (!host->power) {
1047			clk_prepare_enable(host->clk);
1048			pm_runtime_get_sync(dev);
1049			sh_mmcif_sync_reset(host);
1050			sh_mmcif_request_dma(host);
1051			host->power = true;
 
 
 
 
 
 
 
 
 
 
1052		}
1053		break;
1054	case MMC_POWER_OFF:
1055		if (!IS_ERR(mmc->supply.vmmc))
1056			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057		if (host->power) {
1058			sh_mmcif_clock_control(host, 0);
1059			sh_mmcif_release_dma(host);
1060			pm_runtime_put(dev);
1061			clk_disable_unprepare(host->clk);
1062			host->power = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063		}
1064		break;
1065	case MMC_POWER_ON:
1066		sh_mmcif_clock_control(host, ios->clock);
1067		break;
1068	}
1069
1070	host->timing = ios->timing;
1071	host->bus_width = ios->bus_width;
1072	host->state = STATE_IDLE;
1073}
1074
1075static const struct mmc_host_ops sh_mmcif_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	.request	= sh_mmcif_request,
1077	.set_ios	= sh_mmcif_set_ios,
1078	.get_cd		= mmc_gpio_get_cd,
1079};
1080
1081static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082{
1083	struct mmc_command *cmd = host->mrq->cmd;
1084	struct mmc_data *data = host->mrq->data;
1085	struct device *dev = sh_mmcif_host_to_dev(host);
1086	long time;
1087
1088	if (host->sd_error) {
1089		switch (cmd->opcode) {
1090		case MMC_ALL_SEND_CID:
1091		case MMC_SELECT_CARD:
1092		case MMC_APP_CMD:
1093			cmd->error = -ETIMEDOUT;
1094			break;
1095		default:
1096			cmd->error = sh_mmcif_error_manage(host);
1097			break;
1098		}
1099		dev_dbg(dev, "CMD%d error %d\n",
1100			cmd->opcode, cmd->error);
1101		host->sd_error = false;
1102		return false;
1103	}
1104	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105		cmd->error = 0;
1106		return false;
1107	}
1108
1109	sh_mmcif_get_response(host, cmd);
1110
1111	if (!data)
1112		return false;
1113
1114	/*
1115	 * Completion can be signalled from DMA callback and error, so, have to
1116	 * reset here, before setting .dma_active
1117	 */
1118	init_completion(&host->dma_complete);
1119
1120	if (data->flags & MMC_DATA_READ) {
1121		if (host->chan_rx)
1122			sh_mmcif_start_dma_rx(host);
1123	} else {
1124		if (host->chan_tx)
1125			sh_mmcif_start_dma_tx(host);
1126	}
1127
1128	if (!host->dma_active) {
1129		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130		return !data->error;
1131	}
1132
1133	/* Running in the IRQ thread, can sleep */
1134	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135							 host->timeout);
1136
1137	if (data->flags & MMC_DATA_READ)
1138		dma_unmap_sg(host->chan_rx->device->dev,
1139			     data->sg, data->sg_len,
1140			     DMA_FROM_DEVICE);
1141	else
1142		dma_unmap_sg(host->chan_tx->device->dev,
1143			     data->sg, data->sg_len,
1144			     DMA_TO_DEVICE);
1145
1146	if (host->sd_error) {
1147		dev_err(host->mmc->parent,
1148			"Error IRQ while waiting for DMA completion!\n");
1149		/* Woken up by an error IRQ: abort DMA */
1150		data->error = sh_mmcif_error_manage(host);
1151	} else if (!time) {
1152		dev_err(host->mmc->parent, "DMA timeout!\n");
1153		data->error = -ETIMEDOUT;
1154	} else if (time < 0) {
1155		dev_err(host->mmc->parent,
1156			"wait_for_completion_...() error %ld!\n", time);
1157		data->error = time;
1158	}
1159	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161	host->dma_active = false;
1162
1163	if (data->error) {
1164		data->bytes_xfered = 0;
1165		/* Abort DMA */
1166		if (data->flags & MMC_DATA_READ)
1167			dmaengine_terminate_all(host->chan_rx);
1168		else
1169			dmaengine_terminate_all(host->chan_tx);
1170	}
1171
1172	return false;
1173}
1174
1175static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176{
1177	struct sh_mmcif_host *host = dev_id;
1178	struct mmc_request *mrq;
1179	struct device *dev = sh_mmcif_host_to_dev(host);
1180	bool wait = false;
1181	unsigned long flags;
1182	int wait_work;
1183
1184	spin_lock_irqsave(&host->lock, flags);
1185	wait_work = host->wait_for;
1186	spin_unlock_irqrestore(&host->lock, flags);
1187
1188	cancel_delayed_work_sync(&host->timeout_work);
1189
1190	mutex_lock(&host->thread_lock);
1191
1192	mrq = host->mrq;
1193	if (!mrq) {
1194		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195			host->state, host->wait_for);
1196		mutex_unlock(&host->thread_lock);
1197		return IRQ_HANDLED;
1198	}
1199
1200	/*
1201	 * All handlers return true, if processing continues, and false, if the
1202	 * request has to be completed - successfully or not
1203	 */
1204	switch (wait_work) {
1205	case MMCIF_WAIT_FOR_REQUEST:
1206		/* We're too late, the timeout has already kicked in */
1207		mutex_unlock(&host->thread_lock);
1208		return IRQ_HANDLED;
1209	case MMCIF_WAIT_FOR_CMD:
1210		/* Wait for data? */
1211		wait = sh_mmcif_end_cmd(host);
1212		break;
1213	case MMCIF_WAIT_FOR_MREAD:
1214		/* Wait for more data? */
1215		wait = sh_mmcif_mread_block(host);
1216		break;
1217	case MMCIF_WAIT_FOR_READ:
1218		/* Wait for data end? */
1219		wait = sh_mmcif_read_block(host);
1220		break;
1221	case MMCIF_WAIT_FOR_MWRITE:
1222		/* Wait data to write? */
1223		wait = sh_mmcif_mwrite_block(host);
1224		break;
1225	case MMCIF_WAIT_FOR_WRITE:
1226		/* Wait for data end? */
1227		wait = sh_mmcif_write_block(host);
1228		break;
1229	case MMCIF_WAIT_FOR_STOP:
1230		if (host->sd_error) {
1231			mrq->stop->error = sh_mmcif_error_manage(host);
1232			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233			break;
1234		}
1235		sh_mmcif_get_cmd12response(host, mrq->stop);
1236		mrq->stop->error = 0;
1237		break;
1238	case MMCIF_WAIT_FOR_READ_END:
1239	case MMCIF_WAIT_FOR_WRITE_END:
1240		if (host->sd_error) {
1241			mrq->data->error = sh_mmcif_error_manage(host);
1242			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243		}
1244		break;
1245	default:
1246		BUG();
1247	}
1248
1249	if (wait) {
1250		schedule_delayed_work(&host->timeout_work, host->timeout);
1251		/* Wait for more data */
1252		mutex_unlock(&host->thread_lock);
1253		return IRQ_HANDLED;
1254	}
1255
1256	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257		struct mmc_data *data = mrq->data;
1258		if (!mrq->cmd->error && data && !data->error)
1259			data->bytes_xfered =
1260				data->blocks * data->blksz;
1261
1262		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263			sh_mmcif_stop_cmd(host, mrq);
1264			if (!mrq->stop->error) {
1265				schedule_delayed_work(&host->timeout_work, host->timeout);
1266				mutex_unlock(&host->thread_lock);
1267				return IRQ_HANDLED;
1268			}
1269		}
1270	}
1271
1272	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273	host->state = STATE_IDLE;
1274	host->mrq = NULL;
1275	mmc_request_done(host->mmc, mrq);
1276
1277	mutex_unlock(&host->thread_lock);
1278
1279	return IRQ_HANDLED;
1280}
1281
1282static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283{
1284	struct sh_mmcif_host *host = dev_id;
1285	struct device *dev = sh_mmcif_host_to_dev(host);
1286	u32 state, mask;
1287
1288	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290	if (host->ccs_enable)
1291		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292	else
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296	if (state & ~MASK_CLEAN)
1297		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298			state);
1299
1300	if (state & INT_ERR_STS || state & ~INT_ALL) {
1301		host->sd_error = true;
1302		dev_dbg(dev, "int err state = 0x%08x\n", state);
1303	}
1304	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305		if (!host->mrq)
1306			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307		if (!host->dma_active)
1308			return IRQ_WAKE_THREAD;
1309		else if (host->sd_error)
1310			sh_mmcif_dma_complete(host);
1311	} else {
1312		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313	}
1314
1315	return IRQ_HANDLED;
1316}
1317
1318static void sh_mmcif_timeout_work(struct work_struct *work)
1319{
1320	struct delayed_work *d = to_delayed_work(work);
1321	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322	struct mmc_request *mrq = host->mrq;
1323	struct device *dev = sh_mmcif_host_to_dev(host);
1324	unsigned long flags;
1325
1326	if (host->dying)
1327		/* Don't run after mmc_remove_host() */
1328		return;
1329
1330	spin_lock_irqsave(&host->lock, flags);
1331	if (host->state == STATE_IDLE) {
1332		spin_unlock_irqrestore(&host->lock, flags);
1333		return;
1334	}
1335
1336	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337		host->wait_for, mrq->cmd->opcode);
1338
1339	host->state = STATE_TIMEOUT;
1340	spin_unlock_irqrestore(&host->lock, flags);
1341
1342	/*
1343	 * Handle races with cancel_delayed_work(), unless
1344	 * cancel_delayed_work_sync() is used
1345	 */
1346	switch (host->wait_for) {
1347	case MMCIF_WAIT_FOR_CMD:
1348		mrq->cmd->error = sh_mmcif_error_manage(host);
1349		break;
1350	case MMCIF_WAIT_FOR_STOP:
1351		mrq->stop->error = sh_mmcif_error_manage(host);
1352		break;
1353	case MMCIF_WAIT_FOR_MREAD:
1354	case MMCIF_WAIT_FOR_MWRITE:
1355	case MMCIF_WAIT_FOR_READ:
1356	case MMCIF_WAIT_FOR_WRITE:
1357	case MMCIF_WAIT_FOR_READ_END:
1358	case MMCIF_WAIT_FOR_WRITE_END:
1359		mrq->data->error = sh_mmcif_error_manage(host);
1360		break;
1361	default:
1362		BUG();
1363	}
1364
1365	host->state = STATE_IDLE;
1366	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367	host->mrq = NULL;
1368	mmc_request_done(host->mmc, mrq);
1369}
1370
1371static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372{
1373	struct device *dev = sh_mmcif_host_to_dev(host);
1374	struct sh_mmcif_plat_data *pd = dev->platform_data;
1375	struct mmc_host *mmc = host->mmc;
1376
1377	mmc_regulator_get_supply(mmc);
1378
1379	if (!pd)
1380		return;
1381
1382	if (!mmc->ocr_avail)
1383		mmc->ocr_avail = pd->ocr;
1384	else if (pd->ocr)
1385		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386}
1387
1388static int sh_mmcif_probe(struct platform_device *pdev)
1389{
1390	int ret = 0, irq[2];
1391	struct mmc_host *mmc;
1392	struct sh_mmcif_host *host;
1393	struct device *dev = &pdev->dev;
1394	struct sh_mmcif_plat_data *pd = dev->platform_data;
 
1395	void __iomem *reg;
1396	const char *name;
1397
1398	irq[0] = platform_get_irq(pdev, 0);
1399	irq[1] = platform_get_irq_optional(pdev, 1);
1400	if (irq[0] < 0)
 
1401		return -ENXIO;
 
1402
1403	reg = devm_platform_ioremap_resource(pdev, 0);
 
1404	if (IS_ERR(reg))
1405		return PTR_ERR(reg);
1406
1407	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408	if (!mmc)
1409		return -ENOMEM;
1410
1411	ret = mmc_of_parse(mmc);
1412	if (ret < 0)
1413		goto err_host;
1414
1415	host		= mmc_priv(mmc);
1416	host->mmc	= mmc;
1417	host->addr	= reg;
1418	host->timeout	= msecs_to_jiffies(10000);
1419	host->ccs_enable = true;
1420	host->clk_ctrl2_enable = false;
1421
1422	host->pd = pdev;
1423
1424	spin_lock_init(&host->lock);
1425
1426	mmc->ops = &sh_mmcif_ops;
1427	sh_mmcif_init_ocr(host);
1428
1429	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431	mmc->max_busy_timeout = 10000;
1432
1433	if (pd && pd->caps)
1434		mmc->caps |= pd->caps;
1435	mmc->max_segs = 32;
1436	mmc->max_blk_size = 512;
1437	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439	mmc->max_seg_size = mmc->max_req_size;
1440
1441	platform_set_drvdata(pdev, host);
1442
 
 
 
1443	host->clk = devm_clk_get(dev, NULL);
1444	if (IS_ERR(host->clk)) {
1445		ret = PTR_ERR(host->clk);
1446		dev_err(dev, "cannot get clock: %d\n", ret);
1447		goto err_host;
1448	}
1449
1450	ret = clk_prepare_enable(host->clk);
1451	if (ret < 0)
1452		goto err_host;
1453
1454	sh_mmcif_clk_setup(host);
1455
1456	pm_runtime_enable(dev);
1457	host->power = false;
1458
1459	ret = pm_runtime_get_sync(dev);
1460	if (ret < 0)
1461		goto err_clk;
1462
1463	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465	sh_mmcif_sync_reset(host);
1466	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470					sh_mmcif_irqt, 0, name, host);
1471	if (ret) {
1472		dev_err(dev, "request_irq error (%s)\n", name);
1473		goto err_clk;
1474	}
1475	if (irq[1] >= 0) {
1476		ret = devm_request_threaded_irq(dev, irq[1],
1477						sh_mmcif_intr, sh_mmcif_irqt,
1478						0, "sh_mmc:int", host);
1479		if (ret) {
1480			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481			goto err_clk;
1482		}
1483	}
1484
 
 
 
 
 
 
1485	mutex_init(&host->thread_lock);
1486
1487	ret = mmc_add_host(mmc);
1488	if (ret < 0)
1489		goto err_clk;
1490
1491	dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495		 clk_get_rate(host->clk) / 1000000UL);
1496
1497	pm_runtime_put(dev);
1498	clk_disable_unprepare(host->clk);
1499	return ret;
1500
1501err_clk:
1502	clk_disable_unprepare(host->clk);
1503	pm_runtime_put_sync(dev);
1504	pm_runtime_disable(dev);
1505err_host:
1506	mmc_free_host(mmc);
1507	return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514	host->dying = true;
1515	clk_prepare_enable(host->clk);
1516	pm_runtime_get_sync(&pdev->dev);
1517
1518	dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520	mmc_remove_host(host->mmc);
1521	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523	/*
1524	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525	 * mmc_remove_host() call above. But swapping order doesn't help either
1526	 * (a query on the linux-mmc mailing list didn't bring any replies).
1527	 */
1528	cancel_delayed_work_sync(&host->timeout_work);
1529
1530	clk_disable_unprepare(host->clk);
1531	mmc_free_host(host->mmc);
1532	pm_runtime_put_sync(&pdev->dev);
1533	pm_runtime_disable(&pdev->dev);
1534
1535	return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543	pm_runtime_get_sync(dev);
1544	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545	pm_runtime_put(dev);
1546
1547	return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552	return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561	.probe		= sh_mmcif_probe,
1562	.remove		= sh_mmcif_remove,
1563	.driver		= {
1564		.name	= DRIVER_NAME,
1565		.pm	= &sh_mmcif_dev_pm_ops,
1566		.of_match_table = sh_mmcif_of_match,
1567	},
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");