Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 */
  5
  6#include <linux/slab.h> /* fault-inject.h is not standalone! */
  7
  8#include <linux/fault-inject.h>
  9
 10#include "i915_trace.h"
 11#include "intel_gt.h"
 12#include "intel_gtt.h"
 13
 14void stash_init(struct pagestash *stash)
 15{
 16	pagevec_init(&stash->pvec);
 17	spin_lock_init(&stash->lock);
 18}
 19
 20static struct page *stash_pop_page(struct pagestash *stash)
 21{
 22	struct page *page = NULL;
 23
 24	spin_lock(&stash->lock);
 25	if (likely(stash->pvec.nr))
 26		page = stash->pvec.pages[--stash->pvec.nr];
 27	spin_unlock(&stash->lock);
 28
 29	return page;
 30}
 31
 32static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
 33{
 34	unsigned int nr;
 35
 36	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
 37
 38	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
 39	memcpy(stash->pvec.pages + stash->pvec.nr,
 40	       pvec->pages + pvec->nr - nr,
 41	       sizeof(pvec->pages[0]) * nr);
 42	stash->pvec.nr += nr;
 43
 44	spin_unlock(&stash->lock);
 45
 46	pvec->nr -= nr;
 47}
 48
 49static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
 50{
 51	struct pagevec stack;
 52	struct page *page;
 53
 54	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
 55		i915_gem_shrink_all(vm->i915);
 56
 57	page = stash_pop_page(&vm->free_pages);
 58	if (page)
 59		return page;
 60
 61	if (!vm->pt_kmap_wc)
 62		return alloc_page(gfp);
 63
 64	/* Look in our global stash of WC pages... */
 65	page = stash_pop_page(&vm->i915->mm.wc_stash);
 66	if (page)
 67		return page;
 68
 69	/*
 70	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
 71	 *
 72	 * We have to be careful as page allocation may trigger the shrinker
 73	 * (via direct reclaim) which will fill up the WC stash underneath us.
 74	 * So we add our WB pages into a temporary pvec on the stack and merge
 75	 * them into the WC stash after all the allocations are complete.
 76	 */
 77	pagevec_init(&stack);
 78	do {
 79		struct page *page;
 80
 81		page = alloc_page(gfp);
 82		if (unlikely(!page))
 83			break;
 84
 85		stack.pages[stack.nr++] = page;
 86	} while (pagevec_space(&stack));
 87
 88	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
 89		page = stack.pages[--stack.nr];
 90
 91		/* Merge spare WC pages to the global stash */
 92		if (stack.nr)
 93			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
 94
 95		/* Push any surplus WC pages onto the local VM stash */
 96		if (stack.nr)
 97			stash_push_pagevec(&vm->free_pages, &stack);
 98	}
 99
100	/* Return unwanted leftovers */
101	if (unlikely(stack.nr)) {
102		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
103		__pagevec_release(&stack);
104	}
105
106	return page;
107}
108
109static void vm_free_pages_release(struct i915_address_space *vm,
110				  bool immediate)
111{
112	struct pagevec *pvec = &vm->free_pages.pvec;
113	struct pagevec stack;
114
115	lockdep_assert_held(&vm->free_pages.lock);
116	GEM_BUG_ON(!pagevec_count(pvec));
117
118	if (vm->pt_kmap_wc) {
119		/*
120		 * When we use WC, first fill up the global stash and then
121		 * only if full immediately free the overflow.
122		 */
123		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
124
125		/*
126		 * As we have made some room in the VM's free_pages,
127		 * we can wait for it to fill again. Unless we are
128		 * inside i915_address_space_fini() and must
129		 * immediately release the pages!
130		 */
131		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
132			return;
133
134		/*
135		 * We have to drop the lock to allow ourselves to sleep,
136		 * so take a copy of the pvec and clear the stash for
137		 * others to use it as we sleep.
138		 */
139		stack = *pvec;
140		pagevec_reinit(pvec);
141		spin_unlock(&vm->free_pages.lock);
142
143		pvec = &stack;
144		set_pages_array_wb(pvec->pages, pvec->nr);
145
146		spin_lock(&vm->free_pages.lock);
147	}
148
149	__pagevec_release(pvec);
150}
151
152static void vm_free_page(struct i915_address_space *vm, struct page *page)
153{
154	/*
155	 * On !llc, we need to change the pages back to WB. We only do so
156	 * in bulk, so we rarely need to change the page attributes here,
157	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
158	 * To make detection of the possible sleep more likely, use an
159	 * unconditional might_sleep() for everybody.
160	 */
161	might_sleep();
162	spin_lock(&vm->free_pages.lock);
163	while (!pagevec_space(&vm->free_pages.pvec))
164		vm_free_pages_release(vm, false);
165	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
166	pagevec_add(&vm->free_pages.pvec, page);
167	spin_unlock(&vm->free_pages.lock);
168}
169
170void __i915_vm_close(struct i915_address_space *vm)
171{
172	struct i915_vma *vma, *vn;
173
174	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
175		return;
176
177	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
178		struct drm_i915_gem_object *obj = vma->obj;
179
180		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
181		if (!kref_get_unless_zero(&obj->base.refcount))
182			continue;
183
184		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
185		WARN_ON(__i915_vma_unbind(vma));
186		__i915_vma_put(vma);
187
188		i915_gem_object_put(obj);
189	}
190	GEM_BUG_ON(!list_empty(&vm->bound_list));
191
192	mutex_unlock(&vm->mutex);
193}
194
195void i915_address_space_fini(struct i915_address_space *vm)
196{
197	spin_lock(&vm->free_pages.lock);
198	if (pagevec_count(&vm->free_pages.pvec))
199		vm_free_pages_release(vm, true);
200	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
201	spin_unlock(&vm->free_pages.lock);
202
203	drm_mm_takedown(&vm->mm);
204
205	mutex_destroy(&vm->mutex);
206}
207
208static void __i915_vm_release(struct work_struct *work)
209{
210	struct i915_address_space *vm =
211		container_of(work, struct i915_address_space, rcu.work);
212
213	vm->cleanup(vm);
214	i915_address_space_fini(vm);
215
216	kfree(vm);
217}
218
219void i915_vm_release(struct kref *kref)
220{
221	struct i915_address_space *vm =
222		container_of(kref, struct i915_address_space, ref);
223
224	GEM_BUG_ON(i915_is_ggtt(vm));
225	trace_i915_ppgtt_release(vm);
226
227	queue_rcu_work(vm->i915->wq, &vm->rcu);
228}
229
230void i915_address_space_init(struct i915_address_space *vm, int subclass)
231{
232	kref_init(&vm->ref);
233	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
234	atomic_set(&vm->open, 1);
235
236	/*
237	 * The vm->mutex must be reclaim safe (for use in the shrinker).
238	 * Do a dummy acquire now under fs_reclaim so that any allocation
239	 * attempt holding the lock is immediately reported by lockdep.
240	 */
241	mutex_init(&vm->mutex);
242	lockdep_set_subclass(&vm->mutex, subclass);
243	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
244
245	GEM_BUG_ON(!vm->total);
246	drm_mm_init(&vm->mm, 0, vm->total);
247	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
248
249	stash_init(&vm->free_pages);
250
251	INIT_LIST_HEAD(&vm->bound_list);
252}
253
254void clear_pages(struct i915_vma *vma)
255{
256	GEM_BUG_ON(!vma->pages);
257
258	if (vma->pages != vma->obj->mm.pages) {
259		sg_free_table(vma->pages);
260		kfree(vma->pages);
261	}
262	vma->pages = NULL;
263
264	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
265}
266
267static int __setup_page_dma(struct i915_address_space *vm,
268			    struct i915_page_dma *p,
269			    gfp_t gfp)
270{
271	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
272	if (unlikely(!p->page))
273		return -ENOMEM;
274
275	p->daddr = dma_map_page_attrs(vm->dma,
276				      p->page, 0, PAGE_SIZE,
277				      PCI_DMA_BIDIRECTIONAL,
278				      DMA_ATTR_SKIP_CPU_SYNC |
279				      DMA_ATTR_NO_WARN);
280	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
281		vm_free_page(vm, p->page);
282		return -ENOMEM;
283	}
284
285	return 0;
286}
287
288int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
289{
290	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
291}
292
293void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
294{
295	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
296	vm_free_page(vm, p->page);
297}
298
299void
300fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
301{
302	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
303}
304
305static void poison_scratch_page(struct page *page, unsigned long size)
306{
307	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
308		return;
309
310	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
311
312	do {
313		void *vaddr;
314
315		vaddr = kmap(page);
316		memset(vaddr, POISON_FREE, PAGE_SIZE);
317		kunmap(page);
318
319		page = pfn_to_page(page_to_pfn(page) + 1);
320		size -= PAGE_SIZE;
321	} while (size);
322}
323
324int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
325{
326	unsigned long size;
327
328	/*
329	 * In order to utilize 64K pages for an object with a size < 2M, we will
330	 * need to support a 64K scratch page, given that every 16th entry for a
331	 * page-table operating in 64K mode must point to a properly aligned 64K
332	 * region, including any PTEs which happen to point to scratch.
333	 *
334	 * This is only relevant for the 48b PPGTT where we support
335	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
336	 * scratch (read-only) between all vm, we create one 64k scratch page
337	 * for all.
338	 */
339	size = I915_GTT_PAGE_SIZE_4K;
340	if (i915_vm_is_4lvl(vm) &&
341	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
342		size = I915_GTT_PAGE_SIZE_64K;
343		gfp |= __GFP_NOWARN;
344	}
345	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
346
347	do {
348		unsigned int order = get_order(size);
349		struct page *page;
350		dma_addr_t addr;
351
352		page = alloc_pages(gfp, order);
353		if (unlikely(!page))
354			goto skip;
355
356		/*
357		 * Use a non-zero scratch page for debugging.
358		 *
359		 * We want a value that should be reasonably obvious
360		 * to spot in the error state, while also causing a GPU hang
361		 * if executed. We prefer using a clear page in production, so
362		 * should it ever be accidentally used, the effect should be
363		 * fairly benign.
364		 */
365		poison_scratch_page(page, size);
366
367		addr = dma_map_page_attrs(vm->dma,
368					  page, 0, size,
369					  PCI_DMA_BIDIRECTIONAL,
370					  DMA_ATTR_SKIP_CPU_SYNC |
371					  DMA_ATTR_NO_WARN);
372		if (unlikely(dma_mapping_error(vm->dma, addr)))
373			goto free_page;
374
375		if (unlikely(!IS_ALIGNED(addr, size)))
376			goto unmap_page;
377
378		vm->scratch[0].base.page = page;
379		vm->scratch[0].base.daddr = addr;
380		vm->scratch_order = order;
381		return 0;
382
383unmap_page:
384		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
385free_page:
386		__free_pages(page, order);
387skip:
388		if (size == I915_GTT_PAGE_SIZE_4K)
389			return -ENOMEM;
390
391		size = I915_GTT_PAGE_SIZE_4K;
392		gfp &= ~__GFP_NOWARN;
393	} while (1);
394}
395
396void cleanup_scratch_page(struct i915_address_space *vm)
397{
398	struct i915_page_dma *p = px_base(&vm->scratch[0]);
399	unsigned int order = vm->scratch_order;
400
401	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
402		       PCI_DMA_BIDIRECTIONAL);
403	__free_pages(p->page, order);
404}
405
406void free_scratch(struct i915_address_space *vm)
407{
408	int i;
409
410	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
411		return;
412
413	for (i = 1; i <= vm->top; i++) {
414		if (!px_dma(&vm->scratch[i]))
415			break;
416		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
417	}
418
419	cleanup_scratch_page(vm);
420}
421
422void gtt_write_workarounds(struct intel_gt *gt)
423{
424	struct drm_i915_private *i915 = gt->i915;
425	struct intel_uncore *uncore = gt->uncore;
426
427	/*
428	 * This function is for gtt related workarounds. This function is
429	 * called on driver load and after a GPU reset, so you can place
430	 * workarounds here even if they get overwritten by GPU reset.
431	 */
432	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
433	if (IS_BROADWELL(i915))
434		intel_uncore_write(uncore,
435				   GEN8_L3_LRA_1_GPGPU,
436				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
437	else if (IS_CHERRYVIEW(i915))
438		intel_uncore_write(uncore,
439				   GEN8_L3_LRA_1_GPGPU,
440				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
441	else if (IS_GEN9_LP(i915))
442		intel_uncore_write(uncore,
443				   GEN8_L3_LRA_1_GPGPU,
444				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
445	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
446		intel_uncore_write(uncore,
447				   GEN8_L3_LRA_1_GPGPU,
448				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
449
450	/*
451	 * To support 64K PTEs we need to first enable the use of the
452	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
453	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
454	 * shouldn't be needed after GEN10.
455	 *
456	 * 64K pages were first introduced from BDW+, although technically they
457	 * only *work* from gen9+. For pre-BDW we instead have the option for
458	 * 32K pages, but we don't currently have any support for it in our
459	 * driver.
460	 */
461	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
462	    INTEL_GEN(i915) <= 10)
463		intel_uncore_rmw(uncore,
464				 GEN8_GAMW_ECO_DEV_RW_IA,
465				 0,
466				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
467
468	if (IS_GEN_RANGE(i915, 8, 11)) {
469		bool can_use_gtt_cache = true;
470
471		/*
472		 * According to the BSpec if we use 2M/1G pages then we also
473		 * need to disable the GTT cache. At least on BDW we can see
474		 * visual corruption when using 2M pages, and not disabling the
475		 * GTT cache.
476		 */
477		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
478			can_use_gtt_cache = false;
479
480		/* WaGttCachingOffByDefault */
481		intel_uncore_write(uncore,
482				   HSW_GTT_CACHE_EN,
483				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
484		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
485				 intel_uncore_read(uncore,
486						   HSW_GTT_CACHE_EN) == 0);
487	}
488}
489
490static void tgl_setup_private_ppat(struct intel_uncore *uncore)
491{
492	/* TGL doesn't support LLC or AGE settings */
493	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
494	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
495	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
496	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
497	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
498	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
499	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
500	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
501}
502
503static void cnl_setup_private_ppat(struct intel_uncore *uncore)
504{
505	intel_uncore_write(uncore,
506			   GEN10_PAT_INDEX(0),
507			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
508	intel_uncore_write(uncore,
509			   GEN10_PAT_INDEX(1),
510			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
511	intel_uncore_write(uncore,
512			   GEN10_PAT_INDEX(2),
513			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
514	intel_uncore_write(uncore,
515			   GEN10_PAT_INDEX(3),
516			   GEN8_PPAT_UC);
517	intel_uncore_write(uncore,
518			   GEN10_PAT_INDEX(4),
519			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
520	intel_uncore_write(uncore,
521			   GEN10_PAT_INDEX(5),
522			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
523	intel_uncore_write(uncore,
524			   GEN10_PAT_INDEX(6),
525			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
526	intel_uncore_write(uncore,
527			   GEN10_PAT_INDEX(7),
528			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
529}
530
531/*
532 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
533 * bits. When using advanced contexts each context stores its own PAT, but
534 * writing this data shouldn't be harmful even in those cases.
535 */
536static void bdw_setup_private_ppat(struct intel_uncore *uncore)
537{
538	u64 pat;
539
540	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
541	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
542	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
543	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
544	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
545	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
546	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
547	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
548
549	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
550	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
551}
552
553static void chv_setup_private_ppat(struct intel_uncore *uncore)
554{
555	u64 pat;
556
557	/*
558	 * Map WB on BDW to snooped on CHV.
559	 *
560	 * Only the snoop bit has meaning for CHV, the rest is
561	 * ignored.
562	 *
563	 * The hardware will never snoop for certain types of accesses:
564	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
565	 * - PPGTT page tables
566	 * - some other special cycles
567	 *
568	 * As with BDW, we also need to consider the following for GT accesses:
569	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
570	 * so RTL will always use the value corresponding to
571	 * pat_sel = 000".
572	 * Which means we must set the snoop bit in PAT entry 0
573	 * in order to keep the global status page working.
574	 */
575
576	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
577	      GEN8_PPAT(1, 0) |
578	      GEN8_PPAT(2, 0) |
579	      GEN8_PPAT(3, 0) |
580	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
581	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
582	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
583	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
584
585	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
586	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
587}
588
589void setup_private_pat(struct intel_uncore *uncore)
590{
591	struct drm_i915_private *i915 = uncore->i915;
592
593	GEM_BUG_ON(INTEL_GEN(i915) < 8);
594
595	if (INTEL_GEN(i915) >= 12)
596		tgl_setup_private_ppat(uncore);
597	else if (INTEL_GEN(i915) >= 10)
598		cnl_setup_private_ppat(uncore);
599	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
600		chv_setup_private_ppat(uncore);
601	else
602		bdw_setup_private_ppat(uncore);
603}
604
605#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
606#include "selftests/mock_gtt.c"
607#endif