Loading...
1/*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17#include <dt-bindings/dma/at91.h>
18#include <linux/clk.h>
19#include <linux/dmaengine.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/interrupt.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/slab.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28#include <linux/of_dma.h>
29
30#include "at_hdmac_regs.h"
31#include "dmaengine.h"
32
33/*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43#define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45#define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51#define ATC_MAX_DSCR_TRIALS 10
52
53/*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57static unsigned int init_nr_desc_per_channel = 64;
58module_param(init_nr_desc_per_channel, uint, 0644);
59MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63/* prototypes */
64static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65static void atc_issue_pending(struct dma_chan *chan);
66
67
68/*----------------------------------------------------------------------*/
69
70static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72{
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83}
84
85static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86{
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89}
90
91static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92{
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95}
96
97/**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109{
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 memset(desc, 0, sizeof(struct at_desc));
117 INIT_LIST_HEAD(&desc->tx_list);
118 dma_async_tx_descriptor_init(&desc->txd, chan);
119 /* txd.flags will be overwritten in prep functions */
120 desc->txd.flags = DMA_CTRL_ACK;
121 desc->txd.tx_submit = atc_tx_submit;
122 desc->txd.phys = phys;
123 }
124
125 return desc;
126}
127
128/**
129 * atc_desc_get - get an unused descriptor from free_list
130 * @atchan: channel we want a new descriptor for
131 */
132static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133{
134 struct at_desc *desc, *_desc;
135 struct at_desc *ret = NULL;
136 unsigned long flags;
137 unsigned int i = 0;
138 LIST_HEAD(tmp_list);
139
140 spin_lock_irqsave(&atchan->lock, flags);
141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 i++;
143 if (async_tx_test_ack(&desc->txd)) {
144 list_del(&desc->desc_node);
145 ret = desc;
146 break;
147 }
148 dev_dbg(chan2dev(&atchan->chan_common),
149 "desc %p not ACKed\n", desc);
150 }
151 spin_unlock_irqrestore(&atchan->lock, flags);
152 dev_vdbg(chan2dev(&atchan->chan_common),
153 "scanned %u descriptors on freelist\n", i);
154
155 /* no more descriptor available in initial pool: create one more */
156 if (!ret) {
157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 if (ret) {
159 spin_lock_irqsave(&atchan->lock, flags);
160 atchan->descs_allocated++;
161 spin_unlock_irqrestore(&atchan->lock, flags);
162 } else {
163 dev_err(chan2dev(&atchan->chan_common),
164 "not enough descriptors available\n");
165 }
166 }
167
168 return ret;
169}
170
171/**
172 * atc_desc_put - move a descriptor, including any children, to the free list
173 * @atchan: channel we work on
174 * @desc: descriptor, at the head of a chain, to move to free list
175 */
176static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177{
178 if (desc) {
179 struct at_desc *child;
180 unsigned long flags;
181
182 spin_lock_irqsave(&atchan->lock, flags);
183 list_for_each_entry(child, &desc->tx_list, desc_node)
184 dev_vdbg(chan2dev(&atchan->chan_common),
185 "moving child desc %p to freelist\n",
186 child);
187 list_splice_init(&desc->tx_list, &atchan->free_list);
188 dev_vdbg(chan2dev(&atchan->chan_common),
189 "moving desc %p to freelist\n", desc);
190 list_add(&desc->desc_node, &atchan->free_list);
191 spin_unlock_irqrestore(&atchan->lock, flags);
192 }
193}
194
195/**
196 * atc_desc_chain - build chain adding a descriptor
197 * @first: address of first descriptor of the chain
198 * @prev: address of previous descriptor of the chain
199 * @desc: descriptor to queue
200 *
201 * Called from prep_* functions
202 */
203static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 struct at_desc *desc)
205{
206 if (!(*first)) {
207 *first = desc;
208 } else {
209 /* inform the HW lli about chaining */
210 (*prev)->lli.dscr = desc->txd.phys;
211 /* insert the link descriptor to the LD ring */
212 list_add_tail(&desc->desc_node,
213 &(*first)->tx_list);
214 }
215 *prev = desc;
216}
217
218/**
219 * atc_dostart - starts the DMA engine for real
220 * @atchan: the channel we want to start
221 * @first: first descriptor in the list we want to begin with
222 *
223 * Called with atchan->lock held and bh disabled
224 */
225static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226{
227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
228
229 /* ASSERT: channel is idle */
230 if (atc_chan_is_enabled(atchan)) {
231 dev_err(chan2dev(&atchan->chan_common),
232 "BUG: Attempted to start non-idle channel\n");
233 dev_err(chan2dev(&atchan->chan_common),
234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 channel_readl(atchan, SADDR),
236 channel_readl(atchan, DADDR),
237 channel_readl(atchan, CTRLA),
238 channel_readl(atchan, CTRLB),
239 channel_readl(atchan, DSCR));
240
241 /* The tasklet will hopefully advance the queue... */
242 return;
243 }
244
245 vdbg_dump_regs(atchan);
246
247 channel_writel(atchan, SADDR, 0);
248 channel_writel(atchan, DADDR, 0);
249 channel_writel(atchan, CTRLA, 0);
250 channel_writel(atchan, CTRLB, 0);
251 channel_writel(atchan, DSCR, first->txd.phys);
252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 ATC_SPIP_BOUNDARY(first->boundary));
254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 ATC_DPIP_BOUNDARY(first->boundary));
256 dma_writel(atdma, CHER, atchan->mask);
257
258 vdbg_dump_regs(atchan);
259}
260
261/*
262 * atc_get_desc_by_cookie - get the descriptor of a cookie
263 * @atchan: the DMA channel
264 * @cookie: the cookie to get the descriptor for
265 */
266static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 dma_cookie_t cookie)
268{
269 struct at_desc *desc, *_desc;
270
271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 if (desc->txd.cookie == cookie)
273 return desc;
274 }
275
276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
279 }
280
281 return NULL;
282}
283
284/**
285 * atc_calc_bytes_left - calculates the number of bytes left according to the
286 * value read from CTRLA.
287 *
288 * @current_len: the number of bytes left before reading CTRLA
289 * @ctrla: the value of CTRLA
290 */
291static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292{
293 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295
296 /*
297 * According to the datasheet, when reading the Control A Register
298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 * number of transfers completed on the Source Interface.
300 * So btsize is always a number of source width transfers.
301 */
302 return current_len - (btsize << src_width);
303}
304
305/**
306 * atc_get_bytes_left - get the number of bytes residue for a cookie
307 * @chan: DMA channel
308 * @cookie: transaction identifier to check status of
309 */
310static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311{
312 struct at_dma_chan *atchan = to_at_dma_chan(chan);
313 struct at_desc *desc_first = atc_first_active(atchan);
314 struct at_desc *desc;
315 int ret;
316 u32 ctrla, dscr, trials;
317
318 /*
319 * If the cookie doesn't match to the currently running transfer then
320 * we can return the total length of the associated DMA transfer,
321 * because it is still queued.
322 */
323 desc = atc_get_desc_by_cookie(atchan, cookie);
324 if (desc == NULL)
325 return -EINVAL;
326 else if (desc != desc_first)
327 return desc->total_len;
328
329 /* cookie matches to the currently running transfer */
330 ret = desc_first->total_len;
331
332 if (desc_first->lli.dscr) {
333 /* hardware linked list transfer */
334
335 /*
336 * Calculate the residue by removing the length of the child
337 * descriptors already transferred from the total length.
338 * To get the current child descriptor we can use the value of
339 * the channel's DSCR register and compare it against the value
340 * of the hardware linked list structure of each child
341 * descriptor.
342 *
343 * The CTRLA register provides us with the amount of data
344 * already read from the source for the current child
345 * descriptor. So we can compute a more accurate residue by also
346 * removing the number of bytes corresponding to this amount of
347 * data.
348 *
349 * However, the DSCR and CTRLA registers cannot be read both
350 * atomically. Hence a race condition may occur: the first read
351 * register may refer to one child descriptor whereas the second
352 * read may refer to a later child descriptor in the list
353 * because of the DMA transfer progression inbetween the two
354 * reads.
355 *
356 * One solution could have been to pause the DMA transfer, read
357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 * this approach presents some drawbacks:
359 * - If the DMA transfer is paused, RX overruns or TX underruns
360 * are more likey to occur depending on the system latency.
361 * Taking the USART driver as an example, it uses a cyclic DMA
362 * transfer to read data from the Receive Holding Register
363 * (RHR) to avoid RX overruns since the RHR is not protected
364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 * to compute the residue would break the USART driver design.
366 * - The atc_pause() function masks interrupts but we'd rather
367 * avoid to do so for system latency purpose.
368 *
369 * Then we'd rather use another solution: the DSCR is read a
370 * first time, the CTRLA is read in turn, next the DSCR is read
371 * a second time. If the two consecutive read values of the DSCR
372 * are the same then we assume both refers to the very same
373 * child descriptor as well as the CTRLA value read inbetween
374 * does. For cyclic tranfers, the assumption is that a full loop
375 * is "not so fast".
376 * If the two DSCR values are different, we read again the CTRLA
377 * then the DSCR till two consecutive read values from DSCR are
378 * equal or till the maxium trials is reach.
379 * This algorithm is very unlikely not to find a stable value for
380 * DSCR.
381 */
382
383 dscr = channel_readl(atchan, DSCR);
384 rmb(); /* ensure DSCR is read before CTRLA */
385 ctrla = channel_readl(atchan, CTRLA);
386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 u32 new_dscr;
388
389 rmb(); /* ensure DSCR is read after CTRLA */
390 new_dscr = channel_readl(atchan, DSCR);
391
392 /*
393 * If the DSCR register value has not changed inside the
394 * DMA controller since the previous read, we assume
395 * that both the dscr and ctrla values refers to the
396 * very same descriptor.
397 */
398 if (likely(new_dscr == dscr))
399 break;
400
401 /*
402 * DSCR has changed inside the DMA controller, so the
403 * previouly read value of CTRLA may refer to an already
404 * processed descriptor hence could be outdated.
405 * We need to update ctrla to match the current
406 * descriptor.
407 */
408 dscr = new_dscr;
409 rmb(); /* ensure DSCR is read before CTRLA */
410 ctrla = channel_readl(atchan, CTRLA);
411 }
412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 return -ETIMEDOUT;
414
415 /* for the first descriptor we can be more accurate */
416 if (desc_first->lli.dscr == dscr)
417 return atc_calc_bytes_left(ret, ctrla);
418
419 ret -= desc_first->len;
420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 if (desc->lli.dscr == dscr)
422 break;
423
424 ret -= desc->len;
425 }
426
427 /*
428 * For the current descriptor in the chain we can calculate
429 * the remaining bytes using the channel's register.
430 */
431 ret = atc_calc_bytes_left(ret, ctrla);
432 } else {
433 /* single transfer */
434 ctrla = channel_readl(atchan, CTRLA);
435 ret = atc_calc_bytes_left(ret, ctrla);
436 }
437
438 return ret;
439}
440
441/**
442 * atc_chain_complete - finish work for one transaction chain
443 * @atchan: channel we work on
444 * @desc: descriptor at the head of the chain we want do complete
445 *
446 * Called with atchan->lock held and bh disabled */
447static void
448atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449{
450 struct dma_async_tx_descriptor *txd = &desc->txd;
451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
452
453 dev_vdbg(chan2dev(&atchan->chan_common),
454 "descriptor %u complete\n", txd->cookie);
455
456 /* mark the descriptor as complete for non cyclic cases only */
457 if (!atc_chan_is_cyclic(atchan))
458 dma_cookie_complete(txd);
459
460 /* If the transfer was a memset, free our temporary buffer */
461 if (desc->memset_buffer) {
462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 desc->memset_paddr);
464 desc->memset_buffer = false;
465 }
466
467 /* move children to free_list */
468 list_splice_init(&desc->tx_list, &atchan->free_list);
469 /* move myself to free_list */
470 list_move(&desc->desc_node, &atchan->free_list);
471
472 dma_descriptor_unmap(txd);
473 /* for cyclic transfers,
474 * no need to replay callback function while stopping */
475 if (!atc_chan_is_cyclic(atchan)) {
476 dma_async_tx_callback callback = txd->callback;
477 void *param = txd->callback_param;
478
479 /*
480 * The API requires that no submissions are done from a
481 * callback, so we don't need to drop the lock here
482 */
483 if (callback)
484 callback(param);
485 }
486
487 dma_run_dependencies(txd);
488}
489
490/**
491 * atc_complete_all - finish work for all transactions
492 * @atchan: channel to complete transactions for
493 *
494 * Eventually submit queued descriptors if any
495 *
496 * Assume channel is idle while calling this function
497 * Called with atchan->lock held and bh disabled
498 */
499static void atc_complete_all(struct at_dma_chan *atchan)
500{
501 struct at_desc *desc, *_desc;
502 LIST_HEAD(list);
503
504 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505
506 /*
507 * Submit queued descriptors ASAP, i.e. before we go through
508 * the completed ones.
509 */
510 if (!list_empty(&atchan->queue))
511 atc_dostart(atchan, atc_first_queued(atchan));
512 /* empty active_list now it is completed */
513 list_splice_init(&atchan->active_list, &list);
514 /* empty queue list by moving descriptors (if any) to active_list */
515 list_splice_init(&atchan->queue, &atchan->active_list);
516
517 list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 atc_chain_complete(atchan, desc);
519}
520
521/**
522 * atc_advance_work - at the end of a transaction, move forward
523 * @atchan: channel where the transaction ended
524 *
525 * Called with atchan->lock held and bh disabled
526 */
527static void atc_advance_work(struct at_dma_chan *atchan)
528{
529 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530
531 if (atc_chan_is_enabled(atchan))
532 return;
533
534 if (list_empty(&atchan->active_list) ||
535 list_is_singular(&atchan->active_list)) {
536 atc_complete_all(atchan);
537 } else {
538 atc_chain_complete(atchan, atc_first_active(atchan));
539 /* advance work */
540 atc_dostart(atchan, atc_first_active(atchan));
541 }
542}
543
544
545/**
546 * atc_handle_error - handle errors reported by DMA controller
547 * @atchan: channel where error occurs
548 *
549 * Called with atchan->lock held and bh disabled
550 */
551static void atc_handle_error(struct at_dma_chan *atchan)
552{
553 struct at_desc *bad_desc;
554 struct at_desc *child;
555
556 /*
557 * The descriptor currently at the head of the active list is
558 * broked. Since we don't have any way to report errors, we'll
559 * just have to scream loudly and try to carry on.
560 */
561 bad_desc = atc_first_active(atchan);
562 list_del_init(&bad_desc->desc_node);
563
564 /* As we are stopped, take advantage to push queued descriptors
565 * in active_list */
566 list_splice_init(&atchan->queue, atchan->active_list.prev);
567
568 /* Try to restart the controller */
569 if (!list_empty(&atchan->active_list))
570 atc_dostart(atchan, atc_first_active(atchan));
571
572 /*
573 * KERN_CRITICAL may seem harsh, but since this only happens
574 * when someone submits a bad physical address in a
575 * descriptor, we should consider ourselves lucky that the
576 * controller flagged an error instead of scribbling over
577 * random memory locations.
578 */
579 dev_crit(chan2dev(&atchan->chan_common),
580 "Bad descriptor submitted for DMA!\n");
581 dev_crit(chan2dev(&atchan->chan_common),
582 " cookie: %d\n", bad_desc->txd.cookie);
583 atc_dump_lli(atchan, &bad_desc->lli);
584 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 atc_dump_lli(atchan, &child->lli);
586
587 /* Pretend the descriptor completed successfully */
588 atc_chain_complete(atchan, bad_desc);
589}
590
591/**
592 * atc_handle_cyclic - at the end of a period, run callback function
593 * @atchan: channel used for cyclic operations
594 *
595 * Called with atchan->lock held and bh disabled
596 */
597static void atc_handle_cyclic(struct at_dma_chan *atchan)
598{
599 struct at_desc *first = atc_first_active(atchan);
600 struct dma_async_tx_descriptor *txd = &first->txd;
601 dma_async_tx_callback callback = txd->callback;
602 void *param = txd->callback_param;
603
604 dev_vdbg(chan2dev(&atchan->chan_common),
605 "new cyclic period llp 0x%08x\n",
606 channel_readl(atchan, DSCR));
607
608 if (callback)
609 callback(param);
610}
611
612/*-- IRQ & Tasklet ---------------------------------------------------*/
613
614static void atc_tasklet(unsigned long data)
615{
616 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 unsigned long flags;
618
619 spin_lock_irqsave(&atchan->lock, flags);
620 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 atc_handle_error(atchan);
622 else if (atc_chan_is_cyclic(atchan))
623 atc_handle_cyclic(atchan);
624 else
625 atc_advance_work(atchan);
626
627 spin_unlock_irqrestore(&atchan->lock, flags);
628}
629
630static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631{
632 struct at_dma *atdma = (struct at_dma *)dev_id;
633 struct at_dma_chan *atchan;
634 int i;
635 u32 status, pending, imr;
636 int ret = IRQ_NONE;
637
638 do {
639 imr = dma_readl(atdma, EBCIMR);
640 status = dma_readl(atdma, EBCISR);
641 pending = status & imr;
642
643 if (!pending)
644 break;
645
646 dev_vdbg(atdma->dma_common.dev,
647 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 status, imr, pending);
649
650 for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 atchan = &atdma->chan[i];
652 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 if (pending & AT_DMA_ERR(i)) {
654 /* Disable channel on AHB error */
655 dma_writel(atdma, CHDR,
656 AT_DMA_RES(i) | atchan->mask);
657 /* Give information to tasklet */
658 set_bit(ATC_IS_ERROR, &atchan->status);
659 }
660 tasklet_schedule(&atchan->tasklet);
661 ret = IRQ_HANDLED;
662 }
663 }
664
665 } while (pending);
666
667 return ret;
668}
669
670
671/*-- DMA Engine API --------------------------------------------------*/
672
673/**
674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675 * @desc: descriptor at the head of the transaction chain
676 *
677 * Queue chain if DMA engine is working already
678 *
679 * Cookie increment and adding to active_list or queue must be atomic
680 */
681static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682{
683 struct at_desc *desc = txd_to_at_desc(tx);
684 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
685 dma_cookie_t cookie;
686 unsigned long flags;
687
688 spin_lock_irqsave(&atchan->lock, flags);
689 cookie = dma_cookie_assign(tx);
690
691 if (list_empty(&atchan->active_list)) {
692 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 desc->txd.cookie);
694 atc_dostart(atchan, desc);
695 list_add_tail(&desc->desc_node, &atchan->active_list);
696 } else {
697 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 desc->txd.cookie);
699 list_add_tail(&desc->desc_node, &atchan->queue);
700 }
701
702 spin_unlock_irqrestore(&atchan->lock, flags);
703
704 return cookie;
705}
706
707/**
708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709 * @chan: the channel to prepare operation on
710 * @xt: Interleaved transfer template
711 * @flags: tx descriptor status flags
712 */
713static struct dma_async_tx_descriptor *
714atc_prep_dma_interleaved(struct dma_chan *chan,
715 struct dma_interleaved_template *xt,
716 unsigned long flags)
717{
718 struct at_dma_chan *atchan = to_at_dma_chan(chan);
719 struct data_chunk *first = xt->sgl;
720 struct at_desc *desc = NULL;
721 size_t xfer_count;
722 unsigned int dwidth;
723 u32 ctrla;
724 u32 ctrlb;
725 size_t len = 0;
726 int i;
727
728 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 return NULL;
730
731 dev_info(chan2dev(chan),
732 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
733 __func__, &xt->src_start, &xt->dst_start, xt->numf,
734 xt->frame_size, flags);
735
736 /*
737 * The controller can only "skip" X bytes every Y bytes, so we
738 * need to make sure we are given a template that fit that
739 * description, ie a template with chunks that always have the
740 * same size, with the same ICGs.
741 */
742 for (i = 0; i < xt->frame_size; i++) {
743 struct data_chunk *chunk = xt->sgl + i;
744
745 if ((chunk->size != xt->sgl->size) ||
746 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748 dev_err(chan2dev(chan),
749 "%s: the controller can transfer only identical chunks\n",
750 __func__);
751 return NULL;
752 }
753
754 len += chunk->size;
755 }
756
757 dwidth = atc_get_xfer_width(xt->src_start,
758 xt->dst_start, len);
759
760 xfer_count = len >> dwidth;
761 if (xfer_count > ATC_BTSIZE_MAX) {
762 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763 return NULL;
764 }
765
766 ctrla = ATC_SRC_WIDTH(dwidth) |
767 ATC_DST_WIDTH(dwidth);
768
769 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
770 | ATC_SRC_ADDR_MODE_INCR
771 | ATC_DST_ADDR_MODE_INCR
772 | ATC_SRC_PIP
773 | ATC_DST_PIP
774 | ATC_FC_MEM2MEM;
775
776 /* create the transfer */
777 desc = atc_desc_get(atchan);
778 if (!desc) {
779 dev_err(chan2dev(chan),
780 "%s: couldn't allocate our descriptor\n", __func__);
781 return NULL;
782 }
783
784 desc->lli.saddr = xt->src_start;
785 desc->lli.daddr = xt->dst_start;
786 desc->lli.ctrla = ctrla | xfer_count;
787 desc->lli.ctrlb = ctrlb;
788
789 desc->boundary = first->size >> dwidth;
790 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792
793 desc->txd.cookie = -EBUSY;
794 desc->total_len = desc->len = len;
795
796 /* set end-of-link to the last link descriptor of list*/
797 set_desc_eol(desc);
798
799 desc->txd.flags = flags; /* client is in control of this ack */
800
801 return &desc->txd;
802}
803
804/**
805 * atc_prep_dma_memcpy - prepare a memcpy operation
806 * @chan: the channel to prepare operation on
807 * @dest: operation virtual destination address
808 * @src: operation virtual source address
809 * @len: operation length
810 * @flags: tx descriptor status flags
811 */
812static struct dma_async_tx_descriptor *
813atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814 size_t len, unsigned long flags)
815{
816 struct at_dma_chan *atchan = to_at_dma_chan(chan);
817 struct at_desc *desc = NULL;
818 struct at_desc *first = NULL;
819 struct at_desc *prev = NULL;
820 size_t xfer_count;
821 size_t offset;
822 unsigned int src_width;
823 unsigned int dst_width;
824 u32 ctrla;
825 u32 ctrlb;
826
827 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
828 &dest, &src, len, flags);
829
830 if (unlikely(!len)) {
831 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832 return NULL;
833 }
834
835 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
836 | ATC_SRC_ADDR_MODE_INCR
837 | ATC_DST_ADDR_MODE_INCR
838 | ATC_FC_MEM2MEM;
839
840 /*
841 * We can be a lot more clever here, but this should take care
842 * of the most common optimization.
843 */
844 src_width = dst_width = atc_get_xfer_width(src, dest, len);
845
846 ctrla = ATC_SRC_WIDTH(src_width) |
847 ATC_DST_WIDTH(dst_width);
848
849 for (offset = 0; offset < len; offset += xfer_count << src_width) {
850 xfer_count = min_t(size_t, (len - offset) >> src_width,
851 ATC_BTSIZE_MAX);
852
853 desc = atc_desc_get(atchan);
854 if (!desc)
855 goto err_desc_get;
856
857 desc->lli.saddr = src + offset;
858 desc->lli.daddr = dest + offset;
859 desc->lli.ctrla = ctrla | xfer_count;
860 desc->lli.ctrlb = ctrlb;
861
862 desc->txd.cookie = 0;
863 desc->len = xfer_count << src_width;
864
865 atc_desc_chain(&first, &prev, desc);
866 }
867
868 /* First descriptor of the chain embedds additional information */
869 first->txd.cookie = -EBUSY;
870 first->total_len = len;
871
872 /* set end-of-link to the last link descriptor of list*/
873 set_desc_eol(desc);
874
875 first->txd.flags = flags; /* client is in control of this ack */
876
877 return &first->txd;
878
879err_desc_get:
880 atc_desc_put(atchan, first);
881 return NULL;
882}
883
884static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
885 dma_addr_t psrc,
886 dma_addr_t pdst,
887 size_t len)
888{
889 struct at_dma_chan *atchan = to_at_dma_chan(chan);
890 struct at_desc *desc;
891 size_t xfer_count;
892
893 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
894 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
895 ATC_SRC_ADDR_MODE_FIXED |
896 ATC_DST_ADDR_MODE_INCR |
897 ATC_FC_MEM2MEM;
898
899 xfer_count = len >> 2;
900 if (xfer_count > ATC_BTSIZE_MAX) {
901 dev_err(chan2dev(chan), "%s: buffer is too big\n",
902 __func__);
903 return NULL;
904 }
905
906 desc = atc_desc_get(atchan);
907 if (!desc) {
908 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
909 __func__);
910 return NULL;
911 }
912
913 desc->lli.saddr = psrc;
914 desc->lli.daddr = pdst;
915 desc->lli.ctrla = ctrla | xfer_count;
916 desc->lli.ctrlb = ctrlb;
917
918 desc->txd.cookie = 0;
919 desc->len = len;
920
921 return desc;
922}
923
924/**
925 * atc_prep_dma_memset - prepare a memcpy operation
926 * @chan: the channel to prepare operation on
927 * @dest: operation virtual destination address
928 * @value: value to set memory buffer to
929 * @len: operation length
930 * @flags: tx descriptor status flags
931 */
932static struct dma_async_tx_descriptor *
933atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
934 size_t len, unsigned long flags)
935{
936 struct at_dma *atdma = to_at_dma(chan->device);
937 struct at_desc *desc;
938 void __iomem *vaddr;
939 dma_addr_t paddr;
940
941 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
942 &dest, value, len, flags);
943
944 if (unlikely(!len)) {
945 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
946 return NULL;
947 }
948
949 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
950 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
951 __func__);
952 return NULL;
953 }
954
955 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
956 if (!vaddr) {
957 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
958 __func__);
959 return NULL;
960 }
961 *(u32*)vaddr = value;
962
963 desc = atc_create_memset_desc(chan, paddr, dest, len);
964 if (!desc) {
965 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
966 __func__);
967 goto err_free_buffer;
968 }
969
970 desc->memset_paddr = paddr;
971 desc->memset_vaddr = vaddr;
972 desc->memset_buffer = true;
973
974 desc->txd.cookie = -EBUSY;
975 desc->total_len = len;
976
977 /* set end-of-link on the descriptor */
978 set_desc_eol(desc);
979
980 desc->txd.flags = flags;
981
982 return &desc->txd;
983
984err_free_buffer:
985 dma_pool_free(atdma->memset_pool, vaddr, paddr);
986 return NULL;
987}
988
989static struct dma_async_tx_descriptor *
990atc_prep_dma_memset_sg(struct dma_chan *chan,
991 struct scatterlist *sgl,
992 unsigned int sg_len, int value,
993 unsigned long flags)
994{
995 struct at_dma_chan *atchan = to_at_dma_chan(chan);
996 struct at_dma *atdma = to_at_dma(chan->device);
997 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
998 struct scatterlist *sg;
999 void __iomem *vaddr;
1000 dma_addr_t paddr;
1001 size_t total_len = 0;
1002 int i;
1003
1004 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1005 value, sg_len, flags);
1006
1007 if (unlikely(!sgl || !sg_len)) {
1008 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1009 __func__);
1010 return NULL;
1011 }
1012
1013 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1014 if (!vaddr) {
1015 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1016 __func__);
1017 return NULL;
1018 }
1019 *(u32*)vaddr = value;
1020
1021 for_each_sg(sgl, sg, sg_len, i) {
1022 dma_addr_t dest = sg_dma_address(sg);
1023 size_t len = sg_dma_len(sg);
1024
1025 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1026 __func__, &dest, len);
1027
1028 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1029 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1030 __func__);
1031 goto err_put_desc;
1032 }
1033
1034 desc = atc_create_memset_desc(chan, paddr, dest, len);
1035 if (!desc)
1036 goto err_put_desc;
1037
1038 atc_desc_chain(&first, &prev, desc);
1039
1040 total_len += len;
1041 }
1042
1043 /*
1044 * Only set the buffer pointers on the last descriptor to
1045 * avoid free'ing while we have our transfer still going
1046 */
1047 desc->memset_paddr = paddr;
1048 desc->memset_vaddr = vaddr;
1049 desc->memset_buffer = true;
1050
1051 first->txd.cookie = -EBUSY;
1052 first->total_len = total_len;
1053
1054 /* set end-of-link on the descriptor */
1055 set_desc_eol(desc);
1056
1057 first->txd.flags = flags;
1058
1059 return &first->txd;
1060
1061err_put_desc:
1062 atc_desc_put(atchan, first);
1063 return NULL;
1064}
1065
1066/**
1067 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1068 * @chan: DMA channel
1069 * @sgl: scatterlist to transfer to/from
1070 * @sg_len: number of entries in @scatterlist
1071 * @direction: DMA direction
1072 * @flags: tx descriptor status flags
1073 * @context: transaction context (ignored)
1074 */
1075static struct dma_async_tx_descriptor *
1076atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1077 unsigned int sg_len, enum dma_transfer_direction direction,
1078 unsigned long flags, void *context)
1079{
1080 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1081 struct at_dma_slave *atslave = chan->private;
1082 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1083 struct at_desc *first = NULL;
1084 struct at_desc *prev = NULL;
1085 u32 ctrla;
1086 u32 ctrlb;
1087 dma_addr_t reg;
1088 unsigned int reg_width;
1089 unsigned int mem_width;
1090 unsigned int i;
1091 struct scatterlist *sg;
1092 size_t total_len = 0;
1093
1094 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1095 sg_len,
1096 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1097 flags);
1098
1099 if (unlikely(!atslave || !sg_len)) {
1100 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1101 return NULL;
1102 }
1103
1104 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1105 | ATC_DCSIZE(sconfig->dst_maxburst);
1106 ctrlb = ATC_IEN;
1107
1108 switch (direction) {
1109 case DMA_MEM_TO_DEV:
1110 reg_width = convert_buswidth(sconfig->dst_addr_width);
1111 ctrla |= ATC_DST_WIDTH(reg_width);
1112 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1113 | ATC_SRC_ADDR_MODE_INCR
1114 | ATC_FC_MEM2PER
1115 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1116 reg = sconfig->dst_addr;
1117 for_each_sg(sgl, sg, sg_len, i) {
1118 struct at_desc *desc;
1119 u32 len;
1120 u32 mem;
1121
1122 desc = atc_desc_get(atchan);
1123 if (!desc)
1124 goto err_desc_get;
1125
1126 mem = sg_dma_address(sg);
1127 len = sg_dma_len(sg);
1128 if (unlikely(!len)) {
1129 dev_dbg(chan2dev(chan),
1130 "prep_slave_sg: sg(%d) data length is zero\n", i);
1131 goto err;
1132 }
1133 mem_width = 2;
1134 if (unlikely(mem & 3 || len & 3))
1135 mem_width = 0;
1136
1137 desc->lli.saddr = mem;
1138 desc->lli.daddr = reg;
1139 desc->lli.ctrla = ctrla
1140 | ATC_SRC_WIDTH(mem_width)
1141 | len >> mem_width;
1142 desc->lli.ctrlb = ctrlb;
1143 desc->len = len;
1144
1145 atc_desc_chain(&first, &prev, desc);
1146 total_len += len;
1147 }
1148 break;
1149 case DMA_DEV_TO_MEM:
1150 reg_width = convert_buswidth(sconfig->src_addr_width);
1151 ctrla |= ATC_SRC_WIDTH(reg_width);
1152 ctrlb |= ATC_DST_ADDR_MODE_INCR
1153 | ATC_SRC_ADDR_MODE_FIXED
1154 | ATC_FC_PER2MEM
1155 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1156
1157 reg = sconfig->src_addr;
1158 for_each_sg(sgl, sg, sg_len, i) {
1159 struct at_desc *desc;
1160 u32 len;
1161 u32 mem;
1162
1163 desc = atc_desc_get(atchan);
1164 if (!desc)
1165 goto err_desc_get;
1166
1167 mem = sg_dma_address(sg);
1168 len = sg_dma_len(sg);
1169 if (unlikely(!len)) {
1170 dev_dbg(chan2dev(chan),
1171 "prep_slave_sg: sg(%d) data length is zero\n", i);
1172 goto err;
1173 }
1174 mem_width = 2;
1175 if (unlikely(mem & 3 || len & 3))
1176 mem_width = 0;
1177
1178 desc->lli.saddr = reg;
1179 desc->lli.daddr = mem;
1180 desc->lli.ctrla = ctrla
1181 | ATC_DST_WIDTH(mem_width)
1182 | len >> reg_width;
1183 desc->lli.ctrlb = ctrlb;
1184 desc->len = len;
1185
1186 atc_desc_chain(&first, &prev, desc);
1187 total_len += len;
1188 }
1189 break;
1190 default:
1191 return NULL;
1192 }
1193
1194 /* set end-of-link to the last link descriptor of list*/
1195 set_desc_eol(prev);
1196
1197 /* First descriptor of the chain embedds additional information */
1198 first->txd.cookie = -EBUSY;
1199 first->total_len = total_len;
1200
1201 /* first link descriptor of list is responsible of flags */
1202 first->txd.flags = flags; /* client is in control of this ack */
1203
1204 return &first->txd;
1205
1206err_desc_get:
1207 dev_err(chan2dev(chan), "not enough descriptors available\n");
1208err:
1209 atc_desc_put(atchan, first);
1210 return NULL;
1211}
1212
1213/**
1214 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1215 * @chan: the channel to prepare operation on
1216 * @dst_sg: destination scatterlist
1217 * @dst_nents: number of destination scatterlist entries
1218 * @src_sg: source scatterlist
1219 * @src_nents: number of source scatterlist entries
1220 * @flags: tx descriptor status flags
1221 */
1222static struct dma_async_tx_descriptor *
1223atc_prep_dma_sg(struct dma_chan *chan,
1224 struct scatterlist *dst_sg, unsigned int dst_nents,
1225 struct scatterlist *src_sg, unsigned int src_nents,
1226 unsigned long flags)
1227{
1228 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1229 struct at_desc *desc = NULL;
1230 struct at_desc *first = NULL;
1231 struct at_desc *prev = NULL;
1232 unsigned int src_width;
1233 unsigned int dst_width;
1234 size_t xfer_count;
1235 u32 ctrla;
1236 u32 ctrlb;
1237 size_t dst_len = 0, src_len = 0;
1238 dma_addr_t dst = 0, src = 0;
1239 size_t len = 0, total_len = 0;
1240
1241 if (unlikely(dst_nents == 0 || src_nents == 0))
1242 return NULL;
1243
1244 if (unlikely(dst_sg == NULL || src_sg == NULL))
1245 return NULL;
1246
1247 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1248 | ATC_SRC_ADDR_MODE_INCR
1249 | ATC_DST_ADDR_MODE_INCR
1250 | ATC_FC_MEM2MEM;
1251
1252 /*
1253 * loop until there is either no more source or no more destination
1254 * scatterlist entry
1255 */
1256 while (true) {
1257
1258 /* prepare the next transfer */
1259 if (dst_len == 0) {
1260
1261 /* no more destination scatterlist entries */
1262 if (!dst_sg || !dst_nents)
1263 break;
1264
1265 dst = sg_dma_address(dst_sg);
1266 dst_len = sg_dma_len(dst_sg);
1267
1268 dst_sg = sg_next(dst_sg);
1269 dst_nents--;
1270 }
1271
1272 if (src_len == 0) {
1273
1274 /* no more source scatterlist entries */
1275 if (!src_sg || !src_nents)
1276 break;
1277
1278 src = sg_dma_address(src_sg);
1279 src_len = sg_dma_len(src_sg);
1280
1281 src_sg = sg_next(src_sg);
1282 src_nents--;
1283 }
1284
1285 len = min_t(size_t, src_len, dst_len);
1286 if (len == 0)
1287 continue;
1288
1289 /* take care for the alignment */
1290 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1291
1292 ctrla = ATC_SRC_WIDTH(src_width) |
1293 ATC_DST_WIDTH(dst_width);
1294
1295 /*
1296 * The number of transfers to set up refer to the source width
1297 * that depends on the alignment.
1298 */
1299 xfer_count = len >> src_width;
1300 if (xfer_count > ATC_BTSIZE_MAX) {
1301 xfer_count = ATC_BTSIZE_MAX;
1302 len = ATC_BTSIZE_MAX << src_width;
1303 }
1304
1305 /* create the transfer */
1306 desc = atc_desc_get(atchan);
1307 if (!desc)
1308 goto err_desc_get;
1309
1310 desc->lli.saddr = src;
1311 desc->lli.daddr = dst;
1312 desc->lli.ctrla = ctrla | xfer_count;
1313 desc->lli.ctrlb = ctrlb;
1314
1315 desc->txd.cookie = 0;
1316 desc->len = len;
1317
1318 atc_desc_chain(&first, &prev, desc);
1319
1320 /* update the lengths and addresses for the next loop cycle */
1321 dst_len -= len;
1322 src_len -= len;
1323 dst += len;
1324 src += len;
1325
1326 total_len += len;
1327 }
1328
1329 /* First descriptor of the chain embedds additional information */
1330 first->txd.cookie = -EBUSY;
1331 first->total_len = total_len;
1332
1333 /* set end-of-link to the last link descriptor of list*/
1334 set_desc_eol(desc);
1335
1336 first->txd.flags = flags; /* client is in control of this ack */
1337
1338 return &first->txd;
1339
1340err_desc_get:
1341 atc_desc_put(atchan, first);
1342 return NULL;
1343}
1344
1345/**
1346 * atc_dma_cyclic_check_values
1347 * Check for too big/unaligned periods and unaligned DMA buffer
1348 */
1349static int
1350atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1351 size_t period_len)
1352{
1353 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1354 goto err_out;
1355 if (unlikely(period_len & ((1 << reg_width) - 1)))
1356 goto err_out;
1357 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1358 goto err_out;
1359
1360 return 0;
1361
1362err_out:
1363 return -EINVAL;
1364}
1365
1366/**
1367 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1368 */
1369static int
1370atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1371 unsigned int period_index, dma_addr_t buf_addr,
1372 unsigned int reg_width, size_t period_len,
1373 enum dma_transfer_direction direction)
1374{
1375 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1376 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1377 u32 ctrla;
1378
1379 /* prepare common CRTLA value */
1380 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1381 | ATC_DCSIZE(sconfig->dst_maxburst)
1382 | ATC_DST_WIDTH(reg_width)
1383 | ATC_SRC_WIDTH(reg_width)
1384 | period_len >> reg_width;
1385
1386 switch (direction) {
1387 case DMA_MEM_TO_DEV:
1388 desc->lli.saddr = buf_addr + (period_len * period_index);
1389 desc->lli.daddr = sconfig->dst_addr;
1390 desc->lli.ctrla = ctrla;
1391 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1392 | ATC_SRC_ADDR_MODE_INCR
1393 | ATC_FC_MEM2PER
1394 | ATC_SIF(atchan->mem_if)
1395 | ATC_DIF(atchan->per_if);
1396 desc->len = period_len;
1397 break;
1398
1399 case DMA_DEV_TO_MEM:
1400 desc->lli.saddr = sconfig->src_addr;
1401 desc->lli.daddr = buf_addr + (period_len * period_index);
1402 desc->lli.ctrla = ctrla;
1403 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1404 | ATC_SRC_ADDR_MODE_FIXED
1405 | ATC_FC_PER2MEM
1406 | ATC_SIF(atchan->per_if)
1407 | ATC_DIF(atchan->mem_if);
1408 desc->len = period_len;
1409 break;
1410
1411 default:
1412 return -EINVAL;
1413 }
1414
1415 return 0;
1416}
1417
1418/**
1419 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1420 * @chan: the DMA channel to prepare
1421 * @buf_addr: physical DMA address where the buffer starts
1422 * @buf_len: total number of bytes for the entire buffer
1423 * @period_len: number of bytes for each period
1424 * @direction: transfer direction, to or from device
1425 * @flags: tx descriptor status flags
1426 */
1427static struct dma_async_tx_descriptor *
1428atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1429 size_t period_len, enum dma_transfer_direction direction,
1430 unsigned long flags)
1431{
1432 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1433 struct at_dma_slave *atslave = chan->private;
1434 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1435 struct at_desc *first = NULL;
1436 struct at_desc *prev = NULL;
1437 unsigned long was_cyclic;
1438 unsigned int reg_width;
1439 unsigned int periods = buf_len / period_len;
1440 unsigned int i;
1441
1442 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1443 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1444 &buf_addr,
1445 periods, buf_len, period_len);
1446
1447 if (unlikely(!atslave || !buf_len || !period_len)) {
1448 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1449 return NULL;
1450 }
1451
1452 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1453 if (was_cyclic) {
1454 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1455 return NULL;
1456 }
1457
1458 if (unlikely(!is_slave_direction(direction)))
1459 goto err_out;
1460
1461 if (sconfig->direction == DMA_MEM_TO_DEV)
1462 reg_width = convert_buswidth(sconfig->dst_addr_width);
1463 else
1464 reg_width = convert_buswidth(sconfig->src_addr_width);
1465
1466 /* Check for too big/unaligned periods and unaligned DMA buffer */
1467 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1468 goto err_out;
1469
1470 /* build cyclic linked list */
1471 for (i = 0; i < periods; i++) {
1472 struct at_desc *desc;
1473
1474 desc = atc_desc_get(atchan);
1475 if (!desc)
1476 goto err_desc_get;
1477
1478 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1479 reg_width, period_len, direction))
1480 goto err_desc_get;
1481
1482 atc_desc_chain(&first, &prev, desc);
1483 }
1484
1485 /* lets make a cyclic list */
1486 prev->lli.dscr = first->txd.phys;
1487
1488 /* First descriptor of the chain embedds additional information */
1489 first->txd.cookie = -EBUSY;
1490 first->total_len = buf_len;
1491
1492 return &first->txd;
1493
1494err_desc_get:
1495 dev_err(chan2dev(chan), "not enough descriptors available\n");
1496 atc_desc_put(atchan, first);
1497err_out:
1498 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1499 return NULL;
1500}
1501
1502static int atc_config(struct dma_chan *chan,
1503 struct dma_slave_config *sconfig)
1504{
1505 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1506
1507 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1508
1509 /* Check if it is chan is configured for slave transfers */
1510 if (!chan->private)
1511 return -EINVAL;
1512
1513 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1514
1515 convert_burst(&atchan->dma_sconfig.src_maxburst);
1516 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1517
1518 return 0;
1519}
1520
1521static int atc_pause(struct dma_chan *chan)
1522{
1523 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1524 struct at_dma *atdma = to_at_dma(chan->device);
1525 int chan_id = atchan->chan_common.chan_id;
1526 unsigned long flags;
1527
1528 LIST_HEAD(list);
1529
1530 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1531
1532 spin_lock_irqsave(&atchan->lock, flags);
1533
1534 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1535 set_bit(ATC_IS_PAUSED, &atchan->status);
1536
1537 spin_unlock_irqrestore(&atchan->lock, flags);
1538
1539 return 0;
1540}
1541
1542static int atc_resume(struct dma_chan *chan)
1543{
1544 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1545 struct at_dma *atdma = to_at_dma(chan->device);
1546 int chan_id = atchan->chan_common.chan_id;
1547 unsigned long flags;
1548
1549 LIST_HEAD(list);
1550
1551 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552
1553 if (!atc_chan_is_paused(atchan))
1554 return 0;
1555
1556 spin_lock_irqsave(&atchan->lock, flags);
1557
1558 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1559 clear_bit(ATC_IS_PAUSED, &atchan->status);
1560
1561 spin_unlock_irqrestore(&atchan->lock, flags);
1562
1563 return 0;
1564}
1565
1566static int atc_terminate_all(struct dma_chan *chan)
1567{
1568 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1569 struct at_dma *atdma = to_at_dma(chan->device);
1570 int chan_id = atchan->chan_common.chan_id;
1571 struct at_desc *desc, *_desc;
1572 unsigned long flags;
1573
1574 LIST_HEAD(list);
1575
1576 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1577
1578 /*
1579 * This is only called when something went wrong elsewhere, so
1580 * we don't really care about the data. Just disable the
1581 * channel. We still have to poll the channel enable bit due
1582 * to AHB/HSB limitations.
1583 */
1584 spin_lock_irqsave(&atchan->lock, flags);
1585
1586 /* disabling channel: must also remove suspend state */
1587 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1588
1589 /* confirm that this channel is disabled */
1590 while (dma_readl(atdma, CHSR) & atchan->mask)
1591 cpu_relax();
1592
1593 /* active_list entries will end up before queued entries */
1594 list_splice_init(&atchan->queue, &list);
1595 list_splice_init(&atchan->active_list, &list);
1596
1597 /* Flush all pending and queued descriptors */
1598 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1599 atc_chain_complete(atchan, desc);
1600
1601 clear_bit(ATC_IS_PAUSED, &atchan->status);
1602 /* if channel dedicated to cyclic operations, free it */
1603 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1604
1605 spin_unlock_irqrestore(&atchan->lock, flags);
1606
1607 return 0;
1608}
1609
1610/**
1611 * atc_tx_status - poll for transaction completion
1612 * @chan: DMA channel
1613 * @cookie: transaction identifier to check status of
1614 * @txstate: if not %NULL updated with transaction state
1615 *
1616 * If @txstate is passed in, upon return it reflect the driver
1617 * internal state and can be used with dma_async_is_complete() to check
1618 * the status of multiple cookies without re-checking hardware state.
1619 */
1620static enum dma_status
1621atc_tx_status(struct dma_chan *chan,
1622 dma_cookie_t cookie,
1623 struct dma_tx_state *txstate)
1624{
1625 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1626 unsigned long flags;
1627 enum dma_status ret;
1628 int bytes = 0;
1629
1630 ret = dma_cookie_status(chan, cookie, txstate);
1631 if (ret == DMA_COMPLETE)
1632 return ret;
1633 /*
1634 * There's no point calculating the residue if there's
1635 * no txstate to store the value.
1636 */
1637 if (!txstate)
1638 return DMA_ERROR;
1639
1640 spin_lock_irqsave(&atchan->lock, flags);
1641
1642 /* Get number of bytes left in the active transactions */
1643 bytes = atc_get_bytes_left(chan, cookie);
1644
1645 spin_unlock_irqrestore(&atchan->lock, flags);
1646
1647 if (unlikely(bytes < 0)) {
1648 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1649 return DMA_ERROR;
1650 } else {
1651 dma_set_residue(txstate, bytes);
1652 }
1653
1654 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1655 ret, cookie, bytes);
1656
1657 return ret;
1658}
1659
1660/**
1661 * atc_issue_pending - try to finish work
1662 * @chan: target DMA channel
1663 */
1664static void atc_issue_pending(struct dma_chan *chan)
1665{
1666 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1667 unsigned long flags;
1668
1669 dev_vdbg(chan2dev(chan), "issue_pending\n");
1670
1671 /* Not needed for cyclic transfers */
1672 if (atc_chan_is_cyclic(atchan))
1673 return;
1674
1675 spin_lock_irqsave(&atchan->lock, flags);
1676 atc_advance_work(atchan);
1677 spin_unlock_irqrestore(&atchan->lock, flags);
1678}
1679
1680/**
1681 * atc_alloc_chan_resources - allocate resources for DMA channel
1682 * @chan: allocate descriptor resources for this channel
1683 * @client: current client requesting the channel be ready for requests
1684 *
1685 * return - the number of allocated descriptors
1686 */
1687static int atc_alloc_chan_resources(struct dma_chan *chan)
1688{
1689 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1690 struct at_dma *atdma = to_at_dma(chan->device);
1691 struct at_desc *desc;
1692 struct at_dma_slave *atslave;
1693 unsigned long flags;
1694 int i;
1695 u32 cfg;
1696 LIST_HEAD(tmp_list);
1697
1698 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1699
1700 /* ASSERT: channel is idle */
1701 if (atc_chan_is_enabled(atchan)) {
1702 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1703 return -EIO;
1704 }
1705
1706 cfg = ATC_DEFAULT_CFG;
1707
1708 atslave = chan->private;
1709 if (atslave) {
1710 /*
1711 * We need controller-specific data to set up slave
1712 * transfers.
1713 */
1714 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1715
1716 /* if cfg configuration specified take it instead of default */
1717 if (atslave->cfg)
1718 cfg = atslave->cfg;
1719 }
1720
1721 /* have we already been set up?
1722 * reconfigure channel but no need to reallocate descriptors */
1723 if (!list_empty(&atchan->free_list))
1724 return atchan->descs_allocated;
1725
1726 /* Allocate initial pool of descriptors */
1727 for (i = 0; i < init_nr_desc_per_channel; i++) {
1728 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1729 if (!desc) {
1730 dev_err(atdma->dma_common.dev,
1731 "Only %d initial descriptors\n", i);
1732 break;
1733 }
1734 list_add_tail(&desc->desc_node, &tmp_list);
1735 }
1736
1737 spin_lock_irqsave(&atchan->lock, flags);
1738 atchan->descs_allocated = i;
1739 list_splice(&tmp_list, &atchan->free_list);
1740 dma_cookie_init(chan);
1741 spin_unlock_irqrestore(&atchan->lock, flags);
1742
1743 /* channel parameters */
1744 channel_writel(atchan, CFG, cfg);
1745
1746 dev_dbg(chan2dev(chan),
1747 "alloc_chan_resources: allocated %d descriptors\n",
1748 atchan->descs_allocated);
1749
1750 return atchan->descs_allocated;
1751}
1752
1753/**
1754 * atc_free_chan_resources - free all channel resources
1755 * @chan: DMA channel
1756 */
1757static void atc_free_chan_resources(struct dma_chan *chan)
1758{
1759 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1760 struct at_dma *atdma = to_at_dma(chan->device);
1761 struct at_desc *desc, *_desc;
1762 LIST_HEAD(list);
1763
1764 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1765 atchan->descs_allocated);
1766
1767 /* ASSERT: channel is idle */
1768 BUG_ON(!list_empty(&atchan->active_list));
1769 BUG_ON(!list_empty(&atchan->queue));
1770 BUG_ON(atc_chan_is_enabled(atchan));
1771
1772 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1773 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1774 list_del(&desc->desc_node);
1775 /* free link descriptor */
1776 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1777 }
1778 list_splice_init(&atchan->free_list, &list);
1779 atchan->descs_allocated = 0;
1780 atchan->status = 0;
1781
1782 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1783}
1784
1785#ifdef CONFIG_OF
1786static bool at_dma_filter(struct dma_chan *chan, void *slave)
1787{
1788 struct at_dma_slave *atslave = slave;
1789
1790 if (atslave->dma_dev == chan->device->dev) {
1791 chan->private = atslave;
1792 return true;
1793 } else {
1794 return false;
1795 }
1796}
1797
1798static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1799 struct of_dma *of_dma)
1800{
1801 struct dma_chan *chan;
1802 struct at_dma_chan *atchan;
1803 struct at_dma_slave *atslave;
1804 dma_cap_mask_t mask;
1805 unsigned int per_id;
1806 struct platform_device *dmac_pdev;
1807
1808 if (dma_spec->args_count != 2)
1809 return NULL;
1810
1811 dmac_pdev = of_find_device_by_node(dma_spec->np);
1812
1813 dma_cap_zero(mask);
1814 dma_cap_set(DMA_SLAVE, mask);
1815
1816 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1817 if (!atslave)
1818 return NULL;
1819
1820 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1821 /*
1822 * We can fill both SRC_PER and DST_PER, one of these fields will be
1823 * ignored depending on DMA transfer direction.
1824 */
1825 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1826 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1827 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1828 /*
1829 * We have to translate the value we get from the device tree since
1830 * the half FIFO configuration value had to be 0 to keep backward
1831 * compatibility.
1832 */
1833 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1834 case AT91_DMA_CFG_FIFOCFG_ALAP:
1835 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1836 break;
1837 case AT91_DMA_CFG_FIFOCFG_ASAP:
1838 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1839 break;
1840 case AT91_DMA_CFG_FIFOCFG_HALF:
1841 default:
1842 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1843 }
1844 atslave->dma_dev = &dmac_pdev->dev;
1845
1846 chan = dma_request_channel(mask, at_dma_filter, atslave);
1847 if (!chan)
1848 return NULL;
1849
1850 atchan = to_at_dma_chan(chan);
1851 atchan->per_if = dma_spec->args[0] & 0xff;
1852 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1853
1854 return chan;
1855}
1856#else
1857static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1858 struct of_dma *of_dma)
1859{
1860 return NULL;
1861}
1862#endif
1863
1864/*-- Module Management -----------------------------------------------*/
1865
1866/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1867static struct at_dma_platform_data at91sam9rl_config = {
1868 .nr_channels = 2,
1869};
1870static struct at_dma_platform_data at91sam9g45_config = {
1871 .nr_channels = 8,
1872};
1873
1874#if defined(CONFIG_OF)
1875static const struct of_device_id atmel_dma_dt_ids[] = {
1876 {
1877 .compatible = "atmel,at91sam9rl-dma",
1878 .data = &at91sam9rl_config,
1879 }, {
1880 .compatible = "atmel,at91sam9g45-dma",
1881 .data = &at91sam9g45_config,
1882 }, {
1883 /* sentinel */
1884 }
1885};
1886
1887MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1888#endif
1889
1890static const struct platform_device_id atdma_devtypes[] = {
1891 {
1892 .name = "at91sam9rl_dma",
1893 .driver_data = (unsigned long) &at91sam9rl_config,
1894 }, {
1895 .name = "at91sam9g45_dma",
1896 .driver_data = (unsigned long) &at91sam9g45_config,
1897 }, {
1898 /* sentinel */
1899 }
1900};
1901
1902static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1903 struct platform_device *pdev)
1904{
1905 if (pdev->dev.of_node) {
1906 const struct of_device_id *match;
1907 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1908 if (match == NULL)
1909 return NULL;
1910 return match->data;
1911 }
1912 return (struct at_dma_platform_data *)
1913 platform_get_device_id(pdev)->driver_data;
1914}
1915
1916/**
1917 * at_dma_off - disable DMA controller
1918 * @atdma: the Atmel HDAMC device
1919 */
1920static void at_dma_off(struct at_dma *atdma)
1921{
1922 dma_writel(atdma, EN, 0);
1923
1924 /* disable all interrupts */
1925 dma_writel(atdma, EBCIDR, -1L);
1926
1927 /* confirm that all channels are disabled */
1928 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1929 cpu_relax();
1930}
1931
1932static int __init at_dma_probe(struct platform_device *pdev)
1933{
1934 struct resource *io;
1935 struct at_dma *atdma;
1936 size_t size;
1937 int irq;
1938 int err;
1939 int i;
1940 const struct at_dma_platform_data *plat_dat;
1941
1942 /* setup platform data for each SoC */
1943 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1944 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1945 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1946 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1947 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1948 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1949 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1950 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1951 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1952
1953 /* get DMA parameters from controller type */
1954 plat_dat = at_dma_get_driver_data(pdev);
1955 if (!plat_dat)
1956 return -ENODEV;
1957
1958 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959 if (!io)
1960 return -EINVAL;
1961
1962 irq = platform_get_irq(pdev, 0);
1963 if (irq < 0)
1964 return irq;
1965
1966 size = sizeof(struct at_dma);
1967 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1968 atdma = kzalloc(size, GFP_KERNEL);
1969 if (!atdma)
1970 return -ENOMEM;
1971
1972 /* discover transaction capabilities */
1973 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1974 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1975
1976 size = resource_size(io);
1977 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1978 err = -EBUSY;
1979 goto err_kfree;
1980 }
1981
1982 atdma->regs = ioremap(io->start, size);
1983 if (!atdma->regs) {
1984 err = -ENOMEM;
1985 goto err_release_r;
1986 }
1987
1988 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1989 if (IS_ERR(atdma->clk)) {
1990 err = PTR_ERR(atdma->clk);
1991 goto err_clk;
1992 }
1993 err = clk_prepare_enable(atdma->clk);
1994 if (err)
1995 goto err_clk_prepare;
1996
1997 /* force dma off, just in case */
1998 at_dma_off(atdma);
1999
2000 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2001 if (err)
2002 goto err_irq;
2003
2004 platform_set_drvdata(pdev, atdma);
2005
2006 /* create a pool of consistent memory blocks for hardware descriptors */
2007 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2008 &pdev->dev, sizeof(struct at_desc),
2009 4 /* word alignment */, 0);
2010 if (!atdma->dma_desc_pool) {
2011 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2012 err = -ENOMEM;
2013 goto err_desc_pool_create;
2014 }
2015
2016 /* create a pool of consistent memory blocks for memset blocks */
2017 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2018 &pdev->dev, sizeof(int), 4, 0);
2019 if (!atdma->memset_pool) {
2020 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2021 err = -ENOMEM;
2022 goto err_memset_pool_create;
2023 }
2024
2025 /* clear any pending interrupt */
2026 while (dma_readl(atdma, EBCISR))
2027 cpu_relax();
2028
2029 /* initialize channels related values */
2030 INIT_LIST_HEAD(&atdma->dma_common.channels);
2031 for (i = 0; i < plat_dat->nr_channels; i++) {
2032 struct at_dma_chan *atchan = &atdma->chan[i];
2033
2034 atchan->mem_if = AT_DMA_MEM_IF;
2035 atchan->per_if = AT_DMA_PER_IF;
2036 atchan->chan_common.device = &atdma->dma_common;
2037 dma_cookie_init(&atchan->chan_common);
2038 list_add_tail(&atchan->chan_common.device_node,
2039 &atdma->dma_common.channels);
2040
2041 atchan->ch_regs = atdma->regs + ch_regs(i);
2042 spin_lock_init(&atchan->lock);
2043 atchan->mask = 1 << i;
2044
2045 INIT_LIST_HEAD(&atchan->active_list);
2046 INIT_LIST_HEAD(&atchan->queue);
2047 INIT_LIST_HEAD(&atchan->free_list);
2048
2049 tasklet_init(&atchan->tasklet, atc_tasklet,
2050 (unsigned long)atchan);
2051 atc_enable_chan_irq(atdma, i);
2052 }
2053
2054 /* set base routines */
2055 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2056 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2057 atdma->dma_common.device_tx_status = atc_tx_status;
2058 atdma->dma_common.device_issue_pending = atc_issue_pending;
2059 atdma->dma_common.dev = &pdev->dev;
2060
2061 /* set prep routines based on capability */
2062 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2063 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2064
2065 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2066 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2067
2068 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2069 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2070 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2071 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2072 }
2073
2074 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2075 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2076 /* controller can do slave DMA: can trigger cyclic transfers */
2077 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2078 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2079 atdma->dma_common.device_config = atc_config;
2080 atdma->dma_common.device_pause = atc_pause;
2081 atdma->dma_common.device_resume = atc_resume;
2082 atdma->dma_common.device_terminate_all = atc_terminate_all;
2083 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2084 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2085 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2086 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2087 }
2088
2089 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2090 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2091
2092 dma_writel(atdma, EN, AT_DMA_ENABLE);
2093
2094 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2095 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2096 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2097 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2098 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2099 plat_dat->nr_channels);
2100
2101 dma_async_device_register(&atdma->dma_common);
2102
2103 /*
2104 * Do not return an error if the dmac node is not present in order to
2105 * not break the existing way of requesting channel with
2106 * dma_request_channel().
2107 */
2108 if (pdev->dev.of_node) {
2109 err = of_dma_controller_register(pdev->dev.of_node,
2110 at_dma_xlate, atdma);
2111 if (err) {
2112 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2113 goto err_of_dma_controller_register;
2114 }
2115 }
2116
2117 return 0;
2118
2119err_of_dma_controller_register:
2120 dma_async_device_unregister(&atdma->dma_common);
2121 dma_pool_destroy(atdma->memset_pool);
2122err_memset_pool_create:
2123 dma_pool_destroy(atdma->dma_desc_pool);
2124err_desc_pool_create:
2125 free_irq(platform_get_irq(pdev, 0), atdma);
2126err_irq:
2127 clk_disable_unprepare(atdma->clk);
2128err_clk_prepare:
2129 clk_put(atdma->clk);
2130err_clk:
2131 iounmap(atdma->regs);
2132 atdma->regs = NULL;
2133err_release_r:
2134 release_mem_region(io->start, size);
2135err_kfree:
2136 kfree(atdma);
2137 return err;
2138}
2139
2140static int at_dma_remove(struct platform_device *pdev)
2141{
2142 struct at_dma *atdma = platform_get_drvdata(pdev);
2143 struct dma_chan *chan, *_chan;
2144 struct resource *io;
2145
2146 at_dma_off(atdma);
2147 dma_async_device_unregister(&atdma->dma_common);
2148
2149 dma_pool_destroy(atdma->memset_pool);
2150 dma_pool_destroy(atdma->dma_desc_pool);
2151 free_irq(platform_get_irq(pdev, 0), atdma);
2152
2153 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2154 device_node) {
2155 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2156
2157 /* Disable interrupts */
2158 atc_disable_chan_irq(atdma, chan->chan_id);
2159
2160 tasklet_kill(&atchan->tasklet);
2161 list_del(&chan->device_node);
2162 }
2163
2164 clk_disable_unprepare(atdma->clk);
2165 clk_put(atdma->clk);
2166
2167 iounmap(atdma->regs);
2168 atdma->regs = NULL;
2169
2170 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2171 release_mem_region(io->start, resource_size(io));
2172
2173 kfree(atdma);
2174
2175 return 0;
2176}
2177
2178static void at_dma_shutdown(struct platform_device *pdev)
2179{
2180 struct at_dma *atdma = platform_get_drvdata(pdev);
2181
2182 at_dma_off(platform_get_drvdata(pdev));
2183 clk_disable_unprepare(atdma->clk);
2184}
2185
2186static int at_dma_prepare(struct device *dev)
2187{
2188 struct platform_device *pdev = to_platform_device(dev);
2189 struct at_dma *atdma = platform_get_drvdata(pdev);
2190 struct dma_chan *chan, *_chan;
2191
2192 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2193 device_node) {
2194 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2195 /* wait for transaction completion (except in cyclic case) */
2196 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2197 return -EAGAIN;
2198 }
2199 return 0;
2200}
2201
2202static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2203{
2204 struct dma_chan *chan = &atchan->chan_common;
2205
2206 /* Channel should be paused by user
2207 * do it anyway even if it is not done already */
2208 if (!atc_chan_is_paused(atchan)) {
2209 dev_warn(chan2dev(chan),
2210 "cyclic channel not paused, should be done by channel user\n");
2211 atc_pause(chan);
2212 }
2213
2214 /* now preserve additional data for cyclic operations */
2215 /* next descriptor address in the cyclic list */
2216 atchan->save_dscr = channel_readl(atchan, DSCR);
2217
2218 vdbg_dump_regs(atchan);
2219}
2220
2221static int at_dma_suspend_noirq(struct device *dev)
2222{
2223 struct platform_device *pdev = to_platform_device(dev);
2224 struct at_dma *atdma = platform_get_drvdata(pdev);
2225 struct dma_chan *chan, *_chan;
2226
2227 /* preserve data */
2228 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2229 device_node) {
2230 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2231
2232 if (atc_chan_is_cyclic(atchan))
2233 atc_suspend_cyclic(atchan);
2234 atchan->save_cfg = channel_readl(atchan, CFG);
2235 }
2236 atdma->save_imr = dma_readl(atdma, EBCIMR);
2237
2238 /* disable DMA controller */
2239 at_dma_off(atdma);
2240 clk_disable_unprepare(atdma->clk);
2241 return 0;
2242}
2243
2244static void atc_resume_cyclic(struct at_dma_chan *atchan)
2245{
2246 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2247
2248 /* restore channel status for cyclic descriptors list:
2249 * next descriptor in the cyclic list at the time of suspend */
2250 channel_writel(atchan, SADDR, 0);
2251 channel_writel(atchan, DADDR, 0);
2252 channel_writel(atchan, CTRLA, 0);
2253 channel_writel(atchan, CTRLB, 0);
2254 channel_writel(atchan, DSCR, atchan->save_dscr);
2255 dma_writel(atdma, CHER, atchan->mask);
2256
2257 /* channel pause status should be removed by channel user
2258 * We cannot take the initiative to do it here */
2259
2260 vdbg_dump_regs(atchan);
2261}
2262
2263static int at_dma_resume_noirq(struct device *dev)
2264{
2265 struct platform_device *pdev = to_platform_device(dev);
2266 struct at_dma *atdma = platform_get_drvdata(pdev);
2267 struct dma_chan *chan, *_chan;
2268
2269 /* bring back DMA controller */
2270 clk_prepare_enable(atdma->clk);
2271 dma_writel(atdma, EN, AT_DMA_ENABLE);
2272
2273 /* clear any pending interrupt */
2274 while (dma_readl(atdma, EBCISR))
2275 cpu_relax();
2276
2277 /* restore saved data */
2278 dma_writel(atdma, EBCIER, atdma->save_imr);
2279 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2280 device_node) {
2281 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2282
2283 channel_writel(atchan, CFG, atchan->save_cfg);
2284 if (atc_chan_is_cyclic(atchan))
2285 atc_resume_cyclic(atchan);
2286 }
2287 return 0;
2288}
2289
2290static const struct dev_pm_ops at_dma_dev_pm_ops = {
2291 .prepare = at_dma_prepare,
2292 .suspend_noirq = at_dma_suspend_noirq,
2293 .resume_noirq = at_dma_resume_noirq,
2294};
2295
2296static struct platform_driver at_dma_driver = {
2297 .remove = at_dma_remove,
2298 .shutdown = at_dma_shutdown,
2299 .id_table = atdma_devtypes,
2300 .driver = {
2301 .name = "at_hdmac",
2302 .pm = &at_dma_dev_pm_ops,
2303 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2304 },
2305};
2306
2307static int __init at_dma_init(void)
2308{
2309 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2310}
2311subsys_initcall(at_dma_init);
2312
2313static void __exit at_dma_exit(void)
2314{
2315 platform_driver_unregister(&at_dma_driver);
2316}
2317module_exit(at_dma_exit);
2318
2319MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2320MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2321MODULE_LICENSE("GPL");
2322MODULE_ALIAS("platform:at_hdmac");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12#include <dt-bindings/dma/at91.h>
13#include <linux/clk.h>
14#include <linux/dmaengine.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmapool.h>
17#include <linux/interrupt.h>
18#include <linux/module.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/of_dma.h>
24
25#include "at_hdmac_regs.h"
26#include "dmaengine.h"
27
28/*
29 * Glossary
30 * --------
31 *
32 * at_hdmac : Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma : ATmel DMA controller entity related
34 * atc_ / atchan : ATmel DMA Channel entity related
35 */
36
37#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
38#define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
39 |ATC_DIF(AT_DMA_MEM_IF))
40#define ATC_DMA_BUSWIDTHS\
41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46#define ATC_MAX_DSCR_TRIALS 10
47
48/*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52static unsigned int init_nr_desc_per_channel = 64;
53module_param(init_nr_desc_per_channel, uint, 0644);
54MODULE_PARM_DESC(init_nr_desc_per_channel,
55 "initial descriptors per channel (default: 64)");
56
57
58/* prototypes */
59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60static void atc_issue_pending(struct dma_chan *chan);
61
62
63/*----------------------------------------------------------------------*/
64
65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 size_t len)
67{
68 unsigned int width;
69
70 if (!((src | dst | len) & 3))
71 width = 2;
72 else if (!((src | dst | len) & 1))
73 width = 1;
74 else
75 width = 0;
76
77 return width;
78}
79
80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81{
82 return list_first_entry(&atchan->active_list,
83 struct at_desc, desc_node);
84}
85
86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87{
88 return list_first_entry(&atchan->queue,
89 struct at_desc, desc_node);
90}
91
92/**
93 * atc_alloc_descriptor - allocate and return an initialized descriptor
94 * @chan: the channel to allocate descriptors for
95 * @gfp_flags: GFP allocation flags
96 *
97 * Note: The ack-bit is positioned in the descriptor flag at creation time
98 * to make initial allocation more convenient. This bit will be cleared
99 * and control will be given to client at usage time (during
100 * preparation functions).
101 */
102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 gfp_t gfp_flags)
104{
105 struct at_desc *desc = NULL;
106 struct at_dma *atdma = to_at_dma(chan->device);
107 dma_addr_t phys;
108
109 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 if (desc) {
111 INIT_LIST_HEAD(&desc->tx_list);
112 dma_async_tx_descriptor_init(&desc->txd, chan);
113 /* txd.flags will be overwritten in prep functions */
114 desc->txd.flags = DMA_CTRL_ACK;
115 desc->txd.tx_submit = atc_tx_submit;
116 desc->txd.phys = phys;
117 }
118
119 return desc;
120}
121
122/**
123 * atc_desc_get - get an unused descriptor from free_list
124 * @atchan: channel we want a new descriptor for
125 */
126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127{
128 struct at_desc *desc, *_desc;
129 struct at_desc *ret = NULL;
130 unsigned long flags;
131 unsigned int i = 0;
132
133 spin_lock_irqsave(&atchan->lock, flags);
134 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 i++;
136 if (async_tx_test_ack(&desc->txd)) {
137 list_del(&desc->desc_node);
138 ret = desc;
139 break;
140 }
141 dev_dbg(chan2dev(&atchan->chan_common),
142 "desc %p not ACKed\n", desc);
143 }
144 spin_unlock_irqrestore(&atchan->lock, flags);
145 dev_vdbg(chan2dev(&atchan->chan_common),
146 "scanned %u descriptors on freelist\n", i);
147
148 /* no more descriptor available in initial pool: create one more */
149 if (!ret)
150 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
151
152 return ret;
153}
154
155/**
156 * atc_desc_put - move a descriptor, including any children, to the free list
157 * @atchan: channel we work on
158 * @desc: descriptor, at the head of a chain, to move to free list
159 */
160static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
161{
162 if (desc) {
163 struct at_desc *child;
164 unsigned long flags;
165
166 spin_lock_irqsave(&atchan->lock, flags);
167 list_for_each_entry(child, &desc->tx_list, desc_node)
168 dev_vdbg(chan2dev(&atchan->chan_common),
169 "moving child desc %p to freelist\n",
170 child);
171 list_splice_init(&desc->tx_list, &atchan->free_list);
172 dev_vdbg(chan2dev(&atchan->chan_common),
173 "moving desc %p to freelist\n", desc);
174 list_add(&desc->desc_node, &atchan->free_list);
175 spin_unlock_irqrestore(&atchan->lock, flags);
176 }
177}
178
179/**
180 * atc_desc_chain - build chain adding a descriptor
181 * @first: address of first descriptor of the chain
182 * @prev: address of previous descriptor of the chain
183 * @desc: descriptor to queue
184 *
185 * Called from prep_* functions
186 */
187static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
188 struct at_desc *desc)
189{
190 if (!(*first)) {
191 *first = desc;
192 } else {
193 /* inform the HW lli about chaining */
194 (*prev)->lli.dscr = desc->txd.phys;
195 /* insert the link descriptor to the LD ring */
196 list_add_tail(&desc->desc_node,
197 &(*first)->tx_list);
198 }
199 *prev = desc;
200}
201
202/**
203 * atc_dostart - starts the DMA engine for real
204 * @atchan: the channel we want to start
205 * @first: first descriptor in the list we want to begin with
206 *
207 * Called with atchan->lock held and bh disabled
208 */
209static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
210{
211 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
212
213 /* ASSERT: channel is idle */
214 if (atc_chan_is_enabled(atchan)) {
215 dev_err(chan2dev(&atchan->chan_common),
216 "BUG: Attempted to start non-idle channel\n");
217 dev_err(chan2dev(&atchan->chan_common),
218 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
219 channel_readl(atchan, SADDR),
220 channel_readl(atchan, DADDR),
221 channel_readl(atchan, CTRLA),
222 channel_readl(atchan, CTRLB),
223 channel_readl(atchan, DSCR));
224
225 /* The tasklet will hopefully advance the queue... */
226 return;
227 }
228
229 vdbg_dump_regs(atchan);
230
231 channel_writel(atchan, SADDR, 0);
232 channel_writel(atchan, DADDR, 0);
233 channel_writel(atchan, CTRLA, 0);
234 channel_writel(atchan, CTRLB, 0);
235 channel_writel(atchan, DSCR, first->txd.phys);
236 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
237 ATC_SPIP_BOUNDARY(first->boundary));
238 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
239 ATC_DPIP_BOUNDARY(first->boundary));
240 dma_writel(atdma, CHER, atchan->mask);
241
242 vdbg_dump_regs(atchan);
243}
244
245/*
246 * atc_get_desc_by_cookie - get the descriptor of a cookie
247 * @atchan: the DMA channel
248 * @cookie: the cookie to get the descriptor for
249 */
250static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
251 dma_cookie_t cookie)
252{
253 struct at_desc *desc, *_desc;
254
255 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
256 if (desc->txd.cookie == cookie)
257 return desc;
258 }
259
260 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
261 if (desc->txd.cookie == cookie)
262 return desc;
263 }
264
265 return NULL;
266}
267
268/**
269 * atc_calc_bytes_left - calculates the number of bytes left according to the
270 * value read from CTRLA.
271 *
272 * @current_len: the number of bytes left before reading CTRLA
273 * @ctrla: the value of CTRLA
274 */
275static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
276{
277 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
278 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
279
280 /*
281 * According to the datasheet, when reading the Control A Register
282 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
283 * number of transfers completed on the Source Interface.
284 * So btsize is always a number of source width transfers.
285 */
286 return current_len - (btsize << src_width);
287}
288
289/**
290 * atc_get_bytes_left - get the number of bytes residue for a cookie
291 * @chan: DMA channel
292 * @cookie: transaction identifier to check status of
293 */
294static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
295{
296 struct at_dma_chan *atchan = to_at_dma_chan(chan);
297 struct at_desc *desc_first = atc_first_active(atchan);
298 struct at_desc *desc;
299 int ret;
300 u32 ctrla, dscr, trials;
301
302 /*
303 * If the cookie doesn't match to the currently running transfer then
304 * we can return the total length of the associated DMA transfer,
305 * because it is still queued.
306 */
307 desc = atc_get_desc_by_cookie(atchan, cookie);
308 if (desc == NULL)
309 return -EINVAL;
310 else if (desc != desc_first)
311 return desc->total_len;
312
313 /* cookie matches to the currently running transfer */
314 ret = desc_first->total_len;
315
316 if (desc_first->lli.dscr) {
317 /* hardware linked list transfer */
318
319 /*
320 * Calculate the residue by removing the length of the child
321 * descriptors already transferred from the total length.
322 * To get the current child descriptor we can use the value of
323 * the channel's DSCR register and compare it against the value
324 * of the hardware linked list structure of each child
325 * descriptor.
326 *
327 * The CTRLA register provides us with the amount of data
328 * already read from the source for the current child
329 * descriptor. So we can compute a more accurate residue by also
330 * removing the number of bytes corresponding to this amount of
331 * data.
332 *
333 * However, the DSCR and CTRLA registers cannot be read both
334 * atomically. Hence a race condition may occur: the first read
335 * register may refer to one child descriptor whereas the second
336 * read may refer to a later child descriptor in the list
337 * because of the DMA transfer progression inbetween the two
338 * reads.
339 *
340 * One solution could have been to pause the DMA transfer, read
341 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
342 * this approach presents some drawbacks:
343 * - If the DMA transfer is paused, RX overruns or TX underruns
344 * are more likey to occur depending on the system latency.
345 * Taking the USART driver as an example, it uses a cyclic DMA
346 * transfer to read data from the Receive Holding Register
347 * (RHR) to avoid RX overruns since the RHR is not protected
348 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
349 * to compute the residue would break the USART driver design.
350 * - The atc_pause() function masks interrupts but we'd rather
351 * avoid to do so for system latency purpose.
352 *
353 * Then we'd rather use another solution: the DSCR is read a
354 * first time, the CTRLA is read in turn, next the DSCR is read
355 * a second time. If the two consecutive read values of the DSCR
356 * are the same then we assume both refers to the very same
357 * child descriptor as well as the CTRLA value read inbetween
358 * does. For cyclic tranfers, the assumption is that a full loop
359 * is "not so fast".
360 * If the two DSCR values are different, we read again the CTRLA
361 * then the DSCR till two consecutive read values from DSCR are
362 * equal or till the maxium trials is reach.
363 * This algorithm is very unlikely not to find a stable value for
364 * DSCR.
365 */
366
367 dscr = channel_readl(atchan, DSCR);
368 rmb(); /* ensure DSCR is read before CTRLA */
369 ctrla = channel_readl(atchan, CTRLA);
370 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
371 u32 new_dscr;
372
373 rmb(); /* ensure DSCR is read after CTRLA */
374 new_dscr = channel_readl(atchan, DSCR);
375
376 /*
377 * If the DSCR register value has not changed inside the
378 * DMA controller since the previous read, we assume
379 * that both the dscr and ctrla values refers to the
380 * very same descriptor.
381 */
382 if (likely(new_dscr == dscr))
383 break;
384
385 /*
386 * DSCR has changed inside the DMA controller, so the
387 * previouly read value of CTRLA may refer to an already
388 * processed descriptor hence could be outdated.
389 * We need to update ctrla to match the current
390 * descriptor.
391 */
392 dscr = new_dscr;
393 rmb(); /* ensure DSCR is read before CTRLA */
394 ctrla = channel_readl(atchan, CTRLA);
395 }
396 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
397 return -ETIMEDOUT;
398
399 /* for the first descriptor we can be more accurate */
400 if (desc_first->lli.dscr == dscr)
401 return atc_calc_bytes_left(ret, ctrla);
402
403 ret -= desc_first->len;
404 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
405 if (desc->lli.dscr == dscr)
406 break;
407
408 ret -= desc->len;
409 }
410
411 /*
412 * For the current descriptor in the chain we can calculate
413 * the remaining bytes using the channel's register.
414 */
415 ret = atc_calc_bytes_left(ret, ctrla);
416 } else {
417 /* single transfer */
418 ctrla = channel_readl(atchan, CTRLA);
419 ret = atc_calc_bytes_left(ret, ctrla);
420 }
421
422 return ret;
423}
424
425/**
426 * atc_chain_complete - finish work for one transaction chain
427 * @atchan: channel we work on
428 * @desc: descriptor at the head of the chain we want do complete
429 */
430static void
431atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
432{
433 struct dma_async_tx_descriptor *txd = &desc->txd;
434 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
435 unsigned long flags;
436
437 dev_vdbg(chan2dev(&atchan->chan_common),
438 "descriptor %u complete\n", txd->cookie);
439
440 spin_lock_irqsave(&atchan->lock, flags);
441
442 /* mark the descriptor as complete for non cyclic cases only */
443 if (!atc_chan_is_cyclic(atchan))
444 dma_cookie_complete(txd);
445
446 /* If the transfer was a memset, free our temporary buffer */
447 if (desc->memset_buffer) {
448 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
449 desc->memset_paddr);
450 desc->memset_buffer = false;
451 }
452
453 /* move children to free_list */
454 list_splice_init(&desc->tx_list, &atchan->free_list);
455 /* move myself to free_list */
456 list_move(&desc->desc_node, &atchan->free_list);
457
458 spin_unlock_irqrestore(&atchan->lock, flags);
459
460 dma_descriptor_unmap(txd);
461 /* for cyclic transfers,
462 * no need to replay callback function while stopping */
463 if (!atc_chan_is_cyclic(atchan))
464 dmaengine_desc_get_callback_invoke(txd, NULL);
465
466 dma_run_dependencies(txd);
467}
468
469/**
470 * atc_complete_all - finish work for all transactions
471 * @atchan: channel to complete transactions for
472 *
473 * Eventually submit queued descriptors if any
474 *
475 * Assume channel is idle while calling this function
476 * Called with atchan->lock held and bh disabled
477 */
478static void atc_complete_all(struct at_dma_chan *atchan)
479{
480 struct at_desc *desc, *_desc;
481 LIST_HEAD(list);
482 unsigned long flags;
483
484 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
485
486 spin_lock_irqsave(&atchan->lock, flags);
487
488 /*
489 * Submit queued descriptors ASAP, i.e. before we go through
490 * the completed ones.
491 */
492 if (!list_empty(&atchan->queue))
493 atc_dostart(atchan, atc_first_queued(atchan));
494 /* empty active_list now it is completed */
495 list_splice_init(&atchan->active_list, &list);
496 /* empty queue list by moving descriptors (if any) to active_list */
497 list_splice_init(&atchan->queue, &atchan->active_list);
498
499 spin_unlock_irqrestore(&atchan->lock, flags);
500
501 list_for_each_entry_safe(desc, _desc, &list, desc_node)
502 atc_chain_complete(atchan, desc);
503}
504
505/**
506 * atc_advance_work - at the end of a transaction, move forward
507 * @atchan: channel where the transaction ended
508 */
509static void atc_advance_work(struct at_dma_chan *atchan)
510{
511 unsigned long flags;
512 int ret;
513
514 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
515
516 spin_lock_irqsave(&atchan->lock, flags);
517 ret = atc_chan_is_enabled(atchan);
518 spin_unlock_irqrestore(&atchan->lock, flags);
519 if (ret)
520 return;
521
522 if (list_empty(&atchan->active_list) ||
523 list_is_singular(&atchan->active_list))
524 return atc_complete_all(atchan);
525
526 atc_chain_complete(atchan, atc_first_active(atchan));
527
528 /* advance work */
529 spin_lock_irqsave(&atchan->lock, flags);
530 atc_dostart(atchan, atc_first_active(atchan));
531 spin_unlock_irqrestore(&atchan->lock, flags);
532}
533
534
535/**
536 * atc_handle_error - handle errors reported by DMA controller
537 * @atchan: channel where error occurs
538 */
539static void atc_handle_error(struct at_dma_chan *atchan)
540{
541 struct at_desc *bad_desc;
542 struct at_desc *child;
543 unsigned long flags;
544
545 spin_lock_irqsave(&atchan->lock, flags);
546 /*
547 * The descriptor currently at the head of the active list is
548 * broked. Since we don't have any way to report errors, we'll
549 * just have to scream loudly and try to carry on.
550 */
551 bad_desc = atc_first_active(atchan);
552 list_del_init(&bad_desc->desc_node);
553
554 /* As we are stopped, take advantage to push queued descriptors
555 * in active_list */
556 list_splice_init(&atchan->queue, atchan->active_list.prev);
557
558 /* Try to restart the controller */
559 if (!list_empty(&atchan->active_list))
560 atc_dostart(atchan, atc_first_active(atchan));
561
562 /*
563 * KERN_CRITICAL may seem harsh, but since this only happens
564 * when someone submits a bad physical address in a
565 * descriptor, we should consider ourselves lucky that the
566 * controller flagged an error instead of scribbling over
567 * random memory locations.
568 */
569 dev_crit(chan2dev(&atchan->chan_common),
570 "Bad descriptor submitted for DMA!\n");
571 dev_crit(chan2dev(&atchan->chan_common),
572 " cookie: %d\n", bad_desc->txd.cookie);
573 atc_dump_lli(atchan, &bad_desc->lli);
574 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
575 atc_dump_lli(atchan, &child->lli);
576
577 spin_unlock_irqrestore(&atchan->lock, flags);
578
579 /* Pretend the descriptor completed successfully */
580 atc_chain_complete(atchan, bad_desc);
581}
582
583/**
584 * atc_handle_cyclic - at the end of a period, run callback function
585 * @atchan: channel used for cyclic operations
586 */
587static void atc_handle_cyclic(struct at_dma_chan *atchan)
588{
589 struct at_desc *first = atc_first_active(atchan);
590 struct dma_async_tx_descriptor *txd = &first->txd;
591
592 dev_vdbg(chan2dev(&atchan->chan_common),
593 "new cyclic period llp 0x%08x\n",
594 channel_readl(atchan, DSCR));
595
596 dmaengine_desc_get_callback_invoke(txd, NULL);
597}
598
599/*-- IRQ & Tasklet ---------------------------------------------------*/
600
601static void atc_tasklet(unsigned long data)
602{
603 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
604
605 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
606 return atc_handle_error(atchan);
607
608 if (atc_chan_is_cyclic(atchan))
609 return atc_handle_cyclic(atchan);
610
611 atc_advance_work(atchan);
612}
613
614static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
615{
616 struct at_dma *atdma = (struct at_dma *)dev_id;
617 struct at_dma_chan *atchan;
618 int i;
619 u32 status, pending, imr;
620 int ret = IRQ_NONE;
621
622 do {
623 imr = dma_readl(atdma, EBCIMR);
624 status = dma_readl(atdma, EBCISR);
625 pending = status & imr;
626
627 if (!pending)
628 break;
629
630 dev_vdbg(atdma->dma_common.dev,
631 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
632 status, imr, pending);
633
634 for (i = 0; i < atdma->dma_common.chancnt; i++) {
635 atchan = &atdma->chan[i];
636 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
637 if (pending & AT_DMA_ERR(i)) {
638 /* Disable channel on AHB error */
639 dma_writel(atdma, CHDR,
640 AT_DMA_RES(i) | atchan->mask);
641 /* Give information to tasklet */
642 set_bit(ATC_IS_ERROR, &atchan->status);
643 }
644 tasklet_schedule(&atchan->tasklet);
645 ret = IRQ_HANDLED;
646 }
647 }
648
649 } while (pending);
650
651 return ret;
652}
653
654
655/*-- DMA Engine API --------------------------------------------------*/
656
657/**
658 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
659 * @tx: descriptor at the head of the transaction chain
660 *
661 * Queue chain if DMA engine is working already
662 *
663 * Cookie increment and adding to active_list or queue must be atomic
664 */
665static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
666{
667 struct at_desc *desc = txd_to_at_desc(tx);
668 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
669 dma_cookie_t cookie;
670 unsigned long flags;
671
672 spin_lock_irqsave(&atchan->lock, flags);
673 cookie = dma_cookie_assign(tx);
674
675 if (list_empty(&atchan->active_list)) {
676 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
677 desc->txd.cookie);
678 atc_dostart(atchan, desc);
679 list_add_tail(&desc->desc_node, &atchan->active_list);
680 } else {
681 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
682 desc->txd.cookie);
683 list_add_tail(&desc->desc_node, &atchan->queue);
684 }
685
686 spin_unlock_irqrestore(&atchan->lock, flags);
687
688 return cookie;
689}
690
691/**
692 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
693 * @chan: the channel to prepare operation on
694 * @xt: Interleaved transfer template
695 * @flags: tx descriptor status flags
696 */
697static struct dma_async_tx_descriptor *
698atc_prep_dma_interleaved(struct dma_chan *chan,
699 struct dma_interleaved_template *xt,
700 unsigned long flags)
701{
702 struct at_dma_chan *atchan = to_at_dma_chan(chan);
703 struct data_chunk *first;
704 struct at_desc *desc = NULL;
705 size_t xfer_count;
706 unsigned int dwidth;
707 u32 ctrla;
708 u32 ctrlb;
709 size_t len = 0;
710 int i;
711
712 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
713 return NULL;
714
715 first = xt->sgl;
716
717 dev_info(chan2dev(chan),
718 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
719 __func__, &xt->src_start, &xt->dst_start, xt->numf,
720 xt->frame_size, flags);
721
722 /*
723 * The controller can only "skip" X bytes every Y bytes, so we
724 * need to make sure we are given a template that fit that
725 * description, ie a template with chunks that always have the
726 * same size, with the same ICGs.
727 */
728 for (i = 0; i < xt->frame_size; i++) {
729 struct data_chunk *chunk = xt->sgl + i;
730
731 if ((chunk->size != xt->sgl->size) ||
732 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
733 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
734 dev_err(chan2dev(chan),
735 "%s: the controller can transfer only identical chunks\n",
736 __func__);
737 return NULL;
738 }
739
740 len += chunk->size;
741 }
742
743 dwidth = atc_get_xfer_width(xt->src_start,
744 xt->dst_start, len);
745
746 xfer_count = len >> dwidth;
747 if (xfer_count > ATC_BTSIZE_MAX) {
748 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
749 return NULL;
750 }
751
752 ctrla = ATC_SRC_WIDTH(dwidth) |
753 ATC_DST_WIDTH(dwidth);
754
755 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
756 | ATC_SRC_ADDR_MODE_INCR
757 | ATC_DST_ADDR_MODE_INCR
758 | ATC_SRC_PIP
759 | ATC_DST_PIP
760 | ATC_FC_MEM2MEM;
761
762 /* create the transfer */
763 desc = atc_desc_get(atchan);
764 if (!desc) {
765 dev_err(chan2dev(chan),
766 "%s: couldn't allocate our descriptor\n", __func__);
767 return NULL;
768 }
769
770 desc->lli.saddr = xt->src_start;
771 desc->lli.daddr = xt->dst_start;
772 desc->lli.ctrla = ctrla | xfer_count;
773 desc->lli.ctrlb = ctrlb;
774
775 desc->boundary = first->size >> dwidth;
776 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
777 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
778
779 desc->txd.cookie = -EBUSY;
780 desc->total_len = desc->len = len;
781
782 /* set end-of-link to the last link descriptor of list*/
783 set_desc_eol(desc);
784
785 desc->txd.flags = flags; /* client is in control of this ack */
786
787 return &desc->txd;
788}
789
790/**
791 * atc_prep_dma_memcpy - prepare a memcpy operation
792 * @chan: the channel to prepare operation on
793 * @dest: operation virtual destination address
794 * @src: operation virtual source address
795 * @len: operation length
796 * @flags: tx descriptor status flags
797 */
798static struct dma_async_tx_descriptor *
799atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
800 size_t len, unsigned long flags)
801{
802 struct at_dma_chan *atchan = to_at_dma_chan(chan);
803 struct at_desc *desc = NULL;
804 struct at_desc *first = NULL;
805 struct at_desc *prev = NULL;
806 size_t xfer_count;
807 size_t offset;
808 unsigned int src_width;
809 unsigned int dst_width;
810 u32 ctrla;
811 u32 ctrlb;
812
813 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
814 &dest, &src, len, flags);
815
816 if (unlikely(!len)) {
817 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
818 return NULL;
819 }
820
821 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
822 | ATC_SRC_ADDR_MODE_INCR
823 | ATC_DST_ADDR_MODE_INCR
824 | ATC_FC_MEM2MEM;
825
826 /*
827 * We can be a lot more clever here, but this should take care
828 * of the most common optimization.
829 */
830 src_width = dst_width = atc_get_xfer_width(src, dest, len);
831
832 ctrla = ATC_SRC_WIDTH(src_width) |
833 ATC_DST_WIDTH(dst_width);
834
835 for (offset = 0; offset < len; offset += xfer_count << src_width) {
836 xfer_count = min_t(size_t, (len - offset) >> src_width,
837 ATC_BTSIZE_MAX);
838
839 desc = atc_desc_get(atchan);
840 if (!desc)
841 goto err_desc_get;
842
843 desc->lli.saddr = src + offset;
844 desc->lli.daddr = dest + offset;
845 desc->lli.ctrla = ctrla | xfer_count;
846 desc->lli.ctrlb = ctrlb;
847
848 desc->txd.cookie = 0;
849 desc->len = xfer_count << src_width;
850
851 atc_desc_chain(&first, &prev, desc);
852 }
853
854 /* First descriptor of the chain embedds additional information */
855 first->txd.cookie = -EBUSY;
856 first->total_len = len;
857
858 /* set end-of-link to the last link descriptor of list*/
859 set_desc_eol(desc);
860
861 first->txd.flags = flags; /* client is in control of this ack */
862
863 return &first->txd;
864
865err_desc_get:
866 atc_desc_put(atchan, first);
867 return NULL;
868}
869
870static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
871 dma_addr_t psrc,
872 dma_addr_t pdst,
873 size_t len)
874{
875 struct at_dma_chan *atchan = to_at_dma_chan(chan);
876 struct at_desc *desc;
877 size_t xfer_count;
878
879 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
880 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
881 ATC_SRC_ADDR_MODE_FIXED |
882 ATC_DST_ADDR_MODE_INCR |
883 ATC_FC_MEM2MEM;
884
885 xfer_count = len >> 2;
886 if (xfer_count > ATC_BTSIZE_MAX) {
887 dev_err(chan2dev(chan), "%s: buffer is too big\n",
888 __func__);
889 return NULL;
890 }
891
892 desc = atc_desc_get(atchan);
893 if (!desc) {
894 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
895 __func__);
896 return NULL;
897 }
898
899 desc->lli.saddr = psrc;
900 desc->lli.daddr = pdst;
901 desc->lli.ctrla = ctrla | xfer_count;
902 desc->lli.ctrlb = ctrlb;
903
904 desc->txd.cookie = 0;
905 desc->len = len;
906
907 return desc;
908}
909
910/**
911 * atc_prep_dma_memset - prepare a memcpy operation
912 * @chan: the channel to prepare operation on
913 * @dest: operation virtual destination address
914 * @value: value to set memory buffer to
915 * @len: operation length
916 * @flags: tx descriptor status flags
917 */
918static struct dma_async_tx_descriptor *
919atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
920 size_t len, unsigned long flags)
921{
922 struct at_dma *atdma = to_at_dma(chan->device);
923 struct at_desc *desc;
924 void __iomem *vaddr;
925 dma_addr_t paddr;
926
927 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
928 &dest, value, len, flags);
929
930 if (unlikely(!len)) {
931 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
932 return NULL;
933 }
934
935 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
936 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
937 __func__);
938 return NULL;
939 }
940
941 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
942 if (!vaddr) {
943 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
944 __func__);
945 return NULL;
946 }
947 *(u32*)vaddr = value;
948
949 desc = atc_create_memset_desc(chan, paddr, dest, len);
950 if (!desc) {
951 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
952 __func__);
953 goto err_free_buffer;
954 }
955
956 desc->memset_paddr = paddr;
957 desc->memset_vaddr = vaddr;
958 desc->memset_buffer = true;
959
960 desc->txd.cookie = -EBUSY;
961 desc->total_len = len;
962
963 /* set end-of-link on the descriptor */
964 set_desc_eol(desc);
965
966 desc->txd.flags = flags;
967
968 return &desc->txd;
969
970err_free_buffer:
971 dma_pool_free(atdma->memset_pool, vaddr, paddr);
972 return NULL;
973}
974
975static struct dma_async_tx_descriptor *
976atc_prep_dma_memset_sg(struct dma_chan *chan,
977 struct scatterlist *sgl,
978 unsigned int sg_len, int value,
979 unsigned long flags)
980{
981 struct at_dma_chan *atchan = to_at_dma_chan(chan);
982 struct at_dma *atdma = to_at_dma(chan->device);
983 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
984 struct scatterlist *sg;
985 void __iomem *vaddr;
986 dma_addr_t paddr;
987 size_t total_len = 0;
988 int i;
989
990 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
991 value, sg_len, flags);
992
993 if (unlikely(!sgl || !sg_len)) {
994 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
995 __func__);
996 return NULL;
997 }
998
999 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1000 if (!vaddr) {
1001 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1002 __func__);
1003 return NULL;
1004 }
1005 *(u32*)vaddr = value;
1006
1007 for_each_sg(sgl, sg, sg_len, i) {
1008 dma_addr_t dest = sg_dma_address(sg);
1009 size_t len = sg_dma_len(sg);
1010
1011 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1012 __func__, &dest, len);
1013
1014 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1015 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1016 __func__);
1017 goto err_put_desc;
1018 }
1019
1020 desc = atc_create_memset_desc(chan, paddr, dest, len);
1021 if (!desc)
1022 goto err_put_desc;
1023
1024 atc_desc_chain(&first, &prev, desc);
1025
1026 total_len += len;
1027 }
1028
1029 /*
1030 * Only set the buffer pointers on the last descriptor to
1031 * avoid free'ing while we have our transfer still going
1032 */
1033 desc->memset_paddr = paddr;
1034 desc->memset_vaddr = vaddr;
1035 desc->memset_buffer = true;
1036
1037 first->txd.cookie = -EBUSY;
1038 first->total_len = total_len;
1039
1040 /* set end-of-link on the descriptor */
1041 set_desc_eol(desc);
1042
1043 first->txd.flags = flags;
1044
1045 return &first->txd;
1046
1047err_put_desc:
1048 atc_desc_put(atchan, first);
1049 return NULL;
1050}
1051
1052/**
1053 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1054 * @chan: DMA channel
1055 * @sgl: scatterlist to transfer to/from
1056 * @sg_len: number of entries in @scatterlist
1057 * @direction: DMA direction
1058 * @flags: tx descriptor status flags
1059 * @context: transaction context (ignored)
1060 */
1061static struct dma_async_tx_descriptor *
1062atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1063 unsigned int sg_len, enum dma_transfer_direction direction,
1064 unsigned long flags, void *context)
1065{
1066 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1067 struct at_dma_slave *atslave = chan->private;
1068 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1069 struct at_desc *first = NULL;
1070 struct at_desc *prev = NULL;
1071 u32 ctrla;
1072 u32 ctrlb;
1073 dma_addr_t reg;
1074 unsigned int reg_width;
1075 unsigned int mem_width;
1076 unsigned int i;
1077 struct scatterlist *sg;
1078 size_t total_len = 0;
1079
1080 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1081 sg_len,
1082 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1083 flags);
1084
1085 if (unlikely(!atslave || !sg_len)) {
1086 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1087 return NULL;
1088 }
1089
1090 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1091 | ATC_DCSIZE(sconfig->dst_maxburst);
1092 ctrlb = ATC_IEN;
1093
1094 switch (direction) {
1095 case DMA_MEM_TO_DEV:
1096 reg_width = convert_buswidth(sconfig->dst_addr_width);
1097 ctrla |= ATC_DST_WIDTH(reg_width);
1098 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1099 | ATC_SRC_ADDR_MODE_INCR
1100 | ATC_FC_MEM2PER
1101 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1102 reg = sconfig->dst_addr;
1103 for_each_sg(sgl, sg, sg_len, i) {
1104 struct at_desc *desc;
1105 u32 len;
1106 u32 mem;
1107
1108 desc = atc_desc_get(atchan);
1109 if (!desc)
1110 goto err_desc_get;
1111
1112 mem = sg_dma_address(sg);
1113 len = sg_dma_len(sg);
1114 if (unlikely(!len)) {
1115 dev_dbg(chan2dev(chan),
1116 "prep_slave_sg: sg(%d) data length is zero\n", i);
1117 goto err;
1118 }
1119 mem_width = 2;
1120 if (unlikely(mem & 3 || len & 3))
1121 mem_width = 0;
1122
1123 desc->lli.saddr = mem;
1124 desc->lli.daddr = reg;
1125 desc->lli.ctrla = ctrla
1126 | ATC_SRC_WIDTH(mem_width)
1127 | len >> mem_width;
1128 desc->lli.ctrlb = ctrlb;
1129 desc->len = len;
1130
1131 atc_desc_chain(&first, &prev, desc);
1132 total_len += len;
1133 }
1134 break;
1135 case DMA_DEV_TO_MEM:
1136 reg_width = convert_buswidth(sconfig->src_addr_width);
1137 ctrla |= ATC_SRC_WIDTH(reg_width);
1138 ctrlb |= ATC_DST_ADDR_MODE_INCR
1139 | ATC_SRC_ADDR_MODE_FIXED
1140 | ATC_FC_PER2MEM
1141 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1142
1143 reg = sconfig->src_addr;
1144 for_each_sg(sgl, sg, sg_len, i) {
1145 struct at_desc *desc;
1146 u32 len;
1147 u32 mem;
1148
1149 desc = atc_desc_get(atchan);
1150 if (!desc)
1151 goto err_desc_get;
1152
1153 mem = sg_dma_address(sg);
1154 len = sg_dma_len(sg);
1155 if (unlikely(!len)) {
1156 dev_dbg(chan2dev(chan),
1157 "prep_slave_sg: sg(%d) data length is zero\n", i);
1158 goto err;
1159 }
1160 mem_width = 2;
1161 if (unlikely(mem & 3 || len & 3))
1162 mem_width = 0;
1163
1164 desc->lli.saddr = reg;
1165 desc->lli.daddr = mem;
1166 desc->lli.ctrla = ctrla
1167 | ATC_DST_WIDTH(mem_width)
1168 | len >> reg_width;
1169 desc->lli.ctrlb = ctrlb;
1170 desc->len = len;
1171
1172 atc_desc_chain(&first, &prev, desc);
1173 total_len += len;
1174 }
1175 break;
1176 default:
1177 return NULL;
1178 }
1179
1180 /* set end-of-link to the last link descriptor of list*/
1181 set_desc_eol(prev);
1182
1183 /* First descriptor of the chain embedds additional information */
1184 first->txd.cookie = -EBUSY;
1185 first->total_len = total_len;
1186
1187 /* first link descriptor of list is responsible of flags */
1188 first->txd.flags = flags; /* client is in control of this ack */
1189
1190 return &first->txd;
1191
1192err_desc_get:
1193 dev_err(chan2dev(chan), "not enough descriptors available\n");
1194err:
1195 atc_desc_put(atchan, first);
1196 return NULL;
1197}
1198
1199/*
1200 * atc_dma_cyclic_check_values
1201 * Check for too big/unaligned periods and unaligned DMA buffer
1202 */
1203static int
1204atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1205 size_t period_len)
1206{
1207 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1208 goto err_out;
1209 if (unlikely(period_len & ((1 << reg_width) - 1)))
1210 goto err_out;
1211 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1212 goto err_out;
1213
1214 return 0;
1215
1216err_out:
1217 return -EINVAL;
1218}
1219
1220/*
1221 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1222 */
1223static int
1224atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1225 unsigned int period_index, dma_addr_t buf_addr,
1226 unsigned int reg_width, size_t period_len,
1227 enum dma_transfer_direction direction)
1228{
1229 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1230 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1231 u32 ctrla;
1232
1233 /* prepare common CRTLA value */
1234 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1235 | ATC_DCSIZE(sconfig->dst_maxburst)
1236 | ATC_DST_WIDTH(reg_width)
1237 | ATC_SRC_WIDTH(reg_width)
1238 | period_len >> reg_width;
1239
1240 switch (direction) {
1241 case DMA_MEM_TO_DEV:
1242 desc->lli.saddr = buf_addr + (period_len * period_index);
1243 desc->lli.daddr = sconfig->dst_addr;
1244 desc->lli.ctrla = ctrla;
1245 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1246 | ATC_SRC_ADDR_MODE_INCR
1247 | ATC_FC_MEM2PER
1248 | ATC_SIF(atchan->mem_if)
1249 | ATC_DIF(atchan->per_if);
1250 desc->len = period_len;
1251 break;
1252
1253 case DMA_DEV_TO_MEM:
1254 desc->lli.saddr = sconfig->src_addr;
1255 desc->lli.daddr = buf_addr + (period_len * period_index);
1256 desc->lli.ctrla = ctrla;
1257 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1258 | ATC_SRC_ADDR_MODE_FIXED
1259 | ATC_FC_PER2MEM
1260 | ATC_SIF(atchan->per_if)
1261 | ATC_DIF(atchan->mem_if);
1262 desc->len = period_len;
1263 break;
1264
1265 default:
1266 return -EINVAL;
1267 }
1268
1269 return 0;
1270}
1271
1272/**
1273 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1274 * @chan: the DMA channel to prepare
1275 * @buf_addr: physical DMA address where the buffer starts
1276 * @buf_len: total number of bytes for the entire buffer
1277 * @period_len: number of bytes for each period
1278 * @direction: transfer direction, to or from device
1279 * @flags: tx descriptor status flags
1280 */
1281static struct dma_async_tx_descriptor *
1282atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1283 size_t period_len, enum dma_transfer_direction direction,
1284 unsigned long flags)
1285{
1286 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1287 struct at_dma_slave *atslave = chan->private;
1288 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1289 struct at_desc *first = NULL;
1290 struct at_desc *prev = NULL;
1291 unsigned long was_cyclic;
1292 unsigned int reg_width;
1293 unsigned int periods = buf_len / period_len;
1294 unsigned int i;
1295
1296 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1297 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1298 &buf_addr,
1299 periods, buf_len, period_len);
1300
1301 if (unlikely(!atslave || !buf_len || !period_len)) {
1302 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1303 return NULL;
1304 }
1305
1306 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1307 if (was_cyclic) {
1308 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1309 return NULL;
1310 }
1311
1312 if (unlikely(!is_slave_direction(direction)))
1313 goto err_out;
1314
1315 if (direction == DMA_MEM_TO_DEV)
1316 reg_width = convert_buswidth(sconfig->dst_addr_width);
1317 else
1318 reg_width = convert_buswidth(sconfig->src_addr_width);
1319
1320 /* Check for too big/unaligned periods and unaligned DMA buffer */
1321 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1322 goto err_out;
1323
1324 /* build cyclic linked list */
1325 for (i = 0; i < periods; i++) {
1326 struct at_desc *desc;
1327
1328 desc = atc_desc_get(atchan);
1329 if (!desc)
1330 goto err_desc_get;
1331
1332 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1333 reg_width, period_len, direction))
1334 goto err_desc_get;
1335
1336 atc_desc_chain(&first, &prev, desc);
1337 }
1338
1339 /* lets make a cyclic list */
1340 prev->lli.dscr = first->txd.phys;
1341
1342 /* First descriptor of the chain embedds additional information */
1343 first->txd.cookie = -EBUSY;
1344 first->total_len = buf_len;
1345
1346 return &first->txd;
1347
1348err_desc_get:
1349 dev_err(chan2dev(chan), "not enough descriptors available\n");
1350 atc_desc_put(atchan, first);
1351err_out:
1352 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1353 return NULL;
1354}
1355
1356static int atc_config(struct dma_chan *chan,
1357 struct dma_slave_config *sconfig)
1358{
1359 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1360
1361 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1362
1363 /* Check if it is chan is configured for slave transfers */
1364 if (!chan->private)
1365 return -EINVAL;
1366
1367 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1368
1369 convert_burst(&atchan->dma_sconfig.src_maxburst);
1370 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1371
1372 return 0;
1373}
1374
1375static int atc_pause(struct dma_chan *chan)
1376{
1377 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1378 struct at_dma *atdma = to_at_dma(chan->device);
1379 int chan_id = atchan->chan_common.chan_id;
1380 unsigned long flags;
1381
1382 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1383
1384 spin_lock_irqsave(&atchan->lock, flags);
1385
1386 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1387 set_bit(ATC_IS_PAUSED, &atchan->status);
1388
1389 spin_unlock_irqrestore(&atchan->lock, flags);
1390
1391 return 0;
1392}
1393
1394static int atc_resume(struct dma_chan *chan)
1395{
1396 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1397 struct at_dma *atdma = to_at_dma(chan->device);
1398 int chan_id = atchan->chan_common.chan_id;
1399 unsigned long flags;
1400
1401 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1402
1403 if (!atc_chan_is_paused(atchan))
1404 return 0;
1405
1406 spin_lock_irqsave(&atchan->lock, flags);
1407
1408 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1409 clear_bit(ATC_IS_PAUSED, &atchan->status);
1410
1411 spin_unlock_irqrestore(&atchan->lock, flags);
1412
1413 return 0;
1414}
1415
1416static int atc_terminate_all(struct dma_chan *chan)
1417{
1418 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1419 struct at_dma *atdma = to_at_dma(chan->device);
1420 int chan_id = atchan->chan_common.chan_id;
1421 struct at_desc *desc, *_desc;
1422 unsigned long flags;
1423
1424 LIST_HEAD(list);
1425
1426 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1427
1428 /*
1429 * This is only called when something went wrong elsewhere, so
1430 * we don't really care about the data. Just disable the
1431 * channel. We still have to poll the channel enable bit due
1432 * to AHB/HSB limitations.
1433 */
1434 spin_lock_irqsave(&atchan->lock, flags);
1435
1436 /* disabling channel: must also remove suspend state */
1437 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1438
1439 /* confirm that this channel is disabled */
1440 while (dma_readl(atdma, CHSR) & atchan->mask)
1441 cpu_relax();
1442
1443 /* active_list entries will end up before queued entries */
1444 list_splice_init(&atchan->queue, &list);
1445 list_splice_init(&atchan->active_list, &list);
1446
1447 spin_unlock_irqrestore(&atchan->lock, flags);
1448
1449 /* Flush all pending and queued descriptors */
1450 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451 atc_chain_complete(atchan, desc);
1452
1453 clear_bit(ATC_IS_PAUSED, &atchan->status);
1454 /* if channel dedicated to cyclic operations, free it */
1455 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457 return 0;
1458}
1459
1460/**
1461 * atc_tx_status - poll for transaction completion
1462 * @chan: DMA channel
1463 * @cookie: transaction identifier to check status of
1464 * @txstate: if not %NULL updated with transaction state
1465 *
1466 * If @txstate is passed in, upon return it reflect the driver
1467 * internal state and can be used with dma_async_is_complete() to check
1468 * the status of multiple cookies without re-checking hardware state.
1469 */
1470static enum dma_status
1471atc_tx_status(struct dma_chan *chan,
1472 dma_cookie_t cookie,
1473 struct dma_tx_state *txstate)
1474{
1475 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1476 unsigned long flags;
1477 enum dma_status ret;
1478 int bytes = 0;
1479
1480 ret = dma_cookie_status(chan, cookie, txstate);
1481 if (ret == DMA_COMPLETE)
1482 return ret;
1483 /*
1484 * There's no point calculating the residue if there's
1485 * no txstate to store the value.
1486 */
1487 if (!txstate)
1488 return DMA_ERROR;
1489
1490 spin_lock_irqsave(&atchan->lock, flags);
1491
1492 /* Get number of bytes left in the active transactions */
1493 bytes = atc_get_bytes_left(chan, cookie);
1494
1495 spin_unlock_irqrestore(&atchan->lock, flags);
1496
1497 if (unlikely(bytes < 0)) {
1498 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1499 return DMA_ERROR;
1500 } else {
1501 dma_set_residue(txstate, bytes);
1502 }
1503
1504 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1505 ret, cookie, bytes);
1506
1507 return ret;
1508}
1509
1510/**
1511 * atc_issue_pending - try to finish work
1512 * @chan: target DMA channel
1513 */
1514static void atc_issue_pending(struct dma_chan *chan)
1515{
1516 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1517
1518 dev_vdbg(chan2dev(chan), "issue_pending\n");
1519
1520 /* Not needed for cyclic transfers */
1521 if (atc_chan_is_cyclic(atchan))
1522 return;
1523
1524 atc_advance_work(atchan);
1525}
1526
1527/**
1528 * atc_alloc_chan_resources - allocate resources for DMA channel
1529 * @chan: allocate descriptor resources for this channel
1530 *
1531 * return - the number of allocated descriptors
1532 */
1533static int atc_alloc_chan_resources(struct dma_chan *chan)
1534{
1535 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1536 struct at_dma *atdma = to_at_dma(chan->device);
1537 struct at_desc *desc;
1538 struct at_dma_slave *atslave;
1539 int i;
1540 u32 cfg;
1541
1542 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1543
1544 /* ASSERT: channel is idle */
1545 if (atc_chan_is_enabled(atchan)) {
1546 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1547 return -EIO;
1548 }
1549
1550 if (!list_empty(&atchan->free_list)) {
1551 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1552 return -EIO;
1553 }
1554
1555 cfg = ATC_DEFAULT_CFG;
1556
1557 atslave = chan->private;
1558 if (atslave) {
1559 /*
1560 * We need controller-specific data to set up slave
1561 * transfers.
1562 */
1563 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1564
1565 /* if cfg configuration specified take it instead of default */
1566 if (atslave->cfg)
1567 cfg = atslave->cfg;
1568 }
1569
1570 /* Allocate initial pool of descriptors */
1571 for (i = 0; i < init_nr_desc_per_channel; i++) {
1572 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1573 if (!desc) {
1574 dev_err(atdma->dma_common.dev,
1575 "Only %d initial descriptors\n", i);
1576 break;
1577 }
1578 list_add_tail(&desc->desc_node, &atchan->free_list);
1579 }
1580
1581 dma_cookie_init(chan);
1582
1583 /* channel parameters */
1584 channel_writel(atchan, CFG, cfg);
1585
1586 dev_dbg(chan2dev(chan),
1587 "alloc_chan_resources: allocated %d descriptors\n", i);
1588
1589 return i;
1590}
1591
1592/**
1593 * atc_free_chan_resources - free all channel resources
1594 * @chan: DMA channel
1595 */
1596static void atc_free_chan_resources(struct dma_chan *chan)
1597{
1598 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1599 struct at_dma *atdma = to_at_dma(chan->device);
1600 struct at_desc *desc, *_desc;
1601 LIST_HEAD(list);
1602
1603 /* ASSERT: channel is idle */
1604 BUG_ON(!list_empty(&atchan->active_list));
1605 BUG_ON(!list_empty(&atchan->queue));
1606 BUG_ON(atc_chan_is_enabled(atchan));
1607
1608 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1609 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1610 list_del(&desc->desc_node);
1611 /* free link descriptor */
1612 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1613 }
1614 list_splice_init(&atchan->free_list, &list);
1615 atchan->status = 0;
1616
1617 /*
1618 * Free atslave allocated in at_dma_xlate()
1619 */
1620 kfree(chan->private);
1621 chan->private = NULL;
1622
1623 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1624}
1625
1626#ifdef CONFIG_OF
1627static bool at_dma_filter(struct dma_chan *chan, void *slave)
1628{
1629 struct at_dma_slave *atslave = slave;
1630
1631 if (atslave->dma_dev == chan->device->dev) {
1632 chan->private = atslave;
1633 return true;
1634 } else {
1635 return false;
1636 }
1637}
1638
1639static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1640 struct of_dma *of_dma)
1641{
1642 struct dma_chan *chan;
1643 struct at_dma_chan *atchan;
1644 struct at_dma_slave *atslave;
1645 dma_cap_mask_t mask;
1646 unsigned int per_id;
1647 struct platform_device *dmac_pdev;
1648
1649 if (dma_spec->args_count != 2)
1650 return NULL;
1651
1652 dmac_pdev = of_find_device_by_node(dma_spec->np);
1653 if (!dmac_pdev)
1654 return NULL;
1655
1656 dma_cap_zero(mask);
1657 dma_cap_set(DMA_SLAVE, mask);
1658
1659 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1660 if (!atslave) {
1661 put_device(&dmac_pdev->dev);
1662 return NULL;
1663 }
1664
1665 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1666 /*
1667 * We can fill both SRC_PER and DST_PER, one of these fields will be
1668 * ignored depending on DMA transfer direction.
1669 */
1670 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1671 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1672 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1673 /*
1674 * We have to translate the value we get from the device tree since
1675 * the half FIFO configuration value had to be 0 to keep backward
1676 * compatibility.
1677 */
1678 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1679 case AT91_DMA_CFG_FIFOCFG_ALAP:
1680 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1681 break;
1682 case AT91_DMA_CFG_FIFOCFG_ASAP:
1683 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1684 break;
1685 case AT91_DMA_CFG_FIFOCFG_HALF:
1686 default:
1687 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1688 }
1689 atslave->dma_dev = &dmac_pdev->dev;
1690
1691 chan = dma_request_channel(mask, at_dma_filter, atslave);
1692 if (!chan) {
1693 put_device(&dmac_pdev->dev);
1694 kfree(atslave);
1695 return NULL;
1696 }
1697
1698 atchan = to_at_dma_chan(chan);
1699 atchan->per_if = dma_spec->args[0] & 0xff;
1700 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1701
1702 return chan;
1703}
1704#else
1705static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1706 struct of_dma *of_dma)
1707{
1708 return NULL;
1709}
1710#endif
1711
1712/*-- Module Management -----------------------------------------------*/
1713
1714/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1715static struct at_dma_platform_data at91sam9rl_config = {
1716 .nr_channels = 2,
1717};
1718static struct at_dma_platform_data at91sam9g45_config = {
1719 .nr_channels = 8,
1720};
1721
1722#if defined(CONFIG_OF)
1723static const struct of_device_id atmel_dma_dt_ids[] = {
1724 {
1725 .compatible = "atmel,at91sam9rl-dma",
1726 .data = &at91sam9rl_config,
1727 }, {
1728 .compatible = "atmel,at91sam9g45-dma",
1729 .data = &at91sam9g45_config,
1730 }, {
1731 /* sentinel */
1732 }
1733};
1734
1735MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1736#endif
1737
1738static const struct platform_device_id atdma_devtypes[] = {
1739 {
1740 .name = "at91sam9rl_dma",
1741 .driver_data = (unsigned long) &at91sam9rl_config,
1742 }, {
1743 .name = "at91sam9g45_dma",
1744 .driver_data = (unsigned long) &at91sam9g45_config,
1745 }, {
1746 /* sentinel */
1747 }
1748};
1749
1750static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1751 struct platform_device *pdev)
1752{
1753 if (pdev->dev.of_node) {
1754 const struct of_device_id *match;
1755 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1756 if (match == NULL)
1757 return NULL;
1758 return match->data;
1759 }
1760 return (struct at_dma_platform_data *)
1761 platform_get_device_id(pdev)->driver_data;
1762}
1763
1764/**
1765 * at_dma_off - disable DMA controller
1766 * @atdma: the Atmel HDAMC device
1767 */
1768static void at_dma_off(struct at_dma *atdma)
1769{
1770 dma_writel(atdma, EN, 0);
1771
1772 /* disable all interrupts */
1773 dma_writel(atdma, EBCIDR, -1L);
1774
1775 /* confirm that all channels are disabled */
1776 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1777 cpu_relax();
1778}
1779
1780static int __init at_dma_probe(struct platform_device *pdev)
1781{
1782 struct resource *io;
1783 struct at_dma *atdma;
1784 size_t size;
1785 int irq;
1786 int err;
1787 int i;
1788 const struct at_dma_platform_data *plat_dat;
1789
1790 /* setup platform data for each SoC */
1791 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1792 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1793 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1794 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1795 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1796 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1797 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1798
1799 /* get DMA parameters from controller type */
1800 plat_dat = at_dma_get_driver_data(pdev);
1801 if (!plat_dat)
1802 return -ENODEV;
1803
1804 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1805 if (!io)
1806 return -EINVAL;
1807
1808 irq = platform_get_irq(pdev, 0);
1809 if (irq < 0)
1810 return irq;
1811
1812 size = sizeof(struct at_dma);
1813 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1814 atdma = kzalloc(size, GFP_KERNEL);
1815 if (!atdma)
1816 return -ENOMEM;
1817
1818 /* discover transaction capabilities */
1819 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1820 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1821
1822 size = resource_size(io);
1823 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1824 err = -EBUSY;
1825 goto err_kfree;
1826 }
1827
1828 atdma->regs = ioremap(io->start, size);
1829 if (!atdma->regs) {
1830 err = -ENOMEM;
1831 goto err_release_r;
1832 }
1833
1834 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1835 if (IS_ERR(atdma->clk)) {
1836 err = PTR_ERR(atdma->clk);
1837 goto err_clk;
1838 }
1839 err = clk_prepare_enable(atdma->clk);
1840 if (err)
1841 goto err_clk_prepare;
1842
1843 /* force dma off, just in case */
1844 at_dma_off(atdma);
1845
1846 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1847 if (err)
1848 goto err_irq;
1849
1850 platform_set_drvdata(pdev, atdma);
1851
1852 /* create a pool of consistent memory blocks for hardware descriptors */
1853 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1854 &pdev->dev, sizeof(struct at_desc),
1855 4 /* word alignment */, 0);
1856 if (!atdma->dma_desc_pool) {
1857 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1858 err = -ENOMEM;
1859 goto err_desc_pool_create;
1860 }
1861
1862 /* create a pool of consistent memory blocks for memset blocks */
1863 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1864 &pdev->dev, sizeof(int), 4, 0);
1865 if (!atdma->memset_pool) {
1866 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1867 err = -ENOMEM;
1868 goto err_memset_pool_create;
1869 }
1870
1871 /* clear any pending interrupt */
1872 while (dma_readl(atdma, EBCISR))
1873 cpu_relax();
1874
1875 /* initialize channels related values */
1876 INIT_LIST_HEAD(&atdma->dma_common.channels);
1877 for (i = 0; i < plat_dat->nr_channels; i++) {
1878 struct at_dma_chan *atchan = &atdma->chan[i];
1879
1880 atchan->mem_if = AT_DMA_MEM_IF;
1881 atchan->per_if = AT_DMA_PER_IF;
1882 atchan->chan_common.device = &atdma->dma_common;
1883 dma_cookie_init(&atchan->chan_common);
1884 list_add_tail(&atchan->chan_common.device_node,
1885 &atdma->dma_common.channels);
1886
1887 atchan->ch_regs = atdma->regs + ch_regs(i);
1888 spin_lock_init(&atchan->lock);
1889 atchan->mask = 1 << i;
1890
1891 INIT_LIST_HEAD(&atchan->active_list);
1892 INIT_LIST_HEAD(&atchan->queue);
1893 INIT_LIST_HEAD(&atchan->free_list);
1894
1895 tasklet_init(&atchan->tasklet, atc_tasklet,
1896 (unsigned long)atchan);
1897 atc_enable_chan_irq(atdma, i);
1898 }
1899
1900 /* set base routines */
1901 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1902 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1903 atdma->dma_common.device_tx_status = atc_tx_status;
1904 atdma->dma_common.device_issue_pending = atc_issue_pending;
1905 atdma->dma_common.dev = &pdev->dev;
1906
1907 /* set prep routines based on capability */
1908 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1909 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1910
1911 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1912 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1913
1914 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1915 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1916 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1917 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1918 }
1919
1920 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1921 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1922 /* controller can do slave DMA: can trigger cyclic transfers */
1923 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1924 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1925 atdma->dma_common.device_config = atc_config;
1926 atdma->dma_common.device_pause = atc_pause;
1927 atdma->dma_common.device_resume = atc_resume;
1928 atdma->dma_common.device_terminate_all = atc_terminate_all;
1929 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1930 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1931 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1932 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1933 }
1934
1935 dma_writel(atdma, EN, AT_DMA_ENABLE);
1936
1937 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1938 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1939 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1940 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1941 plat_dat->nr_channels);
1942
1943 dma_async_device_register(&atdma->dma_common);
1944
1945 /*
1946 * Do not return an error if the dmac node is not present in order to
1947 * not break the existing way of requesting channel with
1948 * dma_request_channel().
1949 */
1950 if (pdev->dev.of_node) {
1951 err = of_dma_controller_register(pdev->dev.of_node,
1952 at_dma_xlate, atdma);
1953 if (err) {
1954 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1955 goto err_of_dma_controller_register;
1956 }
1957 }
1958
1959 return 0;
1960
1961err_of_dma_controller_register:
1962 dma_async_device_unregister(&atdma->dma_common);
1963 dma_pool_destroy(atdma->memset_pool);
1964err_memset_pool_create:
1965 dma_pool_destroy(atdma->dma_desc_pool);
1966err_desc_pool_create:
1967 free_irq(platform_get_irq(pdev, 0), atdma);
1968err_irq:
1969 clk_disable_unprepare(atdma->clk);
1970err_clk_prepare:
1971 clk_put(atdma->clk);
1972err_clk:
1973 iounmap(atdma->regs);
1974 atdma->regs = NULL;
1975err_release_r:
1976 release_mem_region(io->start, size);
1977err_kfree:
1978 kfree(atdma);
1979 return err;
1980}
1981
1982static int at_dma_remove(struct platform_device *pdev)
1983{
1984 struct at_dma *atdma = platform_get_drvdata(pdev);
1985 struct dma_chan *chan, *_chan;
1986 struct resource *io;
1987
1988 at_dma_off(atdma);
1989 if (pdev->dev.of_node)
1990 of_dma_controller_free(pdev->dev.of_node);
1991 dma_async_device_unregister(&atdma->dma_common);
1992
1993 dma_pool_destroy(atdma->memset_pool);
1994 dma_pool_destroy(atdma->dma_desc_pool);
1995 free_irq(platform_get_irq(pdev, 0), atdma);
1996
1997 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1998 device_node) {
1999 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2000
2001 /* Disable interrupts */
2002 atc_disable_chan_irq(atdma, chan->chan_id);
2003
2004 tasklet_kill(&atchan->tasklet);
2005 list_del(&chan->device_node);
2006 }
2007
2008 clk_disable_unprepare(atdma->clk);
2009 clk_put(atdma->clk);
2010
2011 iounmap(atdma->regs);
2012 atdma->regs = NULL;
2013
2014 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2015 release_mem_region(io->start, resource_size(io));
2016
2017 kfree(atdma);
2018
2019 return 0;
2020}
2021
2022static void at_dma_shutdown(struct platform_device *pdev)
2023{
2024 struct at_dma *atdma = platform_get_drvdata(pdev);
2025
2026 at_dma_off(platform_get_drvdata(pdev));
2027 clk_disable_unprepare(atdma->clk);
2028}
2029
2030static int at_dma_prepare(struct device *dev)
2031{
2032 struct at_dma *atdma = dev_get_drvdata(dev);
2033 struct dma_chan *chan, *_chan;
2034
2035 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2036 device_node) {
2037 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2038 /* wait for transaction completion (except in cyclic case) */
2039 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2040 return -EAGAIN;
2041 }
2042 return 0;
2043}
2044
2045static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2046{
2047 struct dma_chan *chan = &atchan->chan_common;
2048
2049 /* Channel should be paused by user
2050 * do it anyway even if it is not done already */
2051 if (!atc_chan_is_paused(atchan)) {
2052 dev_warn(chan2dev(chan),
2053 "cyclic channel not paused, should be done by channel user\n");
2054 atc_pause(chan);
2055 }
2056
2057 /* now preserve additional data for cyclic operations */
2058 /* next descriptor address in the cyclic list */
2059 atchan->save_dscr = channel_readl(atchan, DSCR);
2060
2061 vdbg_dump_regs(atchan);
2062}
2063
2064static int at_dma_suspend_noirq(struct device *dev)
2065{
2066 struct at_dma *atdma = dev_get_drvdata(dev);
2067 struct dma_chan *chan, *_chan;
2068
2069 /* preserve data */
2070 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2071 device_node) {
2072 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2073
2074 if (atc_chan_is_cyclic(atchan))
2075 atc_suspend_cyclic(atchan);
2076 atchan->save_cfg = channel_readl(atchan, CFG);
2077 }
2078 atdma->save_imr = dma_readl(atdma, EBCIMR);
2079
2080 /* disable DMA controller */
2081 at_dma_off(atdma);
2082 clk_disable_unprepare(atdma->clk);
2083 return 0;
2084}
2085
2086static void atc_resume_cyclic(struct at_dma_chan *atchan)
2087{
2088 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2089
2090 /* restore channel status for cyclic descriptors list:
2091 * next descriptor in the cyclic list at the time of suspend */
2092 channel_writel(atchan, SADDR, 0);
2093 channel_writel(atchan, DADDR, 0);
2094 channel_writel(atchan, CTRLA, 0);
2095 channel_writel(atchan, CTRLB, 0);
2096 channel_writel(atchan, DSCR, atchan->save_dscr);
2097 dma_writel(atdma, CHER, atchan->mask);
2098
2099 /* channel pause status should be removed by channel user
2100 * We cannot take the initiative to do it here */
2101
2102 vdbg_dump_regs(atchan);
2103}
2104
2105static int at_dma_resume_noirq(struct device *dev)
2106{
2107 struct at_dma *atdma = dev_get_drvdata(dev);
2108 struct dma_chan *chan, *_chan;
2109
2110 /* bring back DMA controller */
2111 clk_prepare_enable(atdma->clk);
2112 dma_writel(atdma, EN, AT_DMA_ENABLE);
2113
2114 /* clear any pending interrupt */
2115 while (dma_readl(atdma, EBCISR))
2116 cpu_relax();
2117
2118 /* restore saved data */
2119 dma_writel(atdma, EBCIER, atdma->save_imr);
2120 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2121 device_node) {
2122 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2123
2124 channel_writel(atchan, CFG, atchan->save_cfg);
2125 if (atc_chan_is_cyclic(atchan))
2126 atc_resume_cyclic(atchan);
2127 }
2128 return 0;
2129}
2130
2131static const struct dev_pm_ops at_dma_dev_pm_ops = {
2132 .prepare = at_dma_prepare,
2133 .suspend_noirq = at_dma_suspend_noirq,
2134 .resume_noirq = at_dma_resume_noirq,
2135};
2136
2137static struct platform_driver at_dma_driver = {
2138 .remove = at_dma_remove,
2139 .shutdown = at_dma_shutdown,
2140 .id_table = atdma_devtypes,
2141 .driver = {
2142 .name = "at_hdmac",
2143 .pm = &at_dma_dev_pm_ops,
2144 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2145 },
2146};
2147
2148static int __init at_dma_init(void)
2149{
2150 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2151}
2152subsys_initcall(at_dma_init);
2153
2154static void __exit at_dma_exit(void)
2155{
2156 platform_driver_unregister(&at_dma_driver);
2157}
2158module_exit(at_dma_exit);
2159
2160MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2161MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2162MODULE_LICENSE("GPL");
2163MODULE_ALIAS("platform:at_hdmac");