Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
  16#include "blk.h"
  17#include "blk-mq.h"
  18#include "blk-mq-debugfs.h"
  19#include "blk-mq-sched.h"
  20#include "blk-mq-tag.h"
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/kyber.h>
  24
  25/*
  26 * Scheduling domains: the device is divided into multiple domains based on the
  27 * request type.
  28 */
  29enum {
  30	KYBER_READ,
  31	KYBER_WRITE,
  32	KYBER_DISCARD,
  33	KYBER_OTHER,
  34	KYBER_NUM_DOMAINS,
  35};
  36
  37static const char *kyber_domain_names[] = {
  38	[KYBER_READ] = "READ",
  39	[KYBER_WRITE] = "WRITE",
  40	[KYBER_DISCARD] = "DISCARD",
  41	[KYBER_OTHER] = "OTHER",
  42};
  43
  44enum {
  45	/*
  46	 * In order to prevent starvation of synchronous requests by a flood of
  47	 * asynchronous requests, we reserve 25% of requests for synchronous
  48	 * operations.
  49	 */
  50	KYBER_ASYNC_PERCENT = 75,
  51};
  52
  53/*
  54 * Maximum device-wide depth for each scheduling domain.
  55 *
  56 * Even for fast devices with lots of tags like NVMe, you can saturate the
  57 * device with only a fraction of the maximum possible queue depth. So, we cap
  58 * these to a reasonable value.
  59 */
  60static const unsigned int kyber_depth[] = {
  61	[KYBER_READ] = 256,
  62	[KYBER_WRITE] = 128,
  63	[KYBER_DISCARD] = 64,
  64	[KYBER_OTHER] = 16,
  65};
  66
  67/*
  68 * Default latency targets for each scheduling domain.
  69 */
  70static const u64 kyber_latency_targets[] = {
  71	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  72	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  73	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  74};
  75
  76/*
  77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  78 * domain.
  79 */
  80static const unsigned int kyber_batch_size[] = {
  81	[KYBER_READ] = 16,
  82	[KYBER_WRITE] = 8,
  83	[KYBER_DISCARD] = 1,
  84	[KYBER_OTHER] = 1,
  85};
  86
  87/*
  88 * Requests latencies are recorded in a histogram with buckets defined relative
  89 * to the target latency:
  90 *
  91 * <= 1/4 * target latency
  92 * <= 1/2 * target latency
  93 * <= 3/4 * target latency
  94 * <= target latency
  95 * <= 1 1/4 * target latency
  96 * <= 1 1/2 * target latency
  97 * <= 1 3/4 * target latency
  98 * > 1 3/4 * target latency
  99 */
 100enum {
 101	/*
 102	 * The width of the latency histogram buckets is
 103	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 104	 */
 105	KYBER_LATENCY_SHIFT = 2,
 106	/*
 107	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 108	 * thus, "good".
 109	 */
 110	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 111	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 112	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 113};
 114
 115/*
 116 * We measure both the total latency and the I/O latency (i.e., latency after
 117 * submitting to the device).
 118 */
 119enum {
 120	KYBER_TOTAL_LATENCY,
 121	KYBER_IO_LATENCY,
 122};
 123
 124static const char *kyber_latency_type_names[] = {
 125	[KYBER_TOTAL_LATENCY] = "total",
 126	[KYBER_IO_LATENCY] = "I/O",
 127};
 128
 129/*
 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 131 * domain except for KYBER_OTHER.
 132 */
 133struct kyber_cpu_latency {
 134	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 135};
 136
 137/*
 138 * There is a same mapping between ctx & hctx and kcq & khd,
 139 * we use request->mq_ctx->index_hw to index the kcq in khd.
 140 */
 141struct kyber_ctx_queue {
 142	/*
 143	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 144	 * Also protect the rqs on rq_list when merge.
 145	 */
 146	spinlock_t lock;
 147	struct list_head rq_list[KYBER_NUM_DOMAINS];
 148} ____cacheline_aligned_in_smp;
 149
 150struct kyber_queue_data {
 151	struct request_queue *q;
 152
 153	/*
 154	 * Each scheduling domain has a limited number of in-flight requests
 155	 * device-wide, limited by these tokens.
 156	 */
 157	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 158
 159	/*
 160	 * Async request percentage, converted to per-word depth for
 161	 * sbitmap_get_shallow().
 162	 */
 163	unsigned int async_depth;
 164
 165	struct kyber_cpu_latency __percpu *cpu_latency;
 166
 167	/* Timer for stats aggregation and adjusting domain tokens. */
 168	struct timer_list timer;
 169
 170	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 171
 172	unsigned long latency_timeout[KYBER_OTHER];
 173
 174	int domain_p99[KYBER_OTHER];
 175
 176	/* Target latencies in nanoseconds. */
 177	u64 latency_targets[KYBER_OTHER];
 178};
 179
 180struct kyber_hctx_data {
 181	spinlock_t lock;
 182	struct list_head rqs[KYBER_NUM_DOMAINS];
 183	unsigned int cur_domain;
 184	unsigned int batching;
 185	struct kyber_ctx_queue *kcqs;
 186	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 187	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 188	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 189	atomic_t wait_index[KYBER_NUM_DOMAINS];
 190};
 191
 192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 193			     void *key);
 194
 195static unsigned int kyber_sched_domain(unsigned int op)
 196{
 197	switch (op & REQ_OP_MASK) {
 198	case REQ_OP_READ:
 199		return KYBER_READ;
 200	case REQ_OP_WRITE:
 201		return KYBER_WRITE;
 202	case REQ_OP_DISCARD:
 203		return KYBER_DISCARD;
 204	default:
 205		return KYBER_OTHER;
 206	}
 207}
 208
 209static void flush_latency_buckets(struct kyber_queue_data *kqd,
 210				  struct kyber_cpu_latency *cpu_latency,
 211				  unsigned int sched_domain, unsigned int type)
 212{
 213	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 214	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 215	unsigned int bucket;
 216
 217	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 218		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 219}
 220
 221/*
 222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 223 * aren't enough samples yet.
 224 */
 225static int calculate_percentile(struct kyber_queue_data *kqd,
 226				unsigned int sched_domain, unsigned int type,
 227				unsigned int percentile)
 228{
 229	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 230	unsigned int bucket, samples = 0, percentile_samples;
 231
 232	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 233		samples += buckets[bucket];
 234
 235	if (!samples)
 236		return -1;
 237
 238	/*
 239	 * We do the calculation once we have 500 samples or one second passes
 240	 * since the first sample was recorded, whichever comes first.
 241	 */
 242	if (!kqd->latency_timeout[sched_domain])
 243		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 244	if (samples < 500 &&
 245	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 246		return -1;
 247	}
 248	kqd->latency_timeout[sched_domain] = 0;
 249
 250	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 251	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 252		if (buckets[bucket] >= percentile_samples)
 253			break;
 254		percentile_samples -= buckets[bucket];
 255	}
 256	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 257
 258	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 259			    kyber_latency_type_names[type], percentile,
 260			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 261
 262	return bucket;
 263}
 264
 265static void kyber_resize_domain(struct kyber_queue_data *kqd,
 266				unsigned int sched_domain, unsigned int depth)
 267{
 268	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 269	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 270		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 271		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 272				   depth);
 273	}
 274}
 275
 276static void kyber_timer_fn(struct timer_list *t)
 277{
 278	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 279	unsigned int sched_domain;
 280	int cpu;
 281	bool bad = false;
 282
 283	/* Sum all of the per-cpu latency histograms. */
 284	for_each_online_cpu(cpu) {
 285		struct kyber_cpu_latency *cpu_latency;
 286
 287		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 288		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 289			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 290					      KYBER_TOTAL_LATENCY);
 291			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292					      KYBER_IO_LATENCY);
 293		}
 294	}
 295
 296	/*
 297	 * Check if any domains have a high I/O latency, which might indicate
 298	 * congestion in the device. Note that we use the p90; we don't want to
 299	 * be too sensitive to outliers here.
 300	 */
 301	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 302		int p90;
 303
 304		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 305					   90);
 306		if (p90 >= KYBER_GOOD_BUCKETS)
 307			bad = true;
 308	}
 309
 310	/*
 311	 * Adjust the scheduling domain depths. If we determined that there was
 312	 * congestion, we throttle all domains with good latencies. Either way,
 313	 * we ease up on throttling domains with bad latencies.
 314	 */
 315	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 316		unsigned int orig_depth, depth;
 317		int p99;
 318
 319		p99 = calculate_percentile(kqd, sched_domain,
 320					   KYBER_TOTAL_LATENCY, 99);
 321		/*
 322		 * This is kind of subtle: different domains will not
 323		 * necessarily have enough samples to calculate the latency
 324		 * percentiles during the same window, so we have to remember
 325		 * the p99 for the next time we observe congestion; once we do,
 326		 * we don't want to throttle again until we get more data, so we
 327		 * reset it to -1.
 328		 */
 329		if (bad) {
 330			if (p99 < 0)
 331				p99 = kqd->domain_p99[sched_domain];
 332			kqd->domain_p99[sched_domain] = -1;
 333		} else if (p99 >= 0) {
 334			kqd->domain_p99[sched_domain] = p99;
 335		}
 336		if (p99 < 0)
 337			continue;
 338
 339		/*
 340		 * If this domain has bad latency, throttle less. Otherwise,
 341		 * throttle more iff we determined that there is congestion.
 342		 *
 343		 * The new depth is scaled linearly with the p99 latency vs the
 344		 * latency target. E.g., if the p99 is 3/4 of the target, then
 345		 * we throttle down to 3/4 of the current depth, and if the p99
 346		 * is 2x the target, then we double the depth.
 347		 */
 348		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 349			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 350			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 351			kyber_resize_domain(kqd, sched_domain, depth);
 352		}
 353	}
 354}
 355
 356static unsigned int kyber_sched_tags_shift(struct request_queue *q)
 357{
 358	/*
 359	 * All of the hardware queues have the same depth, so we can just grab
 360	 * the shift of the first one.
 361	 */
 362	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
 363}
 364
 365static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 366{
 367	struct kyber_queue_data *kqd;
 368	unsigned int shift;
 369	int ret = -ENOMEM;
 370	int i;
 371
 372	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 373	if (!kqd)
 374		goto err;
 375
 376	kqd->q = q;
 377
 378	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 379					    GFP_KERNEL | __GFP_ZERO);
 380	if (!kqd->cpu_latency)
 381		goto err_kqd;
 382
 383	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 384
 385	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 386		WARN_ON(!kyber_depth[i]);
 387		WARN_ON(!kyber_batch_size[i]);
 388		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 389					      kyber_depth[i], -1, false,
 390					      GFP_KERNEL, q->node);
 391		if (ret) {
 392			while (--i >= 0)
 393				sbitmap_queue_free(&kqd->domain_tokens[i]);
 394			goto err_buckets;
 395		}
 396	}
 397
 398	for (i = 0; i < KYBER_OTHER; i++) {
 399		kqd->domain_p99[i] = -1;
 400		kqd->latency_targets[i] = kyber_latency_targets[i];
 401	}
 402
 403	shift = kyber_sched_tags_shift(q);
 404	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 405
 406	return kqd;
 407
 408err_buckets:
 409	free_percpu(kqd->cpu_latency);
 410err_kqd:
 411	kfree(kqd);
 412err:
 413	return ERR_PTR(ret);
 414}
 415
 416static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 417{
 418	struct kyber_queue_data *kqd;
 419	struct elevator_queue *eq;
 420
 421	eq = elevator_alloc(q, e);
 422	if (!eq)
 423		return -ENOMEM;
 424
 425	kqd = kyber_queue_data_alloc(q);
 426	if (IS_ERR(kqd)) {
 427		kobject_put(&eq->kobj);
 428		return PTR_ERR(kqd);
 429	}
 430
 431	blk_stat_enable_accounting(q);
 432
 433	eq->elevator_data = kqd;
 434	q->elevator = eq;
 435
 436	return 0;
 437}
 438
 439static void kyber_exit_sched(struct elevator_queue *e)
 440{
 441	struct kyber_queue_data *kqd = e->elevator_data;
 442	int i;
 443
 444	del_timer_sync(&kqd->timer);
 445
 446	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447		sbitmap_queue_free(&kqd->domain_tokens[i]);
 448	free_percpu(kqd->cpu_latency);
 449	kfree(kqd);
 450}
 451
 452static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 453{
 454	unsigned int i;
 455
 456	spin_lock_init(&kcq->lock);
 457	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 458		INIT_LIST_HEAD(&kcq->rq_list[i]);
 459}
 460
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 464	struct kyber_hctx_data *khd;
 465	int i;
 466
 467	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 468	if (!khd)
 469		return -ENOMEM;
 470
 471	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 472				       sizeof(struct kyber_ctx_queue),
 473				       GFP_KERNEL, hctx->numa_node);
 474	if (!khd->kcqs)
 475		goto err_khd;
 476
 477	for (i = 0; i < hctx->nr_ctx; i++)
 478		kyber_ctx_queue_init(&khd->kcqs[i]);
 479
 480	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 481		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 482				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
 483			while (--i >= 0)
 484				sbitmap_free(&khd->kcq_map[i]);
 485			goto err_kcqs;
 486		}
 487	}
 488
 489	spin_lock_init(&khd->lock);
 490
 491	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492		INIT_LIST_HEAD(&khd->rqs[i]);
 493		khd->domain_wait[i].sbq = NULL;
 494		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495					  kyber_domain_wake);
 496		khd->domain_wait[i].wait.private = hctx;
 497		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498		atomic_set(&khd->wait_index[i], 0);
 499	}
 500
 501	khd->cur_domain = 0;
 502	khd->batching = 0;
 503
 504	hctx->sched_data = khd;
 505	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
 506					kqd->async_depth);
 507
 508	return 0;
 509
 510err_kcqs:
 511	kfree(khd->kcqs);
 512err_khd:
 513	kfree(khd);
 514	return -ENOMEM;
 515}
 516
 517static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 518{
 519	struct kyber_hctx_data *khd = hctx->sched_data;
 520	int i;
 521
 522	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 523		sbitmap_free(&khd->kcq_map[i]);
 524	kfree(khd->kcqs);
 525	kfree(hctx->sched_data);
 526}
 527
 528static int rq_get_domain_token(struct request *rq)
 529{
 530	return (long)rq->elv.priv[0];
 531}
 532
 533static void rq_set_domain_token(struct request *rq, int token)
 534{
 535	rq->elv.priv[0] = (void *)(long)token;
 536}
 537
 538static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 539				  struct request *rq)
 540{
 541	unsigned int sched_domain;
 542	int nr;
 543
 544	nr = rq_get_domain_token(rq);
 545	if (nr != -1) {
 546		sched_domain = kyber_sched_domain(rq->cmd_flags);
 547		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 548				    rq->mq_ctx->cpu);
 549	}
 550}
 551
 552static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 553{
 554	/*
 555	 * We use the scheduler tags as per-hardware queue queueing tokens.
 556	 * Async requests can be limited at this stage.
 557	 */
 558	if (!op_is_sync(op)) {
 559		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 560
 561		data->shallow_depth = kqd->async_depth;
 562	}
 563}
 564
 565static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
 566		unsigned int nr_segs)
 567{
 568	struct kyber_hctx_data *khd = hctx->sched_data;
 569	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
 570	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573	bool merged;
 574
 575	spin_lock(&kcq->lock);
 576	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577	spin_unlock(&kcq->lock);
 578
 579	return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq)
 583{
 584	rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588				  struct list_head *rq_list, bool at_head)
 589{
 590	struct kyber_hctx_data *khd = hctx->sched_data;
 591	struct request *rq, *next;
 592
 593	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596		struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598		spin_lock(&kcq->lock);
 599		if (at_head)
 600			list_move(&rq->queuelist, head);
 601		else
 602			list_move_tail(&rq->queuelist, head);
 603		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 604				rq->mq_ctx->index_hw[hctx->type]);
 605		blk_mq_sched_request_inserted(rq);
 606		spin_unlock(&kcq->lock);
 607	}
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614	rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618			       unsigned int sched_domain, unsigned int type,
 619			       u64 target, u64 latency)
 620{
 621	unsigned int bucket;
 622	u64 divisor;
 623
 624	if (latency > 0) {
 625		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627			       KYBER_LATENCY_BUCKETS - 1);
 628	} else {
 629		bucket = 0;
 630	}
 631
 632	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638	struct kyber_cpu_latency *cpu_latency;
 639	unsigned int sched_domain;
 640	u64 target;
 641
 642	sched_domain = kyber_sched_domain(rq->cmd_flags);
 643	if (sched_domain == KYBER_OTHER)
 644		return;
 645
 646	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647	target = kqd->latency_targets[sched_domain];
 648	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649			   target, now - rq->start_time_ns);
 650	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651			   now - rq->io_start_time_ns);
 652	put_cpu_ptr(kqd->cpu_latency);
 653
 654	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 656
 657struct flush_kcq_data {
 658	struct kyber_hctx_data *khd;
 659	unsigned int sched_domain;
 660	struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665	struct flush_kcq_data *flush_data = data;
 666	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668	spin_lock(&kcq->lock);
 669	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670			      flush_data->list);
 671	sbitmap_clear_bit(sb, bitnr);
 672	spin_unlock(&kcq->lock);
 673
 674	return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678				  unsigned int sched_domain,
 679				  struct list_head *list)
 680{
 681	struct flush_kcq_data data = {
 682		.khd = khd,
 683		.sched_domain = sched_domain,
 684		.list = list,
 685	};
 686
 687	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688			     flush_busy_kcq, &data);
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692			     void *key)
 693{
 694	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697	sbitmap_del_wait_queue(wait);
 698	blk_mq_run_hw_queue(hctx, true);
 699	return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703				  struct kyber_hctx_data *khd,
 704				  struct blk_mq_hw_ctx *hctx)
 705{
 706	unsigned int sched_domain = khd->cur_domain;
 707	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709	struct sbq_wait_state *ws;
 710	int nr;
 711
 712	nr = __sbitmap_queue_get(domain_tokens);
 713
 714	/*
 715	 * If we failed to get a domain token, make sure the hardware queue is
 716	 * run when one becomes available. Note that this is serialized on
 717	 * khd->lock, but we still need to be careful about the waker.
 718	 */
 719	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720		ws = sbq_wait_ptr(domain_tokens,
 721				  &khd->wait_index[sched_domain]);
 722		khd->domain_ws[sched_domain] = ws;
 723		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725		/*
 726		 * Try again in case a token was freed before we got on the wait
 727		 * queue.
 728		 */
 729		nr = __sbitmap_queue_get(domain_tokens);
 730	}
 731
 732	/*
 733	 * If we got a token while we were on the wait queue, remove ourselves
 734	 * from the wait queue to ensure that all wake ups make forward
 735	 * progress. It's possible that the waker already deleted the entry
 736	 * between the !list_empty_careful() check and us grabbing the lock, but
 737	 * list_del_init() is okay with that.
 738	 */
 739	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740		ws = khd->domain_ws[sched_domain];
 741		spin_lock_irq(&ws->wait.lock);
 742		sbitmap_del_wait_queue(wait);
 743		spin_unlock_irq(&ws->wait.lock);
 744	}
 745
 746	return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751			  struct kyber_hctx_data *khd,
 752			  struct blk_mq_hw_ctx *hctx)
 753{
 754	struct list_head *rqs;
 755	struct request *rq;
 756	int nr;
 757
 758	rqs = &khd->rqs[khd->cur_domain];
 759
 760	/*
 761	 * If we already have a flushed request, then we just need to get a
 762	 * token for it. Otherwise, if there are pending requests in the kcqs,
 763	 * flush the kcqs, but only if we can get a token. If not, we should
 764	 * leave the requests in the kcqs so that they can be merged. Note that
 765	 * khd->lock serializes the flushes, so if we observed any bit set in
 766	 * the kcq_map, we will always get a request.
 767	 */
 768	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 769	if (rq) {
 770		nr = kyber_get_domain_token(kqd, khd, hctx);
 771		if (nr >= 0) {
 772			khd->batching++;
 773			rq_set_domain_token(rq, nr);
 774			list_del_init(&rq->queuelist);
 775			return rq;
 776		} else {
 777			trace_kyber_throttled(kqd->q,
 778					      kyber_domain_names[khd->cur_domain]);
 779		}
 780	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781		nr = kyber_get_domain_token(kqd, khd, hctx);
 782		if (nr >= 0) {
 783			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784			rq = list_first_entry(rqs, struct request, queuelist);
 785			khd->batching++;
 786			rq_set_domain_token(rq, nr);
 787			list_del_init(&rq->queuelist);
 788			return rq;
 789		} else {
 790			trace_kyber_throttled(kqd->q,
 791					      kyber_domain_names[khd->cur_domain]);
 792		}
 793	}
 794
 795	/* There were either no pending requests or no tokens. */
 796	return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802	struct kyber_hctx_data *khd = hctx->sched_data;
 803	struct request *rq;
 804	int i;
 805
 806	spin_lock(&khd->lock);
 807
 808	/*
 809	 * First, if we are still entitled to batch, try to dispatch a request
 810	 * from the batch.
 811	 */
 812	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814		if (rq)
 815			goto out;
 816	}
 817
 818	/*
 819	 * Either,
 820	 * 1. We were no longer entitled to a batch.
 821	 * 2. The domain we were batching didn't have any requests.
 822	 * 3. The domain we were batching was out of tokens.
 823	 *
 824	 * Start another batch. Note that this wraps back around to the original
 825	 * domain if no other domains have requests or tokens.
 826	 */
 827	khd->batching = 0;
 828	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830			khd->cur_domain = 0;
 831		else
 832			khd->cur_domain++;
 833
 834		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835		if (rq)
 836			goto out;
 837	}
 838
 839	rq = NULL;
 840out:
 841	spin_unlock(&khd->lock);
 842	return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847	struct kyber_hctx_data *khd = hctx->sched_data;
 848	int i;
 849
 850	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851		if (!list_empty_careful(&khd->rqs[i]) ||
 852		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853			return true;
 854	}
 855
 856	return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)				\
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 861				       char *page)			\
 862{									\
 863	struct kyber_queue_data *kqd = e->elevator_data;		\
 864									\
 865	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 866}									\
 867									\
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 869					const char *page, size_t count)	\
 870{									\
 871	struct kyber_queue_data *kqd = e->elevator_data;		\
 872	unsigned long long nsec;					\
 873	int ret;							\
 874									\
 875	ret = kstrtoull(page, 10, &nsec);				\
 876	if (ret)							\
 877		return ret;						\
 878									\
 879	kqd->latency_targets[domain] = nsec;				\
 880									\
 881	return count;							\
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889	KYBER_LAT_ATTR(read),
 890	KYBER_LAT_ATTR(write),
 891	__ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 898{									\
 899	struct request_queue *q = data;					\
 900	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 901									\
 902	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 903	return 0;							\
 904}									\
 905									\
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 907	__acquires(&khd->lock)						\
 908{									\
 909	struct blk_mq_hw_ctx *hctx = m->private;			\
 910	struct kyber_hctx_data *khd = hctx->sched_data;			\
 911									\
 912	spin_lock(&khd->lock);						\
 913	return seq_list_start(&khd->rqs[domain], *pos);			\
 914}									\
 915									\
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 917				     loff_t *pos)			\
 918{									\
 919	struct blk_mq_hw_ctx *hctx = m->private;			\
 920	struct kyber_hctx_data *khd = hctx->sched_data;			\
 921									\
 922	return seq_list_next(v, &khd->rqs[domain], pos);		\
 923}									\
 924									\
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 926	__releases(&khd->lock)						\
 927{									\
 928	struct blk_mq_hw_ctx *hctx = m->private;			\
 929	struct kyber_hctx_data *khd = hctx->sched_data;			\
 930									\
 931	spin_unlock(&khd->lock);					\
 932}									\
 933									\
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 935	.start	= kyber_##name##_rqs_start,				\
 936	.next	= kyber_##name##_rqs_next,				\
 937	.stop	= kyber_##name##_rqs_stop,				\
 938	.show	= blk_mq_debugfs_rq_show,				\
 939};									\
 940									\
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 942{									\
 943	struct blk_mq_hw_ctx *hctx = data;				\
 944	struct kyber_hctx_data *khd = hctx->sched_data;			\
 945	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 946									\
 947	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 948	return 0;							\
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958	struct request_queue *q = data;
 959	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961	seq_printf(m, "%u\n", kqd->async_depth);
 962	return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967	struct blk_mq_hw_ctx *hctx = data;
 968	struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 971	return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976	struct blk_mq_hw_ctx *hctx = data;
 977	struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979	seq_printf(m, "%u\n", khd->batching);
 980	return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 984	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986	KYBER_QUEUE_DOMAIN_ATTRS(read),
 987	KYBER_QUEUE_DOMAIN_ATTRS(write),
 988	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989	KYBER_QUEUE_DOMAIN_ATTRS(other),
 990	{"async_depth", 0400, kyber_async_depth_show},
 991	{},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 996	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 997	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999	KYBER_HCTX_DOMAIN_ATTRS(read),
1000	KYBER_HCTX_DOMAIN_ATTRS(write),
1001	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002	KYBER_HCTX_DOMAIN_ATTRS(other),
1003	{"cur_domain", 0400, kyber_cur_domain_show},
1004	{"batching", 0400, kyber_batching_show},
1005	{},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011	.ops = {
1012		.init_sched = kyber_init_sched,
1013		.exit_sched = kyber_exit_sched,
1014		.init_hctx = kyber_init_hctx,
1015		.exit_hctx = kyber_exit_hctx,
1016		.limit_depth = kyber_limit_depth,
1017		.bio_merge = kyber_bio_merge,
1018		.prepare_request = kyber_prepare_request,
1019		.insert_requests = kyber_insert_requests,
1020		.finish_request = kyber_finish_request,
1021		.requeue_request = kyber_finish_request,
1022		.completed_request = kyber_completed_request,
1023		.dispatch_request = kyber_dispatch_request,
1024		.has_work = kyber_has_work,
1025	},
1026#ifdef CONFIG_BLK_DEBUG_FS
1027	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029#endif
1030	.elevator_attrs = kyber_sched_attrs,
1031	.elevator_name = "kyber",
1032	.elevator_owner = THIS_MODULE,
1033};
1034
1035static int __init kyber_init(void)
1036{
1037	return elv_register(&kyber_sched);
1038}
1039
1040static void __exit kyber_exit(void)
1041{
1042	elv_unregister(&kyber_sched);
1043}
1044
1045module_init(kyber_init);
1046module_exit(kyber_exit);
1047
1048MODULE_AUTHOR("Omar Sandoval");
1049MODULE_LICENSE("GPL");
1050MODULE_DESCRIPTION("Kyber I/O scheduler");