Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 
 16
 17unsigned long blk_max_low_pfn;
 18EXPORT_SYMBOL(blk_max_low_pfn);
 19
 20unsigned long blk_max_pfn;
 21
 22/**
 23 * blk_queue_prep_rq - set a prepare_request function for queue
 24 * @q:		queue
 25 * @pfn:	prepare_request function
 26 *
 27 * It's possible for a queue to register a prepare_request callback which
 28 * is invoked before the request is handed to the request_fn. The goal of
 29 * the function is to prepare a request for I/O, it can be used to build a
 30 * cdb from the request data for instance.
 31 *
 32 */
 33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 34{
 35	q->prep_rq_fn = pfn;
 36}
 37EXPORT_SYMBOL(blk_queue_prep_rq);
 38
 39/**
 40 * blk_queue_unprep_rq - set an unprepare_request function for queue
 41 * @q:		queue
 42 * @ufn:	unprepare_request function
 43 *
 44 * It's possible for a queue to register an unprepare_request callback
 45 * which is invoked before the request is finally completed. The goal
 46 * of the function is to deallocate any data that was allocated in the
 47 * prepare_request callback.
 48 *
 49 */
 50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 51{
 52	q->unprep_rq_fn = ufn;
 53}
 54EXPORT_SYMBOL(blk_queue_unprep_rq);
 55
 56void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 57{
 58	q->softirq_done_fn = fn;
 59}
 60EXPORT_SYMBOL(blk_queue_softirq_done);
 61
 62void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 63{
 64	q->rq_timeout = timeout;
 65}
 66EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 67
 68void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 69{
 70	q->rq_timed_out_fn = fn;
 71}
 72EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 73
 74void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 75{
 76	q->lld_busy_fn = fn;
 77}
 78EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
 79
 80/**
 81 * blk_set_default_limits - reset limits to default values
 82 * @lim:  the queue_limits structure to reset
 83 *
 84 * Description:
 85 *   Returns a queue_limit struct to its default state.
 86 */
 87void blk_set_default_limits(struct queue_limits *lim)
 88{
 89	lim->max_segments = BLK_MAX_SEGMENTS;
 
 90	lim->max_integrity_segments = 0;
 91	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 92	lim->virt_boundary_mask = 0;
 93	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 94	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 95	lim->max_dev_sectors = 0;
 96	lim->chunk_sectors = 0;
 97	lim->max_write_same_sectors = 0;
 
 
 98	lim->max_discard_sectors = 0;
 99	lim->max_hw_discard_sectors = 0;
100	lim->discard_granularity = 0;
101	lim->discard_alignment = 0;
102	lim->discard_misaligned = 0;
103	lim->discard_zeroes_data = 0;
104	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106	lim->alignment_offset = 0;
107	lim->io_opt = 0;
108	lim->misaligned = 0;
109	lim->cluster = 1;
110}
111EXPORT_SYMBOL(blk_set_default_limits);
112
113/**
114 * blk_set_stacking_limits - set default limits for stacking devices
115 * @lim:  the queue_limits structure to reset
116 *
117 * Description:
118 *   Returns a queue_limit struct to its default state. Should be used
119 *   by stacking drivers like DM that have no internal limits.
120 */
121void blk_set_stacking_limits(struct queue_limits *lim)
122{
123	blk_set_default_limits(lim);
124
125	/* Inherit limits from component devices */
126	lim->discard_zeroes_data = 1;
127	lim->max_segments = USHRT_MAX;
 
128	lim->max_hw_sectors = UINT_MAX;
129	lim->max_segment_size = UINT_MAX;
130	lim->max_sectors = UINT_MAX;
131	lim->max_dev_sectors = UINT_MAX;
132	lim->max_write_same_sectors = UINT_MAX;
 
 
133}
134EXPORT_SYMBOL(blk_set_stacking_limits);
135
136/**
137 * blk_queue_make_request - define an alternate make_request function for a device
138 * @q:  the request queue for the device to be affected
139 * @mfn: the alternate make_request function
140 *
141 * Description:
142 *    The normal way for &struct bios to be passed to a device
143 *    driver is for them to be collected into requests on a request
144 *    queue, and then to allow the device driver to select requests
145 *    off that queue when it is ready.  This works well for many block
146 *    devices. However some block devices (typically virtual devices
147 *    such as md or lvm) do not benefit from the processing on the
148 *    request queue, and are served best by having the requests passed
149 *    directly to them.  This can be achieved by providing a function
150 *    to blk_queue_make_request().
151 *
152 * Caveat:
153 *    The driver that does this *must* be able to deal appropriately
154 *    with buffers in "highmemory". This can be accomplished by either calling
155 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
156 *    blk_queue_bounce() to create a buffer in normal memory.
157 **/
158void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
159{
160	/*
161	 * set defaults
162	 */
163	q->nr_requests = BLKDEV_MAX_RQ;
164
165	q->make_request_fn = mfn;
166	blk_queue_dma_alignment(q, 511);
167	blk_queue_congestion_threshold(q);
168	q->nr_batching = BLK_BATCH_REQ;
169
170	blk_set_default_limits(&q->limits);
171
172	/*
173	 * by default assume old behaviour and bounce for any highmem page
174	 */
175	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
176}
177EXPORT_SYMBOL(blk_queue_make_request);
178
179/**
180 * blk_queue_bounce_limit - set bounce buffer limit for queue
181 * @q: the request queue for the device
182 * @max_addr: the maximum address the device can handle
183 *
184 * Description:
185 *    Different hardware can have different requirements as to what pages
186 *    it can do I/O directly to. A low level driver can call
187 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188 *    buffers for doing I/O to pages residing above @max_addr.
189 **/
190void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191{
192	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193	int dma = 0;
194
195	q->bounce_gfp = GFP_NOIO;
196#if BITS_PER_LONG == 64
197	/*
198	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
199	 * some IOMMUs can handle everything, but I don't know of a
200	 * way to test this here.
201	 */
202	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203		dma = 1;
204	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205#else
206	if (b_pfn < blk_max_low_pfn)
207		dma = 1;
208	q->limits.bounce_pfn = b_pfn;
209#endif
210	if (dma) {
211		init_emergency_isa_pool();
212		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213		q->limits.bounce_pfn = b_pfn;
214	}
215}
216EXPORT_SYMBOL(blk_queue_bounce_limit);
217
218/**
219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220 * @q:  the request queue for the device
221 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222 *
223 * Description:
224 *    Enables a low level driver to set a hard upper limit,
225 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226 *    the device driver based upon the capabilities of the I/O
227 *    controller.
228 *
229 *    max_dev_sectors is a hard limit imposed by the storage device for
230 *    READ/WRITE requests. It is set by the disk driver.
231 *
232 *    max_sectors is a soft limit imposed by the block layer for
233 *    filesystem type requests.  This value can be overridden on a
234 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235 *    The soft limit can not exceed max_hw_sectors.
236 **/
237void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238{
239	struct queue_limits *limits = &q->limits;
240	unsigned int max_sectors;
241
242	if ((max_hw_sectors << 9) < PAGE_SIZE) {
243		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
244		printk(KERN_INFO "%s: set to minimum %d\n",
245		       __func__, max_hw_sectors);
246	}
247
248	limits->max_hw_sectors = max_hw_sectors;
249	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251	limits->max_sectors = max_sectors;
 
252}
253EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254
255/**
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q:  the request queue for the device
258 * @chunk_sectors:  chunk sectors in the usual 512b unit
259 *
260 * Description:
261 *    If a driver doesn't want IOs to cross a given chunk size, it can set
262 *    this limit and prevent merging across chunks. Note that the chunk size
263 *    must currently be a power-of-2 in sectors. Also note that the block
264 *    layer must accept a page worth of data at any offset. So if the
265 *    crossing of chunks is a hard limitation in the driver, it must still be
266 *    prepared to split single page bios.
267 **/
268void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
269{
270	BUG_ON(!is_power_of_2(chunk_sectors));
271	q->limits.chunk_sectors = chunk_sectors;
272}
273EXPORT_SYMBOL(blk_queue_chunk_sectors);
274
275/**
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q:  the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
279 **/
280void blk_queue_max_discard_sectors(struct request_queue *q,
281		unsigned int max_discard_sectors)
282{
283	q->limits.max_hw_discard_sectors = max_discard_sectors;
284	q->limits.max_discard_sectors = max_discard_sectors;
285}
286EXPORT_SYMBOL(blk_queue_max_discard_sectors);
287
288/**
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q:  the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
292 **/
293void blk_queue_max_write_same_sectors(struct request_queue *q,
294				      unsigned int max_write_same_sectors)
295{
296	q->limits.max_write_same_sectors = max_write_same_sectors;
297}
298EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
299
300/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301 * blk_queue_max_segments - set max hw segments for a request for this queue
302 * @q:  the request queue for the device
303 * @max_segments:  max number of segments
304 *
305 * Description:
306 *    Enables a low level driver to set an upper limit on the number of
307 *    hw data segments in a request.
308 **/
309void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
310{
311	if (!max_segments) {
312		max_segments = 1;
313		printk(KERN_INFO "%s: set to minimum %d\n",
314		       __func__, max_segments);
315	}
316
317	q->limits.max_segments = max_segments;
318}
319EXPORT_SYMBOL(blk_queue_max_segments);
320
321/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
323 * @q:  the request queue for the device
324 * @max_size:  max size of segment in bytes
325 *
326 * Description:
327 *    Enables a low level driver to set an upper limit on the size of a
328 *    coalesced segment
329 **/
330void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
331{
332	if (max_size < PAGE_SIZE) {
333		max_size = PAGE_SIZE;
334		printk(KERN_INFO "%s: set to minimum %d\n",
335		       __func__, max_size);
336	}
337
 
 
 
338	q->limits.max_segment_size = max_size;
339}
340EXPORT_SYMBOL(blk_queue_max_segment_size);
341
342/**
343 * blk_queue_logical_block_size - set logical block size for the queue
344 * @q:  the request queue for the device
345 * @size:  the logical block size, in bytes
346 *
347 * Description:
348 *   This should be set to the lowest possible block size that the
349 *   storage device can address.  The default of 512 covers most
350 *   hardware.
351 **/
352void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
353{
354	q->limits.logical_block_size = size;
355
356	if (q->limits.physical_block_size < size)
357		q->limits.physical_block_size = size;
358
359	if (q->limits.io_min < q->limits.physical_block_size)
360		q->limits.io_min = q->limits.physical_block_size;
361}
362EXPORT_SYMBOL(blk_queue_logical_block_size);
363
364/**
365 * blk_queue_physical_block_size - set physical block size for the queue
366 * @q:  the request queue for the device
367 * @size:  the physical block size, in bytes
368 *
369 * Description:
370 *   This should be set to the lowest possible sector size that the
371 *   hardware can operate on without reverting to read-modify-write
372 *   operations.
373 */
374void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
375{
376	q->limits.physical_block_size = size;
377
378	if (q->limits.physical_block_size < q->limits.logical_block_size)
379		q->limits.physical_block_size = q->limits.logical_block_size;
380
381	if (q->limits.io_min < q->limits.physical_block_size)
382		q->limits.io_min = q->limits.physical_block_size;
383}
384EXPORT_SYMBOL(blk_queue_physical_block_size);
385
386/**
387 * blk_queue_alignment_offset - set physical block alignment offset
388 * @q:	the request queue for the device
389 * @offset: alignment offset in bytes
390 *
391 * Description:
392 *   Some devices are naturally misaligned to compensate for things like
393 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
394 *   should call this function for devices whose first sector is not
395 *   naturally aligned.
396 */
397void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
398{
399	q->limits.alignment_offset =
400		offset & (q->limits.physical_block_size - 1);
401	q->limits.misaligned = 0;
402}
403EXPORT_SYMBOL(blk_queue_alignment_offset);
404
405/**
406 * blk_limits_io_min - set minimum request size for a device
407 * @limits: the queue limits
408 * @min:  smallest I/O size in bytes
409 *
410 * Description:
411 *   Some devices have an internal block size bigger than the reported
412 *   hardware sector size.  This function can be used to signal the
413 *   smallest I/O the device can perform without incurring a performance
414 *   penalty.
415 */
416void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
417{
418	limits->io_min = min;
419
420	if (limits->io_min < limits->logical_block_size)
421		limits->io_min = limits->logical_block_size;
422
423	if (limits->io_min < limits->physical_block_size)
424		limits->io_min = limits->physical_block_size;
425}
426EXPORT_SYMBOL(blk_limits_io_min);
427
428/**
429 * blk_queue_io_min - set minimum request size for the queue
430 * @q:	the request queue for the device
431 * @min:  smallest I/O size in bytes
432 *
433 * Description:
434 *   Storage devices may report a granularity or preferred minimum I/O
435 *   size which is the smallest request the device can perform without
436 *   incurring a performance penalty.  For disk drives this is often the
437 *   physical block size.  For RAID arrays it is often the stripe chunk
438 *   size.  A properly aligned multiple of minimum_io_size is the
439 *   preferred request size for workloads where a high number of I/O
440 *   operations is desired.
441 */
442void blk_queue_io_min(struct request_queue *q, unsigned int min)
443{
444	blk_limits_io_min(&q->limits, min);
445}
446EXPORT_SYMBOL(blk_queue_io_min);
447
448/**
449 * blk_limits_io_opt - set optimal request size for a device
450 * @limits: the queue limits
451 * @opt:  smallest I/O size in bytes
452 *
453 * Description:
454 *   Storage devices may report an optimal I/O size, which is the
455 *   device's preferred unit for sustained I/O.  This is rarely reported
456 *   for disk drives.  For RAID arrays it is usually the stripe width or
457 *   the internal track size.  A properly aligned multiple of
458 *   optimal_io_size is the preferred request size for workloads where
459 *   sustained throughput is desired.
460 */
461void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
462{
463	limits->io_opt = opt;
464}
465EXPORT_SYMBOL(blk_limits_io_opt);
466
467/**
468 * blk_queue_io_opt - set optimal request size for the queue
469 * @q:	the request queue for the device
470 * @opt:  optimal request size in bytes
471 *
472 * Description:
473 *   Storage devices may report an optimal I/O size, which is the
474 *   device's preferred unit for sustained I/O.  This is rarely reported
475 *   for disk drives.  For RAID arrays it is usually the stripe width or
476 *   the internal track size.  A properly aligned multiple of
477 *   optimal_io_size is the preferred request size for workloads where
478 *   sustained throughput is desired.
479 */
480void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
481{
482	blk_limits_io_opt(&q->limits, opt);
483}
484EXPORT_SYMBOL(blk_queue_io_opt);
485
486/**
487 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
488 * @t:	the stacking driver (top)
489 * @b:  the underlying device (bottom)
490 **/
491void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
492{
493	blk_stack_limits(&t->limits, &b->limits, 0);
494}
495EXPORT_SYMBOL(blk_queue_stack_limits);
496
497/**
498 * blk_stack_limits - adjust queue_limits for stacked devices
499 * @t:	the stacking driver limits (top device)
500 * @b:  the underlying queue limits (bottom, component device)
501 * @start:  first data sector within component device
502 *
503 * Description:
504 *    This function is used by stacking drivers like MD and DM to ensure
505 *    that all component devices have compatible block sizes and
506 *    alignments.  The stacking driver must provide a queue_limits
507 *    struct (top) and then iteratively call the stacking function for
508 *    all component (bottom) devices.  The stacking function will
509 *    attempt to combine the values and ensure proper alignment.
510 *
511 *    Returns 0 if the top and bottom queue_limits are compatible.  The
512 *    top device's block sizes and alignment offsets may be adjusted to
513 *    ensure alignment with the bottom device. If no compatible sizes
514 *    and alignments exist, -1 is returned and the resulting top
515 *    queue_limits will have the misaligned flag set to indicate that
516 *    the alignment_offset is undefined.
517 */
518int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
519		     sector_t start)
520{
521	unsigned int top, bottom, alignment, ret = 0;
522
523	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
524	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
525	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
526	t->max_write_same_sectors = min(t->max_write_same_sectors,
527					b->max_write_same_sectors);
 
 
 
 
528	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
529
530	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
531					    b->seg_boundary_mask);
532	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
533					    b->virt_boundary_mask);
534
535	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 
 
536	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
537						 b->max_integrity_segments);
538
539	t->max_segment_size = min_not_zero(t->max_segment_size,
540					   b->max_segment_size);
541
542	t->misaligned |= b->misaligned;
543
544	alignment = queue_limit_alignment_offset(b, start);
545
546	/* Bottom device has different alignment.  Check that it is
547	 * compatible with the current top alignment.
548	 */
549	if (t->alignment_offset != alignment) {
550
551		top = max(t->physical_block_size, t->io_min)
552			+ t->alignment_offset;
553		bottom = max(b->physical_block_size, b->io_min) + alignment;
554
555		/* Verify that top and bottom intervals line up */
556		if (max(top, bottom) % min(top, bottom)) {
557			t->misaligned = 1;
558			ret = -1;
559		}
560	}
561
562	t->logical_block_size = max(t->logical_block_size,
563				    b->logical_block_size);
564
565	t->physical_block_size = max(t->physical_block_size,
566				     b->physical_block_size);
567
568	t->io_min = max(t->io_min, b->io_min);
569	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
570
571	t->cluster &= b->cluster;
572	t->discard_zeroes_data &= b->discard_zeroes_data;
573
574	/* Physical block size a multiple of the logical block size? */
575	if (t->physical_block_size & (t->logical_block_size - 1)) {
576		t->physical_block_size = t->logical_block_size;
577		t->misaligned = 1;
578		ret = -1;
579	}
580
581	/* Minimum I/O a multiple of the physical block size? */
582	if (t->io_min & (t->physical_block_size - 1)) {
583		t->io_min = t->physical_block_size;
584		t->misaligned = 1;
585		ret = -1;
586	}
587
588	/* Optimal I/O a multiple of the physical block size? */
589	if (t->io_opt & (t->physical_block_size - 1)) {
590		t->io_opt = 0;
591		t->misaligned = 1;
592		ret = -1;
593	}
594
595	t->raid_partial_stripes_expensive =
596		max(t->raid_partial_stripes_expensive,
597		    b->raid_partial_stripes_expensive);
598
599	/* Find lowest common alignment_offset */
600	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
601		% max(t->physical_block_size, t->io_min);
602
603	/* Verify that new alignment_offset is on a logical block boundary */
604	if (t->alignment_offset & (t->logical_block_size - 1)) {
605		t->misaligned = 1;
606		ret = -1;
607	}
608
609	/* Discard alignment and granularity */
610	if (b->discard_granularity) {
611		alignment = queue_limit_discard_alignment(b, start);
612
613		if (t->discard_granularity != 0 &&
614		    t->discard_alignment != alignment) {
615			top = t->discard_granularity + t->discard_alignment;
616			bottom = b->discard_granularity + alignment;
617
618			/* Verify that top and bottom intervals line up */
619			if ((max(top, bottom) % min(top, bottom)) != 0)
620				t->discard_misaligned = 1;
621		}
622
623		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
624						      b->max_discard_sectors);
625		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
626							 b->max_hw_discard_sectors);
627		t->discard_granularity = max(t->discard_granularity,
628					     b->discard_granularity);
629		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
630			t->discard_granularity;
631	}
632
 
 
 
 
 
633	return ret;
634}
635EXPORT_SYMBOL(blk_stack_limits);
636
637/**
638 * bdev_stack_limits - adjust queue limits for stacked drivers
639 * @t:	the stacking driver limits (top device)
640 * @bdev:  the component block_device (bottom)
641 * @start:  first data sector within component device
642 *
643 * Description:
644 *    Merges queue limits for a top device and a block_device.  Returns
645 *    0 if alignment didn't change.  Returns -1 if adding the bottom
646 *    device caused misalignment.
647 */
648int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
649		      sector_t start)
650{
651	struct request_queue *bq = bdev_get_queue(bdev);
652
653	start += get_start_sect(bdev);
654
655	return blk_stack_limits(t, &bq->limits, start);
656}
657EXPORT_SYMBOL(bdev_stack_limits);
658
659/**
660 * disk_stack_limits - adjust queue limits for stacked drivers
661 * @disk:  MD/DM gendisk (top)
662 * @bdev:  the underlying block device (bottom)
663 * @offset:  offset to beginning of data within component device
664 *
665 * Description:
666 *    Merges the limits for a top level gendisk and a bottom level
667 *    block_device.
668 */
669void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
670		       sector_t offset)
671{
672	struct request_queue *t = disk->queue;
673
674	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 
675		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
676
677		disk_name(disk, 0, top);
678		bdevname(bdev, bottom);
679
680		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
681		       top, bottom);
682	}
683}
684EXPORT_SYMBOL(disk_stack_limits);
685
686/**
687 * blk_queue_dma_pad - set pad mask
688 * @q:     the request queue for the device
689 * @mask:  pad mask
690 *
691 * Set dma pad mask.
692 *
693 * Appending pad buffer to a request modifies the last entry of a
694 * scatter list such that it includes the pad buffer.
695 **/
696void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
697{
698	q->dma_pad_mask = mask;
699}
700EXPORT_SYMBOL(blk_queue_dma_pad);
701
702/**
703 * blk_queue_update_dma_pad - update pad mask
704 * @q:     the request queue for the device
705 * @mask:  pad mask
706 *
707 * Update dma pad mask.
708 *
709 * Appending pad buffer to a request modifies the last entry of a
710 * scatter list such that it includes the pad buffer.
711 **/
712void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
713{
714	if (mask > q->dma_pad_mask)
715		q->dma_pad_mask = mask;
716}
717EXPORT_SYMBOL(blk_queue_update_dma_pad);
718
719/**
720 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
721 * @q:  the request queue for the device
722 * @dma_drain_needed: fn which returns non-zero if drain is necessary
723 * @buf:	physically contiguous buffer
724 * @size:	size of the buffer in bytes
725 *
726 * Some devices have excess DMA problems and can't simply discard (or
727 * zero fill) the unwanted piece of the transfer.  They have to have a
728 * real area of memory to transfer it into.  The use case for this is
729 * ATAPI devices in DMA mode.  If the packet command causes a transfer
730 * bigger than the transfer size some HBAs will lock up if there
731 * aren't DMA elements to contain the excess transfer.  What this API
732 * does is adjust the queue so that the buf is always appended
733 * silently to the scatterlist.
734 *
735 * Note: This routine adjusts max_hw_segments to make room for appending
736 * the drain buffer.  If you call blk_queue_max_segments() after calling
737 * this routine, you must set the limit to one fewer than your device
738 * can support otherwise there won't be room for the drain buffer.
739 */
740int blk_queue_dma_drain(struct request_queue *q,
741			       dma_drain_needed_fn *dma_drain_needed,
742			       void *buf, unsigned int size)
743{
744	if (queue_max_segments(q) < 2)
745		return -EINVAL;
746	/* make room for appending the drain */
747	blk_queue_max_segments(q, queue_max_segments(q) - 1);
748	q->dma_drain_needed = dma_drain_needed;
749	q->dma_drain_buffer = buf;
750	q->dma_drain_size = size;
751
752	return 0;
753}
754EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
755
756/**
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q:  the request queue for the device
759 * @mask:  the memory boundary mask
760 **/
761void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
762{
763	if (mask < PAGE_SIZE - 1) {
764		mask = PAGE_SIZE - 1;
765		printk(KERN_INFO "%s: set to minimum %lx\n",
766		       __func__, mask);
767	}
768
769	q->limits.seg_boundary_mask = mask;
770}
771EXPORT_SYMBOL(blk_queue_segment_boundary);
772
773/**
774 * blk_queue_virt_boundary - set boundary rules for bio merging
775 * @q:  the request queue for the device
776 * @mask:  the memory boundary mask
777 **/
778void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
779{
780	q->limits.virt_boundary_mask = mask;
 
 
 
 
 
 
 
 
 
781}
782EXPORT_SYMBOL(blk_queue_virt_boundary);
783
784/**
785 * blk_queue_dma_alignment - set dma length and memory alignment
786 * @q:     the request queue for the device
787 * @mask:  alignment mask
788 *
789 * description:
790 *    set required memory and length alignment for direct dma transactions.
791 *    this is used when building direct io requests for the queue.
792 *
793 **/
794void blk_queue_dma_alignment(struct request_queue *q, int mask)
795{
796	q->dma_alignment = mask;
797}
798EXPORT_SYMBOL(blk_queue_dma_alignment);
799
800/**
801 * blk_queue_update_dma_alignment - update dma length and memory alignment
802 * @q:     the request queue for the device
803 * @mask:  alignment mask
804 *
805 * description:
806 *    update required memory and length alignment for direct dma transactions.
807 *    If the requested alignment is larger than the current alignment, then
808 *    the current queue alignment is updated to the new value, otherwise it
809 *    is left alone.  The design of this is to allow multiple objects
810 *    (driver, device, transport etc) to set their respective
811 *    alignments without having them interfere.
812 *
813 **/
814void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
815{
816	BUG_ON(mask > PAGE_SIZE);
817
818	if (mask > q->dma_alignment)
819		q->dma_alignment = mask;
820}
821EXPORT_SYMBOL(blk_queue_update_dma_alignment);
822
823/**
824 * blk_queue_flush - configure queue's cache flush capability
 
 
 
 
 
 
 
 
 
 
 
 
 
825 * @q:		the request queue for the device
826 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
 
827 *
828 * Tell block layer cache flush capability of @q.  If it supports
829 * flushing, REQ_FLUSH should be set.  If it supports bypassing
830 * write cache for individual writes, REQ_FUA should be set.
831 */
832void blk_queue_flush(struct request_queue *q, unsigned int flush)
833{
834	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
 
 
 
 
 
 
 
835
836	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
837		flush &= ~REQ_FUA;
 
838
839	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
 
 
 
 
 
 
 
 
 
 
 
 
840}
841EXPORT_SYMBOL_GPL(blk_queue_flush);
842
843void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
 
 
 
 
 
 
 
 
844{
845	q->flush_not_queueable = !queueable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846}
847EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
848
849static int __init blk_settings_init(void)
850{
851	blk_max_low_pfn = max_low_pfn - 1;
852	blk_max_pfn = max_pfn - 1;
853	return 0;
854}
855subsys_initcall(blk_settings_init);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
 11#include <linux/gcd.h>
 12#include <linux/lcm.h>
 13#include <linux/jiffies.h>
 14#include <linux/gfp.h>
 15#include <linux/dma-mapping.h>
 16
 17#include "blk.h"
 18#include "blk-wbt.h"
 19
 20unsigned long blk_max_low_pfn;
 21EXPORT_SYMBOL(blk_max_low_pfn);
 22
 23unsigned long blk_max_pfn;
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 26{
 27	q->rq_timeout = timeout;
 28}
 29EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 30
 
 
 
 
 
 
 
 
 
 
 
 
 31/**
 32 * blk_set_default_limits - reset limits to default values
 33 * @lim:  the queue_limits structure to reset
 34 *
 35 * Description:
 36 *   Returns a queue_limit struct to its default state.
 37 */
 38void blk_set_default_limits(struct queue_limits *lim)
 39{
 40	lim->max_segments = BLK_MAX_SEGMENTS;
 41	lim->max_discard_segments = 1;
 42	lim->max_integrity_segments = 0;
 43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 44	lim->virt_boundary_mask = 0;
 45	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 46	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 47	lim->max_dev_sectors = 0;
 48	lim->chunk_sectors = 0;
 49	lim->max_write_same_sectors = 0;
 50	lim->max_write_zeroes_sectors = 0;
 51	lim->max_zone_append_sectors = 0;
 52	lim->max_discard_sectors = 0;
 53	lim->max_hw_discard_sectors = 0;
 54	lim->discard_granularity = 0;
 55	lim->discard_alignment = 0;
 56	lim->discard_misaligned = 0;
 
 57	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 58	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 59	lim->alignment_offset = 0;
 60	lim->io_opt = 0;
 61	lim->misaligned = 0;
 62	lim->zoned = BLK_ZONED_NONE;
 63}
 64EXPORT_SYMBOL(blk_set_default_limits);
 65
 66/**
 67 * blk_set_stacking_limits - set default limits for stacking devices
 68 * @lim:  the queue_limits structure to reset
 69 *
 70 * Description:
 71 *   Returns a queue_limit struct to its default state. Should be used
 72 *   by stacking drivers like DM that have no internal limits.
 73 */
 74void blk_set_stacking_limits(struct queue_limits *lim)
 75{
 76	blk_set_default_limits(lim);
 77
 78	/* Inherit limits from component devices */
 
 79	lim->max_segments = USHRT_MAX;
 80	lim->max_discard_segments = USHRT_MAX;
 81	lim->max_hw_sectors = UINT_MAX;
 82	lim->max_segment_size = UINT_MAX;
 83	lim->max_sectors = UINT_MAX;
 84	lim->max_dev_sectors = UINT_MAX;
 85	lim->max_write_same_sectors = UINT_MAX;
 86	lim->max_write_zeroes_sectors = UINT_MAX;
 87	lim->max_zone_append_sectors = UINT_MAX;
 88}
 89EXPORT_SYMBOL(blk_set_stacking_limits);
 90
 91/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92 * blk_queue_bounce_limit - set bounce buffer limit for queue
 93 * @q: the request queue for the device
 94 * @max_addr: the maximum address the device can handle
 95 *
 96 * Description:
 97 *    Different hardware can have different requirements as to what pages
 98 *    it can do I/O directly to. A low level driver can call
 99 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 *    buffers for doing I/O to pages residing above @max_addr.
101 **/
102void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103{
104	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105	int dma = 0;
106
107	q->bounce_gfp = GFP_NOIO;
108#if BITS_PER_LONG == 64
109	/*
110	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
111	 * some IOMMUs can handle everything, but I don't know of a
112	 * way to test this here.
113	 */
114	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115		dma = 1;
116	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117#else
118	if (b_pfn < blk_max_low_pfn)
119		dma = 1;
120	q->limits.bounce_pfn = b_pfn;
121#endif
122	if (dma) {
123		init_emergency_isa_pool();
124		q->bounce_gfp = GFP_NOIO | GFP_DMA;
125		q->limits.bounce_pfn = b_pfn;
126	}
127}
128EXPORT_SYMBOL(blk_queue_bounce_limit);
129
130/**
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q:  the request queue for the device
133 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
134 *
135 * Description:
136 *    Enables a low level driver to set a hard upper limit,
137 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
138 *    the device driver based upon the capabilities of the I/O
139 *    controller.
140 *
141 *    max_dev_sectors is a hard limit imposed by the storage device for
142 *    READ/WRITE requests. It is set by the disk driver.
143 *
144 *    max_sectors is a soft limit imposed by the block layer for
145 *    filesystem type requests.  This value can be overridden on a
146 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 *    The soft limit can not exceed max_hw_sectors.
148 **/
149void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150{
151	struct queue_limits *limits = &q->limits;
152	unsigned int max_sectors;
153
154	if ((max_hw_sectors << 9) < PAGE_SIZE) {
155		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156		printk(KERN_INFO "%s: set to minimum %d\n",
157		       __func__, max_hw_sectors);
158	}
159
160	limits->max_hw_sectors = max_hw_sectors;
161	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163	limits->max_sectors = max_sectors;
164	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
165}
166EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167
168/**
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q:  the request queue for the device
171 * @chunk_sectors:  chunk sectors in the usual 512b unit
172 *
173 * Description:
174 *    If a driver doesn't want IOs to cross a given chunk size, it can set
175 *    this limit and prevent merging across chunks. Note that the chunk size
176 *    must currently be a power-of-2 in sectors. Also note that the block
177 *    layer must accept a page worth of data at any offset. So if the
178 *    crossing of chunks is a hard limitation in the driver, it must still be
179 *    prepared to split single page bios.
180 **/
181void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
182{
183	BUG_ON(!is_power_of_2(chunk_sectors));
184	q->limits.chunk_sectors = chunk_sectors;
185}
186EXPORT_SYMBOL(blk_queue_chunk_sectors);
187
188/**
189 * blk_queue_max_discard_sectors - set max sectors for a single discard
190 * @q:  the request queue for the device
191 * @max_discard_sectors: maximum number of sectors to discard
192 **/
193void blk_queue_max_discard_sectors(struct request_queue *q,
194		unsigned int max_discard_sectors)
195{
196	q->limits.max_hw_discard_sectors = max_discard_sectors;
197	q->limits.max_discard_sectors = max_discard_sectors;
198}
199EXPORT_SYMBOL(blk_queue_max_discard_sectors);
200
201/**
202 * blk_queue_max_write_same_sectors - set max sectors for a single write same
203 * @q:  the request queue for the device
204 * @max_write_same_sectors: maximum number of sectors to write per command
205 **/
206void blk_queue_max_write_same_sectors(struct request_queue *q,
207				      unsigned int max_write_same_sectors)
208{
209	q->limits.max_write_same_sectors = max_write_same_sectors;
210}
211EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
212
213/**
214 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
215 *                                      write zeroes
216 * @q:  the request queue for the device
217 * @max_write_zeroes_sectors: maximum number of sectors to write per command
218 **/
219void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
220		unsigned int max_write_zeroes_sectors)
221{
222	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
223}
224EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
225
226/**
227 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
228 * @q:  the request queue for the device
229 * @max_zone_append_sectors: maximum number of sectors to write per command
230 **/
231void blk_queue_max_zone_append_sectors(struct request_queue *q,
232		unsigned int max_zone_append_sectors)
233{
234	unsigned int max_sectors;
235
236	if (WARN_ON(!blk_queue_is_zoned(q)))
237		return;
238
239	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
240	max_sectors = min(q->limits.chunk_sectors, max_sectors);
241
242	/*
243	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
244	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
245	 * or the max_hw_sectors limit not set.
246	 */
247	WARN_ON(!max_sectors);
248
249	q->limits.max_zone_append_sectors = max_sectors;
250}
251EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
252
253/**
254 * blk_queue_max_segments - set max hw segments for a request for this queue
255 * @q:  the request queue for the device
256 * @max_segments:  max number of segments
257 *
258 * Description:
259 *    Enables a low level driver to set an upper limit on the number of
260 *    hw data segments in a request.
261 **/
262void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
263{
264	if (!max_segments) {
265		max_segments = 1;
266		printk(KERN_INFO "%s: set to minimum %d\n",
267		       __func__, max_segments);
268	}
269
270	q->limits.max_segments = max_segments;
271}
272EXPORT_SYMBOL(blk_queue_max_segments);
273
274/**
275 * blk_queue_max_discard_segments - set max segments for discard requests
276 * @q:  the request queue for the device
277 * @max_segments:  max number of segments
278 *
279 * Description:
280 *    Enables a low level driver to set an upper limit on the number of
281 *    segments in a discard request.
282 **/
283void blk_queue_max_discard_segments(struct request_queue *q,
284		unsigned short max_segments)
285{
286	q->limits.max_discard_segments = max_segments;
287}
288EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
289
290/**
291 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
292 * @q:  the request queue for the device
293 * @max_size:  max size of segment in bytes
294 *
295 * Description:
296 *    Enables a low level driver to set an upper limit on the size of a
297 *    coalesced segment
298 **/
299void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
300{
301	if (max_size < PAGE_SIZE) {
302		max_size = PAGE_SIZE;
303		printk(KERN_INFO "%s: set to minimum %d\n",
304		       __func__, max_size);
305	}
306
307	/* see blk_queue_virt_boundary() for the explanation */
308	WARN_ON_ONCE(q->limits.virt_boundary_mask);
309
310	q->limits.max_segment_size = max_size;
311}
312EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314/**
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q:  the request queue for the device
317 * @size:  the logical block size, in bytes
318 *
319 * Description:
320 *   This should be set to the lowest possible block size that the
321 *   storage device can address.  The default of 512 covers most
322 *   hardware.
323 **/
324void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
325{
326	q->limits.logical_block_size = size;
327
328	if (q->limits.physical_block_size < size)
329		q->limits.physical_block_size = size;
330
331	if (q->limits.io_min < q->limits.physical_block_size)
332		q->limits.io_min = q->limits.physical_block_size;
333}
334EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336/**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q:  the request queue for the device
339 * @size:  the physical block size, in bytes
340 *
341 * Description:
342 *   This should be set to the lowest possible sector size that the
343 *   hardware can operate on without reverting to read-modify-write
344 *   operations.
345 */
346void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347{
348	q->limits.physical_block_size = size;
349
350	if (q->limits.physical_block_size < q->limits.logical_block_size)
351		q->limits.physical_block_size = q->limits.logical_block_size;
352
353	if (q->limits.io_min < q->limits.physical_block_size)
354		q->limits.io_min = q->limits.physical_block_size;
355}
356EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358/**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q:	the request queue for the device
361 * @offset: alignment offset in bytes
362 *
363 * Description:
364 *   Some devices are naturally misaligned to compensate for things like
365 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
366 *   should call this function for devices whose first sector is not
367 *   naturally aligned.
368 */
369void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370{
371	q->limits.alignment_offset =
372		offset & (q->limits.physical_block_size - 1);
373	q->limits.misaligned = 0;
374}
375EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377/**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min:  smallest I/O size in bytes
381 *
382 * Description:
383 *   Some devices have an internal block size bigger than the reported
384 *   hardware sector size.  This function can be used to signal the
385 *   smallest I/O the device can perform without incurring a performance
386 *   penalty.
387 */
388void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389{
390	limits->io_min = min;
391
392	if (limits->io_min < limits->logical_block_size)
393		limits->io_min = limits->logical_block_size;
394
395	if (limits->io_min < limits->physical_block_size)
396		limits->io_min = limits->physical_block_size;
397}
398EXPORT_SYMBOL(blk_limits_io_min);
399
400/**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q:	the request queue for the device
403 * @min:  smallest I/O size in bytes
404 *
405 * Description:
406 *   Storage devices may report a granularity or preferred minimum I/O
407 *   size which is the smallest request the device can perform without
408 *   incurring a performance penalty.  For disk drives this is often the
409 *   physical block size.  For RAID arrays it is often the stripe chunk
410 *   size.  A properly aligned multiple of minimum_io_size is the
411 *   preferred request size for workloads where a high number of I/O
412 *   operations is desired.
413 */
414void blk_queue_io_min(struct request_queue *q, unsigned int min)
415{
416	blk_limits_io_min(&q->limits, min);
417}
418EXPORT_SYMBOL(blk_queue_io_min);
419
420/**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt:  smallest I/O size in bytes
424 *
425 * Description:
426 *   Storage devices may report an optimal I/O size, which is the
427 *   device's preferred unit for sustained I/O.  This is rarely reported
428 *   for disk drives.  For RAID arrays it is usually the stripe width or
429 *   the internal track size.  A properly aligned multiple of
430 *   optimal_io_size is the preferred request size for workloads where
431 *   sustained throughput is desired.
432 */
433void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434{
435	limits->io_opt = opt;
436}
437EXPORT_SYMBOL(blk_limits_io_opt);
438
439/**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q:	the request queue for the device
442 * @opt:  optimal request size in bytes
443 *
444 * Description:
445 *   Storage devices may report an optimal I/O size, which is the
446 *   device's preferred unit for sustained I/O.  This is rarely reported
447 *   for disk drives.  For RAID arrays it is usually the stripe width or
448 *   the internal track size.  A properly aligned multiple of
449 *   optimal_io_size is the preferred request size for workloads where
450 *   sustained throughput is desired.
451 */
452void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453{
454	blk_limits_io_opt(&q->limits, opt);
455}
456EXPORT_SYMBOL(blk_queue_io_opt);
457
458/**
 
 
 
 
 
 
 
 
 
 
 
459 * blk_stack_limits - adjust queue_limits for stacked devices
460 * @t:	the stacking driver limits (top device)
461 * @b:  the underlying queue limits (bottom, component device)
462 * @start:  first data sector within component device
463 *
464 * Description:
465 *    This function is used by stacking drivers like MD and DM to ensure
466 *    that all component devices have compatible block sizes and
467 *    alignments.  The stacking driver must provide a queue_limits
468 *    struct (top) and then iteratively call the stacking function for
469 *    all component (bottom) devices.  The stacking function will
470 *    attempt to combine the values and ensure proper alignment.
471 *
472 *    Returns 0 if the top and bottom queue_limits are compatible.  The
473 *    top device's block sizes and alignment offsets may be adjusted to
474 *    ensure alignment with the bottom device. If no compatible sizes
475 *    and alignments exist, -1 is returned and the resulting top
476 *    queue_limits will have the misaligned flag set to indicate that
477 *    the alignment_offset is undefined.
478 */
479int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
480		     sector_t start)
481{
482	unsigned int top, bottom, alignment, ret = 0;
483
484	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
485	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
486	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
487	t->max_write_same_sectors = min(t->max_write_same_sectors,
488					b->max_write_same_sectors);
489	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
490					b->max_write_zeroes_sectors);
491	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
492					b->max_zone_append_sectors);
493	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
494
495	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
496					    b->seg_boundary_mask);
497	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
498					    b->virt_boundary_mask);
499
500	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
501	t->max_discard_segments = min_not_zero(t->max_discard_segments,
502					       b->max_discard_segments);
503	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
504						 b->max_integrity_segments);
505
506	t->max_segment_size = min_not_zero(t->max_segment_size,
507					   b->max_segment_size);
508
509	t->misaligned |= b->misaligned;
510
511	alignment = queue_limit_alignment_offset(b, start);
512
513	/* Bottom device has different alignment.  Check that it is
514	 * compatible with the current top alignment.
515	 */
516	if (t->alignment_offset != alignment) {
517
518		top = max(t->physical_block_size, t->io_min)
519			+ t->alignment_offset;
520		bottom = max(b->physical_block_size, b->io_min) + alignment;
521
522		/* Verify that top and bottom intervals line up */
523		if (max(top, bottom) % min(top, bottom)) {
524			t->misaligned = 1;
525			ret = -1;
526		}
527	}
528
529	t->logical_block_size = max(t->logical_block_size,
530				    b->logical_block_size);
531
532	t->physical_block_size = max(t->physical_block_size,
533				     b->physical_block_size);
534
535	t->io_min = max(t->io_min, b->io_min);
536	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
537
 
 
 
538	/* Physical block size a multiple of the logical block size? */
539	if (t->physical_block_size & (t->logical_block_size - 1)) {
540		t->physical_block_size = t->logical_block_size;
541		t->misaligned = 1;
542		ret = -1;
543	}
544
545	/* Minimum I/O a multiple of the physical block size? */
546	if (t->io_min & (t->physical_block_size - 1)) {
547		t->io_min = t->physical_block_size;
548		t->misaligned = 1;
549		ret = -1;
550	}
551
552	/* Optimal I/O a multiple of the physical block size? */
553	if (t->io_opt & (t->physical_block_size - 1)) {
554		t->io_opt = 0;
555		t->misaligned = 1;
556		ret = -1;
557	}
558
559	t->raid_partial_stripes_expensive =
560		max(t->raid_partial_stripes_expensive,
561		    b->raid_partial_stripes_expensive);
562
563	/* Find lowest common alignment_offset */
564	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
565		% max(t->physical_block_size, t->io_min);
566
567	/* Verify that new alignment_offset is on a logical block boundary */
568	if (t->alignment_offset & (t->logical_block_size - 1)) {
569		t->misaligned = 1;
570		ret = -1;
571	}
572
573	/* Discard alignment and granularity */
574	if (b->discard_granularity) {
575		alignment = queue_limit_discard_alignment(b, start);
576
577		if (t->discard_granularity != 0 &&
578		    t->discard_alignment != alignment) {
579			top = t->discard_granularity + t->discard_alignment;
580			bottom = b->discard_granularity + alignment;
581
582			/* Verify that top and bottom intervals line up */
583			if ((max(top, bottom) % min(top, bottom)) != 0)
584				t->discard_misaligned = 1;
585		}
586
587		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
588						      b->max_discard_sectors);
589		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
590							 b->max_hw_discard_sectors);
591		t->discard_granularity = max(t->discard_granularity,
592					     b->discard_granularity);
593		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
594			t->discard_granularity;
595	}
596
597	if (b->chunk_sectors)
598		t->chunk_sectors = min_not_zero(t->chunk_sectors,
599						b->chunk_sectors);
600
601	t->zoned = max(t->zoned, b->zoned);
602	return ret;
603}
604EXPORT_SYMBOL(blk_stack_limits);
605
606/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607 * disk_stack_limits - adjust queue limits for stacked drivers
608 * @disk:  MD/DM gendisk (top)
609 * @bdev:  the underlying block device (bottom)
610 * @offset:  offset to beginning of data within component device
611 *
612 * Description:
613 *    Merges the limits for a top level gendisk and a bottom level
614 *    block_device.
615 */
616void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
617		       sector_t offset)
618{
619	struct request_queue *t = disk->queue;
620
621	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
622			get_start_sect(bdev) + (offset >> 9)) < 0) {
623		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
624
625		disk_name(disk, 0, top);
626		bdevname(bdev, bottom);
627
628		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
629		       top, bottom);
630	}
 
 
631
632	t->backing_dev_info->io_pages =
633		t->limits.max_sectors >> (PAGE_SHIFT - 9);
 
 
 
 
 
 
 
 
 
 
 
634}
635EXPORT_SYMBOL(disk_stack_limits);
636
637/**
638 * blk_queue_update_dma_pad - update pad mask
639 * @q:     the request queue for the device
640 * @mask:  pad mask
641 *
642 * Update dma pad mask.
643 *
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
646 **/
647void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
648{
649	if (mask > q->dma_pad_mask)
650		q->dma_pad_mask = mask;
651}
652EXPORT_SYMBOL(blk_queue_update_dma_pad);
653
654/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655 * blk_queue_segment_boundary - set boundary rules for segment merging
656 * @q:  the request queue for the device
657 * @mask:  the memory boundary mask
658 **/
659void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
660{
661	if (mask < PAGE_SIZE - 1) {
662		mask = PAGE_SIZE - 1;
663		printk(KERN_INFO "%s: set to minimum %lx\n",
664		       __func__, mask);
665	}
666
667	q->limits.seg_boundary_mask = mask;
668}
669EXPORT_SYMBOL(blk_queue_segment_boundary);
670
671/**
672 * blk_queue_virt_boundary - set boundary rules for bio merging
673 * @q:  the request queue for the device
674 * @mask:  the memory boundary mask
675 **/
676void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
677{
678	q->limits.virt_boundary_mask = mask;
679
680	/*
681	 * Devices that require a virtual boundary do not support scatter/gather
682	 * I/O natively, but instead require a descriptor list entry for each
683	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
684	 * of that they are not limited by our notion of "segment size".
685	 */
686	if (mask)
687		q->limits.max_segment_size = UINT_MAX;
688}
689EXPORT_SYMBOL(blk_queue_virt_boundary);
690
691/**
692 * blk_queue_dma_alignment - set dma length and memory alignment
693 * @q:     the request queue for the device
694 * @mask:  alignment mask
695 *
696 * description:
697 *    set required memory and length alignment for direct dma transactions.
698 *    this is used when building direct io requests for the queue.
699 *
700 **/
701void blk_queue_dma_alignment(struct request_queue *q, int mask)
702{
703	q->dma_alignment = mask;
704}
705EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707/**
708 * blk_queue_update_dma_alignment - update dma length and memory alignment
709 * @q:     the request queue for the device
710 * @mask:  alignment mask
711 *
712 * description:
713 *    update required memory and length alignment for direct dma transactions.
714 *    If the requested alignment is larger than the current alignment, then
715 *    the current queue alignment is updated to the new value, otherwise it
716 *    is left alone.  The design of this is to allow multiple objects
717 *    (driver, device, transport etc) to set their respective
718 *    alignments without having them interfere.
719 *
720 **/
721void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
722{
723	BUG_ON(mask > PAGE_SIZE);
724
725	if (mask > q->dma_alignment)
726		q->dma_alignment = mask;
727}
728EXPORT_SYMBOL(blk_queue_update_dma_alignment);
729
730/**
731 * blk_set_queue_depth - tell the block layer about the device queue depth
732 * @q:		the request queue for the device
733 * @depth:		queue depth
734 *
735 */
736void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
737{
738	q->queue_depth = depth;
739	rq_qos_queue_depth_changed(q);
740}
741EXPORT_SYMBOL(blk_set_queue_depth);
742
743/**
744 * blk_queue_write_cache - configure queue's write cache
745 * @q:		the request queue for the device
746 * @wc:		write back cache on or off
747 * @fua:	device supports FUA writes, if true
748 *
749 * Tell the block layer about the write cache of @q.
 
 
750 */
751void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
752{
753	if (wc)
754		blk_queue_flag_set(QUEUE_FLAG_WC, q);
755	else
756		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
757	if (fua)
758		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
759	else
760		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
761
762	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
763}
764EXPORT_SYMBOL_GPL(blk_queue_write_cache);
765
766/**
767 * blk_queue_required_elevator_features - Set a queue required elevator features
768 * @q:		the request queue for the target device
769 * @features:	Required elevator features OR'ed together
770 *
771 * Tell the block layer that for the device controlled through @q, only the
772 * only elevators that can be used are those that implement at least the set of
773 * features specified by @features.
774 */
775void blk_queue_required_elevator_features(struct request_queue *q,
776					  unsigned int features)
777{
778	q->required_elevator_features = features;
779}
780EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
781
782/**
783 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
784 * @q:		the request queue for the device
785 * @dev:	the device pointer for dma
786 *
787 * Tell the block layer about merging the segments by dma map of @q.
788 */
789bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
790				       struct device *dev)
791{
792	unsigned long boundary = dma_get_merge_boundary(dev);
793
794	if (!boundary)
795		return false;
796
797	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
798	blk_queue_virt_boundary(q, boundary);
799
800	return true;
801}
802EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
803
804/**
805 * blk_queue_set_zoned - configure a disk queue zoned model.
806 * @disk:	the gendisk of the queue to configure
807 * @model:	the zoned model to set
808 *
809 * Set the zoned model of the request queue of @disk according to @model.
810 * When @model is BLK_ZONED_HM (host managed), this should be called only
811 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
812 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
813 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
814 * on the disk.
815 */
816void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
817{
818	switch (model) {
819	case BLK_ZONED_HM:
820		/*
821		 * Host managed devices are supported only if
822		 * CONFIG_BLK_DEV_ZONED is enabled.
823		 */
824		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
825		break;
826	case BLK_ZONED_HA:
827		/*
828		 * Host aware devices can be treated either as regular block
829		 * devices (similar to drive managed devices) or as zoned block
830		 * devices to take advantage of the zone command set, similarly
831		 * to host managed devices. We try the latter if there are no
832		 * partitions and zoned block device support is enabled, else
833		 * we do nothing special as far as the block layer is concerned.
834		 */
835		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
836		    disk_has_partitions(disk))
837			model = BLK_ZONED_NONE;
838		break;
839	case BLK_ZONED_NONE:
840	default:
841		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
842			model = BLK_ZONED_NONE;
843		break;
844	}
845
846	disk->queue->limits.zoned = model;
847}
848EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
849
850static int __init blk_settings_init(void)
851{
852	blk_max_low_pfn = max_low_pfn - 1;
853	blk_max_pfn = max_pfn - 1;
854	return 0;
855}
856subsys_initcall(blk_settings_init);