Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Functions related to segment and merge handling
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/bio.h>
  7#include <linux/blkdev.h>
  8#include <linux/scatterlist.h>
  9
 10#include <trace/events/block.h>
 11
 12#include "blk.h"
 13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14static struct bio *blk_bio_discard_split(struct request_queue *q,
 15					 struct bio *bio,
 16					 struct bio_set *bs,
 17					 unsigned *nsegs)
 18{
 19	unsigned int max_discard_sectors, granularity;
 20	int alignment;
 21	sector_t tmp;
 22	unsigned split_sectors;
 23
 24	*nsegs = 1;
 25
 26	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 27	granularity = max(q->limits.discard_granularity >> 9, 1U);
 28
 29	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
 
 30	max_discard_sectors -= max_discard_sectors % granularity;
 31
 32	if (unlikely(!max_discard_sectors)) {
 33		/* XXX: warn */
 34		return NULL;
 35	}
 36
 37	if (bio_sectors(bio) <= max_discard_sectors)
 38		return NULL;
 39
 40	split_sectors = max_discard_sectors;
 41
 42	/*
 43	 * If the next starting sector would be misaligned, stop the discard at
 44	 * the previous aligned sector.
 45	 */
 46	alignment = (q->limits.discard_alignment >> 9) % granularity;
 47
 48	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
 49	tmp = sector_div(tmp, granularity);
 50
 51	if (split_sectors > tmp)
 52		split_sectors -= tmp;
 53
 54	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 55}
 56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57static struct bio *blk_bio_write_same_split(struct request_queue *q,
 58					    struct bio *bio,
 59					    struct bio_set *bs,
 60					    unsigned *nsegs)
 61{
 62	*nsegs = 1;
 63
 64	if (!q->limits.max_write_same_sectors)
 65		return NULL;
 66
 67	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 68		return NULL;
 69
 70	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 71}
 72
 
 
 
 
 
 
 
 
 73static inline unsigned get_max_io_size(struct request_queue *q,
 74				       struct bio *bio)
 75{
 76	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
 77	unsigned mask = queue_logical_block_size(q) - 1;
 
 
 
 78
 79	/* aligned to logical block size */
 80	sectors &= ~(mask >> 9);
 
 
 81
 82	return sectors;
 83}
 84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85static struct bio *blk_bio_segment_split(struct request_queue *q,
 86					 struct bio *bio,
 87					 struct bio_set *bs,
 88					 unsigned *segs)
 89{
 90	struct bio_vec bv, bvprv, *bvprvp = NULL;
 91	struct bvec_iter iter;
 92	unsigned seg_size = 0, nsegs = 0, sectors = 0;
 93	unsigned front_seg_size = bio->bi_seg_front_size;
 94	bool do_split = true;
 95	struct bio *new = NULL;
 96	const unsigned max_sectors = get_max_io_size(q, bio);
 
 97
 98	bio_for_each_segment(bv, bio, iter) {
 99		/*
100		 * If the queue doesn't support SG gaps and adding this
101		 * offset would create a gap, disallow it.
102		 */
103		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
104			goto split;
105
106		if (sectors + (bv.bv_len >> 9) > max_sectors) {
107			/*
108			 * Consider this a new segment if we're splitting in
109			 * the middle of this vector.
110			 */
111			if (nsegs < queue_max_segments(q) &&
112			    sectors < max_sectors) {
113				nsegs++;
114				sectors = max_sectors;
115			}
116			if (sectors)
117				goto split;
118			/* Make this single bvec as the 1st segment */
119		}
120
121		if (bvprvp && blk_queue_cluster(q)) {
122			if (seg_size + bv.bv_len > queue_max_segment_size(q))
123				goto new_segment;
124			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
125				goto new_segment;
126			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
127				goto new_segment;
128
129			seg_size += bv.bv_len;
130			bvprv = bv;
131			bvprvp = &bvprv;
132			sectors += bv.bv_len >> 9;
133
134			if (nsegs == 1 && seg_size > front_seg_size)
135				front_seg_size = seg_size;
136			continue;
137		}
138new_segment:
139		if (nsegs == queue_max_segments(q))
140			goto split;
 
141
142		nsegs++;
143		bvprv = bv;
144		bvprvp = &bvprv;
145		seg_size = bv.bv_len;
146		sectors += bv.bv_len >> 9;
147
148		if (nsegs == 1 && seg_size > front_seg_size)
149			front_seg_size = seg_size;
150	}
151
152	do_split = false;
 
153split:
154	*segs = nsegs;
155
156	if (do_split) {
157		new = bio_split(bio, sectors, GFP_NOIO, bs);
158		if (new)
159			bio = new;
160	}
161
162	bio->bi_seg_front_size = front_seg_size;
163	if (seg_size > bio->bi_seg_back_size)
164		bio->bi_seg_back_size = seg_size;
165
166	return do_split ? new : NULL;
167}
168
169void blk_queue_split(struct request_queue *q, struct bio **bio,
170		     struct bio_set *bs)
 
 
 
 
 
 
 
 
 
 
 
 
171{
172	struct bio *split, *res;
173	unsigned nsegs;
174
175	if ((*bio)->bi_rw & REQ_DISCARD)
176		split = blk_bio_discard_split(q, *bio, bs, &nsegs);
177	else if ((*bio)->bi_rw & REQ_WRITE_SAME)
178		split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
179	else
180		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
181
182	/* physical segments can be figured out during splitting */
183	res = split ? split : *bio;
184	res->bi_phys_segments = nsegs;
185	bio_set_flag(res, BIO_SEG_VALID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
187	if (split) {
188		/* there isn't chance to merge the splitted bio */
189		split->bi_rw |= REQ_NOMERGE;
190
191		bio_chain(split, *bio);
192		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
193		generic_make_request(*bio);
194		*bio = split;
195	}
196}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197EXPORT_SYMBOL(blk_queue_split);
198
199static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
200					     struct bio *bio,
201					     bool no_sg_merge)
202{
203	struct bio_vec bv, bvprv = { NULL };
204	int cluster, prev = 0;
205	unsigned int seg_size, nr_phys_segs;
206	struct bio *fbio, *bbio;
207	struct bvec_iter iter;
208
209	if (!bio)
210		return 0;
211
212	/*
213	 * This should probably be returning 0, but blk_add_request_payload()
214	 * (Christoph!!!!)
215	 */
216	if (bio->bi_rw & REQ_DISCARD)
217		return 1;
218
219	if (bio->bi_rw & REQ_WRITE_SAME)
220		return 1;
221
222	fbio = bio;
223	cluster = blk_queue_cluster(q);
224	seg_size = 0;
225	nr_phys_segs = 0;
226	for_each_bio(bio) {
227		bio_for_each_segment(bv, bio, iter) {
228			/*
229			 * If SG merging is disabled, each bio vector is
230			 * a segment
231			 */
232			if (no_sg_merge)
233				goto new_segment;
234
235			if (prev && cluster) {
236				if (seg_size + bv.bv_len
237				    > queue_max_segment_size(q))
238					goto new_segment;
239				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
240					goto new_segment;
241				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
242					goto new_segment;
243
244				seg_size += bv.bv_len;
245				bvprv = bv;
246				continue;
247			}
248new_segment:
249			if (nr_phys_segs == 1 && seg_size >
250			    fbio->bi_seg_front_size)
251				fbio->bi_seg_front_size = seg_size;
252
253			nr_phys_segs++;
254			bvprv = bv;
255			prev = 1;
256			seg_size = bv.bv_len;
257		}
258		bbio = bio;
259	}
260
261	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
262		fbio->bi_seg_front_size = seg_size;
263	if (seg_size > bbio->bi_seg_back_size)
264		bbio->bi_seg_back_size = seg_size;
265
266	return nr_phys_segs;
267}
268
269void blk_recalc_rq_segments(struct request *rq)
 
270{
271	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
272			&rq->q->queue_flags);
273
274	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
275			no_sg_merge);
 
 
 
 
 
 
 
276}
277
278void blk_recount_segments(struct request_queue *q, struct bio *bio)
 
 
279{
280	unsigned short seg_cnt;
 
281
282	/* estimate segment number by bi_vcnt for non-cloned bio */
283	if (bio_flagged(bio, BIO_CLONED))
284		seg_cnt = bio_segments(bio);
285	else
286		seg_cnt = bio->bi_vcnt;
287
288	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
289			(seg_cnt < queue_max_segments(q)))
290		bio->bi_phys_segments = seg_cnt;
291	else {
292		struct bio *nxt = bio->bi_next;
 
 
 
 
 
293
294		bio->bi_next = NULL;
295		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
296		bio->bi_next = nxt;
 
 
 
297	}
298
299	bio_set_flag(bio, BIO_SEG_VALID);
300}
301EXPORT_SYMBOL(blk_recount_segments);
302
303static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
304				   struct bio *nxt)
305{
306	struct bio_vec end_bv = { NULL }, nxt_bv;
307
308	if (!blk_queue_cluster(q))
309		return 0;
310
311	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
312	    queue_max_segment_size(q))
313		return 0;
314
315	if (!bio_has_data(bio))
316		return 1;
317
318	bio_get_last_bvec(bio, &end_bv);
319	bio_get_first_bvec(nxt, &nxt_bv);
320
321	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
322		return 0;
323
324	/*
325	 * bio and nxt are contiguous in memory; check if the queue allows
326	 * these two to be merged into one
327	 */
328	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
329		return 1;
330
331	return 0;
332}
333
334static inline void
335__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
336		     struct scatterlist *sglist, struct bio_vec *bvprv,
337		     struct scatterlist **sg, int *nsegs, int *cluster)
338{
339
340	int nbytes = bvec->bv_len;
341
342	if (*sg && *cluster) {
343		if ((*sg)->length + nbytes > queue_max_segment_size(q))
344			goto new_segment;
345
346		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
347			goto new_segment;
348		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
349			goto new_segment;
350
351		(*sg)->length += nbytes;
352	} else {
353new_segment:
354		if (!*sg)
355			*sg = sglist;
356		else {
357			/*
358			 * If the driver previously mapped a shorter
359			 * list, we could see a termination bit
360			 * prematurely unless it fully inits the sg
361			 * table on each mapping. We KNOW that there
362			 * must be more entries here or the driver
363			 * would be buggy, so force clear the
364			 * termination bit to avoid doing a full
365			 * sg_init_table() in drivers for each command.
366			 */
367			sg_unmark_end(*sg);
368			*sg = sg_next(*sg);
369		}
370
371		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
372		(*nsegs)++;
373	}
374	*bvprv = *bvec;
 
 
 
 
 
375}
376
377static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
378			     struct scatterlist *sglist,
379			     struct scatterlist **sg)
380{
381	struct bio_vec bvec, bvprv = { NULL };
382	struct bvec_iter iter;
383	int nsegs, cluster;
384
385	nsegs = 0;
386	cluster = blk_queue_cluster(q);
387
388	if (bio->bi_rw & REQ_DISCARD) {
389		/*
390		 * This is a hack - drivers should be neither modifying the
391		 * biovec, nor relying on bi_vcnt - but because of
392		 * blk_add_request_payload(), a discard bio may or may not have
393		 * a payload we need to set up here (thank you Christoph) and
394		 * bi_vcnt is really the only way of telling if we need to.
395		 */
396
397		if (bio->bi_vcnt)
398			goto single_segment;
399
400		return 0;
401	}
402
403	if (bio->bi_rw & REQ_WRITE_SAME) {
404single_segment:
405		*sg = sglist;
406		bvec = bio_iovec(bio);
407		sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
408		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409	}
410
411	for_each_bio(bio)
412		bio_for_each_segment(bvec, bio, iter)
413			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
414					     &nsegs, &cluster);
415
416	return nsegs;
417}
418
419/*
420 * map a request to scatterlist, return number of sg entries setup. Caller
421 * must make sure sg can hold rq->nr_phys_segments entries
422 */
423int blk_rq_map_sg(struct request_queue *q, struct request *rq,
424		  struct scatterlist *sglist)
425{
426	struct scatterlist *sg = NULL;
427	int nsegs = 0;
428
429	if (rq->bio)
430		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
431
432	if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
433	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
434		unsigned int pad_len =
435			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
436
437		sg->length += pad_len;
438		rq->extra_len += pad_len;
439	}
440
441	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
442		if (rq->cmd_flags & REQ_WRITE)
443			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
444
445		sg_unmark_end(sg);
446		sg = sg_next(sg);
447		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
448			    q->dma_drain_size,
449			    ((unsigned long)q->dma_drain_buffer) &
450			    (PAGE_SIZE - 1));
451		nsegs++;
452		rq->extra_len += q->dma_drain_size;
453	}
454
455	if (sg)
456		sg_mark_end(sg);
457
458	/*
459	 * Something must have been wrong if the figured number of
460	 * segment is bigger than number of req's physical segments
461	 */
462	WARN_ON(nsegs > rq->nr_phys_segments);
463
464	return nsegs;
465}
466EXPORT_SYMBOL(blk_rq_map_sg);
467
468static inline int ll_new_hw_segment(struct request_queue *q,
469				    struct request *req,
470				    struct bio *bio)
471{
472	int nr_phys_segs = bio_phys_segments(q, bio);
 
 
 
473
474	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
 
 
 
475		goto no_merge;
476
477	if (blk_integrity_merge_bio(q, req, bio) == false)
478		goto no_merge;
479
480	/*
481	 * This will form the start of a new hw segment.  Bump both
482	 * counters.
483	 */
484	req->nr_phys_segments += nr_phys_segs;
485	return 1;
486
487no_merge:
488	req->cmd_flags |= REQ_NOMERGE;
489	if (req == q->last_merge)
490		q->last_merge = NULL;
491	return 0;
492}
493
494int ll_back_merge_fn(struct request_queue *q, struct request *req,
495		     struct bio *bio)
496{
497	if (req_gap_back_merge(req, bio))
498		return 0;
499	if (blk_integrity_rq(req) &&
500	    integrity_req_gap_back_merge(req, bio))
501		return 0;
 
 
502	if (blk_rq_sectors(req) + bio_sectors(bio) >
503	    blk_rq_get_max_sectors(req)) {
504		req->cmd_flags |= REQ_NOMERGE;
505		if (req == q->last_merge)
506			q->last_merge = NULL;
507		return 0;
508	}
509	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
510		blk_recount_segments(q, req->biotail);
511	if (!bio_flagged(bio, BIO_SEG_VALID))
512		blk_recount_segments(q, bio);
513
514	return ll_new_hw_segment(q, req, bio);
515}
516
517int ll_front_merge_fn(struct request_queue *q, struct request *req,
518		      struct bio *bio)
519{
520
521	if (req_gap_front_merge(req, bio))
522		return 0;
523	if (blk_integrity_rq(req) &&
524	    integrity_req_gap_front_merge(req, bio))
525		return 0;
 
 
526	if (blk_rq_sectors(req) + bio_sectors(bio) >
527	    blk_rq_get_max_sectors(req)) {
528		req->cmd_flags |= REQ_NOMERGE;
529		if (req == q->last_merge)
530			q->last_merge = NULL;
531		return 0;
532	}
533	if (!bio_flagged(bio, BIO_SEG_VALID))
534		blk_recount_segments(q, bio);
535	if (!bio_flagged(req->bio, BIO_SEG_VALID))
536		blk_recount_segments(q, req->bio);
537
538	return ll_new_hw_segment(q, req, bio);
539}
540
541/*
542 * blk-mq uses req->special to carry normal driver per-request payload, it
543 * does not indicate a prepared command that we cannot merge with.
544 */
545static bool req_no_special_merge(struct request *req)
546{
547	struct request_queue *q = req->q;
548
549	return !q->mq_ops && req->special;
 
 
 
 
 
 
 
 
 
 
550}
551
552static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
553				struct request *next)
554{
555	int total_phys_segments;
556	unsigned int seg_size =
557		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
558
559	/*
560	 * First check if the either of the requests are re-queued
561	 * requests.  Can't merge them if they are.
562	 */
563	if (req_no_special_merge(req) || req_no_special_merge(next))
564		return 0;
565
566	if (req_gap_back_merge(req, next->bio))
567		return 0;
568
569	/*
570	 * Will it become too large?
571	 */
572	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
573	    blk_rq_get_max_sectors(req))
574		return 0;
575
576	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
577	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
578		if (req->nr_phys_segments == 1)
579			req->bio->bi_seg_front_size = seg_size;
580		if (next->nr_phys_segments == 1)
581			next->biotail->bi_seg_back_size = seg_size;
582		total_phys_segments--;
583	}
584
585	if (total_phys_segments > queue_max_segments(q))
586		return 0;
587
588	if (blk_integrity_merge_rq(q, req, next) == false)
589		return 0;
590
 
 
 
591	/* Merge is OK... */
592	req->nr_phys_segments = total_phys_segments;
593	return 1;
594}
595
596/**
597 * blk_rq_set_mixed_merge - mark a request as mixed merge
598 * @rq: request to mark as mixed merge
599 *
600 * Description:
601 *     @rq is about to be mixed merged.  Make sure the attributes
602 *     which can be mixed are set in each bio and mark @rq as mixed
603 *     merged.
604 */
605void blk_rq_set_mixed_merge(struct request *rq)
606{
607	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
608	struct bio *bio;
609
610	if (rq->cmd_flags & REQ_MIXED_MERGE)
611		return;
612
613	/*
614	 * @rq will no longer represent mixable attributes for all the
615	 * contained bios.  It will just track those of the first one.
616	 * Distributes the attributs to each bio.
617	 */
618	for (bio = rq->bio; bio; bio = bio->bi_next) {
619		WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
620			     (bio->bi_rw & REQ_FAILFAST_MASK) != ff);
621		bio->bi_rw |= ff;
622	}
623	rq->cmd_flags |= REQ_MIXED_MERGE;
624}
625
626static void blk_account_io_merge(struct request *req)
627{
628	if (blk_do_io_stat(req)) {
629		struct hd_struct *part;
630		int cpu;
 
631
632		cpu = part_stat_lock();
633		part = req->part;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634
635		part_round_stats(cpu, part);
636		part_dec_in_flight(part, rq_data_dir(req));
 
 
 
 
 
637
638		hd_struct_put(part);
639		part_stat_unlock();
640	}
641}
642
643/*
644 * Has to be called with the request spinlock acquired
 
645 */
646static int attempt_merge(struct request_queue *q, struct request *req,
647			  struct request *next)
648{
649	if (!rq_mergeable(req) || !rq_mergeable(next))
650		return 0;
651
652	if (!blk_check_merge_flags(req->cmd_flags, next->cmd_flags))
653		return 0;
654
655	/*
656	 * not contiguous
657	 */
658	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
659		return 0;
660
661	if (rq_data_dir(req) != rq_data_dir(next)
662	    || req->rq_disk != next->rq_disk
663	    || req_no_special_merge(next))
664		return 0;
665
666	if (req->cmd_flags & REQ_WRITE_SAME &&
667	    !blk_write_same_mergeable(req->bio, next->bio))
668		return 0;
 
 
 
 
 
 
 
 
 
 
669
670	/*
671	 * If we are allowed to merge, then append bio list
672	 * from next to rq and release next. merge_requests_fn
673	 * will have updated segment counts, update sector
674	 * counts here.
 
675	 */
676	if (!ll_merge_requests_fn(q, req, next))
677		return 0;
 
 
 
 
 
 
 
 
 
 
 
678
679	/*
680	 * If failfast settings disagree or any of the two is already
681	 * a mixed merge, mark both as mixed before proceeding.  This
682	 * makes sure that all involved bios have mixable attributes
683	 * set properly.
684	 */
685	if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
686	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
687	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
688		blk_rq_set_mixed_merge(req);
689		blk_rq_set_mixed_merge(next);
690	}
691
692	/*
693	 * At this point we have either done a back merge
694	 * or front merge. We need the smaller start_time of
695	 * the merged requests to be the current request
696	 * for accounting purposes.
697	 */
698	if (time_after(req->start_time, next->start_time))
699		req->start_time = next->start_time;
700
701	req->biotail->bi_next = next->bio;
702	req->biotail = next->biotail;
703
704	req->__data_len += blk_rq_bytes(next);
705
706	elv_merge_requests(q, req, next);
 
707
708	/*
709	 * 'next' is going away, so update stats accordingly
710	 */
711	blk_account_io_merge(next);
712
713	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
714	if (blk_rq_cpu_valid(next))
715		req->cpu = next->cpu;
716
717	/* owner-ship of bio passed from next to req */
 
 
 
718	next->bio = NULL;
719	__blk_put_request(q, next);
720	return 1;
721}
722
723int attempt_back_merge(struct request_queue *q, struct request *rq)
724{
725	struct request *next = elv_latter_request(q, rq);
726
727	if (next)
728		return attempt_merge(q, rq, next);
729
730	return 0;
731}
732
733int attempt_front_merge(struct request_queue *q, struct request *rq)
734{
735	struct request *prev = elv_former_request(q, rq);
736
737	if (prev)
738		return attempt_merge(q, prev, rq);
739
740	return 0;
741}
742
743int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
744			  struct request *next)
745{
746	return attempt_merge(q, rq, next);
 
 
 
 
 
 
 
 
747}
748
749bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
750{
751	if (!rq_mergeable(rq) || !bio_mergeable(bio))
752		return false;
753
754	if (!blk_check_merge_flags(rq->cmd_flags, bio->bi_rw))
755		return false;
756
757	/* different data direction or already started, don't merge */
758	if (bio_data_dir(bio) != rq_data_dir(rq))
759		return false;
760
761	/* must be same device and not a special request */
762	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
763		return false;
764
765	/* only merge integrity protected bio into ditto rq */
766	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
767		return false;
768
 
 
 
 
769	/* must be using the same buffer */
770	if (rq->cmd_flags & REQ_WRITE_SAME &&
771	    !blk_write_same_mergeable(rq->bio, bio))
772		return false;
773
 
 
 
 
 
 
 
 
 
 
774	return true;
775}
776
777int blk_try_merge(struct request *rq, struct bio *bio)
778{
779	if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 
 
780		return ELEVATOR_BACK_MERGE;
781	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
782		return ELEVATOR_FRONT_MERGE;
783	return ELEVATOR_NO_MERGE;
784}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to segment and merge handling
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/scatterlist.h>
 10
 11#include <trace/events/block.h>
 12
 13#include "blk.h"
 14
 15static inline bool bio_will_gap(struct request_queue *q,
 16		struct request *prev_rq, struct bio *prev, struct bio *next)
 17{
 18	struct bio_vec pb, nb;
 19
 20	if (!bio_has_data(prev) || !queue_virt_boundary(q))
 21		return false;
 22
 23	/*
 24	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
 25	 * is quite difficult to respect the sg gap limit.  We work hard to
 26	 * merge a huge number of small single bios in case of mkfs.
 27	 */
 28	if (prev_rq)
 29		bio_get_first_bvec(prev_rq->bio, &pb);
 30	else
 31		bio_get_first_bvec(prev, &pb);
 32	if (pb.bv_offset & queue_virt_boundary(q))
 33		return true;
 34
 35	/*
 36	 * We don't need to worry about the situation that the merged segment
 37	 * ends in unaligned virt boundary:
 38	 *
 39	 * - if 'pb' ends aligned, the merged segment ends aligned
 40	 * - if 'pb' ends unaligned, the next bio must include
 41	 *   one single bvec of 'nb', otherwise the 'nb' can't
 42	 *   merge with 'pb'
 43	 */
 44	bio_get_last_bvec(prev, &pb);
 45	bio_get_first_bvec(next, &nb);
 46	if (biovec_phys_mergeable(q, &pb, &nb))
 47		return false;
 48	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
 49}
 50
 51static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
 52{
 53	return bio_will_gap(req->q, req, req->biotail, bio);
 54}
 55
 56static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
 57{
 58	return bio_will_gap(req->q, NULL, bio, req->bio);
 59}
 60
 61static struct bio *blk_bio_discard_split(struct request_queue *q,
 62					 struct bio *bio,
 63					 struct bio_set *bs,
 64					 unsigned *nsegs)
 65{
 66	unsigned int max_discard_sectors, granularity;
 67	int alignment;
 68	sector_t tmp;
 69	unsigned split_sectors;
 70
 71	*nsegs = 1;
 72
 73	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 74	granularity = max(q->limits.discard_granularity >> 9, 1U);
 75
 76	max_discard_sectors = min(q->limits.max_discard_sectors,
 77			bio_allowed_max_sectors(q));
 78	max_discard_sectors -= max_discard_sectors % granularity;
 79
 80	if (unlikely(!max_discard_sectors)) {
 81		/* XXX: warn */
 82		return NULL;
 83	}
 84
 85	if (bio_sectors(bio) <= max_discard_sectors)
 86		return NULL;
 87
 88	split_sectors = max_discard_sectors;
 89
 90	/*
 91	 * If the next starting sector would be misaligned, stop the discard at
 92	 * the previous aligned sector.
 93	 */
 94	alignment = (q->limits.discard_alignment >> 9) % granularity;
 95
 96	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
 97	tmp = sector_div(tmp, granularity);
 98
 99	if (split_sectors > tmp)
100		split_sectors -= tmp;
101
102	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103}
104
105static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107{
108	*nsegs = 0;
109
110	if (!q->limits.max_write_zeroes_sectors)
111		return NULL;
112
113	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114		return NULL;
115
116	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117}
118
119static struct bio *blk_bio_write_same_split(struct request_queue *q,
120					    struct bio *bio,
121					    struct bio_set *bs,
122					    unsigned *nsegs)
123{
124	*nsegs = 1;
125
126	if (!q->limits.max_write_same_sectors)
127		return NULL;
128
129	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130		return NULL;
131
132	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133}
134
135/*
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
142 */
143static inline unsigned get_max_io_size(struct request_queue *q,
144				       struct bio *bio)
145{
146	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147	unsigned max_sectors = sectors;
148	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151
152	max_sectors += start_offset;
153	max_sectors &= ~(pbs - 1);
154	if (max_sectors > start_offset)
155		return max_sectors - start_offset;
156
157	return sectors & ~(lbs - 1);
158}
159
160static inline unsigned get_max_segment_size(const struct request_queue *q,
161					    struct page *start_page,
162					    unsigned long offset)
163{
164	unsigned long mask = queue_segment_boundary(q);
165
166	offset = mask & (page_to_phys(start_page) + offset);
167
168	/*
169	 * overflow may be triggered in case of zero page physical address
170	 * on 32bit arch, use queue's max segment size when that happens.
171	 */
172	return min_not_zero(mask - offset + 1,
173			(unsigned long)queue_max_segment_size(q));
174}
175
176/**
177 * bvec_split_segs - verify whether or not a bvec should be split in the middle
178 * @q:        [in] request queue associated with the bio associated with @bv
179 * @bv:       [in] bvec to examine
180 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
181 *            by the number of segments from @bv that may be appended to that
182 *            bio without exceeding @max_segs
183 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
184 *            by the number of sectors from @bv that may be appended to that
185 *            bio without exceeding @max_sectors
186 * @max_segs: [in] upper bound for *@nsegs
187 * @max_sectors: [in] upper bound for *@sectors
188 *
189 * When splitting a bio, it can happen that a bvec is encountered that is too
190 * big to fit in a single segment and hence that it has to be split in the
191 * middle. This function verifies whether or not that should happen. The value
192 * %true is returned if and only if appending the entire @bv to a bio with
193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
194 * the block driver.
195 */
196static bool bvec_split_segs(const struct request_queue *q,
197			    const struct bio_vec *bv, unsigned *nsegs,
198			    unsigned *sectors, unsigned max_segs,
199			    unsigned max_sectors)
200{
201	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
202	unsigned len = min(bv->bv_len, max_len);
203	unsigned total_len = 0;
204	unsigned seg_size = 0;
205
206	while (len && *nsegs < max_segs) {
207		seg_size = get_max_segment_size(q, bv->bv_page,
208						bv->bv_offset + total_len);
209		seg_size = min(seg_size, len);
210
211		(*nsegs)++;
212		total_len += seg_size;
213		len -= seg_size;
214
215		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
216			break;
217	}
218
219	*sectors += total_len >> 9;
220
221	/* tell the caller to split the bvec if it is too big to fit */
222	return len > 0 || bv->bv_len > max_len;
223}
224
225/**
226 * blk_bio_segment_split - split a bio in two bios
227 * @q:    [in] request queue pointer
228 * @bio:  [in] bio to be split
229 * @bs:	  [in] bio set to allocate the clone from
230 * @segs: [out] number of segments in the bio with the first half of the sectors
231 *
232 * Clone @bio, update the bi_iter of the clone to represent the first sectors
233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234 * following is guaranteed for the cloned bio:
235 * - That it has at most get_max_io_size(@q, @bio) sectors.
236 * - That it has at most queue_max_segments(@q) segments.
237 *
238 * Except for discard requests the cloned bio will point at the bi_io_vec of
239 * the original bio. It is the responsibility of the caller to ensure that the
240 * original bio is not freed before the cloned bio. The caller is also
241 * responsible for ensuring that @bs is only destroyed after processing of the
242 * split bio has finished.
243 */
244static struct bio *blk_bio_segment_split(struct request_queue *q,
245					 struct bio *bio,
246					 struct bio_set *bs,
247					 unsigned *segs)
248{
249	struct bio_vec bv, bvprv, *bvprvp = NULL;
250	struct bvec_iter iter;
251	unsigned nsegs = 0, sectors = 0;
 
 
 
252	const unsigned max_sectors = get_max_io_size(q, bio);
253	const unsigned max_segs = queue_max_segments(q);
254
255	bio_for_each_bvec(bv, bio, iter) {
256		/*
257		 * If the queue doesn't support SG gaps and adding this
258		 * offset would create a gap, disallow it.
259		 */
260		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261			goto split;
262
263		if (nsegs < max_segs &&
264		    sectors + (bv.bv_len >> 9) <= max_sectors &&
265		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
266			nsegs++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267			sectors += bv.bv_len >> 9;
268		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
269					 max_sectors)) {
 
 
 
 
 
270			goto split;
271		}
272
 
273		bvprv = bv;
274		bvprvp = &bvprv;
 
 
 
 
 
275	}
276
277	*segs = nsegs;
278	return NULL;
279split:
280	*segs = nsegs;
281	return bio_split(bio, sectors, GFP_NOIO, bs);
 
 
 
 
 
 
 
 
 
 
 
282}
283
284/**
285 * __blk_queue_split - split a bio and submit the second half
286 * @bio:     [in, out] bio to be split
287 * @nr_segs: [out] number of segments in the first bio
288 *
289 * Split a bio into two bios, chain the two bios, submit the second half and
290 * store a pointer to the first half in *@bio. If the second bio is still too
291 * big it will be split by a recursive call to this function. Since this
292 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
293 * the responsibility of the caller to ensure that
294 * @bio->bi_disk->queue->bio_split is only released after processing of the
295 * split bio has finished.
296 */
297void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
298{
299	struct request_queue *q = (*bio)->bi_disk->queue;
300	struct bio *split = NULL;
301
302	switch (bio_op(*bio)) {
303	case REQ_OP_DISCARD:
304	case REQ_OP_SECURE_ERASE:
305		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
306		break;
307	case REQ_OP_WRITE_ZEROES:
308		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
309				nr_segs);
310		break;
311	case REQ_OP_WRITE_SAME:
312		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
313				nr_segs);
314		break;
315	default:
316		/*
317		 * All drivers must accept single-segments bios that are <=
318		 * PAGE_SIZE.  This is a quick and dirty check that relies on
319		 * the fact that bi_io_vec[0] is always valid if a bio has data.
320		 * The check might lead to occasional false negatives when bios
321		 * are cloned, but compared to the performance impact of cloned
322		 * bios themselves the loop below doesn't matter anyway.
323		 */
324		if (!q->limits.chunk_sectors &&
325		    (*bio)->bi_vcnt == 1 &&
326		    ((*bio)->bi_io_vec[0].bv_len +
327		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
328			*nr_segs = 1;
329			break;
330		}
331		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
332		break;
333	}
334
335	if (split) {
336		/* there isn't chance to merge the splitted bio */
337		split->bi_opf |= REQ_NOMERGE;
338
339		bio_chain(split, *bio);
340		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
341		submit_bio_noacct(*bio);
342		*bio = split;
343	}
344}
345
346/**
347 * blk_queue_split - split a bio and submit the second half
348 * @bio: [in, out] bio to be split
349 *
350 * Split a bio into two bios, chains the two bios, submit the second half and
351 * store a pointer to the first half in *@bio. Since this function may allocate
352 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
353 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
354 * after processing of the split bio has finished.
355 */
356void blk_queue_split(struct bio **bio)
357{
358	unsigned int nr_segs;
359
360	__blk_queue_split(bio, &nr_segs);
361}
362EXPORT_SYMBOL(blk_queue_split);
363
364unsigned int blk_recalc_rq_segments(struct request *rq)
365{
366	unsigned int nr_phys_segs = 0;
367	unsigned int nr_sectors = 0;
368	struct req_iterator iter;
369	struct bio_vec bv;
 
 
 
370
371	if (!rq->bio)
372		return 0;
373
374	switch (bio_op(rq->bio)) {
375	case REQ_OP_DISCARD:
376	case REQ_OP_SECURE_ERASE:
377	case REQ_OP_WRITE_ZEROES:
378		return 0;
379	case REQ_OP_WRITE_SAME:
 
 
380		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381	}
382
383	rq_for_each_bvec(bv, rq, iter)
384		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
385				UINT_MAX, UINT_MAX);
 
 
386	return nr_phys_segs;
387}
388
389static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
390		struct scatterlist *sglist)
391{
392	if (!*sg)
393		return sglist;
394
395	/*
396	 * If the driver previously mapped a shorter list, we could see a
397	 * termination bit prematurely unless it fully inits the sg table
398	 * on each mapping. We KNOW that there must be more entries here
399	 * or the driver would be buggy, so force clear the termination bit
400	 * to avoid doing a full sg_init_table() in drivers for each command.
401	 */
402	sg_unmark_end(*sg);
403	return sg_next(*sg);
404}
405
406static unsigned blk_bvec_map_sg(struct request_queue *q,
407		struct bio_vec *bvec, struct scatterlist *sglist,
408		struct scatterlist **sg)
409{
410	unsigned nbytes = bvec->bv_len;
411	unsigned nsegs = 0, total = 0;
412
413	while (nbytes > 0) {
414		unsigned offset = bvec->bv_offset + total;
415		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
416					offset), nbytes);
417		struct page *page = bvec->bv_page;
418
419		/*
420		 * Unfortunately a fair number of drivers barf on scatterlists
421		 * that have an offset larger than PAGE_SIZE, despite other
422		 * subsystems dealing with that invariant just fine.  For now
423		 * stick to the legacy format where we never present those from
424		 * the block layer, but the code below should be removed once
425		 * these offenders (mostly MMC/SD drivers) are fixed.
426		 */
427		page += (offset >> PAGE_SHIFT);
428		offset &= ~PAGE_MASK;
429
430		*sg = blk_next_sg(sg, sglist);
431		sg_set_page(*sg, page, len, offset);
432
433		total += len;
434		nbytes -= len;
435		nsegs++;
436	}
437
438	return nsegs;
439}
 
440
441static inline int __blk_bvec_map_sg(struct bio_vec bv,
442		struct scatterlist *sglist, struct scatterlist **sg)
443{
444	*sg = blk_next_sg(sg, sglist);
445	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
446	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447}
448
449/* only try to merge bvecs into one sg if they are from two bios */
450static inline bool
451__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
452			   struct bio_vec *bvprv, struct scatterlist **sg)
453{
454
455	int nbytes = bvec->bv_len;
456
457	if (!*sg)
458		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459
460	if ((*sg)->length + nbytes > queue_max_segment_size(q))
461		return false;
462
463	if (!biovec_phys_mergeable(q, bvprv, bvec))
464		return false;
465
466	(*sg)->length += nbytes;
467
468	return true;
469}
470
471static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
472			     struct scatterlist *sglist,
473			     struct scatterlist **sg)
474{
475	struct bio_vec bvec, bvprv = { NULL };
476	struct bvec_iter iter;
477	int nsegs = 0;
478	bool new_bio = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
480	for_each_bio(bio) {
481		bio_for_each_bvec(bvec, bio, iter) {
482			/*
483			 * Only try to merge bvecs from two bios given we
484			 * have done bio internal merge when adding pages
485			 * to bio
486			 */
487			if (new_bio &&
488			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
489				goto next_bvec;
490
491			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
492				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
493			else
494				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
495 next_bvec:
496			new_bio = false;
497		}
498		if (likely(bio->bi_iter.bi_size)) {
499			bvprv = bvec;
500			new_bio = true;
501		}
502	}
503
 
 
 
 
 
504	return nsegs;
505}
506
507/*
508 * map a request to scatterlist, return number of sg entries setup. Caller
509 * must make sure sg can hold rq->nr_phys_segments entries
510 */
511int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
512		struct scatterlist *sglist, struct scatterlist **last_sg)
513{
 
514	int nsegs = 0;
515
516	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
517		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
518	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
519		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
520	else if (rq->bio)
521		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522
523	if (*last_sg)
524		sg_mark_end(*last_sg);
525
526	/*
527	 * Something must have been wrong if the figured number of
528	 * segment is bigger than number of req's physical segments
529	 */
530	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
531
532	return nsegs;
533}
534EXPORT_SYMBOL(__blk_rq_map_sg);
535
536static inline unsigned int blk_rq_get_max_segments(struct request *rq)
 
 
537{
538	if (req_op(rq) == REQ_OP_DISCARD)
539		return queue_max_discard_segments(rq->q);
540	return queue_max_segments(rq->q);
541}
542
543static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
544		unsigned int nr_phys_segs)
545{
546	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
547		goto no_merge;
548
549	if (blk_integrity_merge_bio(req->q, req, bio) == false)
550		goto no_merge;
551
552	/*
553	 * This will form the start of a new hw segment.  Bump both
554	 * counters.
555	 */
556	req->nr_phys_segments += nr_phys_segs;
557	return 1;
558
559no_merge:
560	req_set_nomerge(req->q, req);
 
 
561	return 0;
562}
563
564int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
565{
566	if (req_gap_back_merge(req, bio))
567		return 0;
568	if (blk_integrity_rq(req) &&
569	    integrity_req_gap_back_merge(req, bio))
570		return 0;
571	if (!bio_crypt_ctx_back_mergeable(req, bio))
572		return 0;
573	if (blk_rq_sectors(req) + bio_sectors(bio) >
574	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
575		req_set_nomerge(req->q, req);
 
 
576		return 0;
577	}
 
 
 
 
578
579	return ll_new_hw_segment(req, bio, nr_segs);
580}
581
582int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
583{
 
584	if (req_gap_front_merge(req, bio))
585		return 0;
586	if (blk_integrity_rq(req) &&
587	    integrity_req_gap_front_merge(req, bio))
588		return 0;
589	if (!bio_crypt_ctx_front_mergeable(req, bio))
590		return 0;
591	if (blk_rq_sectors(req) + bio_sectors(bio) >
592	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
593		req_set_nomerge(req->q, req);
 
 
594		return 0;
595	}
 
 
 
 
596
597	return ll_new_hw_segment(req, bio, nr_segs);
598}
599
600static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
601		struct request *next)
 
 
 
602{
603	unsigned short segments = blk_rq_nr_discard_segments(req);
604
605	if (segments >= queue_max_discard_segments(q))
606		goto no_merge;
607	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
608	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
609		goto no_merge;
610
611	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
612	return true;
613no_merge:
614	req_set_nomerge(q, req);
615	return false;
616}
617
618static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
619				struct request *next)
620{
621	int total_phys_segments;
 
 
 
 
 
 
 
 
 
622
623	if (req_gap_back_merge(req, next->bio))
624		return 0;
625
626	/*
627	 * Will it become too large?
628	 */
629	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
630	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
631		return 0;
632
633	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
634	if (total_phys_segments > blk_rq_get_max_segments(req))
 
 
 
 
 
 
 
 
635		return 0;
636
637	if (blk_integrity_merge_rq(q, req, next) == false)
638		return 0;
639
640	if (!bio_crypt_ctx_merge_rq(req, next))
641		return 0;
642
643	/* Merge is OK... */
644	req->nr_phys_segments = total_phys_segments;
645	return 1;
646}
647
648/**
649 * blk_rq_set_mixed_merge - mark a request as mixed merge
650 * @rq: request to mark as mixed merge
651 *
652 * Description:
653 *     @rq is about to be mixed merged.  Make sure the attributes
654 *     which can be mixed are set in each bio and mark @rq as mixed
655 *     merged.
656 */
657void blk_rq_set_mixed_merge(struct request *rq)
658{
659	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
660	struct bio *bio;
661
662	if (rq->rq_flags & RQF_MIXED_MERGE)
663		return;
664
665	/*
666	 * @rq will no longer represent mixable attributes for all the
667	 * contained bios.  It will just track those of the first one.
668	 * Distributes the attributs to each bio.
669	 */
670	for (bio = rq->bio; bio; bio = bio->bi_next) {
671		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
672			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
673		bio->bi_opf |= ff;
674	}
675	rq->rq_flags |= RQF_MIXED_MERGE;
676}
677
678static void blk_account_io_merge_request(struct request *req)
679{
680	if (blk_do_io_stat(req)) {
681		part_stat_lock();
682		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
683		part_stat_unlock();
684
685		hd_struct_put(req->part);
686	}
687}
688
689/*
690 * Two cases of handling DISCARD merge:
691 * If max_discard_segments > 1, the driver takes every bio
692 * as a range and send them to controller together. The ranges
693 * needn't to be contiguous.
694 * Otherwise, the bios/requests will be handled as same as
695 * others which should be contiguous.
696 */
697static inline bool blk_discard_mergable(struct request *req)
698{
699	if (req_op(req) == REQ_OP_DISCARD &&
700	    queue_max_discard_segments(req->q) > 1)
701		return true;
702	return false;
703}
704
705static enum elv_merge blk_try_req_merge(struct request *req,
706					struct request *next)
707{
708	if (blk_discard_mergable(req))
709		return ELEVATOR_DISCARD_MERGE;
710	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
711		return ELEVATOR_BACK_MERGE;
712
713	return ELEVATOR_NO_MERGE;
 
 
714}
715
716/*
717 * For non-mq, this has to be called with the request spinlock acquired.
718 * For mq with scheduling, the appropriate queue wide lock should be held.
719 */
720static struct request *attempt_merge(struct request_queue *q,
721				     struct request *req, struct request *next)
722{
723	if (!rq_mergeable(req) || !rq_mergeable(next))
724		return NULL;
 
 
 
725
726	if (req_op(req) != req_op(next))
727		return NULL;
 
 
 
728
729	if (rq_data_dir(req) != rq_data_dir(next)
730	    || req->rq_disk != next->rq_disk)
731		return NULL;
 
732
733	if (req_op(req) == REQ_OP_WRITE_SAME &&
734	    !blk_write_same_mergeable(req->bio, next->bio))
735		return NULL;
736
737	/*
738	 * Don't allow merge of different write hints, or for a hint with
739	 * non-hint IO.
740	 */
741	if (req->write_hint != next->write_hint)
742		return NULL;
743
744	if (req->ioprio != next->ioprio)
745		return NULL;
746
747	/*
748	 * If we are allowed to merge, then append bio list
749	 * from next to rq and release next. merge_requests_fn
750	 * will have updated segment counts, update sector
751	 * counts here. Handle DISCARDs separately, as they
752	 * have separate settings.
753	 */
754
755	switch (blk_try_req_merge(req, next)) {
756	case ELEVATOR_DISCARD_MERGE:
757		if (!req_attempt_discard_merge(q, req, next))
758			return NULL;
759		break;
760	case ELEVATOR_BACK_MERGE:
761		if (!ll_merge_requests_fn(q, req, next))
762			return NULL;
763		break;
764	default:
765		return NULL;
766	}
767
768	/*
769	 * If failfast settings disagree or any of the two is already
770	 * a mixed merge, mark both as mixed before proceeding.  This
771	 * makes sure that all involved bios have mixable attributes
772	 * set properly.
773	 */
774	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
775	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
776	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
777		blk_rq_set_mixed_merge(req);
778		blk_rq_set_mixed_merge(next);
779	}
780
781	/*
782	 * At this point we have either done a back merge or front merge. We
783	 * need the smaller start_time_ns of the merged requests to be the
784	 * current request for accounting purposes.
 
785	 */
786	if (next->start_time_ns < req->start_time_ns)
787		req->start_time_ns = next->start_time_ns;
788
789	req->biotail->bi_next = next->bio;
790	req->biotail = next->biotail;
791
792	req->__data_len += blk_rq_bytes(next);
793
794	if (!blk_discard_mergable(req))
795		elv_merge_requests(q, req, next);
796
797	/*
798	 * 'next' is going away, so update stats accordingly
799	 */
800	blk_account_io_merge_request(next);
801
802	trace_block_rq_merge(q, next);
 
 
803
804	/*
805	 * ownership of bio passed from next to req, return 'next' for
806	 * the caller to free
807	 */
808	next->bio = NULL;
809	return next;
 
810}
811
812struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
813{
814	struct request *next = elv_latter_request(q, rq);
815
816	if (next)
817		return attempt_merge(q, rq, next);
818
819	return NULL;
820}
821
822struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
823{
824	struct request *prev = elv_former_request(q, rq);
825
826	if (prev)
827		return attempt_merge(q, prev, rq);
828
829	return NULL;
830}
831
832int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
833			  struct request *next)
834{
835	struct request *free;
836
837	free = attempt_merge(q, rq, next);
838	if (free) {
839		blk_put_request(free);
840		return 1;
841	}
842
843	return 0;
844}
845
846bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
847{
848	if (!rq_mergeable(rq) || !bio_mergeable(bio))
849		return false;
850
851	if (req_op(rq) != bio_op(bio))
852		return false;
853
854	/* different data direction or already started, don't merge */
855	if (bio_data_dir(bio) != rq_data_dir(rq))
856		return false;
857
858	/* must be same device */
859	if (rq->rq_disk != bio->bi_disk)
860		return false;
861
862	/* only merge integrity protected bio into ditto rq */
863	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
864		return false;
865
866	/* Only merge if the crypt contexts are compatible */
867	if (!bio_crypt_rq_ctx_compatible(rq, bio))
868		return false;
869
870	/* must be using the same buffer */
871	if (req_op(rq) == REQ_OP_WRITE_SAME &&
872	    !blk_write_same_mergeable(rq->bio, bio))
873		return false;
874
875	/*
876	 * Don't allow merge of different write hints, or for a hint with
877	 * non-hint IO.
878	 */
879	if (rq->write_hint != bio->bi_write_hint)
880		return false;
881
882	if (rq->ioprio != bio_prio(bio))
883		return false;
884
885	return true;
886}
887
888enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
889{
890	if (blk_discard_mergable(rq))
891		return ELEVATOR_DISCARD_MERGE;
892	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
893		return ELEVATOR_BACK_MERGE;
894	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
895		return ELEVATOR_FRONT_MERGE;
896	return ELEVATOR_NO_MERGE;
897}