Loading...
1/*
2 * common.c - C code for kernel entry and exit
3 * Copyright (c) 2015 Andrew Lutomirski
4 * GPL v2
5 *
6 * Based on asm and ptrace code by many authors. The code here originated
7 * in ptrace.c and signal.c.
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/mm.h>
13#include <linux/smp.h>
14#include <linux/errno.h>
15#include <linux/ptrace.h>
16#include <linux/tracehook.h>
17#include <linux/audit.h>
18#include <linux/seccomp.h>
19#include <linux/signal.h>
20#include <linux/export.h>
21#include <linux/context_tracking.h>
22#include <linux/user-return-notifier.h>
23#include <linux/uprobes.h>
24
25#include <asm/desc.h>
26#include <asm/traps.h>
27#include <asm/vdso.h>
28#include <asm/uaccess.h>
29#include <asm/cpufeature.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/syscalls.h>
33
34static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
35{
36 unsigned long top_of_stack =
37 (unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
38 return (struct thread_info *)(top_of_stack - THREAD_SIZE);
39}
40
41#ifdef CONFIG_CONTEXT_TRACKING
42/* Called on entry from user mode with IRQs off. */
43__visible void enter_from_user_mode(void)
44{
45 CT_WARN_ON(ct_state() != CONTEXT_USER);
46 user_exit();
47}
48#else
49static inline void enter_from_user_mode(void) {}
50#endif
51
52static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
53{
54#ifdef CONFIG_X86_64
55 if (arch == AUDIT_ARCH_X86_64) {
56 audit_syscall_entry(regs->orig_ax, regs->di,
57 regs->si, regs->dx, regs->r10);
58 } else
59#endif
60 {
61 audit_syscall_entry(regs->orig_ax, regs->bx,
62 regs->cx, regs->dx, regs->si);
63 }
64}
65
66/*
67 * We can return 0 to resume the syscall or anything else to go to phase
68 * 2. If we resume the syscall, we need to put something appropriate in
69 * regs->orig_ax.
70 *
71 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
72 * are fully functional.
73 *
74 * For phase 2's benefit, our return value is:
75 * 0: resume the syscall
76 * 1: go to phase 2; no seccomp phase 2 needed
77 * anything else: go to phase 2; pass return value to seccomp
78 */
79unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
80{
81 struct thread_info *ti = pt_regs_to_thread_info(regs);
82 unsigned long ret = 0;
83 u32 work;
84
85 if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
86 BUG_ON(regs != task_pt_regs(current));
87
88 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
89
90#ifdef CONFIG_SECCOMP
91 /*
92 * Do seccomp first -- it should minimize exposure of other
93 * code, and keeping seccomp fast is probably more valuable
94 * than the rest of this.
95 */
96 if (work & _TIF_SECCOMP) {
97 struct seccomp_data sd;
98
99 sd.arch = arch;
100 sd.nr = regs->orig_ax;
101 sd.instruction_pointer = regs->ip;
102#ifdef CONFIG_X86_64
103 if (arch == AUDIT_ARCH_X86_64) {
104 sd.args[0] = regs->di;
105 sd.args[1] = regs->si;
106 sd.args[2] = regs->dx;
107 sd.args[3] = regs->r10;
108 sd.args[4] = regs->r8;
109 sd.args[5] = regs->r9;
110 } else
111#endif
112 {
113 sd.args[0] = regs->bx;
114 sd.args[1] = regs->cx;
115 sd.args[2] = regs->dx;
116 sd.args[3] = regs->si;
117 sd.args[4] = regs->di;
118 sd.args[5] = regs->bp;
119 }
120
121 BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
122 BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
123
124 ret = seccomp_phase1(&sd);
125 if (ret == SECCOMP_PHASE1_SKIP) {
126 regs->orig_ax = -1;
127 ret = 0;
128 } else if (ret != SECCOMP_PHASE1_OK) {
129 return ret; /* Go directly to phase 2 */
130 }
131
132 work &= ~_TIF_SECCOMP;
133 }
134#endif
135
136 /* Do our best to finish without phase 2. */
137 if (work == 0)
138 return ret; /* seccomp and/or nohz only (ret == 0 here) */
139
140#ifdef CONFIG_AUDITSYSCALL
141 if (work == _TIF_SYSCALL_AUDIT) {
142 /*
143 * If there is no more work to be done except auditing,
144 * then audit in phase 1. Phase 2 always audits, so, if
145 * we audit here, then we can't go on to phase 2.
146 */
147 do_audit_syscall_entry(regs, arch);
148 return 0;
149 }
150#endif
151
152 return 1; /* Something is enabled that we can't handle in phase 1 */
153}
154
155/* Returns the syscall nr to run (which should match regs->orig_ax). */
156long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
157 unsigned long phase1_result)
158{
159 struct thread_info *ti = pt_regs_to_thread_info(regs);
160 long ret = 0;
161 u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
162
163 if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
164 BUG_ON(regs != task_pt_regs(current));
165
166#ifdef CONFIG_SECCOMP
167 /*
168 * Call seccomp_phase2 before running the other hooks so that
169 * they can see any changes made by a seccomp tracer.
170 */
171 if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
172 /* seccomp failures shouldn't expose any additional code. */
173 return -1;
174 }
175#endif
176
177 if (unlikely(work & _TIF_SYSCALL_EMU))
178 ret = -1L;
179
180 if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
181 tracehook_report_syscall_entry(regs))
182 ret = -1L;
183
184 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
185 trace_sys_enter(regs, regs->orig_ax);
186
187 do_audit_syscall_entry(regs, arch);
188
189 return ret ?: regs->orig_ax;
190}
191
192long syscall_trace_enter(struct pt_regs *regs)
193{
194 u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
195 unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
196
197 if (phase1_result == 0)
198 return regs->orig_ax;
199 else
200 return syscall_trace_enter_phase2(regs, arch, phase1_result);
201}
202
203#define EXIT_TO_USERMODE_LOOP_FLAGS \
204 (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
205 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
206
207static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
208{
209 /*
210 * In order to return to user mode, we need to have IRQs off with
211 * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
212 * _TIF_UPROBE, or _TIF_NEED_RESCHED set. Several of these flags
213 * can be set at any time on preemptable kernels if we have IRQs on,
214 * so we need to loop. Disabling preemption wouldn't help: doing the
215 * work to clear some of the flags can sleep.
216 */
217 while (true) {
218 /* We have work to do. */
219 local_irq_enable();
220
221 if (cached_flags & _TIF_NEED_RESCHED)
222 schedule();
223
224 if (cached_flags & _TIF_UPROBE)
225 uprobe_notify_resume(regs);
226
227 /* deal with pending signal delivery */
228 if (cached_flags & _TIF_SIGPENDING)
229 do_signal(regs);
230
231 if (cached_flags & _TIF_NOTIFY_RESUME) {
232 clear_thread_flag(TIF_NOTIFY_RESUME);
233 tracehook_notify_resume(regs);
234 }
235
236 if (cached_flags & _TIF_USER_RETURN_NOTIFY)
237 fire_user_return_notifiers();
238
239 /* Disable IRQs and retry */
240 local_irq_disable();
241
242 cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
243
244 if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
245 break;
246
247 }
248}
249
250/* Called with IRQs disabled. */
251__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
252{
253 struct thread_info *ti = pt_regs_to_thread_info(regs);
254 u32 cached_flags;
255
256 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
257 local_irq_disable();
258
259 lockdep_sys_exit();
260
261 cached_flags = READ_ONCE(ti->flags);
262
263 if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
264 exit_to_usermode_loop(regs, cached_flags);
265
266#ifdef CONFIG_COMPAT
267 /*
268 * Compat syscalls set TS_COMPAT. Make sure we clear it before
269 * returning to user mode. We need to clear it *after* signal
270 * handling, because syscall restart has a fixup for compat
271 * syscalls. The fixup is exercised by the ptrace_syscall_32
272 * selftest.
273 */
274 ti->status &= ~TS_COMPAT;
275#endif
276
277 user_enter();
278}
279
280#define SYSCALL_EXIT_WORK_FLAGS \
281 (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
282 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
283
284static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
285{
286 bool step;
287
288 audit_syscall_exit(regs);
289
290 if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
291 trace_sys_exit(regs, regs->ax);
292
293 /*
294 * If TIF_SYSCALL_EMU is set, we only get here because of
295 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
296 * We already reported this syscall instruction in
297 * syscall_trace_enter().
298 */
299 step = unlikely(
300 (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
301 == _TIF_SINGLESTEP);
302 if (step || cached_flags & _TIF_SYSCALL_TRACE)
303 tracehook_report_syscall_exit(regs, step);
304}
305
306/*
307 * Called with IRQs on and fully valid regs. Returns with IRQs off in a
308 * state such that we can immediately switch to user mode.
309 */
310__visible inline void syscall_return_slowpath(struct pt_regs *regs)
311{
312 struct thread_info *ti = pt_regs_to_thread_info(regs);
313 u32 cached_flags = READ_ONCE(ti->flags);
314
315 CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
316
317 if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
318 WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
319 local_irq_enable();
320
321 /*
322 * First do one-time work. If these work items are enabled, we
323 * want to run them exactly once per syscall exit with IRQs on.
324 */
325 if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
326 syscall_slow_exit_work(regs, cached_flags);
327
328 local_irq_disable();
329 prepare_exit_to_usermode(regs);
330}
331
332#ifdef CONFIG_X86_64
333__visible void do_syscall_64(struct pt_regs *regs)
334{
335 struct thread_info *ti = pt_regs_to_thread_info(regs);
336 unsigned long nr = regs->orig_ax;
337
338 enter_from_user_mode();
339 local_irq_enable();
340
341 if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
342 nr = syscall_trace_enter(regs);
343
344 /*
345 * NB: Native and x32 syscalls are dispatched from the same
346 * table. The only functional difference is the x32 bit in
347 * regs->orig_ax, which changes the behavior of some syscalls.
348 */
349 if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
350 regs->ax = sys_call_table[nr & __SYSCALL_MASK](
351 regs->di, regs->si, regs->dx,
352 regs->r10, regs->r8, regs->r9);
353 }
354
355 syscall_return_slowpath(regs);
356}
357#endif
358
359#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
360/*
361 * Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does
362 * all entry and exit work and returns with IRQs off. This function is
363 * extremely hot in workloads that use it, and it's usually called from
364 * do_fast_syscall_32, so forcibly inline it to improve performance.
365 */
366static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
367{
368 struct thread_info *ti = pt_regs_to_thread_info(regs);
369 unsigned int nr = (unsigned int)regs->orig_ax;
370
371#ifdef CONFIG_IA32_EMULATION
372 ti->status |= TS_COMPAT;
373#endif
374
375 if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
376 /*
377 * Subtlety here: if ptrace pokes something larger than
378 * 2^32-1 into orig_ax, this truncates it. This may or
379 * may not be necessary, but it matches the old asm
380 * behavior.
381 */
382 nr = syscall_trace_enter(regs);
383 }
384
385 if (likely(nr < IA32_NR_syscalls)) {
386 /*
387 * It's possible that a 32-bit syscall implementation
388 * takes a 64-bit parameter but nonetheless assumes that
389 * the high bits are zero. Make sure we zero-extend all
390 * of the args.
391 */
392 regs->ax = ia32_sys_call_table[nr](
393 (unsigned int)regs->bx, (unsigned int)regs->cx,
394 (unsigned int)regs->dx, (unsigned int)regs->si,
395 (unsigned int)regs->di, (unsigned int)regs->bp);
396 }
397
398 syscall_return_slowpath(regs);
399}
400
401/* Handles int $0x80 */
402__visible void do_int80_syscall_32(struct pt_regs *regs)
403{
404 enter_from_user_mode();
405 local_irq_enable();
406 do_syscall_32_irqs_on(regs);
407}
408
409/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
410__visible long do_fast_syscall_32(struct pt_regs *regs)
411{
412 /*
413 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
414 * convention. Adjust regs so it looks like we entered using int80.
415 */
416
417 unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
418 vdso_image_32.sym_int80_landing_pad;
419
420 /*
421 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
422 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
423 * Fix it up.
424 */
425 regs->ip = landing_pad;
426
427 enter_from_user_mode();
428
429 local_irq_enable();
430
431 /* Fetch EBP from where the vDSO stashed it. */
432 if (
433#ifdef CONFIG_X86_64
434 /*
435 * Micro-optimization: the pointer we're following is explicitly
436 * 32 bits, so it can't be out of range.
437 */
438 __get_user(*(u32 *)®s->bp,
439 (u32 __user __force *)(unsigned long)(u32)regs->sp)
440#else
441 get_user(*(u32 *)®s->bp,
442 (u32 __user __force *)(unsigned long)(u32)regs->sp)
443#endif
444 ) {
445
446 /* User code screwed up. */
447 local_irq_disable();
448 regs->ax = -EFAULT;
449 prepare_exit_to_usermode(regs);
450 return 0; /* Keep it simple: use IRET. */
451 }
452
453 /* Now this is just like a normal syscall. */
454 do_syscall_32_irqs_on(regs);
455
456#ifdef CONFIG_X86_64
457 /*
458 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
459 * SYSRETL is available on all 64-bit CPUs, so we don't need to
460 * bother with SYSEXIT.
461 *
462 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
463 * because the ECX fixup above will ensure that this is essentially
464 * never the case.
465 */
466 return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
467 regs->ip == landing_pad &&
468 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
469#else
470 /*
471 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
472 *
473 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
474 * because the ECX fixup above will ensure that this is essentially
475 * never the case.
476 *
477 * We don't allow syscalls at all from VM86 mode, but we still
478 * need to check VM, because we might be returning from sys_vm86.
479 */
480 return static_cpu_has(X86_FEATURE_SEP) &&
481 regs->cs == __USER_CS && regs->ss == __USER_DS &&
482 regs->ip == landing_pad &&
483 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
484#endif
485}
486#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * common.c - C code for kernel entry and exit
4 * Copyright (c) 2015 Andrew Lutomirski
5 *
6 * Based on asm and ptrace code by many authors. The code here originated
7 * in ptrace.c and signal.c.
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/sched/task_stack.h>
13#include <linux/entry-common.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/export.h>
19#include <linux/nospec.h>
20#include <linux/syscalls.h>
21#include <linux/uaccess.h>
22
23#ifdef CONFIG_XEN_PV
24#include <xen/xen-ops.h>
25#include <xen/events.h>
26#endif
27
28#include <asm/desc.h>
29#include <asm/traps.h>
30#include <asm/vdso.h>
31#include <asm/cpufeature.h>
32#include <asm/fpu/api.h>
33#include <asm/nospec-branch.h>
34#include <asm/io_bitmap.h>
35#include <asm/syscall.h>
36#include <asm/irq_stack.h>
37
38#ifdef CONFIG_X86_64
39__visible noinstr void do_syscall_64(unsigned long nr, struct pt_regs *regs)
40{
41 nr = syscall_enter_from_user_mode(regs, nr);
42
43 instrumentation_begin();
44 if (likely(nr < NR_syscalls)) {
45 nr = array_index_nospec(nr, NR_syscalls);
46 regs->ax = sys_call_table[nr](regs);
47#ifdef CONFIG_X86_X32_ABI
48 } else if (likely((nr & __X32_SYSCALL_BIT) &&
49 (nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) {
50 nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT,
51 X32_NR_syscalls);
52 regs->ax = x32_sys_call_table[nr](regs);
53#endif
54 }
55 instrumentation_end();
56 syscall_exit_to_user_mode(regs);
57}
58#endif
59
60#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
61static __always_inline unsigned int syscall_32_enter(struct pt_regs *regs)
62{
63 if (IS_ENABLED(CONFIG_IA32_EMULATION))
64 current_thread_info()->status |= TS_COMPAT;
65
66 return (unsigned int)regs->orig_ax;
67}
68
69/*
70 * Invoke a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL.
71 */
72static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs,
73 unsigned int nr)
74{
75 if (likely(nr < IA32_NR_syscalls)) {
76 instrumentation_begin();
77 nr = array_index_nospec(nr, IA32_NR_syscalls);
78 regs->ax = ia32_sys_call_table[nr](regs);
79 instrumentation_end();
80 }
81}
82
83/* Handles int $0x80 */
84__visible noinstr void do_int80_syscall_32(struct pt_regs *regs)
85{
86 unsigned int nr = syscall_32_enter(regs);
87
88 /*
89 * Subtlety here: if ptrace pokes something larger than 2^32-1 into
90 * orig_ax, the unsigned int return value truncates it. This may
91 * or may not be necessary, but it matches the old asm behavior.
92 */
93 nr = (unsigned int)syscall_enter_from_user_mode(regs, nr);
94
95 do_syscall_32_irqs_on(regs, nr);
96 syscall_exit_to_user_mode(regs);
97}
98
99static noinstr bool __do_fast_syscall_32(struct pt_regs *regs)
100{
101 unsigned int nr = syscall_32_enter(regs);
102 int res;
103
104 /*
105 * This cannot use syscall_enter_from_user_mode() as it has to
106 * fetch EBP before invoking any of the syscall entry work
107 * functions.
108 */
109 syscall_enter_from_user_mode_prepare(regs);
110
111 instrumentation_begin();
112 /* Fetch EBP from where the vDSO stashed it. */
113 if (IS_ENABLED(CONFIG_X86_64)) {
114 /*
115 * Micro-optimization: the pointer we're following is
116 * explicitly 32 bits, so it can't be out of range.
117 */
118 res = __get_user(*(u32 *)®s->bp,
119 (u32 __user __force *)(unsigned long)(u32)regs->sp);
120 } else {
121 res = get_user(*(u32 *)®s->bp,
122 (u32 __user __force *)(unsigned long)(u32)regs->sp);
123 }
124 instrumentation_end();
125
126 if (res) {
127 /* User code screwed up. */
128 regs->ax = -EFAULT;
129 syscall_exit_to_user_mode(regs);
130 return false;
131 }
132
133 /* The case truncates any ptrace induced syscall nr > 2^32 -1 */
134 nr = (unsigned int)syscall_enter_from_user_mode_work(regs, nr);
135
136 /* Now this is just like a normal syscall. */
137 do_syscall_32_irqs_on(regs, nr);
138 syscall_exit_to_user_mode(regs);
139 return true;
140}
141
142/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
143__visible noinstr long do_fast_syscall_32(struct pt_regs *regs)
144{
145 /*
146 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
147 * convention. Adjust regs so it looks like we entered using int80.
148 */
149 unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
150 vdso_image_32.sym_int80_landing_pad;
151
152 /*
153 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
154 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
155 * Fix it up.
156 */
157 regs->ip = landing_pad;
158
159 /* Invoke the syscall. If it failed, keep it simple: use IRET. */
160 if (!__do_fast_syscall_32(regs))
161 return 0;
162
163#ifdef CONFIG_X86_64
164 /*
165 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
166 * SYSRETL is available on all 64-bit CPUs, so we don't need to
167 * bother with SYSEXIT.
168 *
169 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
170 * because the ECX fixup above will ensure that this is essentially
171 * never the case.
172 */
173 return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
174 regs->ip == landing_pad &&
175 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
176#else
177 /*
178 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
179 *
180 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
181 * because the ECX fixup above will ensure that this is essentially
182 * never the case.
183 *
184 * We don't allow syscalls at all from VM86 mode, but we still
185 * need to check VM, because we might be returning from sys_vm86.
186 */
187 return static_cpu_has(X86_FEATURE_SEP) &&
188 regs->cs == __USER_CS && regs->ss == __USER_DS &&
189 regs->ip == landing_pad &&
190 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
191#endif
192}
193
194/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
195__visible noinstr long do_SYSENTER_32(struct pt_regs *regs)
196{
197 /* SYSENTER loses RSP, but the vDSO saved it in RBP. */
198 regs->sp = regs->bp;
199
200 /* SYSENTER clobbers EFLAGS.IF. Assume it was set in usermode. */
201 regs->flags |= X86_EFLAGS_IF;
202
203 return do_fast_syscall_32(regs);
204}
205#endif
206
207SYSCALL_DEFINE0(ni_syscall)
208{
209 return -ENOSYS;
210}
211
212noinstr bool idtentry_enter_nmi(struct pt_regs *regs)
213{
214 bool irq_state = lockdep_hardirqs_enabled();
215
216 __nmi_enter();
217 lockdep_hardirqs_off(CALLER_ADDR0);
218 lockdep_hardirq_enter();
219 rcu_nmi_enter();
220
221 instrumentation_begin();
222 trace_hardirqs_off_finish();
223 ftrace_nmi_enter();
224 instrumentation_end();
225
226 return irq_state;
227}
228
229noinstr void idtentry_exit_nmi(struct pt_regs *regs, bool restore)
230{
231 instrumentation_begin();
232 ftrace_nmi_exit();
233 if (restore) {
234 trace_hardirqs_on_prepare();
235 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
236 }
237 instrumentation_end();
238
239 rcu_nmi_exit();
240 lockdep_hardirq_exit();
241 if (restore)
242 lockdep_hardirqs_on(CALLER_ADDR0);
243 __nmi_exit();
244}
245
246#ifdef CONFIG_XEN_PV
247#ifndef CONFIG_PREEMPTION
248/*
249 * Some hypercalls issued by the toolstack can take many 10s of
250 * seconds. Allow tasks running hypercalls via the privcmd driver to
251 * be voluntarily preempted even if full kernel preemption is
252 * disabled.
253 *
254 * Such preemptible hypercalls are bracketed by
255 * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
256 * calls.
257 */
258DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
259EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
260
261/*
262 * In case of scheduling the flag must be cleared and restored after
263 * returning from schedule as the task might move to a different CPU.
264 */
265static __always_inline bool get_and_clear_inhcall(void)
266{
267 bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
268
269 __this_cpu_write(xen_in_preemptible_hcall, false);
270 return inhcall;
271}
272
273static __always_inline void restore_inhcall(bool inhcall)
274{
275 __this_cpu_write(xen_in_preemptible_hcall, inhcall);
276}
277#else
278static __always_inline bool get_and_clear_inhcall(void) { return false; }
279static __always_inline void restore_inhcall(bool inhcall) { }
280#endif
281
282static void __xen_pv_evtchn_do_upcall(void)
283{
284 irq_enter_rcu();
285 inc_irq_stat(irq_hv_callback_count);
286
287 xen_hvm_evtchn_do_upcall();
288
289 irq_exit_rcu();
290}
291
292__visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
293{
294 struct pt_regs *old_regs;
295 bool inhcall;
296 irqentry_state_t state;
297
298 state = irqentry_enter(regs);
299 old_regs = set_irq_regs(regs);
300
301 instrumentation_begin();
302 run_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
303 instrumentation_begin();
304
305 set_irq_regs(old_regs);
306
307 inhcall = get_and_clear_inhcall();
308 if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
309 instrumentation_begin();
310 irqentry_exit_cond_resched();
311 instrumentation_end();
312 restore_inhcall(inhcall);
313 } else {
314 irqentry_exit(regs, state);
315 }
316}
317#endif /* CONFIG_XEN_PV */