Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/sched.h>
 
  13#include <linux/linkage.h>
  14#include <linux/kernel.h>
  15#include <linux/signal.h>
  16#include <linux/smp.h>
  17#include <linux/mm.h>
  18#include <linux/init.h>
 
  19#include <linux/kdebug.h>
  20#include <linux/ftrace.h>
  21#include <linux/reboot.h>
  22#include <linux/gfp.h>
  23#include <linux/context_tracking.h>
  24
  25#include <asm/smp.h>
  26#include <asm/delay.h>
  27#include <asm/ptrace.h>
  28#include <asm/oplib.h>
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/unistd.h>
  32#include <asm/uaccess.h>
  33#include <asm/fpumacro.h>
  34#include <asm/lsu.h>
  35#include <asm/dcu.h>
  36#include <asm/estate.h>
  37#include <asm/chafsr.h>
  38#include <asm/sfafsr.h>
  39#include <asm/psrcompat.h>
  40#include <asm/processor.h>
  41#include <asm/timer.h>
  42#include <asm/head.h>
  43#include <asm/prom.h>
  44#include <asm/memctrl.h>
  45#include <asm/cacheflush.h>
  46#include <asm/setup.h>
  47
  48#include "entry.h"
  49#include "kernel.h"
  50#include "kstack.h"
  51
  52/* When an irrecoverable trap occurs at tl > 0, the trap entry
  53 * code logs the trap state registers at every level in the trap
  54 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  55 * is as follows:
  56 */
  57struct tl1_traplog {
  58	struct {
  59		unsigned long tstate;
  60		unsigned long tpc;
  61		unsigned long tnpc;
  62		unsigned long tt;
  63	} trapstack[4];
  64	unsigned long tl;
  65};
  66
  67static void dump_tl1_traplog(struct tl1_traplog *p)
  68{
  69	int i, limit;
  70
  71	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  72	       "dumping track stack.\n", p->tl);
  73
  74	limit = (tlb_type == hypervisor) ? 2 : 4;
  75	for (i = 0; i < limit; i++) {
  76		printk(KERN_EMERG
  77		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  78		       "TNPC[%016lx] TT[%lx]\n",
  79		       i + 1,
  80		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  81		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  82		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  83	}
  84}
  85
  86void bad_trap(struct pt_regs *regs, long lvl)
  87{
  88	char buffer[32];
  89	siginfo_t info;
  90
  91	if (notify_die(DIE_TRAP, "bad trap", regs,
  92		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  93		return;
  94
  95	if (lvl < 0x100) {
  96		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  97		die_if_kernel(buffer, regs);
  98	}
  99
 100	lvl -= 0x100;
 101	if (regs->tstate & TSTATE_PRIV) {
 102		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 103		die_if_kernel(buffer, regs);
 104	}
 105	if (test_thread_flag(TIF_32BIT)) {
 106		regs->tpc &= 0xffffffff;
 107		regs->tnpc &= 0xffffffff;
 108	}
 109	info.si_signo = SIGILL;
 110	info.si_errno = 0;
 111	info.si_code = ILL_ILLTRP;
 112	info.si_addr = (void __user *)regs->tpc;
 113	info.si_trapno = lvl;
 114	force_sig_info(SIGILL, &info, current);
 115}
 116
 117void bad_trap_tl1(struct pt_regs *regs, long lvl)
 118{
 119	char buffer[32];
 120	
 121	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 122		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 123		return;
 124
 125	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 126
 127	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 128	die_if_kernel (buffer, regs);
 129}
 130
 131#ifdef CONFIG_DEBUG_BUGVERBOSE
 132void do_BUG(const char *file, int line)
 133{
 134	bust_spinlocks(1);
 135	printk("kernel BUG at %s:%d!\n", file, line);
 136}
 137EXPORT_SYMBOL(do_BUG);
 138#endif
 139
 140static DEFINE_SPINLOCK(dimm_handler_lock);
 141static dimm_printer_t dimm_handler;
 142
 143static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 144{
 145	unsigned long flags;
 146	int ret = -ENODEV;
 147
 148	spin_lock_irqsave(&dimm_handler_lock, flags);
 149	if (dimm_handler) {
 150		ret = dimm_handler(synd_code, paddr, buf, buflen);
 151	} else if (tlb_type == spitfire) {
 152		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 153			ret = -EINVAL;
 154		else
 155			ret = 0;
 156	} else
 157		ret = -ENODEV;
 158	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 159
 160	return ret;
 161}
 162
 163int register_dimm_printer(dimm_printer_t func)
 164{
 165	unsigned long flags;
 166	int ret = 0;
 167
 168	spin_lock_irqsave(&dimm_handler_lock, flags);
 169	if (!dimm_handler)
 170		dimm_handler = func;
 171	else
 172		ret = -EEXIST;
 173	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 174
 175	return ret;
 176}
 177EXPORT_SYMBOL_GPL(register_dimm_printer);
 178
 179void unregister_dimm_printer(dimm_printer_t func)
 180{
 181	unsigned long flags;
 182
 183	spin_lock_irqsave(&dimm_handler_lock, flags);
 184	if (dimm_handler == func)
 185		dimm_handler = NULL;
 186	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 187}
 188EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 189
 190void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 191{
 192	enum ctx_state prev_state = exception_enter();
 193	siginfo_t info;
 194
 195	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 196		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 197		goto out;
 198
 199	if (regs->tstate & TSTATE_PRIV) {
 200		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 201		       "SFAR[%016lx], going.\n", sfsr, sfar);
 202		die_if_kernel("Iax", regs);
 203	}
 204	if (test_thread_flag(TIF_32BIT)) {
 205		regs->tpc &= 0xffffffff;
 206		regs->tnpc &= 0xffffffff;
 207	}
 208	info.si_signo = SIGSEGV;
 209	info.si_errno = 0;
 210	info.si_code = SEGV_MAPERR;
 211	info.si_addr = (void __user *)regs->tpc;
 212	info.si_trapno = 0;
 213	force_sig_info(SIGSEGV, &info, current);
 214out:
 215	exception_exit(prev_state);
 216}
 217
 218void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 219{
 220	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 221		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 222		return;
 223
 224	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 225	spitfire_insn_access_exception(regs, sfsr, sfar);
 226}
 227
 228void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 229{
 230	unsigned short type = (type_ctx >> 16);
 231	unsigned short ctx  = (type_ctx & 0xffff);
 232	siginfo_t info;
 233
 234	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 235		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 236		return;
 237
 238	if (regs->tstate & TSTATE_PRIV) {
 239		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 240		       "CTX[%04x] TYPE[%04x], going.\n",
 241		       addr, ctx, type);
 242		die_if_kernel("Iax", regs);
 243	}
 244
 245	if (test_thread_flag(TIF_32BIT)) {
 246		regs->tpc &= 0xffffffff;
 247		regs->tnpc &= 0xffffffff;
 248	}
 249	info.si_signo = SIGSEGV;
 250	info.si_errno = 0;
 251	info.si_code = SEGV_MAPERR;
 252	info.si_addr = (void __user *) addr;
 253	info.si_trapno = 0;
 254	force_sig_info(SIGSEGV, &info, current);
 255}
 256
 257void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 258{
 259	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 260		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 261		return;
 262
 263	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 264	sun4v_insn_access_exception(regs, addr, type_ctx);
 265}
 266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 268{
 269	enum ctx_state prev_state = exception_enter();
 270	siginfo_t info;
 271
 272	if (notify_die(DIE_TRAP, "data access exception", regs,
 273		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 274		goto out;
 275
 276	if (regs->tstate & TSTATE_PRIV) {
 277		/* Test if this comes from uaccess places. */
 278		const struct exception_table_entry *entry;
 279
 280		entry = search_exception_tables(regs->tpc);
 281		if (entry) {
 282			/* Ouch, somebody is trying VM hole tricks on us... */
 283#ifdef DEBUG_EXCEPTIONS
 284			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 285			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 286			       regs->tpc, entry->fixup);
 287#endif
 288			regs->tpc = entry->fixup;
 289			regs->tnpc = regs->tpc + 4;
 290			goto out;
 291		}
 292		/* Shit... */
 293		printk("spitfire_data_access_exception: SFSR[%016lx] "
 294		       "SFAR[%016lx], going.\n", sfsr, sfar);
 295		die_if_kernel("Dax", regs);
 296	}
 297
 298	info.si_signo = SIGSEGV;
 299	info.si_errno = 0;
 300	info.si_code = SEGV_MAPERR;
 301	info.si_addr = (void __user *)sfar;
 302	info.si_trapno = 0;
 303	force_sig_info(SIGSEGV, &info, current);
 304out:
 305	exception_exit(prev_state);
 306}
 307
 308void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 309{
 310	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 311		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 312		return;
 313
 314	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 315	spitfire_data_access_exception(regs, sfsr, sfar);
 316}
 317
 318void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 319{
 320	unsigned short type = (type_ctx >> 16);
 321	unsigned short ctx  = (type_ctx & 0xffff);
 322	siginfo_t info;
 323
 324	if (notify_die(DIE_TRAP, "data access exception", regs,
 325		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 326		return;
 327
 328	if (regs->tstate & TSTATE_PRIV) {
 329		/* Test if this comes from uaccess places. */
 330		const struct exception_table_entry *entry;
 331
 332		entry = search_exception_tables(regs->tpc);
 333		if (entry) {
 334			/* Ouch, somebody is trying VM hole tricks on us... */
 335#ifdef DEBUG_EXCEPTIONS
 336			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 337			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 338			       regs->tpc, entry->fixup);
 339#endif
 340			regs->tpc = entry->fixup;
 341			regs->tnpc = regs->tpc + 4;
 342			return;
 343		}
 344		printk("sun4v_data_access_exception: ADDR[%016lx] "
 345		       "CTX[%04x] TYPE[%04x], going.\n",
 346		       addr, ctx, type);
 347		die_if_kernel("Dax", regs);
 348	}
 349
 350	if (test_thread_flag(TIF_32BIT)) {
 351		regs->tpc &= 0xffffffff;
 352		regs->tnpc &= 0xffffffff;
 353	}
 354	info.si_signo = SIGSEGV;
 355	info.si_errno = 0;
 356	info.si_code = SEGV_MAPERR;
 357	info.si_addr = (void __user *) addr;
 358	info.si_trapno = 0;
 359	force_sig_info(SIGSEGV, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360}
 361
 362void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 363{
 364	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 365		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 366		return;
 367
 368	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 369	sun4v_data_access_exception(regs, addr, type_ctx);
 370}
 371
 372#ifdef CONFIG_PCI
 373#include "pci_impl.h"
 374#endif
 375
 376/* When access exceptions happen, we must do this. */
 377static void spitfire_clean_and_reenable_l1_caches(void)
 378{
 379	unsigned long va;
 380
 381	if (tlb_type != spitfire)
 382		BUG();
 383
 384	/* Clean 'em. */
 385	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 386		spitfire_put_icache_tag(va, 0x0);
 387		spitfire_put_dcache_tag(va, 0x0);
 388	}
 389
 390	/* Re-enable in LSU. */
 391	__asm__ __volatile__("flush %%g6\n\t"
 392			     "membar #Sync\n\t"
 393			     "stxa %0, [%%g0] %1\n\t"
 394			     "membar #Sync"
 395			     : /* no outputs */
 396			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 397				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 398			     "i" (ASI_LSU_CONTROL)
 399			     : "memory");
 400}
 401
 402static void spitfire_enable_estate_errors(void)
 403{
 404	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 405			     "membar	#Sync"
 406			     : /* no outputs */
 407			     : "r" (ESTATE_ERR_ALL),
 408			       "i" (ASI_ESTATE_ERROR_EN));
 409}
 410
 411static char ecc_syndrome_table[] = {
 412	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 413	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 414	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 415	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 416	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 417	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 418	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 419	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 420	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 421	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 422	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 423	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 424	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 425	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 426	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 427	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 428	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 429	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 430	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 431	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 432	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 433	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 434	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 435	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 436	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 437	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 438	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 439	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 440	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 441	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 442	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 443	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 444};
 445
 446static char *syndrome_unknown = "<Unknown>";
 447
 448static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 449{
 450	unsigned short scode;
 451	char memmod_str[64], *p;
 452
 453	if (udbl & bit) {
 454		scode = ecc_syndrome_table[udbl & 0xff];
 455		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 456			p = syndrome_unknown;
 457		else
 458			p = memmod_str;
 459		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 460		       "Memory Module \"%s\"\n",
 461		       smp_processor_id(), scode, p);
 462	}
 463
 464	if (udbh & bit) {
 465		scode = ecc_syndrome_table[udbh & 0xff];
 466		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 467			p = syndrome_unknown;
 468		else
 469			p = memmod_str;
 470		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 471		       "Memory Module \"%s\"\n",
 472		       smp_processor_id(), scode, p);
 473	}
 474
 475}
 476
 477static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 478{
 479
 480	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 481	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 482	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 483
 484	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 485
 486	/* We always log it, even if someone is listening for this
 487	 * trap.
 488	 */
 489	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 490		   0, TRAP_TYPE_CEE, SIGTRAP);
 491
 492	/* The Correctable ECC Error trap does not disable I/D caches.  So
 493	 * we only have to restore the ESTATE Error Enable register.
 494	 */
 495	spitfire_enable_estate_errors();
 496}
 497
 498static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 499{
 500	siginfo_t info;
 501
 502	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 503	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 504	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 505
 506	/* XXX add more human friendly logging of the error status
 507	 * XXX as is implemented for cheetah
 508	 */
 509
 510	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 511
 512	/* We always log it, even if someone is listening for this
 513	 * trap.
 514	 */
 515	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 516		   0, tt, SIGTRAP);
 517
 518	if (regs->tstate & TSTATE_PRIV) {
 519		if (tl1)
 520			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 521		die_if_kernel("UE", regs);
 522	}
 523
 524	/* XXX need more intelligent processing here, such as is implemented
 525	 * XXX for cheetah errors, in fact if the E-cache still holds the
 526	 * XXX line with bad parity this will loop
 527	 */
 528
 529	spitfire_clean_and_reenable_l1_caches();
 530	spitfire_enable_estate_errors();
 531
 532	if (test_thread_flag(TIF_32BIT)) {
 533		regs->tpc &= 0xffffffff;
 534		regs->tnpc &= 0xffffffff;
 535	}
 536	info.si_signo = SIGBUS;
 537	info.si_errno = 0;
 538	info.si_code = BUS_OBJERR;
 539	info.si_addr = (void *)0;
 540	info.si_trapno = 0;
 541	force_sig_info(SIGBUS, &info, current);
 542}
 543
 544void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 545{
 546	unsigned long afsr, tt, udbh, udbl;
 547	int tl1;
 548
 549	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 550	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 551	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 552	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 553	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 554
 555#ifdef CONFIG_PCI
 556	if (tt == TRAP_TYPE_DAE &&
 557	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 558		spitfire_clean_and_reenable_l1_caches();
 559		spitfire_enable_estate_errors();
 560
 561		pci_poke_faulted = 1;
 562		regs->tnpc = regs->tpc + 4;
 563		return;
 564	}
 565#endif
 566
 567	if (afsr & SFAFSR_UE)
 568		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 569
 570	if (tt == TRAP_TYPE_CEE) {
 571		/* Handle the case where we took a CEE trap, but ACK'd
 572		 * only the UE state in the UDB error registers.
 573		 */
 574		if (afsr & SFAFSR_UE) {
 575			if (udbh & UDBE_CE) {
 576				__asm__ __volatile__(
 577					"stxa	%0, [%1] %2\n\t"
 578					"membar	#Sync"
 579					: /* no outputs */
 580					: "r" (udbh & UDBE_CE),
 581					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 582			}
 583			if (udbl & UDBE_CE) {
 584				__asm__ __volatile__(
 585					"stxa	%0, [%1] %2\n\t"
 586					"membar	#Sync"
 587					: /* no outputs */
 588					: "r" (udbl & UDBE_CE),
 589					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 590			}
 591		}
 592
 593		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 594	}
 595}
 596
 597int cheetah_pcache_forced_on;
 598
 599void cheetah_enable_pcache(void)
 600{
 601	unsigned long dcr;
 602
 603	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 604	       smp_processor_id());
 605
 606	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 607			     : "=r" (dcr)
 608			     : "i" (ASI_DCU_CONTROL_REG));
 609	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 610	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 611			     "membar #Sync"
 612			     : /* no outputs */
 613			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 614}
 615
 616/* Cheetah error trap handling. */
 617static unsigned long ecache_flush_physbase;
 618static unsigned long ecache_flush_linesize;
 619static unsigned long ecache_flush_size;
 620
 621/* This table is ordered in priority of errors and matches the
 622 * AFAR overwrite policy as well.
 623 */
 624
 625struct afsr_error_table {
 626	unsigned long mask;
 627	const char *name;
 628};
 629
 630static const char CHAFSR_PERR_msg[] =
 631	"System interface protocol error";
 632static const char CHAFSR_IERR_msg[] =
 633	"Internal processor error";
 634static const char CHAFSR_ISAP_msg[] =
 635	"System request parity error on incoming address";
 636static const char CHAFSR_UCU_msg[] =
 637	"Uncorrectable E-cache ECC error for ifetch/data";
 638static const char CHAFSR_UCC_msg[] =
 639	"SW Correctable E-cache ECC error for ifetch/data";
 640static const char CHAFSR_UE_msg[] =
 641	"Uncorrectable system bus data ECC error for read";
 642static const char CHAFSR_EDU_msg[] =
 643	"Uncorrectable E-cache ECC error for stmerge/blkld";
 644static const char CHAFSR_EMU_msg[] =
 645	"Uncorrectable system bus MTAG error";
 646static const char CHAFSR_WDU_msg[] =
 647	"Uncorrectable E-cache ECC error for writeback";
 648static const char CHAFSR_CPU_msg[] =
 649	"Uncorrectable ECC error for copyout";
 650static const char CHAFSR_CE_msg[] =
 651	"HW corrected system bus data ECC error for read";
 652static const char CHAFSR_EDC_msg[] =
 653	"HW corrected E-cache ECC error for stmerge/blkld";
 654static const char CHAFSR_EMC_msg[] =
 655	"HW corrected system bus MTAG ECC error";
 656static const char CHAFSR_WDC_msg[] =
 657	"HW corrected E-cache ECC error for writeback";
 658static const char CHAFSR_CPC_msg[] =
 659	"HW corrected ECC error for copyout";
 660static const char CHAFSR_TO_msg[] =
 661	"Unmapped error from system bus";
 662static const char CHAFSR_BERR_msg[] =
 663	"Bus error response from system bus";
 664static const char CHAFSR_IVC_msg[] =
 665	"HW corrected system bus data ECC error for ivec read";
 666static const char CHAFSR_IVU_msg[] =
 667	"Uncorrectable system bus data ECC error for ivec read";
 668static struct afsr_error_table __cheetah_error_table[] = {
 669	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 670	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 671	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 672	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 673	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 674	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 675	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 676	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 677	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 678	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 679	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 680	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 681	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 682	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 683	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 684	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 685	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 686	/* These two do not update the AFAR. */
 687	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 688	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 689	{	0,		NULL			},
 690};
 691static const char CHPAFSR_DTO_msg[] =
 692	"System bus unmapped error for prefetch/storequeue-read";
 693static const char CHPAFSR_DBERR_msg[] =
 694	"System bus error for prefetch/storequeue-read";
 695static const char CHPAFSR_THCE_msg[] =
 696	"Hardware corrected E-cache Tag ECC error";
 697static const char CHPAFSR_TSCE_msg[] =
 698	"SW handled correctable E-cache Tag ECC error";
 699static const char CHPAFSR_TUE_msg[] =
 700	"Uncorrectable E-cache Tag ECC error";
 701static const char CHPAFSR_DUE_msg[] =
 702	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 703static struct afsr_error_table __cheetah_plus_error_table[] = {
 704	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 705	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 706	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 707	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 708	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 709	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 710	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 711	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 712	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 713	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 714	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 715	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 716	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 717	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 718	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 719	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 720	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 721	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 722	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 723	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 724	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 725	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 726	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 727	/* These two do not update the AFAR. */
 728	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 729	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 730	{	0,		NULL			},
 731};
 732static const char JPAFSR_JETO_msg[] =
 733	"System interface protocol error, hw timeout caused";
 734static const char JPAFSR_SCE_msg[] =
 735	"Parity error on system snoop results";
 736static const char JPAFSR_JEIC_msg[] =
 737	"System interface protocol error, illegal command detected";
 738static const char JPAFSR_JEIT_msg[] =
 739	"System interface protocol error, illegal ADTYPE detected";
 740static const char JPAFSR_OM_msg[] =
 741	"Out of range memory error has occurred";
 742static const char JPAFSR_ETP_msg[] =
 743	"Parity error on L2 cache tag SRAM";
 744static const char JPAFSR_UMS_msg[] =
 745	"Error due to unsupported store";
 746static const char JPAFSR_RUE_msg[] =
 747	"Uncorrectable ECC error from remote cache/memory";
 748static const char JPAFSR_RCE_msg[] =
 749	"Correctable ECC error from remote cache/memory";
 750static const char JPAFSR_BP_msg[] =
 751	"JBUS parity error on returned read data";
 752static const char JPAFSR_WBP_msg[] =
 753	"JBUS parity error on data for writeback or block store";
 754static const char JPAFSR_FRC_msg[] =
 755	"Foreign read to DRAM incurring correctable ECC error";
 756static const char JPAFSR_FRU_msg[] =
 757	"Foreign read to DRAM incurring uncorrectable ECC error";
 758static struct afsr_error_table __jalapeno_error_table[] = {
 759	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 760	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 761	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 762	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 763	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 764	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 765	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 766	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 767	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 768	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 769	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 770	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 771	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 772	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 773	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 774	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 775	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 776	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 777	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 778	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 779	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 780	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 781	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 782	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 783	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 784	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 785	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 786	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 787	/* These two do not update the AFAR. */
 788	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 789	{	0,		NULL			},
 790};
 791static struct afsr_error_table *cheetah_error_table;
 792static unsigned long cheetah_afsr_errors;
 793
 794struct cheetah_err_info *cheetah_error_log;
 795
 796static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 797{
 798	struct cheetah_err_info *p;
 799	int cpu = smp_processor_id();
 800
 801	if (!cheetah_error_log)
 802		return NULL;
 803
 804	p = cheetah_error_log + (cpu * 2);
 805	if ((afsr & CHAFSR_TL1) != 0UL)
 806		p++;
 807
 808	return p;
 809}
 810
 811extern unsigned int tl0_icpe[], tl1_icpe[];
 812extern unsigned int tl0_dcpe[], tl1_dcpe[];
 813extern unsigned int tl0_fecc[], tl1_fecc[];
 814extern unsigned int tl0_cee[], tl1_cee[];
 815extern unsigned int tl0_iae[], tl1_iae[];
 816extern unsigned int tl0_dae[], tl1_dae[];
 817extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 818extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 819extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 820extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 821extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 822
 823void __init cheetah_ecache_flush_init(void)
 824{
 825	unsigned long largest_size, smallest_linesize, order, ver;
 826	int i, sz;
 827
 828	/* Scan all cpu device tree nodes, note two values:
 829	 * 1) largest E-cache size
 830	 * 2) smallest E-cache line size
 831	 */
 832	largest_size = 0UL;
 833	smallest_linesize = ~0UL;
 834
 835	for (i = 0; i < NR_CPUS; i++) {
 836		unsigned long val;
 837
 838		val = cpu_data(i).ecache_size;
 839		if (!val)
 840			continue;
 841
 842		if (val > largest_size)
 843			largest_size = val;
 844
 845		val = cpu_data(i).ecache_line_size;
 846		if (val < smallest_linesize)
 847			smallest_linesize = val;
 848
 849	}
 850
 851	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 852		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 853			    "parameters.\n");
 854		prom_halt();
 855	}
 856
 857	ecache_flush_size = (2 * largest_size);
 858	ecache_flush_linesize = smallest_linesize;
 859
 860	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 861
 862	if (ecache_flush_physbase == ~0UL) {
 863		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 864			    "contiguous physical memory.\n",
 865			    ecache_flush_size);
 866		prom_halt();
 867	}
 868
 869	/* Now allocate error trap reporting scoreboard. */
 870	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 871	for (order = 0; order < MAX_ORDER; order++) {
 872		if ((PAGE_SIZE << order) >= sz)
 873			break;
 874	}
 875	cheetah_error_log = (struct cheetah_err_info *)
 876		__get_free_pages(GFP_KERNEL, order);
 877	if (!cheetah_error_log) {
 878		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 879			    "error logging scoreboard (%d bytes).\n", sz);
 880		prom_halt();
 881	}
 882	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 883
 884	/* Mark all AFSRs as invalid so that the trap handler will
 885	 * log new new information there.
 886	 */
 887	for (i = 0; i < 2 * NR_CPUS; i++)
 888		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 889
 890	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 891	if ((ver >> 32) == __JALAPENO_ID ||
 892	    (ver >> 32) == __SERRANO_ID) {
 893		cheetah_error_table = &__jalapeno_error_table[0];
 894		cheetah_afsr_errors = JPAFSR_ERRORS;
 895	} else if ((ver >> 32) == 0x003e0015) {
 896		cheetah_error_table = &__cheetah_plus_error_table[0];
 897		cheetah_afsr_errors = CHPAFSR_ERRORS;
 898	} else {
 899		cheetah_error_table = &__cheetah_error_table[0];
 900		cheetah_afsr_errors = CHAFSR_ERRORS;
 901	}
 902
 903	/* Now patch trap tables. */
 904	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 905	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 906	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 907	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 908	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 909	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 910	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 911	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 912	if (tlb_type == cheetah_plus) {
 913		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 914		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 915		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 916		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 917	}
 918	flushi(PAGE_OFFSET);
 919}
 920
 921static void cheetah_flush_ecache(void)
 922{
 923	unsigned long flush_base = ecache_flush_physbase;
 924	unsigned long flush_linesize = ecache_flush_linesize;
 925	unsigned long flush_size = ecache_flush_size;
 926
 927	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 928			     "   bne,pt	%%xcc, 1b\n\t"
 929			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 930			     : "=&r" (flush_size)
 931			     : "0" (flush_size), "r" (flush_base),
 932			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 933}
 934
 935static void cheetah_flush_ecache_line(unsigned long physaddr)
 936{
 937	unsigned long alias;
 938
 939	physaddr &= ~(8UL - 1UL);
 940	physaddr = (ecache_flush_physbase +
 941		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 942	alias = physaddr + (ecache_flush_size >> 1UL);
 943	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 944			     "ldxa [%1] %2, %%g0\n\t"
 945			     "membar #Sync"
 946			     : /* no outputs */
 947			     : "r" (physaddr), "r" (alias),
 948			       "i" (ASI_PHYS_USE_EC));
 949}
 950
 951/* Unfortunately, the diagnostic access to the I-cache tags we need to
 952 * use to clear the thing interferes with I-cache coherency transactions.
 953 *
 954 * So we must only flush the I-cache when it is disabled.
 955 */
 956static void __cheetah_flush_icache(void)
 957{
 958	unsigned int icache_size, icache_line_size;
 959	unsigned long addr;
 960
 961	icache_size = local_cpu_data().icache_size;
 962	icache_line_size = local_cpu_data().icache_line_size;
 963
 964	/* Clear the valid bits in all the tags. */
 965	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 966		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 967				     "membar #Sync"
 968				     : /* no outputs */
 969				     : "r" (addr | (2 << 3)),
 970				       "i" (ASI_IC_TAG));
 971	}
 972}
 973
 974static void cheetah_flush_icache(void)
 975{
 976	unsigned long dcu_save;
 977
 978	/* Save current DCU, disable I-cache. */
 979	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
 980			     "or %0, %2, %%g1\n\t"
 981			     "stxa %%g1, [%%g0] %1\n\t"
 982			     "membar #Sync"
 983			     : "=r" (dcu_save)
 984			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
 985			     : "g1");
 986
 987	__cheetah_flush_icache();
 988
 989	/* Restore DCU register */
 990	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 991			     "membar #Sync"
 992			     : /* no outputs */
 993			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
 994}
 995
 996static void cheetah_flush_dcache(void)
 997{
 998	unsigned int dcache_size, dcache_line_size;
 999	unsigned long addr;
1000
1001	dcache_size = local_cpu_data().dcache_size;
1002	dcache_line_size = local_cpu_data().dcache_line_size;
1003
1004	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1005		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1006				     "membar #Sync"
1007				     : /* no outputs */
1008				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1009	}
1010}
1011
1012/* In order to make the even parity correct we must do two things.
1013 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1014 * Next, we clear out all 32-bytes of data for that line.  Data of
1015 * all-zero + tag parity value of zero == correct parity.
1016 */
1017static void cheetah_plus_zap_dcache_parity(void)
1018{
1019	unsigned int dcache_size, dcache_line_size;
1020	unsigned long addr;
1021
1022	dcache_size = local_cpu_data().dcache_size;
1023	dcache_line_size = local_cpu_data().dcache_line_size;
1024
1025	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1026		unsigned long tag = (addr >> 14);
1027		unsigned long line;
1028
1029		__asm__ __volatile__("membar	#Sync\n\t"
1030				     "stxa	%0, [%1] %2\n\t"
1031				     "membar	#Sync"
1032				     : /* no outputs */
1033				     : "r" (tag), "r" (addr),
1034				       "i" (ASI_DCACHE_UTAG));
1035		for (line = addr; line < addr + dcache_line_size; line += 8)
1036			__asm__ __volatile__("membar	#Sync\n\t"
1037					     "stxa	%%g0, [%0] %1\n\t"
1038					     "membar	#Sync"
1039					     : /* no outputs */
1040					     : "r" (line),
1041					       "i" (ASI_DCACHE_DATA));
1042	}
1043}
1044
1045/* Conversion tables used to frob Cheetah AFSR syndrome values into
1046 * something palatable to the memory controller driver get_unumber
1047 * routine.
1048 */
1049#define MT0	137
1050#define MT1	138
1051#define MT2	139
1052#define NONE	254
1053#define MTC0	140
1054#define MTC1	141
1055#define MTC2	142
1056#define MTC3	143
1057#define C0	128
1058#define C1	129
1059#define C2	130
1060#define C3	131
1061#define C4	132
1062#define C5	133
1063#define C6	134
1064#define C7	135
1065#define C8	136
1066#define M2	144
1067#define M3	145
1068#define M4	146
1069#define M	147
1070static unsigned char cheetah_ecc_syntab[] = {
1071/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1072/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1073/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1074/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1075/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1076/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1077/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1078/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1079/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1080/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1081/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1082/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1083/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1084/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1085/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1086/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1087/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1088/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1089/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1090/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1091/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1092/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1093/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1094/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1095/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1096/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1097/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1098/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1099/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1100/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1101/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1102/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1103};
1104static unsigned char cheetah_mtag_syntab[] = {
1105       NONE, MTC0,
1106       MTC1, NONE,
1107       MTC2, NONE,
1108       NONE, MT0,
1109       MTC3, NONE,
1110       NONE, MT1,
1111       NONE, MT2,
1112       NONE, NONE
1113};
1114
1115/* Return the highest priority error conditon mentioned. */
1116static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1117{
1118	unsigned long tmp = 0;
1119	int i;
1120
1121	for (i = 0; cheetah_error_table[i].mask; i++) {
1122		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1123			return tmp;
1124	}
1125	return tmp;
1126}
1127
1128static const char *cheetah_get_string(unsigned long bit)
1129{
1130	int i;
1131
1132	for (i = 0; cheetah_error_table[i].mask; i++) {
1133		if ((bit & cheetah_error_table[i].mask) != 0UL)
1134			return cheetah_error_table[i].name;
1135	}
1136	return "???";
1137}
1138
1139static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1140			       unsigned long afsr, unsigned long afar, int recoverable)
1141{
1142	unsigned long hipri;
1143	char unum[256];
1144
1145	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1146	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1147	       afsr, afar,
1148	       (afsr & CHAFSR_TL1) ? 1 : 0);
1149	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1150	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1151	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1152	printk("%s" "ERROR(%d): ",
1153	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1154	printk("TPC<%pS>\n", (void *) regs->tpc);
1155	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1156	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1157	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1158	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1159	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1160	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1161	hipri = cheetah_get_hipri(afsr);
1162	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1163	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1164	       hipri, cheetah_get_string(hipri));
1165
1166	/* Try to get unumber if relevant. */
1167#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1168			 CHAFSR_CPC | CHAFSR_CPU | \
1169			 CHAFSR_UE  | CHAFSR_CE  | \
1170			 CHAFSR_EDC | CHAFSR_EDU  | \
1171			 CHAFSR_UCC | CHAFSR_UCU  | \
1172			 CHAFSR_WDU | CHAFSR_WDC)
1173#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1174	if (afsr & ESYND_ERRORS) {
1175		int syndrome;
1176		int ret;
1177
1178		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1179		syndrome = cheetah_ecc_syntab[syndrome];
1180		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1181		if (ret != -1)
1182			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1183			       (recoverable ? KERN_WARNING : KERN_CRIT),
1184			       smp_processor_id(), unum);
1185	} else if (afsr & MSYND_ERRORS) {
1186		int syndrome;
1187		int ret;
1188
1189		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1190		syndrome = cheetah_mtag_syntab[syndrome];
1191		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1192		if (ret != -1)
1193			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1194			       (recoverable ? KERN_WARNING : KERN_CRIT),
1195			       smp_processor_id(), unum);
1196	}
1197
1198	/* Now dump the cache snapshots. */
1199	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1200	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1201	       (int) info->dcache_index,
1202	       info->dcache_tag,
1203	       info->dcache_utag,
1204	       info->dcache_stag);
1205	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1206	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1207	       info->dcache_data[0],
1208	       info->dcache_data[1],
1209	       info->dcache_data[2],
1210	       info->dcache_data[3]);
1211	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1212	       "u[%016llx] l[%016llx]\n",
1213	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1214	       (int) info->icache_index,
1215	       info->icache_tag,
1216	       info->icache_utag,
1217	       info->icache_stag,
1218	       info->icache_upper,
1219	       info->icache_lower);
1220	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1221	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1222	       info->icache_data[0],
1223	       info->icache_data[1],
1224	       info->icache_data[2],
1225	       info->icache_data[3]);
1226	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1227	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1228	       info->icache_data[4],
1229	       info->icache_data[5],
1230	       info->icache_data[6],
1231	       info->icache_data[7]);
1232	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1233	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1234	       (int) info->ecache_index, info->ecache_tag);
1235	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237	       info->ecache_data[0],
1238	       info->ecache_data[1],
1239	       info->ecache_data[2],
1240	       info->ecache_data[3]);
1241
1242	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1243	while (afsr != 0UL) {
1244		unsigned long bit = cheetah_get_hipri(afsr);
1245
1246		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1247		       (recoverable ? KERN_WARNING : KERN_CRIT),
1248		       bit, cheetah_get_string(bit));
1249
1250		afsr &= ~bit;
1251	}
1252
1253	if (!recoverable)
1254		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1255}
1256
1257static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1258{
1259	unsigned long afsr, afar;
1260	int ret = 0;
1261
1262	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1263			     : "=r" (afsr)
1264			     : "i" (ASI_AFSR));
1265	if ((afsr & cheetah_afsr_errors) != 0) {
1266		if (logp != NULL) {
1267			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1268					     : "=r" (afar)
1269					     : "i" (ASI_AFAR));
1270			logp->afsr = afsr;
1271			logp->afar = afar;
1272		}
1273		ret = 1;
1274	}
1275	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1276			     "membar #Sync\n\t"
1277			     : : "r" (afsr), "i" (ASI_AFSR));
1278
1279	return ret;
1280}
1281
1282void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1283{
1284	struct cheetah_err_info local_snapshot, *p;
1285	int recoverable;
1286
1287	/* Flush E-cache */
1288	cheetah_flush_ecache();
1289
1290	p = cheetah_get_error_log(afsr);
1291	if (!p) {
1292		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1293			    afsr, afar);
1294		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1295			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1296		prom_halt();
1297	}
1298
1299	/* Grab snapshot of logged error. */
1300	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1301
1302	/* If the current trap snapshot does not match what the
1303	 * trap handler passed along into our args, big trouble.
1304	 * In such a case, mark the local copy as invalid.
1305	 *
1306	 * Else, it matches and we mark the afsr in the non-local
1307	 * copy as invalid so we may log new error traps there.
1308	 */
1309	if (p->afsr != afsr || p->afar != afar)
1310		local_snapshot.afsr = CHAFSR_INVALID;
1311	else
1312		p->afsr = CHAFSR_INVALID;
1313
1314	cheetah_flush_icache();
1315	cheetah_flush_dcache();
1316
1317	/* Re-enable I-cache/D-cache */
1318	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1319			     "or %%g1, %1, %%g1\n\t"
1320			     "stxa %%g1, [%%g0] %0\n\t"
1321			     "membar #Sync"
1322			     : /* no outputs */
1323			     : "i" (ASI_DCU_CONTROL_REG),
1324			       "i" (DCU_DC | DCU_IC)
1325			     : "g1");
1326
1327	/* Re-enable error reporting */
1328	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1329			     "or %%g1, %1, %%g1\n\t"
1330			     "stxa %%g1, [%%g0] %0\n\t"
1331			     "membar #Sync"
1332			     : /* no outputs */
1333			     : "i" (ASI_ESTATE_ERROR_EN),
1334			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1335			     : "g1");
1336
1337	/* Decide if we can continue after handling this trap and
1338	 * logging the error.
1339	 */
1340	recoverable = 1;
1341	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1342		recoverable = 0;
1343
1344	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1345	 * error was logged while we had error reporting traps disabled.
1346	 */
1347	if (cheetah_recheck_errors(&local_snapshot)) {
1348		unsigned long new_afsr = local_snapshot.afsr;
1349
1350		/* If we got a new asynchronous error, die... */
1351		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1352				CHAFSR_WDU | CHAFSR_CPU |
1353				CHAFSR_IVU | CHAFSR_UE |
1354				CHAFSR_BERR | CHAFSR_TO))
1355			recoverable = 0;
1356	}
1357
1358	/* Log errors. */
1359	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1360
1361	if (!recoverable)
1362		panic("Irrecoverable Fast-ECC error trap.\n");
1363
1364	/* Flush E-cache to kick the error trap handlers out. */
1365	cheetah_flush_ecache();
1366}
1367
1368/* Try to fix a correctable error by pushing the line out from
1369 * the E-cache.  Recheck error reporting registers to see if the
1370 * problem is intermittent.
1371 */
1372static int cheetah_fix_ce(unsigned long physaddr)
1373{
1374	unsigned long orig_estate;
1375	unsigned long alias1, alias2;
1376	int ret;
1377
1378	/* Make sure correctable error traps are disabled. */
1379	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1380			     "andn	%0, %1, %%g1\n\t"
1381			     "stxa	%%g1, [%%g0] %2\n\t"
1382			     "membar	#Sync"
1383			     : "=&r" (orig_estate)
1384			     : "i" (ESTATE_ERROR_CEEN),
1385			       "i" (ASI_ESTATE_ERROR_EN)
1386			     : "g1");
1387
1388	/* We calculate alias addresses that will force the
1389	 * cache line in question out of the E-cache.  Then
1390	 * we bring it back in with an atomic instruction so
1391	 * that we get it in some modified/exclusive state,
1392	 * then we displace it again to try and get proper ECC
1393	 * pushed back into the system.
1394	 */
1395	physaddr &= ~(8UL - 1UL);
1396	alias1 = (ecache_flush_physbase +
1397		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1398	alias2 = alias1 + (ecache_flush_size >> 1);
1399	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1400			     "ldxa	[%1] %3, %%g0\n\t"
1401			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1402			     "ldxa	[%0] %3, %%g0\n\t"
1403			     "ldxa	[%1] %3, %%g0\n\t"
1404			     "membar	#Sync"
1405			     : /* no outputs */
1406			     : "r" (alias1), "r" (alias2),
1407			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1408
1409	/* Did that trigger another error? */
1410	if (cheetah_recheck_errors(NULL)) {
1411		/* Try one more time. */
1412		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1413				     "membar #Sync"
1414				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1415		if (cheetah_recheck_errors(NULL))
1416			ret = 2;
1417		else
1418			ret = 1;
1419	} else {
1420		/* No new error, intermittent problem. */
1421		ret = 0;
1422	}
1423
1424	/* Restore error enables. */
1425	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1426			     "membar	#Sync"
1427			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1428
1429	return ret;
1430}
1431
1432/* Return non-zero if PADDR is a valid physical memory address. */
1433static int cheetah_check_main_memory(unsigned long paddr)
1434{
1435	unsigned long vaddr = PAGE_OFFSET + paddr;
1436
1437	if (vaddr > (unsigned long) high_memory)
1438		return 0;
1439
1440	return kern_addr_valid(vaddr);
1441}
1442
1443void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1444{
1445	struct cheetah_err_info local_snapshot, *p;
1446	int recoverable, is_memory;
1447
1448	p = cheetah_get_error_log(afsr);
1449	if (!p) {
1450		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1451			    afsr, afar);
1452		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1453			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1454		prom_halt();
1455	}
1456
1457	/* Grab snapshot of logged error. */
1458	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1459
1460	/* If the current trap snapshot does not match what the
1461	 * trap handler passed along into our args, big trouble.
1462	 * In such a case, mark the local copy as invalid.
1463	 *
1464	 * Else, it matches and we mark the afsr in the non-local
1465	 * copy as invalid so we may log new error traps there.
1466	 */
1467	if (p->afsr != afsr || p->afar != afar)
1468		local_snapshot.afsr = CHAFSR_INVALID;
1469	else
1470		p->afsr = CHAFSR_INVALID;
1471
1472	is_memory = cheetah_check_main_memory(afar);
1473
1474	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1475		/* XXX Might want to log the results of this operation
1476		 * XXX somewhere... -DaveM
1477		 */
1478		cheetah_fix_ce(afar);
1479	}
1480
1481	{
1482		int flush_all, flush_line;
1483
1484		flush_all = flush_line = 0;
1485		if ((afsr & CHAFSR_EDC) != 0UL) {
1486			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1487				flush_line = 1;
1488			else
1489				flush_all = 1;
1490		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1491			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1492				flush_line = 1;
1493			else
1494				flush_all = 1;
1495		}
1496
1497		/* Trap handler only disabled I-cache, flush it. */
1498		cheetah_flush_icache();
1499
1500		/* Re-enable I-cache */
1501		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1502				     "or %%g1, %1, %%g1\n\t"
1503				     "stxa %%g1, [%%g0] %0\n\t"
1504				     "membar #Sync"
1505				     : /* no outputs */
1506				     : "i" (ASI_DCU_CONTROL_REG),
1507				     "i" (DCU_IC)
1508				     : "g1");
1509
1510		if (flush_all)
1511			cheetah_flush_ecache();
1512		else if (flush_line)
1513			cheetah_flush_ecache_line(afar);
1514	}
1515
1516	/* Re-enable error reporting */
1517	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1518			     "or %%g1, %1, %%g1\n\t"
1519			     "stxa %%g1, [%%g0] %0\n\t"
1520			     "membar #Sync"
1521			     : /* no outputs */
1522			     : "i" (ASI_ESTATE_ERROR_EN),
1523			       "i" (ESTATE_ERROR_CEEN)
1524			     : "g1");
1525
1526	/* Decide if we can continue after handling this trap and
1527	 * logging the error.
1528	 */
1529	recoverable = 1;
1530	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1531		recoverable = 0;
1532
1533	/* Re-check AFSR/AFAR */
1534	(void) cheetah_recheck_errors(&local_snapshot);
1535
1536	/* Log errors. */
1537	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1538
1539	if (!recoverable)
1540		panic("Irrecoverable Correctable-ECC error trap.\n");
1541}
1542
1543void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1544{
1545	struct cheetah_err_info local_snapshot, *p;
1546	int recoverable, is_memory;
1547
1548#ifdef CONFIG_PCI
1549	/* Check for the special PCI poke sequence. */
1550	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1551		cheetah_flush_icache();
1552		cheetah_flush_dcache();
1553
1554		/* Re-enable I-cache/D-cache */
1555		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1556				     "or %%g1, %1, %%g1\n\t"
1557				     "stxa %%g1, [%%g0] %0\n\t"
1558				     "membar #Sync"
1559				     : /* no outputs */
1560				     : "i" (ASI_DCU_CONTROL_REG),
1561				       "i" (DCU_DC | DCU_IC)
1562				     : "g1");
1563
1564		/* Re-enable error reporting */
1565		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1566				     "or %%g1, %1, %%g1\n\t"
1567				     "stxa %%g1, [%%g0] %0\n\t"
1568				     "membar #Sync"
1569				     : /* no outputs */
1570				     : "i" (ASI_ESTATE_ERROR_EN),
1571				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1572				     : "g1");
1573
1574		(void) cheetah_recheck_errors(NULL);
1575
1576		pci_poke_faulted = 1;
1577		regs->tpc += 4;
1578		regs->tnpc = regs->tpc + 4;
1579		return;
1580	}
1581#endif
1582
1583	p = cheetah_get_error_log(afsr);
1584	if (!p) {
1585		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1586			    afsr, afar);
1587		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1588			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1589		prom_halt();
1590	}
1591
1592	/* Grab snapshot of logged error. */
1593	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1594
1595	/* If the current trap snapshot does not match what the
1596	 * trap handler passed along into our args, big trouble.
1597	 * In such a case, mark the local copy as invalid.
1598	 *
1599	 * Else, it matches and we mark the afsr in the non-local
1600	 * copy as invalid so we may log new error traps there.
1601	 */
1602	if (p->afsr != afsr || p->afar != afar)
1603		local_snapshot.afsr = CHAFSR_INVALID;
1604	else
1605		p->afsr = CHAFSR_INVALID;
1606
1607	is_memory = cheetah_check_main_memory(afar);
1608
1609	{
1610		int flush_all, flush_line;
1611
1612		flush_all = flush_line = 0;
1613		if ((afsr & CHAFSR_EDU) != 0UL) {
1614			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1615				flush_line = 1;
1616			else
1617				flush_all = 1;
1618		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1619			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1620				flush_line = 1;
1621			else
1622				flush_all = 1;
1623		}
1624
1625		cheetah_flush_icache();
1626		cheetah_flush_dcache();
1627
1628		/* Re-enable I/D caches */
1629		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1630				     "or %%g1, %1, %%g1\n\t"
1631				     "stxa %%g1, [%%g0] %0\n\t"
1632				     "membar #Sync"
1633				     : /* no outputs */
1634				     : "i" (ASI_DCU_CONTROL_REG),
1635				     "i" (DCU_IC | DCU_DC)
1636				     : "g1");
1637
1638		if (flush_all)
1639			cheetah_flush_ecache();
1640		else if (flush_line)
1641			cheetah_flush_ecache_line(afar);
1642	}
1643
1644	/* Re-enable error reporting */
1645	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1646			     "or %%g1, %1, %%g1\n\t"
1647			     "stxa %%g1, [%%g0] %0\n\t"
1648			     "membar #Sync"
1649			     : /* no outputs */
1650			     : "i" (ASI_ESTATE_ERROR_EN),
1651			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1652			     : "g1");
1653
1654	/* Decide if we can continue after handling this trap and
1655	 * logging the error.
1656	 */
1657	recoverable = 1;
1658	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1659		recoverable = 0;
1660
1661	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1662	 * error was logged while we had error reporting traps disabled.
1663	 */
1664	if (cheetah_recheck_errors(&local_snapshot)) {
1665		unsigned long new_afsr = local_snapshot.afsr;
1666
1667		/* If we got a new asynchronous error, die... */
1668		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1669				CHAFSR_WDU | CHAFSR_CPU |
1670				CHAFSR_IVU | CHAFSR_UE |
1671				CHAFSR_BERR | CHAFSR_TO))
1672			recoverable = 0;
1673	}
1674
1675	/* Log errors. */
1676	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1677
1678	/* "Recoverable" here means we try to yank the page from ever
1679	 * being newly used again.  This depends upon a few things:
1680	 * 1) Must be main memory, and AFAR must be valid.
1681	 * 2) If we trapped from user, OK.
1682	 * 3) Else, if we trapped from kernel we must find exception
1683	 *    table entry (ie. we have to have been accessing user
1684	 *    space).
1685	 *
1686	 * If AFAR is not in main memory, or we trapped from kernel
1687	 * and cannot find an exception table entry, it is unacceptable
1688	 * to try and continue.
1689	 */
1690	if (recoverable && is_memory) {
1691		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1692			/* OK, usermode access. */
1693			recoverable = 1;
1694		} else {
1695			const struct exception_table_entry *entry;
1696
1697			entry = search_exception_tables(regs->tpc);
1698			if (entry) {
1699				/* OK, kernel access to userspace. */
1700				recoverable = 1;
1701
1702			} else {
1703				/* BAD, privileged state is corrupted. */
1704				recoverable = 0;
1705			}
1706
1707			if (recoverable) {
1708				if (pfn_valid(afar >> PAGE_SHIFT))
1709					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1710				else
1711					recoverable = 0;
1712
1713				/* Only perform fixup if we still have a
1714				 * recoverable condition.
1715				 */
1716				if (recoverable) {
1717					regs->tpc = entry->fixup;
1718					regs->tnpc = regs->tpc + 4;
1719				}
1720			}
1721		}
1722	} else {
1723		recoverable = 0;
1724	}
1725
1726	if (!recoverable)
1727		panic("Irrecoverable deferred error trap.\n");
1728}
1729
1730/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1731 *
1732 * Bit0:	0=dcache,1=icache
1733 * Bit1:	0=recoverable,1=unrecoverable
1734 *
1735 * The hardware has disabled both the I-cache and D-cache in
1736 * the %dcr register.  
1737 */
1738void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1739{
1740	if (type & 0x1)
1741		__cheetah_flush_icache();
1742	else
1743		cheetah_plus_zap_dcache_parity();
1744	cheetah_flush_dcache();
1745
1746	/* Re-enable I-cache/D-cache */
1747	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1748			     "or %%g1, %1, %%g1\n\t"
1749			     "stxa %%g1, [%%g0] %0\n\t"
1750			     "membar #Sync"
1751			     : /* no outputs */
1752			     : "i" (ASI_DCU_CONTROL_REG),
1753			       "i" (DCU_DC | DCU_IC)
1754			     : "g1");
1755
1756	if (type & 0x2) {
1757		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1758		       smp_processor_id(),
1759		       (type & 0x1) ? 'I' : 'D',
1760		       regs->tpc);
1761		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1762		panic("Irrecoverable Cheetah+ parity error.");
1763	}
1764
1765	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1766	       smp_processor_id(),
1767	       (type & 0x1) ? 'I' : 'D',
1768	       regs->tpc);
1769	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1770}
1771
1772struct sun4v_error_entry {
1773	/* Unique error handle */
1774/*0x00*/u64		err_handle;
1775
1776	/* %stick value at the time of the error */
1777/*0x08*/u64		err_stick;
1778
1779/*0x10*/u8		reserved_1[3];
1780
1781	/* Error type */
1782/*0x13*/u8		err_type;
1783#define SUN4V_ERR_TYPE_UNDEFINED	0
1784#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1785#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1786#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1787#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1788#define SUN4V_ERR_TYPE_DUMP_CORE	5
1789#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1790#define SUN4V_ERR_TYPE_NUM		7
1791
1792	/* Error attributes */
1793/*0x14*/u32		err_attrs;
1794#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1795#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1796#define SUN4V_ERR_ATTRS_PIO		0x00000004
1797#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1798#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1799#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1800#define SUN4V_ERR_ATTRS_ASR		0x00000040
1801#define SUN4V_ERR_ATTRS_ASI		0x00000080
1802#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1803#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
 
1804#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1805#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1806#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1807#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1808
1809#define SUN4V_ERR_SPSTATE_FAULTED	0
1810#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1811#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1812
1813#define SUN4V_ERR_MODE_USER		1
1814#define SUN4V_ERR_MODE_PRIV		2
1815
1816	/* Real address of the memory region or PIO transaction */
1817/*0x18*/u64		err_raddr;
1818
1819	/* Size of the operation triggering the error, in bytes */
1820/*0x20*/u32		err_size;
1821
1822	/* ID of the CPU */
1823/*0x24*/u16		err_cpu;
1824
1825	/* Grace periof for shutdown, in seconds */
1826/*0x26*/u16		err_secs;
1827
1828	/* Value of the %asi register */
1829/*0x28*/u8		err_asi;
1830
1831/*0x29*/u8		reserved_2;
1832
1833	/* Value of the ASR register number */
1834/*0x2a*/u16		err_asr;
1835#define SUN4V_ERR_ASR_VALID		0x8000
1836
1837/*0x2c*/u32		reserved_3;
1838/*0x30*/u64		reserved_4;
1839/*0x38*/u64		reserved_5;
1840};
1841
1842static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1843static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1844
1845static const char *sun4v_err_type_to_str(u8 type)
1846{
1847	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1848		"undefined",
1849		"uncorrected resumable",
1850		"precise nonresumable",
1851		"deferred nonresumable",
1852		"shutdown request",
1853		"dump core",
1854		"SP state change",
1855	};
1856
1857	if (type < SUN4V_ERR_TYPE_NUM)
1858		return types[type];
1859
1860	return "unknown";
1861}
1862
1863static void sun4v_emit_err_attr_strings(u32 attrs)
1864{
1865	static const char *attr_names[] = {
1866		"processor",
1867		"memory",
1868		"PIO",
1869		"int-registers",
1870		"fpu-registers",
1871		"shutdown-request",
1872		"ASR",
1873		"ASI",
1874		"priv-reg",
1875	};
1876	static const char *sp_states[] = {
1877		"sp-faulted",
1878		"sp-available",
1879		"sp-not-present",
1880		"sp-state-reserved",
1881	};
1882	static const char *modes[] = {
1883		"mode-reserved0",
1884		"user",
1885		"priv",
1886		"mode-reserved1",
1887	};
1888	u32 sp_state, mode;
1889	int i;
1890
1891	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1892		if (attrs & (1U << i)) {
1893			const char *s = attr_names[i];
1894
1895			pr_cont("%s ", s);
1896		}
1897	}
1898
1899	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1900		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1901	pr_cont("%s ", sp_states[sp_state]);
1902
1903	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1904		SUN4V_ERR_ATTRS_MODE_SHFT);
1905	pr_cont("%s ", modes[mode]);
1906
1907	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1908		pr_cont("res-queue-full ");
1909}
1910
1911/* When the report contains a real-address of "-1" it means that the
1912 * hardware did not provide the address.  So we compute the effective
1913 * address of the load or store instruction at regs->tpc and report
1914 * that.  Usually when this happens it's a PIO and in such a case we
1915 * are using physical addresses with bypass ASIs anyways, so what we
1916 * report here is exactly what we want.
1917 */
1918static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1919{
1920	unsigned int insn;
1921	u64 addr;
1922
1923	if (!(regs->tstate & TSTATE_PRIV))
1924		return;
1925
1926	insn = *(unsigned int *) regs->tpc;
1927
1928	addr = compute_effective_address(regs, insn, 0);
1929
1930	printk("%s: insn effective address [0x%016llx]\n",
1931	       pfx, addr);
1932}
1933
1934static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1935			    int cpu, const char *pfx, atomic_t *ocnt)
1936{
1937	u64 *raw_ptr = (u64 *) ent;
1938	u32 attrs;
1939	int cnt;
1940
1941	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1942	printk("%s: TPC [0x%016lx] <%pS>\n",
1943	       pfx, regs->tpc, (void *) regs->tpc);
1944
1945	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1946	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1947	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1948	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1949
1950	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1951	       pfx, ent->err_handle, ent->err_stick);
1952
1953	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1954
1955	attrs = ent->err_attrs;
1956	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1957	sun4v_emit_err_attr_strings(attrs);
1958	pr_cont(">\n");
1959
1960	/* Various fields in the error report are only valid if
1961	 * certain attribute bits are set.
1962	 */
1963	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1964		     SUN4V_ERR_ATTRS_PIO |
1965		     SUN4V_ERR_ATTRS_ASI)) {
1966		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1967
1968		if (ent->err_raddr == ~(u64)0)
1969			sun4v_report_real_raddr(pfx, regs);
1970	}
1971
1972	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1973		printk("%s: size [0x%x]\n", pfx, ent->err_size);
1974
1975	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1976		     SUN4V_ERR_ATTRS_INT_REGISTERS |
1977		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
1978		     SUN4V_ERR_ATTRS_PRIV_REG))
1979		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1980
1981	if (attrs & SUN4V_ERR_ATTRS_ASI)
1982		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1983
1984	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1985		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
1986		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
1987	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1988		printk("%s: reg [0x%04x]\n",
1989		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1990
1991	show_regs(regs);
1992
1993	if ((cnt = atomic_read(ocnt)) != 0) {
1994		atomic_set(ocnt, 0);
1995		wmb();
1996		printk("%s: Queue overflowed %d times.\n",
1997		       pfx, cnt);
1998	}
1999}
2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2002 * Log the event and clear the first word of the entry.
2003 */
2004void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2005{
2006	enum ctx_state prev_state = exception_enter();
2007	struct sun4v_error_entry *ent, local_copy;
2008	struct trap_per_cpu *tb;
2009	unsigned long paddr;
2010	int cpu;
2011
2012	cpu = get_cpu();
2013
2014	tb = &trap_block[cpu];
2015	paddr = tb->resum_kernel_buf_pa + offset;
2016	ent = __va(paddr);
2017
2018	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2019
2020	/* We have a local copy now, so release the entry.  */
2021	ent->err_handle = 0;
2022	wmb();
2023
2024	put_cpu();
2025
2026	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2027		/* We should really take the seconds field of
2028		 * the error report and use it for the shutdown
2029		 * invocation, but for now do the same thing we
2030		 * do for a DS shutdown request.
2031		 */
2032		pr_info("Shutdown request, %u seconds...\n",
2033			local_copy.err_secs);
2034		orderly_poweroff(true);
2035		goto out;
2036	}
2037
 
 
 
 
 
 
 
 
2038	sun4v_log_error(regs, &local_copy, cpu,
2039			KERN_ERR "RESUMABLE ERROR",
2040			&sun4v_resum_oflow_cnt);
2041out:
2042	exception_exit(prev_state);
2043}
2044
2045/* If we try to printk() we'll probably make matters worse, by trying
2046 * to retake locks this cpu already holds or causing more errors. So
2047 * just bump a counter, and we'll report these counter bumps above.
2048 */
2049void sun4v_resum_overflow(struct pt_regs *regs)
2050{
2051	atomic_inc(&sun4v_resum_oflow_cnt);
2052}
2053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2055 * Log the event, clear the first word of the entry, and die.
2056 */
2057void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2058{
2059	struct sun4v_error_entry *ent, local_copy;
2060	struct trap_per_cpu *tb;
2061	unsigned long paddr;
2062	int cpu;
2063
2064	cpu = get_cpu();
2065
2066	tb = &trap_block[cpu];
2067	paddr = tb->nonresum_kernel_buf_pa + offset;
2068	ent = __va(paddr);
2069
2070	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2071
2072	/* We have a local copy now, so release the entry.  */
2073	ent->err_handle = 0;
2074	wmb();
2075
2076	put_cpu();
2077
 
 
 
 
 
 
2078#ifdef CONFIG_PCI
2079	/* Check for the special PCI poke sequence. */
2080	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2081		pci_poke_faulted = 1;
2082		regs->tpc += 4;
2083		regs->tnpc = regs->tpc + 4;
2084		return;
2085	}
2086#endif
2087
2088	sun4v_log_error(regs, &local_copy, cpu,
2089			KERN_EMERG "NON-RESUMABLE ERROR",
2090			&sun4v_nonresum_oflow_cnt);
2091
2092	panic("Non-resumable error.");
2093}
2094
2095/* If we try to printk() we'll probably make matters worse, by trying
2096 * to retake locks this cpu already holds or causing more errors. So
2097 * just bump a counter, and we'll report these counter bumps above.
2098 */
2099void sun4v_nonresum_overflow(struct pt_regs *regs)
2100{
2101	/* XXX Actually even this can make not that much sense.  Perhaps
2102	 * XXX we should just pull the plug and panic directly from here?
2103	 */
2104	atomic_inc(&sun4v_nonresum_oflow_cnt);
2105}
2106
2107static void sun4v_tlb_error(struct pt_regs *regs)
2108{
2109	die_if_kernel("TLB/TSB error", regs);
2110}
2111
2112unsigned long sun4v_err_itlb_vaddr;
2113unsigned long sun4v_err_itlb_ctx;
2114unsigned long sun4v_err_itlb_pte;
2115unsigned long sun4v_err_itlb_error;
2116
2117void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2118{
2119	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2120
2121	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2122	       regs->tpc, tl);
2123	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2124	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2125	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2126	       (void *) regs->u_regs[UREG_I7]);
2127	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2128	       "pte[%lx] error[%lx]\n",
2129	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2130	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2131
2132	sun4v_tlb_error(regs);
2133}
2134
2135unsigned long sun4v_err_dtlb_vaddr;
2136unsigned long sun4v_err_dtlb_ctx;
2137unsigned long sun4v_err_dtlb_pte;
2138unsigned long sun4v_err_dtlb_error;
2139
2140void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2141{
2142	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2143
2144	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2145	       regs->tpc, tl);
2146	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2147	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2148	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2149	       (void *) regs->u_regs[UREG_I7]);
2150	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2151	       "pte[%lx] error[%lx]\n",
2152	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2153	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2154
2155	sun4v_tlb_error(regs);
2156}
2157
2158void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2159{
2160	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2161	       err, op);
2162}
2163
2164void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2165{
2166	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2167	       err, op);
2168}
2169
2170static void do_fpe_common(struct pt_regs *regs)
2171{
2172	if (regs->tstate & TSTATE_PRIV) {
2173		regs->tpc = regs->tnpc;
2174		regs->tnpc += 4;
2175	} else {
2176		unsigned long fsr = current_thread_info()->xfsr[0];
2177		siginfo_t info;
2178
2179		if (test_thread_flag(TIF_32BIT)) {
2180			regs->tpc &= 0xffffffff;
2181			regs->tnpc &= 0xffffffff;
2182		}
2183		info.si_signo = SIGFPE;
2184		info.si_errno = 0;
2185		info.si_addr = (void __user *)regs->tpc;
2186		info.si_trapno = 0;
2187		info.si_code = __SI_FAULT;
2188		if ((fsr & 0x1c000) == (1 << 14)) {
2189			if (fsr & 0x10)
2190				info.si_code = FPE_FLTINV;
2191			else if (fsr & 0x08)
2192				info.si_code = FPE_FLTOVF;
2193			else if (fsr & 0x04)
2194				info.si_code = FPE_FLTUND;
2195			else if (fsr & 0x02)
2196				info.si_code = FPE_FLTDIV;
2197			else if (fsr & 0x01)
2198				info.si_code = FPE_FLTRES;
2199		}
2200		force_sig_info(SIGFPE, &info, current);
 
2201	}
2202}
2203
2204void do_fpieee(struct pt_regs *regs)
2205{
2206	enum ctx_state prev_state = exception_enter();
2207
2208	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2209		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2210		goto out;
2211
2212	do_fpe_common(regs);
2213out:
2214	exception_exit(prev_state);
2215}
2216
2217void do_fpother(struct pt_regs *regs)
2218{
2219	enum ctx_state prev_state = exception_enter();
2220	struct fpustate *f = FPUSTATE;
2221	int ret = 0;
2222
2223	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2224		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2225		goto out;
2226
2227	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2228	case (2 << 14): /* unfinished_FPop */
2229	case (3 << 14): /* unimplemented_FPop */
2230		ret = do_mathemu(regs, f, false);
2231		break;
2232	}
2233	if (ret)
2234		goto out;
2235	do_fpe_common(regs);
2236out:
2237	exception_exit(prev_state);
2238}
2239
2240void do_tof(struct pt_regs *regs)
2241{
2242	enum ctx_state prev_state = exception_enter();
2243	siginfo_t info;
2244
2245	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2246		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2247		goto out;
2248
2249	if (regs->tstate & TSTATE_PRIV)
2250		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2251	if (test_thread_flag(TIF_32BIT)) {
2252		regs->tpc &= 0xffffffff;
2253		regs->tnpc &= 0xffffffff;
2254	}
2255	info.si_signo = SIGEMT;
2256	info.si_errno = 0;
2257	info.si_code = EMT_TAGOVF;
2258	info.si_addr = (void __user *)regs->tpc;
2259	info.si_trapno = 0;
2260	force_sig_info(SIGEMT, &info, current);
2261out:
2262	exception_exit(prev_state);
2263}
2264
2265void do_div0(struct pt_regs *regs)
2266{
2267	enum ctx_state prev_state = exception_enter();
2268	siginfo_t info;
2269
2270	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2271		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2272		goto out;
2273
2274	if (regs->tstate & TSTATE_PRIV)
2275		die_if_kernel("TL0: Kernel divide by zero.", regs);
2276	if (test_thread_flag(TIF_32BIT)) {
2277		regs->tpc &= 0xffffffff;
2278		regs->tnpc &= 0xffffffff;
2279	}
2280	info.si_signo = SIGFPE;
2281	info.si_errno = 0;
2282	info.si_code = FPE_INTDIV;
2283	info.si_addr = (void __user *)regs->tpc;
2284	info.si_trapno = 0;
2285	force_sig_info(SIGFPE, &info, current);
2286out:
2287	exception_exit(prev_state);
2288}
2289
2290static void instruction_dump(unsigned int *pc)
2291{
2292	int i;
2293
2294	if ((((unsigned long) pc) & 3))
2295		return;
2296
2297	printk("Instruction DUMP:");
2298	for (i = -3; i < 6; i++)
2299		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2300	printk("\n");
2301}
2302
2303static void user_instruction_dump(unsigned int __user *pc)
2304{
2305	int i;
2306	unsigned int buf[9];
2307	
2308	if ((((unsigned long) pc) & 3))
2309		return;
2310		
2311	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2312		return;
2313
2314	printk("Instruction DUMP:");
2315	for (i = 0; i < 9; i++)
2316		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2317	printk("\n");
2318}
2319
2320void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2321{
2322	unsigned long fp, ksp;
2323	struct thread_info *tp;
2324	int count = 0;
2325#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2326	int graph = 0;
2327#endif
2328
2329	ksp = (unsigned long) _ksp;
2330	if (!tsk)
2331		tsk = current;
2332	tp = task_thread_info(tsk);
2333	if (ksp == 0UL) {
2334		if (tsk == current)
2335			asm("mov %%fp, %0" : "=r" (ksp));
2336		else
2337			ksp = tp->ksp;
2338	}
2339	if (tp == current_thread_info())
2340		flushw_all();
2341
2342	fp = ksp + STACK_BIAS;
2343
2344	printk("Call Trace:\n");
2345	do {
2346		struct sparc_stackf *sf;
2347		struct pt_regs *regs;
2348		unsigned long pc;
2349
2350		if (!kstack_valid(tp, fp))
2351			break;
2352		sf = (struct sparc_stackf *) fp;
2353		regs = (struct pt_regs *) (sf + 1);
2354
2355		if (kstack_is_trap_frame(tp, regs)) {
2356			if (!(regs->tstate & TSTATE_PRIV))
2357				break;
2358			pc = regs->tpc;
2359			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2360		} else {
2361			pc = sf->callers_pc;
2362			fp = (unsigned long)sf->fp + STACK_BIAS;
2363		}
2364
2365		printk(" [%016lx] %pS\n", pc, (void *) pc);
2366#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2367		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2368			int index = tsk->curr_ret_stack;
2369			if (tsk->ret_stack && index >= graph) {
2370				pc = tsk->ret_stack[index - graph].ret;
2371				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2372				graph++;
2373			}
2374		}
2375#endif
2376	} while (++count < 16);
2377}
2378
2379static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2380{
2381	unsigned long fp = rw->ins[6];
2382
2383	if (!fp)
2384		return NULL;
2385
2386	return (struct reg_window *) (fp + STACK_BIAS);
2387}
2388
2389void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2390{
2391	static int die_counter;
2392	int count = 0;
2393	
2394	/* Amuse the user. */
2395	printk(
2396"              \\|/ ____ \\|/\n"
2397"              \"@'/ .. \\`@\"\n"
2398"              /_| \\__/ |_\\\n"
2399"                 \\__U_/\n");
2400
2401	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2402	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2403	__asm__ __volatile__("flushw");
2404	show_regs(regs);
2405	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2406	if (regs->tstate & TSTATE_PRIV) {
2407		struct thread_info *tp = current_thread_info();
2408		struct reg_window *rw = (struct reg_window *)
2409			(regs->u_regs[UREG_FP] + STACK_BIAS);
2410
2411		/* Stop the back trace when we hit userland or we
2412		 * find some badly aligned kernel stack.
2413		 */
2414		while (rw &&
2415		       count++ < 30 &&
2416		       kstack_valid(tp, (unsigned long) rw)) {
2417			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2418			       (void *) rw->ins[7]);
2419
2420			rw = kernel_stack_up(rw);
2421		}
2422		instruction_dump ((unsigned int *) regs->tpc);
2423	} else {
2424		if (test_thread_flag(TIF_32BIT)) {
2425			regs->tpc &= 0xffffffff;
2426			regs->tnpc &= 0xffffffff;
2427		}
2428		user_instruction_dump ((unsigned int __user *) regs->tpc);
2429	}
2430	if (panic_on_oops)
2431		panic("Fatal exception");
2432	if (regs->tstate & TSTATE_PRIV)
2433		do_exit(SIGKILL);
2434	do_exit(SIGSEGV);
2435}
2436EXPORT_SYMBOL(die_if_kernel);
2437
2438#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2439#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2440
2441void do_illegal_instruction(struct pt_regs *regs)
2442{
2443	enum ctx_state prev_state = exception_enter();
2444	unsigned long pc = regs->tpc;
2445	unsigned long tstate = regs->tstate;
2446	u32 insn;
2447	siginfo_t info;
2448
2449	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2450		       0, 0x10, SIGILL) == NOTIFY_STOP)
2451		goto out;
2452
2453	if (tstate & TSTATE_PRIV)
2454		die_if_kernel("Kernel illegal instruction", regs);
2455	if (test_thread_flag(TIF_32BIT))
2456		pc = (u32)pc;
2457	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2458		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2459			if (handle_popc(insn, regs))
2460				goto out;
2461		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2462			if (handle_ldf_stq(insn, regs))
2463				goto out;
2464		} else if (tlb_type == hypervisor) {
2465			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2466				if (!vis_emul(regs, insn))
2467					goto out;
2468			} else {
2469				struct fpustate *f = FPUSTATE;
2470
2471				/* On UltraSPARC T2 and later, FPU insns which
2472				 * are not implemented in HW signal an illegal
2473				 * instruction trap and do not set the FP Trap
2474				 * Trap in the %fsr to unimplemented_FPop.
2475				 */
2476				if (do_mathemu(regs, f, true))
2477					goto out;
2478			}
2479		}
2480	}
2481	info.si_signo = SIGILL;
2482	info.si_errno = 0;
2483	info.si_code = ILL_ILLOPC;
2484	info.si_addr = (void __user *)pc;
2485	info.si_trapno = 0;
2486	force_sig_info(SIGILL, &info, current);
2487out:
2488	exception_exit(prev_state);
2489}
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493	enum ctx_state prev_state = exception_enter();
2494	siginfo_t info;
2495
2496	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498		goto out;
2499
2500	if (regs->tstate & TSTATE_PRIV) {
2501		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502		goto out;
2503	}
2504	info.si_signo = SIGBUS;
2505	info.si_errno = 0;
2506	info.si_code = BUS_ADRALN;
2507	info.si_addr = (void __user *)sfar;
2508	info.si_trapno = 0;
2509	force_sig_info(SIGBUS, &info, current);
2510out:
2511	exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516	siginfo_t info;
2517
2518	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520		return;
2521
2522	if (regs->tstate & TSTATE_PRIV) {
2523		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524		return;
2525	}
2526	info.si_signo = SIGBUS;
2527	info.si_errno = 0;
2528	info.si_code = BUS_ADRALN;
2529	info.si_addr = (void __user *) addr;
2530	info.si_trapno = 0;
2531	force_sig_info(SIGBUS, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536	enum ctx_state prev_state = exception_enter();
2537	siginfo_t info;
2538
2539	if (notify_die(DIE_TRAP, "privileged operation", regs,
2540		       0, 0x11, SIGILL) == NOTIFY_STOP)
2541		goto out;
2542
2543	if (test_thread_flag(TIF_32BIT)) {
2544		regs->tpc &= 0xffffffff;
2545		regs->tnpc &= 0xffffffff;
2546	}
2547	info.si_signo = SIGILL;
2548	info.si_errno = 0;
2549	info.si_code = ILL_PRVOPC;
2550	info.si_addr = (void __user *)regs->tpc;
2551	info.si_trapno = 0;
2552	force_sig_info(SIGILL, &info, current);
2553out:
2554	exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559	do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565	exception_enter();
2566	die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_div0_tl1(struct pt_regs *regs)
2570{
2571	exception_enter();
2572	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573	die_if_kernel("TL1: DIV0 Exception", regs);
2574}
2575
2576void do_fpieee_tl1(struct pt_regs *regs)
2577{
2578	exception_enter();
2579	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580	die_if_kernel("TL1: FPU IEEE Exception", regs);
2581}
2582
2583void do_fpother_tl1(struct pt_regs *regs)
2584{
2585	exception_enter();
2586	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587	die_if_kernel("TL1: FPU Other Exception", regs);
2588}
2589
2590void do_ill_tl1(struct pt_regs *regs)
2591{
2592	exception_enter();
2593	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2595}
2596
2597void do_irq_tl1(struct pt_regs *regs)
2598{
2599	exception_enter();
2600	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601	die_if_kernel("TL1: IRQ Exception", regs);
2602}
2603
2604void do_lddfmna_tl1(struct pt_regs *regs)
2605{
2606	exception_enter();
2607	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608	die_if_kernel("TL1: LDDF Exception", regs);
2609}
2610
2611void do_stdfmna_tl1(struct pt_regs *regs)
2612{
2613	exception_enter();
2614	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615	die_if_kernel("TL1: STDF Exception", regs);
2616}
2617
2618void do_paw(struct pt_regs *regs)
2619{
2620	exception_enter();
2621	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2622}
2623
2624void do_paw_tl1(struct pt_regs *regs)
2625{
2626	exception_enter();
2627	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2628	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2629}
2630
2631void do_vaw(struct pt_regs *regs)
2632{
2633	exception_enter();
2634	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2635}
2636
2637void do_vaw_tl1(struct pt_regs *regs)
2638{
2639	exception_enter();
2640	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2641	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2642}
2643
2644void do_tof_tl1(struct pt_regs *regs)
2645{
2646	exception_enter();
2647	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2648	die_if_kernel("TL1: Tag Overflow Exception", regs);
2649}
2650
2651void do_getpsr(struct pt_regs *regs)
2652{
2653	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2654	regs->tpc   = regs->tnpc;
2655	regs->tnpc += 4;
2656	if (test_thread_flag(TIF_32BIT)) {
2657		regs->tpc &= 0xffffffff;
2658		regs->tnpc &= 0xffffffff;
2659	}
2660}
2661
 
2662struct trap_per_cpu trap_block[NR_CPUS];
2663EXPORT_SYMBOL(trap_block);
2664
2665/* This can get invoked before sched_init() so play it super safe
2666 * and use hard_smp_processor_id().
2667 */
2668void notrace init_cur_cpu_trap(struct thread_info *t)
2669{
2670	int cpu = hard_smp_processor_id();
2671	struct trap_per_cpu *p = &trap_block[cpu];
2672
2673	p->thread = t;
2674	p->pgd_paddr = 0;
2675}
2676
2677extern void thread_info_offsets_are_bolixed_dave(void);
2678extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2679extern void tsb_config_offsets_are_bolixed_dave(void);
2680
2681/* Only invoked on boot processor. */
2682void __init trap_init(void)
2683{
2684	/* Compile time sanity check. */
2685	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2686		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2687		     TI_CPU != offsetof(struct thread_info, cpu) ||
2688		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2689		     TI_KSP != offsetof(struct thread_info, ksp) ||
2690		     TI_FAULT_ADDR != offsetof(struct thread_info,
2691					       fault_address) ||
2692		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2693		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2694		     TI_REG_WINDOW != offsetof(struct thread_info,
2695					       reg_window) ||
2696		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2697					       rwbuf_stkptrs) ||
2698		     TI_GSR != offsetof(struct thread_info, gsr) ||
2699		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2700		     TI_PRE_COUNT != offsetof(struct thread_info,
2701					      preempt_count) ||
2702		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2703		     TI_CURRENT_DS != offsetof(struct thread_info,
2704						current_ds) ||
2705		     TI_KUNA_REGS != offsetof(struct thread_info,
2706					      kern_una_regs) ||
2707		     TI_KUNA_INSN != offsetof(struct thread_info,
2708					      kern_una_insn) ||
2709		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2710		     (TI_FPREGS & (64 - 1)));
2711
2712	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2713						     thread) ||
2714		     (TRAP_PER_CPU_PGD_PADDR !=
2715		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2716		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2717		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2718		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2719		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2720		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2721		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2722		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2723		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2724		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2725		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2726		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2727		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2728		     (TRAP_PER_CPU_FAULT_INFO !=
2729		      offsetof(struct trap_per_cpu, fault_info)) ||
2730		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2731		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2732		     (TRAP_PER_CPU_CPU_LIST_PA !=
2733		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2734		     (TRAP_PER_CPU_TSB_HUGE !=
2735		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2736		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2737		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2738		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2739		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2740		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2741		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2742		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2743		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2744		     (TRAP_PER_CPU_RESUM_QMASK !=
2745		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2746		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2747		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2748		     (TRAP_PER_CPU_PER_CPU_BASE !=
2749		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2750
2751	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2752		      offsetof(struct tsb_config, tsb)) ||
2753		     (TSB_CONFIG_RSS_LIMIT !=
2754		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2755		     (TSB_CONFIG_NENTRIES !=
2756		      offsetof(struct tsb_config, tsb_nentries)) ||
2757		     (TSB_CONFIG_REG_VAL !=
2758		      offsetof(struct tsb_config, tsb_reg_val)) ||
2759		     (TSB_CONFIG_MAP_VADDR !=
2760		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2761		     (TSB_CONFIG_MAP_PTE !=
2762		      offsetof(struct tsb_config, tsb_map_pte)));
2763
2764	/* Attach to the address space of init_task.  On SMP we
2765	 * do this in smp.c:smp_callin for other cpus.
2766	 */
2767	atomic_inc(&init_mm.mm_count);
2768	current->active_mm = &init_mm;
2769}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
 
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
 
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault(SIGILL, ILL_ILLTRP,
 111			(void __user *)regs->tpc, lvl);
 
 
 
 
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR,
 205			(void __user *)regs->tpc, 0);
 
 
 
 
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
 
 
 
 
 
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf2) == ASI_PNF) {
 279			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 280				handle_ldf_stq(insn, regs);
 281				return true;
 282			} else if (insn & 0x200000) { /* op3[2], stores */
 283				return false;
 284			}
 285			handle_ld_nf(insn, regs);
 286			return true;
 287		}
 288	}
 289	return false;
 290}
 291
 292void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 293{
 294	enum ctx_state prev_state = exception_enter();
 
 295
 296	if (notify_die(DIE_TRAP, "data access exception", regs,
 297		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 298		goto out;
 299
 300	if (regs->tstate & TSTATE_PRIV) {
 301		/* Test if this comes from uaccess places. */
 302		const struct exception_table_entry *entry;
 303
 304		entry = search_exception_tables(regs->tpc);
 305		if (entry) {
 306			/* Ouch, somebody is trying VM hole tricks on us... */
 307#ifdef DEBUG_EXCEPTIONS
 308			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 309			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 310			       regs->tpc, entry->fixup);
 311#endif
 312			regs->tpc = entry->fixup;
 313			regs->tnpc = regs->tpc + 4;
 314			goto out;
 315		}
 316		/* Shit... */
 317		printk("spitfire_data_access_exception: SFSR[%016lx] "
 318		       "SFAR[%016lx], going.\n", sfsr, sfar);
 319		die_if_kernel("Dax", regs);
 320	}
 321
 322	if (is_no_fault_exception(regs))
 323		return;
 324
 325	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
 
 
 326out:
 327	exception_exit(prev_state);
 328}
 329
 330void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 331{
 332	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 333		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 334		return;
 335
 336	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 337	spitfire_data_access_exception(regs, sfsr, sfar);
 338}
 339
 340void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 341{
 342	unsigned short type = (type_ctx >> 16);
 343	unsigned short ctx  = (type_ctx & 0xffff);
 
 344
 345	if (notify_die(DIE_TRAP, "data access exception", regs,
 346		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 347		return;
 348
 349	if (regs->tstate & TSTATE_PRIV) {
 350		/* Test if this comes from uaccess places. */
 351		const struct exception_table_entry *entry;
 352
 353		entry = search_exception_tables(regs->tpc);
 354		if (entry) {
 355			/* Ouch, somebody is trying VM hole tricks on us... */
 356#ifdef DEBUG_EXCEPTIONS
 357			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 358			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 359			       regs->tpc, entry->fixup);
 360#endif
 361			regs->tpc = entry->fixup;
 362			regs->tnpc = regs->tpc + 4;
 363			return;
 364		}
 365		printk("sun4v_data_access_exception: ADDR[%016lx] "
 366		       "CTX[%04x] TYPE[%04x], going.\n",
 367		       addr, ctx, type);
 368		die_if_kernel("Dax", regs);
 369	}
 370
 371	if (test_thread_flag(TIF_32BIT)) {
 372		regs->tpc &= 0xffffffff;
 373		regs->tnpc &= 0xffffffff;
 374	}
 375	if (is_no_fault_exception(regs))
 376		return;
 377
 378	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 379	 * is vectored thorugh data access exception trap with fault type
 380	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 381	 * Accessing an address with invalid ASI for the address, for
 382	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 383	 * when TTE.mcd is not set for the VA, is also vectored into
 384	 * kerbel by HV as data access exception with fault type set to
 385	 * HV_FAULT_TYPE_INV_ASI.
 386	 */
 387	switch (type) {
 388	case HV_FAULT_TYPE_INV_ASI:
 389		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
 390		break;
 391	case HV_FAULT_TYPE_MCD_DIS:
 392		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
 393		break;
 394	default:
 395		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
 396		break;
 397	}
 398}
 399
 400void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 401{
 402	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 403		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 404		return;
 405
 406	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 407	sun4v_data_access_exception(regs, addr, type_ctx);
 408}
 409
 410#ifdef CONFIG_PCI
 411#include "pci_impl.h"
 412#endif
 413
 414/* When access exceptions happen, we must do this. */
 415static void spitfire_clean_and_reenable_l1_caches(void)
 416{
 417	unsigned long va;
 418
 419	if (tlb_type != spitfire)
 420		BUG();
 421
 422	/* Clean 'em. */
 423	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 424		spitfire_put_icache_tag(va, 0x0);
 425		spitfire_put_dcache_tag(va, 0x0);
 426	}
 427
 428	/* Re-enable in LSU. */
 429	__asm__ __volatile__("flush %%g6\n\t"
 430			     "membar #Sync\n\t"
 431			     "stxa %0, [%%g0] %1\n\t"
 432			     "membar #Sync"
 433			     : /* no outputs */
 434			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 435				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 436			     "i" (ASI_LSU_CONTROL)
 437			     : "memory");
 438}
 439
 440static void spitfire_enable_estate_errors(void)
 441{
 442	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 443			     "membar	#Sync"
 444			     : /* no outputs */
 445			     : "r" (ESTATE_ERR_ALL),
 446			       "i" (ASI_ESTATE_ERROR_EN));
 447}
 448
 449static char ecc_syndrome_table[] = {
 450	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 451	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 452	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 453	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 454	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 455	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 456	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 457	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 458	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 459	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 460	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 461	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 462	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 463	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 464	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 465	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 466	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 467	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 468	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 469	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 470	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 471	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 472	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 473	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 474	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 475	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 477	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 479	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 480	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 481	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 482};
 483
 484static char *syndrome_unknown = "<Unknown>";
 485
 486static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 487{
 488	unsigned short scode;
 489	char memmod_str[64], *p;
 490
 491	if (udbl & bit) {
 492		scode = ecc_syndrome_table[udbl & 0xff];
 493		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 494			p = syndrome_unknown;
 495		else
 496			p = memmod_str;
 497		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 498		       "Memory Module \"%s\"\n",
 499		       smp_processor_id(), scode, p);
 500	}
 501
 502	if (udbh & bit) {
 503		scode = ecc_syndrome_table[udbh & 0xff];
 504		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 505			p = syndrome_unknown;
 506		else
 507			p = memmod_str;
 508		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 509		       "Memory Module \"%s\"\n",
 510		       smp_processor_id(), scode, p);
 511	}
 512
 513}
 514
 515static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 516{
 517
 518	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 519	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 520	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 521
 522	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 523
 524	/* We always log it, even if someone is listening for this
 525	 * trap.
 526	 */
 527	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 528		   0, TRAP_TYPE_CEE, SIGTRAP);
 529
 530	/* The Correctable ECC Error trap does not disable I/D caches.  So
 531	 * we only have to restore the ESTATE Error Enable register.
 532	 */
 533	spitfire_enable_estate_errors();
 534}
 535
 536static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 537{
 
 
 538	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 539	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 540	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 541
 542	/* XXX add more human friendly logging of the error status
 543	 * XXX as is implemented for cheetah
 544	 */
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 552		   0, tt, SIGTRAP);
 553
 554	if (regs->tstate & TSTATE_PRIV) {
 555		if (tl1)
 556			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 557		die_if_kernel("UE", regs);
 558	}
 559
 560	/* XXX need more intelligent processing here, such as is implemented
 561	 * XXX for cheetah errors, in fact if the E-cache still holds the
 562	 * XXX line with bad parity this will loop
 563	 */
 564
 565	spitfire_clean_and_reenable_l1_caches();
 566	spitfire_enable_estate_errors();
 567
 568	if (test_thread_flag(TIF_32BIT)) {
 569		regs->tpc &= 0xffffffff;
 570		regs->tnpc &= 0xffffffff;
 571	}
 572	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
 
 
 
 
 
 573}
 574
 575void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 576{
 577	unsigned long afsr, tt, udbh, udbl;
 578	int tl1;
 579
 580	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 581	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 582	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 583	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 584	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 585
 586#ifdef CONFIG_PCI
 587	if (tt == TRAP_TYPE_DAE &&
 588	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 589		spitfire_clean_and_reenable_l1_caches();
 590		spitfire_enable_estate_errors();
 591
 592		pci_poke_faulted = 1;
 593		regs->tnpc = regs->tpc + 4;
 594		return;
 595	}
 596#endif
 597
 598	if (afsr & SFAFSR_UE)
 599		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 600
 601	if (tt == TRAP_TYPE_CEE) {
 602		/* Handle the case where we took a CEE trap, but ACK'd
 603		 * only the UE state in the UDB error registers.
 604		 */
 605		if (afsr & SFAFSR_UE) {
 606			if (udbh & UDBE_CE) {
 607				__asm__ __volatile__(
 608					"stxa	%0, [%1] %2\n\t"
 609					"membar	#Sync"
 610					: /* no outputs */
 611					: "r" (udbh & UDBE_CE),
 612					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 613			}
 614			if (udbl & UDBE_CE) {
 615				__asm__ __volatile__(
 616					"stxa	%0, [%1] %2\n\t"
 617					"membar	#Sync"
 618					: /* no outputs */
 619					: "r" (udbl & UDBE_CE),
 620					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 621			}
 622		}
 623
 624		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 625	}
 626}
 627
 628int cheetah_pcache_forced_on;
 629
 630void cheetah_enable_pcache(void)
 631{
 632	unsigned long dcr;
 633
 634	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 635	       smp_processor_id());
 636
 637	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 638			     : "=r" (dcr)
 639			     : "i" (ASI_DCU_CONTROL_REG));
 640	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 641	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 642			     "membar #Sync"
 643			     : /* no outputs */
 644			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 645}
 646
 647/* Cheetah error trap handling. */
 648static unsigned long ecache_flush_physbase;
 649static unsigned long ecache_flush_linesize;
 650static unsigned long ecache_flush_size;
 651
 652/* This table is ordered in priority of errors and matches the
 653 * AFAR overwrite policy as well.
 654 */
 655
 656struct afsr_error_table {
 657	unsigned long mask;
 658	const char *name;
 659};
 660
 661static const char CHAFSR_PERR_msg[] =
 662	"System interface protocol error";
 663static const char CHAFSR_IERR_msg[] =
 664	"Internal processor error";
 665static const char CHAFSR_ISAP_msg[] =
 666	"System request parity error on incoming address";
 667static const char CHAFSR_UCU_msg[] =
 668	"Uncorrectable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UCC_msg[] =
 670	"SW Correctable E-cache ECC error for ifetch/data";
 671static const char CHAFSR_UE_msg[] =
 672	"Uncorrectable system bus data ECC error for read";
 673static const char CHAFSR_EDU_msg[] =
 674	"Uncorrectable E-cache ECC error for stmerge/blkld";
 675static const char CHAFSR_EMU_msg[] =
 676	"Uncorrectable system bus MTAG error";
 677static const char CHAFSR_WDU_msg[] =
 678	"Uncorrectable E-cache ECC error for writeback";
 679static const char CHAFSR_CPU_msg[] =
 680	"Uncorrectable ECC error for copyout";
 681static const char CHAFSR_CE_msg[] =
 682	"HW corrected system bus data ECC error for read";
 683static const char CHAFSR_EDC_msg[] =
 684	"HW corrected E-cache ECC error for stmerge/blkld";
 685static const char CHAFSR_EMC_msg[] =
 686	"HW corrected system bus MTAG ECC error";
 687static const char CHAFSR_WDC_msg[] =
 688	"HW corrected E-cache ECC error for writeback";
 689static const char CHAFSR_CPC_msg[] =
 690	"HW corrected ECC error for copyout";
 691static const char CHAFSR_TO_msg[] =
 692	"Unmapped error from system bus";
 693static const char CHAFSR_BERR_msg[] =
 694	"Bus error response from system bus";
 695static const char CHAFSR_IVC_msg[] =
 696	"HW corrected system bus data ECC error for ivec read";
 697static const char CHAFSR_IVU_msg[] =
 698	"Uncorrectable system bus data ECC error for ivec read";
 699static struct afsr_error_table __cheetah_error_table[] = {
 700	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 701	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 702	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 703	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 704	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 705	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 706	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 707	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 708	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 709	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 710	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 711	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 712	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 713	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 714	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 715	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 716	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 717	/* These two do not update the AFAR. */
 718	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 719	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 720	{	0,		NULL			},
 721};
 722static const char CHPAFSR_DTO_msg[] =
 723	"System bus unmapped error for prefetch/storequeue-read";
 724static const char CHPAFSR_DBERR_msg[] =
 725	"System bus error for prefetch/storequeue-read";
 726static const char CHPAFSR_THCE_msg[] =
 727	"Hardware corrected E-cache Tag ECC error";
 728static const char CHPAFSR_TSCE_msg[] =
 729	"SW handled correctable E-cache Tag ECC error";
 730static const char CHPAFSR_TUE_msg[] =
 731	"Uncorrectable E-cache Tag ECC error";
 732static const char CHPAFSR_DUE_msg[] =
 733	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 734static struct afsr_error_table __cheetah_plus_error_table[] = {
 735	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 736	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 737	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 738	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 739	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 740	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 741	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 742	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 743	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 744	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 745	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 746	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 747	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 748	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 749	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 750	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 751	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 752	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 753	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 754	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 755	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 756	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 757	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 758	/* These two do not update the AFAR. */
 759	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 760	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 761	{	0,		NULL			},
 762};
 763static const char JPAFSR_JETO_msg[] =
 764	"System interface protocol error, hw timeout caused";
 765static const char JPAFSR_SCE_msg[] =
 766	"Parity error on system snoop results";
 767static const char JPAFSR_JEIC_msg[] =
 768	"System interface protocol error, illegal command detected";
 769static const char JPAFSR_JEIT_msg[] =
 770	"System interface protocol error, illegal ADTYPE detected";
 771static const char JPAFSR_OM_msg[] =
 772	"Out of range memory error has occurred";
 773static const char JPAFSR_ETP_msg[] =
 774	"Parity error on L2 cache tag SRAM";
 775static const char JPAFSR_UMS_msg[] =
 776	"Error due to unsupported store";
 777static const char JPAFSR_RUE_msg[] =
 778	"Uncorrectable ECC error from remote cache/memory";
 779static const char JPAFSR_RCE_msg[] =
 780	"Correctable ECC error from remote cache/memory";
 781static const char JPAFSR_BP_msg[] =
 782	"JBUS parity error on returned read data";
 783static const char JPAFSR_WBP_msg[] =
 784	"JBUS parity error on data for writeback or block store";
 785static const char JPAFSR_FRC_msg[] =
 786	"Foreign read to DRAM incurring correctable ECC error";
 787static const char JPAFSR_FRU_msg[] =
 788	"Foreign read to DRAM incurring uncorrectable ECC error";
 789static struct afsr_error_table __jalapeno_error_table[] = {
 790	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 791	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 792	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 793	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 794	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 795	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 796	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 797	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 798	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 799	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 800	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 801	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 802	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 803	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 804	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 805	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 806	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 807	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 808	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 809	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 810	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 811	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 812	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 813	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 814	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 815	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 816	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 817	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 818	/* These two do not update the AFAR. */
 819	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 820	{	0,		NULL			},
 821};
 822static struct afsr_error_table *cheetah_error_table;
 823static unsigned long cheetah_afsr_errors;
 824
 825struct cheetah_err_info *cheetah_error_log;
 826
 827static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 828{
 829	struct cheetah_err_info *p;
 830	int cpu = smp_processor_id();
 831
 832	if (!cheetah_error_log)
 833		return NULL;
 834
 835	p = cheetah_error_log + (cpu * 2);
 836	if ((afsr & CHAFSR_TL1) != 0UL)
 837		p++;
 838
 839	return p;
 840}
 841
 842extern unsigned int tl0_icpe[], tl1_icpe[];
 843extern unsigned int tl0_dcpe[], tl1_dcpe[];
 844extern unsigned int tl0_fecc[], tl1_fecc[];
 845extern unsigned int tl0_cee[], tl1_cee[];
 846extern unsigned int tl0_iae[], tl1_iae[];
 847extern unsigned int tl0_dae[], tl1_dae[];
 848extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 849extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 850extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 851extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 852extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 853
 854void __init cheetah_ecache_flush_init(void)
 855{
 856	unsigned long largest_size, smallest_linesize, order, ver;
 857	int i, sz;
 858
 859	/* Scan all cpu device tree nodes, note two values:
 860	 * 1) largest E-cache size
 861	 * 2) smallest E-cache line size
 862	 */
 863	largest_size = 0UL;
 864	smallest_linesize = ~0UL;
 865
 866	for (i = 0; i < NR_CPUS; i++) {
 867		unsigned long val;
 868
 869		val = cpu_data(i).ecache_size;
 870		if (!val)
 871			continue;
 872
 873		if (val > largest_size)
 874			largest_size = val;
 875
 876		val = cpu_data(i).ecache_line_size;
 877		if (val < smallest_linesize)
 878			smallest_linesize = val;
 879
 880	}
 881
 882	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 883		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 884			    "parameters.\n");
 885		prom_halt();
 886	}
 887
 888	ecache_flush_size = (2 * largest_size);
 889	ecache_flush_linesize = smallest_linesize;
 890
 891	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 892
 893	if (ecache_flush_physbase == ~0UL) {
 894		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 895			    "contiguous physical memory.\n",
 896			    ecache_flush_size);
 897		prom_halt();
 898	}
 899
 900	/* Now allocate error trap reporting scoreboard. */
 901	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 902	for (order = 0; order < MAX_ORDER; order++) {
 903		if ((PAGE_SIZE << order) >= sz)
 904			break;
 905	}
 906	cheetah_error_log = (struct cheetah_err_info *)
 907		__get_free_pages(GFP_KERNEL, order);
 908	if (!cheetah_error_log) {
 909		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 910			    "error logging scoreboard (%d bytes).\n", sz);
 911		prom_halt();
 912	}
 913	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 914
 915	/* Mark all AFSRs as invalid so that the trap handler will
 916	 * log new new information there.
 917	 */
 918	for (i = 0; i < 2 * NR_CPUS; i++)
 919		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 920
 921	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 922	if ((ver >> 32) == __JALAPENO_ID ||
 923	    (ver >> 32) == __SERRANO_ID) {
 924		cheetah_error_table = &__jalapeno_error_table[0];
 925		cheetah_afsr_errors = JPAFSR_ERRORS;
 926	} else if ((ver >> 32) == 0x003e0015) {
 927		cheetah_error_table = &__cheetah_plus_error_table[0];
 928		cheetah_afsr_errors = CHPAFSR_ERRORS;
 929	} else {
 930		cheetah_error_table = &__cheetah_error_table[0];
 931		cheetah_afsr_errors = CHAFSR_ERRORS;
 932	}
 933
 934	/* Now patch trap tables. */
 935	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 936	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 938	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 942	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 943	if (tlb_type == cheetah_plus) {
 944		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 945		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 946		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 947		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 948	}
 949	flushi(PAGE_OFFSET);
 950}
 951
 952static void cheetah_flush_ecache(void)
 953{
 954	unsigned long flush_base = ecache_flush_physbase;
 955	unsigned long flush_linesize = ecache_flush_linesize;
 956	unsigned long flush_size = ecache_flush_size;
 957
 958	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 959			     "   bne,pt	%%xcc, 1b\n\t"
 960			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 961			     : "=&r" (flush_size)
 962			     : "0" (flush_size), "r" (flush_base),
 963			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 964}
 965
 966static void cheetah_flush_ecache_line(unsigned long physaddr)
 967{
 968	unsigned long alias;
 969
 970	physaddr &= ~(8UL - 1UL);
 971	physaddr = (ecache_flush_physbase +
 972		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 973	alias = physaddr + (ecache_flush_size >> 1UL);
 974	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 975			     "ldxa [%1] %2, %%g0\n\t"
 976			     "membar #Sync"
 977			     : /* no outputs */
 978			     : "r" (physaddr), "r" (alias),
 979			       "i" (ASI_PHYS_USE_EC));
 980}
 981
 982/* Unfortunately, the diagnostic access to the I-cache tags we need to
 983 * use to clear the thing interferes with I-cache coherency transactions.
 984 *
 985 * So we must only flush the I-cache when it is disabled.
 986 */
 987static void __cheetah_flush_icache(void)
 988{
 989	unsigned int icache_size, icache_line_size;
 990	unsigned long addr;
 991
 992	icache_size = local_cpu_data().icache_size;
 993	icache_line_size = local_cpu_data().icache_line_size;
 994
 995	/* Clear the valid bits in all the tags. */
 996	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 997		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 998				     "membar #Sync"
 999				     : /* no outputs */
1000				     : "r" (addr | (2 << 3)),
1001				       "i" (ASI_IC_TAG));
1002	}
1003}
1004
1005static void cheetah_flush_icache(void)
1006{
1007	unsigned long dcu_save;
1008
1009	/* Save current DCU, disable I-cache. */
1010	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1011			     "or %0, %2, %%g1\n\t"
1012			     "stxa %%g1, [%%g0] %1\n\t"
1013			     "membar #Sync"
1014			     : "=r" (dcu_save)
1015			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1016			     : "g1");
1017
1018	__cheetah_flush_icache();
1019
1020	/* Restore DCU register */
1021	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1022			     "membar #Sync"
1023			     : /* no outputs */
1024			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1025}
1026
1027static void cheetah_flush_dcache(void)
1028{
1029	unsigned int dcache_size, dcache_line_size;
1030	unsigned long addr;
1031
1032	dcache_size = local_cpu_data().dcache_size;
1033	dcache_line_size = local_cpu_data().dcache_line_size;
1034
1035	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1036		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1037				     "membar #Sync"
1038				     : /* no outputs */
1039				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1040	}
1041}
1042
1043/* In order to make the even parity correct we must do two things.
1044 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1045 * Next, we clear out all 32-bytes of data for that line.  Data of
1046 * all-zero + tag parity value of zero == correct parity.
1047 */
1048static void cheetah_plus_zap_dcache_parity(void)
1049{
1050	unsigned int dcache_size, dcache_line_size;
1051	unsigned long addr;
1052
1053	dcache_size = local_cpu_data().dcache_size;
1054	dcache_line_size = local_cpu_data().dcache_line_size;
1055
1056	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1057		unsigned long tag = (addr >> 14);
1058		unsigned long line;
1059
1060		__asm__ __volatile__("membar	#Sync\n\t"
1061				     "stxa	%0, [%1] %2\n\t"
1062				     "membar	#Sync"
1063				     : /* no outputs */
1064				     : "r" (tag), "r" (addr),
1065				       "i" (ASI_DCACHE_UTAG));
1066		for (line = addr; line < addr + dcache_line_size; line += 8)
1067			__asm__ __volatile__("membar	#Sync\n\t"
1068					     "stxa	%%g0, [%0] %1\n\t"
1069					     "membar	#Sync"
1070					     : /* no outputs */
1071					     : "r" (line),
1072					       "i" (ASI_DCACHE_DATA));
1073	}
1074}
1075
1076/* Conversion tables used to frob Cheetah AFSR syndrome values into
1077 * something palatable to the memory controller driver get_unumber
1078 * routine.
1079 */
1080#define MT0	137
1081#define MT1	138
1082#define MT2	139
1083#define NONE	254
1084#define MTC0	140
1085#define MTC1	141
1086#define MTC2	142
1087#define MTC3	143
1088#define C0	128
1089#define C1	129
1090#define C2	130
1091#define C3	131
1092#define C4	132
1093#define C5	133
1094#define C6	134
1095#define C7	135
1096#define C8	136
1097#define M2	144
1098#define M3	145
1099#define M4	146
1100#define M	147
1101static unsigned char cheetah_ecc_syntab[] = {
1102/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1103/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1104/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1105/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1106/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1107/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1108/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1109/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1110/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1111/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1112/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1113/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1114/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1115/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1116/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1117/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1118/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1119/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1120/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1121/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1122/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1123/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1124/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1125/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1126/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1127/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1128/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1129/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1130/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1131/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1132/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1133/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1134};
1135static unsigned char cheetah_mtag_syntab[] = {
1136       NONE, MTC0,
1137       MTC1, NONE,
1138       MTC2, NONE,
1139       NONE, MT0,
1140       MTC3, NONE,
1141       NONE, MT1,
1142       NONE, MT2,
1143       NONE, NONE
1144};
1145
1146/* Return the highest priority error conditon mentioned. */
1147static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1148{
1149	unsigned long tmp = 0;
1150	int i;
1151
1152	for (i = 0; cheetah_error_table[i].mask; i++) {
1153		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1154			return tmp;
1155	}
1156	return tmp;
1157}
1158
1159static const char *cheetah_get_string(unsigned long bit)
1160{
1161	int i;
1162
1163	for (i = 0; cheetah_error_table[i].mask; i++) {
1164		if ((bit & cheetah_error_table[i].mask) != 0UL)
1165			return cheetah_error_table[i].name;
1166	}
1167	return "???";
1168}
1169
1170static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1171			       unsigned long afsr, unsigned long afar, int recoverable)
1172{
1173	unsigned long hipri;
1174	char unum[256];
1175
1176	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1177	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1178	       afsr, afar,
1179	       (afsr & CHAFSR_TL1) ? 1 : 0);
1180	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1181	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1182	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1183	printk("%s" "ERROR(%d): ",
1184	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1185	printk("TPC<%pS>\n", (void *) regs->tpc);
1186	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1187	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1188	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1190	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1191	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1192	hipri = cheetah_get_hipri(afsr);
1193	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1194	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1195	       hipri, cheetah_get_string(hipri));
1196
1197	/* Try to get unumber if relevant. */
1198#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1199			 CHAFSR_CPC | CHAFSR_CPU | \
1200			 CHAFSR_UE  | CHAFSR_CE  | \
1201			 CHAFSR_EDC | CHAFSR_EDU  | \
1202			 CHAFSR_UCC | CHAFSR_UCU  | \
1203			 CHAFSR_WDU | CHAFSR_WDC)
1204#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1205	if (afsr & ESYND_ERRORS) {
1206		int syndrome;
1207		int ret;
1208
1209		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1210		syndrome = cheetah_ecc_syntab[syndrome];
1211		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1212		if (ret != -1)
1213			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1214			       (recoverable ? KERN_WARNING : KERN_CRIT),
1215			       smp_processor_id(), unum);
1216	} else if (afsr & MSYND_ERRORS) {
1217		int syndrome;
1218		int ret;
1219
1220		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1221		syndrome = cheetah_mtag_syntab[syndrome];
1222		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1223		if (ret != -1)
1224			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1225			       (recoverable ? KERN_WARNING : KERN_CRIT),
1226			       smp_processor_id(), unum);
1227	}
1228
1229	/* Now dump the cache snapshots. */
1230	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1231	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232	       (int) info->dcache_index,
1233	       info->dcache_tag,
1234	       info->dcache_utag,
1235	       info->dcache_stag);
1236	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1237	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1238	       info->dcache_data[0],
1239	       info->dcache_data[1],
1240	       info->dcache_data[2],
1241	       info->dcache_data[3]);
1242	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1243	       "u[%016llx] l[%016llx]\n",
1244	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1245	       (int) info->icache_index,
1246	       info->icache_tag,
1247	       info->icache_utag,
1248	       info->icache_stag,
1249	       info->icache_upper,
1250	       info->icache_lower);
1251	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1252	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1253	       info->icache_data[0],
1254	       info->icache_data[1],
1255	       info->icache_data[2],
1256	       info->icache_data[3]);
1257	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1258	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1259	       info->icache_data[4],
1260	       info->icache_data[5],
1261	       info->icache_data[6],
1262	       info->icache_data[7]);
1263	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1264	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1265	       (int) info->ecache_index, info->ecache_tag);
1266	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1267	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268	       info->ecache_data[0],
1269	       info->ecache_data[1],
1270	       info->ecache_data[2],
1271	       info->ecache_data[3]);
1272
1273	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1274	while (afsr != 0UL) {
1275		unsigned long bit = cheetah_get_hipri(afsr);
1276
1277		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1278		       (recoverable ? KERN_WARNING : KERN_CRIT),
1279		       bit, cheetah_get_string(bit));
1280
1281		afsr &= ~bit;
1282	}
1283
1284	if (!recoverable)
1285		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1286}
1287
1288static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1289{
1290	unsigned long afsr, afar;
1291	int ret = 0;
1292
1293	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1294			     : "=r" (afsr)
1295			     : "i" (ASI_AFSR));
1296	if ((afsr & cheetah_afsr_errors) != 0) {
1297		if (logp != NULL) {
1298			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1299					     : "=r" (afar)
1300					     : "i" (ASI_AFAR));
1301			logp->afsr = afsr;
1302			logp->afar = afar;
1303		}
1304		ret = 1;
1305	}
1306	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1307			     "membar #Sync\n\t"
1308			     : : "r" (afsr), "i" (ASI_AFSR));
1309
1310	return ret;
1311}
1312
1313void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1314{
1315	struct cheetah_err_info local_snapshot, *p;
1316	int recoverable;
1317
1318	/* Flush E-cache */
1319	cheetah_flush_ecache();
1320
1321	p = cheetah_get_error_log(afsr);
1322	if (!p) {
1323		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1324			    afsr, afar);
1325		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1326			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1327		prom_halt();
1328	}
1329
1330	/* Grab snapshot of logged error. */
1331	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1332
1333	/* If the current trap snapshot does not match what the
1334	 * trap handler passed along into our args, big trouble.
1335	 * In such a case, mark the local copy as invalid.
1336	 *
1337	 * Else, it matches and we mark the afsr in the non-local
1338	 * copy as invalid so we may log new error traps there.
1339	 */
1340	if (p->afsr != afsr || p->afar != afar)
1341		local_snapshot.afsr = CHAFSR_INVALID;
1342	else
1343		p->afsr = CHAFSR_INVALID;
1344
1345	cheetah_flush_icache();
1346	cheetah_flush_dcache();
1347
1348	/* Re-enable I-cache/D-cache */
1349	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1350			     "or %%g1, %1, %%g1\n\t"
1351			     "stxa %%g1, [%%g0] %0\n\t"
1352			     "membar #Sync"
1353			     : /* no outputs */
1354			     : "i" (ASI_DCU_CONTROL_REG),
1355			       "i" (DCU_DC | DCU_IC)
1356			     : "g1");
1357
1358	/* Re-enable error reporting */
1359	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1360			     "or %%g1, %1, %%g1\n\t"
1361			     "stxa %%g1, [%%g0] %0\n\t"
1362			     "membar #Sync"
1363			     : /* no outputs */
1364			     : "i" (ASI_ESTATE_ERROR_EN),
1365			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1366			     : "g1");
1367
1368	/* Decide if we can continue after handling this trap and
1369	 * logging the error.
1370	 */
1371	recoverable = 1;
1372	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1373		recoverable = 0;
1374
1375	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1376	 * error was logged while we had error reporting traps disabled.
1377	 */
1378	if (cheetah_recheck_errors(&local_snapshot)) {
1379		unsigned long new_afsr = local_snapshot.afsr;
1380
1381		/* If we got a new asynchronous error, die... */
1382		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1383				CHAFSR_WDU | CHAFSR_CPU |
1384				CHAFSR_IVU | CHAFSR_UE |
1385				CHAFSR_BERR | CHAFSR_TO))
1386			recoverable = 0;
1387	}
1388
1389	/* Log errors. */
1390	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1391
1392	if (!recoverable)
1393		panic("Irrecoverable Fast-ECC error trap.\n");
1394
1395	/* Flush E-cache to kick the error trap handlers out. */
1396	cheetah_flush_ecache();
1397}
1398
1399/* Try to fix a correctable error by pushing the line out from
1400 * the E-cache.  Recheck error reporting registers to see if the
1401 * problem is intermittent.
1402 */
1403static int cheetah_fix_ce(unsigned long physaddr)
1404{
1405	unsigned long orig_estate;
1406	unsigned long alias1, alias2;
1407	int ret;
1408
1409	/* Make sure correctable error traps are disabled. */
1410	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1411			     "andn	%0, %1, %%g1\n\t"
1412			     "stxa	%%g1, [%%g0] %2\n\t"
1413			     "membar	#Sync"
1414			     : "=&r" (orig_estate)
1415			     : "i" (ESTATE_ERROR_CEEN),
1416			       "i" (ASI_ESTATE_ERROR_EN)
1417			     : "g1");
1418
1419	/* We calculate alias addresses that will force the
1420	 * cache line in question out of the E-cache.  Then
1421	 * we bring it back in with an atomic instruction so
1422	 * that we get it in some modified/exclusive state,
1423	 * then we displace it again to try and get proper ECC
1424	 * pushed back into the system.
1425	 */
1426	physaddr &= ~(8UL - 1UL);
1427	alias1 = (ecache_flush_physbase +
1428		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1429	alias2 = alias1 + (ecache_flush_size >> 1);
1430	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1431			     "ldxa	[%1] %3, %%g0\n\t"
1432			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1433			     "ldxa	[%0] %3, %%g0\n\t"
1434			     "ldxa	[%1] %3, %%g0\n\t"
1435			     "membar	#Sync"
1436			     : /* no outputs */
1437			     : "r" (alias1), "r" (alias2),
1438			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1439
1440	/* Did that trigger another error? */
1441	if (cheetah_recheck_errors(NULL)) {
1442		/* Try one more time. */
1443		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1444				     "membar #Sync"
1445				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1446		if (cheetah_recheck_errors(NULL))
1447			ret = 2;
1448		else
1449			ret = 1;
1450	} else {
1451		/* No new error, intermittent problem. */
1452		ret = 0;
1453	}
1454
1455	/* Restore error enables. */
1456	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1457			     "membar	#Sync"
1458			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1459
1460	return ret;
1461}
1462
1463/* Return non-zero if PADDR is a valid physical memory address. */
1464static int cheetah_check_main_memory(unsigned long paddr)
1465{
1466	unsigned long vaddr = PAGE_OFFSET + paddr;
1467
1468	if (vaddr > (unsigned long) high_memory)
1469		return 0;
1470
1471	return kern_addr_valid(vaddr);
1472}
1473
1474void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1475{
1476	struct cheetah_err_info local_snapshot, *p;
1477	int recoverable, is_memory;
1478
1479	p = cheetah_get_error_log(afsr);
1480	if (!p) {
1481		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1482			    afsr, afar);
1483		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1484			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1485		prom_halt();
1486	}
1487
1488	/* Grab snapshot of logged error. */
1489	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1490
1491	/* If the current trap snapshot does not match what the
1492	 * trap handler passed along into our args, big trouble.
1493	 * In such a case, mark the local copy as invalid.
1494	 *
1495	 * Else, it matches and we mark the afsr in the non-local
1496	 * copy as invalid so we may log new error traps there.
1497	 */
1498	if (p->afsr != afsr || p->afar != afar)
1499		local_snapshot.afsr = CHAFSR_INVALID;
1500	else
1501		p->afsr = CHAFSR_INVALID;
1502
1503	is_memory = cheetah_check_main_memory(afar);
1504
1505	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1506		/* XXX Might want to log the results of this operation
1507		 * XXX somewhere... -DaveM
1508		 */
1509		cheetah_fix_ce(afar);
1510	}
1511
1512	{
1513		int flush_all, flush_line;
1514
1515		flush_all = flush_line = 0;
1516		if ((afsr & CHAFSR_EDC) != 0UL) {
1517			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1518				flush_line = 1;
1519			else
1520				flush_all = 1;
1521		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1522			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1523				flush_line = 1;
1524			else
1525				flush_all = 1;
1526		}
1527
1528		/* Trap handler only disabled I-cache, flush it. */
1529		cheetah_flush_icache();
1530
1531		/* Re-enable I-cache */
1532		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1533				     "or %%g1, %1, %%g1\n\t"
1534				     "stxa %%g1, [%%g0] %0\n\t"
1535				     "membar #Sync"
1536				     : /* no outputs */
1537				     : "i" (ASI_DCU_CONTROL_REG),
1538				     "i" (DCU_IC)
1539				     : "g1");
1540
1541		if (flush_all)
1542			cheetah_flush_ecache();
1543		else if (flush_line)
1544			cheetah_flush_ecache_line(afar);
1545	}
1546
1547	/* Re-enable error reporting */
1548	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1549			     "or %%g1, %1, %%g1\n\t"
1550			     "stxa %%g1, [%%g0] %0\n\t"
1551			     "membar #Sync"
1552			     : /* no outputs */
1553			     : "i" (ASI_ESTATE_ERROR_EN),
1554			       "i" (ESTATE_ERROR_CEEN)
1555			     : "g1");
1556
1557	/* Decide if we can continue after handling this trap and
1558	 * logging the error.
1559	 */
1560	recoverable = 1;
1561	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1562		recoverable = 0;
1563
1564	/* Re-check AFSR/AFAR */
1565	(void) cheetah_recheck_errors(&local_snapshot);
1566
1567	/* Log errors. */
1568	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1569
1570	if (!recoverable)
1571		panic("Irrecoverable Correctable-ECC error trap.\n");
1572}
1573
1574void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1575{
1576	struct cheetah_err_info local_snapshot, *p;
1577	int recoverable, is_memory;
1578
1579#ifdef CONFIG_PCI
1580	/* Check for the special PCI poke sequence. */
1581	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1582		cheetah_flush_icache();
1583		cheetah_flush_dcache();
1584
1585		/* Re-enable I-cache/D-cache */
1586		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1587				     "or %%g1, %1, %%g1\n\t"
1588				     "stxa %%g1, [%%g0] %0\n\t"
1589				     "membar #Sync"
1590				     : /* no outputs */
1591				     : "i" (ASI_DCU_CONTROL_REG),
1592				       "i" (DCU_DC | DCU_IC)
1593				     : "g1");
1594
1595		/* Re-enable error reporting */
1596		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1597				     "or %%g1, %1, %%g1\n\t"
1598				     "stxa %%g1, [%%g0] %0\n\t"
1599				     "membar #Sync"
1600				     : /* no outputs */
1601				     : "i" (ASI_ESTATE_ERROR_EN),
1602				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1603				     : "g1");
1604
1605		(void) cheetah_recheck_errors(NULL);
1606
1607		pci_poke_faulted = 1;
1608		regs->tpc += 4;
1609		regs->tnpc = regs->tpc + 4;
1610		return;
1611	}
1612#endif
1613
1614	p = cheetah_get_error_log(afsr);
1615	if (!p) {
1616		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1617			    afsr, afar);
1618		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1619			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1620		prom_halt();
1621	}
1622
1623	/* Grab snapshot of logged error. */
1624	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1625
1626	/* If the current trap snapshot does not match what the
1627	 * trap handler passed along into our args, big trouble.
1628	 * In such a case, mark the local copy as invalid.
1629	 *
1630	 * Else, it matches and we mark the afsr in the non-local
1631	 * copy as invalid so we may log new error traps there.
1632	 */
1633	if (p->afsr != afsr || p->afar != afar)
1634		local_snapshot.afsr = CHAFSR_INVALID;
1635	else
1636		p->afsr = CHAFSR_INVALID;
1637
1638	is_memory = cheetah_check_main_memory(afar);
1639
1640	{
1641		int flush_all, flush_line;
1642
1643		flush_all = flush_line = 0;
1644		if ((afsr & CHAFSR_EDU) != 0UL) {
1645			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1646				flush_line = 1;
1647			else
1648				flush_all = 1;
1649		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1650			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1651				flush_line = 1;
1652			else
1653				flush_all = 1;
1654		}
1655
1656		cheetah_flush_icache();
1657		cheetah_flush_dcache();
1658
1659		/* Re-enable I/D caches */
1660		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1661				     "or %%g1, %1, %%g1\n\t"
1662				     "stxa %%g1, [%%g0] %0\n\t"
1663				     "membar #Sync"
1664				     : /* no outputs */
1665				     : "i" (ASI_DCU_CONTROL_REG),
1666				     "i" (DCU_IC | DCU_DC)
1667				     : "g1");
1668
1669		if (flush_all)
1670			cheetah_flush_ecache();
1671		else if (flush_line)
1672			cheetah_flush_ecache_line(afar);
1673	}
1674
1675	/* Re-enable error reporting */
1676	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1677			     "or %%g1, %1, %%g1\n\t"
1678			     "stxa %%g1, [%%g0] %0\n\t"
1679			     "membar #Sync"
1680			     : /* no outputs */
1681			     : "i" (ASI_ESTATE_ERROR_EN),
1682			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1683			     : "g1");
1684
1685	/* Decide if we can continue after handling this trap and
1686	 * logging the error.
1687	 */
1688	recoverable = 1;
1689	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1690		recoverable = 0;
1691
1692	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1693	 * error was logged while we had error reporting traps disabled.
1694	 */
1695	if (cheetah_recheck_errors(&local_snapshot)) {
1696		unsigned long new_afsr = local_snapshot.afsr;
1697
1698		/* If we got a new asynchronous error, die... */
1699		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1700				CHAFSR_WDU | CHAFSR_CPU |
1701				CHAFSR_IVU | CHAFSR_UE |
1702				CHAFSR_BERR | CHAFSR_TO))
1703			recoverable = 0;
1704	}
1705
1706	/* Log errors. */
1707	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1708
1709	/* "Recoverable" here means we try to yank the page from ever
1710	 * being newly used again.  This depends upon a few things:
1711	 * 1) Must be main memory, and AFAR must be valid.
1712	 * 2) If we trapped from user, OK.
1713	 * 3) Else, if we trapped from kernel we must find exception
1714	 *    table entry (ie. we have to have been accessing user
1715	 *    space).
1716	 *
1717	 * If AFAR is not in main memory, or we trapped from kernel
1718	 * and cannot find an exception table entry, it is unacceptable
1719	 * to try and continue.
1720	 */
1721	if (recoverable && is_memory) {
1722		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1723			/* OK, usermode access. */
1724			recoverable = 1;
1725		} else {
1726			const struct exception_table_entry *entry;
1727
1728			entry = search_exception_tables(regs->tpc);
1729			if (entry) {
1730				/* OK, kernel access to userspace. */
1731				recoverable = 1;
1732
1733			} else {
1734				/* BAD, privileged state is corrupted. */
1735				recoverable = 0;
1736			}
1737
1738			if (recoverable) {
1739				if (pfn_valid(afar >> PAGE_SHIFT))
1740					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1741				else
1742					recoverable = 0;
1743
1744				/* Only perform fixup if we still have a
1745				 * recoverable condition.
1746				 */
1747				if (recoverable) {
1748					regs->tpc = entry->fixup;
1749					regs->tnpc = regs->tpc + 4;
1750				}
1751			}
1752		}
1753	} else {
1754		recoverable = 0;
1755	}
1756
1757	if (!recoverable)
1758		panic("Irrecoverable deferred error trap.\n");
1759}
1760
1761/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1762 *
1763 * Bit0:	0=dcache,1=icache
1764 * Bit1:	0=recoverable,1=unrecoverable
1765 *
1766 * The hardware has disabled both the I-cache and D-cache in
1767 * the %dcr register.  
1768 */
1769void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1770{
1771	if (type & 0x1)
1772		__cheetah_flush_icache();
1773	else
1774		cheetah_plus_zap_dcache_parity();
1775	cheetah_flush_dcache();
1776
1777	/* Re-enable I-cache/D-cache */
1778	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1779			     "or %%g1, %1, %%g1\n\t"
1780			     "stxa %%g1, [%%g0] %0\n\t"
1781			     "membar #Sync"
1782			     : /* no outputs */
1783			     : "i" (ASI_DCU_CONTROL_REG),
1784			       "i" (DCU_DC | DCU_IC)
1785			     : "g1");
1786
1787	if (type & 0x2) {
1788		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1789		       smp_processor_id(),
1790		       (type & 0x1) ? 'I' : 'D',
1791		       regs->tpc);
1792		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1793		panic("Irrecoverable Cheetah+ parity error.");
1794	}
1795
1796	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1797	       smp_processor_id(),
1798	       (type & 0x1) ? 'I' : 'D',
1799	       regs->tpc);
1800	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1801}
1802
1803struct sun4v_error_entry {
1804	/* Unique error handle */
1805/*0x00*/u64		err_handle;
1806
1807	/* %stick value at the time of the error */
1808/*0x08*/u64		err_stick;
1809
1810/*0x10*/u8		reserved_1[3];
1811
1812	/* Error type */
1813/*0x13*/u8		err_type;
1814#define SUN4V_ERR_TYPE_UNDEFINED	0
1815#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1816#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1817#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1818#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1819#define SUN4V_ERR_TYPE_DUMP_CORE	5
1820#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1821#define SUN4V_ERR_TYPE_NUM		7
1822
1823	/* Error attributes */
1824/*0x14*/u32		err_attrs;
1825#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1826#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1827#define SUN4V_ERR_ATTRS_PIO		0x00000004
1828#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1829#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1830#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1831#define SUN4V_ERR_ATTRS_ASR		0x00000040
1832#define SUN4V_ERR_ATTRS_ASI		0x00000080
1833#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1834#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1835#define SUN4V_ERR_ATTRS_MCD		0x00000800
1836#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1837#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1838#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1839#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1840
1841#define SUN4V_ERR_SPSTATE_FAULTED	0
1842#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1843#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1844
1845#define SUN4V_ERR_MODE_USER		1
1846#define SUN4V_ERR_MODE_PRIV		2
1847
1848	/* Real address of the memory region or PIO transaction */
1849/*0x18*/u64		err_raddr;
1850
1851	/* Size of the operation triggering the error, in bytes */
1852/*0x20*/u32		err_size;
1853
1854	/* ID of the CPU */
1855/*0x24*/u16		err_cpu;
1856
1857	/* Grace periof for shutdown, in seconds */
1858/*0x26*/u16		err_secs;
1859
1860	/* Value of the %asi register */
1861/*0x28*/u8		err_asi;
1862
1863/*0x29*/u8		reserved_2;
1864
1865	/* Value of the ASR register number */
1866/*0x2a*/u16		err_asr;
1867#define SUN4V_ERR_ASR_VALID		0x8000
1868
1869/*0x2c*/u32		reserved_3;
1870/*0x30*/u64		reserved_4;
1871/*0x38*/u64		reserved_5;
1872};
1873
1874static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1875static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1876
1877static const char *sun4v_err_type_to_str(u8 type)
1878{
1879	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1880		"undefined",
1881		"uncorrected resumable",
1882		"precise nonresumable",
1883		"deferred nonresumable",
1884		"shutdown request",
1885		"dump core",
1886		"SP state change",
1887	};
1888
1889	if (type < SUN4V_ERR_TYPE_NUM)
1890		return types[type];
1891
1892	return "unknown";
1893}
1894
1895static void sun4v_emit_err_attr_strings(u32 attrs)
1896{
1897	static const char *attr_names[] = {
1898		"processor",
1899		"memory",
1900		"PIO",
1901		"int-registers",
1902		"fpu-registers",
1903		"shutdown-request",
1904		"ASR",
1905		"ASI",
1906		"priv-reg",
1907	};
1908	static const char *sp_states[] = {
1909		"sp-faulted",
1910		"sp-available",
1911		"sp-not-present",
1912		"sp-state-reserved",
1913	};
1914	static const char *modes[] = {
1915		"mode-reserved0",
1916		"user",
1917		"priv",
1918		"mode-reserved1",
1919	};
1920	u32 sp_state, mode;
1921	int i;
1922
1923	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1924		if (attrs & (1U << i)) {
1925			const char *s = attr_names[i];
1926
1927			pr_cont("%s ", s);
1928		}
1929	}
1930
1931	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1932		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1933	pr_cont("%s ", sp_states[sp_state]);
1934
1935	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1936		SUN4V_ERR_ATTRS_MODE_SHFT);
1937	pr_cont("%s ", modes[mode]);
1938
1939	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1940		pr_cont("res-queue-full ");
1941}
1942
1943/* When the report contains a real-address of "-1" it means that the
1944 * hardware did not provide the address.  So we compute the effective
1945 * address of the load or store instruction at regs->tpc and report
1946 * that.  Usually when this happens it's a PIO and in such a case we
1947 * are using physical addresses with bypass ASIs anyways, so what we
1948 * report here is exactly what we want.
1949 */
1950static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1951{
1952	unsigned int insn;
1953	u64 addr;
1954
1955	if (!(regs->tstate & TSTATE_PRIV))
1956		return;
1957
1958	insn = *(unsigned int *) regs->tpc;
1959
1960	addr = compute_effective_address(regs, insn, 0);
1961
1962	printk("%s: insn effective address [0x%016llx]\n",
1963	       pfx, addr);
1964}
1965
1966static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1967			    int cpu, const char *pfx, atomic_t *ocnt)
1968{
1969	u64 *raw_ptr = (u64 *) ent;
1970	u32 attrs;
1971	int cnt;
1972
1973	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1974	printk("%s: TPC [0x%016lx] <%pS>\n",
1975	       pfx, regs->tpc, (void *) regs->tpc);
1976
1977	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1978	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1979	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1980	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1981
1982	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1983	       pfx, ent->err_handle, ent->err_stick);
1984
1985	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1986
1987	attrs = ent->err_attrs;
1988	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1989	sun4v_emit_err_attr_strings(attrs);
1990	pr_cont(">\n");
1991
1992	/* Various fields in the error report are only valid if
1993	 * certain attribute bits are set.
1994	 */
1995	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1996		     SUN4V_ERR_ATTRS_PIO |
1997		     SUN4V_ERR_ATTRS_ASI)) {
1998		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1999
2000		if (ent->err_raddr == ~(u64)0)
2001			sun4v_report_real_raddr(pfx, regs);
2002	}
2003
2004	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2005		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2006
2007	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2008		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2009		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2010		     SUN4V_ERR_ATTRS_PRIV_REG))
2011		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2012
2013	if (attrs & SUN4V_ERR_ATTRS_ASI)
2014		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2015
2016	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2017		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2018		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2019	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2020		printk("%s: reg [0x%04x]\n",
2021		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2022
2023	show_regs(regs);
2024
2025	if ((cnt = atomic_read(ocnt)) != 0) {
2026		atomic_set(ocnt, 0);
2027		wmb();
2028		printk("%s: Queue overflowed %d times.\n",
2029		       pfx, cnt);
2030	}
2031}
2032
2033/* Handle memory corruption detected error which is vectored in
2034 * through resumable error trap.
2035 */
2036void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2037{
2038	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2039		       SIGSEGV) == NOTIFY_STOP)
2040		return;
2041
2042	if (regs->tstate & TSTATE_PRIV) {
2043		/* MCD exception could happen because the task was
2044		 * running a system call with MCD enabled and passed a
2045		 * non-versioned pointer or pointer with bad version
2046		 * tag to the system call. In such cases, hypervisor
2047		 * places the address of offending instruction in the
2048		 * resumable error report. This is a deferred error,
2049		 * so the read/write that caused the trap was potentially
2050		 * retired long time back and we may have no choice
2051		 * but to send SIGSEGV to the process.
2052		 */
2053		const struct exception_table_entry *entry;
2054
2055		entry = search_exception_tables(regs->tpc);
2056		if (entry) {
2057			/* Looks like a bad syscall parameter */
2058#ifdef DEBUG_EXCEPTIONS
2059			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2060				 regs->tpc);
2061			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2062				 ent.err_raddr, entry->fixup);
2063#endif
2064			regs->tpc = entry->fixup;
2065			regs->tnpc = regs->tpc + 4;
2066			return;
2067		}
2068	}
2069
2070	/* Send SIGSEGV to the userspace process with the right signal
2071	 * code
2072	 */
2073	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2074			0);
2075}
2076
2077/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2078 * Log the event and clear the first word of the entry.
2079 */
2080void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2081{
2082	enum ctx_state prev_state = exception_enter();
2083	struct sun4v_error_entry *ent, local_copy;
2084	struct trap_per_cpu *tb;
2085	unsigned long paddr;
2086	int cpu;
2087
2088	cpu = get_cpu();
2089
2090	tb = &trap_block[cpu];
2091	paddr = tb->resum_kernel_buf_pa + offset;
2092	ent = __va(paddr);
2093
2094	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2095
2096	/* We have a local copy now, so release the entry.  */
2097	ent->err_handle = 0;
2098	wmb();
2099
2100	put_cpu();
2101
2102	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2103		/* We should really take the seconds field of
2104		 * the error report and use it for the shutdown
2105		 * invocation, but for now do the same thing we
2106		 * do for a DS shutdown request.
2107		 */
2108		pr_info("Shutdown request, %u seconds...\n",
2109			local_copy.err_secs);
2110		orderly_poweroff(true);
2111		goto out;
2112	}
2113
2114	/* If this is a memory corruption detected error vectored in
2115	 * by HV through resumable error trap, call the handler
2116	 */
2117	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2118		do_mcd_err(regs, local_copy);
2119		return;
2120	}
2121
2122	sun4v_log_error(regs, &local_copy, cpu,
2123			KERN_ERR "RESUMABLE ERROR",
2124			&sun4v_resum_oflow_cnt);
2125out:
2126	exception_exit(prev_state);
2127}
2128
2129/* If we try to printk() we'll probably make matters worse, by trying
2130 * to retake locks this cpu already holds or causing more errors. So
2131 * just bump a counter, and we'll report these counter bumps above.
2132 */
2133void sun4v_resum_overflow(struct pt_regs *regs)
2134{
2135	atomic_inc(&sun4v_resum_oflow_cnt);
2136}
2137
2138/* Given a set of registers, get the virtual addressi that was being accessed
2139 * by the faulting instructions at tpc.
2140 */
2141static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2142{
2143	unsigned int insn;
2144
2145	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2146		return compute_effective_address(regs, insn,
2147						 (insn >> 25) & 0x1f);
2148	}
2149	return 0;
2150}
2151
2152/* Attempt to handle non-resumable errors generated from userspace.
2153 * Returns true if the signal was handled, false otherwise.
2154 */
2155bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2156				  struct sun4v_error_entry *ent) {
2157
2158	unsigned int attrs = ent->err_attrs;
2159
2160	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2161		unsigned long addr = ent->err_raddr;
2162
2163		if (addr == ~(u64)0) {
2164			/* This seems highly unlikely to ever occur */
2165			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2166		} else {
2167			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2168							      PAGE_SIZE);
2169
2170			/* Break the unfortunate news. */
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2172				 addr);
2173			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2174				 page_cnt);
2175
2176			while (page_cnt-- > 0) {
2177				if (pfn_valid(addr >> PAGE_SHIFT))
2178					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2179				addr += PAGE_SIZE;
2180			}
2181		}
2182		force_sig(SIGKILL);
2183
2184		return true;
2185	}
2186	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2187		force_sig_fault(SIGBUS, BUS_ADRERR,
2188				(void __user *)sun4v_get_vaddr(regs), 0);
2189		return true;
2190	}
2191
2192	/* Default to doing nothing */
2193	return false;
2194}
2195
2196/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2197 * Log the event, clear the first word of the entry, and die.
2198 */
2199void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2200{
2201	struct sun4v_error_entry *ent, local_copy;
2202	struct trap_per_cpu *tb;
2203	unsigned long paddr;
2204	int cpu;
2205
2206	cpu = get_cpu();
2207
2208	tb = &trap_block[cpu];
2209	paddr = tb->nonresum_kernel_buf_pa + offset;
2210	ent = __va(paddr);
2211
2212	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2213
2214	/* We have a local copy now, so release the entry.  */
2215	ent->err_handle = 0;
2216	wmb();
2217
2218	put_cpu();
2219
2220	if (!(regs->tstate & TSTATE_PRIV) &&
2221	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2222		/* DON'T PANIC: This userspace error was handled. */
2223		return;
2224	}
2225
2226#ifdef CONFIG_PCI
2227	/* Check for the special PCI poke sequence. */
2228	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2229		pci_poke_faulted = 1;
2230		regs->tpc += 4;
2231		regs->tnpc = regs->tpc + 4;
2232		return;
2233	}
2234#endif
2235
2236	sun4v_log_error(regs, &local_copy, cpu,
2237			KERN_EMERG "NON-RESUMABLE ERROR",
2238			&sun4v_nonresum_oflow_cnt);
2239
2240	panic("Non-resumable error.");
2241}
2242
2243/* If we try to printk() we'll probably make matters worse, by trying
2244 * to retake locks this cpu already holds or causing more errors. So
2245 * just bump a counter, and we'll report these counter bumps above.
2246 */
2247void sun4v_nonresum_overflow(struct pt_regs *regs)
2248{
2249	/* XXX Actually even this can make not that much sense.  Perhaps
2250	 * XXX we should just pull the plug and panic directly from here?
2251	 */
2252	atomic_inc(&sun4v_nonresum_oflow_cnt);
2253}
2254
2255static void sun4v_tlb_error(struct pt_regs *regs)
2256{
2257	die_if_kernel("TLB/TSB error", regs);
2258}
2259
2260unsigned long sun4v_err_itlb_vaddr;
2261unsigned long sun4v_err_itlb_ctx;
2262unsigned long sun4v_err_itlb_pte;
2263unsigned long sun4v_err_itlb_error;
2264
2265void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2266{
2267	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2268
2269	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2270	       regs->tpc, tl);
2271	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2272	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2274	       (void *) regs->u_regs[UREG_I7]);
2275	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2276	       "pte[%lx] error[%lx]\n",
2277	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2278	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2279
2280	sun4v_tlb_error(regs);
2281}
2282
2283unsigned long sun4v_err_dtlb_vaddr;
2284unsigned long sun4v_err_dtlb_ctx;
2285unsigned long sun4v_err_dtlb_pte;
2286unsigned long sun4v_err_dtlb_error;
2287
2288void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2289{
2290	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2291
2292	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2293	       regs->tpc, tl);
2294	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2295	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2297	       (void *) regs->u_regs[UREG_I7]);
2298	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2299	       "pte[%lx] error[%lx]\n",
2300	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2301	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2302
2303	sun4v_tlb_error(regs);
2304}
2305
2306void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2307{
2308	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2309	       err, op);
2310}
2311
2312void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2313{
2314	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2315	       err, op);
2316}
2317
2318static void do_fpe_common(struct pt_regs *regs)
2319{
2320	if (regs->tstate & TSTATE_PRIV) {
2321		regs->tpc = regs->tnpc;
2322		regs->tnpc += 4;
2323	} else {
2324		unsigned long fsr = current_thread_info()->xfsr[0];
2325		int code;
2326
2327		if (test_thread_flag(TIF_32BIT)) {
2328			regs->tpc &= 0xffffffff;
2329			regs->tnpc &= 0xffffffff;
2330		}
2331		code = FPE_FLTUNK;
 
 
 
 
2332		if ((fsr & 0x1c000) == (1 << 14)) {
2333			if (fsr & 0x10)
2334				code = FPE_FLTINV;
2335			else if (fsr & 0x08)
2336				code = FPE_FLTOVF;
2337			else if (fsr & 0x04)
2338				code = FPE_FLTUND;
2339			else if (fsr & 0x02)
2340				code = FPE_FLTDIV;
2341			else if (fsr & 0x01)
2342				code = FPE_FLTRES;
2343		}
2344		force_sig_fault(SIGFPE, code,
2345				(void __user *)regs->tpc, 0);
2346	}
2347}
2348
2349void do_fpieee(struct pt_regs *regs)
2350{
2351	enum ctx_state prev_state = exception_enter();
2352
2353	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2354		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2355		goto out;
2356
2357	do_fpe_common(regs);
2358out:
2359	exception_exit(prev_state);
2360}
2361
2362void do_fpother(struct pt_regs *regs)
2363{
2364	enum ctx_state prev_state = exception_enter();
2365	struct fpustate *f = FPUSTATE;
2366	int ret = 0;
2367
2368	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2369		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2370		goto out;
2371
2372	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2373	case (2 << 14): /* unfinished_FPop */
2374	case (3 << 14): /* unimplemented_FPop */
2375		ret = do_mathemu(regs, f, false);
2376		break;
2377	}
2378	if (ret)
2379		goto out;
2380	do_fpe_common(regs);
2381out:
2382	exception_exit(prev_state);
2383}
2384
2385void do_tof(struct pt_regs *regs)
2386{
2387	enum ctx_state prev_state = exception_enter();
 
2388
2389	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2390		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2391		goto out;
2392
2393	if (regs->tstate & TSTATE_PRIV)
2394		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2395	if (test_thread_flag(TIF_32BIT)) {
2396		regs->tpc &= 0xffffffff;
2397		regs->tnpc &= 0xffffffff;
2398	}
2399	force_sig_fault(SIGEMT, EMT_TAGOVF,
2400			(void __user *)regs->tpc, 0);
 
 
 
 
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_div0(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
 
2408
2409	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2410		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2411		goto out;
2412
2413	if (regs->tstate & TSTATE_PRIV)
2414		die_if_kernel("TL0: Kernel divide by zero.", regs);
2415	if (test_thread_flag(TIF_32BIT)) {
2416		regs->tpc &= 0xffffffff;
2417		regs->tnpc &= 0xffffffff;
2418	}
2419	force_sig_fault(SIGFPE, FPE_INTDIV,
2420			(void __user *)regs->tpc, 0);
 
 
 
 
2421out:
2422	exception_exit(prev_state);
2423}
2424
2425static void instruction_dump(unsigned int *pc)
2426{
2427	int i;
2428
2429	if ((((unsigned long) pc) & 3))
2430		return;
2431
2432	printk("Instruction DUMP:");
2433	for (i = -3; i < 6; i++)
2434		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2435	printk("\n");
2436}
2437
2438static void user_instruction_dump(unsigned int __user *pc)
2439{
2440	int i;
2441	unsigned int buf[9];
2442	
2443	if ((((unsigned long) pc) & 3))
2444		return;
2445		
2446	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2447		return;
2448
2449	printk("Instruction DUMP:");
2450	for (i = 0; i < 9; i++)
2451		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2452	printk("\n");
2453}
2454
2455void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2456{
2457	unsigned long fp, ksp;
2458	struct thread_info *tp;
2459	int count = 0;
2460#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2461	int graph = 0;
2462#endif
2463
2464	ksp = (unsigned long) _ksp;
2465	if (!tsk)
2466		tsk = current;
2467	tp = task_thread_info(tsk);
2468	if (ksp == 0UL) {
2469		if (tsk == current)
2470			asm("mov %%fp, %0" : "=r" (ksp));
2471		else
2472			ksp = tp->ksp;
2473	}
2474	if (tp == current_thread_info())
2475		flushw_all();
2476
2477	fp = ksp + STACK_BIAS;
2478
2479	printk("%sCall Trace:\n", loglvl);
2480	do {
2481		struct sparc_stackf *sf;
2482		struct pt_regs *regs;
2483		unsigned long pc;
2484
2485		if (!kstack_valid(tp, fp))
2486			break;
2487		sf = (struct sparc_stackf *) fp;
2488		regs = (struct pt_regs *) (sf + 1);
2489
2490		if (kstack_is_trap_frame(tp, regs)) {
2491			if (!(regs->tstate & TSTATE_PRIV))
2492				break;
2493			pc = regs->tpc;
2494			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2495		} else {
2496			pc = sf->callers_pc;
2497			fp = (unsigned long)sf->fp + STACK_BIAS;
2498		}
2499
2500		print_ip_sym(loglvl, pc);
2501#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2502		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2503			struct ftrace_ret_stack *ret_stack;
2504			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2505			if (ret_stack) {
2506				pc = ret_stack->ret;
2507				print_ip_sym(loglvl, pc);
2508				graph++;
2509			}
2510		}
2511#endif
2512	} while (++count < 16);
2513}
2514
2515static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2516{
2517	unsigned long fp = rw->ins[6];
2518
2519	if (!fp)
2520		return NULL;
2521
2522	return (struct reg_window *) (fp + STACK_BIAS);
2523}
2524
2525void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2526{
2527	static int die_counter;
2528	int count = 0;
2529	
2530	/* Amuse the user. */
2531	printk(
2532"              \\|/ ____ \\|/\n"
2533"              \"@'/ .. \\`@\"\n"
2534"              /_| \\__/ |_\\\n"
2535"                 \\__U_/\n");
2536
2537	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2538	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2539	__asm__ __volatile__("flushw");
2540	show_regs(regs);
2541	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2542	if (regs->tstate & TSTATE_PRIV) {
2543		struct thread_info *tp = current_thread_info();
2544		struct reg_window *rw = (struct reg_window *)
2545			(regs->u_regs[UREG_FP] + STACK_BIAS);
2546
2547		/* Stop the back trace when we hit userland or we
2548		 * find some badly aligned kernel stack.
2549		 */
2550		while (rw &&
2551		       count++ < 30 &&
2552		       kstack_valid(tp, (unsigned long) rw)) {
2553			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2554			       (void *) rw->ins[7]);
2555
2556			rw = kernel_stack_up(rw);
2557		}
2558		instruction_dump ((unsigned int *) regs->tpc);
2559	} else {
2560		if (test_thread_flag(TIF_32BIT)) {
2561			regs->tpc &= 0xffffffff;
2562			regs->tnpc &= 0xffffffff;
2563		}
2564		user_instruction_dump ((unsigned int __user *) regs->tpc);
2565	}
2566	if (panic_on_oops)
2567		panic("Fatal exception");
2568	if (regs->tstate & TSTATE_PRIV)
2569		do_exit(SIGKILL);
2570	do_exit(SIGSEGV);
2571}
2572EXPORT_SYMBOL(die_if_kernel);
2573
2574#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2575#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2576
2577void do_illegal_instruction(struct pt_regs *regs)
2578{
2579	enum ctx_state prev_state = exception_enter();
2580	unsigned long pc = regs->tpc;
2581	unsigned long tstate = regs->tstate;
2582	u32 insn;
 
2583
2584	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2585		       0, 0x10, SIGILL) == NOTIFY_STOP)
2586		goto out;
2587
2588	if (tstate & TSTATE_PRIV)
2589		die_if_kernel("Kernel illegal instruction", regs);
2590	if (test_thread_flag(TIF_32BIT))
2591		pc = (u32)pc;
2592	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2593		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2594			if (handle_popc(insn, regs))
2595				goto out;
2596		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2597			if (handle_ldf_stq(insn, regs))
2598				goto out;
2599		} else if (tlb_type == hypervisor) {
2600			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2601				if (!vis_emul(regs, insn))
2602					goto out;
2603			} else {
2604				struct fpustate *f = FPUSTATE;
2605
2606				/* On UltraSPARC T2 and later, FPU insns which
2607				 * are not implemented in HW signal an illegal
2608				 * instruction trap and do not set the FP Trap
2609				 * Trap in the %fsr to unimplemented_FPop.
2610				 */
2611				if (do_mathemu(regs, f, true))
2612					goto out;
2613			}
2614		}
2615	}
2616	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
 
 
 
 
 
2617out:
2618	exception_exit(prev_state);
2619}
2620
2621void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2622{
2623	enum ctx_state prev_state = exception_enter();
 
2624
2625	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2626		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2627		goto out;
2628
2629	if (regs->tstate & TSTATE_PRIV) {
2630		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2631		goto out;
2632	}
2633	if (is_no_fault_exception(regs))
2634		return;
2635
2636	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
 
 
2637out:
2638	exception_exit(prev_state);
2639}
2640
2641void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2642{
 
 
2643	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2644		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2645		return;
2646
2647	if (regs->tstate & TSTATE_PRIV) {
2648		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2649		return;
2650	}
2651	if (is_no_fault_exception(regs))
2652		return;
2653
2654	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
2655}
2656
2657/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2658 * tag mismatch.
2659 *
2660 * ADI version tag mismatch on a load from memory always results in a
2661 * precise exception. Tag mismatch on a store to memory will result in
2662 * precise exception if MCDPER or PMCDPER is set to 1.
2663 */
2664void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2665				      unsigned long context)
2666{
2667	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2668		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2669		return;
2670
2671	if (regs->tstate & TSTATE_PRIV) {
2672		/* MCD exception could happen because the task was running
2673		 * a system call with MCD enabled and passed a non-versioned
2674		 * pointer or pointer with bad version tag to  the system
2675		 * call.
2676		 */
2677		const struct exception_table_entry *entry;
2678
2679		entry = search_exception_tables(regs->tpc);
2680		if (entry) {
2681			/* Looks like a bad syscall parameter */
2682#ifdef DEBUG_EXCEPTIONS
2683			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2684				 regs->tpc);
2685			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2686				 regs->tpc, entry->fixup);
2687#endif
2688			regs->tpc = entry->fixup;
2689			regs->tnpc = regs->tpc + 4;
2690			return;
2691		}
2692		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2693			 __func__, addr, context);
2694		die_if_kernel("MCD precise", regs);
2695	}
2696
2697	if (test_thread_flag(TIF_32BIT)) {
2698		regs->tpc &= 0xffffffff;
2699		regs->tnpc &= 0xffffffff;
2700	}
2701	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2702}
2703
2704void do_privop(struct pt_regs *regs)
2705{
2706	enum ctx_state prev_state = exception_enter();
 
2707
2708	if (notify_die(DIE_TRAP, "privileged operation", regs,
2709		       0, 0x11, SIGILL) == NOTIFY_STOP)
2710		goto out;
2711
2712	if (test_thread_flag(TIF_32BIT)) {
2713		regs->tpc &= 0xffffffff;
2714		regs->tnpc &= 0xffffffff;
2715	}
2716	force_sig_fault(SIGILL, ILL_PRVOPC,
2717			(void __user *)regs->tpc, 0);
 
 
 
 
2718out:
2719	exception_exit(prev_state);
2720}
2721
2722void do_privact(struct pt_regs *regs)
2723{
2724	do_privop(regs);
2725}
2726
2727/* Trap level 1 stuff or other traps we should never see... */
2728void do_cee(struct pt_regs *regs)
2729{
2730	exception_enter();
2731	die_if_kernel("TL0: Cache Error Exception", regs);
2732}
2733
2734void do_div0_tl1(struct pt_regs *regs)
2735{
2736	exception_enter();
2737	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2738	die_if_kernel("TL1: DIV0 Exception", regs);
2739}
2740
2741void do_fpieee_tl1(struct pt_regs *regs)
2742{
2743	exception_enter();
2744	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2745	die_if_kernel("TL1: FPU IEEE Exception", regs);
2746}
2747
2748void do_fpother_tl1(struct pt_regs *regs)
2749{
2750	exception_enter();
2751	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2752	die_if_kernel("TL1: FPU Other Exception", regs);
2753}
2754
2755void do_ill_tl1(struct pt_regs *regs)
2756{
2757	exception_enter();
2758	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2759	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2760}
2761
2762void do_irq_tl1(struct pt_regs *regs)
2763{
2764	exception_enter();
2765	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2766	die_if_kernel("TL1: IRQ Exception", regs);
2767}
2768
2769void do_lddfmna_tl1(struct pt_regs *regs)
2770{
2771	exception_enter();
2772	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2773	die_if_kernel("TL1: LDDF Exception", regs);
2774}
2775
2776void do_stdfmna_tl1(struct pt_regs *regs)
2777{
2778	exception_enter();
2779	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2780	die_if_kernel("TL1: STDF Exception", regs);
2781}
2782
2783void do_paw(struct pt_regs *regs)
2784{
2785	exception_enter();
2786	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2787}
2788
2789void do_paw_tl1(struct pt_regs *regs)
2790{
2791	exception_enter();
2792	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2793	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2794}
2795
2796void do_vaw(struct pt_regs *regs)
2797{
2798	exception_enter();
2799	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2800}
2801
2802void do_vaw_tl1(struct pt_regs *regs)
2803{
2804	exception_enter();
2805	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2806	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2807}
2808
2809void do_tof_tl1(struct pt_regs *regs)
2810{
2811	exception_enter();
2812	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2813	die_if_kernel("TL1: Tag Overflow Exception", regs);
2814}
2815
2816void do_getpsr(struct pt_regs *regs)
2817{
2818	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2819	regs->tpc   = regs->tnpc;
2820	regs->tnpc += 4;
2821	if (test_thread_flag(TIF_32BIT)) {
2822		regs->tpc &= 0xffffffff;
2823		regs->tnpc &= 0xffffffff;
2824	}
2825}
2826
2827u64 cpu_mondo_counter[NR_CPUS] = {0};
2828struct trap_per_cpu trap_block[NR_CPUS];
2829EXPORT_SYMBOL(trap_block);
2830
2831/* This can get invoked before sched_init() so play it super safe
2832 * and use hard_smp_processor_id().
2833 */
2834void notrace init_cur_cpu_trap(struct thread_info *t)
2835{
2836	int cpu = hard_smp_processor_id();
2837	struct trap_per_cpu *p = &trap_block[cpu];
2838
2839	p->thread = t;
2840	p->pgd_paddr = 0;
2841}
2842
2843extern void thread_info_offsets_are_bolixed_dave(void);
2844extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2845extern void tsb_config_offsets_are_bolixed_dave(void);
2846
2847/* Only invoked on boot processor. */
2848void __init trap_init(void)
2849{
2850	/* Compile time sanity check. */
2851	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2852		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2853		     TI_CPU != offsetof(struct thread_info, cpu) ||
2854		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2855		     TI_KSP != offsetof(struct thread_info, ksp) ||
2856		     TI_FAULT_ADDR != offsetof(struct thread_info,
2857					       fault_address) ||
2858		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2859		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2860		     TI_REG_WINDOW != offsetof(struct thread_info,
2861					       reg_window) ||
2862		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2863					       rwbuf_stkptrs) ||
2864		     TI_GSR != offsetof(struct thread_info, gsr) ||
2865		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2866		     TI_PRE_COUNT != offsetof(struct thread_info,
2867					      preempt_count) ||
2868		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2869		     TI_CURRENT_DS != offsetof(struct thread_info,
2870						current_ds) ||
2871		     TI_KUNA_REGS != offsetof(struct thread_info,
2872					      kern_una_regs) ||
2873		     TI_KUNA_INSN != offsetof(struct thread_info,
2874					      kern_una_insn) ||
2875		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2876		     (TI_FPREGS & (64 - 1)));
2877
2878	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2879						     thread) ||
2880		     (TRAP_PER_CPU_PGD_PADDR !=
2881		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2882		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2883		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2884		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2885		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2886		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2887		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2888		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2889		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2890		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2891		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2892		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2893		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2894		     (TRAP_PER_CPU_FAULT_INFO !=
2895		      offsetof(struct trap_per_cpu, fault_info)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2898		     (TRAP_PER_CPU_CPU_LIST_PA !=
2899		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2900		     (TRAP_PER_CPU_TSB_HUGE !=
2901		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2902		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2903		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2904		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2905		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2906		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2907		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2908		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2909		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2910		     (TRAP_PER_CPU_RESUM_QMASK !=
2911		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2912		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2913		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2914		     (TRAP_PER_CPU_PER_CPU_BASE !=
2915		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2916
2917	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2918		      offsetof(struct tsb_config, tsb)) ||
2919		     (TSB_CONFIG_RSS_LIMIT !=
2920		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2921		     (TSB_CONFIG_NENTRIES !=
2922		      offsetof(struct tsb_config, tsb_nentries)) ||
2923		     (TSB_CONFIG_REG_VAL !=
2924		      offsetof(struct tsb_config, tsb_reg_val)) ||
2925		     (TSB_CONFIG_MAP_VADDR !=
2926		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2927		     (TSB_CONFIG_MAP_PTE !=
2928		      offsetof(struct tsb_config, tsb_map_pte)));
2929
2930	/* Attach to the address space of init_task.  On SMP we
2931	 * do this in smp.c:smp_callin for other cpus.
2932	 */
2933	mmgrab(&init_mm);
2934	current->active_mm = &init_mm;
2935}