Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * A small micro-assembler. It is intentionally kept simple, does only
  7 * support a subset of instructions, and does not try to hide pipeline
  8 * effects like branch delay slots.
  9 *
 10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 13 * Copyright (C) 2012, 2013   MIPS Technologies, Inc.  All rights reserved.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/inst.h>
 20#include <asm/elf.h>
 21#include <asm/bugs.h>
 22#define UASM_ISA	_UASM_ISA_MICROMIPS
 23#include <asm/uasm.h>
 24
 25#define RS_MASK		0x1f
 26#define RS_SH		16
 27#define RT_MASK		0x1f
 28#define RT_SH		21
 29#define SCIMM_MASK	0x3ff
 30#define SCIMM_SH	16
 31
 32/* This macro sets the non-variable bits of an instruction. */
 33#define M(a, b, c, d, e, f)					\
 34	((a) << OP_SH						\
 35	 | (b) << RT_SH						\
 36	 | (c) << RS_SH						\
 37	 | (d) << RD_SH						\
 38	 | (e) << RE_SH						\
 39	 | (f) << FUNC_SH)
 40
 41#include "uasm.c"
 42
 43static struct insn insn_table_MM[] = {
 44	{ insn_addu, M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD },
 45	{ insn_addiu, M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
 46	{ insn_and, M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD },
 47	{ insn_andi, M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
 48	{ insn_beq, M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
 49	{ insn_beql, 0, 0 },
 50	{ insn_bgez, M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM },
 51	{ insn_bgezl, 0, 0 },
 52	{ insn_bltz, M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM },
 53	{ insn_bltzl, 0, 0 },
 54	{ insn_bne, M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM },
 55	{ insn_cache, M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM },
 56	{ insn_daddu, 0, 0 },
 57	{ insn_daddiu, 0, 0 },
 58	{ insn_divu, M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS },
 59	{ insn_dmfc0, 0, 0 },
 60	{ insn_dmtc0, 0, 0 },
 61	{ insn_dsll, 0, 0 },
 62	{ insn_dsll32, 0, 0 },
 63	{ insn_dsra, 0, 0 },
 64	{ insn_dsrl, 0, 0 },
 65	{ insn_dsrl32, 0, 0 },
 66	{ insn_drotr, 0, 0 },
 67	{ insn_drotr32, 0, 0 },
 68	{ insn_dsubu, 0, 0 },
 69	{ insn_eret, M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0 },
 70	{ insn_ins, M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE },
 71	{ insn_ext, M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE },
 72	{ insn_j, M(mm_j32_op, 0, 0, 0, 0, 0), JIMM },
 73	{ insn_jal, M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM },
 74	{ insn_jalr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS },
 75	{ insn_jr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS },
 76	{ insn_lb, M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
 77	{ insn_ld, 0, 0 },
 78	{ insn_lh, M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM },
 79	{ insn_ll, M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM },
 80	{ insn_lld, 0, 0 },
 81	{ insn_lui, M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM },
 82	{ insn_lw, M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
 83	{ insn_mfc0, M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD },
 84	{ insn_mfhi, M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS },
 85	{ insn_mflo, M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS },
 86	{ insn_mtc0, M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD },
 87	{ insn_mul, M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD },
 88	{ insn_or, M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD },
 89	{ insn_ori, M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
 90	{ insn_pref, M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM },
 91	{ insn_rfe, 0, 0 },
 92	{ insn_sc, M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM },
 93	{ insn_scd, 0, 0 },
 94	{ insn_sd, 0, 0 },
 95	{ insn_sll, M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD },
 96	{ insn_sllv, M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD },
 97	{ insn_slt, M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD },
 98	{ insn_sltiu, M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
 99	{ insn_sltu, M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD },
100	{ insn_sra, M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD },
101	{ insn_srl, M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD },
102	{ insn_srlv, M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD },
103	{ insn_rotr, M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD },
104	{ insn_subu, M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD },
105	{ insn_sw, M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
106	{ insn_sync, M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS },
107	{ insn_tlbp, M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0 },
108	{ insn_tlbr, M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0 },
109	{ insn_tlbwi, M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0 },
110	{ insn_tlbwr, M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0 },
111	{ insn_wait, M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM },
112	{ insn_wsbh, M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS },
113	{ insn_xor, M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD },
114	{ insn_xori, M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
115	{ insn_dins, 0, 0 },
116	{ insn_dinsm, 0, 0 },
117	{ insn_syscall, M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
118	{ insn_bbit0, 0, 0 },
119	{ insn_bbit1, 0, 0 },
120	{ insn_lwx, 0, 0 },
121	{ insn_ldx, 0, 0 },
122	{ insn_invalid, 0, 0 }
 
 
 
 
 
 
 
123};
124
125#undef M
126
127static inline u32 build_bimm(s32 arg)
128{
129	WARN(arg > 0xffff || arg < -0x10000,
130	     KERN_WARNING "Micro-assembler field overflow\n");
131
132	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
133
134	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
135}
136
137static inline u32 build_jimm(u32 arg)
138{
139
140	WARN(arg & ~((JIMM_MASK << 2) | 1),
141	     KERN_WARNING "Micro-assembler field overflow\n");
142
143	return (arg >> 1) & JIMM_MASK;
144}
145
146/*
147 * The order of opcode arguments is implicitly left to right,
148 * starting with RS and ending with FUNC or IMM.
149 */
150static void build_insn(u32 **buf, enum opcode opc, ...)
151{
152	struct insn *ip = NULL;
153	unsigned int i;
154	va_list ap;
155	u32 op;
156
157	for (i = 0; insn_table_MM[i].opcode != insn_invalid; i++)
158		if (insn_table_MM[i].opcode == opc) {
159			ip = &insn_table_MM[i];
160			break;
161		}
162
163	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
164		panic("Unsupported Micro-assembler instruction %d", opc);
165
 
 
166	op = ip->match;
167	va_start(ap, opc);
168	if (ip->fields & RS) {
169		if (opc == insn_mfc0 || opc == insn_mtc0)
 
170			op |= build_rt(va_arg(ap, u32));
171		else
172			op |= build_rs(va_arg(ap, u32));
173	}
174	if (ip->fields & RT) {
175		if (opc == insn_mfc0 || opc == insn_mtc0)
 
176			op |= build_rs(va_arg(ap, u32));
177		else
178			op |= build_rt(va_arg(ap, u32));
179	}
180	if (ip->fields & RD)
181		op |= build_rd(va_arg(ap, u32));
182	if (ip->fields & RE)
183		op |= build_re(va_arg(ap, u32));
184	if (ip->fields & SIMM)
185		op |= build_simm(va_arg(ap, s32));
186	if (ip->fields & UIMM)
187		op |= build_uimm(va_arg(ap, u32));
188	if (ip->fields & BIMM)
189		op |= build_bimm(va_arg(ap, s32));
190	if (ip->fields & JIMM)
191		op |= build_jimm(va_arg(ap, u32));
192	if (ip->fields & FUNC)
193		op |= build_func(va_arg(ap, u32));
194	if (ip->fields & SET)
195		op |= build_set(va_arg(ap, u32));
196	if (ip->fields & SCIMM)
197		op |= build_scimm(va_arg(ap, u32));
198	va_end(ap);
199
200#ifdef CONFIG_CPU_LITTLE_ENDIAN
201	**buf = ((op & 0xffff) << 16) | (op >> 16);
202#else
203	**buf = op;
204#endif
205	(*buf)++;
206}
207
208static inline void
209__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
210{
211	long laddr = (long)lab->addr;
212	long raddr = (long)rel->addr;
213
214	switch (rel->type) {
215	case R_MIPS_PC16:
216#ifdef CONFIG_CPU_LITTLE_ENDIAN
217		*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
218#else
219		*rel->addr |= build_bimm(laddr - (raddr + 4));
220#endif
221		break;
222
223	default:
224		panic("Unsupported Micro-assembler relocation %d",
225		      rel->type);
226	}
227}
v5.9
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * A small micro-assembler. It is intentionally kept simple, does only
  7 * support a subset of instructions, and does not try to hide pipeline
  8 * effects like branch delay slots.
  9 *
 10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 13 * Copyright (C) 2012, 2013   MIPS Technologies, Inc.  All rights reserved.
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18
 19#include <asm/inst.h>
 20#include <asm/elf.h>
 21#include <asm/bugs.h>
 
 22#include <asm/uasm.h>
 23
 24#define RS_MASK		0x1f
 25#define RS_SH		16
 26#define RT_MASK		0x1f
 27#define RT_SH		21
 28#define SCIMM_MASK	0x3ff
 29#define SCIMM_SH	16
 30
 31/* This macro sets the non-variable bits of an instruction. */
 32#define M(a, b, c, d, e, f)					\
 33	((a) << OP_SH						\
 34	 | (b) << RT_SH						\
 35	 | (c) << RS_SH						\
 36	 | (d) << RD_SH						\
 37	 | (e) << RE_SH						\
 38	 | (f) << FUNC_SH)
 39
 40#include "uasm.c"
 41
 42static const struct insn insn_table_MM[insn_invalid] = {
 43	[insn_addu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
 44	[insn_addiu]	= {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
 45	[insn_and]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
 46	[insn_andi]	= {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
 47	[insn_beq]	= {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
 48	[insn_beql]	= {0, 0},
 49	[insn_bgez]	= {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
 50	[insn_bgezl]	= {0, 0},
 51	[insn_bltz]	= {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
 52	[insn_bltzl]	= {0, 0},
 53	[insn_bne]	= {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
 54	[insn_cache]	= {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
 55	[insn_cfc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
 56	[insn_cfcmsa]	= {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
 57	[insn_ctc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
 58	[insn_ctcmsa]	= {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
 59	[insn_daddu]	= {0, 0},
 60	[insn_daddiu]	= {0, 0},
 61	[insn_di]	= {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
 62	[insn_divu]	= {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
 63	[insn_dmfc0]	= {0, 0},
 64	[insn_dmtc0]	= {0, 0},
 65	[insn_dsll]	= {0, 0},
 66	[insn_dsll32]	= {0, 0},
 67	[insn_dsra]	= {0, 0},
 68	[insn_dsrl]	= {0, 0},
 69	[insn_dsrl32]	= {0, 0},
 70	[insn_drotr]	= {0, 0},
 71	[insn_drotr32]	= {0, 0},
 72	[insn_dsubu]	= {0, 0},
 73	[insn_eret]	= {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
 74	[insn_ins]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
 75	[insn_ext]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
 76	[insn_j]	= {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
 77	[insn_jal]	= {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
 78	[insn_jalr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
 79	[insn_jr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
 80	[insn_lb]	= {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
 81	[insn_ld]	= {0, 0},
 82	[insn_lh]	= {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
 83	[insn_ll]	= {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
 84	[insn_lld]	= {0, 0},
 85	[insn_lui]	= {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
 86	[insn_lw]	= {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
 87	[insn_mfc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
 88	[insn_mfhi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
 89	[insn_mflo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
 90	[insn_mtc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
 91	[insn_mthi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
 92	[insn_mtlo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
 93	[insn_mul]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
 94	[insn_or]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
 95	[insn_ori]	= {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
 96	[insn_pref]	= {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
 97	[insn_rfe]	= {0, 0},
 98	[insn_sc]	= {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
 99	[insn_scd]	= {0, 0},
100	[insn_sd]	= {0, 0},
101	[insn_sll]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
102	[insn_sllv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
103	[insn_slt]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
104	[insn_sltiu]	= {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
105	[insn_sltu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
106	[insn_sra]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
107	[insn_srav]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
108	[insn_srl]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
109	[insn_srlv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
110	[insn_rotr]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
111	[insn_subu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
112	[insn_sw]	= {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
113	[insn_sync]	= {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
114	[insn_tlbp]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
115	[insn_tlbr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
116	[insn_tlbwi]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
117	[insn_tlbwr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
118	[insn_wait]	= {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
119	[insn_wsbh]	= {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
120	[insn_xor]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
121	[insn_xori]	= {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
122	[insn_dins]	= {0, 0},
123	[insn_dinsm]	= {0, 0},
124	[insn_syscall]	= {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
125	[insn_bbit0]	= {0, 0},
126	[insn_bbit1]	= {0, 0},
127	[insn_lwx]	= {0, 0},
128	[insn_ldx]	= {0, 0},
129};
130
131#undef M
132
133static inline u32 build_bimm(s32 arg)
134{
135	WARN(arg > 0xffff || arg < -0x10000,
136	     KERN_WARNING "Micro-assembler field overflow\n");
137
138	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
139
140	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
141}
142
143static inline u32 build_jimm(u32 arg)
144{
145
146	WARN(arg & ~((JIMM_MASK << 2) | 1),
147	     KERN_WARNING "Micro-assembler field overflow\n");
148
149	return (arg >> 1) & JIMM_MASK;
150}
151
152/*
153 * The order of opcode arguments is implicitly left to right,
154 * starting with RS and ending with FUNC or IMM.
155 */
156static void build_insn(u32 **buf, enum opcode opc, ...)
157{
158	const struct insn *ip;
 
159	va_list ap;
160	u32 op;
161
162	if (opc < 0 || opc >= insn_invalid ||
163	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
164	    (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
 
 
 
 
165		panic("Unsupported Micro-assembler instruction %d", opc);
166
167	ip = &insn_table_MM[opc];
168
169	op = ip->match;
170	va_start(ap, opc);
171	if (ip->fields & RS) {
172		if (opc == insn_mfc0 || opc == insn_mtc0 ||
173		    opc == insn_cfc1 || opc == insn_ctc1)
174			op |= build_rt(va_arg(ap, u32));
175		else
176			op |= build_rs(va_arg(ap, u32));
177	}
178	if (ip->fields & RT) {
179		if (opc == insn_mfc0 || opc == insn_mtc0 ||
180		    opc == insn_cfc1 || opc == insn_ctc1)
181			op |= build_rs(va_arg(ap, u32));
182		else
183			op |= build_rt(va_arg(ap, u32));
184	}
185	if (ip->fields & RD)
186		op |= build_rd(va_arg(ap, u32));
187	if (ip->fields & RE)
188		op |= build_re(va_arg(ap, u32));
189	if (ip->fields & SIMM)
190		op |= build_simm(va_arg(ap, s32));
191	if (ip->fields & UIMM)
192		op |= build_uimm(va_arg(ap, u32));
193	if (ip->fields & BIMM)
194		op |= build_bimm(va_arg(ap, s32));
195	if (ip->fields & JIMM)
196		op |= build_jimm(va_arg(ap, u32));
197	if (ip->fields & FUNC)
198		op |= build_func(va_arg(ap, u32));
199	if (ip->fields & SET)
200		op |= build_set(va_arg(ap, u32));
201	if (ip->fields & SCIMM)
202		op |= build_scimm(va_arg(ap, u32));
203	va_end(ap);
204
205#ifdef CONFIG_CPU_LITTLE_ENDIAN
206	**buf = ((op & 0xffff) << 16) | (op >> 16);
207#else
208	**buf = op;
209#endif
210	(*buf)++;
211}
212
213static inline void
214__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
215{
216	long laddr = (long)lab->addr;
217	long raddr = (long)rel->addr;
218
219	switch (rel->type) {
220	case R_MIPS_PC16:
221#ifdef CONFIG_CPU_LITTLE_ENDIAN
222		*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
223#else
224		*rel->addr |= build_bimm(laddr - (raddr + 4));
225#endif
226		break;
227
228	default:
229		panic("Unsupported Micro-assembler relocation %d",
230		      rel->type);
231	}
232}