Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/arm/mm/nommu.c
  3 *
  4 * ARM uCLinux supporting functions.
  5 */
  6#include <linux/module.h>
  7#include <linux/mm.h>
  8#include <linux/pagemap.h>
  9#include <linux/io.h>
 10#include <linux/memblock.h>
 11#include <linux/kernel.h>
 12
 13#include <asm/cacheflush.h>
 
 14#include <asm/sections.h>
 15#include <asm/page.h>
 16#include <asm/setup.h>
 17#include <asm/traps.h>
 18#include <asm/mach/arch.h>
 19#include <asm/cputype.h>
 20#include <asm/mpu.h>
 21#include <asm/procinfo.h>
 22
 23#include "mm.h"
 24
 
 
 25#ifdef CONFIG_ARM_MPU
 26struct mpu_rgn_info mpu_rgn_info;
 
 27
 28/* Region number */
 29static void rgnr_write(u32 v)
 30{
 31	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
 32}
 33
 34/* Data-side / unified region attributes */
 35
 36/* Region access control register */
 37static void dracr_write(u32 v)
 38{
 39	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
 40}
 41
 42/* Region size register */
 43static void drsr_write(u32 v)
 44{
 45	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
 46}
 47
 48/* Region base address register */
 49static void drbar_write(u32 v)
 50{
 51	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
 52}
 53
 54static u32 drbar_read(void)
 55{
 56	u32 v;
 57	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
 58	return v;
 59}
 60/* Optional instruction-side region attributes */
 61
 62/* I-side Region access control register */
 63static void iracr_write(u32 v)
 64{
 65	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
 66}
 67
 68/* I-side Region size register */
 69static void irsr_write(u32 v)
 70{
 71	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
 72}
 73
 74/* I-side Region base address register */
 75static void irbar_write(u32 v)
 76{
 77	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
 78}
 79
 80static unsigned long irbar_read(void)
 81{
 82	unsigned long v;
 83	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
 84	return v;
 85}
 86
 87/* MPU initialisation functions */
 88void __init sanity_check_meminfo_mpu(void)
 89{
 90	phys_addr_t phys_offset = PHYS_OFFSET;
 91	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
 92	struct memblock_region *reg;
 93	bool first = true;
 94	phys_addr_t mem_start;
 95	phys_addr_t mem_end;
 96
 97	for_each_memblock(memory, reg) {
 98		if (first) {
 99			/*
100			 * Initially only use memory continuous from
101			 * PHYS_OFFSET */
102			if (reg->base != phys_offset)
103				panic("First memory bank must be contiguous from PHYS_OFFSET");
104
105			mem_start = reg->base;
106			mem_end = reg->base + reg->size;
107			specified_mem_size = reg->size;
108			first = false;
109		} else {
110			/*
111			 * memblock auto merges contiguous blocks, remove
112			 * all blocks afterwards in one go (we can't remove
113			 * blocks separately while iterating)
114			 */
115			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116				  &mem_end, &reg->base);
117			memblock_remove(reg->base, 0 - reg->base);
118			break;
119		}
120	}
121
122	/*
123	 * MPU has curious alignment requirements: Size must be power of 2, and
124	 * region start must be aligned to the region size
125	 */
126	if (phys_offset != 0)
127		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
128
129	/*
130	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
131	 * 0. Hence we keep everything below 4G until we take the smaller of
132	 * the aligned_region_size and rounded_mem_size, one of which is
133	 * guaranteed to be smaller than the maximum physical address.
134	 */
135	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
136	/* Find the max power-of-two sized region that fits inside our bank */
137	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
138
139	/* The actual region size is the smaller of the two */
140	aligned_region_size = aligned_region_size < rounded_mem_size
141				? aligned_region_size + 1
142				: rounded_mem_size + 1;
143
144	if (aligned_region_size != specified_mem_size) {
145		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
146				&specified_mem_size, &aligned_region_size);
147		memblock_remove(mem_start + aligned_region_size,
148				specified_mem_size - aligned_region_size);
149
150		mem_end = mem_start + aligned_region_size;
151	}
152
153	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
154		&phys_offset, &aligned_region_size, &mem_end);
155
156}
157
158static int mpu_present(void)
159{
160	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
161}
162
163static int mpu_max_regions(void)
164{
165	/*
166	 * We don't support a different number of I/D side regions so if we
167	 * have separate instruction and data memory maps then return
168	 * whichever side has a smaller number of supported regions.
169	 */
170	u32 dregions, iregions, mpuir;
171	mpuir = read_cpuid(CPUID_MPUIR);
172
173	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
174
175	/* Check for separate d-side and i-side memory maps */
176	if (mpuir & MPUIR_nU)
177		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
178
179	/* Use the smallest of the two maxima */
180	return min(dregions, iregions);
181}
182
183static int mpu_iside_independent(void)
184{
185	/* MPUIR.nU specifies whether there is *not* a unified memory map */
186	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
187}
188
189static int mpu_min_region_order(void)
190{
191	u32 drbar_result, irbar_result;
192	/* We've kept a region free for this probing */
193	rgnr_write(MPU_PROBE_REGION);
194	isb();
195	/*
196	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
197	 * region order
198	*/
199	drbar_write(0xFFFFFFFC);
200	drbar_result = irbar_result = drbar_read();
201	drbar_write(0x0);
202	/* If the MPU is non-unified, we use the larger of the two minima*/
203	if (mpu_iside_independent()) {
204		irbar_write(0xFFFFFFFC);
205		irbar_result = irbar_read();
206		irbar_write(0x0);
207	}
208	isb(); /* Ensure that MPU region operations have completed */
209	/* Return whichever result is larger */
210	return __ffs(max(drbar_result, irbar_result));
211}
212
213static int mpu_setup_region(unsigned int number, phys_addr_t start,
214			unsigned int size_order, unsigned int properties)
215{
216	u32 size_data;
217
218	/* We kept a region free for probing resolution of MPU regions*/
219	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
220		return -ENOENT;
221
222	if (size_order > 32)
223		return -ENOMEM;
224
225	if (size_order < mpu_min_region_order())
226		return -ENOMEM;
227
228	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
229	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
230
231	dsb(); /* Ensure all previous data accesses occur with old mappings */
232	rgnr_write(number);
233	isb();
234	drbar_write(start);
235	dracr_write(properties);
236	isb(); /* Propagate properties before enabling region */
237	drsr_write(size_data);
238
239	/* Check for independent I-side registers */
240	if (mpu_iside_independent()) {
241		irbar_write(start);
242		iracr_write(properties);
243		isb();
244		irsr_write(size_data);
245	}
246	isb();
247
248	/* Store region info (we treat i/d side the same, so only store d) */
249	mpu_rgn_info.rgns[number].dracr = properties;
250	mpu_rgn_info.rgns[number].drbar = start;
251	mpu_rgn_info.rgns[number].drsr = size_data;
252	return 0;
253}
254
255/*
256* Set up default MPU regions, doing nothing if there is no MPU
257*/
258void __init mpu_setup(void)
259{
260	int region_err;
261	if (!mpu_present())
262		return;
263
264	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
265					ilog2(memblock.memory.regions[0].size),
266					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
267	if (region_err) {
268		panic("MPU region initialization failure! %d", region_err);
269	} else {
270		pr_info("Using ARMv7 PMSA Compliant MPU. "
271			 "Region independence: %s, Max regions: %d\n",
272			mpu_iside_independent() ? "Yes" : "No",
273			mpu_max_regions());
274	}
275}
276#else
277static void sanity_check_meminfo_mpu(void) {}
278static void __init mpu_setup(void) {}
279#endif /* CONFIG_ARM_MPU */
280
281void __init arm_mm_memblock_reserve(void)
282{
283#ifndef CONFIG_CPU_V7M
 
284	/*
285	 * Register the exception vector page.
286	 * some architectures which the DRAM is the exception vector to trap,
287	 * alloc_page breaks with error, although it is not NULL, but "0."
288	 */
289	memblock_reserve(CONFIG_VECTORS_BASE, 2 * PAGE_SIZE);
290#else /* ifndef CONFIG_CPU_V7M */
291	/*
292	 * There is no dedicated vector page on V7-M. So nothing needs to be
293	 * reserved here.
294	 */
295#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298void __init sanity_check_meminfo(void)
299{
300	phys_addr_t end;
301	sanity_check_meminfo_mpu();
302	end = memblock_end_of_DRAM();
303	high_memory = __va(end - 1) + 1;
304	memblock_set_current_limit(end);
305}
306
307/*
308 * paging_init() sets up the page tables, initialises the zone memory
309 * maps, and sets up the zero page, bad page and bad page tables.
310 */
311void __init paging_init(const struct machine_desc *mdesc)
312{
313	early_trap_init((void *)CONFIG_VECTORS_BASE);
314	mpu_setup();
315	bootmem_init();
316}
317
318/*
319 * We don't need to do anything here for nommu machines.
320 */
321void setup_mm_for_reboot(void)
322{
323}
324
325void flush_dcache_page(struct page *page)
326{
327	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
328}
329EXPORT_SYMBOL(flush_dcache_page);
330
331void flush_kernel_dcache_page(struct page *page)
332{
333	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
334}
335EXPORT_SYMBOL(flush_kernel_dcache_page);
336
337void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
338		       unsigned long uaddr, void *dst, const void *src,
339		       unsigned long len)
340{
341	memcpy(dst, src, len);
342	if (vma->vm_flags & VM_EXEC)
343		__cpuc_coherent_user_range(uaddr, uaddr + len);
344}
345
346void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
347				size_t size, unsigned int mtype)
348{
349	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
350		return NULL;
351	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
352}
353EXPORT_SYMBOL(__arm_ioremap_pfn);
354
355void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
356				   unsigned int mtype, void *caller)
357{
358	return (void __iomem *)phys_addr;
359}
360
361void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
362
363void __iomem *ioremap(resource_size_t res_cookie, size_t size)
364{
365	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
366				    __builtin_return_address(0));
367}
368EXPORT_SYMBOL(ioremap);
369
370void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
371{
372	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
373				    __builtin_return_address(0));
374}
375EXPORT_SYMBOL(ioremap_cache);
376
377void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
378{
379	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
380				    __builtin_return_address(0));
381}
382EXPORT_SYMBOL(ioremap_wc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383
384void __iounmap(volatile void __iomem *addr)
385{
386}
387EXPORT_SYMBOL(__iounmap);
388
389void (*arch_iounmap)(volatile void __iomem *);
390
391void iounmap(volatile void __iomem *addr)
392{
393}
394EXPORT_SYMBOL(iounmap);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/nommu.c
  4 *
  5 * ARM uCLinux supporting functions.
  6 */
  7#include <linux/module.h>
  8#include <linux/mm.h>
  9#include <linux/pagemap.h>
 10#include <linux/io.h>
 11#include <linux/memblock.h>
 12#include <linux/kernel.h>
 13
 14#include <asm/cacheflush.h>
 15#include <asm/cp15.h>
 16#include <asm/sections.h>
 17#include <asm/page.h>
 18#include <asm/setup.h>
 19#include <asm/traps.h>
 20#include <asm/mach/arch.h>
 21#include <asm/cputype.h>
 22#include <asm/mpu.h>
 23#include <asm/procinfo.h>
 24
 25#include "mm.h"
 26
 27unsigned long vectors_base;
 28
 29#ifdef CONFIG_ARM_MPU
 30struct mpu_rgn_info mpu_rgn_info;
 31#endif
 32
 33#ifdef CONFIG_CPU_CP15
 34#ifdef CONFIG_CPU_HIGH_VECTOR
 35unsigned long setup_vectors_base(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36{
 37	unsigned long reg = get_cr();
 
 38
 39	set_cr(reg | CR_V);
 40	return 0xffff0000;
 
 
 
 41}
 42#else /* CONFIG_CPU_HIGH_VECTOR */
 43/* Write exception base address to VBAR */
 44static inline void set_vbar(unsigned long val)
 45{
 46	asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47}
 48
 49/*
 50 * Security extensions, bits[7:4], permitted values,
 51 * 0b0000 - not implemented, 0b0001/0b0010 - implemented
 52 */
 53static inline bool security_extensions_enabled(void)
 
 54{
 55	/* Check CPUID Identification Scheme before ID_PFR1 read */
 56	if ((read_cpuid_id() & 0x000f0000) == 0x000f0000)
 57		return cpuid_feature_extract(CPUID_EXT_PFR1, 4) ||
 58			cpuid_feature_extract(CPUID_EXT_PFR1, 20);
 59	return 0;
 
 
 
 
 
 
 
 
 
 
 
 60}
 61
 62unsigned long setup_vectors_base(void)
 63{
 64	unsigned long base = 0, reg = get_cr();
 
 
 65
 66	set_cr(reg & ~CR_V);
 67	if (security_extensions_enabled()) {
 68		if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
 69			base = CONFIG_DRAM_BASE;
 70		set_vbar(base);
 71	} else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
 72		if (CONFIG_DRAM_BASE != 0)
 73			pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
 
 
 
 
 
 
 
 
 
 
 74	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75
 76	return base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 78#endif /* CONFIG_CPU_HIGH_VECTOR */
 79#endif /* CONFIG_CPU_CP15 */
 
 
 80
 81void __init arm_mm_memblock_reserve(void)
 82{
 83#ifndef CONFIG_CPU_V7M
 84	vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
 85	/*
 86	 * Register the exception vector page.
 87	 * some architectures which the DRAM is the exception vector to trap,
 88	 * alloc_page breaks with error, although it is not NULL, but "0."
 89	 */
 90	memblock_reserve(vectors_base, 2 * PAGE_SIZE);
 91#else /* ifndef CONFIG_CPU_V7M */
 92	/*
 93	 * There is no dedicated vector page on V7-M. So nothing needs to be
 94	 * reserved here.
 95	 */
 96#endif
 97	/*
 98	 * In any case, always ensure address 0 is never used as many things
 99	 * get very confused if 0 is returned as a legitimate address.
100	 */
101	memblock_reserve(0, 1);
102}
103
104static void __init adjust_lowmem_bounds_mpu(void)
105{
106	unsigned long pmsa = read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA;
107
108	switch (pmsa) {
109	case MMFR0_PMSAv7:
110		pmsav7_adjust_lowmem_bounds();
111		break;
112	case MMFR0_PMSAv8:
113		pmsav8_adjust_lowmem_bounds();
114		break;
115	default:
116		break;
117	}
118}
119
120static void __init mpu_setup(void)
121{
122	unsigned long pmsa = read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA;
123
124	switch (pmsa) {
125	case MMFR0_PMSAv7:
126		pmsav7_setup();
127		break;
128	case MMFR0_PMSAv8:
129		pmsav8_setup();
130		break;
131	default:
132		break;
133	}
134}
135
136void __init adjust_lowmem_bounds(void)
137{
138	phys_addr_t end;
139	adjust_lowmem_bounds_mpu();
140	end = memblock_end_of_DRAM();
141	high_memory = __va(end - 1) + 1;
142	memblock_set_current_limit(end);
143}
144
145/*
146 * paging_init() sets up the page tables, initialises the zone memory
147 * maps, and sets up the zero page, bad page and bad page tables.
148 */
149void __init paging_init(const struct machine_desc *mdesc)
150{
151	early_trap_init((void *)vectors_base);
152	mpu_setup();
153	bootmem_init();
154}
155
156/*
157 * We don't need to do anything here for nommu machines.
158 */
159void setup_mm_for_reboot(void)
160{
161}
162
163void flush_dcache_page(struct page *page)
164{
165	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
166}
167EXPORT_SYMBOL(flush_dcache_page);
168
169void flush_kernel_dcache_page(struct page *page)
170{
171	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
172}
173EXPORT_SYMBOL(flush_kernel_dcache_page);
174
175void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
176		       unsigned long uaddr, void *dst, const void *src,
177		       unsigned long len)
178{
179	memcpy(dst, src, len);
180	if (vma->vm_flags & VM_EXEC)
181		__cpuc_coherent_user_range(uaddr, uaddr + len);
182}
183
184void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
185				size_t size, unsigned int mtype)
186{
187	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
188		return NULL;
189	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
190}
191EXPORT_SYMBOL(__arm_ioremap_pfn);
192
193void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
194				   unsigned int mtype, void *caller)
195{
196	return (void __iomem *)phys_addr;
197}
198
199void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
200
201void __iomem *ioremap(resource_size_t res_cookie, size_t size)
202{
203	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
204				    __builtin_return_address(0));
205}
206EXPORT_SYMBOL(ioremap);
207
208void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
209{
210	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
211				    __builtin_return_address(0));
212}
213EXPORT_SYMBOL(ioremap_cache);
214
215void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
216{
217	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
218				    __builtin_return_address(0));
219}
220EXPORT_SYMBOL(ioremap_wc);
221
222#ifdef CONFIG_PCI
223
224#include <asm/mach/map.h>
225
226void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
227{
228	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
229				   __builtin_return_address(0));
230}
231EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
232#endif
233
234void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
235{
236	return (void *)phys_addr;
237}
238
239void __iounmap(volatile void __iomem *addr)
240{
241}
242EXPORT_SYMBOL(__iounmap);
243
244void (*arch_iounmap)(volatile void __iomem *);
245
246void iounmap(volatile void __iomem *addr)
247{
248}
249EXPORT_SYMBOL(iounmap);