Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* Authors: Karl MacMillan <kmacmillan@tresys.com>
  2 *	    Frank Mayer <mayerf@tresys.com>
  3 *
  4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
  5 *	This program is free software; you can redistribute it and/or modify
  6 *	it under the terms of the GNU General Public License as published by
  7 *	the Free Software Foundation, version 2.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/errno.h>
 12#include <linux/string.h>
 13#include <linux/spinlock.h>
 14#include <linux/slab.h>
 15
 16#include "security.h"
 17#include "conditional.h"
 18#include "services.h"
 19
 20/*
 21 * cond_evaluate_expr evaluates a conditional expr
 22 * in reverse polish notation. It returns true (1), false (0),
 23 * or undefined (-1). Undefined occurs when the expression
 24 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 25 */
 26static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
 27{
 28
 29	struct cond_expr *cur;
 30	int s[COND_EXPR_MAXDEPTH];
 31	int sp = -1;
 32
 33	for (cur = expr; cur; cur = cur->next) {
 34		switch (cur->expr_type) {
 
 
 
 
 
 35		case COND_BOOL:
 36			if (sp == (COND_EXPR_MAXDEPTH - 1))
 37				return -1;
 38			sp++;
 39			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
 40			break;
 41		case COND_NOT:
 42			if (sp < 0)
 43				return -1;
 44			s[sp] = !s[sp];
 45			break;
 46		case COND_OR:
 47			if (sp < 1)
 48				return -1;
 49			sp--;
 50			s[sp] |= s[sp + 1];
 51			break;
 52		case COND_AND:
 53			if (sp < 1)
 54				return -1;
 55			sp--;
 56			s[sp] &= s[sp + 1];
 57			break;
 58		case COND_XOR:
 59			if (sp < 1)
 60				return -1;
 61			sp--;
 62			s[sp] ^= s[sp + 1];
 63			break;
 64		case COND_EQ:
 65			if (sp < 1)
 66				return -1;
 67			sp--;
 68			s[sp] = (s[sp] == s[sp + 1]);
 69			break;
 70		case COND_NEQ:
 71			if (sp < 1)
 72				return -1;
 73			sp--;
 74			s[sp] = (s[sp] != s[sp + 1]);
 75			break;
 76		default:
 77			return -1;
 78		}
 79	}
 80	return s[0];
 81}
 82
 83/*
 84 * evaluate_cond_node evaluates the conditional stored in
 85 * a struct cond_node and if the result is different than the
 86 * current state of the node it sets the rules in the true/false
 87 * list appropriately. If the result of the expression is undefined
 88 * all of the rules are disabled for safety.
 89 */
 90int evaluate_cond_node(struct policydb *p, struct cond_node *node)
 91{
 
 92	int new_state;
 93	struct cond_av_list *cur;
 94
 95	new_state = cond_evaluate_expr(p, node->expr);
 96	if (new_state != node->cur_state) {
 97		node->cur_state = new_state;
 98		if (new_state == -1)
 99			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100		/* turn the rules on or off */
101		for (cur = node->true_list; cur; cur = cur->next) {
 
102			if (new_state <= 0)
103				cur->node->key.specified &= ~AVTAB_ENABLED;
104			else
105				cur->node->key.specified |= AVTAB_ENABLED;
106		}
107
108		for (cur = node->false_list; cur; cur = cur->next) {
 
109			/* -1 or 1 */
110			if (new_state)
111				cur->node->key.specified &= ~AVTAB_ENABLED;
112			else
113				cur->node->key.specified |= AVTAB_ENABLED;
114		}
115	}
116	return 0;
117}
118
119int cond_policydb_init(struct policydb *p)
120{
121	int rc;
122
123	p->bool_val_to_struct = NULL;
124	p->cond_list = NULL;
125
126	rc = avtab_init(&p->te_cond_avtab);
127	if (rc)
128		return rc;
129
130	return 0;
131}
132
133static void cond_av_list_destroy(struct cond_av_list *list)
134{
135	struct cond_av_list *cur, *next;
136	for (cur = list; cur; cur = next) {
137		next = cur->next;
138		/* the avtab_ptr_t node is destroy by the avtab */
139		kfree(cur);
140	}
141}
142
143static void cond_node_destroy(struct cond_node *node)
144{
145	struct cond_expr *cur_expr, *next_expr;
146
147	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148		next_expr = cur_expr->next;
149		kfree(cur_expr);
150	}
151	cond_av_list_destroy(node->true_list);
152	cond_av_list_destroy(node->false_list);
153	kfree(node);
154}
155
156static void cond_list_destroy(struct cond_node *list)
157{
158	struct cond_node *next, *cur;
159
160	if (list == NULL)
161		return;
162
163	for (cur = list; cur; cur = next) {
164		next = cur->next;
165		cond_node_destroy(cur);
166	}
167}
168
169void cond_policydb_destroy(struct policydb *p)
170{
171	kfree(p->bool_val_to_struct);
172	avtab_destroy(&p->te_cond_avtab);
173	cond_list_destroy(p->cond_list);
174}
175
176int cond_init_bool_indexes(struct policydb *p)
177{
178	kfree(p->bool_val_to_struct);
179	p->bool_val_to_struct =
180		kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
 
181	if (!p->bool_val_to_struct)
182		return -ENOMEM;
183	return 0;
184}
185
186int cond_destroy_bool(void *key, void *datum, void *p)
187{
188	kfree(key);
189	kfree(datum);
190	return 0;
191}
192
193int cond_index_bool(void *key, void *datum, void *datap)
194{
195	struct policydb *p;
196	struct cond_bool_datum *booldatum;
197	struct flex_array *fa;
198
199	booldatum = datum;
200	p = datap;
201
202	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
203		return -EINVAL;
204
205	fa = p->sym_val_to_name[SYM_BOOLS];
206	if (flex_array_put_ptr(fa, booldatum->value - 1, key,
207			       GFP_KERNEL | __GFP_ZERO))
208		BUG();
209	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
210
211	return 0;
212}
213
214static int bool_isvalid(struct cond_bool_datum *b)
215{
216	if (!(b->state == 0 || b->state == 1))
217		return 0;
218	return 1;
219}
220
221int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
222{
223	char *key = NULL;
224	struct cond_bool_datum *booldatum;
225	__le32 buf[3];
226	u32 len;
227	int rc;
228
229	booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
230	if (!booldatum)
231		return -ENOMEM;
232
233	rc = next_entry(buf, fp, sizeof buf);
234	if (rc)
235		goto err;
236
237	booldatum->value = le32_to_cpu(buf[0]);
238	booldatum->state = le32_to_cpu(buf[1]);
239
240	rc = -EINVAL;
241	if (!bool_isvalid(booldatum))
242		goto err;
243
244	len = le32_to_cpu(buf[2]);
 
 
245
246	rc = -ENOMEM;
247	key = kmalloc(len + 1, GFP_KERNEL);
248	if (!key)
249		goto err;
250	rc = next_entry(key, fp, len);
251	if (rc)
252		goto err;
253	key[len] = '\0';
254	rc = hashtab_insert(h, key, booldatum);
255	if (rc)
256		goto err;
257
258	return 0;
259err:
260	cond_destroy_bool(key, booldatum, NULL);
261	return rc;
262}
263
264struct cond_insertf_data {
265	struct policydb *p;
 
266	struct cond_av_list *other;
267	struct cond_av_list *head;
268	struct cond_av_list *tail;
269};
270
271static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
272{
273	struct cond_insertf_data *data = ptr;
274	struct policydb *p = data->p;
275	struct cond_av_list *other = data->other, *list, *cur;
276	struct avtab_node *node_ptr;
277	u8 found;
278	int rc = -EINVAL;
279
280	/*
281	 * For type rules we have to make certain there aren't any
282	 * conflicting rules by searching the te_avtab and the
283	 * cond_te_avtab.
284	 */
285	if (k->specified & AVTAB_TYPE) {
286		if (avtab_search(&p->te_avtab, k)) {
287			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
288			goto err;
289		}
290		/*
291		 * If we are reading the false list other will be a pointer to
292		 * the true list. We can have duplicate entries if there is only
293		 * 1 other entry and it is in our true list.
294		 *
295		 * If we are reading the true list (other == NULL) there shouldn't
296		 * be any other entries.
297		 */
298		if (other) {
299			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
300			if (node_ptr) {
301				if (avtab_search_node_next(node_ptr, k->specified)) {
302					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
303					goto err;
304				}
305				found = 0;
306				for (cur = other; cur; cur = cur->next) {
307					if (cur->node == node_ptr) {
308						found = 1;
309						break;
310					}
311				}
312				if (!found) {
313					printk(KERN_ERR "SELinux: conflicting type rules.\n");
314					goto err;
315				}
316			}
317		} else {
318			if (avtab_search(&p->te_cond_avtab, k)) {
319				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
320				goto err;
321			}
322		}
323	}
324
325	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
326	if (!node_ptr) {
327		printk(KERN_ERR "SELinux: could not insert rule.\n");
328		rc = -ENOMEM;
329		goto err;
330	}
331
332	list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
333	if (!list) {
334		rc = -ENOMEM;
335		goto err;
336	}
337
338	list->node = node_ptr;
339	if (!data->head)
340		data->head = list;
341	else
342		data->tail->next = list;
343	data->tail = list;
344	return 0;
345
346err:
347	cond_av_list_destroy(data->head);
348	data->head = NULL;
349	return rc;
350}
351
352static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
 
 
353{
354	int i, rc;
355	__le32 buf[1];
356	u32 len;
357	struct cond_insertf_data data;
358
359	*ret_list = NULL;
360
361	len = 0;
362	rc = next_entry(buf, fp, sizeof(u32));
363	if (rc)
364		return rc;
365
366	len = le32_to_cpu(buf[0]);
367	if (len == 0)
368		return 0;
369
 
 
 
 
370	data.p = p;
371	data.other = other;
372	data.head = NULL;
373	data.tail = NULL;
374	for (i = 0; i < len; i++) {
 
375		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
376				     &data);
377		if (rc)
 
 
378			return rc;
 
379	}
380
381	*ret_list = data.head;
382	return 0;
383}
384
385static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
386{
387	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
388		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
389		return 0;
390	}
391
392	if (expr->bool > p->p_bools.nprim) {
393		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
394		return 0;
395	}
396	return 1;
397}
398
399static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
400{
401	__le32 buf[2];
402	u32 len, i;
403	int rc;
404	struct cond_expr *expr = NULL, *last = NULL;
405
406	rc = next_entry(buf, fp, sizeof(u32) * 2);
407	if (rc)
408		goto err;
409
410	node->cur_state = le32_to_cpu(buf[0]);
411
412	/* expr */
413	len = le32_to_cpu(buf[1]);
 
 
 
 
 
414
415	for (i = 0; i < len; i++) {
 
 
416		rc = next_entry(buf, fp, sizeof(u32) * 2);
417		if (rc)
418			goto err;
419
420		rc = -ENOMEM;
421		expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
422		if (!expr)
423			goto err;
424
425		expr->expr_type = le32_to_cpu(buf[0]);
426		expr->bool = le32_to_cpu(buf[1]);
427
428		if (!expr_isvalid(p, expr)) {
429			rc = -EINVAL;
430			kfree(expr);
431			goto err;
432		}
433
434		if (i == 0)
435			node->expr = expr;
436		else
437			last->next = expr;
438		last = expr;
439	}
440
441	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
442	if (rc)
443		goto err;
444	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
445	if (rc)
446		goto err;
447	return 0;
448err:
449	cond_node_destroy(node);
450	return rc;
451}
452
453int cond_read_list(struct policydb *p, void *fp)
454{
455	struct cond_node *node, *last = NULL;
456	__le32 buf[1];
457	u32 i, len;
458	int rc;
459
460	rc = next_entry(buf, fp, sizeof buf);
461	if (rc)
462		return rc;
463
464	len = le32_to_cpu(buf[0]);
465
 
 
 
 
466	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
467	if (rc)
468		goto err;
469
470	for (i = 0; i < len; i++) {
471		rc = -ENOMEM;
472		node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
473		if (!node)
474			goto err;
475
476		rc = cond_read_node(p, node, fp);
 
477		if (rc)
478			goto err;
479
480		if (i == 0)
481			p->cond_list = node;
482		else
483			last->next = node;
484		last = node;
485	}
486	return 0;
487err:
488	cond_list_destroy(p->cond_list);
489	p->cond_list = NULL;
490	return rc;
491}
492
493int cond_write_bool(void *vkey, void *datum, void *ptr)
494{
495	char *key = vkey;
496	struct cond_bool_datum *booldatum = datum;
497	struct policy_data *pd = ptr;
498	void *fp = pd->fp;
499	__le32 buf[3];
500	u32 len;
501	int rc;
502
503	len = strlen(key);
504	buf[0] = cpu_to_le32(booldatum->value);
505	buf[1] = cpu_to_le32(booldatum->state);
506	buf[2] = cpu_to_le32(len);
507	rc = put_entry(buf, sizeof(u32), 3, fp);
508	if (rc)
509		return rc;
510	rc = put_entry(key, 1, len, fp);
511	if (rc)
512		return rc;
513	return 0;
514}
515
516/*
517 * cond_write_cond_av_list doesn't write out the av_list nodes.
518 * Instead it writes out the key/value pairs from the avtab. This
519 * is necessary because there is no way to uniquely identifying rules
520 * in the avtab so it is not possible to associate individual rules
521 * in the avtab with a conditional without saving them as part of
522 * the conditional. This means that the avtab with the conditional
523 * rules will not be saved but will be rebuilt on policy load.
524 */
525static int cond_write_av_list(struct policydb *p,
526			      struct cond_av_list *list, struct policy_file *fp)
527{
528	__le32 buf[1];
529	struct cond_av_list *cur_list;
530	u32 len;
531	int rc;
532
533	len = 0;
534	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
535		len++;
536
537	buf[0] = cpu_to_le32(len);
538	rc = put_entry(buf, sizeof(u32), 1, fp);
539	if (rc)
540		return rc;
541
542	if (len == 0)
543		return 0;
544
545	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
546		rc = avtab_write_item(p, cur_list->node, fp);
547		if (rc)
548			return rc;
549	}
550
551	return 0;
552}
553
554static int cond_write_node(struct policydb *p, struct cond_node *node,
555		    struct policy_file *fp)
556{
557	struct cond_expr *cur_expr;
558	__le32 buf[2];
559	int rc;
560	u32 len = 0;
561
562	buf[0] = cpu_to_le32(node->cur_state);
563	rc = put_entry(buf, sizeof(u32), 1, fp);
564	if (rc)
565		return rc;
566
567	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
568		len++;
569
570	buf[0] = cpu_to_le32(len);
571	rc = put_entry(buf, sizeof(u32), 1, fp);
572	if (rc)
573		return rc;
574
575	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
576		buf[0] = cpu_to_le32(cur_expr->expr_type);
577		buf[1] = cpu_to_le32(cur_expr->bool);
578		rc = put_entry(buf, sizeof(u32), 2, fp);
579		if (rc)
580			return rc;
581	}
582
583	rc = cond_write_av_list(p, node->true_list, fp);
584	if (rc)
585		return rc;
586	rc = cond_write_av_list(p, node->false_list, fp);
587	if (rc)
588		return rc;
589
590	return 0;
591}
592
593int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
594{
595	struct cond_node *cur;
596	u32 len;
597	__le32 buf[1];
598	int rc;
599
600	len = 0;
601	for (cur = list; cur != NULL; cur = cur->next)
602		len++;
603	buf[0] = cpu_to_le32(len);
604	rc = put_entry(buf, sizeof(u32), 1, fp);
605	if (rc)
606		return rc;
607
608	for (cur = list; cur != NULL; cur = cur->next) {
609		rc = cond_write_node(p, cur, fp);
610		if (rc)
611			return rc;
612	}
613
614	return 0;
615}
616
617void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
618		struct extended_perms_decision *xpermd)
619{
620	struct avtab_node *node;
621
622	if (!ctab || !key || !xpermd)
623		return;
624
625	for (node = avtab_search_node(ctab, key); node;
626			node = avtab_search_node_next(node, key->specified)) {
627		if (node->key.specified & AVTAB_ENABLED)
628			services_compute_xperms_decision(xpermd, node);
629	}
630	return;
631
632}
633/* Determine whether additional permissions are granted by the conditional
634 * av table, and if so, add them to the result
635 */
636void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
637		struct av_decision *avd, struct extended_perms *xperms)
638{
639	struct avtab_node *node;
640
641	if (!ctab || !key || !avd)
642		return;
643
644	for (node = avtab_search_node(ctab, key); node;
645				node = avtab_search_node_next(node, key->specified)) {
646		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
647		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
648			avd->allowed |= node->datum.u.data;
649		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
650		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
651			/* Since a '0' in an auditdeny mask represents a
652			 * permission we do NOT want to audit (dontaudit), we use
653			 * the '&' operand to ensure that all '0's in the mask
654			 * are retained (much unlike the allow and auditallow cases).
655			 */
656			avd->auditdeny &= node->datum.u.data;
657		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
658		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
659			avd->auditallow |= node->datum.u.data;
660		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
661				(node->key.specified & AVTAB_XPERMS))
662			services_compute_xperms_drivers(xperms, node);
663	}
664	return;
665}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Authors: Karl MacMillan <kmacmillan@tresys.com>
  3 *	    Frank Mayer <mayerf@tresys.com>
  4 *
  5 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
 
 
 
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/errno.h>
 10#include <linux/string.h>
 11#include <linux/spinlock.h>
 12#include <linux/slab.h>
 13
 14#include "security.h"
 15#include "conditional.h"
 16#include "services.h"
 17
 18/*
 19 * cond_evaluate_expr evaluates a conditional expr
 20 * in reverse polish notation. It returns true (1), false (0),
 21 * or undefined (-1). Undefined occurs when the expression
 22 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 23 */
 24static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
 25{
 26	u32 i;
 
 27	int s[COND_EXPR_MAXDEPTH];
 28	int sp = -1;
 29
 30	if (expr->len == 0)
 31		return -1;
 32
 33	for (i = 0; i < expr->len; i++) {
 34		struct cond_expr_node *node = &expr->nodes[i];
 35
 36		switch (node->expr_type) {
 37		case COND_BOOL:
 38			if (sp == (COND_EXPR_MAXDEPTH - 1))
 39				return -1;
 40			sp++;
 41			s[sp] = p->bool_val_to_struct[node->bool - 1]->state;
 42			break;
 43		case COND_NOT:
 44			if (sp < 0)
 45				return -1;
 46			s[sp] = !s[sp];
 47			break;
 48		case COND_OR:
 49			if (sp < 1)
 50				return -1;
 51			sp--;
 52			s[sp] |= s[sp + 1];
 53			break;
 54		case COND_AND:
 55			if (sp < 1)
 56				return -1;
 57			sp--;
 58			s[sp] &= s[sp + 1];
 59			break;
 60		case COND_XOR:
 61			if (sp < 1)
 62				return -1;
 63			sp--;
 64			s[sp] ^= s[sp + 1];
 65			break;
 66		case COND_EQ:
 67			if (sp < 1)
 68				return -1;
 69			sp--;
 70			s[sp] = (s[sp] == s[sp + 1]);
 71			break;
 72		case COND_NEQ:
 73			if (sp < 1)
 74				return -1;
 75			sp--;
 76			s[sp] = (s[sp] != s[sp + 1]);
 77			break;
 78		default:
 79			return -1;
 80		}
 81	}
 82	return s[0];
 83}
 84
 85/*
 86 * evaluate_cond_node evaluates the conditional stored in
 87 * a struct cond_node and if the result is different than the
 88 * current state of the node it sets the rules in the true/false
 89 * list appropriately. If the result of the expression is undefined
 90 * all of the rules are disabled for safety.
 91 */
 92static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
 93{
 94	struct avtab_node *avnode;
 95	int new_state;
 96	u32 i;
 97
 98	new_state = cond_evaluate_expr(p, &node->expr);
 99	if (new_state != node->cur_state) {
100		node->cur_state = new_state;
101		if (new_state == -1)
102			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
103		/* turn the rules on or off */
104		for (i = 0; i < node->true_list.len; i++) {
105			avnode = node->true_list.nodes[i];
106			if (new_state <= 0)
107				avnode->key.specified &= ~AVTAB_ENABLED;
108			else
109				avnode->key.specified |= AVTAB_ENABLED;
110		}
111
112		for (i = 0; i < node->false_list.len; i++) {
113			avnode = node->false_list.nodes[i];
114			/* -1 or 1 */
115			if (new_state)
116				avnode->key.specified &= ~AVTAB_ENABLED;
117			else
118				avnode->key.specified |= AVTAB_ENABLED;
119		}
120	}
 
121}
122
123void evaluate_cond_nodes(struct policydb *p)
124{
125	u32 i;
126
127	for (i = 0; i < p->cond_list_len; i++)
128		evaluate_cond_node(p, &p->cond_list[i]);
 
 
 
 
 
 
129}
130
131void cond_policydb_init(struct policydb *p)
132{
133	p->bool_val_to_struct = NULL;
134	p->cond_list = NULL;
135	p->cond_list_len = 0;
136
137	avtab_init(&p->te_cond_avtab);
 
138}
139
140static void cond_node_destroy(struct cond_node *node)
141{
142	kfree(node->expr.nodes);
143	/* the avtab_ptr_t nodes are destroyed by the avtab */
144	kfree(node->true_list.nodes);
145	kfree(node->false_list.nodes);
 
 
 
 
 
146}
147
148static void cond_list_destroy(struct policydb *p)
149{
150	u32 i;
151
152	for (i = 0; i < p->cond_list_len; i++)
153		cond_node_destroy(&p->cond_list[i]);
154	kfree(p->cond_list);
 
 
 
 
155}
156
157void cond_policydb_destroy(struct policydb *p)
158{
159	kfree(p->bool_val_to_struct);
160	avtab_destroy(&p->te_cond_avtab);
161	cond_list_destroy(p);
162}
163
164int cond_init_bool_indexes(struct policydb *p)
165{
166	kfree(p->bool_val_to_struct);
167	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
168					      sizeof(*p->bool_val_to_struct),
169					      GFP_KERNEL);
170	if (!p->bool_val_to_struct)
171		return -ENOMEM;
172	return 0;
173}
174
175int cond_destroy_bool(void *key, void *datum, void *p)
176{
177	kfree(key);
178	kfree(datum);
179	return 0;
180}
181
182int cond_index_bool(void *key, void *datum, void *datap)
183{
184	struct policydb *p;
185	struct cond_bool_datum *booldatum;
 
186
187	booldatum = datum;
188	p = datap;
189
190	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
191		return -EINVAL;
192
193	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
 
 
 
194	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
195
196	return 0;
197}
198
199static int bool_isvalid(struct cond_bool_datum *b)
200{
201	if (!(b->state == 0 || b->state == 1))
202		return 0;
203	return 1;
204}
205
206int cond_read_bool(struct policydb *p, struct symtab *s, void *fp)
207{
208	char *key = NULL;
209	struct cond_bool_datum *booldatum;
210	__le32 buf[3];
211	u32 len;
212	int rc;
213
214	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
215	if (!booldatum)
216		return -ENOMEM;
217
218	rc = next_entry(buf, fp, sizeof(buf));
219	if (rc)
220		goto err;
221
222	booldatum->value = le32_to_cpu(buf[0]);
223	booldatum->state = le32_to_cpu(buf[1]);
224
225	rc = -EINVAL;
226	if (!bool_isvalid(booldatum))
227		goto err;
228
229	len = le32_to_cpu(buf[2]);
230	if (((len == 0) || (len == (u32)-1)))
231		goto err;
232
233	rc = -ENOMEM;
234	key = kmalloc(len + 1, GFP_KERNEL);
235	if (!key)
236		goto err;
237	rc = next_entry(key, fp, len);
238	if (rc)
239		goto err;
240	key[len] = '\0';
241	rc = symtab_insert(s, key, booldatum);
242	if (rc)
243		goto err;
244
245	return 0;
246err:
247	cond_destroy_bool(key, booldatum, NULL);
248	return rc;
249}
250
251struct cond_insertf_data {
252	struct policydb *p;
253	struct avtab_node **dst;
254	struct cond_av_list *other;
 
 
255};
256
257static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
258{
259	struct cond_insertf_data *data = ptr;
260	struct policydb *p = data->p;
261	struct cond_av_list *other = data->other;
262	struct avtab_node *node_ptr;
263	u32 i;
264	bool found;
265
266	/*
267	 * For type rules we have to make certain there aren't any
268	 * conflicting rules by searching the te_avtab and the
269	 * cond_te_avtab.
270	 */
271	if (k->specified & AVTAB_TYPE) {
272		if (avtab_search(&p->te_avtab, k)) {
273			pr_err("SELinux: type rule already exists outside of a conditional.\n");
274			return -EINVAL;
275		}
276		/*
277		 * If we are reading the false list other will be a pointer to
278		 * the true list. We can have duplicate entries if there is only
279		 * 1 other entry and it is in our true list.
280		 *
281		 * If we are reading the true list (other == NULL) there shouldn't
282		 * be any other entries.
283		 */
284		if (other) {
285			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
286			if (node_ptr) {
287				if (avtab_search_node_next(node_ptr, k->specified)) {
288					pr_err("SELinux: too many conflicting type rules.\n");
289					return -EINVAL;
290				}
291				found = false;
292				for (i = 0; i < other->len; i++) {
293					if (other->nodes[i] == node_ptr) {
294						found = true;
295						break;
296					}
297				}
298				if (!found) {
299					pr_err("SELinux: conflicting type rules.\n");
300					return -EINVAL;
301				}
302			}
303		} else {
304			if (avtab_search(&p->te_cond_avtab, k)) {
305				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
306				return -EINVAL;
307			}
308		}
309	}
310
311	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
312	if (!node_ptr) {
313		pr_err("SELinux: could not insert rule.\n");
314		return -ENOMEM;
 
 
 
 
 
 
 
315	}
316
317	*data->dst = node_ptr;
 
 
 
 
 
318	return 0;
 
 
 
 
 
319}
320
321static int cond_read_av_list(struct policydb *p, void *fp,
322			     struct cond_av_list *list,
323			     struct cond_av_list *other)
324{
325	int rc;
326	__le32 buf[1];
327	u32 i, len;
328	struct cond_insertf_data data;
329
 
 
 
330	rc = next_entry(buf, fp, sizeof(u32));
331	if (rc)
332		return rc;
333
334	len = le32_to_cpu(buf[0]);
335	if (len == 0)
336		return 0;
337
338	list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
339	if (!list->nodes)
340		return -ENOMEM;
341
342	data.p = p;
343	data.other = other;
 
 
344	for (i = 0; i < len; i++) {
345		data.dst = &list->nodes[i];
346		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
347				     &data);
348		if (rc) {
349			kfree(list->nodes);
350			list->nodes = NULL;
351			return rc;
352		}
353	}
354
355	list->len = len;
356	return 0;
357}
358
359static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
360{
361	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
362		pr_err("SELinux: conditional expressions uses unknown operator.\n");
363		return 0;
364	}
365
366	if (expr->bool > p->p_bools.nprim) {
367		pr_err("SELinux: conditional expressions uses unknown bool.\n");
368		return 0;
369	}
370	return 1;
371}
372
373static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
374{
375	__le32 buf[2];
376	u32 i, len;
377	int rc;
 
378
379	rc = next_entry(buf, fp, sizeof(u32) * 2);
380	if (rc)
381		return rc;
382
383	node->cur_state = le32_to_cpu(buf[0]);
384
385	/* expr */
386	len = le32_to_cpu(buf[1]);
387	node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
388	if (!node->expr.nodes)
389		return -ENOMEM;
390
391	node->expr.len = len;
392
393	for (i = 0; i < len; i++) {
394		struct cond_expr_node *expr = &node->expr.nodes[i];
395
396		rc = next_entry(buf, fp, sizeof(u32) * 2);
397		if (rc)
398			return rc;
 
 
 
 
 
399
400		expr->expr_type = le32_to_cpu(buf[0]);
401		expr->bool = le32_to_cpu(buf[1]);
402
403		if (!expr_node_isvalid(p, expr))
404			return -EINVAL;
 
 
 
 
 
 
 
 
 
405	}
406
407	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
408	if (rc)
409		return rc;
410	return cond_read_av_list(p, fp, &node->false_list, &node->true_list);
 
 
 
 
 
 
411}
412
413int cond_read_list(struct policydb *p, void *fp)
414{
 
415	__le32 buf[1];
416	u32 i, len;
417	int rc;
418
419	rc = next_entry(buf, fp, sizeof(buf));
420	if (rc)
421		return rc;
422
423	len = le32_to_cpu(buf[0]);
424
425	p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
426	if (!p->cond_list)
427		return -ENOMEM;
428
429	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
430	if (rc)
431		goto err;
432
433	p->cond_list_len = len;
 
 
 
 
434
435	for (i = 0; i < len; i++) {
436		rc = cond_read_node(p, &p->cond_list[i], fp);
437		if (rc)
438			goto err;
 
 
 
 
 
 
439	}
440	return 0;
441err:
442	cond_list_destroy(p);
443	p->cond_list = NULL;
444	return rc;
445}
446
447int cond_write_bool(void *vkey, void *datum, void *ptr)
448{
449	char *key = vkey;
450	struct cond_bool_datum *booldatum = datum;
451	struct policy_data *pd = ptr;
452	void *fp = pd->fp;
453	__le32 buf[3];
454	u32 len;
455	int rc;
456
457	len = strlen(key);
458	buf[0] = cpu_to_le32(booldatum->value);
459	buf[1] = cpu_to_le32(booldatum->state);
460	buf[2] = cpu_to_le32(len);
461	rc = put_entry(buf, sizeof(u32), 3, fp);
462	if (rc)
463		return rc;
464	rc = put_entry(key, 1, len, fp);
465	if (rc)
466		return rc;
467	return 0;
468}
469
470/*
471 * cond_write_cond_av_list doesn't write out the av_list nodes.
472 * Instead it writes out the key/value pairs from the avtab. This
473 * is necessary because there is no way to uniquely identifying rules
474 * in the avtab so it is not possible to associate individual rules
475 * in the avtab with a conditional without saving them as part of
476 * the conditional. This means that the avtab with the conditional
477 * rules will not be saved but will be rebuilt on policy load.
478 */
479static int cond_write_av_list(struct policydb *p,
480			      struct cond_av_list *list, struct policy_file *fp)
481{
482	__le32 buf[1];
483	u32 i;
 
484	int rc;
485
486	buf[0] = cpu_to_le32(list->len);
 
 
 
 
487	rc = put_entry(buf, sizeof(u32), 1, fp);
488	if (rc)
489		return rc;
490
491	for (i = 0; i < list->len; i++) {
492		rc = avtab_write_item(p, list->nodes[i], fp);
 
 
 
493		if (rc)
494			return rc;
495	}
496
497	return 0;
498}
499
500static int cond_write_node(struct policydb *p, struct cond_node *node,
501		    struct policy_file *fp)
502{
 
503	__le32 buf[2];
504	int rc;
505	u32 i;
506
507	buf[0] = cpu_to_le32(node->cur_state);
508	rc = put_entry(buf, sizeof(u32), 1, fp);
509	if (rc)
510		return rc;
511
512	buf[0] = cpu_to_le32(node->expr.len);
 
 
 
513	rc = put_entry(buf, sizeof(u32), 1, fp);
514	if (rc)
515		return rc;
516
517	for (i = 0; i < node->expr.len; i++) {
518		buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
519		buf[1] = cpu_to_le32(node->expr.nodes[i].bool);
520		rc = put_entry(buf, sizeof(u32), 2, fp);
521		if (rc)
522			return rc;
523	}
524
525	rc = cond_write_av_list(p, &node->true_list, fp);
526	if (rc)
527		return rc;
528	rc = cond_write_av_list(p, &node->false_list, fp);
529	if (rc)
530		return rc;
531
532	return 0;
533}
534
535int cond_write_list(struct policydb *p, void *fp)
536{
537	u32 i;
 
538	__le32 buf[1];
539	int rc;
540
541	buf[0] = cpu_to_le32(p->cond_list_len);
 
 
 
542	rc = put_entry(buf, sizeof(u32), 1, fp);
543	if (rc)
544		return rc;
545
546	for (i = 0; i < p->cond_list_len; i++) {
547		rc = cond_write_node(p, &p->cond_list[i], fp);
548		if (rc)
549			return rc;
550	}
551
552	return 0;
553}
554
555void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
556		struct extended_perms_decision *xpermd)
557{
558	struct avtab_node *node;
559
560	if (!ctab || !key || !xpermd)
561		return;
562
563	for (node = avtab_search_node(ctab, key); node;
564			node = avtab_search_node_next(node, key->specified)) {
565		if (node->key.specified & AVTAB_ENABLED)
566			services_compute_xperms_decision(xpermd, node);
567	}
568	return;
569
570}
571/* Determine whether additional permissions are granted by the conditional
572 * av table, and if so, add them to the result
573 */
574void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
575		struct av_decision *avd, struct extended_perms *xperms)
576{
577	struct avtab_node *node;
578
579	if (!ctab || !key || !avd)
580		return;
581
582	for (node = avtab_search_node(ctab, key); node;
583				node = avtab_search_node_next(node, key->specified)) {
584		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
585		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
586			avd->allowed |= node->datum.u.data;
587		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
588		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
589			/* Since a '0' in an auditdeny mask represents a
590			 * permission we do NOT want to audit (dontaudit), we use
591			 * the '&' operand to ensure that all '0's in the mask
592			 * are retained (much unlike the allow and auditallow cases).
593			 */
594			avd->auditdeny &= node->datum.u.data;
595		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
596		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
597			avd->auditallow |= node->datum.u.data;
598		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
599				(node->key.specified & AVTAB_XPERMS))
600			services_compute_xperms_drivers(xperms, node);
601	}
 
602}