Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Read-Copy Update definitions shared among RCU implementations.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, you can access it online at
 16 * http://www.gnu.org/licenses/gpl-2.0.html.
 17 *
 18 * Copyright IBM Corporation, 2011
 19 *
 20 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 21 */
 22
 23#ifndef __LINUX_RCU_H
 24#define __LINUX_RCU_H
 25
 26#include <trace/events/rcu.h>
 27#ifdef CONFIG_RCU_TRACE
 28#define RCU_TRACE(stmt) stmt
 29#else /* #ifdef CONFIG_RCU_TRACE */
 30#define RCU_TRACE(stmt)
 31#endif /* #else #ifdef CONFIG_RCU_TRACE */
 32
 33/*
 34 * Process-level increment to ->dynticks_nesting field.  This allows for
 35 * architectures that use half-interrupts and half-exceptions from
 36 * process context.
 37 *
 38 * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
 39 * that counts the number of process-based reasons why RCU cannot
 40 * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
 41 * is the value used to increment or decrement this field.
 42 *
 43 * The rest of the bits could in principle be used to count interrupts,
 44 * but this would mean that a negative-one value in the interrupt
 45 * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
 46 * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
 47 * that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
 48 * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
 49 * initial exit from idle.
 50 */
 51#define DYNTICK_TASK_NEST_WIDTH 7
 52#define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
 53#define DYNTICK_TASK_NEST_MASK  (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
 54#define DYNTICK_TASK_FLAG	   ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
 55#define DYNTICK_TASK_MASK	   ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
 56#define DYNTICK_TASK_EXIT_IDLE	   (DYNTICK_TASK_NEST_VALUE + \
 57				    DYNTICK_TASK_FLAG)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59/*
 60 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
 61 * by call_rcu() and rcu callback execution, and are therefore not part of the
 62 * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
 
 63 */
 64
 65#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 66# define STATE_RCU_HEAD_READY	0
 67# define STATE_RCU_HEAD_QUEUED	1
 68
 69extern struct debug_obj_descr rcuhead_debug_descr;
 70
 71static inline int debug_rcu_head_queue(struct rcu_head *head)
 72{
 73	int r1;
 74
 75	r1 = debug_object_activate(head, &rcuhead_debug_descr);
 76	debug_object_active_state(head, &rcuhead_debug_descr,
 77				  STATE_RCU_HEAD_READY,
 78				  STATE_RCU_HEAD_QUEUED);
 79	return r1;
 80}
 81
 82static inline void debug_rcu_head_unqueue(struct rcu_head *head)
 83{
 84	debug_object_active_state(head, &rcuhead_debug_descr,
 85				  STATE_RCU_HEAD_QUEUED,
 86				  STATE_RCU_HEAD_READY);
 87	debug_object_deactivate(head, &rcuhead_debug_descr);
 88}
 89#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 90static inline int debug_rcu_head_queue(struct rcu_head *head)
 91{
 92	return 0;
 93}
 94
 95static inline void debug_rcu_head_unqueue(struct rcu_head *head)
 96{
 97}
 98#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 99
100void kfree(const void *);
101
102/*
103 * Reclaim the specified callback, either by invoking it (non-lazy case)
104 * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
105 */
106static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
107{
108	unsigned long offset = (unsigned long)head->func;
109
110	rcu_lock_acquire(&rcu_callback_map);
111	if (__is_kfree_rcu_offset(offset)) {
112		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset));
113		kfree((void *)head - offset);
114		rcu_lock_release(&rcu_callback_map);
115		return true;
116	} else {
117		RCU_TRACE(trace_rcu_invoke_callback(rn, head));
118		head->func(head);
119		rcu_lock_release(&rcu_callback_map);
120		return false;
121	}
122}
123
124#ifdef CONFIG_RCU_STALL_COMMON
125
 
126extern int rcu_cpu_stall_suppress;
 
127int rcu_jiffies_till_stall_check(void);
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
130
131/*
132 * Strings used in tracepoints need to be exported via the
133 * tracing system such that tools like perf and trace-cmd can
134 * translate the string address pointers to actual text.
135 */
136#define TPS(x)  tracepoint_string(x)
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138void rcu_early_boot_tests(void);
 
139
140/*
141 * This function really isn't for public consumption, but RCU is special in
142 * that context switches can allow the state machine to make progress.
143 */
144extern void resched_cpu(int cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
146#endif /* __LINUX_RCU_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update definitions shared among RCU implementations.
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corporation, 2011
  6 *
  7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
  8 */
  9
 10#ifndef __LINUX_RCU_H
 11#define __LINUX_RCU_H
 12
 13#include <trace/events/rcu.h>
 14
 15/* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
 16#define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
 17
 18
 19/*
 20 * Grace-period counter management.
 21 */
 22
 23#define RCU_SEQ_CTR_SHIFT	2
 24#define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
 25
 26/*
 27 * Return the counter portion of a sequence number previously returned
 28 * by rcu_seq_snap() or rcu_seq_current().
 29 */
 30static inline unsigned long rcu_seq_ctr(unsigned long s)
 31{
 32	return s >> RCU_SEQ_CTR_SHIFT;
 33}
 34
 35/*
 36 * Return the state portion of a sequence number previously returned
 37 * by rcu_seq_snap() or rcu_seq_current().
 38 */
 39static inline int rcu_seq_state(unsigned long s)
 40{
 41	return s & RCU_SEQ_STATE_MASK;
 42}
 43
 44/*
 45 * Set the state portion of the pointed-to sequence number.
 46 * The caller is responsible for preventing conflicting updates.
 47 */
 48static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
 49{
 50	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
 51	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
 52}
 53
 54/* Adjust sequence number for start of update-side operation. */
 55static inline void rcu_seq_start(unsigned long *sp)
 56{
 57	WRITE_ONCE(*sp, *sp + 1);
 58	smp_mb(); /* Ensure update-side operation after counter increment. */
 59	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
 60}
 61
 62/* Compute the end-of-grace-period value for the specified sequence number. */
 63static inline unsigned long rcu_seq_endval(unsigned long *sp)
 64{
 65	return (*sp | RCU_SEQ_STATE_MASK) + 1;
 66}
 67
 68/* Adjust sequence number for end of update-side operation. */
 69static inline void rcu_seq_end(unsigned long *sp)
 70{
 71	smp_mb(); /* Ensure update-side operation before counter increment. */
 72	WARN_ON_ONCE(!rcu_seq_state(*sp));
 73	WRITE_ONCE(*sp, rcu_seq_endval(sp));
 74}
 75
 76/*
 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
 78 *
 79 * This function returns the earliest value of the grace-period sequence number
 80 * that will indicate that a full grace period has elapsed since the current
 81 * time.  Once the grace-period sequence number has reached this value, it will
 82 * be safe to invoke all callbacks that have been registered prior to the
 83 * current time. This value is the current grace-period number plus two to the
 84 * power of the number of low-order bits reserved for state, then rounded up to
 85 * the next value in which the state bits are all zero.
 86 */
 87static inline unsigned long rcu_seq_snap(unsigned long *sp)
 88{
 89	unsigned long s;
 90
 91	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
 92	smp_mb(); /* Above access must not bleed into critical section. */
 93	return s;
 94}
 95
 96/* Return the current value the update side's sequence number, no ordering. */
 97static inline unsigned long rcu_seq_current(unsigned long *sp)
 98{
 99	return READ_ONCE(*sp);
100}
101
102/*
103 * Given a snapshot from rcu_seq_snap(), determine whether or not the
104 * corresponding update-side operation has started.
105 */
106static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107{
108	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109}
110
111/*
112 * Given a snapshot from rcu_seq_snap(), determine whether or not a
113 * full update-side operation has occurred.
114 */
115static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116{
117	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118}
119
120/*
121 * Has a grace period completed since the time the old gp_seq was collected?
122 */
123static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124{
125	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126}
127
128/*
129 * Has a grace period started since the time the old gp_seq was collected?
130 */
131static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132{
133	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134			    new);
135}
136
137/*
138 * Roughly how many full grace periods have elapsed between the collection
139 * of the two specified grace periods?
140 */
141static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142{
143	unsigned long rnd_diff;
144
145	if (old == new)
146		return 0;
147	/*
148	 * Compute the number of grace periods (still shifted up), plus
149	 * one if either of new and old is not an exact grace period.
150	 */
151	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155		return 1; /* Definitely no grace period has elapsed. */
156	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157}
158
159/*
160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161 * by call_rcu() and rcu callback execution, and are therefore not part
162 * of the RCU API. These are in rcupdate.h because they are used by all
163 * RCU implementations.
164 */
165
166#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167# define STATE_RCU_HEAD_READY	0
168# define STATE_RCU_HEAD_QUEUED	1
169
170extern struct debug_obj_descr rcuhead_debug_descr;
171
172static inline int debug_rcu_head_queue(struct rcu_head *head)
173{
174	int r1;
175
176	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177	debug_object_active_state(head, &rcuhead_debug_descr,
178				  STATE_RCU_HEAD_READY,
179				  STATE_RCU_HEAD_QUEUED);
180	return r1;
181}
182
183static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184{
185	debug_object_active_state(head, &rcuhead_debug_descr,
186				  STATE_RCU_HEAD_QUEUED,
187				  STATE_RCU_HEAD_READY);
188	debug_object_deactivate(head, &rcuhead_debug_descr);
189}
190#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191static inline int debug_rcu_head_queue(struct rcu_head *head)
192{
193	return 0;
194}
195
196static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197{
198}
199#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200
201extern int rcu_cpu_stall_suppress_at_boot;
202
203static inline bool rcu_stall_is_suppressed_at_boot(void)
 
 
 
 
204{
205	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
207
208#ifdef CONFIG_RCU_STALL_COMMON
209
210extern int rcu_cpu_stall_ftrace_dump;
211extern int rcu_cpu_stall_suppress;
212extern int rcu_cpu_stall_timeout;
213int rcu_jiffies_till_stall_check(void);
214
215static inline bool rcu_stall_is_suppressed(void)
216{
217	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
218}
219
220#define rcu_ftrace_dump_stall_suppress() \
221do { \
222	if (!rcu_cpu_stall_suppress) \
223		rcu_cpu_stall_suppress = 3; \
224} while (0)
225
226#define rcu_ftrace_dump_stall_unsuppress() \
227do { \
228	if (rcu_cpu_stall_suppress == 3) \
229		rcu_cpu_stall_suppress = 0; \
230} while (0)
231
232#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
233
234static inline bool rcu_stall_is_suppressed(void)
235{
236	return rcu_stall_is_suppressed_at_boot();
237}
238#define rcu_ftrace_dump_stall_suppress()
239#define rcu_ftrace_dump_stall_unsuppress()
240#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
241
242/*
243 * Strings used in tracepoints need to be exported via the
244 * tracing system such that tools like perf and trace-cmd can
245 * translate the string address pointers to actual text.
246 */
247#define TPS(x)  tracepoint_string(x)
248
249/*
250 * Dump the ftrace buffer, but only one time per callsite per boot.
251 */
252#define rcu_ftrace_dump(oops_dump_mode) \
253do { \
254	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
255	\
256	if (!atomic_read(&___rfd_beenhere) && \
257	    !atomic_xchg(&___rfd_beenhere, 1)) { \
258		tracing_off(); \
259		rcu_ftrace_dump_stall_suppress(); \
260		ftrace_dump(oops_dump_mode); \
261		rcu_ftrace_dump_stall_unsuppress(); \
262	} \
263} while (0)
264
265void rcu_early_boot_tests(void);
266void rcu_test_sync_prims(void);
267
268/*
269 * This function really isn't for public consumption, but RCU is special in
270 * that context switches can allow the state machine to make progress.
271 */
272extern void resched_cpu(int cpu);
273
274#if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
275
276#include <linux/rcu_node_tree.h>
277
278extern int rcu_num_lvls;
279extern int num_rcu_lvl[];
280extern int rcu_num_nodes;
281static bool rcu_fanout_exact;
282static int rcu_fanout_leaf;
283
284/*
285 * Compute the per-level fanout, either using the exact fanout specified
286 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
287 */
288static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
289{
290	int i;
291
292	for (i = 0; i < RCU_NUM_LVLS; i++)
293		levelspread[i] = INT_MIN;
294	if (rcu_fanout_exact) {
295		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
296		for (i = rcu_num_lvls - 2; i >= 0; i--)
297			levelspread[i] = RCU_FANOUT;
298	} else {
299		int ccur;
300		int cprv;
301
302		cprv = nr_cpu_ids;
303		for (i = rcu_num_lvls - 1; i >= 0; i--) {
304			ccur = levelcnt[i];
305			levelspread[i] = (cprv + ccur - 1) / ccur;
306			cprv = ccur;
307		}
308	}
309}
310
311/* Returns a pointer to the first leaf rcu_node structure. */
312#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
313
314/* Is this rcu_node a leaf? */
315#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
316
317/* Is this rcu_node the last leaf? */
318#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
319
320/*
321 * Do a full breadth-first scan of the {s,}rcu_node structures for the
322 * specified state structure (for SRCU) or the only rcu_state structure
323 * (for RCU).
324 */
325#define srcu_for_each_node_breadth_first(sp, rnp) \
326	for ((rnp) = &(sp)->node[0]; \
327	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
328#define rcu_for_each_node_breadth_first(rnp) \
329	srcu_for_each_node_breadth_first(&rcu_state, rnp)
330
331/*
332 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
333 * Note that if there is a singleton rcu_node tree with but one rcu_node
334 * structure, this loop -will- visit the rcu_node structure.  It is still
335 * a leaf node, even if it is also the root node.
336 */
337#define rcu_for_each_leaf_node(rnp) \
338	for ((rnp) = rcu_first_leaf_node(); \
339	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
340
341/*
342 * Iterate over all possible CPUs in a leaf RCU node.
343 */
344#define for_each_leaf_node_possible_cpu(rnp, cpu) \
345	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
346	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
347	     (cpu) <= rnp->grphi; \
348	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
349
350/*
351 * Iterate over all CPUs in a leaf RCU node's specified mask.
352 */
353#define rcu_find_next_bit(rnp, cpu, mask) \
354	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
355#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
356	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
357	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
358	     (cpu) <= rnp->grphi; \
359	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
360
361/*
362 * Wrappers for the rcu_node::lock acquire and release.
363 *
364 * Because the rcu_nodes form a tree, the tree traversal locking will observe
365 * different lock values, this in turn means that an UNLOCK of one level
366 * followed by a LOCK of another level does not imply a full memory barrier;
367 * and most importantly transitivity is lost.
368 *
369 * In order to restore full ordering between tree levels, augment the regular
370 * lock acquire functions with smp_mb__after_unlock_lock().
371 *
372 * As ->lock of struct rcu_node is a __private field, therefore one should use
373 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
374 */
375#define raw_spin_lock_rcu_node(p)					\
376do {									\
377	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
378	smp_mb__after_unlock_lock();					\
379} while (0)
380
381#define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
382
383#define raw_spin_lock_irq_rcu_node(p)					\
384do {									\
385	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
386	smp_mb__after_unlock_lock();					\
387} while (0)
388
389#define raw_spin_unlock_irq_rcu_node(p)					\
390	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
391
392#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
393do {									\
394	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
395	smp_mb__after_unlock_lock();					\
396} while (0)
397
398#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
399	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
400
401#define raw_spin_trylock_rcu_node(p)					\
402({									\
403	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
404									\
405	if (___locked)							\
406		smp_mb__after_unlock_lock();				\
407	___locked;							\
408})
409
410#define raw_lockdep_assert_held_rcu_node(p)				\
411	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
412
413#endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
414
415#ifdef CONFIG_SRCU
416void srcu_init(void);
417#else /* #ifdef CONFIG_SRCU */
418static inline void srcu_init(void) { }
419#endif /* #else #ifdef CONFIG_SRCU */
420
421#ifdef CONFIG_TINY_RCU
422/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
423static inline bool rcu_gp_is_normal(void) { return true; }
424static inline bool rcu_gp_is_expedited(void) { return false; }
425static inline void rcu_expedite_gp(void) { }
426static inline void rcu_unexpedite_gp(void) { }
427static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
428#else /* #ifdef CONFIG_TINY_RCU */
429bool rcu_gp_is_normal(void);     /* Internal RCU use. */
430bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
431void rcu_expedite_gp(void);
432void rcu_unexpedite_gp(void);
433void rcupdate_announce_bootup_oddness(void);
434void show_rcu_tasks_gp_kthreads(void);
435void rcu_request_urgent_qs_task(struct task_struct *t);
436#endif /* #else #ifdef CONFIG_TINY_RCU */
437
438#define RCU_SCHEDULER_INACTIVE	0
439#define RCU_SCHEDULER_INIT	1
440#define RCU_SCHEDULER_RUNNING	2
441
442enum rcutorture_type {
443	RCU_FLAVOR,
444	RCU_TASKS_FLAVOR,
445	RCU_TASKS_RUDE_FLAVOR,
446	RCU_TASKS_TRACING_FLAVOR,
447	RCU_TRIVIAL_FLAVOR,
448	SRCU_FLAVOR,
449	INVALID_RCU_FLAVOR
450};
451
452#if defined(CONFIG_TREE_RCU)
453void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
454			    unsigned long *gp_seq);
455void do_trace_rcu_torture_read(const char *rcutorturename,
456			       struct rcu_head *rhp,
457			       unsigned long secs,
458			       unsigned long c_old,
459			       unsigned long c);
460void rcu_gp_set_torture_wait(int duration);
461#else
462static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
463					  int *flags, unsigned long *gp_seq)
464{
465	*flags = 0;
466	*gp_seq = 0;
467}
468#ifdef CONFIG_RCU_TRACE
469void do_trace_rcu_torture_read(const char *rcutorturename,
470			       struct rcu_head *rhp,
471			       unsigned long secs,
472			       unsigned long c_old,
473			       unsigned long c);
474#else
475#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
476	do { } while (0)
477#endif
478static inline void rcu_gp_set_torture_wait(int duration) { }
479#endif
480
481#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
482long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
483#endif
484
485#ifdef CONFIG_TINY_SRCU
486
487static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
488					   struct srcu_struct *sp, int *flags,
489					   unsigned long *gp_seq)
490{
491	if (test_type != SRCU_FLAVOR)
492		return;
493	*flags = 0;
494	*gp_seq = sp->srcu_idx;
495}
496
497#elif defined(CONFIG_TREE_SRCU)
498
499void srcutorture_get_gp_data(enum rcutorture_type test_type,
500			     struct srcu_struct *sp, int *flags,
501			     unsigned long *gp_seq);
502
503#endif
504
505#ifdef CONFIG_TINY_RCU
506static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
507static inline unsigned long rcu_get_gp_seq(void) { return 0; }
508static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
509static inline unsigned long
510srcu_batches_completed(struct srcu_struct *sp) { return 0; }
511static inline void rcu_force_quiescent_state(void) { }
512static inline void show_rcu_gp_kthreads(void) { }
513static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
514static inline void rcu_fwd_progress_check(unsigned long j) { }
515#else /* #ifdef CONFIG_TINY_RCU */
516bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
517unsigned long rcu_get_gp_seq(void);
518unsigned long rcu_exp_batches_completed(void);
519unsigned long srcu_batches_completed(struct srcu_struct *sp);
520void show_rcu_gp_kthreads(void);
521int rcu_get_gp_kthreads_prio(void);
522void rcu_fwd_progress_check(unsigned long j);
523void rcu_force_quiescent_state(void);
524extern struct workqueue_struct *rcu_gp_wq;
525extern struct workqueue_struct *rcu_par_gp_wq;
526#endif /* #else #ifdef CONFIG_TINY_RCU */
527
528#ifdef CONFIG_RCU_NOCB_CPU
529bool rcu_is_nocb_cpu(int cpu);
530void rcu_bind_current_to_nocb(void);
531#else
532static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
533static inline void rcu_bind_current_to_nocb(void) { }
534#endif
535
536#endif /* __LINUX_RCU_H */