Loading...
1/**
2 * inode.c - NTFS kernel inode handling.
3 *
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <linux/buffer_head.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/mount.h>
26#include <linux/mutex.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/slab.h>
30#include <linux/log2.h>
31
32#include "aops.h"
33#include "attrib.h"
34#include "bitmap.h"
35#include "dir.h"
36#include "debug.h"
37#include "inode.h"
38#include "lcnalloc.h"
39#include "malloc.h"
40#include "mft.h"
41#include "time.h"
42#include "ntfs.h"
43
44/**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58 * allowed to sleep.
59 */
60int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61{
62 ntfs_inode *ni;
63
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
81 }
82 /* Match! */
83 return 1;
84}
85
86/**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
104static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105{
106 ntfs_inode *ni = NTFS_I(vi);
107
108 vi->i_ino = na->mft_no;
109
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
113
114 ni->name = na->name;
115 ni->name_len = na->name_len;
116
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
122 }
123
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
126
127 /*
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
133 */
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
136
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
144 }
145 return 0;
146}
147
148typedef int (*set_t)(struct inode *, void *);
149static int ntfs_read_locked_inode(struct inode *vi);
150static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
153
154/**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
170struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171{
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
175
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
180
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
185
186 err = 0;
187
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
192 }
193 /*
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
196 */
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
200 }
201 return vi;
202}
203
204/**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
227struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
229{
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
233
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
236
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
241
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
246
247 err = 0;
248
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
253 }
254 /*
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
258 */
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
262 }
263 return vi;
264}
265
266/**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
285struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
287{
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
291
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
296
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
301
302 err = 0;
303
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
308 }
309 /*
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
313 */
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
317 }
318 return vi;
319}
320
321struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322{
323 ntfs_inode *ni;
324
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
330 }
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
333}
334
335static void ntfs_i_callback(struct rcu_head *head)
336{
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339}
340
341void ntfs_destroy_big_inode(struct inode *inode)
342{
343 ntfs_inode *ni = NTFS_I(inode);
344
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
350}
351
352static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353{
354 ntfs_inode *ni;
355
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
361 }
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
364}
365
366static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367{
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
373}
374
375/*
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
378 */
379static struct lock_class_key attr_list_rl_lock_class;
380
381/**
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
385 *
386 * Initialize an ntfs inode to defaults.
387 *
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
390 *
391 * Return zero on success and -ENOMEM on error.
392 */
393void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394{
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
418}
419
420/*
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
424 */
425static struct lock_class_key extent_inode_mrec_lock_key;
426
427inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
429{
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
431
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
440 }
441 return ni;
442}
443
444/**
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
447 *
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
451 *
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
456 */
457static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458{
459 int nr_links, err;
460
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
463
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
466
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
473
474 nr_links--;
475 /*
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
478 */
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
486 }
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
491 }
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
497 }
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
502 }
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
511 }
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
519 }
520 return 0; /* NO, it is not an extended system file. */
521}
522
523/**
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
526 *
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
529 *
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
533 *
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
537 *
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545 *
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
548 */
549static int ntfs_read_locked_inode(struct inode *vi)
550{
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
559
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561
562 /* Setup the generic vfs inode parts now. */
563
564 /*
565 * This is for checking whether an inode has changed w.r.t. a file so
566 * that the file can be updated if necessary (compare with f_version).
567 */
568 vi->i_version = 1;
569
570 vi->i_uid = vol->uid;
571 vi->i_gid = vol->gid;
572 vi->i_mode = 0;
573
574 /*
575 * Initialize the ntfs specific part of @vi special casing
576 * FILE_MFT which we need to do at mount time.
577 */
578 if (vi->i_ino != FILE_MFT)
579 ntfs_init_big_inode(vi);
580 ni = NTFS_I(vi);
581
582 m = map_mft_record(ni);
583 if (IS_ERR(m)) {
584 err = PTR_ERR(m);
585 goto err_out;
586 }
587 ctx = ntfs_attr_get_search_ctx(ni, m);
588 if (!ctx) {
589 err = -ENOMEM;
590 goto unm_err_out;
591 }
592
593 if (!(m->flags & MFT_RECORD_IN_USE)) {
594 ntfs_error(vi->i_sb, "Inode is not in use!");
595 goto unm_err_out;
596 }
597 if (m->base_mft_record) {
598 ntfs_error(vi->i_sb, "Inode is an extent inode!");
599 goto unm_err_out;
600 }
601
602 /* Transfer information from mft record into vfs and ntfs inodes. */
603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
604
605 /*
606 * FIXME: Keep in mind that link_count is two for files which have both
607 * a long file name and a short file name as separate entries, so if
608 * we are hiding short file names this will be too high. Either we need
609 * to account for the short file names by subtracting them or we need
610 * to make sure we delete files even though i_nlink is not zero which
611 * might be tricky due to vfs interactions. Need to think about this
612 * some more when implementing the unlink command.
613 */
614 set_nlink(vi, le16_to_cpu(m->link_count));
615 /*
616 * FIXME: Reparse points can have the directory bit set even though
617 * they would be S_IFLNK. Need to deal with this further below when we
618 * implement reparse points / symbolic links but it will do for now.
619 * Also if not a directory, it could be something else, rather than
620 * a regular file. But again, will do for now.
621 */
622 /* Everyone gets all permissions. */
623 vi->i_mode |= S_IRWXUGO;
624 /* If read-only, no one gets write permissions. */
625 if (IS_RDONLY(vi))
626 vi->i_mode &= ~S_IWUGO;
627 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
628 vi->i_mode |= S_IFDIR;
629 /*
630 * Apply the directory permissions mask set in the mount
631 * options.
632 */
633 vi->i_mode &= ~vol->dmask;
634 /* Things break without this kludge! */
635 if (vi->i_nlink > 1)
636 set_nlink(vi, 1);
637 } else {
638 vi->i_mode |= S_IFREG;
639 /* Apply the file permissions mask set in the mount options. */
640 vi->i_mode &= ~vol->fmask;
641 }
642 /*
643 * Find the standard information attribute in the mft record. At this
644 * stage we haven't setup the attribute list stuff yet, so this could
645 * in fact fail if the standard information is in an extent record, but
646 * I don't think this actually ever happens.
647 */
648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
649 ctx);
650 if (unlikely(err)) {
651 if (err == -ENOENT) {
652 /*
653 * TODO: We should be performing a hot fix here (if the
654 * recover mount option is set) by creating a new
655 * attribute.
656 */
657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
658 "is missing.");
659 }
660 goto unm_err_out;
661 }
662 a = ctx->attr;
663 /* Get the standard information attribute value. */
664 si = (STANDARD_INFORMATION*)((u8*)a +
665 le16_to_cpu(a->data.resident.value_offset));
666
667 /* Transfer information from the standard information into vi. */
668 /*
669 * Note: The i_?times do not quite map perfectly onto the NTFS times,
670 * but they are close enough, and in the end it doesn't really matter
671 * that much...
672 */
673 /*
674 * mtime is the last change of the data within the file. Not changed
675 * when only metadata is changed, e.g. a rename doesn't affect mtime.
676 */
677 vi->i_mtime = ntfs2utc(si->last_data_change_time);
678 /*
679 * ctime is the last change of the metadata of the file. This obviously
680 * always changes, when mtime is changed. ctime can be changed on its
681 * own, mtime is then not changed, e.g. when a file is renamed.
682 */
683 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
684 /*
685 * Last access to the data within the file. Not changed during a rename
686 * for example but changed whenever the file is written to.
687 */
688 vi->i_atime = ntfs2utc(si->last_access_time);
689
690 /* Find the attribute list attribute if present. */
691 ntfs_attr_reinit_search_ctx(ctx);
692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
693 if (err) {
694 if (unlikely(err != -ENOENT)) {
695 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
696 "attribute.");
697 goto unm_err_out;
698 }
699 } else /* if (!err) */ {
700 if (vi->i_ino == FILE_MFT)
701 goto skip_attr_list_load;
702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
703 NInoSetAttrList(ni);
704 a = ctx->attr;
705 if (a->flags & ATTR_COMPRESSION_MASK) {
706 ntfs_error(vi->i_sb, "Attribute list attribute is "
707 "compressed.");
708 goto unm_err_out;
709 }
710 if (a->flags & ATTR_IS_ENCRYPTED ||
711 a->flags & ATTR_IS_SPARSE) {
712 if (a->non_resident) {
713 ntfs_error(vi->i_sb, "Non-resident attribute "
714 "list attribute is encrypted/"
715 "sparse.");
716 goto unm_err_out;
717 }
718 ntfs_warning(vi->i_sb, "Resident attribute list "
719 "attribute in inode 0x%lx is marked "
720 "encrypted/sparse which is not true. "
721 "However, Windows allows this and "
722 "chkdsk does not detect or correct it "
723 "so we will just ignore the invalid "
724 "flags and pretend they are not set.",
725 vi->i_ino);
726 }
727 /* Now allocate memory for the attribute list. */
728 ni->attr_list_size = (u32)ntfs_attr_size(a);
729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
730 if (!ni->attr_list) {
731 ntfs_error(vi->i_sb, "Not enough memory to allocate "
732 "buffer for attribute list.");
733 err = -ENOMEM;
734 goto unm_err_out;
735 }
736 if (a->non_resident) {
737 NInoSetAttrListNonResident(ni);
738 if (a->data.non_resident.lowest_vcn) {
739 ntfs_error(vi->i_sb, "Attribute list has non "
740 "zero lowest_vcn.");
741 goto unm_err_out;
742 }
743 /*
744 * Setup the runlist. No need for locking as we have
745 * exclusive access to the inode at this time.
746 */
747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
748 a, NULL);
749 if (IS_ERR(ni->attr_list_rl.rl)) {
750 err = PTR_ERR(ni->attr_list_rl.rl);
751 ni->attr_list_rl.rl = NULL;
752 ntfs_error(vi->i_sb, "Mapping pairs "
753 "decompression failed.");
754 goto unm_err_out;
755 }
756 /* Now load the attribute list. */
757 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
758 ni->attr_list, ni->attr_list_size,
759 sle64_to_cpu(a->data.non_resident.
760 initialized_size)))) {
761 ntfs_error(vi->i_sb, "Failed to load "
762 "attribute list attribute.");
763 goto unm_err_out;
764 }
765 } else /* if (!a->non_resident) */ {
766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
767 + le32_to_cpu(
768 a->data.resident.value_length) >
769 (u8*)ctx->mrec + vol->mft_record_size) {
770 ntfs_error(vi->i_sb, "Corrupt attribute list "
771 "in inode.");
772 goto unm_err_out;
773 }
774 /* Now copy the attribute list. */
775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
776 a->data.resident.value_offset),
777 le32_to_cpu(
778 a->data.resident.value_length));
779 }
780 }
781skip_attr_list_load:
782 /*
783 * If an attribute list is present we now have the attribute list value
784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
785 */
786 if (S_ISDIR(vi->i_mode)) {
787 loff_t bvi_size;
788 ntfs_inode *bni;
789 INDEX_ROOT *ir;
790 u8 *ir_end, *index_end;
791
792 /* It is a directory, find index root attribute. */
793 ntfs_attr_reinit_search_ctx(ctx);
794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
795 0, NULL, 0, ctx);
796 if (unlikely(err)) {
797 if (err == -ENOENT) {
798 // FIXME: File is corrupt! Hot-fix with empty
799 // index root attribute if recovery option is
800 // set.
801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
802 "is missing.");
803 }
804 goto unm_err_out;
805 }
806 a = ctx->attr;
807 /* Set up the state. */
808 if (unlikely(a->non_resident)) {
809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
810 "resident.");
811 goto unm_err_out;
812 }
813 /* Ensure the attribute name is placed before the value. */
814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
815 le16_to_cpu(a->data.resident.value_offset)))) {
816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
817 "placed after the attribute value.");
818 goto unm_err_out;
819 }
820 /*
821 * Compressed/encrypted index root just means that the newly
822 * created files in that directory should be created compressed/
823 * encrypted. However index root cannot be both compressed and
824 * encrypted.
825 */
826 if (a->flags & ATTR_COMPRESSION_MASK)
827 NInoSetCompressed(ni);
828 if (a->flags & ATTR_IS_ENCRYPTED) {
829 if (a->flags & ATTR_COMPRESSION_MASK) {
830 ntfs_error(vi->i_sb, "Found encrypted and "
831 "compressed attribute.");
832 goto unm_err_out;
833 }
834 NInoSetEncrypted(ni);
835 }
836 if (a->flags & ATTR_IS_SPARSE)
837 NInoSetSparse(ni);
838 ir = (INDEX_ROOT*)((u8*)a +
839 le16_to_cpu(a->data.resident.value_offset));
840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
843 "corrupt.");
844 goto unm_err_out;
845 }
846 index_end = (u8*)&ir->index +
847 le32_to_cpu(ir->index.index_length);
848 if (index_end > ir_end) {
849 ntfs_error(vi->i_sb, "Directory index is corrupt.");
850 goto unm_err_out;
851 }
852 if (ir->type != AT_FILE_NAME) {
853 ntfs_error(vi->i_sb, "Indexed attribute is not "
854 "$FILE_NAME.");
855 goto unm_err_out;
856 }
857 if (ir->collation_rule != COLLATION_FILE_NAME) {
858 ntfs_error(vi->i_sb, "Index collation rule is not "
859 "COLLATION_FILE_NAME.");
860 goto unm_err_out;
861 }
862 ni->itype.index.collation_rule = ir->collation_rule;
863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
864 if (ni->itype.index.block_size &
865 (ni->itype.index.block_size - 1)) {
866 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
867 "power of two.",
868 ni->itype.index.block_size);
869 goto unm_err_out;
870 }
871 if (ni->itype.index.block_size > PAGE_SIZE) {
872 ntfs_error(vi->i_sb, "Index block size (%u) > "
873 "PAGE_SIZE (%ld) is not "
874 "supported. Sorry.",
875 ni->itype.index.block_size,
876 PAGE_SIZE);
877 err = -EOPNOTSUPP;
878 goto unm_err_out;
879 }
880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
881 ntfs_error(vi->i_sb, "Index block size (%u) < "
882 "NTFS_BLOCK_SIZE (%i) is not "
883 "supported. Sorry.",
884 ni->itype.index.block_size,
885 NTFS_BLOCK_SIZE);
886 err = -EOPNOTSUPP;
887 goto unm_err_out;
888 }
889 ni->itype.index.block_size_bits =
890 ffs(ni->itype.index.block_size) - 1;
891 /* Determine the size of a vcn in the directory index. */
892 if (vol->cluster_size <= ni->itype.index.block_size) {
893 ni->itype.index.vcn_size = vol->cluster_size;
894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
895 } else {
896 ni->itype.index.vcn_size = vol->sector_size;
897 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
898 }
899
900 /* Setup the index allocation attribute, even if not present. */
901 NInoSetMstProtected(ni);
902 ni->type = AT_INDEX_ALLOCATION;
903 ni->name = I30;
904 ni->name_len = 4;
905
906 if (!(ir->index.flags & LARGE_INDEX)) {
907 /* No index allocation. */
908 vi->i_size = ni->initialized_size =
909 ni->allocated_size = 0;
910 /* We are done with the mft record, so we release it. */
911 ntfs_attr_put_search_ctx(ctx);
912 unmap_mft_record(ni);
913 m = NULL;
914 ctx = NULL;
915 goto skip_large_dir_stuff;
916 } /* LARGE_INDEX: Index allocation present. Setup state. */
917 NInoSetIndexAllocPresent(ni);
918 /* Find index allocation attribute. */
919 ntfs_attr_reinit_search_ctx(ctx);
920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
921 CASE_SENSITIVE, 0, NULL, 0, ctx);
922 if (unlikely(err)) {
923 if (err == -ENOENT)
924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
925 "attribute is not present but "
926 "$INDEX_ROOT indicated it is.");
927 else
928 ntfs_error(vi->i_sb, "Failed to lookup "
929 "$INDEX_ALLOCATION "
930 "attribute.");
931 goto unm_err_out;
932 }
933 a = ctx->attr;
934 if (!a->non_resident) {
935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
936 "is resident.");
937 goto unm_err_out;
938 }
939 /*
940 * Ensure the attribute name is placed before the mapping pairs
941 * array.
942 */
943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
944 le16_to_cpu(
945 a->data.non_resident.mapping_pairs_offset)))) {
946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
947 "is placed after the mapping pairs "
948 "array.");
949 goto unm_err_out;
950 }
951 if (a->flags & ATTR_IS_ENCRYPTED) {
952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
953 "is encrypted.");
954 goto unm_err_out;
955 }
956 if (a->flags & ATTR_IS_SPARSE) {
957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
958 "is sparse.");
959 goto unm_err_out;
960 }
961 if (a->flags & ATTR_COMPRESSION_MASK) {
962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
963 "is compressed.");
964 goto unm_err_out;
965 }
966 if (a->data.non_resident.lowest_vcn) {
967 ntfs_error(vi->i_sb, "First extent of "
968 "$INDEX_ALLOCATION attribute has non "
969 "zero lowest_vcn.");
970 goto unm_err_out;
971 }
972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
973 ni->initialized_size = sle64_to_cpu(
974 a->data.non_resident.initialized_size);
975 ni->allocated_size = sle64_to_cpu(
976 a->data.non_resident.allocated_size);
977 /*
978 * We are done with the mft record, so we release it. Otherwise
979 * we would deadlock in ntfs_attr_iget().
980 */
981 ntfs_attr_put_search_ctx(ctx);
982 unmap_mft_record(ni);
983 m = NULL;
984 ctx = NULL;
985 /* Get the index bitmap attribute inode. */
986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
987 if (IS_ERR(bvi)) {
988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
989 err = PTR_ERR(bvi);
990 goto unm_err_out;
991 }
992 bni = NTFS_I(bvi);
993 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
994 NInoSparse(bni)) {
995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
996 "and/or encrypted and/or sparse.");
997 goto iput_unm_err_out;
998 }
999 /* Consistency check bitmap size vs. index allocation size. */
1000 bvi_size = i_size_read(bvi);
1001 if ((bvi_size << 3) < (vi->i_size >>
1002 ni->itype.index.block_size_bits)) {
1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1004 "for index allocation (0x%llx).",
1005 bvi_size << 3, vi->i_size);
1006 goto iput_unm_err_out;
1007 }
1008 /* No longer need the bitmap attribute inode. */
1009 iput(bvi);
1010skip_large_dir_stuff:
1011 /* Setup the operations for this inode. */
1012 vi->i_op = &ntfs_dir_inode_ops;
1013 vi->i_fop = &ntfs_dir_ops;
1014 vi->i_mapping->a_ops = &ntfs_mst_aops;
1015 } else {
1016 /* It is a file. */
1017 ntfs_attr_reinit_search_ctx(ctx);
1018
1019 /* Setup the data attribute, even if not present. */
1020 ni->type = AT_DATA;
1021 ni->name = NULL;
1022 ni->name_len = 0;
1023
1024 /* Find first extent of the unnamed data attribute. */
1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026 if (unlikely(err)) {
1027 vi->i_size = ni->initialized_size =
1028 ni->allocated_size = 0;
1029 if (err != -ENOENT) {
1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031 "attribute.");
1032 goto unm_err_out;
1033 }
1034 /*
1035 * FILE_Secure does not have an unnamed $DATA
1036 * attribute, so we special case it here.
1037 */
1038 if (vi->i_ino == FILE_Secure)
1039 goto no_data_attr_special_case;
1040 /*
1041 * Most if not all the system files in the $Extend
1042 * system directory do not have unnamed data
1043 * attributes so we need to check if the parent
1044 * directory of the file is FILE_Extend and if it is
1045 * ignore this error. To do this we need to get the
1046 * name of this inode from the mft record as the name
1047 * contains the back reference to the parent directory.
1048 */
1049 if (ntfs_is_extended_system_file(ctx) > 0)
1050 goto no_data_attr_special_case;
1051 // FIXME: File is corrupt! Hot-fix with empty data
1052 // attribute if recovery option is set.
1053 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054 goto unm_err_out;
1055 }
1056 a = ctx->attr;
1057 /* Setup the state. */
1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059 if (a->flags & ATTR_COMPRESSION_MASK) {
1060 NInoSetCompressed(ni);
1061 if (vol->cluster_size > 4096) {
1062 ntfs_error(vi->i_sb, "Found "
1063 "compressed data but "
1064 "compression is "
1065 "disabled due to "
1066 "cluster size (%i) > "
1067 "4kiB.",
1068 vol->cluster_size);
1069 goto unm_err_out;
1070 }
1071 if ((a->flags & ATTR_COMPRESSION_MASK)
1072 != ATTR_IS_COMPRESSED) {
1073 ntfs_error(vi->i_sb, "Found unknown "
1074 "compression method "
1075 "or corrupt file.");
1076 goto unm_err_out;
1077 }
1078 }
1079 if (a->flags & ATTR_IS_SPARSE)
1080 NInoSetSparse(ni);
1081 }
1082 if (a->flags & ATTR_IS_ENCRYPTED) {
1083 if (NInoCompressed(ni)) {
1084 ntfs_error(vi->i_sb, "Found encrypted and "
1085 "compressed data.");
1086 goto unm_err_out;
1087 }
1088 NInoSetEncrypted(ni);
1089 }
1090 if (a->non_resident) {
1091 NInoSetNonResident(ni);
1092 if (NInoCompressed(ni) || NInoSparse(ni)) {
1093 if (NInoCompressed(ni) && a->data.non_resident.
1094 compression_unit != 4) {
1095 ntfs_error(vi->i_sb, "Found "
1096 "non-standard "
1097 "compression unit (%u "
1098 "instead of 4). "
1099 "Cannot handle this.",
1100 a->data.non_resident.
1101 compression_unit);
1102 err = -EOPNOTSUPP;
1103 goto unm_err_out;
1104 }
1105 if (a->data.non_resident.compression_unit) {
1106 ni->itype.compressed.block_size = 1U <<
1107 (a->data.non_resident.
1108 compression_unit +
1109 vol->cluster_size_bits);
1110 ni->itype.compressed.block_size_bits =
1111 ffs(ni->itype.
1112 compressed.
1113 block_size) - 1;
1114 ni->itype.compressed.block_clusters =
1115 1U << a->data.
1116 non_resident.
1117 compression_unit;
1118 } else {
1119 ni->itype.compressed.block_size = 0;
1120 ni->itype.compressed.block_size_bits =
1121 0;
1122 ni->itype.compressed.block_clusters =
1123 0;
1124 }
1125 ni->itype.compressed.size = sle64_to_cpu(
1126 a->data.non_resident.
1127 compressed_size);
1128 }
1129 if (a->data.non_resident.lowest_vcn) {
1130 ntfs_error(vi->i_sb, "First extent of $DATA "
1131 "attribute has non zero "
1132 "lowest_vcn.");
1133 goto unm_err_out;
1134 }
1135 vi->i_size = sle64_to_cpu(
1136 a->data.non_resident.data_size);
1137 ni->initialized_size = sle64_to_cpu(
1138 a->data.non_resident.initialized_size);
1139 ni->allocated_size = sle64_to_cpu(
1140 a->data.non_resident.allocated_size);
1141 } else { /* Resident attribute. */
1142 vi->i_size = ni->initialized_size = le32_to_cpu(
1143 a->data.resident.value_length);
1144 ni->allocated_size = le32_to_cpu(a->length) -
1145 le16_to_cpu(
1146 a->data.resident.value_offset);
1147 if (vi->i_size > ni->allocated_size) {
1148 ntfs_error(vi->i_sb, "Resident data attribute "
1149 "is corrupt (size exceeds "
1150 "allocation).");
1151 goto unm_err_out;
1152 }
1153 }
1154no_data_attr_special_case:
1155 /* We are done with the mft record, so we release it. */
1156 ntfs_attr_put_search_ctx(ctx);
1157 unmap_mft_record(ni);
1158 m = NULL;
1159 ctx = NULL;
1160 /* Setup the operations for this inode. */
1161 vi->i_op = &ntfs_file_inode_ops;
1162 vi->i_fop = &ntfs_file_ops;
1163 vi->i_mapping->a_ops = &ntfs_normal_aops;
1164 if (NInoMstProtected(ni))
1165 vi->i_mapping->a_ops = &ntfs_mst_aops;
1166 else if (NInoCompressed(ni))
1167 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1168 }
1169 /*
1170 * The number of 512-byte blocks used on disk (for stat). This is in so
1171 * far inaccurate as it doesn't account for any named streams or other
1172 * special non-resident attributes, but that is how Windows works, too,
1173 * so we are at least consistent with Windows, if not entirely
1174 * consistent with the Linux Way. Doing it the Linux Way would cause a
1175 * significant slowdown as it would involve iterating over all
1176 * attributes in the mft record and adding the allocated/compressed
1177 * sizes of all non-resident attributes present to give us the Linux
1178 * correct size that should go into i_blocks (after division by 512).
1179 */
1180 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1181 vi->i_blocks = ni->itype.compressed.size >> 9;
1182 else
1183 vi->i_blocks = ni->allocated_size >> 9;
1184 ntfs_debug("Done.");
1185 return 0;
1186iput_unm_err_out:
1187 iput(bvi);
1188unm_err_out:
1189 if (!err)
1190 err = -EIO;
1191 if (ctx)
1192 ntfs_attr_put_search_ctx(ctx);
1193 if (m)
1194 unmap_mft_record(ni);
1195err_out:
1196 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1197 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1198 make_bad_inode(vi);
1199 if (err != -EOPNOTSUPP && err != -ENOMEM)
1200 NVolSetErrors(vol);
1201 return err;
1202}
1203
1204/**
1205 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1206 * @base_vi: base inode
1207 * @vi: attribute inode to read
1208 *
1209 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1210 * attribute inode described by @vi into memory from the base mft record
1211 * described by @base_ni.
1212 *
1213 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1214 * reading and looks up the attribute described by @vi before setting up the
1215 * necessary fields in @vi as well as initializing the ntfs inode.
1216 *
1217 * Q: What locks are held when the function is called?
1218 * A: i_state has I_NEW set, hence the inode is locked, also
1219 * i_count is set to 1, so it is not going to go away
1220 *
1221 * Return 0 on success and -errno on error. In the error case, the inode will
1222 * have had make_bad_inode() executed on it.
1223 *
1224 * Note this cannot be called for AT_INDEX_ALLOCATION.
1225 */
1226static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1227{
1228 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1229 ntfs_inode *ni, *base_ni;
1230 MFT_RECORD *m;
1231 ATTR_RECORD *a;
1232 ntfs_attr_search_ctx *ctx;
1233 int err = 0;
1234
1235 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1236
1237 ntfs_init_big_inode(vi);
1238
1239 ni = NTFS_I(vi);
1240 base_ni = NTFS_I(base_vi);
1241
1242 /* Just mirror the values from the base inode. */
1243 vi->i_version = base_vi->i_version;
1244 vi->i_uid = base_vi->i_uid;
1245 vi->i_gid = base_vi->i_gid;
1246 set_nlink(vi, base_vi->i_nlink);
1247 vi->i_mtime = base_vi->i_mtime;
1248 vi->i_ctime = base_vi->i_ctime;
1249 vi->i_atime = base_vi->i_atime;
1250 vi->i_generation = ni->seq_no = base_ni->seq_no;
1251
1252 /* Set inode type to zero but preserve permissions. */
1253 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1254
1255 m = map_mft_record(base_ni);
1256 if (IS_ERR(m)) {
1257 err = PTR_ERR(m);
1258 goto err_out;
1259 }
1260 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1261 if (!ctx) {
1262 err = -ENOMEM;
1263 goto unm_err_out;
1264 }
1265 /* Find the attribute. */
1266 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1267 CASE_SENSITIVE, 0, NULL, 0, ctx);
1268 if (unlikely(err))
1269 goto unm_err_out;
1270 a = ctx->attr;
1271 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1272 if (a->flags & ATTR_COMPRESSION_MASK) {
1273 NInoSetCompressed(ni);
1274 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1275 ni->name_len)) {
1276 ntfs_error(vi->i_sb, "Found compressed "
1277 "non-data or named data "
1278 "attribute. Please report "
1279 "you saw this message to "
1280 "linux-ntfs-dev@lists."
1281 "sourceforge.net");
1282 goto unm_err_out;
1283 }
1284 if (vol->cluster_size > 4096) {
1285 ntfs_error(vi->i_sb, "Found compressed "
1286 "attribute but compression is "
1287 "disabled due to cluster size "
1288 "(%i) > 4kiB.",
1289 vol->cluster_size);
1290 goto unm_err_out;
1291 }
1292 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1293 ATTR_IS_COMPRESSED) {
1294 ntfs_error(vi->i_sb, "Found unknown "
1295 "compression method.");
1296 goto unm_err_out;
1297 }
1298 }
1299 /*
1300 * The compressed/sparse flag set in an index root just means
1301 * to compress all files.
1302 */
1303 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1304 ntfs_error(vi->i_sb, "Found mst protected attribute "
1305 "but the attribute is %s. Please "
1306 "report you saw this message to "
1307 "linux-ntfs-dev@lists.sourceforge.net",
1308 NInoCompressed(ni) ? "compressed" :
1309 "sparse");
1310 goto unm_err_out;
1311 }
1312 if (a->flags & ATTR_IS_SPARSE)
1313 NInoSetSparse(ni);
1314 }
1315 if (a->flags & ATTR_IS_ENCRYPTED) {
1316 if (NInoCompressed(ni)) {
1317 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1318 "data.");
1319 goto unm_err_out;
1320 }
1321 /*
1322 * The encryption flag set in an index root just means to
1323 * encrypt all files.
1324 */
1325 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1326 ntfs_error(vi->i_sb, "Found mst protected attribute "
1327 "but the attribute is encrypted. "
1328 "Please report you saw this message "
1329 "to linux-ntfs-dev@lists.sourceforge."
1330 "net");
1331 goto unm_err_out;
1332 }
1333 if (ni->type != AT_DATA) {
1334 ntfs_error(vi->i_sb, "Found encrypted non-data "
1335 "attribute.");
1336 goto unm_err_out;
1337 }
1338 NInoSetEncrypted(ni);
1339 }
1340 if (!a->non_resident) {
1341 /* Ensure the attribute name is placed before the value. */
1342 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1343 le16_to_cpu(a->data.resident.value_offset)))) {
1344 ntfs_error(vol->sb, "Attribute name is placed after "
1345 "the attribute value.");
1346 goto unm_err_out;
1347 }
1348 if (NInoMstProtected(ni)) {
1349 ntfs_error(vi->i_sb, "Found mst protected attribute "
1350 "but the attribute is resident. "
1351 "Please report you saw this message to "
1352 "linux-ntfs-dev@lists.sourceforge.net");
1353 goto unm_err_out;
1354 }
1355 vi->i_size = ni->initialized_size = le32_to_cpu(
1356 a->data.resident.value_length);
1357 ni->allocated_size = le32_to_cpu(a->length) -
1358 le16_to_cpu(a->data.resident.value_offset);
1359 if (vi->i_size > ni->allocated_size) {
1360 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1361 "(size exceeds allocation).");
1362 goto unm_err_out;
1363 }
1364 } else {
1365 NInoSetNonResident(ni);
1366 /*
1367 * Ensure the attribute name is placed before the mapping pairs
1368 * array.
1369 */
1370 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1371 le16_to_cpu(
1372 a->data.non_resident.mapping_pairs_offset)))) {
1373 ntfs_error(vol->sb, "Attribute name is placed after "
1374 "the mapping pairs array.");
1375 goto unm_err_out;
1376 }
1377 if (NInoCompressed(ni) || NInoSparse(ni)) {
1378 if (NInoCompressed(ni) && a->data.non_resident.
1379 compression_unit != 4) {
1380 ntfs_error(vi->i_sb, "Found non-standard "
1381 "compression unit (%u instead "
1382 "of 4). Cannot handle this.",
1383 a->data.non_resident.
1384 compression_unit);
1385 err = -EOPNOTSUPP;
1386 goto unm_err_out;
1387 }
1388 if (a->data.non_resident.compression_unit) {
1389 ni->itype.compressed.block_size = 1U <<
1390 (a->data.non_resident.
1391 compression_unit +
1392 vol->cluster_size_bits);
1393 ni->itype.compressed.block_size_bits =
1394 ffs(ni->itype.compressed.
1395 block_size) - 1;
1396 ni->itype.compressed.block_clusters = 1U <<
1397 a->data.non_resident.
1398 compression_unit;
1399 } else {
1400 ni->itype.compressed.block_size = 0;
1401 ni->itype.compressed.block_size_bits = 0;
1402 ni->itype.compressed.block_clusters = 0;
1403 }
1404 ni->itype.compressed.size = sle64_to_cpu(
1405 a->data.non_resident.compressed_size);
1406 }
1407 if (a->data.non_resident.lowest_vcn) {
1408 ntfs_error(vi->i_sb, "First extent of attribute has "
1409 "non-zero lowest_vcn.");
1410 goto unm_err_out;
1411 }
1412 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1413 ni->initialized_size = sle64_to_cpu(
1414 a->data.non_resident.initialized_size);
1415 ni->allocated_size = sle64_to_cpu(
1416 a->data.non_resident.allocated_size);
1417 }
1418 vi->i_mapping->a_ops = &ntfs_normal_aops;
1419 if (NInoMstProtected(ni))
1420 vi->i_mapping->a_ops = &ntfs_mst_aops;
1421 else if (NInoCompressed(ni))
1422 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1423 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1424 vi->i_blocks = ni->itype.compressed.size >> 9;
1425 else
1426 vi->i_blocks = ni->allocated_size >> 9;
1427 /*
1428 * Make sure the base inode does not go away and attach it to the
1429 * attribute inode.
1430 */
1431 igrab(base_vi);
1432 ni->ext.base_ntfs_ino = base_ni;
1433 ni->nr_extents = -1;
1434
1435 ntfs_attr_put_search_ctx(ctx);
1436 unmap_mft_record(base_ni);
1437
1438 ntfs_debug("Done.");
1439 return 0;
1440
1441unm_err_out:
1442 if (!err)
1443 err = -EIO;
1444 if (ctx)
1445 ntfs_attr_put_search_ctx(ctx);
1446 unmap_mft_record(base_ni);
1447err_out:
1448 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1449 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1450 "Marking corrupt inode and base inode 0x%lx as bad. "
1451 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1452 base_vi->i_ino);
1453 make_bad_inode(vi);
1454 if (err != -ENOMEM)
1455 NVolSetErrors(vol);
1456 return err;
1457}
1458
1459/**
1460 * ntfs_read_locked_index_inode - read an index inode from its base inode
1461 * @base_vi: base inode
1462 * @vi: index inode to read
1463 *
1464 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1465 * index inode described by @vi into memory from the base mft record described
1466 * by @base_ni.
1467 *
1468 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1469 * reading and looks up the attributes relating to the index described by @vi
1470 * before setting up the necessary fields in @vi as well as initializing the
1471 * ntfs inode.
1472 *
1473 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1474 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1475 * are setup like directory inodes since directories are a special case of
1476 * indices ao they need to be treated in much the same way. Most importantly,
1477 * for small indices the index allocation attribute might not actually exist.
1478 * However, the index root attribute always exists but this does not need to
1479 * have an inode associated with it and this is why we define a new inode type
1480 * index. Also, like for directories, we need to have an attribute inode for
1481 * the bitmap attribute corresponding to the index allocation attribute and we
1482 * can store this in the appropriate field of the inode, just like we do for
1483 * normal directory inodes.
1484 *
1485 * Q: What locks are held when the function is called?
1486 * A: i_state has I_NEW set, hence the inode is locked, also
1487 * i_count is set to 1, so it is not going to go away
1488 *
1489 * Return 0 on success and -errno on error. In the error case, the inode will
1490 * have had make_bad_inode() executed on it.
1491 */
1492static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1493{
1494 loff_t bvi_size;
1495 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1496 ntfs_inode *ni, *base_ni, *bni;
1497 struct inode *bvi;
1498 MFT_RECORD *m;
1499 ATTR_RECORD *a;
1500 ntfs_attr_search_ctx *ctx;
1501 INDEX_ROOT *ir;
1502 u8 *ir_end, *index_end;
1503 int err = 0;
1504
1505 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1506 ntfs_init_big_inode(vi);
1507 ni = NTFS_I(vi);
1508 base_ni = NTFS_I(base_vi);
1509 /* Just mirror the values from the base inode. */
1510 vi->i_version = base_vi->i_version;
1511 vi->i_uid = base_vi->i_uid;
1512 vi->i_gid = base_vi->i_gid;
1513 set_nlink(vi, base_vi->i_nlink);
1514 vi->i_mtime = base_vi->i_mtime;
1515 vi->i_ctime = base_vi->i_ctime;
1516 vi->i_atime = base_vi->i_atime;
1517 vi->i_generation = ni->seq_no = base_ni->seq_no;
1518 /* Set inode type to zero but preserve permissions. */
1519 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1520 /* Map the mft record for the base inode. */
1521 m = map_mft_record(base_ni);
1522 if (IS_ERR(m)) {
1523 err = PTR_ERR(m);
1524 goto err_out;
1525 }
1526 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1527 if (!ctx) {
1528 err = -ENOMEM;
1529 goto unm_err_out;
1530 }
1531 /* Find the index root attribute. */
1532 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1533 CASE_SENSITIVE, 0, NULL, 0, ctx);
1534 if (unlikely(err)) {
1535 if (err == -ENOENT)
1536 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1537 "missing.");
1538 goto unm_err_out;
1539 }
1540 a = ctx->attr;
1541 /* Set up the state. */
1542 if (unlikely(a->non_resident)) {
1543 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1544 goto unm_err_out;
1545 }
1546 /* Ensure the attribute name is placed before the value. */
1547 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1548 le16_to_cpu(a->data.resident.value_offset)))) {
1549 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1550 "after the attribute value.");
1551 goto unm_err_out;
1552 }
1553 /*
1554 * Compressed/encrypted/sparse index root is not allowed, except for
1555 * directories of course but those are not dealt with here.
1556 */
1557 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1558 ATTR_IS_SPARSE)) {
1559 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1560 "root attribute.");
1561 goto unm_err_out;
1562 }
1563 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1564 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1565 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1566 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1567 goto unm_err_out;
1568 }
1569 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1570 if (index_end > ir_end) {
1571 ntfs_error(vi->i_sb, "Index is corrupt.");
1572 goto unm_err_out;
1573 }
1574 if (ir->type) {
1575 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1576 le32_to_cpu(ir->type));
1577 goto unm_err_out;
1578 }
1579 ni->itype.index.collation_rule = ir->collation_rule;
1580 ntfs_debug("Index collation rule is 0x%x.",
1581 le32_to_cpu(ir->collation_rule));
1582 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1583 if (!is_power_of_2(ni->itype.index.block_size)) {
1584 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1585 "two.", ni->itype.index.block_size);
1586 goto unm_err_out;
1587 }
1588 if (ni->itype.index.block_size > PAGE_SIZE) {
1589 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1590 "(%ld) is not supported. Sorry.",
1591 ni->itype.index.block_size, PAGE_SIZE);
1592 err = -EOPNOTSUPP;
1593 goto unm_err_out;
1594 }
1595 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1596 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1597 "(%i) is not supported. Sorry.",
1598 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1599 err = -EOPNOTSUPP;
1600 goto unm_err_out;
1601 }
1602 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1603 /* Determine the size of a vcn in the index. */
1604 if (vol->cluster_size <= ni->itype.index.block_size) {
1605 ni->itype.index.vcn_size = vol->cluster_size;
1606 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1607 } else {
1608 ni->itype.index.vcn_size = vol->sector_size;
1609 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1610 }
1611 /* Check for presence of index allocation attribute. */
1612 if (!(ir->index.flags & LARGE_INDEX)) {
1613 /* No index allocation. */
1614 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1615 /* We are done with the mft record, so we release it. */
1616 ntfs_attr_put_search_ctx(ctx);
1617 unmap_mft_record(base_ni);
1618 m = NULL;
1619 ctx = NULL;
1620 goto skip_large_index_stuff;
1621 } /* LARGE_INDEX: Index allocation present. Setup state. */
1622 NInoSetIndexAllocPresent(ni);
1623 /* Find index allocation attribute. */
1624 ntfs_attr_reinit_search_ctx(ctx);
1625 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1626 CASE_SENSITIVE, 0, NULL, 0, ctx);
1627 if (unlikely(err)) {
1628 if (err == -ENOENT)
1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 "not present but $INDEX_ROOT "
1631 "indicated it is.");
1632 else
1633 ntfs_error(vi->i_sb, "Failed to lookup "
1634 "$INDEX_ALLOCATION attribute.");
1635 goto unm_err_out;
1636 }
1637 a = ctx->attr;
1638 if (!a->non_resident) {
1639 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1640 "resident.");
1641 goto unm_err_out;
1642 }
1643 /*
1644 * Ensure the attribute name is placed before the mapping pairs array.
1645 */
1646 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1647 le16_to_cpu(
1648 a->data.non_resident.mapping_pairs_offset)))) {
1649 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1650 "placed after the mapping pairs array.");
1651 goto unm_err_out;
1652 }
1653 if (a->flags & ATTR_IS_ENCRYPTED) {
1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 "encrypted.");
1656 goto unm_err_out;
1657 }
1658 if (a->flags & ATTR_IS_SPARSE) {
1659 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1660 goto unm_err_out;
1661 }
1662 if (a->flags & ATTR_COMPRESSION_MASK) {
1663 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1664 "compressed.");
1665 goto unm_err_out;
1666 }
1667 if (a->data.non_resident.lowest_vcn) {
1668 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1669 "attribute has non zero lowest_vcn.");
1670 goto unm_err_out;
1671 }
1672 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1673 ni->initialized_size = sle64_to_cpu(
1674 a->data.non_resident.initialized_size);
1675 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1676 /*
1677 * We are done with the mft record, so we release it. Otherwise
1678 * we would deadlock in ntfs_attr_iget().
1679 */
1680 ntfs_attr_put_search_ctx(ctx);
1681 unmap_mft_record(base_ni);
1682 m = NULL;
1683 ctx = NULL;
1684 /* Get the index bitmap attribute inode. */
1685 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1686 if (IS_ERR(bvi)) {
1687 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1688 err = PTR_ERR(bvi);
1689 goto unm_err_out;
1690 }
1691 bni = NTFS_I(bvi);
1692 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1693 NInoSparse(bni)) {
1694 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1695 "encrypted and/or sparse.");
1696 goto iput_unm_err_out;
1697 }
1698 /* Consistency check bitmap size vs. index allocation size. */
1699 bvi_size = i_size_read(bvi);
1700 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1701 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1702 "index allocation (0x%llx).", bvi_size << 3,
1703 vi->i_size);
1704 goto iput_unm_err_out;
1705 }
1706 iput(bvi);
1707skip_large_index_stuff:
1708 /* Setup the operations for this index inode. */
1709 vi->i_mapping->a_ops = &ntfs_mst_aops;
1710 vi->i_blocks = ni->allocated_size >> 9;
1711 /*
1712 * Make sure the base inode doesn't go away and attach it to the
1713 * index inode.
1714 */
1715 igrab(base_vi);
1716 ni->ext.base_ntfs_ino = base_ni;
1717 ni->nr_extents = -1;
1718
1719 ntfs_debug("Done.");
1720 return 0;
1721iput_unm_err_out:
1722 iput(bvi);
1723unm_err_out:
1724 if (!err)
1725 err = -EIO;
1726 if (ctx)
1727 ntfs_attr_put_search_ctx(ctx);
1728 if (m)
1729 unmap_mft_record(base_ni);
1730err_out:
1731 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1732 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1733 ni->name_len);
1734 make_bad_inode(vi);
1735 if (err != -EOPNOTSUPP && err != -ENOMEM)
1736 NVolSetErrors(vol);
1737 return err;
1738}
1739
1740/*
1741 * The MFT inode has special locking, so teach the lock validator
1742 * about this by splitting off the locking rules of the MFT from
1743 * the locking rules of other inodes. The MFT inode can never be
1744 * accessed from the VFS side (or even internally), only by the
1745 * map_mft functions.
1746 */
1747static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1748
1749/**
1750 * ntfs_read_inode_mount - special read_inode for mount time use only
1751 * @vi: inode to read
1752 *
1753 * Read inode FILE_MFT at mount time, only called with super_block lock
1754 * held from within the read_super() code path.
1755 *
1756 * This function exists because when it is called the page cache for $MFT/$DATA
1757 * is not initialized and hence we cannot get at the contents of mft records
1758 * by calling map_mft_record*().
1759 *
1760 * Further it needs to cope with the circular references problem, i.e. cannot
1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762 * we do not know where the other extent mft records are yet and again, because
1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1764 * attribute list is actually present in $MFT inode.
1765 *
1766 * We solve these problems by starting with the $DATA attribute before anything
1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1770 * sufficient information for the next step to complete.
1771 *
1772 * This should work but there are two possible pit falls (see inline comments
1773 * below), but only time will tell if they are real pits or just smoke...
1774 */
1775int ntfs_read_inode_mount(struct inode *vi)
1776{
1777 VCN next_vcn, last_vcn, highest_vcn;
1778 s64 block;
1779 struct super_block *sb = vi->i_sb;
1780 ntfs_volume *vol = NTFS_SB(sb);
1781 struct buffer_head *bh;
1782 ntfs_inode *ni;
1783 MFT_RECORD *m = NULL;
1784 ATTR_RECORD *a;
1785 ntfs_attr_search_ctx *ctx;
1786 unsigned int i, nr_blocks;
1787 int err;
1788
1789 ntfs_debug("Entering.");
1790
1791 /* Initialize the ntfs specific part of @vi. */
1792 ntfs_init_big_inode(vi);
1793
1794 ni = NTFS_I(vi);
1795
1796 /* Setup the data attribute. It is special as it is mst protected. */
1797 NInoSetNonResident(ni);
1798 NInoSetMstProtected(ni);
1799 NInoSetSparseDisabled(ni);
1800 ni->type = AT_DATA;
1801 ni->name = NULL;
1802 ni->name_len = 0;
1803 /*
1804 * This sets up our little cheat allowing us to reuse the async read io
1805 * completion handler for directories.
1806 */
1807 ni->itype.index.block_size = vol->mft_record_size;
1808 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1809
1810 /* Very important! Needed to be able to call map_mft_record*(). */
1811 vol->mft_ino = vi;
1812
1813 /* Allocate enough memory to read the first mft record. */
1814 if (vol->mft_record_size > 64 * 1024) {
1815 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1816 vol->mft_record_size);
1817 goto err_out;
1818 }
1819 i = vol->mft_record_size;
1820 if (i < sb->s_blocksize)
1821 i = sb->s_blocksize;
1822 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1823 if (!m) {
1824 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1825 goto err_out;
1826 }
1827
1828 /* Determine the first block of the $MFT/$DATA attribute. */
1829 block = vol->mft_lcn << vol->cluster_size_bits >>
1830 sb->s_blocksize_bits;
1831 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1832 if (!nr_blocks)
1833 nr_blocks = 1;
1834
1835 /* Load $MFT/$DATA's first mft record. */
1836 for (i = 0; i < nr_blocks; i++) {
1837 bh = sb_bread(sb, block++);
1838 if (!bh) {
1839 ntfs_error(sb, "Device read failed.");
1840 goto err_out;
1841 }
1842 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1843 sb->s_blocksize);
1844 brelse(bh);
1845 }
1846
1847 /* Apply the mst fixups. */
1848 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1849 /* FIXME: Try to use the $MFTMirr now. */
1850 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1851 goto err_out;
1852 }
1853
1854 /* Need this to sanity check attribute list references to $MFT. */
1855 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1856
1857 /* Provides readpage() and sync_page() for map_mft_record(). */
1858 vi->i_mapping->a_ops = &ntfs_mst_aops;
1859
1860 ctx = ntfs_attr_get_search_ctx(ni, m);
1861 if (!ctx) {
1862 err = -ENOMEM;
1863 goto err_out;
1864 }
1865
1866 /* Find the attribute list attribute if present. */
1867 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1868 if (err) {
1869 if (unlikely(err != -ENOENT)) {
1870 ntfs_error(sb, "Failed to lookup attribute list "
1871 "attribute. You should run chkdsk.");
1872 goto put_err_out;
1873 }
1874 } else /* if (!err) */ {
1875 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1876 u8 *al_end;
1877 static const char *es = " Not allowed. $MFT is corrupt. "
1878 "You should run chkdsk.";
1879
1880 ntfs_debug("Attribute list attribute found in $MFT.");
1881 NInoSetAttrList(ni);
1882 a = ctx->attr;
1883 if (a->flags & ATTR_COMPRESSION_MASK) {
1884 ntfs_error(sb, "Attribute list attribute is "
1885 "compressed.%s", es);
1886 goto put_err_out;
1887 }
1888 if (a->flags & ATTR_IS_ENCRYPTED ||
1889 a->flags & ATTR_IS_SPARSE) {
1890 if (a->non_resident) {
1891 ntfs_error(sb, "Non-resident attribute list "
1892 "attribute is encrypted/"
1893 "sparse.%s", es);
1894 goto put_err_out;
1895 }
1896 ntfs_warning(sb, "Resident attribute list attribute "
1897 "in $MFT system file is marked "
1898 "encrypted/sparse which is not true. "
1899 "However, Windows allows this and "
1900 "chkdsk does not detect or correct it "
1901 "so we will just ignore the invalid "
1902 "flags and pretend they are not set.");
1903 }
1904 /* Now allocate memory for the attribute list. */
1905 ni->attr_list_size = (u32)ntfs_attr_size(a);
1906 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1907 if (!ni->attr_list) {
1908 ntfs_error(sb, "Not enough memory to allocate buffer "
1909 "for attribute list.");
1910 goto put_err_out;
1911 }
1912 if (a->non_resident) {
1913 NInoSetAttrListNonResident(ni);
1914 if (a->data.non_resident.lowest_vcn) {
1915 ntfs_error(sb, "Attribute list has non zero "
1916 "lowest_vcn. $MFT is corrupt. "
1917 "You should run chkdsk.");
1918 goto put_err_out;
1919 }
1920 /* Setup the runlist. */
1921 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1922 a, NULL);
1923 if (IS_ERR(ni->attr_list_rl.rl)) {
1924 err = PTR_ERR(ni->attr_list_rl.rl);
1925 ni->attr_list_rl.rl = NULL;
1926 ntfs_error(sb, "Mapping pairs decompression "
1927 "failed with error code %i.",
1928 -err);
1929 goto put_err_out;
1930 }
1931 /* Now load the attribute list. */
1932 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1933 ni->attr_list, ni->attr_list_size,
1934 sle64_to_cpu(a->data.
1935 non_resident.initialized_size)))) {
1936 ntfs_error(sb, "Failed to load attribute list "
1937 "attribute with error code %i.",
1938 -err);
1939 goto put_err_out;
1940 }
1941 } else /* if (!ctx.attr->non_resident) */ {
1942 if ((u8*)a + le16_to_cpu(
1943 a->data.resident.value_offset) +
1944 le32_to_cpu(
1945 a->data.resident.value_length) >
1946 (u8*)ctx->mrec + vol->mft_record_size) {
1947 ntfs_error(sb, "Corrupt attribute list "
1948 "attribute.");
1949 goto put_err_out;
1950 }
1951 /* Now copy the attribute list. */
1952 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1953 a->data.resident.value_offset),
1954 le32_to_cpu(
1955 a->data.resident.value_length));
1956 }
1957 /* The attribute list is now setup in memory. */
1958 /*
1959 * FIXME: I don't know if this case is actually possible.
1960 * According to logic it is not possible but I have seen too
1961 * many weird things in MS software to rely on logic... Thus we
1962 * perform a manual search and make sure the first $MFT/$DATA
1963 * extent is in the base inode. If it is not we abort with an
1964 * error and if we ever see a report of this error we will need
1965 * to do some magic in order to have the necessary mft record
1966 * loaded and in the right place in the page cache. But
1967 * hopefully logic will prevail and this never happens...
1968 */
1969 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1970 al_end = (u8*)al_entry + ni->attr_list_size;
1971 for (;; al_entry = next_al_entry) {
1972 /* Out of bounds check. */
1973 if ((u8*)al_entry < ni->attr_list ||
1974 (u8*)al_entry > al_end)
1975 goto em_put_err_out;
1976 /* Catch the end of the attribute list. */
1977 if ((u8*)al_entry == al_end)
1978 goto em_put_err_out;
1979 if (!al_entry->length)
1980 goto em_put_err_out;
1981 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1982 le16_to_cpu(al_entry->length) > al_end)
1983 goto em_put_err_out;
1984 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1985 le16_to_cpu(al_entry->length));
1986 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1987 goto em_put_err_out;
1988 if (AT_DATA != al_entry->type)
1989 continue;
1990 /* We want an unnamed attribute. */
1991 if (al_entry->name_length)
1992 goto em_put_err_out;
1993 /* Want the first entry, i.e. lowest_vcn == 0. */
1994 if (al_entry->lowest_vcn)
1995 goto em_put_err_out;
1996 /* First entry has to be in the base mft record. */
1997 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1998 /* MFT references do not match, logic fails. */
1999 ntfs_error(sb, "BUG: The first $DATA extent "
2000 "of $MFT is not in the base "
2001 "mft record. Please report "
2002 "you saw this message to "
2003 "linux-ntfs-dev@lists."
2004 "sourceforge.net");
2005 goto put_err_out;
2006 } else {
2007 /* Sequence numbers must match. */
2008 if (MSEQNO_LE(al_entry->mft_reference) !=
2009 ni->seq_no)
2010 goto em_put_err_out;
2011 /* Got it. All is ok. We can stop now. */
2012 break;
2013 }
2014 }
2015 }
2016
2017 ntfs_attr_reinit_search_ctx(ctx);
2018
2019 /* Now load all attribute extents. */
2020 a = NULL;
2021 next_vcn = last_vcn = highest_vcn = 0;
2022 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2023 ctx))) {
2024 runlist_element *nrl;
2025
2026 /* Cache the current attribute. */
2027 a = ctx->attr;
2028 /* $MFT must be non-resident. */
2029 if (!a->non_resident) {
2030 ntfs_error(sb, "$MFT must be non-resident but a "
2031 "resident extent was found. $MFT is "
2032 "corrupt. Run chkdsk.");
2033 goto put_err_out;
2034 }
2035 /* $MFT must be uncompressed and unencrypted. */
2036 if (a->flags & ATTR_COMPRESSION_MASK ||
2037 a->flags & ATTR_IS_ENCRYPTED ||
2038 a->flags & ATTR_IS_SPARSE) {
2039 ntfs_error(sb, "$MFT must be uncompressed, "
2040 "non-sparse, and unencrypted but a "
2041 "compressed/sparse/encrypted extent "
2042 "was found. $MFT is corrupt. Run "
2043 "chkdsk.");
2044 goto put_err_out;
2045 }
2046 /*
2047 * Decompress the mapping pairs array of this extent and merge
2048 * the result into the existing runlist. No need for locking
2049 * as we have exclusive access to the inode at this time and we
2050 * are a mount in progress task, too.
2051 */
2052 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2053 if (IS_ERR(nrl)) {
2054 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2055 "failed with error code %ld. $MFT is "
2056 "corrupt.", PTR_ERR(nrl));
2057 goto put_err_out;
2058 }
2059 ni->runlist.rl = nrl;
2060
2061 /* Are we in the first extent? */
2062 if (!next_vcn) {
2063 if (a->data.non_resident.lowest_vcn) {
2064 ntfs_error(sb, "First extent of $DATA "
2065 "attribute has non zero "
2066 "lowest_vcn. $MFT is corrupt. "
2067 "You should run chkdsk.");
2068 goto put_err_out;
2069 }
2070 /* Get the last vcn in the $DATA attribute. */
2071 last_vcn = sle64_to_cpu(
2072 a->data.non_resident.allocated_size)
2073 >> vol->cluster_size_bits;
2074 /* Fill in the inode size. */
2075 vi->i_size = sle64_to_cpu(
2076 a->data.non_resident.data_size);
2077 ni->initialized_size = sle64_to_cpu(
2078 a->data.non_resident.initialized_size);
2079 ni->allocated_size = sle64_to_cpu(
2080 a->data.non_resident.allocated_size);
2081 /*
2082 * Verify the number of mft records does not exceed
2083 * 2^32 - 1.
2084 */
2085 if ((vi->i_size >> vol->mft_record_size_bits) >=
2086 (1ULL << 32)) {
2087 ntfs_error(sb, "$MFT is too big! Aborting.");
2088 goto put_err_out;
2089 }
2090 /*
2091 * We have got the first extent of the runlist for
2092 * $MFT which means it is now relatively safe to call
2093 * the normal ntfs_read_inode() function.
2094 * Complete reading the inode, this will actually
2095 * re-read the mft record for $MFT, this time entering
2096 * it into the page cache with which we complete the
2097 * kick start of the volume. It should be safe to do
2098 * this now as the first extent of $MFT/$DATA is
2099 * already known and we would hope that we don't need
2100 * further extents in order to find the other
2101 * attributes belonging to $MFT. Only time will tell if
2102 * this is really the case. If not we will have to play
2103 * magic at this point, possibly duplicating a lot of
2104 * ntfs_read_inode() at this point. We will need to
2105 * ensure we do enough of its work to be able to call
2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107 * hope this never happens...
2108 */
2109 ntfs_read_locked_inode(vi);
2110 if (is_bad_inode(vi)) {
2111 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2112 "failed. BUG or corrupt $MFT. "
2113 "Run chkdsk and if no errors "
2114 "are found, please report you "
2115 "saw this message to "
2116 "linux-ntfs-dev@lists."
2117 "sourceforge.net");
2118 ntfs_attr_put_search_ctx(ctx);
2119 /* Revert to the safe super operations. */
2120 ntfs_free(m);
2121 return -1;
2122 }
2123 /*
2124 * Re-initialize some specifics about $MFT's inode as
2125 * ntfs_read_inode() will have set up the default ones.
2126 */
2127 /* Set uid and gid to root. */
2128 vi->i_uid = GLOBAL_ROOT_UID;
2129 vi->i_gid = GLOBAL_ROOT_GID;
2130 /* Regular file. No access for anyone. */
2131 vi->i_mode = S_IFREG;
2132 /* No VFS initiated operations allowed for $MFT. */
2133 vi->i_op = &ntfs_empty_inode_ops;
2134 vi->i_fop = &ntfs_empty_file_ops;
2135 }
2136
2137 /* Get the lowest vcn for the next extent. */
2138 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2139 next_vcn = highest_vcn + 1;
2140
2141 /* Only one extent or error, which we catch below. */
2142 if (next_vcn <= 0)
2143 break;
2144
2145 /* Avoid endless loops due to corruption. */
2146 if (next_vcn < sle64_to_cpu(
2147 a->data.non_resident.lowest_vcn)) {
2148 ntfs_error(sb, "$MFT has corrupt attribute list "
2149 "attribute. Run chkdsk.");
2150 goto put_err_out;
2151 }
2152 }
2153 if (err != -ENOENT) {
2154 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2155 "$MFT is corrupt. Run chkdsk.");
2156 goto put_err_out;
2157 }
2158 if (!a) {
2159 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2160 "corrupt. Run chkdsk.");
2161 goto put_err_out;
2162 }
2163 if (highest_vcn && highest_vcn != last_vcn - 1) {
2164 ntfs_error(sb, "Failed to load the complete runlist for "
2165 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2166 "Run chkdsk.");
2167 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2168 (unsigned long long)highest_vcn,
2169 (unsigned long long)last_vcn - 1);
2170 goto put_err_out;
2171 }
2172 ntfs_attr_put_search_ctx(ctx);
2173 ntfs_debug("Done.");
2174 ntfs_free(m);
2175
2176 /*
2177 * Split the locking rules of the MFT inode from the
2178 * locking rules of other inodes:
2179 */
2180 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2181 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2182
2183 return 0;
2184
2185em_put_err_out:
2186 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2187 "attribute list. $MFT is corrupt. Run chkdsk.");
2188put_err_out:
2189 ntfs_attr_put_search_ctx(ctx);
2190err_out:
2191 ntfs_error(sb, "Failed. Marking inode as bad.");
2192 make_bad_inode(vi);
2193 ntfs_free(m);
2194 return -1;
2195}
2196
2197static void __ntfs_clear_inode(ntfs_inode *ni)
2198{
2199 /* Free all alocated memory. */
2200 down_write(&ni->runlist.lock);
2201 if (ni->runlist.rl) {
2202 ntfs_free(ni->runlist.rl);
2203 ni->runlist.rl = NULL;
2204 }
2205 up_write(&ni->runlist.lock);
2206
2207 if (ni->attr_list) {
2208 ntfs_free(ni->attr_list);
2209 ni->attr_list = NULL;
2210 }
2211
2212 down_write(&ni->attr_list_rl.lock);
2213 if (ni->attr_list_rl.rl) {
2214 ntfs_free(ni->attr_list_rl.rl);
2215 ni->attr_list_rl.rl = NULL;
2216 }
2217 up_write(&ni->attr_list_rl.lock);
2218
2219 if (ni->name_len && ni->name != I30) {
2220 /* Catch bugs... */
2221 BUG_ON(!ni->name);
2222 kfree(ni->name);
2223 }
2224}
2225
2226void ntfs_clear_extent_inode(ntfs_inode *ni)
2227{
2228 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2229
2230 BUG_ON(NInoAttr(ni));
2231 BUG_ON(ni->nr_extents != -1);
2232
2233#ifdef NTFS_RW
2234 if (NInoDirty(ni)) {
2235 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2236 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2237 "Losing data! This is a BUG!!!");
2238 // FIXME: Do something!!!
2239 }
2240#endif /* NTFS_RW */
2241
2242 __ntfs_clear_inode(ni);
2243
2244 /* Bye, bye... */
2245 ntfs_destroy_extent_inode(ni);
2246}
2247
2248/**
2249 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2250 * @vi: vfs inode pending annihilation
2251 *
2252 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2253 * is called, which deallocates all memory belonging to the NTFS specific part
2254 * of the inode and returns.
2255 *
2256 * If the MFT record is dirty, we commit it before doing anything else.
2257 */
2258void ntfs_evict_big_inode(struct inode *vi)
2259{
2260 ntfs_inode *ni = NTFS_I(vi);
2261
2262 truncate_inode_pages_final(&vi->i_data);
2263 clear_inode(vi);
2264
2265#ifdef NTFS_RW
2266 if (NInoDirty(ni)) {
2267 bool was_bad = (is_bad_inode(vi));
2268
2269 /* Committing the inode also commits all extent inodes. */
2270 ntfs_commit_inode(vi);
2271
2272 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2273 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2274 "0x%lx. Losing data!", vi->i_ino);
2275 // FIXME: Do something!!!
2276 }
2277 }
2278#endif /* NTFS_RW */
2279
2280 /* No need to lock at this stage as no one else has a reference. */
2281 if (ni->nr_extents > 0) {
2282 int i;
2283
2284 for (i = 0; i < ni->nr_extents; i++)
2285 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2286 kfree(ni->ext.extent_ntfs_inos);
2287 }
2288
2289 __ntfs_clear_inode(ni);
2290
2291 if (NInoAttr(ni)) {
2292 /* Release the base inode if we are holding it. */
2293 if (ni->nr_extents == -1) {
2294 iput(VFS_I(ni->ext.base_ntfs_ino));
2295 ni->nr_extents = 0;
2296 ni->ext.base_ntfs_ino = NULL;
2297 }
2298 }
2299 return;
2300}
2301
2302/**
2303 * ntfs_show_options - show mount options in /proc/mounts
2304 * @sf: seq_file in which to write our mount options
2305 * @root: root of the mounted tree whose mount options to display
2306 *
2307 * Called by the VFS once for each mounted ntfs volume when someone reads
2308 * /proc/mounts in order to display the NTFS specific mount options of each
2309 * mount. The mount options of fs specified by @root are written to the seq file
2310 * @sf and success is returned.
2311 */
2312int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2313{
2314 ntfs_volume *vol = NTFS_SB(root->d_sb);
2315 int i;
2316
2317 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2318 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2319 if (vol->fmask == vol->dmask)
2320 seq_printf(sf, ",umask=0%o", vol->fmask);
2321 else {
2322 seq_printf(sf, ",fmask=0%o", vol->fmask);
2323 seq_printf(sf, ",dmask=0%o", vol->dmask);
2324 }
2325 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2326 if (NVolCaseSensitive(vol))
2327 seq_printf(sf, ",case_sensitive");
2328 if (NVolShowSystemFiles(vol))
2329 seq_printf(sf, ",show_sys_files");
2330 if (!NVolSparseEnabled(vol))
2331 seq_printf(sf, ",disable_sparse");
2332 for (i = 0; on_errors_arr[i].val; i++) {
2333 if (on_errors_arr[i].val & vol->on_errors)
2334 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2335 }
2336 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2337 return 0;
2338}
2339
2340#ifdef NTFS_RW
2341
2342static const char *es = " Leaving inconsistent metadata. Unmount and run "
2343 "chkdsk.";
2344
2345/**
2346 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2347 * @vi: inode for which the i_size was changed
2348 *
2349 * We only support i_size changes for normal files at present, i.e. not
2350 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2351 * below.
2352 *
2353 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2354 * that the change is allowed.
2355 *
2356 * This implies for us that @vi is a file inode rather than a directory, index,
2357 * or attribute inode as well as that @vi is a base inode.
2358 *
2359 * Returns 0 on success or -errno on error.
2360 *
2361 * Called with ->i_mutex held.
2362 */
2363int ntfs_truncate(struct inode *vi)
2364{
2365 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2366 VCN highest_vcn;
2367 unsigned long flags;
2368 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2369 ntfs_volume *vol = ni->vol;
2370 ntfs_attr_search_ctx *ctx;
2371 MFT_RECORD *m;
2372 ATTR_RECORD *a;
2373 const char *te = " Leaving file length out of sync with i_size.";
2374 int err, mp_size, size_change, alloc_change;
2375 u32 attr_len;
2376
2377 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2378 BUG_ON(NInoAttr(ni));
2379 BUG_ON(S_ISDIR(vi->i_mode));
2380 BUG_ON(NInoMstProtected(ni));
2381 BUG_ON(ni->nr_extents < 0);
2382retry_truncate:
2383 /*
2384 * Lock the runlist for writing and map the mft record to ensure it is
2385 * safe to mess with the attribute runlist and sizes.
2386 */
2387 down_write(&ni->runlist.lock);
2388 if (!NInoAttr(ni))
2389 base_ni = ni;
2390 else
2391 base_ni = ni->ext.base_ntfs_ino;
2392 m = map_mft_record(base_ni);
2393 if (IS_ERR(m)) {
2394 err = PTR_ERR(m);
2395 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2396 "(error code %d).%s", vi->i_ino, err, te);
2397 ctx = NULL;
2398 m = NULL;
2399 goto old_bad_out;
2400 }
2401 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2402 if (unlikely(!ctx)) {
2403 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2404 "inode 0x%lx (not enough memory).%s",
2405 vi->i_ino, te);
2406 err = -ENOMEM;
2407 goto old_bad_out;
2408 }
2409 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2410 CASE_SENSITIVE, 0, NULL, 0, ctx);
2411 if (unlikely(err)) {
2412 if (err == -ENOENT) {
2413 ntfs_error(vi->i_sb, "Open attribute is missing from "
2414 "mft record. Inode 0x%lx is corrupt. "
2415 "Run chkdsk.%s", vi->i_ino, te);
2416 err = -EIO;
2417 } else
2418 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2419 "inode 0x%lx (error code %d).%s",
2420 vi->i_ino, err, te);
2421 goto old_bad_out;
2422 }
2423 m = ctx->mrec;
2424 a = ctx->attr;
2425 /*
2426 * The i_size of the vfs inode is the new size for the attribute value.
2427 */
2428 new_size = i_size_read(vi);
2429 /* The current size of the attribute value is the old size. */
2430 old_size = ntfs_attr_size(a);
2431 /* Calculate the new allocated size. */
2432 if (NInoNonResident(ni))
2433 new_alloc_size = (new_size + vol->cluster_size - 1) &
2434 ~(s64)vol->cluster_size_mask;
2435 else
2436 new_alloc_size = (new_size + 7) & ~7;
2437 /* The current allocated size is the old allocated size. */
2438 read_lock_irqsave(&ni->size_lock, flags);
2439 old_alloc_size = ni->allocated_size;
2440 read_unlock_irqrestore(&ni->size_lock, flags);
2441 /*
2442 * The change in the file size. This will be 0 if no change, >0 if the
2443 * size is growing, and <0 if the size is shrinking.
2444 */
2445 size_change = -1;
2446 if (new_size - old_size >= 0) {
2447 size_change = 1;
2448 if (new_size == old_size)
2449 size_change = 0;
2450 }
2451 /* As above for the allocated size. */
2452 alloc_change = -1;
2453 if (new_alloc_size - old_alloc_size >= 0) {
2454 alloc_change = 1;
2455 if (new_alloc_size == old_alloc_size)
2456 alloc_change = 0;
2457 }
2458 /*
2459 * If neither the size nor the allocation are being changed there is
2460 * nothing to do.
2461 */
2462 if (!size_change && !alloc_change)
2463 goto unm_done;
2464 /* If the size is changing, check if new size is allowed in $AttrDef. */
2465 if (size_change) {
2466 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2467 if (unlikely(err)) {
2468 if (err == -ERANGE) {
2469 ntfs_error(vol->sb, "Truncate would cause the "
2470 "inode 0x%lx to %simum size "
2471 "for its attribute type "
2472 "(0x%x). Aborting truncate.",
2473 vi->i_ino,
2474 new_size > old_size ? "exceed "
2475 "the max" : "go under the min",
2476 le32_to_cpu(ni->type));
2477 err = -EFBIG;
2478 } else {
2479 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2480 "attribute type 0x%x. "
2481 "Aborting truncate.",
2482 vi->i_ino,
2483 le32_to_cpu(ni->type));
2484 err = -EIO;
2485 }
2486 /* Reset the vfs inode size to the old size. */
2487 i_size_write(vi, old_size);
2488 goto err_out;
2489 }
2490 }
2491 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2492 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2493 "supported yet for %s files, ignoring.",
2494 NInoCompressed(ni) ? "compressed" :
2495 "encrypted");
2496 err = -EOPNOTSUPP;
2497 goto bad_out;
2498 }
2499 if (a->non_resident)
2500 goto do_non_resident_truncate;
2501 BUG_ON(NInoNonResident(ni));
2502 /* Resize the attribute record to best fit the new attribute size. */
2503 if (new_size < vol->mft_record_size &&
2504 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2505 /* The resize succeeded! */
2506 flush_dcache_mft_record_page(ctx->ntfs_ino);
2507 mark_mft_record_dirty(ctx->ntfs_ino);
2508 write_lock_irqsave(&ni->size_lock, flags);
2509 /* Update the sizes in the ntfs inode and all is done. */
2510 ni->allocated_size = le32_to_cpu(a->length) -
2511 le16_to_cpu(a->data.resident.value_offset);
2512 /*
2513 * Note ntfs_resident_attr_value_resize() has already done any
2514 * necessary data clearing in the attribute record. When the
2515 * file is being shrunk vmtruncate() will already have cleared
2516 * the top part of the last partial page, i.e. since this is
2517 * the resident case this is the page with index 0. However,
2518 * when the file is being expanded, the page cache page data
2519 * between the old data_size, i.e. old_size, and the new_size
2520 * has not been zeroed. Fortunately, we do not need to zero it
2521 * either since on one hand it will either already be zero due
2522 * to both readpage and writepage clearing partial page data
2523 * beyond i_size in which case there is nothing to do or in the
2524 * case of the file being mmap()ped at the same time, POSIX
2525 * specifies that the behaviour is unspecified thus we do not
2526 * have to do anything. This means that in our implementation
2527 * in the rare case that the file is mmap()ped and a write
2528 * occurred into the mmap()ped region just beyond the file size
2529 * and writepage has not yet been called to write out the page
2530 * (which would clear the area beyond the file size) and we now
2531 * extend the file size to incorporate this dirty region
2532 * outside the file size, a write of the page would result in
2533 * this data being written to disk instead of being cleared.
2534 * Given both POSIX and the Linux mmap(2) man page specify that
2535 * this corner case is undefined, we choose to leave it like
2536 * that as this is much simpler for us as we cannot lock the
2537 * relevant page now since we are holding too many ntfs locks
2538 * which would result in a lock reversal deadlock.
2539 */
2540 ni->initialized_size = new_size;
2541 write_unlock_irqrestore(&ni->size_lock, flags);
2542 goto unm_done;
2543 }
2544 /* If the above resize failed, this must be an attribute extension. */
2545 BUG_ON(size_change < 0);
2546 /*
2547 * We have to drop all the locks so we can call
2548 * ntfs_attr_make_non_resident(). This could be optimised by try-
2549 * locking the first page cache page and only if that fails dropping
2550 * the locks, locking the page, and redoing all the locking and
2551 * lookups. While this would be a huge optimisation, it is not worth
2552 * it as this is definitely a slow code path as it only ever can happen
2553 * once for any given file.
2554 */
2555 ntfs_attr_put_search_ctx(ctx);
2556 unmap_mft_record(base_ni);
2557 up_write(&ni->runlist.lock);
2558 /*
2559 * Not enough space in the mft record, try to make the attribute
2560 * non-resident and if successful restart the truncation process.
2561 */
2562 err = ntfs_attr_make_non_resident(ni, old_size);
2563 if (likely(!err))
2564 goto retry_truncate;
2565 /*
2566 * Could not make non-resident. If this is due to this not being
2567 * permitted for this attribute type or there not being enough space,
2568 * try to make other attributes non-resident. Otherwise fail.
2569 */
2570 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2571 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2572 "type 0x%x, because the conversion from "
2573 "resident to non-resident attribute failed "
2574 "with error code %i.", vi->i_ino,
2575 (unsigned)le32_to_cpu(ni->type), err);
2576 if (err != -ENOMEM)
2577 err = -EIO;
2578 goto conv_err_out;
2579 }
2580 /* TODO: Not implemented from here, abort. */
2581 if (err == -ENOSPC)
2582 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2583 "disk for the non-resident attribute value. "
2584 "This case is not implemented yet.");
2585 else /* if (err == -EPERM) */
2586 ntfs_error(vol->sb, "This attribute type may not be "
2587 "non-resident. This case is not implemented "
2588 "yet.");
2589 err = -EOPNOTSUPP;
2590 goto conv_err_out;
2591#if 0
2592 // TODO: Attempt to make other attributes non-resident.
2593 if (!err)
2594 goto do_resident_extend;
2595 /*
2596 * Both the attribute list attribute and the standard information
2597 * attribute must remain in the base inode. Thus, if this is one of
2598 * these attributes, we have to try to move other attributes out into
2599 * extent mft records instead.
2600 */
2601 if (ni->type == AT_ATTRIBUTE_LIST ||
2602 ni->type == AT_STANDARD_INFORMATION) {
2603 // TODO: Attempt to move other attributes into extent mft
2604 // records.
2605 err = -EOPNOTSUPP;
2606 if (!err)
2607 goto do_resident_extend;
2608 goto err_out;
2609 }
2610 // TODO: Attempt to move this attribute to an extent mft record, but
2611 // only if it is not already the only attribute in an mft record in
2612 // which case there would be nothing to gain.
2613 err = -EOPNOTSUPP;
2614 if (!err)
2615 goto do_resident_extend;
2616 /* There is nothing we can do to make enough space. )-: */
2617 goto err_out;
2618#endif
2619do_non_resident_truncate:
2620 BUG_ON(!NInoNonResident(ni));
2621 if (alloc_change < 0) {
2622 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2623 if (highest_vcn > 0 &&
2624 old_alloc_size >> vol->cluster_size_bits >
2625 highest_vcn + 1) {
2626 /*
2627 * This attribute has multiple extents. Not yet
2628 * supported.
2629 */
2630 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2631 "attribute type 0x%x, because the "
2632 "attribute is highly fragmented (it "
2633 "consists of multiple extents) and "
2634 "this case is not implemented yet.",
2635 vi->i_ino,
2636 (unsigned)le32_to_cpu(ni->type));
2637 err = -EOPNOTSUPP;
2638 goto bad_out;
2639 }
2640 }
2641 /*
2642 * If the size is shrinking, need to reduce the initialized_size and
2643 * the data_size before reducing the allocation.
2644 */
2645 if (size_change < 0) {
2646 /*
2647 * Make the valid size smaller (i_size is already up-to-date).
2648 */
2649 write_lock_irqsave(&ni->size_lock, flags);
2650 if (new_size < ni->initialized_size) {
2651 ni->initialized_size = new_size;
2652 a->data.non_resident.initialized_size =
2653 cpu_to_sle64(new_size);
2654 }
2655 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2656 write_unlock_irqrestore(&ni->size_lock, flags);
2657 flush_dcache_mft_record_page(ctx->ntfs_ino);
2658 mark_mft_record_dirty(ctx->ntfs_ino);
2659 /* If the allocated size is not changing, we are done. */
2660 if (!alloc_change)
2661 goto unm_done;
2662 /*
2663 * If the size is shrinking it makes no sense for the
2664 * allocation to be growing.
2665 */
2666 BUG_ON(alloc_change > 0);
2667 } else /* if (size_change >= 0) */ {
2668 /*
2669 * The file size is growing or staying the same but the
2670 * allocation can be shrinking, growing or staying the same.
2671 */
2672 if (alloc_change > 0) {
2673 /*
2674 * We need to extend the allocation and possibly update
2675 * the data size. If we are updating the data size,
2676 * since we are not touching the initialized_size we do
2677 * not need to worry about the actual data on disk.
2678 * And as far as the page cache is concerned, there
2679 * will be no pages beyond the old data size and any
2680 * partial region in the last page between the old and
2681 * new data size (or the end of the page if the new
2682 * data size is outside the page) does not need to be
2683 * modified as explained above for the resident
2684 * attribute truncate case. To do this, we simply drop
2685 * the locks we hold and leave all the work to our
2686 * friendly helper ntfs_attr_extend_allocation().
2687 */
2688 ntfs_attr_put_search_ctx(ctx);
2689 unmap_mft_record(base_ni);
2690 up_write(&ni->runlist.lock);
2691 err = ntfs_attr_extend_allocation(ni, new_size,
2692 size_change > 0 ? new_size : -1, -1);
2693 /*
2694 * ntfs_attr_extend_allocation() will have done error
2695 * output already.
2696 */
2697 goto done;
2698 }
2699 if (!alloc_change)
2700 goto alloc_done;
2701 }
2702 /* alloc_change < 0 */
2703 /* Free the clusters. */
2704 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2705 vol->cluster_size_bits, -1, ctx);
2706 m = ctx->mrec;
2707 a = ctx->attr;
2708 if (unlikely(nr_freed < 0)) {
2709 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2710 "%lli). Unmount and run chkdsk to recover "
2711 "the lost cluster(s).", (long long)nr_freed);
2712 NVolSetErrors(vol);
2713 nr_freed = 0;
2714 }
2715 /* Truncate the runlist. */
2716 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2717 new_alloc_size >> vol->cluster_size_bits);
2718 /*
2719 * If the runlist truncation failed and/or the search context is no
2720 * longer valid, we cannot resize the attribute record or build the
2721 * mapping pairs array thus we mark the inode bad so that no access to
2722 * the freed clusters can happen.
2723 */
2724 if (unlikely(err || IS_ERR(m))) {
2725 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2726 IS_ERR(m) ?
2727 "restore attribute search context" :
2728 "truncate attribute runlist",
2729 IS_ERR(m) ? PTR_ERR(m) : err, es);
2730 err = -EIO;
2731 goto bad_out;
2732 }
2733 /* Get the size for the shrunk mapping pairs array for the runlist. */
2734 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2735 if (unlikely(mp_size <= 0)) {
2736 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2737 "attribute type 0x%x, because determining the "
2738 "size for the mapping pairs failed with error "
2739 "code %i.%s", vi->i_ino,
2740 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2741 err = -EIO;
2742 goto bad_out;
2743 }
2744 /*
2745 * Shrink the attribute record for the new mapping pairs array. Note,
2746 * this cannot fail since we are making the attribute smaller thus by
2747 * definition there is enough space to do so.
2748 */
2749 attr_len = le32_to_cpu(a->length);
2750 err = ntfs_attr_record_resize(m, a, mp_size +
2751 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2752 BUG_ON(err);
2753 /*
2754 * Generate the mapping pairs array directly into the attribute record.
2755 */
2756 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2757 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2758 mp_size, ni->runlist.rl, 0, -1, NULL);
2759 if (unlikely(err)) {
2760 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2761 "attribute type 0x%x, because building the "
2762 "mapping pairs failed with error code %i.%s",
2763 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2764 err, es);
2765 err = -EIO;
2766 goto bad_out;
2767 }
2768 /* Update the allocated/compressed size as well as the highest vcn. */
2769 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2770 vol->cluster_size_bits) - 1);
2771 write_lock_irqsave(&ni->size_lock, flags);
2772 ni->allocated_size = new_alloc_size;
2773 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2774 if (NInoSparse(ni) || NInoCompressed(ni)) {
2775 if (nr_freed) {
2776 ni->itype.compressed.size -= nr_freed <<
2777 vol->cluster_size_bits;
2778 BUG_ON(ni->itype.compressed.size < 0);
2779 a->data.non_resident.compressed_size = cpu_to_sle64(
2780 ni->itype.compressed.size);
2781 vi->i_blocks = ni->itype.compressed.size >> 9;
2782 }
2783 } else
2784 vi->i_blocks = new_alloc_size >> 9;
2785 write_unlock_irqrestore(&ni->size_lock, flags);
2786 /*
2787 * We have shrunk the allocation. If this is a shrinking truncate we
2788 * have already dealt with the initialized_size and the data_size above
2789 * and we are done. If the truncate is only changing the allocation
2790 * and not the data_size, we are also done. If this is an extending
2791 * truncate, need to extend the data_size now which is ensured by the
2792 * fact that @size_change is positive.
2793 */
2794alloc_done:
2795 /*
2796 * If the size is growing, need to update it now. If it is shrinking,
2797 * we have already updated it above (before the allocation change).
2798 */
2799 if (size_change > 0)
2800 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2801 /* Ensure the modified mft record is written out. */
2802 flush_dcache_mft_record_page(ctx->ntfs_ino);
2803 mark_mft_record_dirty(ctx->ntfs_ino);
2804unm_done:
2805 ntfs_attr_put_search_ctx(ctx);
2806 unmap_mft_record(base_ni);
2807 up_write(&ni->runlist.lock);
2808done:
2809 /* Update the mtime and ctime on the base inode. */
2810 /* normally ->truncate shouldn't update ctime or mtime,
2811 * but ntfs did before so it got a copy & paste version
2812 * of file_update_time. one day someone should fix this
2813 * for real.
2814 */
2815 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2816 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2817 int sync_it = 0;
2818
2819 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2820 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2821 sync_it = 1;
2822 VFS_I(base_ni)->i_mtime = now;
2823 VFS_I(base_ni)->i_ctime = now;
2824
2825 if (sync_it)
2826 mark_inode_dirty_sync(VFS_I(base_ni));
2827 }
2828
2829 if (likely(!err)) {
2830 NInoClearTruncateFailed(ni);
2831 ntfs_debug("Done.");
2832 }
2833 return err;
2834old_bad_out:
2835 old_size = -1;
2836bad_out:
2837 if (err != -ENOMEM && err != -EOPNOTSUPP)
2838 NVolSetErrors(vol);
2839 if (err != -EOPNOTSUPP)
2840 NInoSetTruncateFailed(ni);
2841 else if (old_size >= 0)
2842 i_size_write(vi, old_size);
2843err_out:
2844 if (ctx)
2845 ntfs_attr_put_search_ctx(ctx);
2846 if (m)
2847 unmap_mft_record(base_ni);
2848 up_write(&ni->runlist.lock);
2849out:
2850 ntfs_debug("Failed. Returning error code %i.", err);
2851 return err;
2852conv_err_out:
2853 if (err != -ENOMEM && err != -EOPNOTSUPP)
2854 NVolSetErrors(vol);
2855 if (err != -EOPNOTSUPP)
2856 NInoSetTruncateFailed(ni);
2857 else
2858 i_size_write(vi, old_size);
2859 goto out;
2860}
2861
2862/**
2863 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2864 * @vi: inode for which the i_size was changed
2865 *
2866 * Wrapper for ntfs_truncate() that has no return value.
2867 *
2868 * See ntfs_truncate() description above for details.
2869 */
2870#ifdef NTFS_RW
2871void ntfs_truncate_vfs(struct inode *vi) {
2872 ntfs_truncate(vi);
2873}
2874#endif
2875
2876/**
2877 * ntfs_setattr - called from notify_change() when an attribute is being changed
2878 * @dentry: dentry whose attributes to change
2879 * @attr: structure describing the attributes and the changes
2880 *
2881 * We have to trap VFS attempts to truncate the file described by @dentry as
2882 * soon as possible, because we do not implement changes in i_size yet. So we
2883 * abort all i_size changes here.
2884 *
2885 * We also abort all changes of user, group, and mode as we do not implement
2886 * the NTFS ACLs yet.
2887 *
2888 * Called with ->i_mutex held.
2889 */
2890int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2891{
2892 struct inode *vi = d_inode(dentry);
2893 int err;
2894 unsigned int ia_valid = attr->ia_valid;
2895
2896 err = inode_change_ok(vi, attr);
2897 if (err)
2898 goto out;
2899 /* We do not support NTFS ACLs yet. */
2900 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2901 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2902 "supported yet, ignoring.");
2903 err = -EOPNOTSUPP;
2904 goto out;
2905 }
2906 if (ia_valid & ATTR_SIZE) {
2907 if (attr->ia_size != i_size_read(vi)) {
2908 ntfs_inode *ni = NTFS_I(vi);
2909 /*
2910 * FIXME: For now we do not support resizing of
2911 * compressed or encrypted files yet.
2912 */
2913 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2914 ntfs_warning(vi->i_sb, "Changes in inode size "
2915 "are not supported yet for "
2916 "%s files, ignoring.",
2917 NInoCompressed(ni) ?
2918 "compressed" : "encrypted");
2919 err = -EOPNOTSUPP;
2920 } else {
2921 truncate_setsize(vi, attr->ia_size);
2922 ntfs_truncate_vfs(vi);
2923 }
2924 if (err || ia_valid == ATTR_SIZE)
2925 goto out;
2926 } else {
2927 /*
2928 * We skipped the truncate but must still update
2929 * timestamps.
2930 */
2931 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2932 }
2933 }
2934 if (ia_valid & ATTR_ATIME)
2935 vi->i_atime = timespec_trunc(attr->ia_atime,
2936 vi->i_sb->s_time_gran);
2937 if (ia_valid & ATTR_MTIME)
2938 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2939 vi->i_sb->s_time_gran);
2940 if (ia_valid & ATTR_CTIME)
2941 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2942 vi->i_sb->s_time_gran);
2943 mark_inode_dirty(vi);
2944out:
2945 return err;
2946}
2947
2948/**
2949 * ntfs_write_inode - write out a dirty inode
2950 * @vi: inode to write out
2951 * @sync: if true, write out synchronously
2952 *
2953 * Write out a dirty inode to disk including any extent inodes if present.
2954 *
2955 * If @sync is true, commit the inode to disk and wait for io completion. This
2956 * is done using write_mft_record().
2957 *
2958 * If @sync is false, just schedule the write to happen but do not wait for i/o
2959 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2960 * marking the page (and in this case mft record) dirty but we do not implement
2961 * this yet as write_mft_record() largely ignores the @sync parameter and
2962 * always performs synchronous writes.
2963 *
2964 * Return 0 on success and -errno on error.
2965 */
2966int __ntfs_write_inode(struct inode *vi, int sync)
2967{
2968 sle64 nt;
2969 ntfs_inode *ni = NTFS_I(vi);
2970 ntfs_attr_search_ctx *ctx;
2971 MFT_RECORD *m;
2972 STANDARD_INFORMATION *si;
2973 int err = 0;
2974 bool modified = false;
2975
2976 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2977 vi->i_ino);
2978 /*
2979 * Dirty attribute inodes are written via their real inodes so just
2980 * clean them here. Access time updates are taken care off when the
2981 * real inode is written.
2982 */
2983 if (NInoAttr(ni)) {
2984 NInoClearDirty(ni);
2985 ntfs_debug("Done.");
2986 return 0;
2987 }
2988 /* Map, pin, and lock the mft record belonging to the inode. */
2989 m = map_mft_record(ni);
2990 if (IS_ERR(m)) {
2991 err = PTR_ERR(m);
2992 goto err_out;
2993 }
2994 /* Update the access times in the standard information attribute. */
2995 ctx = ntfs_attr_get_search_ctx(ni, m);
2996 if (unlikely(!ctx)) {
2997 err = -ENOMEM;
2998 goto unm_err_out;
2999 }
3000 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3001 CASE_SENSITIVE, 0, NULL, 0, ctx);
3002 if (unlikely(err)) {
3003 ntfs_attr_put_search_ctx(ctx);
3004 goto unm_err_out;
3005 }
3006 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3007 le16_to_cpu(ctx->attr->data.resident.value_offset));
3008 /* Update the access times if they have changed. */
3009 nt = utc2ntfs(vi->i_mtime);
3010 if (si->last_data_change_time != nt) {
3011 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3012 "new = 0x%llx", vi->i_ino, (long long)
3013 sle64_to_cpu(si->last_data_change_time),
3014 (long long)sle64_to_cpu(nt));
3015 si->last_data_change_time = nt;
3016 modified = true;
3017 }
3018 nt = utc2ntfs(vi->i_ctime);
3019 if (si->last_mft_change_time != nt) {
3020 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3021 "new = 0x%llx", vi->i_ino, (long long)
3022 sle64_to_cpu(si->last_mft_change_time),
3023 (long long)sle64_to_cpu(nt));
3024 si->last_mft_change_time = nt;
3025 modified = true;
3026 }
3027 nt = utc2ntfs(vi->i_atime);
3028 if (si->last_access_time != nt) {
3029 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3030 "new = 0x%llx", vi->i_ino,
3031 (long long)sle64_to_cpu(si->last_access_time),
3032 (long long)sle64_to_cpu(nt));
3033 si->last_access_time = nt;
3034 modified = true;
3035 }
3036 /*
3037 * If we just modified the standard information attribute we need to
3038 * mark the mft record it is in dirty. We do this manually so that
3039 * mark_inode_dirty() is not called which would redirty the inode and
3040 * hence result in an infinite loop of trying to write the inode.
3041 * There is no need to mark the base inode nor the base mft record
3042 * dirty, since we are going to write this mft record below in any case
3043 * and the base mft record may actually not have been modified so it
3044 * might not need to be written out.
3045 * NOTE: It is not a problem when the inode for $MFT itself is being
3046 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3047 * on the $MFT inode and hence ntfs_write_inode() will not be
3048 * re-invoked because of it which in turn is ok since the dirtied mft
3049 * record will be cleaned and written out to disk below, i.e. before
3050 * this function returns.
3051 */
3052 if (modified) {
3053 flush_dcache_mft_record_page(ctx->ntfs_ino);
3054 if (!NInoTestSetDirty(ctx->ntfs_ino))
3055 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3056 ctx->ntfs_ino->page_ofs);
3057 }
3058 ntfs_attr_put_search_ctx(ctx);
3059 /* Now the access times are updated, write the base mft record. */
3060 if (NInoDirty(ni))
3061 err = write_mft_record(ni, m, sync);
3062 /* Write all attached extent mft records. */
3063 mutex_lock(&ni->extent_lock);
3064 if (ni->nr_extents > 0) {
3065 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3066 int i;
3067
3068 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3069 for (i = 0; i < ni->nr_extents; i++) {
3070 ntfs_inode *tni = extent_nis[i];
3071
3072 if (NInoDirty(tni)) {
3073 MFT_RECORD *tm = map_mft_record(tni);
3074 int ret;
3075
3076 if (IS_ERR(tm)) {
3077 if (!err || err == -ENOMEM)
3078 err = PTR_ERR(tm);
3079 continue;
3080 }
3081 ret = write_mft_record(tni, tm, sync);
3082 unmap_mft_record(tni);
3083 if (unlikely(ret)) {
3084 if (!err || err == -ENOMEM)
3085 err = ret;
3086 }
3087 }
3088 }
3089 }
3090 mutex_unlock(&ni->extent_lock);
3091 unmap_mft_record(ni);
3092 if (unlikely(err))
3093 goto err_out;
3094 ntfs_debug("Done.");
3095 return 0;
3096unm_err_out:
3097 unmap_mft_record(ni);
3098err_out:
3099 if (err == -ENOMEM) {
3100 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3101 "Marking the inode dirty again, so the VFS "
3102 "retries later.");
3103 mark_inode_dirty(vi);
3104 } else {
3105 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3106 NVolSetErrors(ni->vol);
3107 }
3108 return err;
3109}
3110
3111#endif /* NTFS_RW */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/mount.h>
12#include <linux/mutex.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/slab.h>
16#include <linux/log2.h>
17
18#include "aops.h"
19#include "attrib.h"
20#include "bitmap.h"
21#include "dir.h"
22#include "debug.h"
23#include "inode.h"
24#include "lcnalloc.h"
25#include "malloc.h"
26#include "mft.h"
27#include "time.h"
28#include "ntfs.h"
29
30/**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
46int ntfs_test_inode(struct inode *vi, void *data)
47{
48 ntfs_attr *na = (ntfs_attr *)data;
49 ntfs_inode *ni;
50
51 if (vi->i_ino != na->mft_no)
52 return 0;
53 ni = NTFS_I(vi);
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
58 return 0;
59 } else {
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
62 return 0;
63 if (ni->name_len != na->name_len)
64 return 0;
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
67 return 0;
68 }
69 /* Match! */
70 return 1;
71}
72
73/**
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
77 *
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
80 *
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
85 *
86 * Return 0 on success and -errno on error.
87 *
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 */
91static int ntfs_init_locked_inode(struct inode *vi, void *data)
92{
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
95
96 vi->i_ino = na->mft_no;
97
98 ni->type = na->type;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
101
102 ni->name = na->name;
103 ni->name_len = na->name_len;
104
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
107 BUG_ON(na->name);
108 BUG_ON(na->name_len);
109 return 0;
110 }
111
112 /* It is a fake inode. */
113 NInoSetAttr(ni);
114
115 /*
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
120 * absolutely tiny.
121 */
122 if (na->name_len && na->name != I30) {
123 unsigned int i;
124
125 BUG_ON(!na->name);
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 if (!ni->name)
129 return -ENOMEM;
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
132 }
133 return 0;
134}
135
136static int ntfs_read_locked_inode(struct inode *vi);
137static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 struct inode *vi);
140
141/**
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
145 *
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
148 *
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
153 *
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
156 */
157struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158{
159 struct inode *vi;
160 int err;
161 ntfs_attr na;
162
163 na.mft_no = mft_no;
164 na.type = AT_UNUSED;
165 na.name = NULL;
166 na.name_len = 0;
167
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
170 if (unlikely(!vi))
171 return ERR_PTR(-ENOMEM);
172
173 err = 0;
174
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
179 }
180 /*
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
183 */
184 if (unlikely(err == -ENOMEM)) {
185 iput(vi);
186 vi = ERR_PTR(err);
187 }
188 return vi;
189}
190
191/**
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 *
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
201 *
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
206 *
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 *
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
213 */
214struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
216{
217 struct inode *vi;
218 int err;
219 ntfs_attr na;
220
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
223
224 na.mft_no = base_vi->i_ino;
225 na.type = type;
226 na.name = name;
227 na.name_len = name_len;
228
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
231 if (unlikely(!vi))
232 return ERR_PTR(-ENOMEM);
233
234 err = 0;
235
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
240 }
241 /*
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
244 * inodes elsewhere.
245 */
246 if (unlikely(err)) {
247 iput(vi);
248 vi = ERR_PTR(err);
249 }
250 return vi;
251}
252
253/**
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
258 *
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
261 * inode @base_vi.
262 *
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
267 *
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
271 */
272struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 u32 name_len)
274{
275 struct inode *vi;
276 int err;
277 ntfs_attr na;
278
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
281 na.name = name;
282 na.name_len = name_len;
283
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
286 if (unlikely(!vi))
287 return ERR_PTR(-ENOMEM);
288
289 err = 0;
290
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
295 }
296 /*
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
299 * inodes elsewhere.
300 */
301 if (unlikely(err)) {
302 iput(vi);
303 vi = ERR_PTR(err);
304 }
305 return vi;
306}
307
308struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309{
310 ntfs_inode *ni;
311
312 ntfs_debug("Entering.");
313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
315 ni->state = 0;
316 return VFS_I(ni);
317 }
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 return NULL;
320}
321
322void ntfs_free_big_inode(struct inode *inode)
323{
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325}
326
327static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328{
329 ntfs_inode *ni;
330
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
334 ni->state = 0;
335 return ni;
336 }
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 return NULL;
339}
340
341static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342{
343 ntfs_debug("Entering.");
344 BUG_ON(ni->page);
345 if (!atomic_dec_and_test(&ni->count))
346 BUG();
347 kmem_cache_free(ntfs_inode_cache, ni);
348}
349
350/*
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
353 */
354static struct lock_class_key attr_list_rl_lock_class;
355
356/**
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
360 *
361 * Initialize an ntfs inode to defaults.
362 *
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
365 *
366 * Return zero on success and -ENOMEM on error.
367 */
368void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369{
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
373 ni->seq_no = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
378 ni->page = NULL;
379 ni->page_ofs = 0;
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
391 ni->nr_extents = 0;
392 ni->ext.base_ntfs_ino = NULL;
393}
394
395/*
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
399 */
400static struct lock_class_key extent_inode_mrec_lock_key;
401
402inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
404{
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
406
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 ni->mft_no = mft_no;
412 ni->type = AT_UNUSED;
413 ni->name = NULL;
414 ni->name_len = 0;
415 }
416 return ni;
417}
418
419/**
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
422 *
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
425 * directory.
426 *
427 * Return values:
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
431 */
432static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433{
434 int nr_links, err;
435
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
438
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
441
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 ctx))) {
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
447 u8 *p, *p2;
448
449 nr_links--;
450 /*
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
453 */
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457err_corrupt_attr:
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
460 return -EIO;
461 }
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
465 return -EIO;
466 }
467 if (attr->flags) {
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
470 "chkdsk.");
471 return -EIO;
472 }
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
476 return -EIO;
477 }
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
486 }
487 if (unlikely(err != -ENOENT))
488 return err;
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
493 return -EIO;
494 }
495 return 0; /* NO, it is not an extended system file. */
496}
497
498/**
499 * ntfs_read_locked_inode - read an inode from its device
500 * @vi: inode to read
501 *
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
504 *
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
508 *
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
511 * the ntfs inode.
512 *
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 *
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
523 */
524static int ntfs_read_locked_inode(struct inode *vi)
525{
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 ntfs_inode *ni;
528 struct inode *bvi;
529 MFT_RECORD *m;
530 ATTR_RECORD *a;
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
533 int err = 0;
534
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
540 vi->i_mode = 0;
541
542 /*
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
545 */
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
548 ni = NTFS_I(vi);
549
550 m = map_mft_record(ni);
551 if (IS_ERR(m)) {
552 err = PTR_ERR(m);
553 goto err_out;
554 }
555 ctx = ntfs_attr_get_search_ctx(ni, m);
556 if (!ctx) {
557 err = -ENOMEM;
558 goto unm_err_out;
559 }
560
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
563 goto unm_err_out;
564 }
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 goto unm_err_out;
568 }
569
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572
573 /*
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
581 */
582 set_nlink(vi, le16_to_cpu(m->link_count));
583 /*
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
589 */
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
593 if (IS_RDONLY(vi))
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
597 /*
598 * Apply the directory permissions mask set in the mount
599 * options.
600 */
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
603 if (vi->i_nlink > 1)
604 set_nlink(vi, 1);
605 } else {
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
609 }
610 /*
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
615 */
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 ctx);
618 if (unlikely(err)) {
619 if (err == -ENOENT) {
620 /*
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
623 * attribute.
624 */
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 "is missing.");
627 }
628 goto unm_err_out;
629 }
630 a = ctx->attr;
631 /* Get the standard information attribute value. */
632 si = (STANDARD_INFORMATION*)((u8*)a +
633 le16_to_cpu(a->data.resident.value_offset));
634
635 /* Transfer information from the standard information into vi. */
636 /*
637 * Note: The i_?times do not quite map perfectly onto the NTFS times,
638 * but they are close enough, and in the end it doesn't really matter
639 * that much...
640 */
641 /*
642 * mtime is the last change of the data within the file. Not changed
643 * when only metadata is changed, e.g. a rename doesn't affect mtime.
644 */
645 vi->i_mtime = ntfs2utc(si->last_data_change_time);
646 /*
647 * ctime is the last change of the metadata of the file. This obviously
648 * always changes, when mtime is changed. ctime can be changed on its
649 * own, mtime is then not changed, e.g. when a file is renamed.
650 */
651 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
652 /*
653 * Last access to the data within the file. Not changed during a rename
654 * for example but changed whenever the file is written to.
655 */
656 vi->i_atime = ntfs2utc(si->last_access_time);
657
658 /* Find the attribute list attribute if present. */
659 ntfs_attr_reinit_search_ctx(ctx);
660 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
661 if (err) {
662 if (unlikely(err != -ENOENT)) {
663 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
664 "attribute.");
665 goto unm_err_out;
666 }
667 } else /* if (!err) */ {
668 if (vi->i_ino == FILE_MFT)
669 goto skip_attr_list_load;
670 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
671 NInoSetAttrList(ni);
672 a = ctx->attr;
673 if (a->flags & ATTR_COMPRESSION_MASK) {
674 ntfs_error(vi->i_sb, "Attribute list attribute is "
675 "compressed.");
676 goto unm_err_out;
677 }
678 if (a->flags & ATTR_IS_ENCRYPTED ||
679 a->flags & ATTR_IS_SPARSE) {
680 if (a->non_resident) {
681 ntfs_error(vi->i_sb, "Non-resident attribute "
682 "list attribute is encrypted/"
683 "sparse.");
684 goto unm_err_out;
685 }
686 ntfs_warning(vi->i_sb, "Resident attribute list "
687 "attribute in inode 0x%lx is marked "
688 "encrypted/sparse which is not true. "
689 "However, Windows allows this and "
690 "chkdsk does not detect or correct it "
691 "so we will just ignore the invalid "
692 "flags and pretend they are not set.",
693 vi->i_ino);
694 }
695 /* Now allocate memory for the attribute list. */
696 ni->attr_list_size = (u32)ntfs_attr_size(a);
697 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
698 if (!ni->attr_list) {
699 ntfs_error(vi->i_sb, "Not enough memory to allocate "
700 "buffer for attribute list.");
701 err = -ENOMEM;
702 goto unm_err_out;
703 }
704 if (a->non_resident) {
705 NInoSetAttrListNonResident(ni);
706 if (a->data.non_resident.lowest_vcn) {
707 ntfs_error(vi->i_sb, "Attribute list has non "
708 "zero lowest_vcn.");
709 goto unm_err_out;
710 }
711 /*
712 * Setup the runlist. No need for locking as we have
713 * exclusive access to the inode at this time.
714 */
715 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
716 a, NULL);
717 if (IS_ERR(ni->attr_list_rl.rl)) {
718 err = PTR_ERR(ni->attr_list_rl.rl);
719 ni->attr_list_rl.rl = NULL;
720 ntfs_error(vi->i_sb, "Mapping pairs "
721 "decompression failed.");
722 goto unm_err_out;
723 }
724 /* Now load the attribute list. */
725 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
726 ni->attr_list, ni->attr_list_size,
727 sle64_to_cpu(a->data.non_resident.
728 initialized_size)))) {
729 ntfs_error(vi->i_sb, "Failed to load "
730 "attribute list attribute.");
731 goto unm_err_out;
732 }
733 } else /* if (!a->non_resident) */ {
734 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
735 + le32_to_cpu(
736 a->data.resident.value_length) >
737 (u8*)ctx->mrec + vol->mft_record_size) {
738 ntfs_error(vi->i_sb, "Corrupt attribute list "
739 "in inode.");
740 goto unm_err_out;
741 }
742 /* Now copy the attribute list. */
743 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
744 a->data.resident.value_offset),
745 le32_to_cpu(
746 a->data.resident.value_length));
747 }
748 }
749skip_attr_list_load:
750 /*
751 * If an attribute list is present we now have the attribute list value
752 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
753 */
754 if (S_ISDIR(vi->i_mode)) {
755 loff_t bvi_size;
756 ntfs_inode *bni;
757 INDEX_ROOT *ir;
758 u8 *ir_end, *index_end;
759
760 /* It is a directory, find index root attribute. */
761 ntfs_attr_reinit_search_ctx(ctx);
762 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
763 0, NULL, 0, ctx);
764 if (unlikely(err)) {
765 if (err == -ENOENT) {
766 // FIXME: File is corrupt! Hot-fix with empty
767 // index root attribute if recovery option is
768 // set.
769 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
770 "is missing.");
771 }
772 goto unm_err_out;
773 }
774 a = ctx->attr;
775 /* Set up the state. */
776 if (unlikely(a->non_resident)) {
777 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
778 "resident.");
779 goto unm_err_out;
780 }
781 /* Ensure the attribute name is placed before the value. */
782 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
783 le16_to_cpu(a->data.resident.value_offset)))) {
784 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
785 "placed after the attribute value.");
786 goto unm_err_out;
787 }
788 /*
789 * Compressed/encrypted index root just means that the newly
790 * created files in that directory should be created compressed/
791 * encrypted. However index root cannot be both compressed and
792 * encrypted.
793 */
794 if (a->flags & ATTR_COMPRESSION_MASK)
795 NInoSetCompressed(ni);
796 if (a->flags & ATTR_IS_ENCRYPTED) {
797 if (a->flags & ATTR_COMPRESSION_MASK) {
798 ntfs_error(vi->i_sb, "Found encrypted and "
799 "compressed attribute.");
800 goto unm_err_out;
801 }
802 NInoSetEncrypted(ni);
803 }
804 if (a->flags & ATTR_IS_SPARSE)
805 NInoSetSparse(ni);
806 ir = (INDEX_ROOT*)((u8*)a +
807 le16_to_cpu(a->data.resident.value_offset));
808 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
809 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
810 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
811 "corrupt.");
812 goto unm_err_out;
813 }
814 index_end = (u8*)&ir->index +
815 le32_to_cpu(ir->index.index_length);
816 if (index_end > ir_end) {
817 ntfs_error(vi->i_sb, "Directory index is corrupt.");
818 goto unm_err_out;
819 }
820 if (ir->type != AT_FILE_NAME) {
821 ntfs_error(vi->i_sb, "Indexed attribute is not "
822 "$FILE_NAME.");
823 goto unm_err_out;
824 }
825 if (ir->collation_rule != COLLATION_FILE_NAME) {
826 ntfs_error(vi->i_sb, "Index collation rule is not "
827 "COLLATION_FILE_NAME.");
828 goto unm_err_out;
829 }
830 ni->itype.index.collation_rule = ir->collation_rule;
831 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
832 if (ni->itype.index.block_size &
833 (ni->itype.index.block_size - 1)) {
834 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
835 "power of two.",
836 ni->itype.index.block_size);
837 goto unm_err_out;
838 }
839 if (ni->itype.index.block_size > PAGE_SIZE) {
840 ntfs_error(vi->i_sb, "Index block size (%u) > "
841 "PAGE_SIZE (%ld) is not "
842 "supported. Sorry.",
843 ni->itype.index.block_size,
844 PAGE_SIZE);
845 err = -EOPNOTSUPP;
846 goto unm_err_out;
847 }
848 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
849 ntfs_error(vi->i_sb, "Index block size (%u) < "
850 "NTFS_BLOCK_SIZE (%i) is not "
851 "supported. Sorry.",
852 ni->itype.index.block_size,
853 NTFS_BLOCK_SIZE);
854 err = -EOPNOTSUPP;
855 goto unm_err_out;
856 }
857 ni->itype.index.block_size_bits =
858 ffs(ni->itype.index.block_size) - 1;
859 /* Determine the size of a vcn in the directory index. */
860 if (vol->cluster_size <= ni->itype.index.block_size) {
861 ni->itype.index.vcn_size = vol->cluster_size;
862 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
863 } else {
864 ni->itype.index.vcn_size = vol->sector_size;
865 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
866 }
867
868 /* Setup the index allocation attribute, even if not present. */
869 NInoSetMstProtected(ni);
870 ni->type = AT_INDEX_ALLOCATION;
871 ni->name = I30;
872 ni->name_len = 4;
873
874 if (!(ir->index.flags & LARGE_INDEX)) {
875 /* No index allocation. */
876 vi->i_size = ni->initialized_size =
877 ni->allocated_size = 0;
878 /* We are done with the mft record, so we release it. */
879 ntfs_attr_put_search_ctx(ctx);
880 unmap_mft_record(ni);
881 m = NULL;
882 ctx = NULL;
883 goto skip_large_dir_stuff;
884 } /* LARGE_INDEX: Index allocation present. Setup state. */
885 NInoSetIndexAllocPresent(ni);
886 /* Find index allocation attribute. */
887 ntfs_attr_reinit_search_ctx(ctx);
888 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
889 CASE_SENSITIVE, 0, NULL, 0, ctx);
890 if (unlikely(err)) {
891 if (err == -ENOENT)
892 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
893 "attribute is not present but "
894 "$INDEX_ROOT indicated it is.");
895 else
896 ntfs_error(vi->i_sb, "Failed to lookup "
897 "$INDEX_ALLOCATION "
898 "attribute.");
899 goto unm_err_out;
900 }
901 a = ctx->attr;
902 if (!a->non_resident) {
903 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
904 "is resident.");
905 goto unm_err_out;
906 }
907 /*
908 * Ensure the attribute name is placed before the mapping pairs
909 * array.
910 */
911 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
912 le16_to_cpu(
913 a->data.non_resident.mapping_pairs_offset)))) {
914 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
915 "is placed after the mapping pairs "
916 "array.");
917 goto unm_err_out;
918 }
919 if (a->flags & ATTR_IS_ENCRYPTED) {
920 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
921 "is encrypted.");
922 goto unm_err_out;
923 }
924 if (a->flags & ATTR_IS_SPARSE) {
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
926 "is sparse.");
927 goto unm_err_out;
928 }
929 if (a->flags & ATTR_COMPRESSION_MASK) {
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
931 "is compressed.");
932 goto unm_err_out;
933 }
934 if (a->data.non_resident.lowest_vcn) {
935 ntfs_error(vi->i_sb, "First extent of "
936 "$INDEX_ALLOCATION attribute has non "
937 "zero lowest_vcn.");
938 goto unm_err_out;
939 }
940 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
941 ni->initialized_size = sle64_to_cpu(
942 a->data.non_resident.initialized_size);
943 ni->allocated_size = sle64_to_cpu(
944 a->data.non_resident.allocated_size);
945 /*
946 * We are done with the mft record, so we release it. Otherwise
947 * we would deadlock in ntfs_attr_iget().
948 */
949 ntfs_attr_put_search_ctx(ctx);
950 unmap_mft_record(ni);
951 m = NULL;
952 ctx = NULL;
953 /* Get the index bitmap attribute inode. */
954 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
955 if (IS_ERR(bvi)) {
956 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
957 err = PTR_ERR(bvi);
958 goto unm_err_out;
959 }
960 bni = NTFS_I(bvi);
961 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
962 NInoSparse(bni)) {
963 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
964 "and/or encrypted and/or sparse.");
965 goto iput_unm_err_out;
966 }
967 /* Consistency check bitmap size vs. index allocation size. */
968 bvi_size = i_size_read(bvi);
969 if ((bvi_size << 3) < (vi->i_size >>
970 ni->itype.index.block_size_bits)) {
971 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
972 "for index allocation (0x%llx).",
973 bvi_size << 3, vi->i_size);
974 goto iput_unm_err_out;
975 }
976 /* No longer need the bitmap attribute inode. */
977 iput(bvi);
978skip_large_dir_stuff:
979 /* Setup the operations for this inode. */
980 vi->i_op = &ntfs_dir_inode_ops;
981 vi->i_fop = &ntfs_dir_ops;
982 vi->i_mapping->a_ops = &ntfs_mst_aops;
983 } else {
984 /* It is a file. */
985 ntfs_attr_reinit_search_ctx(ctx);
986
987 /* Setup the data attribute, even if not present. */
988 ni->type = AT_DATA;
989 ni->name = NULL;
990 ni->name_len = 0;
991
992 /* Find first extent of the unnamed data attribute. */
993 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
994 if (unlikely(err)) {
995 vi->i_size = ni->initialized_size =
996 ni->allocated_size = 0;
997 if (err != -ENOENT) {
998 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
999 "attribute.");
1000 goto unm_err_out;
1001 }
1002 /*
1003 * FILE_Secure does not have an unnamed $DATA
1004 * attribute, so we special case it here.
1005 */
1006 if (vi->i_ino == FILE_Secure)
1007 goto no_data_attr_special_case;
1008 /*
1009 * Most if not all the system files in the $Extend
1010 * system directory do not have unnamed data
1011 * attributes so we need to check if the parent
1012 * directory of the file is FILE_Extend and if it is
1013 * ignore this error. To do this we need to get the
1014 * name of this inode from the mft record as the name
1015 * contains the back reference to the parent directory.
1016 */
1017 if (ntfs_is_extended_system_file(ctx) > 0)
1018 goto no_data_attr_special_case;
1019 // FIXME: File is corrupt! Hot-fix with empty data
1020 // attribute if recovery option is set.
1021 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1022 goto unm_err_out;
1023 }
1024 a = ctx->attr;
1025 /* Setup the state. */
1026 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1027 if (a->flags & ATTR_COMPRESSION_MASK) {
1028 NInoSetCompressed(ni);
1029 if (vol->cluster_size > 4096) {
1030 ntfs_error(vi->i_sb, "Found "
1031 "compressed data but "
1032 "compression is "
1033 "disabled due to "
1034 "cluster size (%i) > "
1035 "4kiB.",
1036 vol->cluster_size);
1037 goto unm_err_out;
1038 }
1039 if ((a->flags & ATTR_COMPRESSION_MASK)
1040 != ATTR_IS_COMPRESSED) {
1041 ntfs_error(vi->i_sb, "Found unknown "
1042 "compression method "
1043 "or corrupt file.");
1044 goto unm_err_out;
1045 }
1046 }
1047 if (a->flags & ATTR_IS_SPARSE)
1048 NInoSetSparse(ni);
1049 }
1050 if (a->flags & ATTR_IS_ENCRYPTED) {
1051 if (NInoCompressed(ni)) {
1052 ntfs_error(vi->i_sb, "Found encrypted and "
1053 "compressed data.");
1054 goto unm_err_out;
1055 }
1056 NInoSetEncrypted(ni);
1057 }
1058 if (a->non_resident) {
1059 NInoSetNonResident(ni);
1060 if (NInoCompressed(ni) || NInoSparse(ni)) {
1061 if (NInoCompressed(ni) && a->data.non_resident.
1062 compression_unit != 4) {
1063 ntfs_error(vi->i_sb, "Found "
1064 "non-standard "
1065 "compression unit (%u "
1066 "instead of 4). "
1067 "Cannot handle this.",
1068 a->data.non_resident.
1069 compression_unit);
1070 err = -EOPNOTSUPP;
1071 goto unm_err_out;
1072 }
1073 if (a->data.non_resident.compression_unit) {
1074 ni->itype.compressed.block_size = 1U <<
1075 (a->data.non_resident.
1076 compression_unit +
1077 vol->cluster_size_bits);
1078 ni->itype.compressed.block_size_bits =
1079 ffs(ni->itype.
1080 compressed.
1081 block_size) - 1;
1082 ni->itype.compressed.block_clusters =
1083 1U << a->data.
1084 non_resident.
1085 compression_unit;
1086 } else {
1087 ni->itype.compressed.block_size = 0;
1088 ni->itype.compressed.block_size_bits =
1089 0;
1090 ni->itype.compressed.block_clusters =
1091 0;
1092 }
1093 ni->itype.compressed.size = sle64_to_cpu(
1094 a->data.non_resident.
1095 compressed_size);
1096 }
1097 if (a->data.non_resident.lowest_vcn) {
1098 ntfs_error(vi->i_sb, "First extent of $DATA "
1099 "attribute has non zero "
1100 "lowest_vcn.");
1101 goto unm_err_out;
1102 }
1103 vi->i_size = sle64_to_cpu(
1104 a->data.non_resident.data_size);
1105 ni->initialized_size = sle64_to_cpu(
1106 a->data.non_resident.initialized_size);
1107 ni->allocated_size = sle64_to_cpu(
1108 a->data.non_resident.allocated_size);
1109 } else { /* Resident attribute. */
1110 vi->i_size = ni->initialized_size = le32_to_cpu(
1111 a->data.resident.value_length);
1112 ni->allocated_size = le32_to_cpu(a->length) -
1113 le16_to_cpu(
1114 a->data.resident.value_offset);
1115 if (vi->i_size > ni->allocated_size) {
1116 ntfs_error(vi->i_sb, "Resident data attribute "
1117 "is corrupt (size exceeds "
1118 "allocation).");
1119 goto unm_err_out;
1120 }
1121 }
1122no_data_attr_special_case:
1123 /* We are done with the mft record, so we release it. */
1124 ntfs_attr_put_search_ctx(ctx);
1125 unmap_mft_record(ni);
1126 m = NULL;
1127 ctx = NULL;
1128 /* Setup the operations for this inode. */
1129 vi->i_op = &ntfs_file_inode_ops;
1130 vi->i_fop = &ntfs_file_ops;
1131 vi->i_mapping->a_ops = &ntfs_normal_aops;
1132 if (NInoMstProtected(ni))
1133 vi->i_mapping->a_ops = &ntfs_mst_aops;
1134 else if (NInoCompressed(ni))
1135 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1136 }
1137 /*
1138 * The number of 512-byte blocks used on disk (for stat). This is in so
1139 * far inaccurate as it doesn't account for any named streams or other
1140 * special non-resident attributes, but that is how Windows works, too,
1141 * so we are at least consistent with Windows, if not entirely
1142 * consistent with the Linux Way. Doing it the Linux Way would cause a
1143 * significant slowdown as it would involve iterating over all
1144 * attributes in the mft record and adding the allocated/compressed
1145 * sizes of all non-resident attributes present to give us the Linux
1146 * correct size that should go into i_blocks (after division by 512).
1147 */
1148 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1149 vi->i_blocks = ni->itype.compressed.size >> 9;
1150 else
1151 vi->i_blocks = ni->allocated_size >> 9;
1152 ntfs_debug("Done.");
1153 return 0;
1154iput_unm_err_out:
1155 iput(bvi);
1156unm_err_out:
1157 if (!err)
1158 err = -EIO;
1159 if (ctx)
1160 ntfs_attr_put_search_ctx(ctx);
1161 if (m)
1162 unmap_mft_record(ni);
1163err_out:
1164 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1165 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1166 make_bad_inode(vi);
1167 if (err != -EOPNOTSUPP && err != -ENOMEM)
1168 NVolSetErrors(vol);
1169 return err;
1170}
1171
1172/**
1173 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1174 * @base_vi: base inode
1175 * @vi: attribute inode to read
1176 *
1177 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1178 * attribute inode described by @vi into memory from the base mft record
1179 * described by @base_ni.
1180 *
1181 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1182 * reading and looks up the attribute described by @vi before setting up the
1183 * necessary fields in @vi as well as initializing the ntfs inode.
1184 *
1185 * Q: What locks are held when the function is called?
1186 * A: i_state has I_NEW set, hence the inode is locked, also
1187 * i_count is set to 1, so it is not going to go away
1188 *
1189 * Return 0 on success and -errno on error. In the error case, the inode will
1190 * have had make_bad_inode() executed on it.
1191 *
1192 * Note this cannot be called for AT_INDEX_ALLOCATION.
1193 */
1194static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1195{
1196 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1197 ntfs_inode *ni, *base_ni;
1198 MFT_RECORD *m;
1199 ATTR_RECORD *a;
1200 ntfs_attr_search_ctx *ctx;
1201 int err = 0;
1202
1203 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1204
1205 ntfs_init_big_inode(vi);
1206
1207 ni = NTFS_I(vi);
1208 base_ni = NTFS_I(base_vi);
1209
1210 /* Just mirror the values from the base inode. */
1211 vi->i_uid = base_vi->i_uid;
1212 vi->i_gid = base_vi->i_gid;
1213 set_nlink(vi, base_vi->i_nlink);
1214 vi->i_mtime = base_vi->i_mtime;
1215 vi->i_ctime = base_vi->i_ctime;
1216 vi->i_atime = base_vi->i_atime;
1217 vi->i_generation = ni->seq_no = base_ni->seq_no;
1218
1219 /* Set inode type to zero but preserve permissions. */
1220 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1221
1222 m = map_mft_record(base_ni);
1223 if (IS_ERR(m)) {
1224 err = PTR_ERR(m);
1225 goto err_out;
1226 }
1227 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1228 if (!ctx) {
1229 err = -ENOMEM;
1230 goto unm_err_out;
1231 }
1232 /* Find the attribute. */
1233 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1234 CASE_SENSITIVE, 0, NULL, 0, ctx);
1235 if (unlikely(err))
1236 goto unm_err_out;
1237 a = ctx->attr;
1238 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1239 if (a->flags & ATTR_COMPRESSION_MASK) {
1240 NInoSetCompressed(ni);
1241 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1242 ni->name_len)) {
1243 ntfs_error(vi->i_sb, "Found compressed "
1244 "non-data or named data "
1245 "attribute. Please report "
1246 "you saw this message to "
1247 "linux-ntfs-dev@lists."
1248 "sourceforge.net");
1249 goto unm_err_out;
1250 }
1251 if (vol->cluster_size > 4096) {
1252 ntfs_error(vi->i_sb, "Found compressed "
1253 "attribute but compression is "
1254 "disabled due to cluster size "
1255 "(%i) > 4kiB.",
1256 vol->cluster_size);
1257 goto unm_err_out;
1258 }
1259 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1260 ATTR_IS_COMPRESSED) {
1261 ntfs_error(vi->i_sb, "Found unknown "
1262 "compression method.");
1263 goto unm_err_out;
1264 }
1265 }
1266 /*
1267 * The compressed/sparse flag set in an index root just means
1268 * to compress all files.
1269 */
1270 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1271 ntfs_error(vi->i_sb, "Found mst protected attribute "
1272 "but the attribute is %s. Please "
1273 "report you saw this message to "
1274 "linux-ntfs-dev@lists.sourceforge.net",
1275 NInoCompressed(ni) ? "compressed" :
1276 "sparse");
1277 goto unm_err_out;
1278 }
1279 if (a->flags & ATTR_IS_SPARSE)
1280 NInoSetSparse(ni);
1281 }
1282 if (a->flags & ATTR_IS_ENCRYPTED) {
1283 if (NInoCompressed(ni)) {
1284 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1285 "data.");
1286 goto unm_err_out;
1287 }
1288 /*
1289 * The encryption flag set in an index root just means to
1290 * encrypt all files.
1291 */
1292 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1293 ntfs_error(vi->i_sb, "Found mst protected attribute "
1294 "but the attribute is encrypted. "
1295 "Please report you saw this message "
1296 "to linux-ntfs-dev@lists.sourceforge."
1297 "net");
1298 goto unm_err_out;
1299 }
1300 if (ni->type != AT_DATA) {
1301 ntfs_error(vi->i_sb, "Found encrypted non-data "
1302 "attribute.");
1303 goto unm_err_out;
1304 }
1305 NInoSetEncrypted(ni);
1306 }
1307 if (!a->non_resident) {
1308 /* Ensure the attribute name is placed before the value. */
1309 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1310 le16_to_cpu(a->data.resident.value_offset)))) {
1311 ntfs_error(vol->sb, "Attribute name is placed after "
1312 "the attribute value.");
1313 goto unm_err_out;
1314 }
1315 if (NInoMstProtected(ni)) {
1316 ntfs_error(vi->i_sb, "Found mst protected attribute "
1317 "but the attribute is resident. "
1318 "Please report you saw this message to "
1319 "linux-ntfs-dev@lists.sourceforge.net");
1320 goto unm_err_out;
1321 }
1322 vi->i_size = ni->initialized_size = le32_to_cpu(
1323 a->data.resident.value_length);
1324 ni->allocated_size = le32_to_cpu(a->length) -
1325 le16_to_cpu(a->data.resident.value_offset);
1326 if (vi->i_size > ni->allocated_size) {
1327 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1328 "(size exceeds allocation).");
1329 goto unm_err_out;
1330 }
1331 } else {
1332 NInoSetNonResident(ni);
1333 /*
1334 * Ensure the attribute name is placed before the mapping pairs
1335 * array.
1336 */
1337 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1338 le16_to_cpu(
1339 a->data.non_resident.mapping_pairs_offset)))) {
1340 ntfs_error(vol->sb, "Attribute name is placed after "
1341 "the mapping pairs array.");
1342 goto unm_err_out;
1343 }
1344 if (NInoCompressed(ni) || NInoSparse(ni)) {
1345 if (NInoCompressed(ni) && a->data.non_resident.
1346 compression_unit != 4) {
1347 ntfs_error(vi->i_sb, "Found non-standard "
1348 "compression unit (%u instead "
1349 "of 4). Cannot handle this.",
1350 a->data.non_resident.
1351 compression_unit);
1352 err = -EOPNOTSUPP;
1353 goto unm_err_out;
1354 }
1355 if (a->data.non_resident.compression_unit) {
1356 ni->itype.compressed.block_size = 1U <<
1357 (a->data.non_resident.
1358 compression_unit +
1359 vol->cluster_size_bits);
1360 ni->itype.compressed.block_size_bits =
1361 ffs(ni->itype.compressed.
1362 block_size) - 1;
1363 ni->itype.compressed.block_clusters = 1U <<
1364 a->data.non_resident.
1365 compression_unit;
1366 } else {
1367 ni->itype.compressed.block_size = 0;
1368 ni->itype.compressed.block_size_bits = 0;
1369 ni->itype.compressed.block_clusters = 0;
1370 }
1371 ni->itype.compressed.size = sle64_to_cpu(
1372 a->data.non_resident.compressed_size);
1373 }
1374 if (a->data.non_resident.lowest_vcn) {
1375 ntfs_error(vi->i_sb, "First extent of attribute has "
1376 "non-zero lowest_vcn.");
1377 goto unm_err_out;
1378 }
1379 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1380 ni->initialized_size = sle64_to_cpu(
1381 a->data.non_resident.initialized_size);
1382 ni->allocated_size = sle64_to_cpu(
1383 a->data.non_resident.allocated_size);
1384 }
1385 vi->i_mapping->a_ops = &ntfs_normal_aops;
1386 if (NInoMstProtected(ni))
1387 vi->i_mapping->a_ops = &ntfs_mst_aops;
1388 else if (NInoCompressed(ni))
1389 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1390 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1391 vi->i_blocks = ni->itype.compressed.size >> 9;
1392 else
1393 vi->i_blocks = ni->allocated_size >> 9;
1394 /*
1395 * Make sure the base inode does not go away and attach it to the
1396 * attribute inode.
1397 */
1398 igrab(base_vi);
1399 ni->ext.base_ntfs_ino = base_ni;
1400 ni->nr_extents = -1;
1401
1402 ntfs_attr_put_search_ctx(ctx);
1403 unmap_mft_record(base_ni);
1404
1405 ntfs_debug("Done.");
1406 return 0;
1407
1408unm_err_out:
1409 if (!err)
1410 err = -EIO;
1411 if (ctx)
1412 ntfs_attr_put_search_ctx(ctx);
1413 unmap_mft_record(base_ni);
1414err_out:
1415 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1416 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1417 "Marking corrupt inode and base inode 0x%lx as bad. "
1418 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1419 base_vi->i_ino);
1420 make_bad_inode(vi);
1421 if (err != -ENOMEM)
1422 NVolSetErrors(vol);
1423 return err;
1424}
1425
1426/**
1427 * ntfs_read_locked_index_inode - read an index inode from its base inode
1428 * @base_vi: base inode
1429 * @vi: index inode to read
1430 *
1431 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1432 * index inode described by @vi into memory from the base mft record described
1433 * by @base_ni.
1434 *
1435 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1436 * reading and looks up the attributes relating to the index described by @vi
1437 * before setting up the necessary fields in @vi as well as initializing the
1438 * ntfs inode.
1439 *
1440 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1441 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1442 * are setup like directory inodes since directories are a special case of
1443 * indices ao they need to be treated in much the same way. Most importantly,
1444 * for small indices the index allocation attribute might not actually exist.
1445 * However, the index root attribute always exists but this does not need to
1446 * have an inode associated with it and this is why we define a new inode type
1447 * index. Also, like for directories, we need to have an attribute inode for
1448 * the bitmap attribute corresponding to the index allocation attribute and we
1449 * can store this in the appropriate field of the inode, just like we do for
1450 * normal directory inodes.
1451 *
1452 * Q: What locks are held when the function is called?
1453 * A: i_state has I_NEW set, hence the inode is locked, also
1454 * i_count is set to 1, so it is not going to go away
1455 *
1456 * Return 0 on success and -errno on error. In the error case, the inode will
1457 * have had make_bad_inode() executed on it.
1458 */
1459static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1460{
1461 loff_t bvi_size;
1462 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1463 ntfs_inode *ni, *base_ni, *bni;
1464 struct inode *bvi;
1465 MFT_RECORD *m;
1466 ATTR_RECORD *a;
1467 ntfs_attr_search_ctx *ctx;
1468 INDEX_ROOT *ir;
1469 u8 *ir_end, *index_end;
1470 int err = 0;
1471
1472 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1473 ntfs_init_big_inode(vi);
1474 ni = NTFS_I(vi);
1475 base_ni = NTFS_I(base_vi);
1476 /* Just mirror the values from the base inode. */
1477 vi->i_uid = base_vi->i_uid;
1478 vi->i_gid = base_vi->i_gid;
1479 set_nlink(vi, base_vi->i_nlink);
1480 vi->i_mtime = base_vi->i_mtime;
1481 vi->i_ctime = base_vi->i_ctime;
1482 vi->i_atime = base_vi->i_atime;
1483 vi->i_generation = ni->seq_no = base_ni->seq_no;
1484 /* Set inode type to zero but preserve permissions. */
1485 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1486 /* Map the mft record for the base inode. */
1487 m = map_mft_record(base_ni);
1488 if (IS_ERR(m)) {
1489 err = PTR_ERR(m);
1490 goto err_out;
1491 }
1492 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1493 if (!ctx) {
1494 err = -ENOMEM;
1495 goto unm_err_out;
1496 }
1497 /* Find the index root attribute. */
1498 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1499 CASE_SENSITIVE, 0, NULL, 0, ctx);
1500 if (unlikely(err)) {
1501 if (err == -ENOENT)
1502 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1503 "missing.");
1504 goto unm_err_out;
1505 }
1506 a = ctx->attr;
1507 /* Set up the state. */
1508 if (unlikely(a->non_resident)) {
1509 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1510 goto unm_err_out;
1511 }
1512 /* Ensure the attribute name is placed before the value. */
1513 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1514 le16_to_cpu(a->data.resident.value_offset)))) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1516 "after the attribute value.");
1517 goto unm_err_out;
1518 }
1519 /*
1520 * Compressed/encrypted/sparse index root is not allowed, except for
1521 * directories of course but those are not dealt with here.
1522 */
1523 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1524 ATTR_IS_SPARSE)) {
1525 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1526 "root attribute.");
1527 goto unm_err_out;
1528 }
1529 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1530 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1531 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1532 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1533 goto unm_err_out;
1534 }
1535 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1536 if (index_end > ir_end) {
1537 ntfs_error(vi->i_sb, "Index is corrupt.");
1538 goto unm_err_out;
1539 }
1540 if (ir->type) {
1541 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1542 le32_to_cpu(ir->type));
1543 goto unm_err_out;
1544 }
1545 ni->itype.index.collation_rule = ir->collation_rule;
1546 ntfs_debug("Index collation rule is 0x%x.",
1547 le32_to_cpu(ir->collation_rule));
1548 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1549 if (!is_power_of_2(ni->itype.index.block_size)) {
1550 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1551 "two.", ni->itype.index.block_size);
1552 goto unm_err_out;
1553 }
1554 if (ni->itype.index.block_size > PAGE_SIZE) {
1555 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1556 "(%ld) is not supported. Sorry.",
1557 ni->itype.index.block_size, PAGE_SIZE);
1558 err = -EOPNOTSUPP;
1559 goto unm_err_out;
1560 }
1561 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1562 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1563 "(%i) is not supported. Sorry.",
1564 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1565 err = -EOPNOTSUPP;
1566 goto unm_err_out;
1567 }
1568 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1569 /* Determine the size of a vcn in the index. */
1570 if (vol->cluster_size <= ni->itype.index.block_size) {
1571 ni->itype.index.vcn_size = vol->cluster_size;
1572 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1573 } else {
1574 ni->itype.index.vcn_size = vol->sector_size;
1575 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1576 }
1577 /* Check for presence of index allocation attribute. */
1578 if (!(ir->index.flags & LARGE_INDEX)) {
1579 /* No index allocation. */
1580 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1581 /* We are done with the mft record, so we release it. */
1582 ntfs_attr_put_search_ctx(ctx);
1583 unmap_mft_record(base_ni);
1584 m = NULL;
1585 ctx = NULL;
1586 goto skip_large_index_stuff;
1587 } /* LARGE_INDEX: Index allocation present. Setup state. */
1588 NInoSetIndexAllocPresent(ni);
1589 /* Find index allocation attribute. */
1590 ntfs_attr_reinit_search_ctx(ctx);
1591 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1592 CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 if (unlikely(err)) {
1594 if (err == -ENOENT)
1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1596 "not present but $INDEX_ROOT "
1597 "indicated it is.");
1598 else
1599 ntfs_error(vi->i_sb, "Failed to lookup "
1600 "$INDEX_ALLOCATION attribute.");
1601 goto unm_err_out;
1602 }
1603 a = ctx->attr;
1604 if (!a->non_resident) {
1605 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1606 "resident.");
1607 goto unm_err_out;
1608 }
1609 /*
1610 * Ensure the attribute name is placed before the mapping pairs array.
1611 */
1612 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1613 le16_to_cpu(
1614 a->data.non_resident.mapping_pairs_offset)))) {
1615 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1616 "placed after the mapping pairs array.");
1617 goto unm_err_out;
1618 }
1619 if (a->flags & ATTR_IS_ENCRYPTED) {
1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621 "encrypted.");
1622 goto unm_err_out;
1623 }
1624 if (a->flags & ATTR_IS_SPARSE) {
1625 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1626 goto unm_err_out;
1627 }
1628 if (a->flags & ATTR_COMPRESSION_MASK) {
1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 "compressed.");
1631 goto unm_err_out;
1632 }
1633 if (a->data.non_resident.lowest_vcn) {
1634 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1635 "attribute has non zero lowest_vcn.");
1636 goto unm_err_out;
1637 }
1638 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1639 ni->initialized_size = sle64_to_cpu(
1640 a->data.non_resident.initialized_size);
1641 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1642 /*
1643 * We are done with the mft record, so we release it. Otherwise
1644 * we would deadlock in ntfs_attr_iget().
1645 */
1646 ntfs_attr_put_search_ctx(ctx);
1647 unmap_mft_record(base_ni);
1648 m = NULL;
1649 ctx = NULL;
1650 /* Get the index bitmap attribute inode. */
1651 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1652 if (IS_ERR(bvi)) {
1653 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1654 err = PTR_ERR(bvi);
1655 goto unm_err_out;
1656 }
1657 bni = NTFS_I(bvi);
1658 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1659 NInoSparse(bni)) {
1660 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1661 "encrypted and/or sparse.");
1662 goto iput_unm_err_out;
1663 }
1664 /* Consistency check bitmap size vs. index allocation size. */
1665 bvi_size = i_size_read(bvi);
1666 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1667 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1668 "index allocation (0x%llx).", bvi_size << 3,
1669 vi->i_size);
1670 goto iput_unm_err_out;
1671 }
1672 iput(bvi);
1673skip_large_index_stuff:
1674 /* Setup the operations for this index inode. */
1675 vi->i_mapping->a_ops = &ntfs_mst_aops;
1676 vi->i_blocks = ni->allocated_size >> 9;
1677 /*
1678 * Make sure the base inode doesn't go away and attach it to the
1679 * index inode.
1680 */
1681 igrab(base_vi);
1682 ni->ext.base_ntfs_ino = base_ni;
1683 ni->nr_extents = -1;
1684
1685 ntfs_debug("Done.");
1686 return 0;
1687iput_unm_err_out:
1688 iput(bvi);
1689unm_err_out:
1690 if (!err)
1691 err = -EIO;
1692 if (ctx)
1693 ntfs_attr_put_search_ctx(ctx);
1694 if (m)
1695 unmap_mft_record(base_ni);
1696err_out:
1697 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1698 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1699 ni->name_len);
1700 make_bad_inode(vi);
1701 if (err != -EOPNOTSUPP && err != -ENOMEM)
1702 NVolSetErrors(vol);
1703 return err;
1704}
1705
1706/*
1707 * The MFT inode has special locking, so teach the lock validator
1708 * about this by splitting off the locking rules of the MFT from
1709 * the locking rules of other inodes. The MFT inode can never be
1710 * accessed from the VFS side (or even internally), only by the
1711 * map_mft functions.
1712 */
1713static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1714
1715/**
1716 * ntfs_read_inode_mount - special read_inode for mount time use only
1717 * @vi: inode to read
1718 *
1719 * Read inode FILE_MFT at mount time, only called with super_block lock
1720 * held from within the read_super() code path.
1721 *
1722 * This function exists because when it is called the page cache for $MFT/$DATA
1723 * is not initialized and hence we cannot get at the contents of mft records
1724 * by calling map_mft_record*().
1725 *
1726 * Further it needs to cope with the circular references problem, i.e. cannot
1727 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1728 * we do not know where the other extent mft records are yet and again, because
1729 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1730 * attribute list is actually present in $MFT inode.
1731 *
1732 * We solve these problems by starting with the $DATA attribute before anything
1733 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1734 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1735 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1736 * sufficient information for the next step to complete.
1737 *
1738 * This should work but there are two possible pit falls (see inline comments
1739 * below), but only time will tell if they are real pits or just smoke...
1740 */
1741int ntfs_read_inode_mount(struct inode *vi)
1742{
1743 VCN next_vcn, last_vcn, highest_vcn;
1744 s64 block;
1745 struct super_block *sb = vi->i_sb;
1746 ntfs_volume *vol = NTFS_SB(sb);
1747 struct buffer_head *bh;
1748 ntfs_inode *ni;
1749 MFT_RECORD *m = NULL;
1750 ATTR_RECORD *a;
1751 ntfs_attr_search_ctx *ctx;
1752 unsigned int i, nr_blocks;
1753 int err;
1754
1755 ntfs_debug("Entering.");
1756
1757 /* Initialize the ntfs specific part of @vi. */
1758 ntfs_init_big_inode(vi);
1759
1760 ni = NTFS_I(vi);
1761
1762 /* Setup the data attribute. It is special as it is mst protected. */
1763 NInoSetNonResident(ni);
1764 NInoSetMstProtected(ni);
1765 NInoSetSparseDisabled(ni);
1766 ni->type = AT_DATA;
1767 ni->name = NULL;
1768 ni->name_len = 0;
1769 /*
1770 * This sets up our little cheat allowing us to reuse the async read io
1771 * completion handler for directories.
1772 */
1773 ni->itype.index.block_size = vol->mft_record_size;
1774 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1775
1776 /* Very important! Needed to be able to call map_mft_record*(). */
1777 vol->mft_ino = vi;
1778
1779 /* Allocate enough memory to read the first mft record. */
1780 if (vol->mft_record_size > 64 * 1024) {
1781 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1782 vol->mft_record_size);
1783 goto err_out;
1784 }
1785 i = vol->mft_record_size;
1786 if (i < sb->s_blocksize)
1787 i = sb->s_blocksize;
1788 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1789 if (!m) {
1790 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1791 goto err_out;
1792 }
1793
1794 /* Determine the first block of the $MFT/$DATA attribute. */
1795 block = vol->mft_lcn << vol->cluster_size_bits >>
1796 sb->s_blocksize_bits;
1797 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1798 if (!nr_blocks)
1799 nr_blocks = 1;
1800
1801 /* Load $MFT/$DATA's first mft record. */
1802 for (i = 0; i < nr_blocks; i++) {
1803 bh = sb_bread(sb, block++);
1804 if (!bh) {
1805 ntfs_error(sb, "Device read failed.");
1806 goto err_out;
1807 }
1808 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1809 sb->s_blocksize);
1810 brelse(bh);
1811 }
1812
1813 /* Apply the mst fixups. */
1814 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1815 /* FIXME: Try to use the $MFTMirr now. */
1816 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1817 goto err_out;
1818 }
1819
1820 /* Need this to sanity check attribute list references to $MFT. */
1821 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1822
1823 /* Provides readpage() for map_mft_record(). */
1824 vi->i_mapping->a_ops = &ntfs_mst_aops;
1825
1826 ctx = ntfs_attr_get_search_ctx(ni, m);
1827 if (!ctx) {
1828 err = -ENOMEM;
1829 goto err_out;
1830 }
1831
1832 /* Find the attribute list attribute if present. */
1833 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1834 if (err) {
1835 if (unlikely(err != -ENOENT)) {
1836 ntfs_error(sb, "Failed to lookup attribute list "
1837 "attribute. You should run chkdsk.");
1838 goto put_err_out;
1839 }
1840 } else /* if (!err) */ {
1841 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1842 u8 *al_end;
1843 static const char *es = " Not allowed. $MFT is corrupt. "
1844 "You should run chkdsk.";
1845
1846 ntfs_debug("Attribute list attribute found in $MFT.");
1847 NInoSetAttrList(ni);
1848 a = ctx->attr;
1849 if (a->flags & ATTR_COMPRESSION_MASK) {
1850 ntfs_error(sb, "Attribute list attribute is "
1851 "compressed.%s", es);
1852 goto put_err_out;
1853 }
1854 if (a->flags & ATTR_IS_ENCRYPTED ||
1855 a->flags & ATTR_IS_SPARSE) {
1856 if (a->non_resident) {
1857 ntfs_error(sb, "Non-resident attribute list "
1858 "attribute is encrypted/"
1859 "sparse.%s", es);
1860 goto put_err_out;
1861 }
1862 ntfs_warning(sb, "Resident attribute list attribute "
1863 "in $MFT system file is marked "
1864 "encrypted/sparse which is not true. "
1865 "However, Windows allows this and "
1866 "chkdsk does not detect or correct it "
1867 "so we will just ignore the invalid "
1868 "flags and pretend they are not set.");
1869 }
1870 /* Now allocate memory for the attribute list. */
1871 ni->attr_list_size = (u32)ntfs_attr_size(a);
1872 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1873 if (!ni->attr_list) {
1874 ntfs_error(sb, "Not enough memory to allocate buffer "
1875 "for attribute list.");
1876 goto put_err_out;
1877 }
1878 if (a->non_resident) {
1879 NInoSetAttrListNonResident(ni);
1880 if (a->data.non_resident.lowest_vcn) {
1881 ntfs_error(sb, "Attribute list has non zero "
1882 "lowest_vcn. $MFT is corrupt. "
1883 "You should run chkdsk.");
1884 goto put_err_out;
1885 }
1886 /* Setup the runlist. */
1887 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1888 a, NULL);
1889 if (IS_ERR(ni->attr_list_rl.rl)) {
1890 err = PTR_ERR(ni->attr_list_rl.rl);
1891 ni->attr_list_rl.rl = NULL;
1892 ntfs_error(sb, "Mapping pairs decompression "
1893 "failed with error code %i.",
1894 -err);
1895 goto put_err_out;
1896 }
1897 /* Now load the attribute list. */
1898 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1899 ni->attr_list, ni->attr_list_size,
1900 sle64_to_cpu(a->data.
1901 non_resident.initialized_size)))) {
1902 ntfs_error(sb, "Failed to load attribute list "
1903 "attribute with error code %i.",
1904 -err);
1905 goto put_err_out;
1906 }
1907 } else /* if (!ctx.attr->non_resident) */ {
1908 if ((u8*)a + le16_to_cpu(
1909 a->data.resident.value_offset) +
1910 le32_to_cpu(
1911 a->data.resident.value_length) >
1912 (u8*)ctx->mrec + vol->mft_record_size) {
1913 ntfs_error(sb, "Corrupt attribute list "
1914 "attribute.");
1915 goto put_err_out;
1916 }
1917 /* Now copy the attribute list. */
1918 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1919 a->data.resident.value_offset),
1920 le32_to_cpu(
1921 a->data.resident.value_length));
1922 }
1923 /* The attribute list is now setup in memory. */
1924 /*
1925 * FIXME: I don't know if this case is actually possible.
1926 * According to logic it is not possible but I have seen too
1927 * many weird things in MS software to rely on logic... Thus we
1928 * perform a manual search and make sure the first $MFT/$DATA
1929 * extent is in the base inode. If it is not we abort with an
1930 * error and if we ever see a report of this error we will need
1931 * to do some magic in order to have the necessary mft record
1932 * loaded and in the right place in the page cache. But
1933 * hopefully logic will prevail and this never happens...
1934 */
1935 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1936 al_end = (u8*)al_entry + ni->attr_list_size;
1937 for (;; al_entry = next_al_entry) {
1938 /* Out of bounds check. */
1939 if ((u8*)al_entry < ni->attr_list ||
1940 (u8*)al_entry > al_end)
1941 goto em_put_err_out;
1942 /* Catch the end of the attribute list. */
1943 if ((u8*)al_entry == al_end)
1944 goto em_put_err_out;
1945 if (!al_entry->length)
1946 goto em_put_err_out;
1947 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1948 le16_to_cpu(al_entry->length) > al_end)
1949 goto em_put_err_out;
1950 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1951 le16_to_cpu(al_entry->length));
1952 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1953 goto em_put_err_out;
1954 if (AT_DATA != al_entry->type)
1955 continue;
1956 /* We want an unnamed attribute. */
1957 if (al_entry->name_length)
1958 goto em_put_err_out;
1959 /* Want the first entry, i.e. lowest_vcn == 0. */
1960 if (al_entry->lowest_vcn)
1961 goto em_put_err_out;
1962 /* First entry has to be in the base mft record. */
1963 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1964 /* MFT references do not match, logic fails. */
1965 ntfs_error(sb, "BUG: The first $DATA extent "
1966 "of $MFT is not in the base "
1967 "mft record. Please report "
1968 "you saw this message to "
1969 "linux-ntfs-dev@lists."
1970 "sourceforge.net");
1971 goto put_err_out;
1972 } else {
1973 /* Sequence numbers must match. */
1974 if (MSEQNO_LE(al_entry->mft_reference) !=
1975 ni->seq_no)
1976 goto em_put_err_out;
1977 /* Got it. All is ok. We can stop now. */
1978 break;
1979 }
1980 }
1981 }
1982
1983 ntfs_attr_reinit_search_ctx(ctx);
1984
1985 /* Now load all attribute extents. */
1986 a = NULL;
1987 next_vcn = last_vcn = highest_vcn = 0;
1988 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1989 ctx))) {
1990 runlist_element *nrl;
1991
1992 /* Cache the current attribute. */
1993 a = ctx->attr;
1994 /* $MFT must be non-resident. */
1995 if (!a->non_resident) {
1996 ntfs_error(sb, "$MFT must be non-resident but a "
1997 "resident extent was found. $MFT is "
1998 "corrupt. Run chkdsk.");
1999 goto put_err_out;
2000 }
2001 /* $MFT must be uncompressed and unencrypted. */
2002 if (a->flags & ATTR_COMPRESSION_MASK ||
2003 a->flags & ATTR_IS_ENCRYPTED ||
2004 a->flags & ATTR_IS_SPARSE) {
2005 ntfs_error(sb, "$MFT must be uncompressed, "
2006 "non-sparse, and unencrypted but a "
2007 "compressed/sparse/encrypted extent "
2008 "was found. $MFT is corrupt. Run "
2009 "chkdsk.");
2010 goto put_err_out;
2011 }
2012 /*
2013 * Decompress the mapping pairs array of this extent and merge
2014 * the result into the existing runlist. No need for locking
2015 * as we have exclusive access to the inode at this time and we
2016 * are a mount in progress task, too.
2017 */
2018 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2019 if (IS_ERR(nrl)) {
2020 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2021 "failed with error code %ld. $MFT is "
2022 "corrupt.", PTR_ERR(nrl));
2023 goto put_err_out;
2024 }
2025 ni->runlist.rl = nrl;
2026
2027 /* Are we in the first extent? */
2028 if (!next_vcn) {
2029 if (a->data.non_resident.lowest_vcn) {
2030 ntfs_error(sb, "First extent of $DATA "
2031 "attribute has non zero "
2032 "lowest_vcn. $MFT is corrupt. "
2033 "You should run chkdsk.");
2034 goto put_err_out;
2035 }
2036 /* Get the last vcn in the $DATA attribute. */
2037 last_vcn = sle64_to_cpu(
2038 a->data.non_resident.allocated_size)
2039 >> vol->cluster_size_bits;
2040 /* Fill in the inode size. */
2041 vi->i_size = sle64_to_cpu(
2042 a->data.non_resident.data_size);
2043 ni->initialized_size = sle64_to_cpu(
2044 a->data.non_resident.initialized_size);
2045 ni->allocated_size = sle64_to_cpu(
2046 a->data.non_resident.allocated_size);
2047 /*
2048 * Verify the number of mft records does not exceed
2049 * 2^32 - 1.
2050 */
2051 if ((vi->i_size >> vol->mft_record_size_bits) >=
2052 (1ULL << 32)) {
2053 ntfs_error(sb, "$MFT is too big! Aborting.");
2054 goto put_err_out;
2055 }
2056 /*
2057 * We have got the first extent of the runlist for
2058 * $MFT which means it is now relatively safe to call
2059 * the normal ntfs_read_inode() function.
2060 * Complete reading the inode, this will actually
2061 * re-read the mft record for $MFT, this time entering
2062 * it into the page cache with which we complete the
2063 * kick start of the volume. It should be safe to do
2064 * this now as the first extent of $MFT/$DATA is
2065 * already known and we would hope that we don't need
2066 * further extents in order to find the other
2067 * attributes belonging to $MFT. Only time will tell if
2068 * this is really the case. If not we will have to play
2069 * magic at this point, possibly duplicating a lot of
2070 * ntfs_read_inode() at this point. We will need to
2071 * ensure we do enough of its work to be able to call
2072 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2073 * hope this never happens...
2074 */
2075 ntfs_read_locked_inode(vi);
2076 if (is_bad_inode(vi)) {
2077 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2078 "failed. BUG or corrupt $MFT. "
2079 "Run chkdsk and if no errors "
2080 "are found, please report you "
2081 "saw this message to "
2082 "linux-ntfs-dev@lists."
2083 "sourceforge.net");
2084 ntfs_attr_put_search_ctx(ctx);
2085 /* Revert to the safe super operations. */
2086 ntfs_free(m);
2087 return -1;
2088 }
2089 /*
2090 * Re-initialize some specifics about $MFT's inode as
2091 * ntfs_read_inode() will have set up the default ones.
2092 */
2093 /* Set uid and gid to root. */
2094 vi->i_uid = GLOBAL_ROOT_UID;
2095 vi->i_gid = GLOBAL_ROOT_GID;
2096 /* Regular file. No access for anyone. */
2097 vi->i_mode = S_IFREG;
2098 /* No VFS initiated operations allowed for $MFT. */
2099 vi->i_op = &ntfs_empty_inode_ops;
2100 vi->i_fop = &ntfs_empty_file_ops;
2101 }
2102
2103 /* Get the lowest vcn for the next extent. */
2104 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2105 next_vcn = highest_vcn + 1;
2106
2107 /* Only one extent or error, which we catch below. */
2108 if (next_vcn <= 0)
2109 break;
2110
2111 /* Avoid endless loops due to corruption. */
2112 if (next_vcn < sle64_to_cpu(
2113 a->data.non_resident.lowest_vcn)) {
2114 ntfs_error(sb, "$MFT has corrupt attribute list "
2115 "attribute. Run chkdsk.");
2116 goto put_err_out;
2117 }
2118 }
2119 if (err != -ENOENT) {
2120 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2121 "$MFT is corrupt. Run chkdsk.");
2122 goto put_err_out;
2123 }
2124 if (!a) {
2125 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2126 "corrupt. Run chkdsk.");
2127 goto put_err_out;
2128 }
2129 if (highest_vcn && highest_vcn != last_vcn - 1) {
2130 ntfs_error(sb, "Failed to load the complete runlist for "
2131 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2132 "Run chkdsk.");
2133 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2134 (unsigned long long)highest_vcn,
2135 (unsigned long long)last_vcn - 1);
2136 goto put_err_out;
2137 }
2138 ntfs_attr_put_search_ctx(ctx);
2139 ntfs_debug("Done.");
2140 ntfs_free(m);
2141
2142 /*
2143 * Split the locking rules of the MFT inode from the
2144 * locking rules of other inodes:
2145 */
2146 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2147 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2148
2149 return 0;
2150
2151em_put_err_out:
2152 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2153 "attribute list. $MFT is corrupt. Run chkdsk.");
2154put_err_out:
2155 ntfs_attr_put_search_ctx(ctx);
2156err_out:
2157 ntfs_error(sb, "Failed. Marking inode as bad.");
2158 make_bad_inode(vi);
2159 ntfs_free(m);
2160 return -1;
2161}
2162
2163static void __ntfs_clear_inode(ntfs_inode *ni)
2164{
2165 /* Free all alocated memory. */
2166 down_write(&ni->runlist.lock);
2167 if (ni->runlist.rl) {
2168 ntfs_free(ni->runlist.rl);
2169 ni->runlist.rl = NULL;
2170 }
2171 up_write(&ni->runlist.lock);
2172
2173 if (ni->attr_list) {
2174 ntfs_free(ni->attr_list);
2175 ni->attr_list = NULL;
2176 }
2177
2178 down_write(&ni->attr_list_rl.lock);
2179 if (ni->attr_list_rl.rl) {
2180 ntfs_free(ni->attr_list_rl.rl);
2181 ni->attr_list_rl.rl = NULL;
2182 }
2183 up_write(&ni->attr_list_rl.lock);
2184
2185 if (ni->name_len && ni->name != I30) {
2186 /* Catch bugs... */
2187 BUG_ON(!ni->name);
2188 kfree(ni->name);
2189 }
2190}
2191
2192void ntfs_clear_extent_inode(ntfs_inode *ni)
2193{
2194 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2195
2196 BUG_ON(NInoAttr(ni));
2197 BUG_ON(ni->nr_extents != -1);
2198
2199#ifdef NTFS_RW
2200 if (NInoDirty(ni)) {
2201 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2202 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2203 "Losing data! This is a BUG!!!");
2204 // FIXME: Do something!!!
2205 }
2206#endif /* NTFS_RW */
2207
2208 __ntfs_clear_inode(ni);
2209
2210 /* Bye, bye... */
2211 ntfs_destroy_extent_inode(ni);
2212}
2213
2214/**
2215 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2216 * @vi: vfs inode pending annihilation
2217 *
2218 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2219 * is called, which deallocates all memory belonging to the NTFS specific part
2220 * of the inode and returns.
2221 *
2222 * If the MFT record is dirty, we commit it before doing anything else.
2223 */
2224void ntfs_evict_big_inode(struct inode *vi)
2225{
2226 ntfs_inode *ni = NTFS_I(vi);
2227
2228 truncate_inode_pages_final(&vi->i_data);
2229 clear_inode(vi);
2230
2231#ifdef NTFS_RW
2232 if (NInoDirty(ni)) {
2233 bool was_bad = (is_bad_inode(vi));
2234
2235 /* Committing the inode also commits all extent inodes. */
2236 ntfs_commit_inode(vi);
2237
2238 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2239 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2240 "0x%lx. Losing data!", vi->i_ino);
2241 // FIXME: Do something!!!
2242 }
2243 }
2244#endif /* NTFS_RW */
2245
2246 /* No need to lock at this stage as no one else has a reference. */
2247 if (ni->nr_extents > 0) {
2248 int i;
2249
2250 for (i = 0; i < ni->nr_extents; i++)
2251 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2252 kfree(ni->ext.extent_ntfs_inos);
2253 }
2254
2255 __ntfs_clear_inode(ni);
2256
2257 if (NInoAttr(ni)) {
2258 /* Release the base inode if we are holding it. */
2259 if (ni->nr_extents == -1) {
2260 iput(VFS_I(ni->ext.base_ntfs_ino));
2261 ni->nr_extents = 0;
2262 ni->ext.base_ntfs_ino = NULL;
2263 }
2264 }
2265 BUG_ON(ni->page);
2266 if (!atomic_dec_and_test(&ni->count))
2267 BUG();
2268 return;
2269}
2270
2271/**
2272 * ntfs_show_options - show mount options in /proc/mounts
2273 * @sf: seq_file in which to write our mount options
2274 * @root: root of the mounted tree whose mount options to display
2275 *
2276 * Called by the VFS once for each mounted ntfs volume when someone reads
2277 * /proc/mounts in order to display the NTFS specific mount options of each
2278 * mount. The mount options of fs specified by @root are written to the seq file
2279 * @sf and success is returned.
2280 */
2281int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2282{
2283 ntfs_volume *vol = NTFS_SB(root->d_sb);
2284 int i;
2285
2286 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2287 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2288 if (vol->fmask == vol->dmask)
2289 seq_printf(sf, ",umask=0%o", vol->fmask);
2290 else {
2291 seq_printf(sf, ",fmask=0%o", vol->fmask);
2292 seq_printf(sf, ",dmask=0%o", vol->dmask);
2293 }
2294 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2295 if (NVolCaseSensitive(vol))
2296 seq_printf(sf, ",case_sensitive");
2297 if (NVolShowSystemFiles(vol))
2298 seq_printf(sf, ",show_sys_files");
2299 if (!NVolSparseEnabled(vol))
2300 seq_printf(sf, ",disable_sparse");
2301 for (i = 0; on_errors_arr[i].val; i++) {
2302 if (on_errors_arr[i].val & vol->on_errors)
2303 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2304 }
2305 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2306 return 0;
2307}
2308
2309#ifdef NTFS_RW
2310
2311static const char *es = " Leaving inconsistent metadata. Unmount and run "
2312 "chkdsk.";
2313
2314/**
2315 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2316 * @vi: inode for which the i_size was changed
2317 *
2318 * We only support i_size changes for normal files at present, i.e. not
2319 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2320 * below.
2321 *
2322 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2323 * that the change is allowed.
2324 *
2325 * This implies for us that @vi is a file inode rather than a directory, index,
2326 * or attribute inode as well as that @vi is a base inode.
2327 *
2328 * Returns 0 on success or -errno on error.
2329 *
2330 * Called with ->i_mutex held.
2331 */
2332int ntfs_truncate(struct inode *vi)
2333{
2334 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2335 VCN highest_vcn;
2336 unsigned long flags;
2337 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2338 ntfs_volume *vol = ni->vol;
2339 ntfs_attr_search_ctx *ctx;
2340 MFT_RECORD *m;
2341 ATTR_RECORD *a;
2342 const char *te = " Leaving file length out of sync with i_size.";
2343 int err, mp_size, size_change, alloc_change;
2344 u32 attr_len;
2345
2346 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2347 BUG_ON(NInoAttr(ni));
2348 BUG_ON(S_ISDIR(vi->i_mode));
2349 BUG_ON(NInoMstProtected(ni));
2350 BUG_ON(ni->nr_extents < 0);
2351retry_truncate:
2352 /*
2353 * Lock the runlist for writing and map the mft record to ensure it is
2354 * safe to mess with the attribute runlist and sizes.
2355 */
2356 down_write(&ni->runlist.lock);
2357 if (!NInoAttr(ni))
2358 base_ni = ni;
2359 else
2360 base_ni = ni->ext.base_ntfs_ino;
2361 m = map_mft_record(base_ni);
2362 if (IS_ERR(m)) {
2363 err = PTR_ERR(m);
2364 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2365 "(error code %d).%s", vi->i_ino, err, te);
2366 ctx = NULL;
2367 m = NULL;
2368 goto old_bad_out;
2369 }
2370 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2371 if (unlikely(!ctx)) {
2372 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2373 "inode 0x%lx (not enough memory).%s",
2374 vi->i_ino, te);
2375 err = -ENOMEM;
2376 goto old_bad_out;
2377 }
2378 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2379 CASE_SENSITIVE, 0, NULL, 0, ctx);
2380 if (unlikely(err)) {
2381 if (err == -ENOENT) {
2382 ntfs_error(vi->i_sb, "Open attribute is missing from "
2383 "mft record. Inode 0x%lx is corrupt. "
2384 "Run chkdsk.%s", vi->i_ino, te);
2385 err = -EIO;
2386 } else
2387 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2388 "inode 0x%lx (error code %d).%s",
2389 vi->i_ino, err, te);
2390 goto old_bad_out;
2391 }
2392 m = ctx->mrec;
2393 a = ctx->attr;
2394 /*
2395 * The i_size of the vfs inode is the new size for the attribute value.
2396 */
2397 new_size = i_size_read(vi);
2398 /* The current size of the attribute value is the old size. */
2399 old_size = ntfs_attr_size(a);
2400 /* Calculate the new allocated size. */
2401 if (NInoNonResident(ni))
2402 new_alloc_size = (new_size + vol->cluster_size - 1) &
2403 ~(s64)vol->cluster_size_mask;
2404 else
2405 new_alloc_size = (new_size + 7) & ~7;
2406 /* The current allocated size is the old allocated size. */
2407 read_lock_irqsave(&ni->size_lock, flags);
2408 old_alloc_size = ni->allocated_size;
2409 read_unlock_irqrestore(&ni->size_lock, flags);
2410 /*
2411 * The change in the file size. This will be 0 if no change, >0 if the
2412 * size is growing, and <0 if the size is shrinking.
2413 */
2414 size_change = -1;
2415 if (new_size - old_size >= 0) {
2416 size_change = 1;
2417 if (new_size == old_size)
2418 size_change = 0;
2419 }
2420 /* As above for the allocated size. */
2421 alloc_change = -1;
2422 if (new_alloc_size - old_alloc_size >= 0) {
2423 alloc_change = 1;
2424 if (new_alloc_size == old_alloc_size)
2425 alloc_change = 0;
2426 }
2427 /*
2428 * If neither the size nor the allocation are being changed there is
2429 * nothing to do.
2430 */
2431 if (!size_change && !alloc_change)
2432 goto unm_done;
2433 /* If the size is changing, check if new size is allowed in $AttrDef. */
2434 if (size_change) {
2435 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2436 if (unlikely(err)) {
2437 if (err == -ERANGE) {
2438 ntfs_error(vol->sb, "Truncate would cause the "
2439 "inode 0x%lx to %simum size "
2440 "for its attribute type "
2441 "(0x%x). Aborting truncate.",
2442 vi->i_ino,
2443 new_size > old_size ? "exceed "
2444 "the max" : "go under the min",
2445 le32_to_cpu(ni->type));
2446 err = -EFBIG;
2447 } else {
2448 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2449 "attribute type 0x%x. "
2450 "Aborting truncate.",
2451 vi->i_ino,
2452 le32_to_cpu(ni->type));
2453 err = -EIO;
2454 }
2455 /* Reset the vfs inode size to the old size. */
2456 i_size_write(vi, old_size);
2457 goto err_out;
2458 }
2459 }
2460 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2461 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2462 "supported yet for %s files, ignoring.",
2463 NInoCompressed(ni) ? "compressed" :
2464 "encrypted");
2465 err = -EOPNOTSUPP;
2466 goto bad_out;
2467 }
2468 if (a->non_resident)
2469 goto do_non_resident_truncate;
2470 BUG_ON(NInoNonResident(ni));
2471 /* Resize the attribute record to best fit the new attribute size. */
2472 if (new_size < vol->mft_record_size &&
2473 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2474 /* The resize succeeded! */
2475 flush_dcache_mft_record_page(ctx->ntfs_ino);
2476 mark_mft_record_dirty(ctx->ntfs_ino);
2477 write_lock_irqsave(&ni->size_lock, flags);
2478 /* Update the sizes in the ntfs inode and all is done. */
2479 ni->allocated_size = le32_to_cpu(a->length) -
2480 le16_to_cpu(a->data.resident.value_offset);
2481 /*
2482 * Note ntfs_resident_attr_value_resize() has already done any
2483 * necessary data clearing in the attribute record. When the
2484 * file is being shrunk vmtruncate() will already have cleared
2485 * the top part of the last partial page, i.e. since this is
2486 * the resident case this is the page with index 0. However,
2487 * when the file is being expanded, the page cache page data
2488 * between the old data_size, i.e. old_size, and the new_size
2489 * has not been zeroed. Fortunately, we do not need to zero it
2490 * either since on one hand it will either already be zero due
2491 * to both readpage and writepage clearing partial page data
2492 * beyond i_size in which case there is nothing to do or in the
2493 * case of the file being mmap()ped at the same time, POSIX
2494 * specifies that the behaviour is unspecified thus we do not
2495 * have to do anything. This means that in our implementation
2496 * in the rare case that the file is mmap()ped and a write
2497 * occurred into the mmap()ped region just beyond the file size
2498 * and writepage has not yet been called to write out the page
2499 * (which would clear the area beyond the file size) and we now
2500 * extend the file size to incorporate this dirty region
2501 * outside the file size, a write of the page would result in
2502 * this data being written to disk instead of being cleared.
2503 * Given both POSIX and the Linux mmap(2) man page specify that
2504 * this corner case is undefined, we choose to leave it like
2505 * that as this is much simpler for us as we cannot lock the
2506 * relevant page now since we are holding too many ntfs locks
2507 * which would result in a lock reversal deadlock.
2508 */
2509 ni->initialized_size = new_size;
2510 write_unlock_irqrestore(&ni->size_lock, flags);
2511 goto unm_done;
2512 }
2513 /* If the above resize failed, this must be an attribute extension. */
2514 BUG_ON(size_change < 0);
2515 /*
2516 * We have to drop all the locks so we can call
2517 * ntfs_attr_make_non_resident(). This could be optimised by try-
2518 * locking the first page cache page and only if that fails dropping
2519 * the locks, locking the page, and redoing all the locking and
2520 * lookups. While this would be a huge optimisation, it is not worth
2521 * it as this is definitely a slow code path as it only ever can happen
2522 * once for any given file.
2523 */
2524 ntfs_attr_put_search_ctx(ctx);
2525 unmap_mft_record(base_ni);
2526 up_write(&ni->runlist.lock);
2527 /*
2528 * Not enough space in the mft record, try to make the attribute
2529 * non-resident and if successful restart the truncation process.
2530 */
2531 err = ntfs_attr_make_non_resident(ni, old_size);
2532 if (likely(!err))
2533 goto retry_truncate;
2534 /*
2535 * Could not make non-resident. If this is due to this not being
2536 * permitted for this attribute type or there not being enough space,
2537 * try to make other attributes non-resident. Otherwise fail.
2538 */
2539 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2540 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2541 "type 0x%x, because the conversion from "
2542 "resident to non-resident attribute failed "
2543 "with error code %i.", vi->i_ino,
2544 (unsigned)le32_to_cpu(ni->type), err);
2545 if (err != -ENOMEM)
2546 err = -EIO;
2547 goto conv_err_out;
2548 }
2549 /* TODO: Not implemented from here, abort. */
2550 if (err == -ENOSPC)
2551 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2552 "disk for the non-resident attribute value. "
2553 "This case is not implemented yet.");
2554 else /* if (err == -EPERM) */
2555 ntfs_error(vol->sb, "This attribute type may not be "
2556 "non-resident. This case is not implemented "
2557 "yet.");
2558 err = -EOPNOTSUPP;
2559 goto conv_err_out;
2560#if 0
2561 // TODO: Attempt to make other attributes non-resident.
2562 if (!err)
2563 goto do_resident_extend;
2564 /*
2565 * Both the attribute list attribute and the standard information
2566 * attribute must remain in the base inode. Thus, if this is one of
2567 * these attributes, we have to try to move other attributes out into
2568 * extent mft records instead.
2569 */
2570 if (ni->type == AT_ATTRIBUTE_LIST ||
2571 ni->type == AT_STANDARD_INFORMATION) {
2572 // TODO: Attempt to move other attributes into extent mft
2573 // records.
2574 err = -EOPNOTSUPP;
2575 if (!err)
2576 goto do_resident_extend;
2577 goto err_out;
2578 }
2579 // TODO: Attempt to move this attribute to an extent mft record, but
2580 // only if it is not already the only attribute in an mft record in
2581 // which case there would be nothing to gain.
2582 err = -EOPNOTSUPP;
2583 if (!err)
2584 goto do_resident_extend;
2585 /* There is nothing we can do to make enough space. )-: */
2586 goto err_out;
2587#endif
2588do_non_resident_truncate:
2589 BUG_ON(!NInoNonResident(ni));
2590 if (alloc_change < 0) {
2591 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2592 if (highest_vcn > 0 &&
2593 old_alloc_size >> vol->cluster_size_bits >
2594 highest_vcn + 1) {
2595 /*
2596 * This attribute has multiple extents. Not yet
2597 * supported.
2598 */
2599 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2600 "attribute type 0x%x, because the "
2601 "attribute is highly fragmented (it "
2602 "consists of multiple extents) and "
2603 "this case is not implemented yet.",
2604 vi->i_ino,
2605 (unsigned)le32_to_cpu(ni->type));
2606 err = -EOPNOTSUPP;
2607 goto bad_out;
2608 }
2609 }
2610 /*
2611 * If the size is shrinking, need to reduce the initialized_size and
2612 * the data_size before reducing the allocation.
2613 */
2614 if (size_change < 0) {
2615 /*
2616 * Make the valid size smaller (i_size is already up-to-date).
2617 */
2618 write_lock_irqsave(&ni->size_lock, flags);
2619 if (new_size < ni->initialized_size) {
2620 ni->initialized_size = new_size;
2621 a->data.non_resident.initialized_size =
2622 cpu_to_sle64(new_size);
2623 }
2624 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2625 write_unlock_irqrestore(&ni->size_lock, flags);
2626 flush_dcache_mft_record_page(ctx->ntfs_ino);
2627 mark_mft_record_dirty(ctx->ntfs_ino);
2628 /* If the allocated size is not changing, we are done. */
2629 if (!alloc_change)
2630 goto unm_done;
2631 /*
2632 * If the size is shrinking it makes no sense for the
2633 * allocation to be growing.
2634 */
2635 BUG_ON(alloc_change > 0);
2636 } else /* if (size_change >= 0) */ {
2637 /*
2638 * The file size is growing or staying the same but the
2639 * allocation can be shrinking, growing or staying the same.
2640 */
2641 if (alloc_change > 0) {
2642 /*
2643 * We need to extend the allocation and possibly update
2644 * the data size. If we are updating the data size,
2645 * since we are not touching the initialized_size we do
2646 * not need to worry about the actual data on disk.
2647 * And as far as the page cache is concerned, there
2648 * will be no pages beyond the old data size and any
2649 * partial region in the last page between the old and
2650 * new data size (or the end of the page if the new
2651 * data size is outside the page) does not need to be
2652 * modified as explained above for the resident
2653 * attribute truncate case. To do this, we simply drop
2654 * the locks we hold and leave all the work to our
2655 * friendly helper ntfs_attr_extend_allocation().
2656 */
2657 ntfs_attr_put_search_ctx(ctx);
2658 unmap_mft_record(base_ni);
2659 up_write(&ni->runlist.lock);
2660 err = ntfs_attr_extend_allocation(ni, new_size,
2661 size_change > 0 ? new_size : -1, -1);
2662 /*
2663 * ntfs_attr_extend_allocation() will have done error
2664 * output already.
2665 */
2666 goto done;
2667 }
2668 if (!alloc_change)
2669 goto alloc_done;
2670 }
2671 /* alloc_change < 0 */
2672 /* Free the clusters. */
2673 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2674 vol->cluster_size_bits, -1, ctx);
2675 m = ctx->mrec;
2676 a = ctx->attr;
2677 if (unlikely(nr_freed < 0)) {
2678 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2679 "%lli). Unmount and run chkdsk to recover "
2680 "the lost cluster(s).", (long long)nr_freed);
2681 NVolSetErrors(vol);
2682 nr_freed = 0;
2683 }
2684 /* Truncate the runlist. */
2685 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2686 new_alloc_size >> vol->cluster_size_bits);
2687 /*
2688 * If the runlist truncation failed and/or the search context is no
2689 * longer valid, we cannot resize the attribute record or build the
2690 * mapping pairs array thus we mark the inode bad so that no access to
2691 * the freed clusters can happen.
2692 */
2693 if (unlikely(err || IS_ERR(m))) {
2694 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2695 IS_ERR(m) ?
2696 "restore attribute search context" :
2697 "truncate attribute runlist",
2698 IS_ERR(m) ? PTR_ERR(m) : err, es);
2699 err = -EIO;
2700 goto bad_out;
2701 }
2702 /* Get the size for the shrunk mapping pairs array for the runlist. */
2703 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2704 if (unlikely(mp_size <= 0)) {
2705 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2706 "attribute type 0x%x, because determining the "
2707 "size for the mapping pairs failed with error "
2708 "code %i.%s", vi->i_ino,
2709 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2710 err = -EIO;
2711 goto bad_out;
2712 }
2713 /*
2714 * Shrink the attribute record for the new mapping pairs array. Note,
2715 * this cannot fail since we are making the attribute smaller thus by
2716 * definition there is enough space to do so.
2717 */
2718 attr_len = le32_to_cpu(a->length);
2719 err = ntfs_attr_record_resize(m, a, mp_size +
2720 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2721 BUG_ON(err);
2722 /*
2723 * Generate the mapping pairs array directly into the attribute record.
2724 */
2725 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2726 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2727 mp_size, ni->runlist.rl, 0, -1, NULL);
2728 if (unlikely(err)) {
2729 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2730 "attribute type 0x%x, because building the "
2731 "mapping pairs failed with error code %i.%s",
2732 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2733 err, es);
2734 err = -EIO;
2735 goto bad_out;
2736 }
2737 /* Update the allocated/compressed size as well as the highest vcn. */
2738 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2739 vol->cluster_size_bits) - 1);
2740 write_lock_irqsave(&ni->size_lock, flags);
2741 ni->allocated_size = new_alloc_size;
2742 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2743 if (NInoSparse(ni) || NInoCompressed(ni)) {
2744 if (nr_freed) {
2745 ni->itype.compressed.size -= nr_freed <<
2746 vol->cluster_size_bits;
2747 BUG_ON(ni->itype.compressed.size < 0);
2748 a->data.non_resident.compressed_size = cpu_to_sle64(
2749 ni->itype.compressed.size);
2750 vi->i_blocks = ni->itype.compressed.size >> 9;
2751 }
2752 } else
2753 vi->i_blocks = new_alloc_size >> 9;
2754 write_unlock_irqrestore(&ni->size_lock, flags);
2755 /*
2756 * We have shrunk the allocation. If this is a shrinking truncate we
2757 * have already dealt with the initialized_size and the data_size above
2758 * and we are done. If the truncate is only changing the allocation
2759 * and not the data_size, we are also done. If this is an extending
2760 * truncate, need to extend the data_size now which is ensured by the
2761 * fact that @size_change is positive.
2762 */
2763alloc_done:
2764 /*
2765 * If the size is growing, need to update it now. If it is shrinking,
2766 * we have already updated it above (before the allocation change).
2767 */
2768 if (size_change > 0)
2769 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2770 /* Ensure the modified mft record is written out. */
2771 flush_dcache_mft_record_page(ctx->ntfs_ino);
2772 mark_mft_record_dirty(ctx->ntfs_ino);
2773unm_done:
2774 ntfs_attr_put_search_ctx(ctx);
2775 unmap_mft_record(base_ni);
2776 up_write(&ni->runlist.lock);
2777done:
2778 /* Update the mtime and ctime on the base inode. */
2779 /* normally ->truncate shouldn't update ctime or mtime,
2780 * but ntfs did before so it got a copy & paste version
2781 * of file_update_time. one day someone should fix this
2782 * for real.
2783 */
2784 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2785 struct timespec64 now = current_time(VFS_I(base_ni));
2786 int sync_it = 0;
2787
2788 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2789 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2790 sync_it = 1;
2791 VFS_I(base_ni)->i_mtime = now;
2792 VFS_I(base_ni)->i_ctime = now;
2793
2794 if (sync_it)
2795 mark_inode_dirty_sync(VFS_I(base_ni));
2796 }
2797
2798 if (likely(!err)) {
2799 NInoClearTruncateFailed(ni);
2800 ntfs_debug("Done.");
2801 }
2802 return err;
2803old_bad_out:
2804 old_size = -1;
2805bad_out:
2806 if (err != -ENOMEM && err != -EOPNOTSUPP)
2807 NVolSetErrors(vol);
2808 if (err != -EOPNOTSUPP)
2809 NInoSetTruncateFailed(ni);
2810 else if (old_size >= 0)
2811 i_size_write(vi, old_size);
2812err_out:
2813 if (ctx)
2814 ntfs_attr_put_search_ctx(ctx);
2815 if (m)
2816 unmap_mft_record(base_ni);
2817 up_write(&ni->runlist.lock);
2818out:
2819 ntfs_debug("Failed. Returning error code %i.", err);
2820 return err;
2821conv_err_out:
2822 if (err != -ENOMEM && err != -EOPNOTSUPP)
2823 NVolSetErrors(vol);
2824 if (err != -EOPNOTSUPP)
2825 NInoSetTruncateFailed(ni);
2826 else
2827 i_size_write(vi, old_size);
2828 goto out;
2829}
2830
2831/**
2832 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2833 * @vi: inode for which the i_size was changed
2834 *
2835 * Wrapper for ntfs_truncate() that has no return value.
2836 *
2837 * See ntfs_truncate() description above for details.
2838 */
2839#ifdef NTFS_RW
2840void ntfs_truncate_vfs(struct inode *vi) {
2841 ntfs_truncate(vi);
2842}
2843#endif
2844
2845/**
2846 * ntfs_setattr - called from notify_change() when an attribute is being changed
2847 * @dentry: dentry whose attributes to change
2848 * @attr: structure describing the attributes and the changes
2849 *
2850 * We have to trap VFS attempts to truncate the file described by @dentry as
2851 * soon as possible, because we do not implement changes in i_size yet. So we
2852 * abort all i_size changes here.
2853 *
2854 * We also abort all changes of user, group, and mode as we do not implement
2855 * the NTFS ACLs yet.
2856 *
2857 * Called with ->i_mutex held.
2858 */
2859int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2860{
2861 struct inode *vi = d_inode(dentry);
2862 int err;
2863 unsigned int ia_valid = attr->ia_valid;
2864
2865 err = setattr_prepare(dentry, attr);
2866 if (err)
2867 goto out;
2868 /* We do not support NTFS ACLs yet. */
2869 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2870 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2871 "supported yet, ignoring.");
2872 err = -EOPNOTSUPP;
2873 goto out;
2874 }
2875 if (ia_valid & ATTR_SIZE) {
2876 if (attr->ia_size != i_size_read(vi)) {
2877 ntfs_inode *ni = NTFS_I(vi);
2878 /*
2879 * FIXME: For now we do not support resizing of
2880 * compressed or encrypted files yet.
2881 */
2882 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2883 ntfs_warning(vi->i_sb, "Changes in inode size "
2884 "are not supported yet for "
2885 "%s files, ignoring.",
2886 NInoCompressed(ni) ?
2887 "compressed" : "encrypted");
2888 err = -EOPNOTSUPP;
2889 } else {
2890 truncate_setsize(vi, attr->ia_size);
2891 ntfs_truncate_vfs(vi);
2892 }
2893 if (err || ia_valid == ATTR_SIZE)
2894 goto out;
2895 } else {
2896 /*
2897 * We skipped the truncate but must still update
2898 * timestamps.
2899 */
2900 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2901 }
2902 }
2903 if (ia_valid & ATTR_ATIME)
2904 vi->i_atime = attr->ia_atime;
2905 if (ia_valid & ATTR_MTIME)
2906 vi->i_mtime = attr->ia_mtime;
2907 if (ia_valid & ATTR_CTIME)
2908 vi->i_ctime = attr->ia_ctime;
2909 mark_inode_dirty(vi);
2910out:
2911 return err;
2912}
2913
2914/**
2915 * ntfs_write_inode - write out a dirty inode
2916 * @vi: inode to write out
2917 * @sync: if true, write out synchronously
2918 *
2919 * Write out a dirty inode to disk including any extent inodes if present.
2920 *
2921 * If @sync is true, commit the inode to disk and wait for io completion. This
2922 * is done using write_mft_record().
2923 *
2924 * If @sync is false, just schedule the write to happen but do not wait for i/o
2925 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2926 * marking the page (and in this case mft record) dirty but we do not implement
2927 * this yet as write_mft_record() largely ignores the @sync parameter and
2928 * always performs synchronous writes.
2929 *
2930 * Return 0 on success and -errno on error.
2931 */
2932int __ntfs_write_inode(struct inode *vi, int sync)
2933{
2934 sle64 nt;
2935 ntfs_inode *ni = NTFS_I(vi);
2936 ntfs_attr_search_ctx *ctx;
2937 MFT_RECORD *m;
2938 STANDARD_INFORMATION *si;
2939 int err = 0;
2940 bool modified = false;
2941
2942 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2943 vi->i_ino);
2944 /*
2945 * Dirty attribute inodes are written via their real inodes so just
2946 * clean them here. Access time updates are taken care off when the
2947 * real inode is written.
2948 */
2949 if (NInoAttr(ni)) {
2950 NInoClearDirty(ni);
2951 ntfs_debug("Done.");
2952 return 0;
2953 }
2954 /* Map, pin, and lock the mft record belonging to the inode. */
2955 m = map_mft_record(ni);
2956 if (IS_ERR(m)) {
2957 err = PTR_ERR(m);
2958 goto err_out;
2959 }
2960 /* Update the access times in the standard information attribute. */
2961 ctx = ntfs_attr_get_search_ctx(ni, m);
2962 if (unlikely(!ctx)) {
2963 err = -ENOMEM;
2964 goto unm_err_out;
2965 }
2966 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2967 CASE_SENSITIVE, 0, NULL, 0, ctx);
2968 if (unlikely(err)) {
2969 ntfs_attr_put_search_ctx(ctx);
2970 goto unm_err_out;
2971 }
2972 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2973 le16_to_cpu(ctx->attr->data.resident.value_offset));
2974 /* Update the access times if they have changed. */
2975 nt = utc2ntfs(vi->i_mtime);
2976 if (si->last_data_change_time != nt) {
2977 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2978 "new = 0x%llx", vi->i_ino, (long long)
2979 sle64_to_cpu(si->last_data_change_time),
2980 (long long)sle64_to_cpu(nt));
2981 si->last_data_change_time = nt;
2982 modified = true;
2983 }
2984 nt = utc2ntfs(vi->i_ctime);
2985 if (si->last_mft_change_time != nt) {
2986 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2987 "new = 0x%llx", vi->i_ino, (long long)
2988 sle64_to_cpu(si->last_mft_change_time),
2989 (long long)sle64_to_cpu(nt));
2990 si->last_mft_change_time = nt;
2991 modified = true;
2992 }
2993 nt = utc2ntfs(vi->i_atime);
2994 if (si->last_access_time != nt) {
2995 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
2996 "new = 0x%llx", vi->i_ino,
2997 (long long)sle64_to_cpu(si->last_access_time),
2998 (long long)sle64_to_cpu(nt));
2999 si->last_access_time = nt;
3000 modified = true;
3001 }
3002 /*
3003 * If we just modified the standard information attribute we need to
3004 * mark the mft record it is in dirty. We do this manually so that
3005 * mark_inode_dirty() is not called which would redirty the inode and
3006 * hence result in an infinite loop of trying to write the inode.
3007 * There is no need to mark the base inode nor the base mft record
3008 * dirty, since we are going to write this mft record below in any case
3009 * and the base mft record may actually not have been modified so it
3010 * might not need to be written out.
3011 * NOTE: It is not a problem when the inode for $MFT itself is being
3012 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3013 * on the $MFT inode and hence ntfs_write_inode() will not be
3014 * re-invoked because of it which in turn is ok since the dirtied mft
3015 * record will be cleaned and written out to disk below, i.e. before
3016 * this function returns.
3017 */
3018 if (modified) {
3019 flush_dcache_mft_record_page(ctx->ntfs_ino);
3020 if (!NInoTestSetDirty(ctx->ntfs_ino))
3021 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3022 ctx->ntfs_ino->page_ofs);
3023 }
3024 ntfs_attr_put_search_ctx(ctx);
3025 /* Now the access times are updated, write the base mft record. */
3026 if (NInoDirty(ni))
3027 err = write_mft_record(ni, m, sync);
3028 /* Write all attached extent mft records. */
3029 mutex_lock(&ni->extent_lock);
3030 if (ni->nr_extents > 0) {
3031 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3032 int i;
3033
3034 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3035 for (i = 0; i < ni->nr_extents; i++) {
3036 ntfs_inode *tni = extent_nis[i];
3037
3038 if (NInoDirty(tni)) {
3039 MFT_RECORD *tm = map_mft_record(tni);
3040 int ret;
3041
3042 if (IS_ERR(tm)) {
3043 if (!err || err == -ENOMEM)
3044 err = PTR_ERR(tm);
3045 continue;
3046 }
3047 ret = write_mft_record(tni, tm, sync);
3048 unmap_mft_record(tni);
3049 if (unlikely(ret)) {
3050 if (!err || err == -ENOMEM)
3051 err = ret;
3052 }
3053 }
3054 }
3055 }
3056 mutex_unlock(&ni->extent_lock);
3057 unmap_mft_record(ni);
3058 if (unlikely(err))
3059 goto err_out;
3060 ntfs_debug("Done.");
3061 return 0;
3062unm_err_out:
3063 unmap_mft_record(ni);
3064err_out:
3065 if (err == -ENOMEM) {
3066 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3067 "Marking the inode dirty again, so the VFS "
3068 "retries later.");
3069 mark_inode_dirty(vi);
3070 } else {
3071 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3072 NVolSetErrors(ni->vol);
3073 }
3074 return err;
3075}
3076
3077#endif /* NTFS_RW */