Loading...
1/*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4 *
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/module.h>
24#include <linux/pci.h>
25#include <linux/dmapool.h>
26#include <linux/kernel.h>
27#include <linux/delay.h>
28#include <linux/ioport.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/errno.h>
32#include <linux/timer.h>
33#include <linux/list.h>
34#include <linux/interrupt.h>
35#include <linux/usb.h>
36#include <linux/usb/hcd.h>
37#include <linux/moduleparam.h>
38#include <linux/dma-mapping.h>
39#include <linux/io.h>
40
41#include <asm/irq.h>
42#include <asm/unaligned.h>
43
44#include <linux/irq.h>
45#include <linux/platform_device.h>
46
47#include "oxu210hp.h"
48
49#define DRIVER_VERSION "0.0.50"
50
51/*
52 * Main defines
53 */
54
55#define oxu_dbg(oxu, fmt, args...) \
56 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
57#define oxu_err(oxu, fmt, args...) \
58 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59#define oxu_info(oxu, fmt, args...) \
60 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61
62#ifdef CONFIG_DYNAMIC_DEBUG
63#define DEBUG
64#endif
65
66static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67{
68 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69}
70
71static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72{
73 return (struct oxu_hcd *) (hcd->hcd_priv);
74}
75
76/*
77 * Debug stuff
78 */
79
80#undef OXU_URB_TRACE
81#undef OXU_VERBOSE_DEBUG
82
83#ifdef OXU_VERBOSE_DEBUG
84#define oxu_vdbg oxu_dbg
85#else
86#define oxu_vdbg(oxu, fmt, args...) /* Nop */
87#endif
88
89#ifdef DEBUG
90
91static int __attribute__((__unused__))
92dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93{
94 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95 label, label[0] ? " " : "", status,
96 (status & STS_ASS) ? " Async" : "",
97 (status & STS_PSS) ? " Periodic" : "",
98 (status & STS_RECL) ? " Recl" : "",
99 (status & STS_HALT) ? " Halt" : "",
100 (status & STS_IAA) ? " IAA" : "",
101 (status & STS_FATAL) ? " FATAL" : "",
102 (status & STS_FLR) ? " FLR" : "",
103 (status & STS_PCD) ? " PCD" : "",
104 (status & STS_ERR) ? " ERR" : "",
105 (status & STS_INT) ? " INT" : ""
106 );
107}
108
109static int __attribute__((__unused__))
110dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111{
112 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
113 label, label[0] ? " " : "", enable,
114 (enable & STS_IAA) ? " IAA" : "",
115 (enable & STS_FATAL) ? " FATAL" : "",
116 (enable & STS_FLR) ? " FLR" : "",
117 (enable & STS_PCD) ? " PCD" : "",
118 (enable & STS_ERR) ? " ERR" : "",
119 (enable & STS_INT) ? " INT" : ""
120 );
121}
122
123static const char *const fls_strings[] =
124 { "1024", "512", "256", "??" };
125
126static int dbg_command_buf(char *buf, unsigned len,
127 const char *label, u32 command)
128{
129 return scnprintf(buf, len,
130 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131 label, label[0] ? " " : "", command,
132 (command & CMD_PARK) ? "park" : "(park)",
133 CMD_PARK_CNT(command),
134 (command >> 16) & 0x3f,
135 (command & CMD_LRESET) ? " LReset" : "",
136 (command & CMD_IAAD) ? " IAAD" : "",
137 (command & CMD_ASE) ? " Async" : "",
138 (command & CMD_PSE) ? " Periodic" : "",
139 fls_strings[(command >> 2) & 0x3],
140 (command & CMD_RESET) ? " Reset" : "",
141 (command & CMD_RUN) ? "RUN" : "HALT"
142 );
143}
144
145static int dbg_port_buf(char *buf, unsigned len, const char *label,
146 int port, u32 status)
147{
148 char *sig;
149
150 /* signaling state */
151 switch (status & (3 << 10)) {
152 case 0 << 10:
153 sig = "se0";
154 break;
155 case 1 << 10:
156 sig = "k"; /* low speed */
157 break;
158 case 2 << 10:
159 sig = "j";
160 break;
161 default:
162 sig = "?";
163 break;
164 }
165
166 return scnprintf(buf, len,
167 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168 label, label[0] ? " " : "", port, status,
169 (status & PORT_POWER) ? " POWER" : "",
170 (status & PORT_OWNER) ? " OWNER" : "",
171 sig,
172 (status & PORT_RESET) ? " RESET" : "",
173 (status & PORT_SUSPEND) ? " SUSPEND" : "",
174 (status & PORT_RESUME) ? " RESUME" : "",
175 (status & PORT_OCC) ? " OCC" : "",
176 (status & PORT_OC) ? " OC" : "",
177 (status & PORT_PEC) ? " PEC" : "",
178 (status & PORT_PE) ? " PE" : "",
179 (status & PORT_CSC) ? " CSC" : "",
180 (status & PORT_CONNECT) ? " CONNECT" : ""
181 );
182}
183
184#else
185
186static inline int __attribute__((__unused__))
187dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
188{ return 0; }
189
190static inline int __attribute__((__unused__))
191dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
192{ return 0; }
193
194static inline int __attribute__((__unused__))
195dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196{ return 0; }
197
198static inline int __attribute__((__unused__))
199dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
200{ return 0; }
201
202#endif /* DEBUG */
203
204/* functions have the "wrong" filename when they're output... */
205#define dbg_status(oxu, label, status) { \
206 char _buf[80]; \
207 dbg_status_buf(_buf, sizeof _buf, label, status); \
208 oxu_dbg(oxu, "%s\n", _buf); \
209}
210
211#define dbg_cmd(oxu, label, command) { \
212 char _buf[80]; \
213 dbg_command_buf(_buf, sizeof _buf, label, command); \
214 oxu_dbg(oxu, "%s\n", _buf); \
215}
216
217#define dbg_port(oxu, label, port, status) { \
218 char _buf[80]; \
219 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220 oxu_dbg(oxu, "%s\n", _buf); \
221}
222
223/*
224 * Module parameters
225 */
226
227/* Initial IRQ latency: faster than hw default */
228static int log2_irq_thresh; /* 0 to 6 */
229module_param(log2_irq_thresh, int, S_IRUGO);
230MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231
232/* Initial park setting: slower than hw default */
233static unsigned park;
234module_param(park, uint, S_IRUGO);
235MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236
237/* For flakey hardware, ignore overcurrent indicators */
238static bool ignore_oc;
239module_param(ignore_oc, bool, S_IRUGO);
240MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241
242
243static void ehci_work(struct oxu_hcd *oxu);
244static int oxu_hub_control(struct usb_hcd *hcd,
245 u16 typeReq, u16 wValue, u16 wIndex,
246 char *buf, u16 wLength);
247
248/*
249 * Local functions
250 */
251
252/* Low level read/write registers functions */
253static inline u32 oxu_readl(void *base, u32 reg)
254{
255 return readl(base + reg);
256}
257
258static inline void oxu_writel(void *base, u32 reg, u32 val)
259{
260 writel(val, base + reg);
261}
262
263static inline void timer_action_done(struct oxu_hcd *oxu,
264 enum ehci_timer_action action)
265{
266 clear_bit(action, &oxu->actions);
267}
268
269static inline void timer_action(struct oxu_hcd *oxu,
270 enum ehci_timer_action action)
271{
272 if (!test_and_set_bit(action, &oxu->actions)) {
273 unsigned long t;
274
275 switch (action) {
276 case TIMER_IAA_WATCHDOG:
277 t = EHCI_IAA_JIFFIES;
278 break;
279 case TIMER_IO_WATCHDOG:
280 t = EHCI_IO_JIFFIES;
281 break;
282 case TIMER_ASYNC_OFF:
283 t = EHCI_ASYNC_JIFFIES;
284 break;
285 case TIMER_ASYNC_SHRINK:
286 default:
287 t = EHCI_SHRINK_JIFFIES;
288 break;
289 }
290 t += jiffies;
291 /* all timings except IAA watchdog can be overridden.
292 * async queue SHRINK often precedes IAA. while it's ready
293 * to go OFF neither can matter, and afterwards the IO
294 * watchdog stops unless there's still periodic traffic.
295 */
296 if (action != TIMER_IAA_WATCHDOG
297 && t > oxu->watchdog.expires
298 && timer_pending(&oxu->watchdog))
299 return;
300 mod_timer(&oxu->watchdog, t);
301 }
302}
303
304/*
305 * handshake - spin reading hc until handshake completes or fails
306 * @ptr: address of hc register to be read
307 * @mask: bits to look at in result of read
308 * @done: value of those bits when handshake succeeds
309 * @usec: timeout in microseconds
310 *
311 * Returns negative errno, or zero on success
312 *
313 * Success happens when the "mask" bits have the specified value (hardware
314 * handshake done). There are two failure modes: "usec" have passed (major
315 * hardware flakeout), or the register reads as all-ones (hardware removed).
316 *
317 * That last failure should_only happen in cases like physical cardbus eject
318 * before driver shutdown. But it also seems to be caused by bugs in cardbus
319 * bridge shutdown: shutting down the bridge before the devices using it.
320 */
321static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
322 u32 mask, u32 done, int usec)
323{
324 u32 result;
325
326 do {
327 result = readl(ptr);
328 if (result == ~(u32)0) /* card removed */
329 return -ENODEV;
330 result &= mask;
331 if (result == done)
332 return 0;
333 udelay(1);
334 usec--;
335 } while (usec > 0);
336 return -ETIMEDOUT;
337}
338
339/* Force HC to halt state from unknown (EHCI spec section 2.3) */
340static int ehci_halt(struct oxu_hcd *oxu)
341{
342 u32 temp = readl(&oxu->regs->status);
343
344 /* disable any irqs left enabled by previous code */
345 writel(0, &oxu->regs->intr_enable);
346
347 if ((temp & STS_HALT) != 0)
348 return 0;
349
350 temp = readl(&oxu->regs->command);
351 temp &= ~CMD_RUN;
352 writel(temp, &oxu->regs->command);
353 return handshake(oxu, &oxu->regs->status,
354 STS_HALT, STS_HALT, 16 * 125);
355}
356
357/* Put TDI/ARC silicon into EHCI mode */
358static void tdi_reset(struct oxu_hcd *oxu)
359{
360 u32 __iomem *reg_ptr;
361 u32 tmp;
362
363 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
364 tmp = readl(reg_ptr);
365 tmp |= 0x3;
366 writel(tmp, reg_ptr);
367}
368
369/* Reset a non-running (STS_HALT == 1) controller */
370static int ehci_reset(struct oxu_hcd *oxu)
371{
372 int retval;
373 u32 command = readl(&oxu->regs->command);
374
375 command |= CMD_RESET;
376 dbg_cmd(oxu, "reset", command);
377 writel(command, &oxu->regs->command);
378 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
379 oxu->next_statechange = jiffies;
380 retval = handshake(oxu, &oxu->regs->command,
381 CMD_RESET, 0, 250 * 1000);
382
383 if (retval)
384 return retval;
385
386 tdi_reset(oxu);
387
388 return retval;
389}
390
391/* Idle the controller (from running) */
392static void ehci_quiesce(struct oxu_hcd *oxu)
393{
394 u32 temp;
395
396#ifdef DEBUG
397 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
398#endif
399
400 /* wait for any schedule enables/disables to take effect */
401 temp = readl(&oxu->regs->command) << 10;
402 temp &= STS_ASS | STS_PSS;
403 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
404 temp, 16 * 125) != 0) {
405 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
406 return;
407 }
408
409 /* then disable anything that's still active */
410 temp = readl(&oxu->regs->command);
411 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
412 writel(temp, &oxu->regs->command);
413
414 /* hardware can take 16 microframes to turn off ... */
415 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
416 0, 16 * 125) != 0) {
417 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
418 return;
419 }
420}
421
422static int check_reset_complete(struct oxu_hcd *oxu, int index,
423 u32 __iomem *status_reg, int port_status)
424{
425 if (!(port_status & PORT_CONNECT)) {
426 oxu->reset_done[index] = 0;
427 return port_status;
428 }
429
430 /* if reset finished and it's still not enabled -- handoff */
431 if (!(port_status & PORT_PE)) {
432 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
433 index+1);
434 return port_status;
435 } else
436 oxu_dbg(oxu, "port %d high speed\n", index + 1);
437
438 return port_status;
439}
440
441static void ehci_hub_descriptor(struct oxu_hcd *oxu,
442 struct usb_hub_descriptor *desc)
443{
444 int ports = HCS_N_PORTS(oxu->hcs_params);
445 u16 temp;
446
447 desc->bDescriptorType = USB_DT_HUB;
448 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
449 desc->bHubContrCurrent = 0;
450
451 desc->bNbrPorts = ports;
452 temp = 1 + (ports / 8);
453 desc->bDescLength = 7 + 2 * temp;
454
455 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
456 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
457 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
458
459 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
460 if (HCS_PPC(oxu->hcs_params))
461 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
462 else
463 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
464 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
465}
466
467
468/* Allocate an OXU210HP on-chip memory data buffer
469 *
470 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
471 * Each transfer descriptor has one or more on-chip memory data buffers.
472 *
473 * Data buffers are allocated from a fix sized pool of data blocks.
474 * To minimise fragmentation and give reasonable memory utlisation,
475 * data buffers are allocated with sizes the power of 2 multiples of
476 * the block size, starting on an address a multiple of the allocated size.
477 *
478 * FIXME: callers of this function require a buffer to be allocated for
479 * len=0. This is a waste of on-chip memory and should be fix. Then this
480 * function should be changed to not allocate a buffer for len=0.
481 */
482static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
483{
484 int n_blocks; /* minium blocks needed to hold len */
485 int a_blocks; /* blocks allocated */
486 int i, j;
487
488 /* Don't allocte bigger than supported */
489 if (len > BUFFER_SIZE * BUFFER_NUM) {
490 oxu_err(oxu, "buffer too big (%d)\n", len);
491 return -ENOMEM;
492 }
493
494 spin_lock(&oxu->mem_lock);
495
496 /* Number of blocks needed to hold len */
497 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
498
499 /* Round the number of blocks up to the power of 2 */
500 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
501 ;
502
503 /* Find a suitable available data buffer */
504 for (i = 0; i < BUFFER_NUM;
505 i += max(a_blocks, (int)oxu->db_used[i])) {
506
507 /* Check all the required blocks are available */
508 for (j = 0; j < a_blocks; j++)
509 if (oxu->db_used[i + j])
510 break;
511
512 if (j != a_blocks)
513 continue;
514
515 /* Allocate blocks found! */
516 qtd->buffer = (void *) &oxu->mem->db_pool[i];
517 qtd->buffer_dma = virt_to_phys(qtd->buffer);
518
519 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
520 oxu->db_used[i] = a_blocks;
521
522 spin_unlock(&oxu->mem_lock);
523
524 return 0;
525 }
526
527 /* Failed */
528
529 spin_unlock(&oxu->mem_lock);
530
531 return -ENOMEM;
532}
533
534static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
535{
536 int index;
537
538 spin_lock(&oxu->mem_lock);
539
540 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
541 / BUFFER_SIZE;
542 oxu->db_used[index] = 0;
543 qtd->qtd_buffer_len = 0;
544 qtd->buffer_dma = 0;
545 qtd->buffer = NULL;
546
547 spin_unlock(&oxu->mem_lock);
548}
549
550static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
551{
552 memset(qtd, 0, sizeof *qtd);
553 qtd->qtd_dma = dma;
554 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
555 qtd->hw_next = EHCI_LIST_END;
556 qtd->hw_alt_next = EHCI_LIST_END;
557 INIT_LIST_HEAD(&qtd->qtd_list);
558}
559
560static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
561{
562 int index;
563
564 if (qtd->buffer)
565 oxu_buf_free(oxu, qtd);
566
567 spin_lock(&oxu->mem_lock);
568
569 index = qtd - &oxu->mem->qtd_pool[0];
570 oxu->qtd_used[index] = 0;
571
572 spin_unlock(&oxu->mem_lock);
573}
574
575static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
576{
577 int i;
578 struct ehci_qtd *qtd = NULL;
579
580 spin_lock(&oxu->mem_lock);
581
582 for (i = 0; i < QTD_NUM; i++)
583 if (!oxu->qtd_used[i])
584 break;
585
586 if (i < QTD_NUM) {
587 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
588 memset(qtd, 0, sizeof *qtd);
589
590 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
591 qtd->hw_next = EHCI_LIST_END;
592 qtd->hw_alt_next = EHCI_LIST_END;
593 INIT_LIST_HEAD(&qtd->qtd_list);
594
595 qtd->qtd_dma = virt_to_phys(qtd);
596
597 oxu->qtd_used[i] = 1;
598 }
599
600 spin_unlock(&oxu->mem_lock);
601
602 return qtd;
603}
604
605static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
606{
607 int index;
608
609 spin_lock(&oxu->mem_lock);
610
611 index = qh - &oxu->mem->qh_pool[0];
612 oxu->qh_used[index] = 0;
613
614 spin_unlock(&oxu->mem_lock);
615}
616
617static void qh_destroy(struct kref *kref)
618{
619 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
620 struct oxu_hcd *oxu = qh->oxu;
621
622 /* clean qtds first, and know this is not linked */
623 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
624 oxu_dbg(oxu, "unused qh not empty!\n");
625 BUG();
626 }
627 if (qh->dummy)
628 oxu_qtd_free(oxu, qh->dummy);
629 oxu_qh_free(oxu, qh);
630}
631
632static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
633{
634 int i;
635 struct ehci_qh *qh = NULL;
636
637 spin_lock(&oxu->mem_lock);
638
639 for (i = 0; i < QHEAD_NUM; i++)
640 if (!oxu->qh_used[i])
641 break;
642
643 if (i < QHEAD_NUM) {
644 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
645 memset(qh, 0, sizeof *qh);
646
647 kref_init(&qh->kref);
648 qh->oxu = oxu;
649 qh->qh_dma = virt_to_phys(qh);
650 INIT_LIST_HEAD(&qh->qtd_list);
651
652 /* dummy td enables safe urb queuing */
653 qh->dummy = ehci_qtd_alloc(oxu);
654 if (qh->dummy == NULL) {
655 oxu_dbg(oxu, "no dummy td\n");
656 oxu->qh_used[i] = 0;
657 qh = NULL;
658 goto unlock;
659 }
660
661 oxu->qh_used[i] = 1;
662 }
663unlock:
664 spin_unlock(&oxu->mem_lock);
665
666 return qh;
667}
668
669/* to share a qh (cpu threads, or hc) */
670static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
671{
672 kref_get(&qh->kref);
673 return qh;
674}
675
676static inline void qh_put(struct ehci_qh *qh)
677{
678 kref_put(&qh->kref, qh_destroy);
679}
680
681static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
682{
683 int index;
684
685 spin_lock(&oxu->mem_lock);
686
687 index = murb - &oxu->murb_pool[0];
688 oxu->murb_used[index] = 0;
689
690 spin_unlock(&oxu->mem_lock);
691}
692
693static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
694
695{
696 int i;
697 struct oxu_murb *murb = NULL;
698
699 spin_lock(&oxu->mem_lock);
700
701 for (i = 0; i < MURB_NUM; i++)
702 if (!oxu->murb_used[i])
703 break;
704
705 if (i < MURB_NUM) {
706 murb = &(oxu->murb_pool)[i];
707
708 oxu->murb_used[i] = 1;
709 }
710
711 spin_unlock(&oxu->mem_lock);
712
713 return murb;
714}
715
716/* The queue heads and transfer descriptors are managed from pools tied
717 * to each of the "per device" structures.
718 * This is the initialisation and cleanup code.
719 */
720static void ehci_mem_cleanup(struct oxu_hcd *oxu)
721{
722 kfree(oxu->murb_pool);
723 oxu->murb_pool = NULL;
724
725 if (oxu->async)
726 qh_put(oxu->async);
727 oxu->async = NULL;
728
729 del_timer(&oxu->urb_timer);
730
731 oxu->periodic = NULL;
732
733 /* shadow periodic table */
734 kfree(oxu->pshadow);
735 oxu->pshadow = NULL;
736}
737
738/* Remember to add cleanup code (above) if you add anything here.
739 */
740static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
741{
742 int i;
743
744 for (i = 0; i < oxu->periodic_size; i++)
745 oxu->mem->frame_list[i] = EHCI_LIST_END;
746 for (i = 0; i < QHEAD_NUM; i++)
747 oxu->qh_used[i] = 0;
748 for (i = 0; i < QTD_NUM; i++)
749 oxu->qtd_used[i] = 0;
750
751 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
752 if (!oxu->murb_pool)
753 goto fail;
754
755 for (i = 0; i < MURB_NUM; i++)
756 oxu->murb_used[i] = 0;
757
758 oxu->async = oxu_qh_alloc(oxu);
759 if (!oxu->async)
760 goto fail;
761
762 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
763 oxu->periodic_dma = virt_to_phys(oxu->periodic);
764
765 for (i = 0; i < oxu->periodic_size; i++)
766 oxu->periodic[i] = EHCI_LIST_END;
767
768 /* software shadow of hardware table */
769 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
770 if (oxu->pshadow != NULL)
771 return 0;
772
773fail:
774 oxu_dbg(oxu, "couldn't init memory\n");
775 ehci_mem_cleanup(oxu);
776 return -ENOMEM;
777}
778
779/* Fill a qtd, returning how much of the buffer we were able to queue up.
780 */
781static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
782 int token, int maxpacket)
783{
784 int i, count;
785 u64 addr = buf;
786
787 /* one buffer entry per 4K ... first might be short or unaligned */
788 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
789 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
790 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
791 if (likely(len < count)) /* ... iff needed */
792 count = len;
793 else {
794 buf += 0x1000;
795 buf &= ~0x0fff;
796
797 /* per-qtd limit: from 16K to 20K (best alignment) */
798 for (i = 1; count < len && i < 5; i++) {
799 addr = buf;
800 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
801 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
802 buf += 0x1000;
803 if ((count + 0x1000) < len)
804 count += 0x1000;
805 else
806 count = len;
807 }
808
809 /* short packets may only terminate transfers */
810 if (count != len)
811 count -= (count % maxpacket);
812 }
813 qtd->hw_token = cpu_to_le32((count << 16) | token);
814 qtd->length = count;
815
816 return count;
817}
818
819static inline void qh_update(struct oxu_hcd *oxu,
820 struct ehci_qh *qh, struct ehci_qtd *qtd)
821{
822 /* writes to an active overlay are unsafe */
823 BUG_ON(qh->qh_state != QH_STATE_IDLE);
824
825 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
826 qh->hw_alt_next = EHCI_LIST_END;
827
828 /* Except for control endpoints, we make hardware maintain data
829 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
830 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
831 * ever clear it.
832 */
833 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
834 unsigned is_out, epnum;
835
836 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
837 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
838 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
839 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
840 usb_settoggle(qh->dev, epnum, is_out, 1);
841 }
842 }
843
844 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
845 wmb();
846 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
847}
848
849/* If it weren't for a common silicon quirk (writing the dummy into the qh
850 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
851 * recovery (including urb dequeue) would need software changes to a QH...
852 */
853static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
854{
855 struct ehci_qtd *qtd;
856
857 if (list_empty(&qh->qtd_list))
858 qtd = qh->dummy;
859 else {
860 qtd = list_entry(qh->qtd_list.next,
861 struct ehci_qtd, qtd_list);
862 /* first qtd may already be partially processed */
863 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
864 qtd = NULL;
865 }
866
867 if (qtd)
868 qh_update(oxu, qh, qtd);
869}
870
871static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
872 size_t length, u32 token)
873{
874 /* count IN/OUT bytes, not SETUP (even short packets) */
875 if (likely(QTD_PID(token) != 2))
876 urb->actual_length += length - QTD_LENGTH(token);
877
878 /* don't modify error codes */
879 if (unlikely(urb->status != -EINPROGRESS))
880 return;
881
882 /* force cleanup after short read; not always an error */
883 if (unlikely(IS_SHORT_READ(token)))
884 urb->status = -EREMOTEIO;
885
886 /* serious "can't proceed" faults reported by the hardware */
887 if (token & QTD_STS_HALT) {
888 if (token & QTD_STS_BABBLE) {
889 /* FIXME "must" disable babbling device's port too */
890 urb->status = -EOVERFLOW;
891 } else if (token & QTD_STS_MMF) {
892 /* fs/ls interrupt xfer missed the complete-split */
893 urb->status = -EPROTO;
894 } else if (token & QTD_STS_DBE) {
895 urb->status = (QTD_PID(token) == 1) /* IN ? */
896 ? -ENOSR /* hc couldn't read data */
897 : -ECOMM; /* hc couldn't write data */
898 } else if (token & QTD_STS_XACT) {
899 /* timeout, bad crc, wrong PID, etc; retried */
900 if (QTD_CERR(token))
901 urb->status = -EPIPE;
902 else {
903 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
904 urb->dev->devpath,
905 usb_pipeendpoint(urb->pipe),
906 usb_pipein(urb->pipe) ? "in" : "out");
907 urb->status = -EPROTO;
908 }
909 /* CERR nonzero + no errors + halt --> stall */
910 } else if (QTD_CERR(token))
911 urb->status = -EPIPE;
912 else /* unknown */
913 urb->status = -EPROTO;
914
915 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
916 usb_pipedevice(urb->pipe),
917 usb_pipeendpoint(urb->pipe),
918 usb_pipein(urb->pipe) ? "in" : "out",
919 token, urb->status);
920 }
921}
922
923static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
924__releases(oxu->lock)
925__acquires(oxu->lock)
926{
927 if (likely(urb->hcpriv != NULL)) {
928 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
929
930 /* S-mask in a QH means it's an interrupt urb */
931 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
932
933 /* ... update hc-wide periodic stats (for usbfs) */
934 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
935 }
936 qh_put(qh);
937 }
938
939 urb->hcpriv = NULL;
940 switch (urb->status) {
941 case -EINPROGRESS: /* success */
942 urb->status = 0;
943 default: /* fault */
944 break;
945 case -EREMOTEIO: /* fault or normal */
946 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
947 urb->status = 0;
948 break;
949 case -ECONNRESET: /* canceled */
950 case -ENOENT:
951 break;
952 }
953
954#ifdef OXU_URB_TRACE
955 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
956 __func__, urb->dev->devpath, urb,
957 usb_pipeendpoint(urb->pipe),
958 usb_pipein(urb->pipe) ? "in" : "out",
959 urb->status,
960 urb->actual_length, urb->transfer_buffer_length);
961#endif
962
963 /* complete() can reenter this HCD */
964 spin_unlock(&oxu->lock);
965 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
966 spin_lock(&oxu->lock);
967}
968
969static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
970static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
971
972static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
973static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
974
975#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
976
977/* Process and free completed qtds for a qh, returning URBs to drivers.
978 * Chases up to qh->hw_current. Returns number of completions called,
979 * indicating how much "real" work we did.
980 */
981static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
982{
983 struct ehci_qtd *last = NULL, *end = qh->dummy;
984 struct ehci_qtd *qtd, *tmp;
985 int stopped;
986 unsigned count = 0;
987 int do_status = 0;
988 u8 state;
989 struct oxu_murb *murb = NULL;
990
991 if (unlikely(list_empty(&qh->qtd_list)))
992 return count;
993
994 /* completions (or tasks on other cpus) must never clobber HALT
995 * till we've gone through and cleaned everything up, even when
996 * they add urbs to this qh's queue or mark them for unlinking.
997 *
998 * NOTE: unlinking expects to be done in queue order.
999 */
1000 state = qh->qh_state;
1001 qh->qh_state = QH_STATE_COMPLETING;
1002 stopped = (state == QH_STATE_IDLE);
1003
1004 /* remove de-activated QTDs from front of queue.
1005 * after faults (including short reads), cleanup this urb
1006 * then let the queue advance.
1007 * if queue is stopped, handles unlinks.
1008 */
1009 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1010 struct urb *urb;
1011 u32 token = 0;
1012
1013 urb = qtd->urb;
1014
1015 /* Clean up any state from previous QTD ...*/
1016 if (last) {
1017 if (likely(last->urb != urb)) {
1018 if (last->urb->complete == NULL) {
1019 murb = (struct oxu_murb *) last->urb;
1020 last->urb = murb->main;
1021 if (murb->last) {
1022 ehci_urb_done(oxu, last->urb);
1023 count++;
1024 }
1025 oxu_murb_free(oxu, murb);
1026 } else {
1027 ehci_urb_done(oxu, last->urb);
1028 count++;
1029 }
1030 }
1031 oxu_qtd_free(oxu, last);
1032 last = NULL;
1033 }
1034
1035 /* ignore urbs submitted during completions we reported */
1036 if (qtd == end)
1037 break;
1038
1039 /* hardware copies qtd out of qh overlay */
1040 rmb();
1041 token = le32_to_cpu(qtd->hw_token);
1042
1043 /* always clean up qtds the hc de-activated */
1044 if ((token & QTD_STS_ACTIVE) == 0) {
1045
1046 if ((token & QTD_STS_HALT) != 0) {
1047 stopped = 1;
1048
1049 /* magic dummy for some short reads; qh won't advance.
1050 * that silicon quirk can kick in with this dummy too.
1051 */
1052 } else if (IS_SHORT_READ(token) &&
1053 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1054 stopped = 1;
1055 goto halt;
1056 }
1057
1058 /* stop scanning when we reach qtds the hc is using */
1059 } else if (likely(!stopped &&
1060 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1061 break;
1062
1063 } else {
1064 stopped = 1;
1065
1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1067 urb->status = -ESHUTDOWN;
1068
1069 /* ignore active urbs unless some previous qtd
1070 * for the urb faulted (including short read) or
1071 * its urb was canceled. we may patch qh or qtds.
1072 */
1073 if (likely(urb->status == -EINPROGRESS))
1074 continue;
1075
1076 /* issue status after short control reads */
1077 if (unlikely(do_status != 0)
1078 && QTD_PID(token) == 0 /* OUT */) {
1079 do_status = 0;
1080 continue;
1081 }
1082
1083 /* token in overlay may be most current */
1084 if (state == QH_STATE_IDLE
1085 && cpu_to_le32(qtd->qtd_dma)
1086 == qh->hw_current)
1087 token = le32_to_cpu(qh->hw_token);
1088
1089 /* force halt for unlinked or blocked qh, so we'll
1090 * patch the qh later and so that completions can't
1091 * activate it while we "know" it's stopped.
1092 */
1093 if ((HALT_BIT & qh->hw_token) == 0) {
1094halt:
1095 qh->hw_token |= HALT_BIT;
1096 wmb();
1097 }
1098 }
1099
1100 /* Remove it from the queue */
1101 qtd_copy_status(oxu, urb->complete ?
1102 urb : ((struct oxu_murb *) urb)->main,
1103 qtd->length, token);
1104 if ((usb_pipein(qtd->urb->pipe)) &&
1105 (NULL != qtd->transfer_buffer))
1106 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1107 do_status = (urb->status == -EREMOTEIO)
1108 && usb_pipecontrol(urb->pipe);
1109
1110 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1111 last = list_entry(qtd->qtd_list.prev,
1112 struct ehci_qtd, qtd_list);
1113 last->hw_next = qtd->hw_next;
1114 }
1115 list_del(&qtd->qtd_list);
1116 last = qtd;
1117 }
1118
1119 /* last urb's completion might still need calling */
1120 if (likely(last != NULL)) {
1121 if (last->urb->complete == NULL) {
1122 murb = (struct oxu_murb *) last->urb;
1123 last->urb = murb->main;
1124 if (murb->last) {
1125 ehci_urb_done(oxu, last->urb);
1126 count++;
1127 }
1128 oxu_murb_free(oxu, murb);
1129 } else {
1130 ehci_urb_done(oxu, last->urb);
1131 count++;
1132 }
1133 oxu_qtd_free(oxu, last);
1134 }
1135
1136 /* restore original state; caller must unlink or relink */
1137 qh->qh_state = state;
1138
1139 /* be sure the hardware's done with the qh before refreshing
1140 * it after fault cleanup, or recovering from silicon wrongly
1141 * overlaying the dummy qtd (which reduces DMA chatter).
1142 */
1143 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1144 switch (state) {
1145 case QH_STATE_IDLE:
1146 qh_refresh(oxu, qh);
1147 break;
1148 case QH_STATE_LINKED:
1149 /* should be rare for periodic transfers,
1150 * except maybe high bandwidth ...
1151 */
1152 if ((cpu_to_le32(QH_SMASK)
1153 & qh->hw_info2) != 0) {
1154 intr_deschedule(oxu, qh);
1155 (void) qh_schedule(oxu, qh);
1156 } else
1157 unlink_async(oxu, qh);
1158 break;
1159 /* otherwise, unlink already started */
1160 }
1161 }
1162
1163 return count;
1164}
1165
1166/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1167#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1168/* ... and packet size, for any kind of endpoint descriptor */
1169#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1170
1171/* Reverse of qh_urb_transaction: free a list of TDs.
1172 * used for cleanup after errors, before HC sees an URB's TDs.
1173 */
1174static void qtd_list_free(struct oxu_hcd *oxu,
1175 struct urb *urb, struct list_head *head)
1176{
1177 struct ehci_qtd *qtd, *temp;
1178
1179 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1180 list_del(&qtd->qtd_list);
1181 oxu_qtd_free(oxu, qtd);
1182 }
1183}
1184
1185/* Create a list of filled qtds for this URB; won't link into qh.
1186 */
1187static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1188 struct urb *urb,
1189 struct list_head *head,
1190 gfp_t flags)
1191{
1192 struct ehci_qtd *qtd, *qtd_prev;
1193 dma_addr_t buf;
1194 int len, maxpacket;
1195 int is_input;
1196 u32 token;
1197 void *transfer_buf = NULL;
1198 int ret;
1199
1200 /*
1201 * URBs map to sequences of QTDs: one logical transaction
1202 */
1203 qtd = ehci_qtd_alloc(oxu);
1204 if (unlikely(!qtd))
1205 return NULL;
1206 list_add_tail(&qtd->qtd_list, head);
1207 qtd->urb = urb;
1208
1209 token = QTD_STS_ACTIVE;
1210 token |= (EHCI_TUNE_CERR << 10);
1211 /* for split transactions, SplitXState initialized to zero */
1212
1213 len = urb->transfer_buffer_length;
1214 is_input = usb_pipein(urb->pipe);
1215 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1216 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1217
1218 if (usb_pipecontrol(urb->pipe)) {
1219 /* SETUP pid */
1220 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1221 if (ret)
1222 goto cleanup;
1223
1224 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1225 token | (2 /* "setup" */ << 8), 8);
1226 memcpy(qtd->buffer, qtd->urb->setup_packet,
1227 sizeof(struct usb_ctrlrequest));
1228
1229 /* ... and always at least one more pid */
1230 token ^= QTD_TOGGLE;
1231 qtd_prev = qtd;
1232 qtd = ehci_qtd_alloc(oxu);
1233 if (unlikely(!qtd))
1234 goto cleanup;
1235 qtd->urb = urb;
1236 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1237 list_add_tail(&qtd->qtd_list, head);
1238
1239 /* for zero length DATA stages, STATUS is always IN */
1240 if (len == 0)
1241 token |= (1 /* "in" */ << 8);
1242 }
1243
1244 /*
1245 * Data transfer stage: buffer setup
1246 */
1247
1248 ret = oxu_buf_alloc(oxu, qtd, len);
1249 if (ret)
1250 goto cleanup;
1251
1252 buf = qtd->buffer_dma;
1253 transfer_buf = urb->transfer_buffer;
1254
1255 if (!is_input)
1256 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1257
1258 if (is_input)
1259 token |= (1 /* "in" */ << 8);
1260 /* else it's already initted to "out" pid (0 << 8) */
1261
1262 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1263
1264 /*
1265 * buffer gets wrapped in one or more qtds;
1266 * last one may be "short" (including zero len)
1267 * and may serve as a control status ack
1268 */
1269 for (;;) {
1270 int this_qtd_len;
1271
1272 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1273 qtd->transfer_buffer = transfer_buf;
1274 len -= this_qtd_len;
1275 buf += this_qtd_len;
1276 transfer_buf += this_qtd_len;
1277 if (is_input)
1278 qtd->hw_alt_next = oxu->async->hw_alt_next;
1279
1280 /* qh makes control packets use qtd toggle; maybe switch it */
1281 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1282 token ^= QTD_TOGGLE;
1283
1284 if (likely(len <= 0))
1285 break;
1286
1287 qtd_prev = qtd;
1288 qtd = ehci_qtd_alloc(oxu);
1289 if (unlikely(!qtd))
1290 goto cleanup;
1291 if (likely(len > 0)) {
1292 ret = oxu_buf_alloc(oxu, qtd, len);
1293 if (ret)
1294 goto cleanup;
1295 }
1296 qtd->urb = urb;
1297 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1298 list_add_tail(&qtd->qtd_list, head);
1299 }
1300
1301 /* unless the bulk/interrupt caller wants a chance to clean
1302 * up after short reads, hc should advance qh past this urb
1303 */
1304 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1305 || usb_pipecontrol(urb->pipe)))
1306 qtd->hw_alt_next = EHCI_LIST_END;
1307
1308 /*
1309 * control requests may need a terminating data "status" ack;
1310 * bulk ones may need a terminating short packet (zero length).
1311 */
1312 if (likely(urb->transfer_buffer_length != 0)) {
1313 int one_more = 0;
1314
1315 if (usb_pipecontrol(urb->pipe)) {
1316 one_more = 1;
1317 token ^= 0x0100; /* "in" <--> "out" */
1318 token |= QTD_TOGGLE; /* force DATA1 */
1319 } else if (usb_pipebulk(urb->pipe)
1320 && (urb->transfer_flags & URB_ZERO_PACKET)
1321 && !(urb->transfer_buffer_length % maxpacket)) {
1322 one_more = 1;
1323 }
1324 if (one_more) {
1325 qtd_prev = qtd;
1326 qtd = ehci_qtd_alloc(oxu);
1327 if (unlikely(!qtd))
1328 goto cleanup;
1329 qtd->urb = urb;
1330 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1331 list_add_tail(&qtd->qtd_list, head);
1332
1333 /* never any data in such packets */
1334 qtd_fill(qtd, 0, 0, token, 0);
1335 }
1336 }
1337
1338 /* by default, enable interrupt on urb completion */
1339 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1340 return head;
1341
1342cleanup:
1343 qtd_list_free(oxu, urb, head);
1344 return NULL;
1345}
1346
1347/* Each QH holds a qtd list; a QH is used for everything except iso.
1348 *
1349 * For interrupt urbs, the scheduler must set the microframe scheduling
1350 * mask(s) each time the QH gets scheduled. For highspeed, that's
1351 * just one microframe in the s-mask. For split interrupt transactions
1352 * there are additional complications: c-mask, maybe FSTNs.
1353 */
1354static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1355 struct urb *urb, gfp_t flags)
1356{
1357 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1358 u32 info1 = 0, info2 = 0;
1359 int is_input, type;
1360 int maxp = 0;
1361
1362 if (!qh)
1363 return qh;
1364
1365 /*
1366 * init endpoint/device data for this QH
1367 */
1368 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1369 info1 |= usb_pipedevice(urb->pipe) << 0;
1370
1371 is_input = usb_pipein(urb->pipe);
1372 type = usb_pipetype(urb->pipe);
1373 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1374
1375 /* Compute interrupt scheduling parameters just once, and save.
1376 * - allowing for high bandwidth, how many nsec/uframe are used?
1377 * - split transactions need a second CSPLIT uframe; same question
1378 * - splits also need a schedule gap (for full/low speed I/O)
1379 * - qh has a polling interval
1380 *
1381 * For control/bulk requests, the HC or TT handles these.
1382 */
1383 if (type == PIPE_INTERRUPT) {
1384 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1385 is_input, 0,
1386 hb_mult(maxp) * max_packet(maxp)));
1387 qh->start = NO_FRAME;
1388
1389 if (urb->dev->speed == USB_SPEED_HIGH) {
1390 qh->c_usecs = 0;
1391 qh->gap_uf = 0;
1392
1393 qh->period = urb->interval >> 3;
1394 if (qh->period == 0 && urb->interval != 1) {
1395 /* NOTE interval 2 or 4 uframes could work.
1396 * But interval 1 scheduling is simpler, and
1397 * includes high bandwidth.
1398 */
1399 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1400 urb->interval);
1401 goto done;
1402 }
1403 } else {
1404 struct usb_tt *tt = urb->dev->tt;
1405 int think_time;
1406
1407 /* gap is f(FS/LS transfer times) */
1408 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1409 is_input, 0, maxp) / (125 * 1000);
1410
1411 /* FIXME this just approximates SPLIT/CSPLIT times */
1412 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1413 qh->c_usecs = qh->usecs + HS_USECS(0);
1414 qh->usecs = HS_USECS(1);
1415 } else { /* SPLIT+DATA, gap, CSPLIT */
1416 qh->usecs += HS_USECS(1);
1417 qh->c_usecs = HS_USECS(0);
1418 }
1419
1420 think_time = tt ? tt->think_time : 0;
1421 qh->tt_usecs = NS_TO_US(think_time +
1422 usb_calc_bus_time(urb->dev->speed,
1423 is_input, 0, max_packet(maxp)));
1424 qh->period = urb->interval;
1425 }
1426 }
1427
1428 /* support for tt scheduling, and access to toggles */
1429 qh->dev = urb->dev;
1430
1431 /* using TT? */
1432 switch (urb->dev->speed) {
1433 case USB_SPEED_LOW:
1434 info1 |= (1 << 12); /* EPS "low" */
1435 /* FALL THROUGH */
1436
1437 case USB_SPEED_FULL:
1438 /* EPS 0 means "full" */
1439 if (type != PIPE_INTERRUPT)
1440 info1 |= (EHCI_TUNE_RL_TT << 28);
1441 if (type == PIPE_CONTROL) {
1442 info1 |= (1 << 27); /* for TT */
1443 info1 |= 1 << 14; /* toggle from qtd */
1444 }
1445 info1 |= maxp << 16;
1446
1447 info2 |= (EHCI_TUNE_MULT_TT << 30);
1448 info2 |= urb->dev->ttport << 23;
1449
1450 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1451
1452 break;
1453
1454 case USB_SPEED_HIGH: /* no TT involved */
1455 info1 |= (2 << 12); /* EPS "high" */
1456 if (type == PIPE_CONTROL) {
1457 info1 |= (EHCI_TUNE_RL_HS << 28);
1458 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1459 info1 |= 1 << 14; /* toggle from qtd */
1460 info2 |= (EHCI_TUNE_MULT_HS << 30);
1461 } else if (type == PIPE_BULK) {
1462 info1 |= (EHCI_TUNE_RL_HS << 28);
1463 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1464 info2 |= (EHCI_TUNE_MULT_HS << 30);
1465 } else { /* PIPE_INTERRUPT */
1466 info1 |= max_packet(maxp) << 16;
1467 info2 |= hb_mult(maxp) << 30;
1468 }
1469 break;
1470 default:
1471 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1472done:
1473 qh_put(qh);
1474 return NULL;
1475 }
1476
1477 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1478
1479 /* init as live, toggle clear, advance to dummy */
1480 qh->qh_state = QH_STATE_IDLE;
1481 qh->hw_info1 = cpu_to_le32(info1);
1482 qh->hw_info2 = cpu_to_le32(info2);
1483 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1484 qh_refresh(oxu, qh);
1485 return qh;
1486}
1487
1488/* Move qh (and its qtds) onto async queue; maybe enable queue.
1489 */
1490static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1491{
1492 __le32 dma = QH_NEXT(qh->qh_dma);
1493 struct ehci_qh *head;
1494
1495 /* (re)start the async schedule? */
1496 head = oxu->async;
1497 timer_action_done(oxu, TIMER_ASYNC_OFF);
1498 if (!head->qh_next.qh) {
1499 u32 cmd = readl(&oxu->regs->command);
1500
1501 if (!(cmd & CMD_ASE)) {
1502 /* in case a clear of CMD_ASE didn't take yet */
1503 (void)handshake(oxu, &oxu->regs->status,
1504 STS_ASS, 0, 150);
1505 cmd |= CMD_ASE | CMD_RUN;
1506 writel(cmd, &oxu->regs->command);
1507 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1508 /* posted write need not be known to HC yet ... */
1509 }
1510 }
1511
1512 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1513 if (qh->qh_state == QH_STATE_IDLE)
1514 qh_refresh(oxu, qh);
1515
1516 /* splice right after start */
1517 qh->qh_next = head->qh_next;
1518 qh->hw_next = head->hw_next;
1519 wmb();
1520
1521 head->qh_next.qh = qh;
1522 head->hw_next = dma;
1523
1524 qh->qh_state = QH_STATE_LINKED;
1525 /* qtd completions reported later by interrupt */
1526}
1527
1528#define QH_ADDR_MASK cpu_to_le32(0x7f)
1529
1530/*
1531 * For control/bulk/interrupt, return QH with these TDs appended.
1532 * Allocates and initializes the QH if necessary.
1533 * Returns null if it can't allocate a QH it needs to.
1534 * If the QH has TDs (urbs) already, that's great.
1535 */
1536static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1537 struct urb *urb, struct list_head *qtd_list,
1538 int epnum, void **ptr)
1539{
1540 struct ehci_qh *qh = NULL;
1541
1542 qh = (struct ehci_qh *) *ptr;
1543 if (unlikely(qh == NULL)) {
1544 /* can't sleep here, we have oxu->lock... */
1545 qh = qh_make(oxu, urb, GFP_ATOMIC);
1546 *ptr = qh;
1547 }
1548 if (likely(qh != NULL)) {
1549 struct ehci_qtd *qtd;
1550
1551 if (unlikely(list_empty(qtd_list)))
1552 qtd = NULL;
1553 else
1554 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1555 qtd_list);
1556
1557 /* control qh may need patching ... */
1558 if (unlikely(epnum == 0)) {
1559
1560 /* usb_reset_device() briefly reverts to address 0 */
1561 if (usb_pipedevice(urb->pipe) == 0)
1562 qh->hw_info1 &= ~QH_ADDR_MASK;
1563 }
1564
1565 /* just one way to queue requests: swap with the dummy qtd.
1566 * only hc or qh_refresh() ever modify the overlay.
1567 */
1568 if (likely(qtd != NULL)) {
1569 struct ehci_qtd *dummy;
1570 dma_addr_t dma;
1571 __le32 token;
1572
1573 /* to avoid racing the HC, use the dummy td instead of
1574 * the first td of our list (becomes new dummy). both
1575 * tds stay deactivated until we're done, when the
1576 * HC is allowed to fetch the old dummy (4.10.2).
1577 */
1578 token = qtd->hw_token;
1579 qtd->hw_token = HALT_BIT;
1580 wmb();
1581 dummy = qh->dummy;
1582
1583 dma = dummy->qtd_dma;
1584 *dummy = *qtd;
1585 dummy->qtd_dma = dma;
1586
1587 list_del(&qtd->qtd_list);
1588 list_add(&dummy->qtd_list, qtd_list);
1589 list_splice(qtd_list, qh->qtd_list.prev);
1590
1591 ehci_qtd_init(qtd, qtd->qtd_dma);
1592 qh->dummy = qtd;
1593
1594 /* hc must see the new dummy at list end */
1595 dma = qtd->qtd_dma;
1596 qtd = list_entry(qh->qtd_list.prev,
1597 struct ehci_qtd, qtd_list);
1598 qtd->hw_next = QTD_NEXT(dma);
1599
1600 /* let the hc process these next qtds */
1601 dummy->hw_token = (token & ~(0x80));
1602 wmb();
1603 dummy->hw_token = token;
1604
1605 urb->hcpriv = qh_get(qh);
1606 }
1607 }
1608 return qh;
1609}
1610
1611static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1612 struct list_head *qtd_list, gfp_t mem_flags)
1613{
1614 struct ehci_qtd *qtd;
1615 int epnum;
1616 unsigned long flags;
1617 struct ehci_qh *qh = NULL;
1618 int rc = 0;
1619
1620 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1621 epnum = urb->ep->desc.bEndpointAddress;
1622
1623#ifdef OXU_URB_TRACE
1624 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1625 __func__, urb->dev->devpath, urb,
1626 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1627 urb->transfer_buffer_length,
1628 qtd, urb->ep->hcpriv);
1629#endif
1630
1631 spin_lock_irqsave(&oxu->lock, flags);
1632 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1633 rc = -ESHUTDOWN;
1634 goto done;
1635 }
1636
1637 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1638 if (unlikely(qh == NULL)) {
1639 rc = -ENOMEM;
1640 goto done;
1641 }
1642
1643 /* Control/bulk operations through TTs don't need scheduling,
1644 * the HC and TT handle it when the TT has a buffer ready.
1645 */
1646 if (likely(qh->qh_state == QH_STATE_IDLE))
1647 qh_link_async(oxu, qh_get(qh));
1648done:
1649 spin_unlock_irqrestore(&oxu->lock, flags);
1650 if (unlikely(qh == NULL))
1651 qtd_list_free(oxu, urb, qtd_list);
1652 return rc;
1653}
1654
1655/* The async qh for the qtds being reclaimed are now unlinked from the HC */
1656
1657static void end_unlink_async(struct oxu_hcd *oxu)
1658{
1659 struct ehci_qh *qh = oxu->reclaim;
1660 struct ehci_qh *next;
1661
1662 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1663
1664 qh->qh_state = QH_STATE_IDLE;
1665 qh->qh_next.qh = NULL;
1666 qh_put(qh); /* refcount from reclaim */
1667
1668 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1669 next = qh->reclaim;
1670 oxu->reclaim = next;
1671 oxu->reclaim_ready = 0;
1672 qh->reclaim = NULL;
1673
1674 qh_completions(oxu, qh);
1675
1676 if (!list_empty(&qh->qtd_list)
1677 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1678 qh_link_async(oxu, qh);
1679 else {
1680 qh_put(qh); /* refcount from async list */
1681
1682 /* it's not free to turn the async schedule on/off; leave it
1683 * active but idle for a while once it empties.
1684 */
1685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1686 && oxu->async->qh_next.qh == NULL)
1687 timer_action(oxu, TIMER_ASYNC_OFF);
1688 }
1689
1690 if (next) {
1691 oxu->reclaim = NULL;
1692 start_unlink_async(oxu, next);
1693 }
1694}
1695
1696/* makes sure the async qh will become idle */
1697/* caller must own oxu->lock */
1698
1699static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1700{
1701 int cmd = readl(&oxu->regs->command);
1702 struct ehci_qh *prev;
1703
1704#ifdef DEBUG
1705 assert_spin_locked(&oxu->lock);
1706 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1707 && qh->qh_state != QH_STATE_UNLINK_WAIT));
1708#endif
1709
1710 /* stop async schedule right now? */
1711 if (unlikely(qh == oxu->async)) {
1712 /* can't get here without STS_ASS set */
1713 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1714 && !oxu->reclaim) {
1715 /* ... and CMD_IAAD clear */
1716 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1717 wmb();
1718 /* handshake later, if we need to */
1719 timer_action_done(oxu, TIMER_ASYNC_OFF);
1720 }
1721 return;
1722 }
1723
1724 qh->qh_state = QH_STATE_UNLINK;
1725 oxu->reclaim = qh = qh_get(qh);
1726
1727 prev = oxu->async;
1728 while (prev->qh_next.qh != qh)
1729 prev = prev->qh_next.qh;
1730
1731 prev->hw_next = qh->hw_next;
1732 prev->qh_next = qh->qh_next;
1733 wmb();
1734
1735 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1736 /* if (unlikely(qh->reclaim != 0))
1737 * this will recurse, probably not much
1738 */
1739 end_unlink_async(oxu);
1740 return;
1741 }
1742
1743 oxu->reclaim_ready = 0;
1744 cmd |= CMD_IAAD;
1745 writel(cmd, &oxu->regs->command);
1746 (void) readl(&oxu->regs->command);
1747 timer_action(oxu, TIMER_IAA_WATCHDOG);
1748}
1749
1750static void scan_async(struct oxu_hcd *oxu)
1751{
1752 struct ehci_qh *qh;
1753 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1754
1755 if (!++(oxu->stamp))
1756 oxu->stamp++;
1757 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1758rescan:
1759 qh = oxu->async->qh_next.qh;
1760 if (likely(qh != NULL)) {
1761 do {
1762 /* clean any finished work for this qh */
1763 if (!list_empty(&qh->qtd_list)
1764 && qh->stamp != oxu->stamp) {
1765 int temp;
1766
1767 /* unlinks could happen here; completion
1768 * reporting drops the lock. rescan using
1769 * the latest schedule, but don't rescan
1770 * qhs we already finished (no looping).
1771 */
1772 qh = qh_get(qh);
1773 qh->stamp = oxu->stamp;
1774 temp = qh_completions(oxu, qh);
1775 qh_put(qh);
1776 if (temp != 0)
1777 goto rescan;
1778 }
1779
1780 /* unlink idle entries, reducing HC PCI usage as well
1781 * as HCD schedule-scanning costs. delay for any qh
1782 * we just scanned, there's a not-unusual case that it
1783 * doesn't stay idle for long.
1784 * (plus, avoids some kind of re-activation race.)
1785 */
1786 if (list_empty(&qh->qtd_list)) {
1787 if (qh->stamp == oxu->stamp)
1788 action = TIMER_ASYNC_SHRINK;
1789 else if (!oxu->reclaim
1790 && qh->qh_state == QH_STATE_LINKED)
1791 start_unlink_async(oxu, qh);
1792 }
1793
1794 qh = qh->qh_next.qh;
1795 } while (qh);
1796 }
1797 if (action == TIMER_ASYNC_SHRINK)
1798 timer_action(oxu, TIMER_ASYNC_SHRINK);
1799}
1800
1801/*
1802 * periodic_next_shadow - return "next" pointer on shadow list
1803 * @periodic: host pointer to qh/itd/sitd
1804 * @tag: hardware tag for type of this record
1805 */
1806static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1807 __le32 tag)
1808{
1809 switch (tag) {
1810 default:
1811 case Q_TYPE_QH:
1812 return &periodic->qh->qh_next;
1813 }
1814}
1815
1816/* caller must hold oxu->lock */
1817static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1818{
1819 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1820 __le32 *hw_p = &oxu->periodic[frame];
1821 union ehci_shadow here = *prev_p;
1822
1823 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1824 while (here.ptr && here.ptr != ptr) {
1825 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1826 hw_p = here.hw_next;
1827 here = *prev_p;
1828 }
1829 /* an interrupt entry (at list end) could have been shared */
1830 if (!here.ptr)
1831 return;
1832
1833 /* update shadow and hardware lists ... the old "next" pointers
1834 * from ptr may still be in use, the caller updates them.
1835 */
1836 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1837 *hw_p = *here.hw_next;
1838}
1839
1840/* how many of the uframe's 125 usecs are allocated? */
1841static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1842 unsigned frame, unsigned uframe)
1843{
1844 __le32 *hw_p = &oxu->periodic[frame];
1845 union ehci_shadow *q = &oxu->pshadow[frame];
1846 unsigned usecs = 0;
1847
1848 while (q->ptr) {
1849 switch (Q_NEXT_TYPE(*hw_p)) {
1850 case Q_TYPE_QH:
1851 default:
1852 /* is it in the S-mask? */
1853 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1854 usecs += q->qh->usecs;
1855 /* ... or C-mask? */
1856 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1857 usecs += q->qh->c_usecs;
1858 hw_p = &q->qh->hw_next;
1859 q = &q->qh->qh_next;
1860 break;
1861 }
1862 }
1863#ifdef DEBUG
1864 if (usecs > 100)
1865 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1866 frame * 8 + uframe, usecs);
1867#endif
1868 return usecs;
1869}
1870
1871static int enable_periodic(struct oxu_hcd *oxu)
1872{
1873 u32 cmd;
1874 int status;
1875
1876 /* did clearing PSE did take effect yet?
1877 * takes effect only at frame boundaries...
1878 */
1879 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1880 if (status != 0) {
1881 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1882 usb_hc_died(oxu_to_hcd(oxu));
1883 return status;
1884 }
1885
1886 cmd = readl(&oxu->regs->command) | CMD_PSE;
1887 writel(cmd, &oxu->regs->command);
1888 /* posted write ... PSS happens later */
1889 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1890
1891 /* make sure ehci_work scans these */
1892 oxu->next_uframe = readl(&oxu->regs->frame_index)
1893 % (oxu->periodic_size << 3);
1894 return 0;
1895}
1896
1897static int disable_periodic(struct oxu_hcd *oxu)
1898{
1899 u32 cmd;
1900 int status;
1901
1902 /* did setting PSE not take effect yet?
1903 * takes effect only at frame boundaries...
1904 */
1905 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1906 if (status != 0) {
1907 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1908 usb_hc_died(oxu_to_hcd(oxu));
1909 return status;
1910 }
1911
1912 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1913 writel(cmd, &oxu->regs->command);
1914 /* posted write ... */
1915
1916 oxu->next_uframe = -1;
1917 return 0;
1918}
1919
1920/* periodic schedule slots have iso tds (normal or split) first, then a
1921 * sparse tree for active interrupt transfers.
1922 *
1923 * this just links in a qh; caller guarantees uframe masks are set right.
1924 * no FSTN support (yet; oxu 0.96+)
1925 */
1926static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1927{
1928 unsigned i;
1929 unsigned period = qh->period;
1930
1931 dev_dbg(&qh->dev->dev,
1932 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1933 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1934 qh, qh->start, qh->usecs, qh->c_usecs);
1935
1936 /* high bandwidth, or otherwise every microframe */
1937 if (period == 0)
1938 period = 1;
1939
1940 for (i = qh->start; i < oxu->periodic_size; i += period) {
1941 union ehci_shadow *prev = &oxu->pshadow[i];
1942 __le32 *hw_p = &oxu->periodic[i];
1943 union ehci_shadow here = *prev;
1944 __le32 type = 0;
1945
1946 /* skip the iso nodes at list head */
1947 while (here.ptr) {
1948 type = Q_NEXT_TYPE(*hw_p);
1949 if (type == Q_TYPE_QH)
1950 break;
1951 prev = periodic_next_shadow(prev, type);
1952 hw_p = &here.qh->hw_next;
1953 here = *prev;
1954 }
1955
1956 /* sorting each branch by period (slow-->fast)
1957 * enables sharing interior tree nodes
1958 */
1959 while (here.ptr && qh != here.qh) {
1960 if (qh->period > here.qh->period)
1961 break;
1962 prev = &here.qh->qh_next;
1963 hw_p = &here.qh->hw_next;
1964 here = *prev;
1965 }
1966 /* link in this qh, unless some earlier pass did that */
1967 if (qh != here.qh) {
1968 qh->qh_next = here;
1969 if (here.qh)
1970 qh->hw_next = *hw_p;
1971 wmb();
1972 prev->qh = qh;
1973 *hw_p = QH_NEXT(qh->qh_dma);
1974 }
1975 }
1976 qh->qh_state = QH_STATE_LINKED;
1977 qh_get(qh);
1978
1979 /* update per-qh bandwidth for usbfs */
1980 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1981 ? ((qh->usecs + qh->c_usecs) / qh->period)
1982 : (qh->usecs * 8);
1983
1984 /* maybe enable periodic schedule processing */
1985 if (!oxu->periodic_sched++)
1986 return enable_periodic(oxu);
1987
1988 return 0;
1989}
1990
1991static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1992{
1993 unsigned i;
1994 unsigned period;
1995
1996 /* FIXME:
1997 * IF this isn't high speed
1998 * and this qh is active in the current uframe
1999 * (and overlay token SplitXstate is false?)
2000 * THEN
2001 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2002 */
2003
2004 /* high bandwidth, or otherwise part of every microframe */
2005 period = qh->period;
2006 if (period == 0)
2007 period = 1;
2008
2009 for (i = qh->start; i < oxu->periodic_size; i += period)
2010 periodic_unlink(oxu, i, qh);
2011
2012 /* update per-qh bandwidth for usbfs */
2013 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2014 ? ((qh->usecs + qh->c_usecs) / qh->period)
2015 : (qh->usecs * 8);
2016
2017 dev_dbg(&qh->dev->dev,
2018 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2019 qh->period,
2020 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2021 qh, qh->start, qh->usecs, qh->c_usecs);
2022
2023 /* qh->qh_next still "live" to HC */
2024 qh->qh_state = QH_STATE_UNLINK;
2025 qh->qh_next.ptr = NULL;
2026 qh_put(qh);
2027
2028 /* maybe turn off periodic schedule */
2029 oxu->periodic_sched--;
2030 if (!oxu->periodic_sched)
2031 (void) disable_periodic(oxu);
2032}
2033
2034static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2035{
2036 unsigned wait;
2037
2038 qh_unlink_periodic(oxu, qh);
2039
2040 /* simple/paranoid: always delay, expecting the HC needs to read
2041 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2042 * expect hub_wq to clean up after any CSPLITs we won't issue.
2043 * active high speed queues may need bigger delays...
2044 */
2045 if (list_empty(&qh->qtd_list)
2046 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2047 wait = 2;
2048 else
2049 wait = 55; /* worst case: 3 * 1024 */
2050
2051 udelay(wait);
2052 qh->qh_state = QH_STATE_IDLE;
2053 qh->hw_next = EHCI_LIST_END;
2054 wmb();
2055}
2056
2057static int check_period(struct oxu_hcd *oxu,
2058 unsigned frame, unsigned uframe,
2059 unsigned period, unsigned usecs)
2060{
2061 int claimed;
2062
2063 /* complete split running into next frame?
2064 * given FSTN support, we could sometimes check...
2065 */
2066 if (uframe >= 8)
2067 return 0;
2068
2069 /*
2070 * 80% periodic == 100 usec/uframe available
2071 * convert "usecs we need" to "max already claimed"
2072 */
2073 usecs = 100 - usecs;
2074
2075 /* we "know" 2 and 4 uframe intervals were rejected; so
2076 * for period 0, check _every_ microframe in the schedule.
2077 */
2078 if (unlikely(period == 0)) {
2079 do {
2080 for (uframe = 0; uframe < 7; uframe++) {
2081 claimed = periodic_usecs(oxu, frame, uframe);
2082 if (claimed > usecs)
2083 return 0;
2084 }
2085 } while ((frame += 1) < oxu->periodic_size);
2086
2087 /* just check the specified uframe, at that period */
2088 } else {
2089 do {
2090 claimed = periodic_usecs(oxu, frame, uframe);
2091 if (claimed > usecs)
2092 return 0;
2093 } while ((frame += period) < oxu->periodic_size);
2094 }
2095
2096 return 1;
2097}
2098
2099static int check_intr_schedule(struct oxu_hcd *oxu,
2100 unsigned frame, unsigned uframe,
2101 const struct ehci_qh *qh, __le32 *c_maskp)
2102{
2103 int retval = -ENOSPC;
2104
2105 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2106 goto done;
2107
2108 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2109 goto done;
2110 if (!qh->c_usecs) {
2111 retval = 0;
2112 *c_maskp = 0;
2113 goto done;
2114 }
2115
2116done:
2117 return retval;
2118}
2119
2120/* "first fit" scheduling policy used the first time through,
2121 * or when the previous schedule slot can't be re-used.
2122 */
2123static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2124{
2125 int status;
2126 unsigned uframe;
2127 __le32 c_mask;
2128 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2129
2130 qh_refresh(oxu, qh);
2131 qh->hw_next = EHCI_LIST_END;
2132 frame = qh->start;
2133
2134 /* reuse the previous schedule slots, if we can */
2135 if (frame < qh->period) {
2136 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2137 status = check_intr_schedule(oxu, frame, --uframe,
2138 qh, &c_mask);
2139 } else {
2140 uframe = 0;
2141 c_mask = 0;
2142 status = -ENOSPC;
2143 }
2144
2145 /* else scan the schedule to find a group of slots such that all
2146 * uframes have enough periodic bandwidth available.
2147 */
2148 if (status) {
2149 /* "normal" case, uframing flexible except with splits */
2150 if (qh->period) {
2151 frame = qh->period - 1;
2152 do {
2153 for (uframe = 0; uframe < 8; uframe++) {
2154 status = check_intr_schedule(oxu,
2155 frame, uframe, qh,
2156 &c_mask);
2157 if (status == 0)
2158 break;
2159 }
2160 } while (status && frame--);
2161
2162 /* qh->period == 0 means every uframe */
2163 } else {
2164 frame = 0;
2165 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2166 }
2167 if (status)
2168 goto done;
2169 qh->start = frame;
2170
2171 /* reset S-frame and (maybe) C-frame masks */
2172 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2173 qh->hw_info2 |= qh->period
2174 ? cpu_to_le32(1 << uframe)
2175 : cpu_to_le32(QH_SMASK);
2176 qh->hw_info2 |= c_mask;
2177 } else
2178 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2179
2180 /* stuff into the periodic schedule */
2181 status = qh_link_periodic(oxu, qh);
2182done:
2183 return status;
2184}
2185
2186static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2187 struct list_head *qtd_list, gfp_t mem_flags)
2188{
2189 unsigned epnum;
2190 unsigned long flags;
2191 struct ehci_qh *qh;
2192 int status = 0;
2193 struct list_head empty;
2194
2195 /* get endpoint and transfer/schedule data */
2196 epnum = urb->ep->desc.bEndpointAddress;
2197
2198 spin_lock_irqsave(&oxu->lock, flags);
2199
2200 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2201 status = -ESHUTDOWN;
2202 goto done;
2203 }
2204
2205 /* get qh and force any scheduling errors */
2206 INIT_LIST_HEAD(&empty);
2207 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2208 if (qh == NULL) {
2209 status = -ENOMEM;
2210 goto done;
2211 }
2212 if (qh->qh_state == QH_STATE_IDLE) {
2213 status = qh_schedule(oxu, qh);
2214 if (status != 0)
2215 goto done;
2216 }
2217
2218 /* then queue the urb's tds to the qh */
2219 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2220 BUG_ON(qh == NULL);
2221
2222 /* ... update usbfs periodic stats */
2223 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2224
2225done:
2226 spin_unlock_irqrestore(&oxu->lock, flags);
2227 if (status)
2228 qtd_list_free(oxu, urb, qtd_list);
2229
2230 return status;
2231}
2232
2233static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2234 gfp_t mem_flags)
2235{
2236 oxu_dbg(oxu, "iso support is missing!\n");
2237 return -ENOSYS;
2238}
2239
2240static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2241 gfp_t mem_flags)
2242{
2243 oxu_dbg(oxu, "split iso support is missing!\n");
2244 return -ENOSYS;
2245}
2246
2247static void scan_periodic(struct oxu_hcd *oxu)
2248{
2249 unsigned frame, clock, now_uframe, mod;
2250 unsigned modified;
2251
2252 mod = oxu->periodic_size << 3;
2253
2254 /*
2255 * When running, scan from last scan point up to "now"
2256 * else clean up by scanning everything that's left.
2257 * Touches as few pages as possible: cache-friendly.
2258 */
2259 now_uframe = oxu->next_uframe;
2260 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2261 clock = readl(&oxu->regs->frame_index);
2262 else
2263 clock = now_uframe + mod - 1;
2264 clock %= mod;
2265
2266 for (;;) {
2267 union ehci_shadow q, *q_p;
2268 __le32 type, *hw_p;
2269 unsigned uframes;
2270
2271 /* don't scan past the live uframe */
2272 frame = now_uframe >> 3;
2273 if (frame == (clock >> 3))
2274 uframes = now_uframe & 0x07;
2275 else {
2276 /* safe to scan the whole frame at once */
2277 now_uframe |= 0x07;
2278 uframes = 8;
2279 }
2280
2281restart:
2282 /* scan each element in frame's queue for completions */
2283 q_p = &oxu->pshadow[frame];
2284 hw_p = &oxu->periodic[frame];
2285 q.ptr = q_p->ptr;
2286 type = Q_NEXT_TYPE(*hw_p);
2287 modified = 0;
2288
2289 while (q.ptr != NULL) {
2290 union ehci_shadow temp;
2291 int live;
2292
2293 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2294 switch (type) {
2295 case Q_TYPE_QH:
2296 /* handle any completions */
2297 temp.qh = qh_get(q.qh);
2298 type = Q_NEXT_TYPE(q.qh->hw_next);
2299 q = q.qh->qh_next;
2300 modified = qh_completions(oxu, temp.qh);
2301 if (unlikely(list_empty(&temp.qh->qtd_list)))
2302 intr_deschedule(oxu, temp.qh);
2303 qh_put(temp.qh);
2304 break;
2305 default:
2306 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2307 type, frame, q.ptr);
2308 q.ptr = NULL;
2309 }
2310
2311 /* assume completion callbacks modify the queue */
2312 if (unlikely(modified))
2313 goto restart;
2314 }
2315
2316 /* Stop when we catch up to the HC */
2317
2318 /* FIXME: this assumes we won't get lapped when
2319 * latencies climb; that should be rare, but...
2320 * detect it, and just go all the way around.
2321 * FLR might help detect this case, so long as latencies
2322 * don't exceed periodic_size msec (default 1.024 sec).
2323 */
2324
2325 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2326
2327 if (now_uframe == clock) {
2328 unsigned now;
2329
2330 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2331 break;
2332 oxu->next_uframe = now_uframe;
2333 now = readl(&oxu->regs->frame_index) % mod;
2334 if (now_uframe == now)
2335 break;
2336
2337 /* rescan the rest of this frame, then ... */
2338 clock = now;
2339 } else {
2340 now_uframe++;
2341 now_uframe %= mod;
2342 }
2343 }
2344}
2345
2346/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2347 * The firmware seems to think that powering off is a wakeup event!
2348 * This routine turns off remote wakeup and everything else, on all ports.
2349 */
2350static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2351{
2352 int port = HCS_N_PORTS(oxu->hcs_params);
2353
2354 while (port--)
2355 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2356}
2357
2358static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2359{
2360 unsigned port;
2361
2362 if (!HCS_PPC(oxu->hcs_params))
2363 return;
2364
2365 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2366 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2367 (void) oxu_hub_control(oxu_to_hcd(oxu),
2368 is_on ? SetPortFeature : ClearPortFeature,
2369 USB_PORT_FEAT_POWER,
2370 port--, NULL, 0);
2371 msleep(20);
2372}
2373
2374/* Called from some interrupts, timers, and so on.
2375 * It calls driver completion functions, after dropping oxu->lock.
2376 */
2377static void ehci_work(struct oxu_hcd *oxu)
2378{
2379 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2380 if (oxu->reclaim_ready)
2381 end_unlink_async(oxu);
2382
2383 /* another CPU may drop oxu->lock during a schedule scan while
2384 * it reports urb completions. this flag guards against bogus
2385 * attempts at re-entrant schedule scanning.
2386 */
2387 if (oxu->scanning)
2388 return;
2389 oxu->scanning = 1;
2390 scan_async(oxu);
2391 if (oxu->next_uframe != -1)
2392 scan_periodic(oxu);
2393 oxu->scanning = 0;
2394
2395 /* the IO watchdog guards against hardware or driver bugs that
2396 * misplace IRQs, and should let us run completely without IRQs.
2397 * such lossage has been observed on both VT6202 and VT8235.
2398 */
2399 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2400 (oxu->async->qh_next.ptr != NULL ||
2401 oxu->periodic_sched != 0))
2402 timer_action(oxu, TIMER_IO_WATCHDOG);
2403}
2404
2405static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2406{
2407 /* if we need to use IAA and it's busy, defer */
2408 if (qh->qh_state == QH_STATE_LINKED
2409 && oxu->reclaim
2410 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2411 struct ehci_qh *last;
2412
2413 for (last = oxu->reclaim;
2414 last->reclaim;
2415 last = last->reclaim)
2416 continue;
2417 qh->qh_state = QH_STATE_UNLINK_WAIT;
2418 last->reclaim = qh;
2419
2420 /* bypass IAA if the hc can't care */
2421 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2422 end_unlink_async(oxu);
2423
2424 /* something else might have unlinked the qh by now */
2425 if (qh->qh_state == QH_STATE_LINKED)
2426 start_unlink_async(oxu, qh);
2427}
2428
2429/*
2430 * USB host controller methods
2431 */
2432
2433static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2434{
2435 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2436 u32 status, pcd_status = 0;
2437 int bh;
2438
2439 spin_lock(&oxu->lock);
2440
2441 status = readl(&oxu->regs->status);
2442
2443 /* e.g. cardbus physical eject */
2444 if (status == ~(u32) 0) {
2445 oxu_dbg(oxu, "device removed\n");
2446 goto dead;
2447 }
2448
2449 /* Shared IRQ? */
2450 status &= INTR_MASK;
2451 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2452 spin_unlock(&oxu->lock);
2453 return IRQ_NONE;
2454 }
2455
2456 /* clear (just) interrupts */
2457 writel(status, &oxu->regs->status);
2458 readl(&oxu->regs->command); /* unblock posted write */
2459 bh = 0;
2460
2461#ifdef OXU_VERBOSE_DEBUG
2462 /* unrequested/ignored: Frame List Rollover */
2463 dbg_status(oxu, "irq", status);
2464#endif
2465
2466 /* INT, ERR, and IAA interrupt rates can be throttled */
2467
2468 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2469 if (likely((status & (STS_INT|STS_ERR)) != 0))
2470 bh = 1;
2471
2472 /* complete the unlinking of some qh [4.15.2.3] */
2473 if (status & STS_IAA) {
2474 oxu->reclaim_ready = 1;
2475 bh = 1;
2476 }
2477
2478 /* remote wakeup [4.3.1] */
2479 if (status & STS_PCD) {
2480 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2481 pcd_status = status;
2482
2483 /* resume root hub? */
2484 if (!(readl(&oxu->regs->command) & CMD_RUN))
2485 usb_hcd_resume_root_hub(hcd);
2486
2487 while (i--) {
2488 int pstatus = readl(&oxu->regs->port_status[i]);
2489
2490 if (pstatus & PORT_OWNER)
2491 continue;
2492 if (!(pstatus & PORT_RESUME)
2493 || oxu->reset_done[i] != 0)
2494 continue;
2495
2496 /* start USB_RESUME_TIMEOUT resume signaling from this
2497 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2498 * stop that signaling.
2499 */
2500 oxu->reset_done[i] = jiffies +
2501 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2502 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2503 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2504 }
2505 }
2506
2507 /* PCI errors [4.15.2.4] */
2508 if (unlikely((status & STS_FATAL) != 0)) {
2509 /* bogus "fatal" IRQs appear on some chips... why? */
2510 status = readl(&oxu->regs->status);
2511 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2512 dbg_status(oxu, "fatal", status);
2513 if (status & STS_HALT) {
2514 oxu_err(oxu, "fatal error\n");
2515dead:
2516 ehci_reset(oxu);
2517 writel(0, &oxu->regs->configured_flag);
2518 usb_hc_died(hcd);
2519 /* generic layer kills/unlinks all urbs, then
2520 * uses oxu_stop to clean up the rest
2521 */
2522 bh = 1;
2523 }
2524 }
2525
2526 if (bh)
2527 ehci_work(oxu);
2528 spin_unlock(&oxu->lock);
2529 if (pcd_status & STS_PCD)
2530 usb_hcd_poll_rh_status(hcd);
2531 return IRQ_HANDLED;
2532}
2533
2534static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2535{
2536 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2537 int ret = IRQ_HANDLED;
2538
2539 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2540 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2541
2542 /* Disable all interrupt */
2543 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2544
2545 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2546 (!oxu->is_otg && (status & OXU_USBSPHI)))
2547 oxu210_hcd_irq(hcd);
2548 else
2549 ret = IRQ_NONE;
2550
2551 /* Enable all interrupt back */
2552 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2553
2554 return ret;
2555}
2556
2557static void oxu_watchdog(unsigned long param)
2558{
2559 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2560 unsigned long flags;
2561
2562 spin_lock_irqsave(&oxu->lock, flags);
2563
2564 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2565 if (oxu->reclaim) {
2566 u32 status = readl(&oxu->regs->status);
2567 if (status & STS_IAA) {
2568 oxu_vdbg(oxu, "lost IAA\n");
2569 writel(STS_IAA, &oxu->regs->status);
2570 oxu->reclaim_ready = 1;
2571 }
2572 }
2573
2574 /* stop async processing after it's idled a bit */
2575 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2576 start_unlink_async(oxu, oxu->async);
2577
2578 /* oxu could run by timer, without IRQs ... */
2579 ehci_work(oxu);
2580
2581 spin_unlock_irqrestore(&oxu->lock, flags);
2582}
2583
2584/* One-time init, only for memory state.
2585 */
2586static int oxu_hcd_init(struct usb_hcd *hcd)
2587{
2588 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2589 u32 temp;
2590 int retval;
2591 u32 hcc_params;
2592
2593 spin_lock_init(&oxu->lock);
2594
2595 setup_timer(&oxu->watchdog, oxu_watchdog, (unsigned long)oxu);
2596
2597 /*
2598 * hw default: 1K periodic list heads, one per frame.
2599 * periodic_size can shrink by USBCMD update if hcc_params allows.
2600 */
2601 oxu->periodic_size = DEFAULT_I_TDPS;
2602 retval = ehci_mem_init(oxu, GFP_KERNEL);
2603 if (retval < 0)
2604 return retval;
2605
2606 /* controllers may cache some of the periodic schedule ... */
2607 hcc_params = readl(&oxu->caps->hcc_params);
2608 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2609 oxu->i_thresh = 8;
2610 else /* N microframes cached */
2611 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2612
2613 oxu->reclaim = NULL;
2614 oxu->reclaim_ready = 0;
2615 oxu->next_uframe = -1;
2616
2617 /*
2618 * dedicate a qh for the async ring head, since we couldn't unlink
2619 * a 'real' qh without stopping the async schedule [4.8]. use it
2620 * as the 'reclamation list head' too.
2621 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2622 * from automatically advancing to the next td after short reads.
2623 */
2624 oxu->async->qh_next.qh = NULL;
2625 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2626 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2627 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2628 oxu->async->hw_qtd_next = EHCI_LIST_END;
2629 oxu->async->qh_state = QH_STATE_LINKED;
2630 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2631
2632 /* clear interrupt enables, set irq latency */
2633 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2634 log2_irq_thresh = 0;
2635 temp = 1 << (16 + log2_irq_thresh);
2636 if (HCC_CANPARK(hcc_params)) {
2637 /* HW default park == 3, on hardware that supports it (like
2638 * NVidia and ALI silicon), maximizes throughput on the async
2639 * schedule by avoiding QH fetches between transfers.
2640 *
2641 * With fast usb storage devices and NForce2, "park" seems to
2642 * make problems: throughput reduction (!), data errors...
2643 */
2644 if (park) {
2645 park = min(park, (unsigned) 3);
2646 temp |= CMD_PARK;
2647 temp |= park << 8;
2648 }
2649 oxu_dbg(oxu, "park %d\n", park);
2650 }
2651 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2652 /* periodic schedule size can be smaller than default */
2653 temp &= ~(3 << 2);
2654 temp |= (EHCI_TUNE_FLS << 2);
2655 }
2656 oxu->command = temp;
2657
2658 return 0;
2659}
2660
2661/* Called during probe() after chip reset completes.
2662 */
2663static int oxu_reset(struct usb_hcd *hcd)
2664{
2665 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2666
2667 spin_lock_init(&oxu->mem_lock);
2668 INIT_LIST_HEAD(&oxu->urb_list);
2669 oxu->urb_len = 0;
2670
2671 /* FIMXE */
2672 hcd->self.controller->dma_mask = NULL;
2673
2674 if (oxu->is_otg) {
2675 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2676 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2677 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2678
2679 oxu->mem = hcd->regs + OXU_SPH_MEM;
2680 } else {
2681 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2682 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2683 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2684
2685 oxu->mem = hcd->regs + OXU_OTG_MEM;
2686 }
2687
2688 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2689 oxu->sbrn = 0x20;
2690
2691 return oxu_hcd_init(hcd);
2692}
2693
2694static int oxu_run(struct usb_hcd *hcd)
2695{
2696 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2697 int retval;
2698 u32 temp, hcc_params;
2699
2700 hcd->uses_new_polling = 1;
2701
2702 /* EHCI spec section 4.1 */
2703 retval = ehci_reset(oxu);
2704 if (retval != 0) {
2705 ehci_mem_cleanup(oxu);
2706 return retval;
2707 }
2708 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2709 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2710
2711 /* hcc_params controls whether oxu->regs->segment must (!!!)
2712 * be used; it constrains QH/ITD/SITD and QTD locations.
2713 * pci_pool consistent memory always uses segment zero.
2714 * streaming mappings for I/O buffers, like pci_map_single(),
2715 * can return segments above 4GB, if the device allows.
2716 *
2717 * NOTE: the dma mask is visible through dev->dma_mask, so
2718 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2719 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2720 * host side drivers though.
2721 */
2722 hcc_params = readl(&oxu->caps->hcc_params);
2723 if (HCC_64BIT_ADDR(hcc_params))
2724 writel(0, &oxu->regs->segment);
2725
2726 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2727 CMD_ASE | CMD_RESET);
2728 oxu->command |= CMD_RUN;
2729 writel(oxu->command, &oxu->regs->command);
2730 dbg_cmd(oxu, "init", oxu->command);
2731
2732 /*
2733 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2734 * are explicitly handed to companion controller(s), so no TT is
2735 * involved with the root hub. (Except where one is integrated,
2736 * and there's no companion controller unless maybe for USB OTG.)
2737 */
2738 hcd->state = HC_STATE_RUNNING;
2739 writel(FLAG_CF, &oxu->regs->configured_flag);
2740 readl(&oxu->regs->command); /* unblock posted writes */
2741
2742 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2743 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2744 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2745 temp >> 8, temp & 0xff, DRIVER_VERSION,
2746 ignore_oc ? ", overcurrent ignored" : "");
2747
2748 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2749
2750 return 0;
2751}
2752
2753static void oxu_stop(struct usb_hcd *hcd)
2754{
2755 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2756
2757 /* Turn off port power on all root hub ports. */
2758 ehci_port_power(oxu, 0);
2759
2760 /* no more interrupts ... */
2761 del_timer_sync(&oxu->watchdog);
2762
2763 spin_lock_irq(&oxu->lock);
2764 if (HC_IS_RUNNING(hcd->state))
2765 ehci_quiesce(oxu);
2766
2767 ehci_reset(oxu);
2768 writel(0, &oxu->regs->intr_enable);
2769 spin_unlock_irq(&oxu->lock);
2770
2771 /* let companion controllers work when we aren't */
2772 writel(0, &oxu->regs->configured_flag);
2773
2774 /* root hub is shut down separately (first, when possible) */
2775 spin_lock_irq(&oxu->lock);
2776 if (oxu->async)
2777 ehci_work(oxu);
2778 spin_unlock_irq(&oxu->lock);
2779 ehci_mem_cleanup(oxu);
2780
2781 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2782}
2783
2784/* Kick in for silicon on any bus (not just pci, etc).
2785 * This forcibly disables dma and IRQs, helping kexec and other cases
2786 * where the next system software may expect clean state.
2787 */
2788static void oxu_shutdown(struct usb_hcd *hcd)
2789{
2790 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2791
2792 (void) ehci_halt(oxu);
2793 ehci_turn_off_all_ports(oxu);
2794
2795 /* make BIOS/etc use companion controller during reboot */
2796 writel(0, &oxu->regs->configured_flag);
2797
2798 /* unblock posted writes */
2799 readl(&oxu->regs->configured_flag);
2800}
2801
2802/* Non-error returns are a promise to giveback() the urb later
2803 * we drop ownership so next owner (or urb unlink) can get it
2804 *
2805 * urb + dev is in hcd.self.controller.urb_list
2806 * we're queueing TDs onto software and hardware lists
2807 *
2808 * hcd-specific init for hcpriv hasn't been done yet
2809 *
2810 * NOTE: control, bulk, and interrupt share the same code to append TDs
2811 * to a (possibly active) QH, and the same QH scanning code.
2812 */
2813static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2814 gfp_t mem_flags)
2815{
2816 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2817 struct list_head qtd_list;
2818
2819 INIT_LIST_HEAD(&qtd_list);
2820
2821 switch (usb_pipetype(urb->pipe)) {
2822 case PIPE_CONTROL:
2823 case PIPE_BULK:
2824 default:
2825 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2826 return -ENOMEM;
2827 return submit_async(oxu, urb, &qtd_list, mem_flags);
2828
2829 case PIPE_INTERRUPT:
2830 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2831 return -ENOMEM;
2832 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2833
2834 case PIPE_ISOCHRONOUS:
2835 if (urb->dev->speed == USB_SPEED_HIGH)
2836 return itd_submit(oxu, urb, mem_flags);
2837 else
2838 return sitd_submit(oxu, urb, mem_flags);
2839 }
2840}
2841
2842/* This function is responsible for breaking URBs with big data size
2843 * into smaller size and processing small urbs in sequence.
2844 */
2845static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2846 gfp_t mem_flags)
2847{
2848 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2849 int num, rem;
2850 int transfer_buffer_length;
2851 void *transfer_buffer;
2852 struct urb *murb;
2853 int i, ret;
2854
2855 /* If not bulk pipe just enqueue the URB */
2856 if (!usb_pipebulk(urb->pipe))
2857 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2858
2859 /* Otherwise we should verify the USB transfer buffer size! */
2860 transfer_buffer = urb->transfer_buffer;
2861 transfer_buffer_length = urb->transfer_buffer_length;
2862
2863 num = urb->transfer_buffer_length / 4096;
2864 rem = urb->transfer_buffer_length % 4096;
2865 if (rem != 0)
2866 num++;
2867
2868 /* If URB is smaller than 4096 bytes just enqueue it! */
2869 if (num == 1)
2870 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2871
2872 /* Ok, we have more job to do! :) */
2873
2874 for (i = 0; i < num - 1; i++) {
2875 /* Get free micro URB poll till a free urb is received */
2876
2877 do {
2878 murb = (struct urb *) oxu_murb_alloc(oxu);
2879 if (!murb)
2880 schedule();
2881 } while (!murb);
2882
2883 /* Coping the urb */
2884 memcpy(murb, urb, sizeof(struct urb));
2885
2886 murb->transfer_buffer_length = 4096;
2887 murb->transfer_buffer = transfer_buffer + i * 4096;
2888
2889 /* Null pointer for the encodes that this is a micro urb */
2890 murb->complete = NULL;
2891
2892 ((struct oxu_murb *) murb)->main = urb;
2893 ((struct oxu_murb *) murb)->last = 0;
2894
2895 /* This loop is to guarantee urb to be processed when there's
2896 * not enough resources at a particular time by retrying.
2897 */
2898 do {
2899 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2900 if (ret)
2901 schedule();
2902 } while (ret);
2903 }
2904
2905 /* Last urb requires special handling */
2906
2907 /* Get free micro URB poll till a free urb is received */
2908 do {
2909 murb = (struct urb *) oxu_murb_alloc(oxu);
2910 if (!murb)
2911 schedule();
2912 } while (!murb);
2913
2914 /* Coping the urb */
2915 memcpy(murb, urb, sizeof(struct urb));
2916
2917 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2918 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2919
2920 /* Null pointer for the encodes that this is a micro urb */
2921 murb->complete = NULL;
2922
2923 ((struct oxu_murb *) murb)->main = urb;
2924 ((struct oxu_murb *) murb)->last = 1;
2925
2926 do {
2927 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2928 if (ret)
2929 schedule();
2930 } while (ret);
2931
2932 return ret;
2933}
2934
2935/* Remove from hardware lists.
2936 * Completions normally happen asynchronously
2937 */
2938static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2939{
2940 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2941 struct ehci_qh *qh;
2942 unsigned long flags;
2943
2944 spin_lock_irqsave(&oxu->lock, flags);
2945 switch (usb_pipetype(urb->pipe)) {
2946 case PIPE_CONTROL:
2947 case PIPE_BULK:
2948 default:
2949 qh = (struct ehci_qh *) urb->hcpriv;
2950 if (!qh)
2951 break;
2952 unlink_async(oxu, qh);
2953 break;
2954
2955 case PIPE_INTERRUPT:
2956 qh = (struct ehci_qh *) urb->hcpriv;
2957 if (!qh)
2958 break;
2959 switch (qh->qh_state) {
2960 case QH_STATE_LINKED:
2961 intr_deschedule(oxu, qh);
2962 /* FALL THROUGH */
2963 case QH_STATE_IDLE:
2964 qh_completions(oxu, qh);
2965 break;
2966 default:
2967 oxu_dbg(oxu, "bogus qh %p state %d\n",
2968 qh, qh->qh_state);
2969 goto done;
2970 }
2971
2972 /* reschedule QH iff another request is queued */
2973 if (!list_empty(&qh->qtd_list)
2974 && HC_IS_RUNNING(hcd->state)) {
2975 int status;
2976
2977 status = qh_schedule(oxu, qh);
2978 spin_unlock_irqrestore(&oxu->lock, flags);
2979
2980 if (status != 0) {
2981 /* shouldn't happen often, but ...
2982 * FIXME kill those tds' urbs
2983 */
2984 dev_err(hcd->self.controller,
2985 "can't reschedule qh %p, err %d\n", qh,
2986 status);
2987 }
2988 return status;
2989 }
2990 break;
2991 }
2992done:
2993 spin_unlock_irqrestore(&oxu->lock, flags);
2994 return 0;
2995}
2996
2997/* Bulk qh holds the data toggle */
2998static void oxu_endpoint_disable(struct usb_hcd *hcd,
2999 struct usb_host_endpoint *ep)
3000{
3001 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3002 unsigned long flags;
3003 struct ehci_qh *qh, *tmp;
3004
3005 /* ASSERT: any requests/urbs are being unlinked */
3006 /* ASSERT: nobody can be submitting urbs for this any more */
3007
3008rescan:
3009 spin_lock_irqsave(&oxu->lock, flags);
3010 qh = ep->hcpriv;
3011 if (!qh)
3012 goto done;
3013
3014 /* endpoints can be iso streams. for now, we don't
3015 * accelerate iso completions ... so spin a while.
3016 */
3017 if (qh->hw_info1 == 0) {
3018 oxu_vdbg(oxu, "iso delay\n");
3019 goto idle_timeout;
3020 }
3021
3022 if (!HC_IS_RUNNING(hcd->state))
3023 qh->qh_state = QH_STATE_IDLE;
3024 switch (qh->qh_state) {
3025 case QH_STATE_LINKED:
3026 for (tmp = oxu->async->qh_next.qh;
3027 tmp && tmp != qh;
3028 tmp = tmp->qh_next.qh)
3029 continue;
3030 /* periodic qh self-unlinks on empty */
3031 if (!tmp)
3032 goto nogood;
3033 unlink_async(oxu, qh);
3034 /* FALL THROUGH */
3035 case QH_STATE_UNLINK: /* wait for hw to finish? */
3036idle_timeout:
3037 spin_unlock_irqrestore(&oxu->lock, flags);
3038 schedule_timeout_uninterruptible(1);
3039 goto rescan;
3040 case QH_STATE_IDLE: /* fully unlinked */
3041 if (list_empty(&qh->qtd_list)) {
3042 qh_put(qh);
3043 break;
3044 }
3045 /* else FALL THROUGH */
3046 default:
3047nogood:
3048 /* caller was supposed to have unlinked any requests;
3049 * that's not our job. just leak this memory.
3050 */
3051 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3052 qh, ep->desc.bEndpointAddress, qh->qh_state,
3053 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3054 break;
3055 }
3056 ep->hcpriv = NULL;
3057done:
3058 spin_unlock_irqrestore(&oxu->lock, flags);
3059}
3060
3061static int oxu_get_frame(struct usb_hcd *hcd)
3062{
3063 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3064
3065 return (readl(&oxu->regs->frame_index) >> 3) %
3066 oxu->periodic_size;
3067}
3068
3069/* Build "status change" packet (one or two bytes) from HC registers */
3070static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3071{
3072 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3073 u32 temp, mask, status = 0;
3074 int ports, i, retval = 1;
3075 unsigned long flags;
3076
3077 /* if !PM, root hub timers won't get shut down ... */
3078 if (!HC_IS_RUNNING(hcd->state))
3079 return 0;
3080
3081 /* init status to no-changes */
3082 buf[0] = 0;
3083 ports = HCS_N_PORTS(oxu->hcs_params);
3084 if (ports > 7) {
3085 buf[1] = 0;
3086 retval++;
3087 }
3088
3089 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3090 * causing massive log spam unless we completely ignore them. It
3091 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3092 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3093 * PORT_POWER; that's surprising, but maybe within-spec.
3094 */
3095 if (!ignore_oc)
3096 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3097 else
3098 mask = PORT_CSC | PORT_PEC;
3099
3100 /* no hub change reports (bit 0) for now (power, ...) */
3101
3102 /* port N changes (bit N)? */
3103 spin_lock_irqsave(&oxu->lock, flags);
3104 for (i = 0; i < ports; i++) {
3105 temp = readl(&oxu->regs->port_status[i]);
3106
3107 /*
3108 * Return status information even for ports with OWNER set.
3109 * Otherwise hub_wq wouldn't see the disconnect event when a
3110 * high-speed device is switched over to the companion
3111 * controller by the user.
3112 */
3113
3114 if (!(temp & PORT_CONNECT))
3115 oxu->reset_done[i] = 0;
3116 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3117 time_after_eq(jiffies, oxu->reset_done[i]))) {
3118 if (i < 7)
3119 buf[0] |= 1 << (i + 1);
3120 else
3121 buf[1] |= 1 << (i - 7);
3122 status = STS_PCD;
3123 }
3124 }
3125 /* FIXME autosuspend idle root hubs */
3126 spin_unlock_irqrestore(&oxu->lock, flags);
3127 return status ? retval : 0;
3128}
3129
3130/* Returns the speed of a device attached to a port on the root hub. */
3131static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3132 unsigned int portsc)
3133{
3134 switch ((portsc >> 26) & 3) {
3135 case 0:
3136 return 0;
3137 case 1:
3138 return USB_PORT_STAT_LOW_SPEED;
3139 case 2:
3140 default:
3141 return USB_PORT_STAT_HIGH_SPEED;
3142 }
3143}
3144
3145#define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3146static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3147 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3148{
3149 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3150 int ports = HCS_N_PORTS(oxu->hcs_params);
3151 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3152 u32 temp, status;
3153 unsigned long flags;
3154 int retval = 0;
3155 unsigned selector;
3156
3157 /*
3158 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3159 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3160 * (track current state ourselves) ... blink for diagnostics,
3161 * power, "this is the one", etc. EHCI spec supports this.
3162 */
3163
3164 spin_lock_irqsave(&oxu->lock, flags);
3165 switch (typeReq) {
3166 case ClearHubFeature:
3167 switch (wValue) {
3168 case C_HUB_LOCAL_POWER:
3169 case C_HUB_OVER_CURRENT:
3170 /* no hub-wide feature/status flags */
3171 break;
3172 default:
3173 goto error;
3174 }
3175 break;
3176 case ClearPortFeature:
3177 if (!wIndex || wIndex > ports)
3178 goto error;
3179 wIndex--;
3180 temp = readl(status_reg);
3181
3182 /*
3183 * Even if OWNER is set, so the port is owned by the
3184 * companion controller, hub_wq needs to be able to clear
3185 * the port-change status bits (especially
3186 * USB_PORT_STAT_C_CONNECTION).
3187 */
3188
3189 switch (wValue) {
3190 case USB_PORT_FEAT_ENABLE:
3191 writel(temp & ~PORT_PE, status_reg);
3192 break;
3193 case USB_PORT_FEAT_C_ENABLE:
3194 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3195 break;
3196 case USB_PORT_FEAT_SUSPEND:
3197 if (temp & PORT_RESET)
3198 goto error;
3199 if (temp & PORT_SUSPEND) {
3200 if ((temp & PORT_PE) == 0)
3201 goto error;
3202 /* resume signaling for 20 msec */
3203 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3204 writel(temp | PORT_RESUME, status_reg);
3205 oxu->reset_done[wIndex] = jiffies
3206 + msecs_to_jiffies(20);
3207 }
3208 break;
3209 case USB_PORT_FEAT_C_SUSPEND:
3210 /* we auto-clear this feature */
3211 break;
3212 case USB_PORT_FEAT_POWER:
3213 if (HCS_PPC(oxu->hcs_params))
3214 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3215 status_reg);
3216 break;
3217 case USB_PORT_FEAT_C_CONNECTION:
3218 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3219 break;
3220 case USB_PORT_FEAT_C_OVER_CURRENT:
3221 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3222 break;
3223 case USB_PORT_FEAT_C_RESET:
3224 /* GetPortStatus clears reset */
3225 break;
3226 default:
3227 goto error;
3228 }
3229 readl(&oxu->regs->command); /* unblock posted write */
3230 break;
3231 case GetHubDescriptor:
3232 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3233 buf);
3234 break;
3235 case GetHubStatus:
3236 /* no hub-wide feature/status flags */
3237 memset(buf, 0, 4);
3238 break;
3239 case GetPortStatus:
3240 if (!wIndex || wIndex > ports)
3241 goto error;
3242 wIndex--;
3243 status = 0;
3244 temp = readl(status_reg);
3245
3246 /* wPortChange bits */
3247 if (temp & PORT_CSC)
3248 status |= USB_PORT_STAT_C_CONNECTION << 16;
3249 if (temp & PORT_PEC)
3250 status |= USB_PORT_STAT_C_ENABLE << 16;
3251 if ((temp & PORT_OCC) && !ignore_oc)
3252 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3253
3254 /* whoever resumes must GetPortStatus to complete it!! */
3255 if (temp & PORT_RESUME) {
3256
3257 /* Remote Wakeup received? */
3258 if (!oxu->reset_done[wIndex]) {
3259 /* resume signaling for 20 msec */
3260 oxu->reset_done[wIndex] = jiffies
3261 + msecs_to_jiffies(20);
3262 /* check the port again */
3263 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3264 oxu->reset_done[wIndex]);
3265 }
3266
3267 /* resume completed? */
3268 else if (time_after_eq(jiffies,
3269 oxu->reset_done[wIndex])) {
3270 status |= USB_PORT_STAT_C_SUSPEND << 16;
3271 oxu->reset_done[wIndex] = 0;
3272
3273 /* stop resume signaling */
3274 temp = readl(status_reg);
3275 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3276 status_reg);
3277 retval = handshake(oxu, status_reg,
3278 PORT_RESUME, 0, 2000 /* 2msec */);
3279 if (retval != 0) {
3280 oxu_err(oxu,
3281 "port %d resume error %d\n",
3282 wIndex + 1, retval);
3283 goto error;
3284 }
3285 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3286 }
3287 }
3288
3289 /* whoever resets must GetPortStatus to complete it!! */
3290 if ((temp & PORT_RESET)
3291 && time_after_eq(jiffies,
3292 oxu->reset_done[wIndex])) {
3293 status |= USB_PORT_STAT_C_RESET << 16;
3294 oxu->reset_done[wIndex] = 0;
3295
3296 /* force reset to complete */
3297 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3298 status_reg);
3299 /* REVISIT: some hardware needs 550+ usec to clear
3300 * this bit; seems too long to spin routinely...
3301 */
3302 retval = handshake(oxu, status_reg,
3303 PORT_RESET, 0, 750);
3304 if (retval != 0) {
3305 oxu_err(oxu, "port %d reset error %d\n",
3306 wIndex + 1, retval);
3307 goto error;
3308 }
3309
3310 /* see what we found out */
3311 temp = check_reset_complete(oxu, wIndex, status_reg,
3312 readl(status_reg));
3313 }
3314
3315 /* transfer dedicated ports to the companion hc */
3316 if ((temp & PORT_CONNECT) &&
3317 test_bit(wIndex, &oxu->companion_ports)) {
3318 temp &= ~PORT_RWC_BITS;
3319 temp |= PORT_OWNER;
3320 writel(temp, status_reg);
3321 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3322 temp = readl(status_reg);
3323 }
3324
3325 /*
3326 * Even if OWNER is set, there's no harm letting hub_wq
3327 * see the wPortStatus values (they should all be 0 except
3328 * for PORT_POWER anyway).
3329 */
3330
3331 if (temp & PORT_CONNECT) {
3332 status |= USB_PORT_STAT_CONNECTION;
3333 /* status may be from integrated TT */
3334 status |= oxu_port_speed(oxu, temp);
3335 }
3336 if (temp & PORT_PE)
3337 status |= USB_PORT_STAT_ENABLE;
3338 if (temp & (PORT_SUSPEND|PORT_RESUME))
3339 status |= USB_PORT_STAT_SUSPEND;
3340 if (temp & PORT_OC)
3341 status |= USB_PORT_STAT_OVERCURRENT;
3342 if (temp & PORT_RESET)
3343 status |= USB_PORT_STAT_RESET;
3344 if (temp & PORT_POWER)
3345 status |= USB_PORT_STAT_POWER;
3346
3347#ifndef OXU_VERBOSE_DEBUG
3348 if (status & ~0xffff) /* only if wPortChange is interesting */
3349#endif
3350 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3351 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3352 break;
3353 case SetHubFeature:
3354 switch (wValue) {
3355 case C_HUB_LOCAL_POWER:
3356 case C_HUB_OVER_CURRENT:
3357 /* no hub-wide feature/status flags */
3358 break;
3359 default:
3360 goto error;
3361 }
3362 break;
3363 case SetPortFeature:
3364 selector = wIndex >> 8;
3365 wIndex &= 0xff;
3366 if (!wIndex || wIndex > ports)
3367 goto error;
3368 wIndex--;
3369 temp = readl(status_reg);
3370 if (temp & PORT_OWNER)
3371 break;
3372
3373 temp &= ~PORT_RWC_BITS;
3374 switch (wValue) {
3375 case USB_PORT_FEAT_SUSPEND:
3376 if ((temp & PORT_PE) == 0
3377 || (temp & PORT_RESET) != 0)
3378 goto error;
3379 if (device_may_wakeup(&hcd->self.root_hub->dev))
3380 temp |= PORT_WAKE_BITS;
3381 writel(temp | PORT_SUSPEND, status_reg);
3382 break;
3383 case USB_PORT_FEAT_POWER:
3384 if (HCS_PPC(oxu->hcs_params))
3385 writel(temp | PORT_POWER, status_reg);
3386 break;
3387 case USB_PORT_FEAT_RESET:
3388 if (temp & PORT_RESUME)
3389 goto error;
3390 /* line status bits may report this as low speed,
3391 * which can be fine if this root hub has a
3392 * transaction translator built in.
3393 */
3394 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3395 temp |= PORT_RESET;
3396 temp &= ~PORT_PE;
3397
3398 /*
3399 * caller must wait, then call GetPortStatus
3400 * usb 2.0 spec says 50 ms resets on root
3401 */
3402 oxu->reset_done[wIndex] = jiffies
3403 + msecs_to_jiffies(50);
3404 writel(temp, status_reg);
3405 break;
3406
3407 /* For downstream facing ports (these): one hub port is put
3408 * into test mode according to USB2 11.24.2.13, then the hub
3409 * must be reset (which for root hub now means rmmod+modprobe,
3410 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3411 * about the EHCI-specific stuff.
3412 */
3413 case USB_PORT_FEAT_TEST:
3414 if (!selector || selector > 5)
3415 goto error;
3416 ehci_quiesce(oxu);
3417 ehci_halt(oxu);
3418 temp |= selector << 16;
3419 writel(temp, status_reg);
3420 break;
3421
3422 default:
3423 goto error;
3424 }
3425 readl(&oxu->regs->command); /* unblock posted writes */
3426 break;
3427
3428 default:
3429error:
3430 /* "stall" on error */
3431 retval = -EPIPE;
3432 }
3433 spin_unlock_irqrestore(&oxu->lock, flags);
3434 return retval;
3435}
3436
3437#ifdef CONFIG_PM
3438
3439static int oxu_bus_suspend(struct usb_hcd *hcd)
3440{
3441 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3442 int port;
3443 int mask;
3444
3445 oxu_dbg(oxu, "suspend root hub\n");
3446
3447 if (time_before(jiffies, oxu->next_statechange))
3448 msleep(5);
3449
3450 port = HCS_N_PORTS(oxu->hcs_params);
3451 spin_lock_irq(&oxu->lock);
3452
3453 /* stop schedules, clean any completed work */
3454 if (HC_IS_RUNNING(hcd->state)) {
3455 ehci_quiesce(oxu);
3456 hcd->state = HC_STATE_QUIESCING;
3457 }
3458 oxu->command = readl(&oxu->regs->command);
3459 if (oxu->reclaim)
3460 oxu->reclaim_ready = 1;
3461 ehci_work(oxu);
3462
3463 /* Unlike other USB host controller types, EHCI doesn't have
3464 * any notion of "global" or bus-wide suspend. The driver has
3465 * to manually suspend all the active unsuspended ports, and
3466 * then manually resume them in the bus_resume() routine.
3467 */
3468 oxu->bus_suspended = 0;
3469 while (port--) {
3470 u32 __iomem *reg = &oxu->regs->port_status[port];
3471 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3472 u32 t2 = t1;
3473
3474 /* keep track of which ports we suspend */
3475 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3476 !(t1 & PORT_SUSPEND)) {
3477 t2 |= PORT_SUSPEND;
3478 set_bit(port, &oxu->bus_suspended);
3479 }
3480
3481 /* enable remote wakeup on all ports */
3482 if (device_may_wakeup(&hcd->self.root_hub->dev))
3483 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3484 else
3485 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3486
3487 if (t1 != t2) {
3488 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3489 port + 1, t1, t2);
3490 writel(t2, reg);
3491 }
3492 }
3493
3494 /* turn off now-idle HC */
3495 del_timer_sync(&oxu->watchdog);
3496 ehci_halt(oxu);
3497 hcd->state = HC_STATE_SUSPENDED;
3498
3499 /* allow remote wakeup */
3500 mask = INTR_MASK;
3501 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3502 mask &= ~STS_PCD;
3503 writel(mask, &oxu->regs->intr_enable);
3504 readl(&oxu->regs->intr_enable);
3505
3506 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3507 spin_unlock_irq(&oxu->lock);
3508 return 0;
3509}
3510
3511/* Caller has locked the root hub, and should reset/reinit on error */
3512static int oxu_bus_resume(struct usb_hcd *hcd)
3513{
3514 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3515 u32 temp;
3516 int i;
3517
3518 if (time_before(jiffies, oxu->next_statechange))
3519 msleep(5);
3520 spin_lock_irq(&oxu->lock);
3521
3522 /* Ideally and we've got a real resume here, and no port's power
3523 * was lost. (For PCI, that means Vaux was maintained.) But we
3524 * could instead be restoring a swsusp snapshot -- so that BIOS was
3525 * the last user of the controller, not reset/pm hardware keeping
3526 * state we gave to it.
3527 */
3528 temp = readl(&oxu->regs->intr_enable);
3529 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3530
3531 /* at least some APM implementations will try to deliver
3532 * IRQs right away, so delay them until we're ready.
3533 */
3534 writel(0, &oxu->regs->intr_enable);
3535
3536 /* re-init operational registers */
3537 writel(0, &oxu->regs->segment);
3538 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3539 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3540
3541 /* restore CMD_RUN, framelist size, and irq threshold */
3542 writel(oxu->command, &oxu->regs->command);
3543
3544 /* Some controller/firmware combinations need a delay during which
3545 * they set up the port statuses. See Bugzilla #8190. */
3546 mdelay(8);
3547
3548 /* manually resume the ports we suspended during bus_suspend() */
3549 i = HCS_N_PORTS(oxu->hcs_params);
3550 while (i--) {
3551 temp = readl(&oxu->regs->port_status[i]);
3552 temp &= ~(PORT_RWC_BITS
3553 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3554 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3555 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3556 temp |= PORT_RESUME;
3557 }
3558 writel(temp, &oxu->regs->port_status[i]);
3559 }
3560 i = HCS_N_PORTS(oxu->hcs_params);
3561 mdelay(20);
3562 while (i--) {
3563 temp = readl(&oxu->regs->port_status[i]);
3564 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3565 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3566 writel(temp, &oxu->regs->port_status[i]);
3567 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3568 }
3569 }
3570 (void) readl(&oxu->regs->command);
3571
3572 /* maybe re-activate the schedule(s) */
3573 temp = 0;
3574 if (oxu->async->qh_next.qh)
3575 temp |= CMD_ASE;
3576 if (oxu->periodic_sched)
3577 temp |= CMD_PSE;
3578 if (temp) {
3579 oxu->command |= temp;
3580 writel(oxu->command, &oxu->regs->command);
3581 }
3582
3583 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3584 hcd->state = HC_STATE_RUNNING;
3585
3586 /* Now we can safely re-enable irqs */
3587 writel(INTR_MASK, &oxu->regs->intr_enable);
3588
3589 spin_unlock_irq(&oxu->lock);
3590 return 0;
3591}
3592
3593#else
3594
3595static int oxu_bus_suspend(struct usb_hcd *hcd)
3596{
3597 return 0;
3598}
3599
3600static int oxu_bus_resume(struct usb_hcd *hcd)
3601{
3602 return 0;
3603}
3604
3605#endif /* CONFIG_PM */
3606
3607static const struct hc_driver oxu_hc_driver = {
3608 .description = "oxu210hp_hcd",
3609 .product_desc = "oxu210hp HCD",
3610 .hcd_priv_size = sizeof(struct oxu_hcd),
3611
3612 /*
3613 * Generic hardware linkage
3614 */
3615 .irq = oxu_irq,
3616 .flags = HCD_MEMORY | HCD_USB2,
3617
3618 /*
3619 * Basic lifecycle operations
3620 */
3621 .reset = oxu_reset,
3622 .start = oxu_run,
3623 .stop = oxu_stop,
3624 .shutdown = oxu_shutdown,
3625
3626 /*
3627 * Managing i/o requests and associated device resources
3628 */
3629 .urb_enqueue = oxu_urb_enqueue,
3630 .urb_dequeue = oxu_urb_dequeue,
3631 .endpoint_disable = oxu_endpoint_disable,
3632
3633 /*
3634 * Scheduling support
3635 */
3636 .get_frame_number = oxu_get_frame,
3637
3638 /*
3639 * Root hub support
3640 */
3641 .hub_status_data = oxu_hub_status_data,
3642 .hub_control = oxu_hub_control,
3643 .bus_suspend = oxu_bus_suspend,
3644 .bus_resume = oxu_bus_resume,
3645};
3646
3647/*
3648 * Module stuff
3649 */
3650
3651static void oxu_configuration(struct platform_device *pdev, void *base)
3652{
3653 u32 tmp;
3654
3655 /* Initialize top level registers.
3656 * First write ever
3657 */
3658 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3659 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3660 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3661
3662 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3663 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3664
3665 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3666 OXU_COMPARATOR | OXU_ASO_OP);
3667
3668 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3669 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3670
3671 /* Clear all top interrupt enable */
3672 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3673
3674 /* Clear all top interrupt status */
3675 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3676
3677 /* Enable all needed top interrupt except OTG SPH core */
3678 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3679}
3680
3681static int oxu_verify_id(struct platform_device *pdev, void *base)
3682{
3683 u32 id;
3684 static const char * const bo[] = {
3685 "reserved",
3686 "128-pin LQFP",
3687 "84-pin TFBGA",
3688 "reserved",
3689 };
3690
3691 /* Read controller signature register to find a match */
3692 id = oxu_readl(base, OXU_DEVICEID);
3693 dev_info(&pdev->dev, "device ID %x\n", id);
3694 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3695 return -1;
3696
3697 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3698 id >> OXU_REV_SHIFT,
3699 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3700 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3701 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3702
3703 return 0;
3704}
3705
3706static const struct hc_driver oxu_hc_driver;
3707static struct usb_hcd *oxu_create(struct platform_device *pdev,
3708 unsigned long memstart, unsigned long memlen,
3709 void *base, int irq, int otg)
3710{
3711 struct device *dev = &pdev->dev;
3712
3713 struct usb_hcd *hcd;
3714 struct oxu_hcd *oxu;
3715 int ret;
3716
3717 /* Set endian mode and host mode */
3718 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3719 OXU_USBMODE,
3720 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3721
3722 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3723 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3724 if (!hcd)
3725 return ERR_PTR(-ENOMEM);
3726
3727 hcd->rsrc_start = memstart;
3728 hcd->rsrc_len = memlen;
3729 hcd->regs = base;
3730 hcd->irq = irq;
3731 hcd->state = HC_STATE_HALT;
3732
3733 oxu = hcd_to_oxu(hcd);
3734 oxu->is_otg = otg;
3735
3736 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3737 if (ret < 0)
3738 return ERR_PTR(ret);
3739
3740 device_wakeup_enable(hcd->self.controller);
3741 return hcd;
3742}
3743
3744static int oxu_init(struct platform_device *pdev,
3745 unsigned long memstart, unsigned long memlen,
3746 void *base, int irq)
3747{
3748 struct oxu_info *info = platform_get_drvdata(pdev);
3749 struct usb_hcd *hcd;
3750 int ret;
3751
3752 /* First time configuration at start up */
3753 oxu_configuration(pdev, base);
3754
3755 ret = oxu_verify_id(pdev, base);
3756 if (ret) {
3757 dev_err(&pdev->dev, "no devices found!\n");
3758 return -ENODEV;
3759 }
3760
3761 /* Create the OTG controller */
3762 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3763 if (IS_ERR(hcd)) {
3764 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3765 ret = PTR_ERR(hcd);
3766 goto error_create_otg;
3767 }
3768 info->hcd[0] = hcd;
3769
3770 /* Create the SPH host controller */
3771 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3772 if (IS_ERR(hcd)) {
3773 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3774 ret = PTR_ERR(hcd);
3775 goto error_create_sph;
3776 }
3777 info->hcd[1] = hcd;
3778
3779 oxu_writel(base, OXU_CHIPIRQEN_SET,
3780 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3781
3782 return 0;
3783
3784error_create_sph:
3785 usb_remove_hcd(info->hcd[0]);
3786 usb_put_hcd(info->hcd[0]);
3787
3788error_create_otg:
3789 return ret;
3790}
3791
3792static int oxu_drv_probe(struct platform_device *pdev)
3793{
3794 struct resource *res;
3795 void *base;
3796 unsigned long memstart, memlen;
3797 int irq, ret;
3798 struct oxu_info *info;
3799
3800 if (usb_disabled())
3801 return -ENODEV;
3802
3803 /*
3804 * Get the platform resources
3805 */
3806 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3807 if (!res) {
3808 dev_err(&pdev->dev,
3809 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3810 return -ENODEV;
3811 }
3812 irq = res->start;
3813 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3814
3815 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3816 base = devm_ioremap_resource(&pdev->dev, res);
3817 if (IS_ERR(base)) {
3818 ret = PTR_ERR(base);
3819 goto error;
3820 }
3821 memstart = res->start;
3822 memlen = resource_size(res);
3823
3824 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3825 if (ret) {
3826 dev_err(&pdev->dev, "error setting irq type\n");
3827 ret = -EFAULT;
3828 goto error;
3829 }
3830
3831 /* Allocate a driver data struct to hold useful info for both
3832 * SPH & OTG devices
3833 */
3834 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
3835 if (!info) {
3836 ret = -EFAULT;
3837 goto error;
3838 }
3839 platform_set_drvdata(pdev, info);
3840
3841 ret = oxu_init(pdev, memstart, memlen, base, irq);
3842 if (ret < 0) {
3843 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3844 goto error;
3845 }
3846
3847 dev_info(&pdev->dev, "devices enabled and running\n");
3848 platform_set_drvdata(pdev, info);
3849
3850 return 0;
3851
3852error:
3853 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3854 return ret;
3855}
3856
3857static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3858{
3859 usb_remove_hcd(hcd);
3860 usb_put_hcd(hcd);
3861}
3862
3863static int oxu_drv_remove(struct platform_device *pdev)
3864{
3865 struct oxu_info *info = platform_get_drvdata(pdev);
3866
3867 oxu_remove(pdev, info->hcd[0]);
3868 oxu_remove(pdev, info->hcd[1]);
3869
3870 return 0;
3871}
3872
3873static void oxu_drv_shutdown(struct platform_device *pdev)
3874{
3875 oxu_drv_remove(pdev);
3876}
3877
3878#if 0
3879/* FIXME: TODO */
3880static int oxu_drv_suspend(struct device *dev)
3881{
3882 struct platform_device *pdev = to_platform_device(dev);
3883 struct usb_hcd *hcd = dev_get_drvdata(dev);
3884
3885 return 0;
3886}
3887
3888static int oxu_drv_resume(struct device *dev)
3889{
3890 struct platform_device *pdev = to_platform_device(dev);
3891 struct usb_hcd *hcd = dev_get_drvdata(dev);
3892
3893 return 0;
3894}
3895#else
3896#define oxu_drv_suspend NULL
3897#define oxu_drv_resume NULL
3898#endif
3899
3900static struct platform_driver oxu_driver = {
3901 .probe = oxu_drv_probe,
3902 .remove = oxu_drv_remove,
3903 .shutdown = oxu_drv_shutdown,
3904 .suspend = oxu_drv_suspend,
3905 .resume = oxu_drv_resume,
3906 .driver = {
3907 .name = "oxu210hp-hcd",
3908 .bus = &platform_bus_type
3909 }
3910};
3911
3912module_platform_driver(oxu_driver);
3913
3914MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3915MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3916MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10#include <linux/module.h>
11#include <linux/pci.h>
12#include <linux/dmapool.h>
13#include <linux/kernel.h>
14#include <linux/delay.h>
15#include <linux/ioport.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/errno.h>
19#include <linux/timer.h>
20#include <linux/list.h>
21#include <linux/interrupt.h>
22#include <linux/usb.h>
23#include <linux/usb/hcd.h>
24#include <linux/moduleparam.h>
25#include <linux/dma-mapping.h>
26#include <linux/io.h>
27
28#include <asm/irq.h>
29#include <asm/unaligned.h>
30
31#include <linux/irq.h>
32#include <linux/platform_device.h>
33
34#define DRIVER_VERSION "0.0.50"
35
36#define OXU_DEVICEID 0x00
37 #define OXU_REV_MASK 0xffff0000
38 #define OXU_REV_SHIFT 16
39 #define OXU_REV_2100 0x2100
40 #define OXU_BO_SHIFT 8
41 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
42 #define OXU_MAJ_REV_SHIFT 4
43 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
44 #define OXU_MIN_REV_SHIFT 0
45 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
46#define OXU_HOSTIFCONFIG 0x04
47#define OXU_SOFTRESET 0x08
48 #define OXU_SRESET (1 << 0)
49
50#define OXU_PIOBURSTREADCTRL 0x0C
51
52#define OXU_CHIPIRQSTATUS 0x10
53#define OXU_CHIPIRQEN_SET 0x14
54#define OXU_CHIPIRQEN_CLR 0x18
55 #define OXU_USBSPHLPWUI 0x00000080
56 #define OXU_USBOTGLPWUI 0x00000040
57 #define OXU_USBSPHI 0x00000002
58 #define OXU_USBOTGI 0x00000001
59
60#define OXU_CLKCTRL_SET 0x1C
61 #define OXU_SYSCLKEN 0x00000008
62 #define OXU_USBSPHCLKEN 0x00000002
63 #define OXU_USBOTGCLKEN 0x00000001
64
65#define OXU_ASO 0x68
66 #define OXU_SPHPOEN 0x00000100
67 #define OXU_OVRCCURPUPDEN 0x00000800
68 #define OXU_ASO_OP (1 << 10)
69 #define OXU_COMPARATOR 0x000004000
70
71#define OXU_USBMODE 0x1A8
72 #define OXU_VBPS 0x00000020
73 #define OXU_ES_LITTLE 0x00000000
74 #define OXU_CM_HOST_ONLY 0x00000003
75
76/*
77 * Proper EHCI structs & defines
78 */
79
80/* Magic numbers that can affect system performance */
81#define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
82#define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
83#define EHCI_TUNE_RL_TT 0
84#define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
85#define EHCI_TUNE_MULT_TT 1
86#define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
87
88struct oxu_hcd;
89
90/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
91
92/* Section 2.2 Host Controller Capability Registers */
93struct ehci_caps {
94 /* these fields are specified as 8 and 16 bit registers,
95 * but some hosts can't perform 8 or 16 bit PCI accesses.
96 */
97 u32 hc_capbase;
98#define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
99#define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
100 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
101#define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
102#define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
103#define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
104#define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
105#define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
106#define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
107#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
108
109 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
110#define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
111#define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
112#define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
113#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
114#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
115#define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
116 u8 portroute[8]; /* nibbles for routing - offset 0xC */
117} __packed;
118
119
120/* Section 2.3 Host Controller Operational Registers */
121struct ehci_regs {
122 /* USBCMD: offset 0x00 */
123 u32 command;
124/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
125#define CMD_PARK (1<<11) /* enable "park" on async qh */
126#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
127#define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
128#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
129#define CMD_ASE (1<<5) /* async schedule enable */
130#define CMD_PSE (1<<4) /* periodic schedule enable */
131/* 3:2 is periodic frame list size */
132#define CMD_RESET (1<<1) /* reset HC not bus */
133#define CMD_RUN (1<<0) /* start/stop HC */
134
135 /* USBSTS: offset 0x04 */
136 u32 status;
137#define STS_ASS (1<<15) /* Async Schedule Status */
138#define STS_PSS (1<<14) /* Periodic Schedule Status */
139#define STS_RECL (1<<13) /* Reclamation */
140#define STS_HALT (1<<12) /* Not running (any reason) */
141/* some bits reserved */
142 /* these STS_* flags are also intr_enable bits (USBINTR) */
143#define STS_IAA (1<<5) /* Interrupted on async advance */
144#define STS_FATAL (1<<4) /* such as some PCI access errors */
145#define STS_FLR (1<<3) /* frame list rolled over */
146#define STS_PCD (1<<2) /* port change detect */
147#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
148#define STS_INT (1<<0) /* "normal" completion (short, ...) */
149
150#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
151
152 /* USBINTR: offset 0x08 */
153 u32 intr_enable;
154
155 /* FRINDEX: offset 0x0C */
156 u32 frame_index; /* current microframe number */
157 /* CTRLDSSEGMENT: offset 0x10 */
158 u32 segment; /* address bits 63:32 if needed */
159 /* PERIODICLISTBASE: offset 0x14 */
160 u32 frame_list; /* points to periodic list */
161 /* ASYNCLISTADDR: offset 0x18 */
162 u32 async_next; /* address of next async queue head */
163
164 u32 reserved[9];
165
166 /* CONFIGFLAG: offset 0x40 */
167 u32 configured_flag;
168#define FLAG_CF (1<<0) /* true: we'll support "high speed" */
169
170 /* PORTSC: offset 0x44 */
171 u32 port_status[0]; /* up to N_PORTS */
172/* 31:23 reserved */
173#define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
174#define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
175#define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
176/* 19:16 for port testing */
177#define PORT_LED_OFF (0<<14)
178#define PORT_LED_AMBER (1<<14)
179#define PORT_LED_GREEN (2<<14)
180#define PORT_LED_MASK (3<<14)
181#define PORT_OWNER (1<<13) /* true: companion hc owns this port */
182#define PORT_POWER (1<<12) /* true: has power (see PPC) */
183#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
184/* 11:10 for detecting lowspeed devices (reset vs release ownership) */
185/* 9 reserved */
186#define PORT_RESET (1<<8) /* reset port */
187#define PORT_SUSPEND (1<<7) /* suspend port */
188#define PORT_RESUME (1<<6) /* resume it */
189#define PORT_OCC (1<<5) /* over current change */
190#define PORT_OC (1<<4) /* over current active */
191#define PORT_PEC (1<<3) /* port enable change */
192#define PORT_PE (1<<2) /* port enable */
193#define PORT_CSC (1<<1) /* connect status change */
194#define PORT_CONNECT (1<<0) /* device connected */
195#define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
196} __packed;
197
198/* Appendix C, Debug port ... intended for use with special "debug devices"
199 * that can help if there's no serial console. (nonstandard enumeration.)
200 */
201struct ehci_dbg_port {
202 u32 control;
203#define DBGP_OWNER (1<<30)
204#define DBGP_ENABLED (1<<28)
205#define DBGP_DONE (1<<16)
206#define DBGP_INUSE (1<<10)
207#define DBGP_ERRCODE(x) (((x)>>7)&0x07)
208# define DBGP_ERR_BAD 1
209# define DBGP_ERR_SIGNAL 2
210#define DBGP_ERROR (1<<6)
211#define DBGP_GO (1<<5)
212#define DBGP_OUT (1<<4)
213#define DBGP_LEN(x) (((x)>>0)&0x0f)
214 u32 pids;
215#define DBGP_PID_GET(x) (((x)>>16)&0xff)
216#define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
217 u32 data03;
218 u32 data47;
219 u32 address;
220#define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
221} __packed;
222
223#define QTD_NEXT(dma) cpu_to_le32((u32)dma)
224
225/*
226 * EHCI Specification 0.95 Section 3.5
227 * QTD: describe data transfer components (buffer, direction, ...)
228 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
229 *
230 * These are associated only with "QH" (Queue Head) structures,
231 * used with control, bulk, and interrupt transfers.
232 */
233struct ehci_qtd {
234 /* first part defined by EHCI spec */
235 __le32 hw_next; /* see EHCI 3.5.1 */
236 __le32 hw_alt_next; /* see EHCI 3.5.2 */
237 __le32 hw_token; /* see EHCI 3.5.3 */
238#define QTD_TOGGLE (1 << 31) /* data toggle */
239#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
240#define QTD_IOC (1 << 15) /* interrupt on complete */
241#define QTD_CERR(tok) (((tok)>>10) & 0x3)
242#define QTD_PID(tok) (((tok)>>8) & 0x3)
243#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
244#define QTD_STS_HALT (1 << 6) /* halted on error */
245#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
246#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
247#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
248#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
249#define QTD_STS_STS (1 << 1) /* split transaction state */
250#define QTD_STS_PING (1 << 0) /* issue PING? */
251 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
252 __le32 hw_buf_hi[5]; /* Appendix B */
253
254 /* the rest is HCD-private */
255 dma_addr_t qtd_dma; /* qtd address */
256 struct list_head qtd_list; /* sw qtd list */
257 struct urb *urb; /* qtd's urb */
258 size_t length; /* length of buffer */
259
260 u32 qtd_buffer_len;
261 void *buffer;
262 dma_addr_t buffer_dma;
263 void *transfer_buffer;
264 void *transfer_dma;
265} __aligned(32);
266
267/* mask NakCnt+T in qh->hw_alt_next */
268#define QTD_MASK cpu_to_le32 (~0x1f)
269
270#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
271
272/* Type tag from {qh, itd, sitd, fstn}->hw_next */
273#define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
274
275/* values for that type tag */
276#define Q_TYPE_QH cpu_to_le32 (1 << 1)
277
278/* next async queue entry, or pointer to interrupt/periodic QH */
279#define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
280
281/* for periodic/async schedules and qtd lists, mark end of list */
282#define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
283
284/*
285 * Entries in periodic shadow table are pointers to one of four kinds
286 * of data structure. That's dictated by the hardware; a type tag is
287 * encoded in the low bits of the hardware's periodic schedule. Use
288 * Q_NEXT_TYPE to get the tag.
289 *
290 * For entries in the async schedule, the type tag always says "qh".
291 */
292union ehci_shadow {
293 struct ehci_qh *qh; /* Q_TYPE_QH */
294 __le32 *hw_next; /* (all types) */
295 void *ptr;
296};
297
298/*
299 * EHCI Specification 0.95 Section 3.6
300 * QH: describes control/bulk/interrupt endpoints
301 * See Fig 3-7 "Queue Head Structure Layout".
302 *
303 * These appear in both the async and (for interrupt) periodic schedules.
304 */
305
306struct ehci_qh {
307 /* first part defined by EHCI spec */
308 __le32 hw_next; /* see EHCI 3.6.1 */
309 __le32 hw_info1; /* see EHCI 3.6.2 */
310#define QH_HEAD 0x00008000
311 __le32 hw_info2; /* see EHCI 3.6.2 */
312#define QH_SMASK 0x000000ff
313#define QH_CMASK 0x0000ff00
314#define QH_HUBADDR 0x007f0000
315#define QH_HUBPORT 0x3f800000
316#define QH_MULT 0xc0000000
317 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
318
319 /* qtd overlay (hardware parts of a struct ehci_qtd) */
320 __le32 hw_qtd_next;
321 __le32 hw_alt_next;
322 __le32 hw_token;
323 __le32 hw_buf[5];
324 __le32 hw_buf_hi[5];
325
326 /* the rest is HCD-private */
327 dma_addr_t qh_dma; /* address of qh */
328 union ehci_shadow qh_next; /* ptr to qh; or periodic */
329 struct list_head qtd_list; /* sw qtd list */
330 struct ehci_qtd *dummy;
331 struct ehci_qh *reclaim; /* next to reclaim */
332
333 struct oxu_hcd *oxu;
334 struct kref kref;
335 unsigned int stamp;
336
337 u8 qh_state;
338#define QH_STATE_LINKED 1 /* HC sees this */
339#define QH_STATE_UNLINK 2 /* HC may still see this */
340#define QH_STATE_IDLE 3 /* HC doesn't see this */
341#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
342#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
343
344 /* periodic schedule info */
345 u8 usecs; /* intr bandwidth */
346 u8 gap_uf; /* uframes split/csplit gap */
347 u8 c_usecs; /* ... split completion bw */
348 u16 tt_usecs; /* tt downstream bandwidth */
349 unsigned short period; /* polling interval */
350 unsigned short start; /* where polling starts */
351#define NO_FRAME ((unsigned short)~0) /* pick new start */
352 struct usb_device *dev; /* access to TT */
353} __aligned(32);
354
355/*
356 * Proper OXU210HP structs
357 */
358
359#define OXU_OTG_CORE_OFFSET 0x00400
360#define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
361#define OXU_SPH_CORE_OFFSET 0x00800
362#define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
363
364#define OXU_OTG_MEM 0xE000
365#define OXU_SPH_MEM 0x16000
366
367/* Only how many elements & element structure are specifies here. */
368/* 2 host controllers are enabled - total size <= 28 kbytes */
369#define DEFAULT_I_TDPS 1024
370#define QHEAD_NUM 16
371#define QTD_NUM 32
372#define SITD_NUM 8
373#define MURB_NUM 8
374
375#define BUFFER_NUM 8
376#define BUFFER_SIZE 512
377
378struct oxu_info {
379 struct usb_hcd *hcd[2];
380};
381
382struct oxu_buf {
383 u8 buffer[BUFFER_SIZE];
384} __aligned(BUFFER_SIZE);
385
386struct oxu_onchip_mem {
387 struct oxu_buf db_pool[BUFFER_NUM];
388
389 u32 frame_list[DEFAULT_I_TDPS];
390 struct ehci_qh qh_pool[QHEAD_NUM];
391 struct ehci_qtd qtd_pool[QTD_NUM];
392} __aligned(4 << 10);
393
394#define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
395
396struct oxu_murb {
397 struct urb urb;
398 struct urb *main;
399 u8 last;
400};
401
402struct oxu_hcd { /* one per controller */
403 unsigned int is_otg:1;
404
405 u8 qh_used[QHEAD_NUM];
406 u8 qtd_used[QTD_NUM];
407 u8 db_used[BUFFER_NUM];
408 u8 murb_used[MURB_NUM];
409
410 struct oxu_onchip_mem __iomem *mem;
411 spinlock_t mem_lock;
412
413 struct timer_list urb_timer;
414
415 struct ehci_caps __iomem *caps;
416 struct ehci_regs __iomem *regs;
417
418 u32 hcs_params; /* cached register copy */
419 spinlock_t lock;
420
421 /* async schedule support */
422 struct ehci_qh *async;
423 struct ehci_qh *reclaim;
424 unsigned int reclaim_ready:1;
425 unsigned int scanning:1;
426
427 /* periodic schedule support */
428 unsigned int periodic_size;
429 __le32 *periodic; /* hw periodic table */
430 dma_addr_t periodic_dma;
431 unsigned int i_thresh; /* uframes HC might cache */
432
433 union ehci_shadow *pshadow; /* mirror hw periodic table */
434 int next_uframe; /* scan periodic, start here */
435 unsigned int periodic_sched; /* periodic activity count */
436
437 /* per root hub port */
438 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
439 /* bit vectors (one bit per port) */
440 unsigned long bus_suspended; /* which ports were
441 * already suspended at the
442 * start of a bus suspend
443 */
444 unsigned long companion_ports;/* which ports are dedicated
445 * to the companion controller
446 */
447
448 struct timer_list watchdog;
449 unsigned long actions;
450 unsigned int stamp;
451 unsigned long next_statechange;
452 u32 command;
453
454 /* SILICON QUIRKS */
455 struct list_head urb_list; /* this is the head to urb
456 * queue that didn't get enough
457 * resources
458 */
459 struct oxu_murb *murb_pool; /* murb per split big urb */
460 unsigned int urb_len;
461
462 u8 sbrn; /* packed release number */
463};
464
465#define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
466#define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
467#define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
468#define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
469
470enum ehci_timer_action {
471 TIMER_IO_WATCHDOG,
472 TIMER_IAA_WATCHDOG,
473 TIMER_ASYNC_SHRINK,
474 TIMER_ASYNC_OFF,
475};
476
477/*
478 * Main defines
479 */
480
481#define oxu_dbg(oxu, fmt, args...) \
482 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
483#define oxu_err(oxu, fmt, args...) \
484 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
485#define oxu_info(oxu, fmt, args...) \
486 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
487
488#ifdef CONFIG_DYNAMIC_DEBUG
489#define DEBUG
490#endif
491
492static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
493{
494 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
495}
496
497static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
498{
499 return (struct oxu_hcd *) (hcd->hcd_priv);
500}
501
502/*
503 * Debug stuff
504 */
505
506#undef OXU_URB_TRACE
507#undef OXU_VERBOSE_DEBUG
508
509#ifdef OXU_VERBOSE_DEBUG
510#define oxu_vdbg oxu_dbg
511#else
512#define oxu_vdbg(oxu, fmt, args...) /* Nop */
513#endif
514
515#ifdef DEBUG
516
517static int __attribute__((__unused__))
518dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
519{
520 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
521 label, label[0] ? " " : "", status,
522 (status & STS_ASS) ? " Async" : "",
523 (status & STS_PSS) ? " Periodic" : "",
524 (status & STS_RECL) ? " Recl" : "",
525 (status & STS_HALT) ? " Halt" : "",
526 (status & STS_IAA) ? " IAA" : "",
527 (status & STS_FATAL) ? " FATAL" : "",
528 (status & STS_FLR) ? " FLR" : "",
529 (status & STS_PCD) ? " PCD" : "",
530 (status & STS_ERR) ? " ERR" : "",
531 (status & STS_INT) ? " INT" : ""
532 );
533}
534
535static int __attribute__((__unused__))
536dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
537{
538 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
539 label, label[0] ? " " : "", enable,
540 (enable & STS_IAA) ? " IAA" : "",
541 (enable & STS_FATAL) ? " FATAL" : "",
542 (enable & STS_FLR) ? " FLR" : "",
543 (enable & STS_PCD) ? " PCD" : "",
544 (enable & STS_ERR) ? " ERR" : "",
545 (enable & STS_INT) ? " INT" : ""
546 );
547}
548
549static const char *const fls_strings[] =
550 { "1024", "512", "256", "??" };
551
552static int dbg_command_buf(char *buf, unsigned len,
553 const char *label, u32 command)
554{
555 return scnprintf(buf, len,
556 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
557 label, label[0] ? " " : "", command,
558 (command & CMD_PARK) ? "park" : "(park)",
559 CMD_PARK_CNT(command),
560 (command >> 16) & 0x3f,
561 (command & CMD_LRESET) ? " LReset" : "",
562 (command & CMD_IAAD) ? " IAAD" : "",
563 (command & CMD_ASE) ? " Async" : "",
564 (command & CMD_PSE) ? " Periodic" : "",
565 fls_strings[(command >> 2) & 0x3],
566 (command & CMD_RESET) ? " Reset" : "",
567 (command & CMD_RUN) ? "RUN" : "HALT"
568 );
569}
570
571static int dbg_port_buf(char *buf, unsigned len, const char *label,
572 int port, u32 status)
573{
574 char *sig;
575
576 /* signaling state */
577 switch (status & (3 << 10)) {
578 case 0 << 10:
579 sig = "se0";
580 break;
581 case 1 << 10:
582 sig = "k"; /* low speed */
583 break;
584 case 2 << 10:
585 sig = "j";
586 break;
587 default:
588 sig = "?";
589 break;
590 }
591
592 return scnprintf(buf, len,
593 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
594 label, label[0] ? " " : "", port, status,
595 (status & PORT_POWER) ? " POWER" : "",
596 (status & PORT_OWNER) ? " OWNER" : "",
597 sig,
598 (status & PORT_RESET) ? " RESET" : "",
599 (status & PORT_SUSPEND) ? " SUSPEND" : "",
600 (status & PORT_RESUME) ? " RESUME" : "",
601 (status & PORT_OCC) ? " OCC" : "",
602 (status & PORT_OC) ? " OC" : "",
603 (status & PORT_PEC) ? " PEC" : "",
604 (status & PORT_PE) ? " PE" : "",
605 (status & PORT_CSC) ? " CSC" : "",
606 (status & PORT_CONNECT) ? " CONNECT" : ""
607 );
608}
609
610#else
611
612static inline int __attribute__((__unused__))
613dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
614{ return 0; }
615
616static inline int __attribute__((__unused__))
617dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
618{ return 0; }
619
620static inline int __attribute__((__unused__))
621dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
622{ return 0; }
623
624static inline int __attribute__((__unused__))
625dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
626{ return 0; }
627
628#endif /* DEBUG */
629
630/* functions have the "wrong" filename when they're output... */
631#define dbg_status(oxu, label, status) { \
632 char _buf[80]; \
633 dbg_status_buf(_buf, sizeof _buf, label, status); \
634 oxu_dbg(oxu, "%s\n", _buf); \
635}
636
637#define dbg_cmd(oxu, label, command) { \
638 char _buf[80]; \
639 dbg_command_buf(_buf, sizeof _buf, label, command); \
640 oxu_dbg(oxu, "%s\n", _buf); \
641}
642
643#define dbg_port(oxu, label, port, status) { \
644 char _buf[80]; \
645 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
646 oxu_dbg(oxu, "%s\n", _buf); \
647}
648
649/*
650 * Module parameters
651 */
652
653/* Initial IRQ latency: faster than hw default */
654static int log2_irq_thresh; /* 0 to 6 */
655module_param(log2_irq_thresh, int, S_IRUGO);
656MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
657
658/* Initial park setting: slower than hw default */
659static unsigned park;
660module_param(park, uint, S_IRUGO);
661MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
662
663/* For flakey hardware, ignore overcurrent indicators */
664static bool ignore_oc;
665module_param(ignore_oc, bool, S_IRUGO);
666MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
667
668
669static void ehci_work(struct oxu_hcd *oxu);
670static int oxu_hub_control(struct usb_hcd *hcd,
671 u16 typeReq, u16 wValue, u16 wIndex,
672 char *buf, u16 wLength);
673
674/*
675 * Local functions
676 */
677
678/* Low level read/write registers functions */
679static inline u32 oxu_readl(void __iomem *base, u32 reg)
680{
681 return readl(base + reg);
682}
683
684static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
685{
686 writel(val, base + reg);
687}
688
689static inline void timer_action_done(struct oxu_hcd *oxu,
690 enum ehci_timer_action action)
691{
692 clear_bit(action, &oxu->actions);
693}
694
695static inline void timer_action(struct oxu_hcd *oxu,
696 enum ehci_timer_action action)
697{
698 if (!test_and_set_bit(action, &oxu->actions)) {
699 unsigned long t;
700
701 switch (action) {
702 case TIMER_IAA_WATCHDOG:
703 t = EHCI_IAA_JIFFIES;
704 break;
705 case TIMER_IO_WATCHDOG:
706 t = EHCI_IO_JIFFIES;
707 break;
708 case TIMER_ASYNC_OFF:
709 t = EHCI_ASYNC_JIFFIES;
710 break;
711 case TIMER_ASYNC_SHRINK:
712 default:
713 t = EHCI_SHRINK_JIFFIES;
714 break;
715 }
716 t += jiffies;
717 /* all timings except IAA watchdog can be overridden.
718 * async queue SHRINK often precedes IAA. while it's ready
719 * to go OFF neither can matter, and afterwards the IO
720 * watchdog stops unless there's still periodic traffic.
721 */
722 if (action != TIMER_IAA_WATCHDOG
723 && t > oxu->watchdog.expires
724 && timer_pending(&oxu->watchdog))
725 return;
726 mod_timer(&oxu->watchdog, t);
727 }
728}
729
730/*
731 * handshake - spin reading hc until handshake completes or fails
732 * @ptr: address of hc register to be read
733 * @mask: bits to look at in result of read
734 * @done: value of those bits when handshake succeeds
735 * @usec: timeout in microseconds
736 *
737 * Returns negative errno, or zero on success
738 *
739 * Success happens when the "mask" bits have the specified value (hardware
740 * handshake done). There are two failure modes: "usec" have passed (major
741 * hardware flakeout), or the register reads as all-ones (hardware removed).
742 *
743 * That last failure should_only happen in cases like physical cardbus eject
744 * before driver shutdown. But it also seems to be caused by bugs in cardbus
745 * bridge shutdown: shutting down the bridge before the devices using it.
746 */
747static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
748 u32 mask, u32 done, int usec)
749{
750 u32 result;
751
752 do {
753 result = readl(ptr);
754 if (result == ~(u32)0) /* card removed */
755 return -ENODEV;
756 result &= mask;
757 if (result == done)
758 return 0;
759 udelay(1);
760 usec--;
761 } while (usec > 0);
762 return -ETIMEDOUT;
763}
764
765/* Force HC to halt state from unknown (EHCI spec section 2.3) */
766static int ehci_halt(struct oxu_hcd *oxu)
767{
768 u32 temp = readl(&oxu->regs->status);
769
770 /* disable any irqs left enabled by previous code */
771 writel(0, &oxu->regs->intr_enable);
772
773 if ((temp & STS_HALT) != 0)
774 return 0;
775
776 temp = readl(&oxu->regs->command);
777 temp &= ~CMD_RUN;
778 writel(temp, &oxu->regs->command);
779 return handshake(oxu, &oxu->regs->status,
780 STS_HALT, STS_HALT, 16 * 125);
781}
782
783/* Put TDI/ARC silicon into EHCI mode */
784static void tdi_reset(struct oxu_hcd *oxu)
785{
786 u32 __iomem *reg_ptr;
787 u32 tmp;
788
789 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
790 tmp = readl(reg_ptr);
791 tmp |= 0x3;
792 writel(tmp, reg_ptr);
793}
794
795/* Reset a non-running (STS_HALT == 1) controller */
796static int ehci_reset(struct oxu_hcd *oxu)
797{
798 int retval;
799 u32 command = readl(&oxu->regs->command);
800
801 command |= CMD_RESET;
802 dbg_cmd(oxu, "reset", command);
803 writel(command, &oxu->regs->command);
804 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
805 oxu->next_statechange = jiffies;
806 retval = handshake(oxu, &oxu->regs->command,
807 CMD_RESET, 0, 250 * 1000);
808
809 if (retval)
810 return retval;
811
812 tdi_reset(oxu);
813
814 return retval;
815}
816
817/* Idle the controller (from running) */
818static void ehci_quiesce(struct oxu_hcd *oxu)
819{
820 u32 temp;
821
822#ifdef DEBUG
823 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
824#endif
825
826 /* wait for any schedule enables/disables to take effect */
827 temp = readl(&oxu->regs->command) << 10;
828 temp &= STS_ASS | STS_PSS;
829 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
830 temp, 16 * 125) != 0) {
831 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
832 return;
833 }
834
835 /* then disable anything that's still active */
836 temp = readl(&oxu->regs->command);
837 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
838 writel(temp, &oxu->regs->command);
839
840 /* hardware can take 16 microframes to turn off ... */
841 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
842 0, 16 * 125) != 0) {
843 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
844 return;
845 }
846}
847
848static int check_reset_complete(struct oxu_hcd *oxu, int index,
849 u32 __iomem *status_reg, int port_status)
850{
851 if (!(port_status & PORT_CONNECT)) {
852 oxu->reset_done[index] = 0;
853 return port_status;
854 }
855
856 /* if reset finished and it's still not enabled -- handoff */
857 if (!(port_status & PORT_PE)) {
858 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
859 index+1);
860 return port_status;
861 } else
862 oxu_dbg(oxu, "port %d high speed\n", index + 1);
863
864 return port_status;
865}
866
867static void ehci_hub_descriptor(struct oxu_hcd *oxu,
868 struct usb_hub_descriptor *desc)
869{
870 int ports = HCS_N_PORTS(oxu->hcs_params);
871 u16 temp;
872
873 desc->bDescriptorType = USB_DT_HUB;
874 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
875 desc->bHubContrCurrent = 0;
876
877 desc->bNbrPorts = ports;
878 temp = 1 + (ports / 8);
879 desc->bDescLength = 7 + 2 * temp;
880
881 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
882 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
883 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
884
885 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
886 if (HCS_PPC(oxu->hcs_params))
887 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
888 else
889 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
890 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
891}
892
893
894/* Allocate an OXU210HP on-chip memory data buffer
895 *
896 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
897 * Each transfer descriptor has one or more on-chip memory data buffers.
898 *
899 * Data buffers are allocated from a fix sized pool of data blocks.
900 * To minimise fragmentation and give reasonable memory utlisation,
901 * data buffers are allocated with sizes the power of 2 multiples of
902 * the block size, starting on an address a multiple of the allocated size.
903 *
904 * FIXME: callers of this function require a buffer to be allocated for
905 * len=0. This is a waste of on-chip memory and should be fix. Then this
906 * function should be changed to not allocate a buffer for len=0.
907 */
908static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
909{
910 int n_blocks; /* minium blocks needed to hold len */
911 int a_blocks; /* blocks allocated */
912 int i, j;
913
914 /* Don't allocte bigger than supported */
915 if (len > BUFFER_SIZE * BUFFER_NUM) {
916 oxu_err(oxu, "buffer too big (%d)\n", len);
917 return -ENOMEM;
918 }
919
920 spin_lock(&oxu->mem_lock);
921
922 /* Number of blocks needed to hold len */
923 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
924
925 /* Round the number of blocks up to the power of 2 */
926 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
927 ;
928
929 /* Find a suitable available data buffer */
930 for (i = 0; i < BUFFER_NUM;
931 i += max(a_blocks, (int)oxu->db_used[i])) {
932
933 /* Check all the required blocks are available */
934 for (j = 0; j < a_blocks; j++)
935 if (oxu->db_used[i + j])
936 break;
937
938 if (j != a_blocks)
939 continue;
940
941 /* Allocate blocks found! */
942 qtd->buffer = (void *) &oxu->mem->db_pool[i];
943 qtd->buffer_dma = virt_to_phys(qtd->buffer);
944
945 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
946 oxu->db_used[i] = a_blocks;
947
948 spin_unlock(&oxu->mem_lock);
949
950 return 0;
951 }
952
953 /* Failed */
954
955 spin_unlock(&oxu->mem_lock);
956
957 return -ENOMEM;
958}
959
960static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
961{
962 int index;
963
964 spin_lock(&oxu->mem_lock);
965
966 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
967 / BUFFER_SIZE;
968 oxu->db_used[index] = 0;
969 qtd->qtd_buffer_len = 0;
970 qtd->buffer_dma = 0;
971 qtd->buffer = NULL;
972
973 spin_unlock(&oxu->mem_lock);
974}
975
976static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
977{
978 memset(qtd, 0, sizeof *qtd);
979 qtd->qtd_dma = dma;
980 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
981 qtd->hw_next = EHCI_LIST_END;
982 qtd->hw_alt_next = EHCI_LIST_END;
983 INIT_LIST_HEAD(&qtd->qtd_list);
984}
985
986static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
987{
988 int index;
989
990 if (qtd->buffer)
991 oxu_buf_free(oxu, qtd);
992
993 spin_lock(&oxu->mem_lock);
994
995 index = qtd - &oxu->mem->qtd_pool[0];
996 oxu->qtd_used[index] = 0;
997
998 spin_unlock(&oxu->mem_lock);
999}
1000
1001static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1002{
1003 int i;
1004 struct ehci_qtd *qtd = NULL;
1005
1006 spin_lock(&oxu->mem_lock);
1007
1008 for (i = 0; i < QTD_NUM; i++)
1009 if (!oxu->qtd_used[i])
1010 break;
1011
1012 if (i < QTD_NUM) {
1013 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1014 memset(qtd, 0, sizeof *qtd);
1015
1016 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1017 qtd->hw_next = EHCI_LIST_END;
1018 qtd->hw_alt_next = EHCI_LIST_END;
1019 INIT_LIST_HEAD(&qtd->qtd_list);
1020
1021 qtd->qtd_dma = virt_to_phys(qtd);
1022
1023 oxu->qtd_used[i] = 1;
1024 }
1025
1026 spin_unlock(&oxu->mem_lock);
1027
1028 return qtd;
1029}
1030
1031static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1032{
1033 int index;
1034
1035 spin_lock(&oxu->mem_lock);
1036
1037 index = qh - &oxu->mem->qh_pool[0];
1038 oxu->qh_used[index] = 0;
1039
1040 spin_unlock(&oxu->mem_lock);
1041}
1042
1043static void qh_destroy(struct kref *kref)
1044{
1045 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1046 struct oxu_hcd *oxu = qh->oxu;
1047
1048 /* clean qtds first, and know this is not linked */
1049 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1050 oxu_dbg(oxu, "unused qh not empty!\n");
1051 BUG();
1052 }
1053 if (qh->dummy)
1054 oxu_qtd_free(oxu, qh->dummy);
1055 oxu_qh_free(oxu, qh);
1056}
1057
1058static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1059{
1060 int i;
1061 struct ehci_qh *qh = NULL;
1062
1063 spin_lock(&oxu->mem_lock);
1064
1065 for (i = 0; i < QHEAD_NUM; i++)
1066 if (!oxu->qh_used[i])
1067 break;
1068
1069 if (i < QHEAD_NUM) {
1070 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1071 memset(qh, 0, sizeof *qh);
1072
1073 kref_init(&qh->kref);
1074 qh->oxu = oxu;
1075 qh->qh_dma = virt_to_phys(qh);
1076 INIT_LIST_HEAD(&qh->qtd_list);
1077
1078 /* dummy td enables safe urb queuing */
1079 qh->dummy = ehci_qtd_alloc(oxu);
1080 if (qh->dummy == NULL) {
1081 oxu_dbg(oxu, "no dummy td\n");
1082 oxu->qh_used[i] = 0;
1083 qh = NULL;
1084 goto unlock;
1085 }
1086
1087 oxu->qh_used[i] = 1;
1088 }
1089unlock:
1090 spin_unlock(&oxu->mem_lock);
1091
1092 return qh;
1093}
1094
1095/* to share a qh (cpu threads, or hc) */
1096static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1097{
1098 kref_get(&qh->kref);
1099 return qh;
1100}
1101
1102static inline void qh_put(struct ehci_qh *qh)
1103{
1104 kref_put(&qh->kref, qh_destroy);
1105}
1106
1107static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1108{
1109 int index;
1110
1111 spin_lock(&oxu->mem_lock);
1112
1113 index = murb - &oxu->murb_pool[0];
1114 oxu->murb_used[index] = 0;
1115
1116 spin_unlock(&oxu->mem_lock);
1117}
1118
1119static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1120
1121{
1122 int i;
1123 struct oxu_murb *murb = NULL;
1124
1125 spin_lock(&oxu->mem_lock);
1126
1127 for (i = 0; i < MURB_NUM; i++)
1128 if (!oxu->murb_used[i])
1129 break;
1130
1131 if (i < MURB_NUM) {
1132 murb = &(oxu->murb_pool)[i];
1133
1134 oxu->murb_used[i] = 1;
1135 }
1136
1137 spin_unlock(&oxu->mem_lock);
1138
1139 return murb;
1140}
1141
1142/* The queue heads and transfer descriptors are managed from pools tied
1143 * to each of the "per device" structures.
1144 * This is the initialisation and cleanup code.
1145 */
1146static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1147{
1148 kfree(oxu->murb_pool);
1149 oxu->murb_pool = NULL;
1150
1151 if (oxu->async)
1152 qh_put(oxu->async);
1153 oxu->async = NULL;
1154
1155 del_timer(&oxu->urb_timer);
1156
1157 oxu->periodic = NULL;
1158
1159 /* shadow periodic table */
1160 kfree(oxu->pshadow);
1161 oxu->pshadow = NULL;
1162}
1163
1164/* Remember to add cleanup code (above) if you add anything here.
1165 */
1166static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1167{
1168 int i;
1169
1170 for (i = 0; i < oxu->periodic_size; i++)
1171 oxu->mem->frame_list[i] = EHCI_LIST_END;
1172 for (i = 0; i < QHEAD_NUM; i++)
1173 oxu->qh_used[i] = 0;
1174 for (i = 0; i < QTD_NUM; i++)
1175 oxu->qtd_used[i] = 0;
1176
1177 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1178 if (!oxu->murb_pool)
1179 goto fail;
1180
1181 for (i = 0; i < MURB_NUM; i++)
1182 oxu->murb_used[i] = 0;
1183
1184 oxu->async = oxu_qh_alloc(oxu);
1185 if (!oxu->async)
1186 goto fail;
1187
1188 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1189 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1190
1191 for (i = 0; i < oxu->periodic_size; i++)
1192 oxu->periodic[i] = EHCI_LIST_END;
1193
1194 /* software shadow of hardware table */
1195 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1196 if (oxu->pshadow != NULL)
1197 return 0;
1198
1199fail:
1200 oxu_dbg(oxu, "couldn't init memory\n");
1201 ehci_mem_cleanup(oxu);
1202 return -ENOMEM;
1203}
1204
1205/* Fill a qtd, returning how much of the buffer we were able to queue up.
1206 */
1207static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1208 int token, int maxpacket)
1209{
1210 int i, count;
1211 u64 addr = buf;
1212
1213 /* one buffer entry per 4K ... first might be short or unaligned */
1214 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1215 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1216 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1217 if (likely(len < count)) /* ... iff needed */
1218 count = len;
1219 else {
1220 buf += 0x1000;
1221 buf &= ~0x0fff;
1222
1223 /* per-qtd limit: from 16K to 20K (best alignment) */
1224 for (i = 1; count < len && i < 5; i++) {
1225 addr = buf;
1226 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1227 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1228 buf += 0x1000;
1229 if ((count + 0x1000) < len)
1230 count += 0x1000;
1231 else
1232 count = len;
1233 }
1234
1235 /* short packets may only terminate transfers */
1236 if (count != len)
1237 count -= (count % maxpacket);
1238 }
1239 qtd->hw_token = cpu_to_le32((count << 16) | token);
1240 qtd->length = count;
1241
1242 return count;
1243}
1244
1245static inline void qh_update(struct oxu_hcd *oxu,
1246 struct ehci_qh *qh, struct ehci_qtd *qtd)
1247{
1248 /* writes to an active overlay are unsafe */
1249 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1250
1251 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1252 qh->hw_alt_next = EHCI_LIST_END;
1253
1254 /* Except for control endpoints, we make hardware maintain data
1255 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1256 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1257 * ever clear it.
1258 */
1259 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1260 unsigned is_out, epnum;
1261
1262 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1263 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1264 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1265 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1266 usb_settoggle(qh->dev, epnum, is_out, 1);
1267 }
1268 }
1269
1270 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1271 wmb();
1272 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1273}
1274
1275/* If it weren't for a common silicon quirk (writing the dummy into the qh
1276 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1277 * recovery (including urb dequeue) would need software changes to a QH...
1278 */
1279static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1280{
1281 struct ehci_qtd *qtd;
1282
1283 if (list_empty(&qh->qtd_list))
1284 qtd = qh->dummy;
1285 else {
1286 qtd = list_entry(qh->qtd_list.next,
1287 struct ehci_qtd, qtd_list);
1288 /* first qtd may already be partially processed */
1289 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1290 qtd = NULL;
1291 }
1292
1293 if (qtd)
1294 qh_update(oxu, qh, qtd);
1295}
1296
1297static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1298 size_t length, u32 token)
1299{
1300 /* count IN/OUT bytes, not SETUP (even short packets) */
1301 if (likely(QTD_PID(token) != 2))
1302 urb->actual_length += length - QTD_LENGTH(token);
1303
1304 /* don't modify error codes */
1305 if (unlikely(urb->status != -EINPROGRESS))
1306 return;
1307
1308 /* force cleanup after short read; not always an error */
1309 if (unlikely(IS_SHORT_READ(token)))
1310 urb->status = -EREMOTEIO;
1311
1312 /* serious "can't proceed" faults reported by the hardware */
1313 if (token & QTD_STS_HALT) {
1314 if (token & QTD_STS_BABBLE) {
1315 /* FIXME "must" disable babbling device's port too */
1316 urb->status = -EOVERFLOW;
1317 } else if (token & QTD_STS_MMF) {
1318 /* fs/ls interrupt xfer missed the complete-split */
1319 urb->status = -EPROTO;
1320 } else if (token & QTD_STS_DBE) {
1321 urb->status = (QTD_PID(token) == 1) /* IN ? */
1322 ? -ENOSR /* hc couldn't read data */
1323 : -ECOMM; /* hc couldn't write data */
1324 } else if (token & QTD_STS_XACT) {
1325 /* timeout, bad crc, wrong PID, etc; retried */
1326 if (QTD_CERR(token))
1327 urb->status = -EPIPE;
1328 else {
1329 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1330 urb->dev->devpath,
1331 usb_pipeendpoint(urb->pipe),
1332 usb_pipein(urb->pipe) ? "in" : "out");
1333 urb->status = -EPROTO;
1334 }
1335 /* CERR nonzero + no errors + halt --> stall */
1336 } else if (QTD_CERR(token))
1337 urb->status = -EPIPE;
1338 else /* unknown */
1339 urb->status = -EPROTO;
1340
1341 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1342 usb_pipedevice(urb->pipe),
1343 usb_pipeendpoint(urb->pipe),
1344 usb_pipein(urb->pipe) ? "in" : "out",
1345 token, urb->status);
1346 }
1347}
1348
1349static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1350__releases(oxu->lock)
1351__acquires(oxu->lock)
1352{
1353 if (likely(urb->hcpriv != NULL)) {
1354 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1355
1356 /* S-mask in a QH means it's an interrupt urb */
1357 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1358
1359 /* ... update hc-wide periodic stats (for usbfs) */
1360 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1361 }
1362 qh_put(qh);
1363 }
1364
1365 urb->hcpriv = NULL;
1366 switch (urb->status) {
1367 case -EINPROGRESS: /* success */
1368 urb->status = 0;
1369 default: /* fault */
1370 break;
1371 case -EREMOTEIO: /* fault or normal */
1372 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373 urb->status = 0;
1374 break;
1375 case -ECONNRESET: /* canceled */
1376 case -ENOENT:
1377 break;
1378 }
1379
1380#ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__, urb->dev->devpath, urb,
1383 usb_pipeendpoint(urb->pipe),
1384 usb_pipein(urb->pipe) ? "in" : "out",
1385 urb->status,
1386 urb->actual_length, urb->transfer_buffer_length);
1387#endif
1388
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu->lock);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392 spin_lock(&oxu->lock);
1393}
1394
1395static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397
1398static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400
1401#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402
1403/* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1406 */
1407static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408{
1409 struct ehci_qtd *last = NULL, *end = qh->dummy;
1410 struct ehci_qtd *qtd, *tmp;
1411 int stopped;
1412 unsigned count = 0;
1413 int do_status = 0;
1414 u8 state;
1415 struct oxu_murb *murb = NULL;
1416
1417 if (unlikely(list_empty(&qh->qtd_list)))
1418 return count;
1419
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1423 *
1424 * NOTE: unlinking expects to be done in queue order.
1425 */
1426 state = qh->qh_state;
1427 qh->qh_state = QH_STATE_COMPLETING;
1428 stopped = (state == QH_STATE_IDLE);
1429
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1434 */
1435 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436 struct urb *urb;
1437 u32 token = 0;
1438
1439 urb = qtd->urb;
1440
1441 /* Clean up any state from previous QTD ...*/
1442 if (last) {
1443 if (likely(last->urb != urb)) {
1444 if (last->urb->complete == NULL) {
1445 murb = (struct oxu_murb *) last->urb;
1446 last->urb = murb->main;
1447 if (murb->last) {
1448 ehci_urb_done(oxu, last->urb);
1449 count++;
1450 }
1451 oxu_murb_free(oxu, murb);
1452 } else {
1453 ehci_urb_done(oxu, last->urb);
1454 count++;
1455 }
1456 }
1457 oxu_qtd_free(oxu, last);
1458 last = NULL;
1459 }
1460
1461 /* ignore urbs submitted during completions we reported */
1462 if (qtd == end)
1463 break;
1464
1465 /* hardware copies qtd out of qh overlay */
1466 rmb();
1467 token = le32_to_cpu(qtd->hw_token);
1468
1469 /* always clean up qtds the hc de-activated */
1470 if ((token & QTD_STS_ACTIVE) == 0) {
1471
1472 if ((token & QTD_STS_HALT) != 0) {
1473 stopped = 1;
1474
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1477 */
1478 } else if (IS_SHORT_READ(token) &&
1479 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480 stopped = 1;
1481 goto halt;
1482 }
1483
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped &&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487 break;
1488
1489 } else {
1490 stopped = 1;
1491
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493 urb->status = -ESHUTDOWN;
1494
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1498 */
1499 if (likely(urb->status == -EINPROGRESS))
1500 continue;
1501
1502 /* issue status after short control reads */
1503 if (unlikely(do_status != 0)
1504 && QTD_PID(token) == 0 /* OUT */) {
1505 do_status = 0;
1506 continue;
1507 }
1508
1509 /* token in overlay may be most current */
1510 if (state == QH_STATE_IDLE
1511 && cpu_to_le32(qtd->qtd_dma)
1512 == qh->hw_current)
1513 token = le32_to_cpu(qh->hw_token);
1514
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1518 */
1519 if ((HALT_BIT & qh->hw_token) == 0) {
1520halt:
1521 qh->hw_token |= HALT_BIT;
1522 wmb();
1523 }
1524 }
1525
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu, urb->complete ?
1528 urb : ((struct oxu_murb *) urb)->main,
1529 qtd->length, token);
1530 if ((usb_pipein(qtd->urb->pipe)) &&
1531 (NULL != qtd->transfer_buffer))
1532 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533 do_status = (urb->status == -EREMOTEIO)
1534 && usb_pipecontrol(urb->pipe);
1535
1536 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537 last = list_entry(qtd->qtd_list.prev,
1538 struct ehci_qtd, qtd_list);
1539 last->hw_next = qtd->hw_next;
1540 }
1541 list_del(&qtd->qtd_list);
1542 last = qtd;
1543 }
1544
1545 /* last urb's completion might still need calling */
1546 if (likely(last != NULL)) {
1547 if (last->urb->complete == NULL) {
1548 murb = (struct oxu_murb *) last->urb;
1549 last->urb = murb->main;
1550 if (murb->last) {
1551 ehci_urb_done(oxu, last->urb);
1552 count++;
1553 }
1554 oxu_murb_free(oxu, murb);
1555 } else {
1556 ehci_urb_done(oxu, last->urb);
1557 count++;
1558 }
1559 oxu_qtd_free(oxu, last);
1560 }
1561
1562 /* restore original state; caller must unlink or relink */
1563 qh->qh_state = state;
1564
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1568 */
1569 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570 switch (state) {
1571 case QH_STATE_IDLE:
1572 qh_refresh(oxu, qh);
1573 break;
1574 case QH_STATE_LINKED:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1577 */
1578 if ((cpu_to_le32(QH_SMASK)
1579 & qh->hw_info2) != 0) {
1580 intr_deschedule(oxu, qh);
1581 (void) qh_schedule(oxu, qh);
1582 } else
1583 unlink_async(oxu, qh);
1584 break;
1585 /* otherwise, unlink already started */
1586 }
1587 }
1588
1589 return count;
1590}
1591
1592/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594/* ... and packet size, for any kind of endpoint descriptor */
1595#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1596
1597/* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1599 */
1600static void qtd_list_free(struct oxu_hcd *oxu,
1601 struct urb *urb, struct list_head *head)
1602{
1603 struct ehci_qtd *qtd, *temp;
1604
1605 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606 list_del(&qtd->qtd_list);
1607 oxu_qtd_free(oxu, qtd);
1608 }
1609}
1610
1611/* Create a list of filled qtds for this URB; won't link into qh.
1612 */
1613static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614 struct urb *urb,
1615 struct list_head *head,
1616 gfp_t flags)
1617{
1618 struct ehci_qtd *qtd, *qtd_prev;
1619 dma_addr_t buf;
1620 int len, maxpacket;
1621 int is_input;
1622 u32 token;
1623 void *transfer_buf = NULL;
1624 int ret;
1625
1626 /*
1627 * URBs map to sequences of QTDs: one logical transaction
1628 */
1629 qtd = ehci_qtd_alloc(oxu);
1630 if (unlikely(!qtd))
1631 return NULL;
1632 list_add_tail(&qtd->qtd_list, head);
1633 qtd->urb = urb;
1634
1635 token = QTD_STS_ACTIVE;
1636 token |= (EHCI_TUNE_CERR << 10);
1637 /* for split transactions, SplitXState initialized to zero */
1638
1639 len = urb->transfer_buffer_length;
1640 is_input = usb_pipein(urb->pipe);
1641 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643
1644 if (usb_pipecontrol(urb->pipe)) {
1645 /* SETUP pid */
1646 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647 if (ret)
1648 goto cleanup;
1649
1650 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651 token | (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653 sizeof(struct usb_ctrlrequest));
1654
1655 /* ... and always at least one more pid */
1656 token ^= QTD_TOGGLE;
1657 qtd_prev = qtd;
1658 qtd = ehci_qtd_alloc(oxu);
1659 if (unlikely(!qtd))
1660 goto cleanup;
1661 qtd->urb = urb;
1662 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663 list_add_tail(&qtd->qtd_list, head);
1664
1665 /* for zero length DATA stages, STATUS is always IN */
1666 if (len == 0)
1667 token |= (1 /* "in" */ << 8);
1668 }
1669
1670 /*
1671 * Data transfer stage: buffer setup
1672 */
1673
1674 ret = oxu_buf_alloc(oxu, qtd, len);
1675 if (ret)
1676 goto cleanup;
1677
1678 buf = qtd->buffer_dma;
1679 transfer_buf = urb->transfer_buffer;
1680
1681 if (!is_input)
1682 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683
1684 if (is_input)
1685 token |= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1687
1688 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1689
1690 /*
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1694 */
1695 for (;;) {
1696 int this_qtd_len;
1697
1698 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699 qtd->transfer_buffer = transfer_buf;
1700 len -= this_qtd_len;
1701 buf += this_qtd_len;
1702 transfer_buf += this_qtd_len;
1703 if (is_input)
1704 qtd->hw_alt_next = oxu->async->hw_alt_next;
1705
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708 token ^= QTD_TOGGLE;
1709
1710 if (likely(len <= 0))
1711 break;
1712
1713 qtd_prev = qtd;
1714 qtd = ehci_qtd_alloc(oxu);
1715 if (unlikely(!qtd))
1716 goto cleanup;
1717 if (likely(len > 0)) {
1718 ret = oxu_buf_alloc(oxu, qtd, len);
1719 if (ret)
1720 goto cleanup;
1721 }
1722 qtd->urb = urb;
1723 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724 list_add_tail(&qtd->qtd_list, head);
1725 }
1726
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1729 */
1730 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731 || usb_pipecontrol(urb->pipe)))
1732 qtd->hw_alt_next = EHCI_LIST_END;
1733
1734 /*
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1737 */
1738 if (likely(urb->transfer_buffer_length != 0)) {
1739 int one_more = 0;
1740
1741 if (usb_pipecontrol(urb->pipe)) {
1742 one_more = 1;
1743 token ^= 0x0100; /* "in" <--> "out" */
1744 token |= QTD_TOGGLE; /* force DATA1 */
1745 } else if (usb_pipebulk(urb->pipe)
1746 && (urb->transfer_flags & URB_ZERO_PACKET)
1747 && !(urb->transfer_buffer_length % maxpacket)) {
1748 one_more = 1;
1749 }
1750 if (one_more) {
1751 qtd_prev = qtd;
1752 qtd = ehci_qtd_alloc(oxu);
1753 if (unlikely(!qtd))
1754 goto cleanup;
1755 qtd->urb = urb;
1756 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757 list_add_tail(&qtd->qtd_list, head);
1758
1759 /* never any data in such packets */
1760 qtd_fill(qtd, 0, 0, token, 0);
1761 }
1762 }
1763
1764 /* by default, enable interrupt on urb completion */
1765 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766 return head;
1767
1768cleanup:
1769 qtd_list_free(oxu, urb, head);
1770 return NULL;
1771}
1772
1773/* Each QH holds a qtd list; a QH is used for everything except iso.
1774 *
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1779 */
1780static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781 struct urb *urb, gfp_t flags)
1782{
1783 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784 u32 info1 = 0, info2 = 0;
1785 int is_input, type;
1786 int maxp = 0;
1787
1788 if (!qh)
1789 return qh;
1790
1791 /*
1792 * init endpoint/device data for this QH
1793 */
1794 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795 info1 |= usb_pipedevice(urb->pipe) << 0;
1796
1797 is_input = usb_pipein(urb->pipe);
1798 type = usb_pipetype(urb->pipe);
1799 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1800
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1806 *
1807 * For control/bulk requests, the HC or TT handles these.
1808 */
1809 if (type == PIPE_INTERRUPT) {
1810 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811 is_input, 0,
1812 hb_mult(maxp) * max_packet(maxp)));
1813 qh->start = NO_FRAME;
1814
1815 if (urb->dev->speed == USB_SPEED_HIGH) {
1816 qh->c_usecs = 0;
1817 qh->gap_uf = 0;
1818
1819 qh->period = urb->interval >> 3;
1820 if (qh->period == 0 && urb->interval != 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1824 */
1825 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826 urb->interval);
1827 goto done;
1828 }
1829 } else {
1830 struct usb_tt *tt = urb->dev->tt;
1831 int think_time;
1832
1833 /* gap is f(FS/LS transfer times) */
1834 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835 is_input, 0, maxp) / (125 * 1000);
1836
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh->c_usecs = qh->usecs + HS_USECS(0);
1840 qh->usecs = HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh->usecs += HS_USECS(1);
1843 qh->c_usecs = HS_USECS(0);
1844 }
1845
1846 think_time = tt ? tt->think_time : 0;
1847 qh->tt_usecs = NS_TO_US(think_time +
1848 usb_calc_bus_time(urb->dev->speed,
1849 is_input, 0, max_packet(maxp)));
1850 qh->period = urb->interval;
1851 }
1852 }
1853
1854 /* support for tt scheduling, and access to toggles */
1855 qh->dev = urb->dev;
1856
1857 /* using TT? */
1858 switch (urb->dev->speed) {
1859 case USB_SPEED_LOW:
1860 info1 |= (1 << 12); /* EPS "low" */
1861 fallthrough;
1862
1863 case USB_SPEED_FULL:
1864 /* EPS 0 means "full" */
1865 if (type != PIPE_INTERRUPT)
1866 info1 |= (EHCI_TUNE_RL_TT << 28);
1867 if (type == PIPE_CONTROL) {
1868 info1 |= (1 << 27); /* for TT */
1869 info1 |= 1 << 14; /* toggle from qtd */
1870 }
1871 info1 |= maxp << 16;
1872
1873 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874 info2 |= urb->dev->ttport << 23;
1875
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877
1878 break;
1879
1880 case USB_SPEED_HIGH: /* no TT involved */
1881 info1 |= (2 << 12); /* EPS "high" */
1882 if (type == PIPE_CONTROL) {
1883 info1 |= (EHCI_TUNE_RL_HS << 28);
1884 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1885 info1 |= 1 << 14; /* toggle from qtd */
1886 info2 |= (EHCI_TUNE_MULT_HS << 30);
1887 } else if (type == PIPE_BULK) {
1888 info1 |= (EHCI_TUNE_RL_HS << 28);
1889 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1890 info2 |= (EHCI_TUNE_MULT_HS << 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1 |= max_packet(maxp) << 16;
1893 info2 |= hb_mult(maxp) << 30;
1894 }
1895 break;
1896 default:
1897 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898done:
1899 qh_put(qh);
1900 return NULL;
1901 }
1902
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904
1905 /* init as live, toggle clear, advance to dummy */
1906 qh->qh_state = QH_STATE_IDLE;
1907 qh->hw_info1 = cpu_to_le32(info1);
1908 qh->hw_info2 = cpu_to_le32(info2);
1909 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910 qh_refresh(oxu, qh);
1911 return qh;
1912}
1913
1914/* Move qh (and its qtds) onto async queue; maybe enable queue.
1915 */
1916static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917{
1918 __le32 dma = QH_NEXT(qh->qh_dma);
1919 struct ehci_qh *head;
1920
1921 /* (re)start the async schedule? */
1922 head = oxu->async;
1923 timer_action_done(oxu, TIMER_ASYNC_OFF);
1924 if (!head->qh_next.qh) {
1925 u32 cmd = readl(&oxu->regs->command);
1926
1927 if (!(cmd & CMD_ASE)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu, &oxu->regs->status,
1930 STS_ASS, 0, 150);
1931 cmd |= CMD_ASE | CMD_RUN;
1932 writel(cmd, &oxu->regs->command);
1933 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934 /* posted write need not be known to HC yet ... */
1935 }
1936 }
1937
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh->qh_state == QH_STATE_IDLE)
1940 qh_refresh(oxu, qh);
1941
1942 /* splice right after start */
1943 qh->qh_next = head->qh_next;
1944 qh->hw_next = head->hw_next;
1945 wmb();
1946
1947 head->qh_next.qh = qh;
1948 head->hw_next = dma;
1949
1950 qh->qh_state = QH_STATE_LINKED;
1951 /* qtd completions reported later by interrupt */
1952}
1953
1954#define QH_ADDR_MASK cpu_to_le32(0x7f)
1955
1956/*
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1961 */
1962static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963 struct urb *urb, struct list_head *qtd_list,
1964 int epnum, void **ptr)
1965{
1966 struct ehci_qh *qh = NULL;
1967
1968 qh = (struct ehci_qh *) *ptr;
1969 if (unlikely(qh == NULL)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972 *ptr = qh;
1973 }
1974 if (likely(qh != NULL)) {
1975 struct ehci_qtd *qtd;
1976
1977 if (unlikely(list_empty(qtd_list)))
1978 qtd = NULL;
1979 else
1980 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981 qtd_list);
1982
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum == 0)) {
1985
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb->pipe) == 0)
1988 qh->hw_info1 &= ~QH_ADDR_MASK;
1989 }
1990
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1993 */
1994 if (likely(qtd != NULL)) {
1995 struct ehci_qtd *dummy;
1996 dma_addr_t dma;
1997 __le32 token;
1998
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2003 */
2004 token = qtd->hw_token;
2005 qtd->hw_token = HALT_BIT;
2006 wmb();
2007 dummy = qh->dummy;
2008
2009 dma = dummy->qtd_dma;
2010 *dummy = *qtd;
2011 dummy->qtd_dma = dma;
2012
2013 list_del(&qtd->qtd_list);
2014 list_add(&dummy->qtd_list, qtd_list);
2015 list_splice(qtd_list, qh->qtd_list.prev);
2016
2017 ehci_qtd_init(qtd, qtd->qtd_dma);
2018 qh->dummy = qtd;
2019
2020 /* hc must see the new dummy at list end */
2021 dma = qtd->qtd_dma;
2022 qtd = list_entry(qh->qtd_list.prev,
2023 struct ehci_qtd, qtd_list);
2024 qtd->hw_next = QTD_NEXT(dma);
2025
2026 /* let the hc process these next qtds */
2027 dummy->hw_token = (token & ~(0x80));
2028 wmb();
2029 dummy->hw_token = token;
2030
2031 urb->hcpriv = qh_get(qh);
2032 }
2033 }
2034 return qh;
2035}
2036
2037static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2038 struct list_head *qtd_list, gfp_t mem_flags)
2039{
2040 int epnum = urb->ep->desc.bEndpointAddress;
2041 unsigned long flags;
2042 struct ehci_qh *qh = NULL;
2043 int rc = 0;
2044#ifdef OXU_URB_TRACE
2045 struct ehci_qtd *qtd;
2046
2047 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048
2049 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050 __func__, urb->dev->devpath, urb,
2051 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052 urb->transfer_buffer_length,
2053 qtd, urb->ep->hcpriv);
2054#endif
2055
2056 spin_lock_irqsave(&oxu->lock, flags);
2057 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058 rc = -ESHUTDOWN;
2059 goto done;
2060 }
2061
2062 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063 if (unlikely(qh == NULL)) {
2064 rc = -ENOMEM;
2065 goto done;
2066 }
2067
2068 /* Control/bulk operations through TTs don't need scheduling,
2069 * the HC and TT handle it when the TT has a buffer ready.
2070 */
2071 if (likely(qh->qh_state == QH_STATE_IDLE))
2072 qh_link_async(oxu, qh_get(qh));
2073done:
2074 spin_unlock_irqrestore(&oxu->lock, flags);
2075 if (unlikely(qh == NULL))
2076 qtd_list_free(oxu, urb, qtd_list);
2077 return rc;
2078}
2079
2080/* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081
2082static void end_unlink_async(struct oxu_hcd *oxu)
2083{
2084 struct ehci_qh *qh = oxu->reclaim;
2085 struct ehci_qh *next;
2086
2087 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088
2089 qh->qh_state = QH_STATE_IDLE;
2090 qh->qh_next.qh = NULL;
2091 qh_put(qh); /* refcount from reclaim */
2092
2093 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094 next = qh->reclaim;
2095 oxu->reclaim = next;
2096 oxu->reclaim_ready = 0;
2097 qh->reclaim = NULL;
2098
2099 qh_completions(oxu, qh);
2100
2101 if (!list_empty(&qh->qtd_list)
2102 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103 qh_link_async(oxu, qh);
2104 else {
2105 qh_put(qh); /* refcount from async list */
2106
2107 /* it's not free to turn the async schedule on/off; leave it
2108 * active but idle for a while once it empties.
2109 */
2110 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111 && oxu->async->qh_next.qh == NULL)
2112 timer_action(oxu, TIMER_ASYNC_OFF);
2113 }
2114
2115 if (next) {
2116 oxu->reclaim = NULL;
2117 start_unlink_async(oxu, next);
2118 }
2119}
2120
2121/* makes sure the async qh will become idle */
2122/* caller must own oxu->lock */
2123
2124static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125{
2126 int cmd = readl(&oxu->regs->command);
2127 struct ehci_qh *prev;
2128
2129#ifdef DEBUG
2130 assert_spin_locked(&oxu->lock);
2131 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2133#endif
2134
2135 /* stop async schedule right now? */
2136 if (unlikely(qh == oxu->async)) {
2137 /* can't get here without STS_ASS set */
2138 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139 && !oxu->reclaim) {
2140 /* ... and CMD_IAAD clear */
2141 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142 wmb();
2143 /* handshake later, if we need to */
2144 timer_action_done(oxu, TIMER_ASYNC_OFF);
2145 }
2146 return;
2147 }
2148
2149 qh->qh_state = QH_STATE_UNLINK;
2150 oxu->reclaim = qh = qh_get(qh);
2151
2152 prev = oxu->async;
2153 while (prev->qh_next.qh != qh)
2154 prev = prev->qh_next.qh;
2155
2156 prev->hw_next = qh->hw_next;
2157 prev->qh_next = qh->qh_next;
2158 wmb();
2159
2160 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161 /* if (unlikely(qh->reclaim != 0))
2162 * this will recurse, probably not much
2163 */
2164 end_unlink_async(oxu);
2165 return;
2166 }
2167
2168 oxu->reclaim_ready = 0;
2169 cmd |= CMD_IAAD;
2170 writel(cmd, &oxu->regs->command);
2171 (void) readl(&oxu->regs->command);
2172 timer_action(oxu, TIMER_IAA_WATCHDOG);
2173}
2174
2175static void scan_async(struct oxu_hcd *oxu)
2176{
2177 struct ehci_qh *qh;
2178 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179
2180 if (!++(oxu->stamp))
2181 oxu->stamp++;
2182 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183rescan:
2184 qh = oxu->async->qh_next.qh;
2185 if (likely(qh != NULL)) {
2186 do {
2187 /* clean any finished work for this qh */
2188 if (!list_empty(&qh->qtd_list)
2189 && qh->stamp != oxu->stamp) {
2190 int temp;
2191
2192 /* unlinks could happen here; completion
2193 * reporting drops the lock. rescan using
2194 * the latest schedule, but don't rescan
2195 * qhs we already finished (no looping).
2196 */
2197 qh = qh_get(qh);
2198 qh->stamp = oxu->stamp;
2199 temp = qh_completions(oxu, qh);
2200 qh_put(qh);
2201 if (temp != 0)
2202 goto rescan;
2203 }
2204
2205 /* unlink idle entries, reducing HC PCI usage as well
2206 * as HCD schedule-scanning costs. delay for any qh
2207 * we just scanned, there's a not-unusual case that it
2208 * doesn't stay idle for long.
2209 * (plus, avoids some kind of re-activation race.)
2210 */
2211 if (list_empty(&qh->qtd_list)) {
2212 if (qh->stamp == oxu->stamp)
2213 action = TIMER_ASYNC_SHRINK;
2214 else if (!oxu->reclaim
2215 && qh->qh_state == QH_STATE_LINKED)
2216 start_unlink_async(oxu, qh);
2217 }
2218
2219 qh = qh->qh_next.qh;
2220 } while (qh);
2221 }
2222 if (action == TIMER_ASYNC_SHRINK)
2223 timer_action(oxu, TIMER_ASYNC_SHRINK);
2224}
2225
2226/*
2227 * periodic_next_shadow - return "next" pointer on shadow list
2228 * @periodic: host pointer to qh/itd/sitd
2229 * @tag: hardware tag for type of this record
2230 */
2231static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232 __le32 tag)
2233{
2234 switch (tag) {
2235 default:
2236 case Q_TYPE_QH:
2237 return &periodic->qh->qh_next;
2238 }
2239}
2240
2241/* caller must hold oxu->lock */
2242static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243{
2244 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245 __le32 *hw_p = &oxu->periodic[frame];
2246 union ehci_shadow here = *prev_p;
2247
2248 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249 while (here.ptr && here.ptr != ptr) {
2250 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251 hw_p = here.hw_next;
2252 here = *prev_p;
2253 }
2254 /* an interrupt entry (at list end) could have been shared */
2255 if (!here.ptr)
2256 return;
2257
2258 /* update shadow and hardware lists ... the old "next" pointers
2259 * from ptr may still be in use, the caller updates them.
2260 */
2261 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262 *hw_p = *here.hw_next;
2263}
2264
2265/* how many of the uframe's 125 usecs are allocated? */
2266static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267 unsigned frame, unsigned uframe)
2268{
2269 __le32 *hw_p = &oxu->periodic[frame];
2270 union ehci_shadow *q = &oxu->pshadow[frame];
2271 unsigned usecs = 0;
2272
2273 while (q->ptr) {
2274 switch (Q_NEXT_TYPE(*hw_p)) {
2275 case Q_TYPE_QH:
2276 default:
2277 /* is it in the S-mask? */
2278 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279 usecs += q->qh->usecs;
2280 /* ... or C-mask? */
2281 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282 usecs += q->qh->c_usecs;
2283 hw_p = &q->qh->hw_next;
2284 q = &q->qh->qh_next;
2285 break;
2286 }
2287 }
2288#ifdef DEBUG
2289 if (usecs > 100)
2290 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291 frame * 8 + uframe, usecs);
2292#endif
2293 return usecs;
2294}
2295
2296static int enable_periodic(struct oxu_hcd *oxu)
2297{
2298 u32 cmd;
2299 int status;
2300
2301 /* did clearing PSE did take effect yet?
2302 * takes effect only at frame boundaries...
2303 */
2304 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305 if (status != 0) {
2306 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307 usb_hc_died(oxu_to_hcd(oxu));
2308 return status;
2309 }
2310
2311 cmd = readl(&oxu->regs->command) | CMD_PSE;
2312 writel(cmd, &oxu->regs->command);
2313 /* posted write ... PSS happens later */
2314 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315
2316 /* make sure ehci_work scans these */
2317 oxu->next_uframe = readl(&oxu->regs->frame_index)
2318 % (oxu->periodic_size << 3);
2319 return 0;
2320}
2321
2322static int disable_periodic(struct oxu_hcd *oxu)
2323{
2324 u32 cmd;
2325 int status;
2326
2327 /* did setting PSE not take effect yet?
2328 * takes effect only at frame boundaries...
2329 */
2330 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331 if (status != 0) {
2332 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333 usb_hc_died(oxu_to_hcd(oxu));
2334 return status;
2335 }
2336
2337 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338 writel(cmd, &oxu->regs->command);
2339 /* posted write ... */
2340
2341 oxu->next_uframe = -1;
2342 return 0;
2343}
2344
2345/* periodic schedule slots have iso tds (normal or split) first, then a
2346 * sparse tree for active interrupt transfers.
2347 *
2348 * this just links in a qh; caller guarantees uframe masks are set right.
2349 * no FSTN support (yet; oxu 0.96+)
2350 */
2351static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352{
2353 unsigned i;
2354 unsigned period = qh->period;
2355
2356 dev_dbg(&qh->dev->dev,
2357 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359 qh, qh->start, qh->usecs, qh->c_usecs);
2360
2361 /* high bandwidth, or otherwise every microframe */
2362 if (period == 0)
2363 period = 1;
2364
2365 for (i = qh->start; i < oxu->periodic_size; i += period) {
2366 union ehci_shadow *prev = &oxu->pshadow[i];
2367 __le32 *hw_p = &oxu->periodic[i];
2368 union ehci_shadow here = *prev;
2369 __le32 type = 0;
2370
2371 /* skip the iso nodes at list head */
2372 while (here.ptr) {
2373 type = Q_NEXT_TYPE(*hw_p);
2374 if (type == Q_TYPE_QH)
2375 break;
2376 prev = periodic_next_shadow(prev, type);
2377 hw_p = &here.qh->hw_next;
2378 here = *prev;
2379 }
2380
2381 /* sorting each branch by period (slow-->fast)
2382 * enables sharing interior tree nodes
2383 */
2384 while (here.ptr && qh != here.qh) {
2385 if (qh->period > here.qh->period)
2386 break;
2387 prev = &here.qh->qh_next;
2388 hw_p = &here.qh->hw_next;
2389 here = *prev;
2390 }
2391 /* link in this qh, unless some earlier pass did that */
2392 if (qh != here.qh) {
2393 qh->qh_next = here;
2394 if (here.qh)
2395 qh->hw_next = *hw_p;
2396 wmb();
2397 prev->qh = qh;
2398 *hw_p = QH_NEXT(qh->qh_dma);
2399 }
2400 }
2401 qh->qh_state = QH_STATE_LINKED;
2402 qh_get(qh);
2403
2404 /* update per-qh bandwidth for usbfs */
2405 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406 ? ((qh->usecs + qh->c_usecs) / qh->period)
2407 : (qh->usecs * 8);
2408
2409 /* maybe enable periodic schedule processing */
2410 if (!oxu->periodic_sched++)
2411 return enable_periodic(oxu);
2412
2413 return 0;
2414}
2415
2416static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417{
2418 unsigned i;
2419 unsigned period;
2420
2421 /* FIXME:
2422 * IF this isn't high speed
2423 * and this qh is active in the current uframe
2424 * (and overlay token SplitXstate is false?)
2425 * THEN
2426 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427 */
2428
2429 /* high bandwidth, or otherwise part of every microframe */
2430 period = qh->period;
2431 if (period == 0)
2432 period = 1;
2433
2434 for (i = qh->start; i < oxu->periodic_size; i += period)
2435 periodic_unlink(oxu, i, qh);
2436
2437 /* update per-qh bandwidth for usbfs */
2438 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439 ? ((qh->usecs + qh->c_usecs) / qh->period)
2440 : (qh->usecs * 8);
2441
2442 dev_dbg(&qh->dev->dev,
2443 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444 qh->period,
2445 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446 qh, qh->start, qh->usecs, qh->c_usecs);
2447
2448 /* qh->qh_next still "live" to HC */
2449 qh->qh_state = QH_STATE_UNLINK;
2450 qh->qh_next.ptr = NULL;
2451 qh_put(qh);
2452
2453 /* maybe turn off periodic schedule */
2454 oxu->periodic_sched--;
2455 if (!oxu->periodic_sched)
2456 (void) disable_periodic(oxu);
2457}
2458
2459static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460{
2461 unsigned wait;
2462
2463 qh_unlink_periodic(oxu, qh);
2464
2465 /* simple/paranoid: always delay, expecting the HC needs to read
2466 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467 * expect hub_wq to clean up after any CSPLITs we won't issue.
2468 * active high speed queues may need bigger delays...
2469 */
2470 if (list_empty(&qh->qtd_list)
2471 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472 wait = 2;
2473 else
2474 wait = 55; /* worst case: 3 * 1024 */
2475
2476 udelay(wait);
2477 qh->qh_state = QH_STATE_IDLE;
2478 qh->hw_next = EHCI_LIST_END;
2479 wmb();
2480}
2481
2482static int check_period(struct oxu_hcd *oxu,
2483 unsigned frame, unsigned uframe,
2484 unsigned period, unsigned usecs)
2485{
2486 int claimed;
2487
2488 /* complete split running into next frame?
2489 * given FSTN support, we could sometimes check...
2490 */
2491 if (uframe >= 8)
2492 return 0;
2493
2494 /*
2495 * 80% periodic == 100 usec/uframe available
2496 * convert "usecs we need" to "max already claimed"
2497 */
2498 usecs = 100 - usecs;
2499
2500 /* we "know" 2 and 4 uframe intervals were rejected; so
2501 * for period 0, check _every_ microframe in the schedule.
2502 */
2503 if (unlikely(period == 0)) {
2504 do {
2505 for (uframe = 0; uframe < 7; uframe++) {
2506 claimed = periodic_usecs(oxu, frame, uframe);
2507 if (claimed > usecs)
2508 return 0;
2509 }
2510 } while ((frame += 1) < oxu->periodic_size);
2511
2512 /* just check the specified uframe, at that period */
2513 } else {
2514 do {
2515 claimed = periodic_usecs(oxu, frame, uframe);
2516 if (claimed > usecs)
2517 return 0;
2518 } while ((frame += period) < oxu->periodic_size);
2519 }
2520
2521 return 1;
2522}
2523
2524static int check_intr_schedule(struct oxu_hcd *oxu,
2525 unsigned frame, unsigned uframe,
2526 const struct ehci_qh *qh, __le32 *c_maskp)
2527{
2528 int retval = -ENOSPC;
2529
2530 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2531 goto done;
2532
2533 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534 goto done;
2535 if (!qh->c_usecs) {
2536 retval = 0;
2537 *c_maskp = 0;
2538 goto done;
2539 }
2540
2541done:
2542 return retval;
2543}
2544
2545/* "first fit" scheduling policy used the first time through,
2546 * or when the previous schedule slot can't be re-used.
2547 */
2548static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549{
2550 int status;
2551 unsigned uframe;
2552 __le32 c_mask;
2553 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2554
2555 qh_refresh(oxu, qh);
2556 qh->hw_next = EHCI_LIST_END;
2557 frame = qh->start;
2558
2559 /* reuse the previous schedule slots, if we can */
2560 if (frame < qh->period) {
2561 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562 status = check_intr_schedule(oxu, frame, --uframe,
2563 qh, &c_mask);
2564 } else {
2565 uframe = 0;
2566 c_mask = 0;
2567 status = -ENOSPC;
2568 }
2569
2570 /* else scan the schedule to find a group of slots such that all
2571 * uframes have enough periodic bandwidth available.
2572 */
2573 if (status) {
2574 /* "normal" case, uframing flexible except with splits */
2575 if (qh->period) {
2576 frame = qh->period - 1;
2577 do {
2578 for (uframe = 0; uframe < 8; uframe++) {
2579 status = check_intr_schedule(oxu,
2580 frame, uframe, qh,
2581 &c_mask);
2582 if (status == 0)
2583 break;
2584 }
2585 } while (status && frame--);
2586
2587 /* qh->period == 0 means every uframe */
2588 } else {
2589 frame = 0;
2590 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591 }
2592 if (status)
2593 goto done;
2594 qh->start = frame;
2595
2596 /* reset S-frame and (maybe) C-frame masks */
2597 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598 qh->hw_info2 |= qh->period
2599 ? cpu_to_le32(1 << uframe)
2600 : cpu_to_le32(QH_SMASK);
2601 qh->hw_info2 |= c_mask;
2602 } else
2603 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604
2605 /* stuff into the periodic schedule */
2606 status = qh_link_periodic(oxu, qh);
2607done:
2608 return status;
2609}
2610
2611static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612 struct list_head *qtd_list, gfp_t mem_flags)
2613{
2614 unsigned epnum;
2615 unsigned long flags;
2616 struct ehci_qh *qh;
2617 int status = 0;
2618 struct list_head empty;
2619
2620 /* get endpoint and transfer/schedule data */
2621 epnum = urb->ep->desc.bEndpointAddress;
2622
2623 spin_lock_irqsave(&oxu->lock, flags);
2624
2625 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626 status = -ESHUTDOWN;
2627 goto done;
2628 }
2629
2630 /* get qh and force any scheduling errors */
2631 INIT_LIST_HEAD(&empty);
2632 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633 if (qh == NULL) {
2634 status = -ENOMEM;
2635 goto done;
2636 }
2637 if (qh->qh_state == QH_STATE_IDLE) {
2638 status = qh_schedule(oxu, qh);
2639 if (status != 0)
2640 goto done;
2641 }
2642
2643 /* then queue the urb's tds to the qh */
2644 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645 BUG_ON(qh == NULL);
2646
2647 /* ... update usbfs periodic stats */
2648 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649
2650done:
2651 spin_unlock_irqrestore(&oxu->lock, flags);
2652 if (status)
2653 qtd_list_free(oxu, urb, qtd_list);
2654
2655 return status;
2656}
2657
2658static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659 gfp_t mem_flags)
2660{
2661 oxu_dbg(oxu, "iso support is missing!\n");
2662 return -ENOSYS;
2663}
2664
2665static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666 gfp_t mem_flags)
2667{
2668 oxu_dbg(oxu, "split iso support is missing!\n");
2669 return -ENOSYS;
2670}
2671
2672static void scan_periodic(struct oxu_hcd *oxu)
2673{
2674 unsigned frame, clock, now_uframe, mod;
2675 unsigned modified;
2676
2677 mod = oxu->periodic_size << 3;
2678
2679 /*
2680 * When running, scan from last scan point up to "now"
2681 * else clean up by scanning everything that's left.
2682 * Touches as few pages as possible: cache-friendly.
2683 */
2684 now_uframe = oxu->next_uframe;
2685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686 clock = readl(&oxu->regs->frame_index);
2687 else
2688 clock = now_uframe + mod - 1;
2689 clock %= mod;
2690
2691 for (;;) {
2692 union ehci_shadow q, *q_p;
2693 __le32 type, *hw_p;
2694
2695 /* don't scan past the live uframe */
2696 frame = now_uframe >> 3;
2697 if (frame != (clock >> 3)) {
2698 /* safe to scan the whole frame at once */
2699 now_uframe |= 0x07;
2700 }
2701
2702restart:
2703 /* scan each element in frame's queue for completions */
2704 q_p = &oxu->pshadow[frame];
2705 hw_p = &oxu->periodic[frame];
2706 q.ptr = q_p->ptr;
2707 type = Q_NEXT_TYPE(*hw_p);
2708 modified = 0;
2709
2710 while (q.ptr != NULL) {
2711 union ehci_shadow temp;
2712
2713 switch (type) {
2714 case Q_TYPE_QH:
2715 /* handle any completions */
2716 temp.qh = qh_get(q.qh);
2717 type = Q_NEXT_TYPE(q.qh->hw_next);
2718 q = q.qh->qh_next;
2719 modified = qh_completions(oxu, temp.qh);
2720 if (unlikely(list_empty(&temp.qh->qtd_list)))
2721 intr_deschedule(oxu, temp.qh);
2722 qh_put(temp.qh);
2723 break;
2724 default:
2725 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726 type, frame, q.ptr);
2727 q.ptr = NULL;
2728 }
2729
2730 /* assume completion callbacks modify the queue */
2731 if (unlikely(modified))
2732 goto restart;
2733 }
2734
2735 /* Stop when we catch up to the HC */
2736
2737 /* FIXME: this assumes we won't get lapped when
2738 * latencies climb; that should be rare, but...
2739 * detect it, and just go all the way around.
2740 * FLR might help detect this case, so long as latencies
2741 * don't exceed periodic_size msec (default 1.024 sec).
2742 */
2743
2744 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2745
2746 if (now_uframe == clock) {
2747 unsigned now;
2748
2749 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750 break;
2751 oxu->next_uframe = now_uframe;
2752 now = readl(&oxu->regs->frame_index) % mod;
2753 if (now_uframe == now)
2754 break;
2755
2756 /* rescan the rest of this frame, then ... */
2757 clock = now;
2758 } else {
2759 now_uframe++;
2760 now_uframe %= mod;
2761 }
2762 }
2763}
2764
2765/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766 * The firmware seems to think that powering off is a wakeup event!
2767 * This routine turns off remote wakeup and everything else, on all ports.
2768 */
2769static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770{
2771 int port = HCS_N_PORTS(oxu->hcs_params);
2772
2773 while (port--)
2774 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775}
2776
2777static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778{
2779 unsigned port;
2780
2781 if (!HCS_PPC(oxu->hcs_params))
2782 return;
2783
2784 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786 if (is_on)
2787 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788 USB_PORT_FEAT_POWER, port--, NULL, 0);
2789 else
2790 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791 USB_PORT_FEAT_POWER, port--, NULL, 0);
2792 }
2793
2794 msleep(20);
2795}
2796
2797/* Called from some interrupts, timers, and so on.
2798 * It calls driver completion functions, after dropping oxu->lock.
2799 */
2800static void ehci_work(struct oxu_hcd *oxu)
2801{
2802 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803 if (oxu->reclaim_ready)
2804 end_unlink_async(oxu);
2805
2806 /* another CPU may drop oxu->lock during a schedule scan while
2807 * it reports urb completions. this flag guards against bogus
2808 * attempts at re-entrant schedule scanning.
2809 */
2810 if (oxu->scanning)
2811 return;
2812 oxu->scanning = 1;
2813 scan_async(oxu);
2814 if (oxu->next_uframe != -1)
2815 scan_periodic(oxu);
2816 oxu->scanning = 0;
2817
2818 /* the IO watchdog guards against hardware or driver bugs that
2819 * misplace IRQs, and should let us run completely without IRQs.
2820 * such lossage has been observed on both VT6202 and VT8235.
2821 */
2822 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823 (oxu->async->qh_next.ptr != NULL ||
2824 oxu->periodic_sched != 0))
2825 timer_action(oxu, TIMER_IO_WATCHDOG);
2826}
2827
2828static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829{
2830 /* if we need to use IAA and it's busy, defer */
2831 if (qh->qh_state == QH_STATE_LINKED
2832 && oxu->reclaim
2833 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834 struct ehci_qh *last;
2835
2836 for (last = oxu->reclaim;
2837 last->reclaim;
2838 last = last->reclaim)
2839 continue;
2840 qh->qh_state = QH_STATE_UNLINK_WAIT;
2841 last->reclaim = qh;
2842
2843 /* bypass IAA if the hc can't care */
2844 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845 end_unlink_async(oxu);
2846
2847 /* something else might have unlinked the qh by now */
2848 if (qh->qh_state == QH_STATE_LINKED)
2849 start_unlink_async(oxu, qh);
2850}
2851
2852/*
2853 * USB host controller methods
2854 */
2855
2856static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857{
2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859 u32 status, pcd_status = 0;
2860 int bh;
2861
2862 spin_lock(&oxu->lock);
2863
2864 status = readl(&oxu->regs->status);
2865
2866 /* e.g. cardbus physical eject */
2867 if (status == ~(u32) 0) {
2868 oxu_dbg(oxu, "device removed\n");
2869 goto dead;
2870 }
2871
2872 /* Shared IRQ? */
2873 status &= INTR_MASK;
2874 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875 spin_unlock(&oxu->lock);
2876 return IRQ_NONE;
2877 }
2878
2879 /* clear (just) interrupts */
2880 writel(status, &oxu->regs->status);
2881 readl(&oxu->regs->command); /* unblock posted write */
2882 bh = 0;
2883
2884#ifdef OXU_VERBOSE_DEBUG
2885 /* unrequested/ignored: Frame List Rollover */
2886 dbg_status(oxu, "irq", status);
2887#endif
2888
2889 /* INT, ERR, and IAA interrupt rates can be throttled */
2890
2891 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892 if (likely((status & (STS_INT|STS_ERR)) != 0))
2893 bh = 1;
2894
2895 /* complete the unlinking of some qh [4.15.2.3] */
2896 if (status & STS_IAA) {
2897 oxu->reclaim_ready = 1;
2898 bh = 1;
2899 }
2900
2901 /* remote wakeup [4.3.1] */
2902 if (status & STS_PCD) {
2903 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904 pcd_status = status;
2905
2906 /* resume root hub? */
2907 if (!(readl(&oxu->regs->command) & CMD_RUN))
2908 usb_hcd_resume_root_hub(hcd);
2909
2910 while (i--) {
2911 int pstatus = readl(&oxu->regs->port_status[i]);
2912
2913 if (pstatus & PORT_OWNER)
2914 continue;
2915 if (!(pstatus & PORT_RESUME)
2916 || oxu->reset_done[i] != 0)
2917 continue;
2918
2919 /* start USB_RESUME_TIMEOUT resume signaling from this
2920 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921 * stop that signaling.
2922 */
2923 oxu->reset_done[i] = jiffies +
2924 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927 }
2928 }
2929
2930 /* PCI errors [4.15.2.4] */
2931 if (unlikely((status & STS_FATAL) != 0)) {
2932 /* bogus "fatal" IRQs appear on some chips... why? */
2933 status = readl(&oxu->regs->status);
2934 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935 dbg_status(oxu, "fatal", status);
2936 if (status & STS_HALT) {
2937 oxu_err(oxu, "fatal error\n");
2938dead:
2939 ehci_reset(oxu);
2940 writel(0, &oxu->regs->configured_flag);
2941 usb_hc_died(hcd);
2942 /* generic layer kills/unlinks all urbs, then
2943 * uses oxu_stop to clean up the rest
2944 */
2945 bh = 1;
2946 }
2947 }
2948
2949 if (bh)
2950 ehci_work(oxu);
2951 spin_unlock(&oxu->lock);
2952 if (pcd_status & STS_PCD)
2953 usb_hcd_poll_rh_status(hcd);
2954 return IRQ_HANDLED;
2955}
2956
2957static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958{
2959 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960 int ret = IRQ_HANDLED;
2961
2962 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964
2965 /* Disable all interrupt */
2966 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967
2968 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969 (!oxu->is_otg && (status & OXU_USBSPHI)))
2970 oxu210_hcd_irq(hcd);
2971 else
2972 ret = IRQ_NONE;
2973
2974 /* Enable all interrupt back */
2975 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976
2977 return ret;
2978}
2979
2980static void oxu_watchdog(struct timer_list *t)
2981{
2982 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2983 unsigned long flags;
2984
2985 spin_lock_irqsave(&oxu->lock, flags);
2986
2987 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2988 if (oxu->reclaim) {
2989 u32 status = readl(&oxu->regs->status);
2990 if (status & STS_IAA) {
2991 oxu_vdbg(oxu, "lost IAA\n");
2992 writel(STS_IAA, &oxu->regs->status);
2993 oxu->reclaim_ready = 1;
2994 }
2995 }
2996
2997 /* stop async processing after it's idled a bit */
2998 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999 start_unlink_async(oxu, oxu->async);
3000
3001 /* oxu could run by timer, without IRQs ... */
3002 ehci_work(oxu);
3003
3004 spin_unlock_irqrestore(&oxu->lock, flags);
3005}
3006
3007/* One-time init, only for memory state.
3008 */
3009static int oxu_hcd_init(struct usb_hcd *hcd)
3010{
3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012 u32 temp;
3013 int retval;
3014 u32 hcc_params;
3015
3016 spin_lock_init(&oxu->lock);
3017
3018 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019
3020 /*
3021 * hw default: 1K periodic list heads, one per frame.
3022 * periodic_size can shrink by USBCMD update if hcc_params allows.
3023 */
3024 oxu->periodic_size = DEFAULT_I_TDPS;
3025 retval = ehci_mem_init(oxu, GFP_KERNEL);
3026 if (retval < 0)
3027 return retval;
3028
3029 /* controllers may cache some of the periodic schedule ... */
3030 hcc_params = readl(&oxu->caps->hcc_params);
3031 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3032 oxu->i_thresh = 8;
3033 else /* N microframes cached */
3034 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035
3036 oxu->reclaim = NULL;
3037 oxu->reclaim_ready = 0;
3038 oxu->next_uframe = -1;
3039
3040 /*
3041 * dedicate a qh for the async ring head, since we couldn't unlink
3042 * a 'real' qh without stopping the async schedule [4.8]. use it
3043 * as the 'reclamation list head' too.
3044 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045 * from automatically advancing to the next td after short reads.
3046 */
3047 oxu->async->qh_next.qh = NULL;
3048 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051 oxu->async->hw_qtd_next = EHCI_LIST_END;
3052 oxu->async->qh_state = QH_STATE_LINKED;
3053 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054
3055 /* clear interrupt enables, set irq latency */
3056 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057 log2_irq_thresh = 0;
3058 temp = 1 << (16 + log2_irq_thresh);
3059 if (HCC_CANPARK(hcc_params)) {
3060 /* HW default park == 3, on hardware that supports it (like
3061 * NVidia and ALI silicon), maximizes throughput on the async
3062 * schedule by avoiding QH fetches between transfers.
3063 *
3064 * With fast usb storage devices and NForce2, "park" seems to
3065 * make problems: throughput reduction (!), data errors...
3066 */
3067 if (park) {
3068 park = min(park, (unsigned) 3);
3069 temp |= CMD_PARK;
3070 temp |= park << 8;
3071 }
3072 oxu_dbg(oxu, "park %d\n", park);
3073 }
3074 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075 /* periodic schedule size can be smaller than default */
3076 temp &= ~(3 << 2);
3077 temp |= (EHCI_TUNE_FLS << 2);
3078 }
3079 oxu->command = temp;
3080
3081 return 0;
3082}
3083
3084/* Called during probe() after chip reset completes.
3085 */
3086static int oxu_reset(struct usb_hcd *hcd)
3087{
3088 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089
3090 spin_lock_init(&oxu->mem_lock);
3091 INIT_LIST_HEAD(&oxu->urb_list);
3092 oxu->urb_len = 0;
3093
3094 if (oxu->is_otg) {
3095 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098
3099 oxu->mem = hcd->regs + OXU_SPH_MEM;
3100 } else {
3101 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104
3105 oxu->mem = hcd->regs + OXU_OTG_MEM;
3106 }
3107
3108 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109 oxu->sbrn = 0x20;
3110
3111 return oxu_hcd_init(hcd);
3112}
3113
3114static int oxu_run(struct usb_hcd *hcd)
3115{
3116 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117 int retval;
3118 u32 temp, hcc_params;
3119
3120 hcd->uses_new_polling = 1;
3121
3122 /* EHCI spec section 4.1 */
3123 retval = ehci_reset(oxu);
3124 if (retval != 0) {
3125 ehci_mem_cleanup(oxu);
3126 return retval;
3127 }
3128 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130
3131 /* hcc_params controls whether oxu->regs->segment must (!!!)
3132 * be used; it constrains QH/ITD/SITD and QTD locations.
3133 * dma_pool consistent memory always uses segment zero.
3134 * streaming mappings for I/O buffers, like pci_map_single(),
3135 * can return segments above 4GB, if the device allows.
3136 *
3137 * NOTE: the dma mask is visible through dev->dma_mask, so
3138 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3140 * host side drivers though.
3141 */
3142 hcc_params = readl(&oxu->caps->hcc_params);
3143 if (HCC_64BIT_ADDR(hcc_params))
3144 writel(0, &oxu->regs->segment);
3145
3146 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147 CMD_ASE | CMD_RESET);
3148 oxu->command |= CMD_RUN;
3149 writel(oxu->command, &oxu->regs->command);
3150 dbg_cmd(oxu, "init", oxu->command);
3151
3152 /*
3153 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154 * are explicitly handed to companion controller(s), so no TT is
3155 * involved with the root hub. (Except where one is integrated,
3156 * and there's no companion controller unless maybe for USB OTG.)
3157 */
3158 hcd->state = HC_STATE_RUNNING;
3159 writel(FLAG_CF, &oxu->regs->configured_flag);
3160 readl(&oxu->regs->command); /* unblock posted writes */
3161
3162 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165 temp >> 8, temp & 0xff, DRIVER_VERSION,
3166 ignore_oc ? ", overcurrent ignored" : "");
3167
3168 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169
3170 return 0;
3171}
3172
3173static void oxu_stop(struct usb_hcd *hcd)
3174{
3175 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176
3177 /* Turn off port power on all root hub ports. */
3178 ehci_port_power(oxu, 0);
3179
3180 /* no more interrupts ... */
3181 del_timer_sync(&oxu->watchdog);
3182
3183 spin_lock_irq(&oxu->lock);
3184 if (HC_IS_RUNNING(hcd->state))
3185 ehci_quiesce(oxu);
3186
3187 ehci_reset(oxu);
3188 writel(0, &oxu->regs->intr_enable);
3189 spin_unlock_irq(&oxu->lock);
3190
3191 /* let companion controllers work when we aren't */
3192 writel(0, &oxu->regs->configured_flag);
3193
3194 /* root hub is shut down separately (first, when possible) */
3195 spin_lock_irq(&oxu->lock);
3196 if (oxu->async)
3197 ehci_work(oxu);
3198 spin_unlock_irq(&oxu->lock);
3199 ehci_mem_cleanup(oxu);
3200
3201 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202}
3203
3204/* Kick in for silicon on any bus (not just pci, etc).
3205 * This forcibly disables dma and IRQs, helping kexec and other cases
3206 * where the next system software may expect clean state.
3207 */
3208static void oxu_shutdown(struct usb_hcd *hcd)
3209{
3210 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211
3212 (void) ehci_halt(oxu);
3213 ehci_turn_off_all_ports(oxu);
3214
3215 /* make BIOS/etc use companion controller during reboot */
3216 writel(0, &oxu->regs->configured_flag);
3217
3218 /* unblock posted writes */
3219 readl(&oxu->regs->configured_flag);
3220}
3221
3222/* Non-error returns are a promise to giveback() the urb later
3223 * we drop ownership so next owner (or urb unlink) can get it
3224 *
3225 * urb + dev is in hcd.self.controller.urb_list
3226 * we're queueing TDs onto software and hardware lists
3227 *
3228 * hcd-specific init for hcpriv hasn't been done yet
3229 *
3230 * NOTE: control, bulk, and interrupt share the same code to append TDs
3231 * to a (possibly active) QH, and the same QH scanning code.
3232 */
3233static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234 gfp_t mem_flags)
3235{
3236 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237 struct list_head qtd_list;
3238
3239 INIT_LIST_HEAD(&qtd_list);
3240
3241 switch (usb_pipetype(urb->pipe)) {
3242 case PIPE_CONTROL:
3243 case PIPE_BULK:
3244 default:
3245 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246 return -ENOMEM;
3247 return submit_async(oxu, urb, &qtd_list, mem_flags);
3248
3249 case PIPE_INTERRUPT:
3250 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251 return -ENOMEM;
3252 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253
3254 case PIPE_ISOCHRONOUS:
3255 if (urb->dev->speed == USB_SPEED_HIGH)
3256 return itd_submit(oxu, urb, mem_flags);
3257 else
3258 return sitd_submit(oxu, urb, mem_flags);
3259 }
3260}
3261
3262/* This function is responsible for breaking URBs with big data size
3263 * into smaller size and processing small urbs in sequence.
3264 */
3265static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266 gfp_t mem_flags)
3267{
3268 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269 int num, rem;
3270 void *transfer_buffer;
3271 struct urb *murb;
3272 int i, ret;
3273
3274 /* If not bulk pipe just enqueue the URB */
3275 if (!usb_pipebulk(urb->pipe))
3276 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277
3278 /* Otherwise we should verify the USB transfer buffer size! */
3279 transfer_buffer = urb->transfer_buffer;
3280
3281 num = urb->transfer_buffer_length / 4096;
3282 rem = urb->transfer_buffer_length % 4096;
3283 if (rem != 0)
3284 num++;
3285
3286 /* If URB is smaller than 4096 bytes just enqueue it! */
3287 if (num == 1)
3288 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289
3290 /* Ok, we have more job to do! :) */
3291
3292 for (i = 0; i < num - 1; i++) {
3293 /* Get free micro URB poll till a free urb is received */
3294
3295 do {
3296 murb = (struct urb *) oxu_murb_alloc(oxu);
3297 if (!murb)
3298 schedule();
3299 } while (!murb);
3300
3301 /* Coping the urb */
3302 memcpy(murb, urb, sizeof(struct urb));
3303
3304 murb->transfer_buffer_length = 4096;
3305 murb->transfer_buffer = transfer_buffer + i * 4096;
3306
3307 /* Null pointer for the encodes that this is a micro urb */
3308 murb->complete = NULL;
3309
3310 ((struct oxu_murb *) murb)->main = urb;
3311 ((struct oxu_murb *) murb)->last = 0;
3312
3313 /* This loop is to guarantee urb to be processed when there's
3314 * not enough resources at a particular time by retrying.
3315 */
3316 do {
3317 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318 if (ret)
3319 schedule();
3320 } while (ret);
3321 }
3322
3323 /* Last urb requires special handling */
3324
3325 /* Get free micro URB poll till a free urb is received */
3326 do {
3327 murb = (struct urb *) oxu_murb_alloc(oxu);
3328 if (!murb)
3329 schedule();
3330 } while (!murb);
3331
3332 /* Coping the urb */
3333 memcpy(murb, urb, sizeof(struct urb));
3334
3335 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337
3338 /* Null pointer for the encodes that this is a micro urb */
3339 murb->complete = NULL;
3340
3341 ((struct oxu_murb *) murb)->main = urb;
3342 ((struct oxu_murb *) murb)->last = 1;
3343
3344 do {
3345 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346 if (ret)
3347 schedule();
3348 } while (ret);
3349
3350 return ret;
3351}
3352
3353/* Remove from hardware lists.
3354 * Completions normally happen asynchronously
3355 */
3356static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357{
3358 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359 struct ehci_qh *qh;
3360 unsigned long flags;
3361
3362 spin_lock_irqsave(&oxu->lock, flags);
3363 switch (usb_pipetype(urb->pipe)) {
3364 case PIPE_CONTROL:
3365 case PIPE_BULK:
3366 default:
3367 qh = (struct ehci_qh *) urb->hcpriv;
3368 if (!qh)
3369 break;
3370 unlink_async(oxu, qh);
3371 break;
3372
3373 case PIPE_INTERRUPT:
3374 qh = (struct ehci_qh *) urb->hcpriv;
3375 if (!qh)
3376 break;
3377 switch (qh->qh_state) {
3378 case QH_STATE_LINKED:
3379 intr_deschedule(oxu, qh);
3380 fallthrough;
3381 case QH_STATE_IDLE:
3382 qh_completions(oxu, qh);
3383 break;
3384 default:
3385 oxu_dbg(oxu, "bogus qh %p state %d\n",
3386 qh, qh->qh_state);
3387 goto done;
3388 }
3389
3390 /* reschedule QH iff another request is queued */
3391 if (!list_empty(&qh->qtd_list)
3392 && HC_IS_RUNNING(hcd->state)) {
3393 int status;
3394
3395 status = qh_schedule(oxu, qh);
3396 spin_unlock_irqrestore(&oxu->lock, flags);
3397
3398 if (status != 0) {
3399 /* shouldn't happen often, but ...
3400 * FIXME kill those tds' urbs
3401 */
3402 dev_err(hcd->self.controller,
3403 "can't reschedule qh %p, err %d\n", qh,
3404 status);
3405 }
3406 return status;
3407 }
3408 break;
3409 }
3410done:
3411 spin_unlock_irqrestore(&oxu->lock, flags);
3412 return 0;
3413}
3414
3415/* Bulk qh holds the data toggle */
3416static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417 struct usb_host_endpoint *ep)
3418{
3419 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420 unsigned long flags;
3421 struct ehci_qh *qh, *tmp;
3422
3423 /* ASSERT: any requests/urbs are being unlinked */
3424 /* ASSERT: nobody can be submitting urbs for this any more */
3425
3426rescan:
3427 spin_lock_irqsave(&oxu->lock, flags);
3428 qh = ep->hcpriv;
3429 if (!qh)
3430 goto done;
3431
3432 /* endpoints can be iso streams. for now, we don't
3433 * accelerate iso completions ... so spin a while.
3434 */
3435 if (qh->hw_info1 == 0) {
3436 oxu_vdbg(oxu, "iso delay\n");
3437 goto idle_timeout;
3438 }
3439
3440 if (!HC_IS_RUNNING(hcd->state))
3441 qh->qh_state = QH_STATE_IDLE;
3442 switch (qh->qh_state) {
3443 case QH_STATE_LINKED:
3444 for (tmp = oxu->async->qh_next.qh;
3445 tmp && tmp != qh;
3446 tmp = tmp->qh_next.qh)
3447 continue;
3448 /* periodic qh self-unlinks on empty */
3449 if (!tmp)
3450 goto nogood;
3451 unlink_async(oxu, qh);
3452 fallthrough;
3453 case QH_STATE_UNLINK: /* wait for hw to finish? */
3454idle_timeout:
3455 spin_unlock_irqrestore(&oxu->lock, flags);
3456 schedule_timeout_uninterruptible(1);
3457 goto rescan;
3458 case QH_STATE_IDLE: /* fully unlinked */
3459 if (list_empty(&qh->qtd_list)) {
3460 qh_put(qh);
3461 break;
3462 }
3463 fallthrough;
3464 default:
3465nogood:
3466 /* caller was supposed to have unlinked any requests;
3467 * that's not our job. just leak this memory.
3468 */
3469 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470 qh, ep->desc.bEndpointAddress, qh->qh_state,
3471 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472 break;
3473 }
3474 ep->hcpriv = NULL;
3475done:
3476 spin_unlock_irqrestore(&oxu->lock, flags);
3477}
3478
3479static int oxu_get_frame(struct usb_hcd *hcd)
3480{
3481 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482
3483 return (readl(&oxu->regs->frame_index) >> 3) %
3484 oxu->periodic_size;
3485}
3486
3487/* Build "status change" packet (one or two bytes) from HC registers */
3488static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489{
3490 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491 u32 temp, mask, status = 0;
3492 int ports, i, retval = 1;
3493 unsigned long flags;
3494
3495 /* if !PM, root hub timers won't get shut down ... */
3496 if (!HC_IS_RUNNING(hcd->state))
3497 return 0;
3498
3499 /* init status to no-changes */
3500 buf[0] = 0;
3501 ports = HCS_N_PORTS(oxu->hcs_params);
3502 if (ports > 7) {
3503 buf[1] = 0;
3504 retval++;
3505 }
3506
3507 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508 * causing massive log spam unless we completely ignore them. It
3509 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511 * PORT_POWER; that's surprising, but maybe within-spec.
3512 */
3513 if (!ignore_oc)
3514 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515 else
3516 mask = PORT_CSC | PORT_PEC;
3517
3518 /* no hub change reports (bit 0) for now (power, ...) */
3519
3520 /* port N changes (bit N)? */
3521 spin_lock_irqsave(&oxu->lock, flags);
3522 for (i = 0; i < ports; i++) {
3523 temp = readl(&oxu->regs->port_status[i]);
3524
3525 /*
3526 * Return status information even for ports with OWNER set.
3527 * Otherwise hub_wq wouldn't see the disconnect event when a
3528 * high-speed device is switched over to the companion
3529 * controller by the user.
3530 */
3531
3532 if (!(temp & PORT_CONNECT))
3533 oxu->reset_done[i] = 0;
3534 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535 time_after_eq(jiffies, oxu->reset_done[i]))) {
3536 if (i < 7)
3537 buf[0] |= 1 << (i + 1);
3538 else
3539 buf[1] |= 1 << (i - 7);
3540 status = STS_PCD;
3541 }
3542 }
3543 /* FIXME autosuspend idle root hubs */
3544 spin_unlock_irqrestore(&oxu->lock, flags);
3545 return status ? retval : 0;
3546}
3547
3548/* Returns the speed of a device attached to a port on the root hub. */
3549static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550 unsigned int portsc)
3551{
3552 switch ((portsc >> 26) & 3) {
3553 case 0:
3554 return 0;
3555 case 1:
3556 return USB_PORT_STAT_LOW_SPEED;
3557 case 2:
3558 default:
3559 return USB_PORT_STAT_HIGH_SPEED;
3560 }
3561}
3562
3563#define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566{
3567 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568 int ports = HCS_N_PORTS(oxu->hcs_params);
3569 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570 u32 temp, status;
3571 unsigned long flags;
3572 int retval = 0;
3573 unsigned selector;
3574
3575 /*
3576 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578 * (track current state ourselves) ... blink for diagnostics,
3579 * power, "this is the one", etc. EHCI spec supports this.
3580 */
3581
3582 spin_lock_irqsave(&oxu->lock, flags);
3583 switch (typeReq) {
3584 case ClearHubFeature:
3585 switch (wValue) {
3586 case C_HUB_LOCAL_POWER:
3587 case C_HUB_OVER_CURRENT:
3588 /* no hub-wide feature/status flags */
3589 break;
3590 default:
3591 goto error;
3592 }
3593 break;
3594 case ClearPortFeature:
3595 if (!wIndex || wIndex > ports)
3596 goto error;
3597 wIndex--;
3598 temp = readl(status_reg);
3599
3600 /*
3601 * Even if OWNER is set, so the port is owned by the
3602 * companion controller, hub_wq needs to be able to clear
3603 * the port-change status bits (especially
3604 * USB_PORT_STAT_C_CONNECTION).
3605 */
3606
3607 switch (wValue) {
3608 case USB_PORT_FEAT_ENABLE:
3609 writel(temp & ~PORT_PE, status_reg);
3610 break;
3611 case USB_PORT_FEAT_C_ENABLE:
3612 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613 break;
3614 case USB_PORT_FEAT_SUSPEND:
3615 if (temp & PORT_RESET)
3616 goto error;
3617 if (temp & PORT_SUSPEND) {
3618 if ((temp & PORT_PE) == 0)
3619 goto error;
3620 /* resume signaling for 20 msec */
3621 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622 writel(temp | PORT_RESUME, status_reg);
3623 oxu->reset_done[wIndex] = jiffies
3624 + msecs_to_jiffies(20);
3625 }
3626 break;
3627 case USB_PORT_FEAT_C_SUSPEND:
3628 /* we auto-clear this feature */
3629 break;
3630 case USB_PORT_FEAT_POWER:
3631 if (HCS_PPC(oxu->hcs_params))
3632 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633 status_reg);
3634 break;
3635 case USB_PORT_FEAT_C_CONNECTION:
3636 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637 break;
3638 case USB_PORT_FEAT_C_OVER_CURRENT:
3639 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640 break;
3641 case USB_PORT_FEAT_C_RESET:
3642 /* GetPortStatus clears reset */
3643 break;
3644 default:
3645 goto error;
3646 }
3647 readl(&oxu->regs->command); /* unblock posted write */
3648 break;
3649 case GetHubDescriptor:
3650 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651 buf);
3652 break;
3653 case GetHubStatus:
3654 /* no hub-wide feature/status flags */
3655 memset(buf, 0, 4);
3656 break;
3657 case GetPortStatus:
3658 if (!wIndex || wIndex > ports)
3659 goto error;
3660 wIndex--;
3661 status = 0;
3662 temp = readl(status_reg);
3663
3664 /* wPortChange bits */
3665 if (temp & PORT_CSC)
3666 status |= USB_PORT_STAT_C_CONNECTION << 16;
3667 if (temp & PORT_PEC)
3668 status |= USB_PORT_STAT_C_ENABLE << 16;
3669 if ((temp & PORT_OCC) && !ignore_oc)
3670 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671
3672 /* whoever resumes must GetPortStatus to complete it!! */
3673 if (temp & PORT_RESUME) {
3674
3675 /* Remote Wakeup received? */
3676 if (!oxu->reset_done[wIndex]) {
3677 /* resume signaling for 20 msec */
3678 oxu->reset_done[wIndex] = jiffies
3679 + msecs_to_jiffies(20);
3680 /* check the port again */
3681 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682 oxu->reset_done[wIndex]);
3683 }
3684
3685 /* resume completed? */
3686 else if (time_after_eq(jiffies,
3687 oxu->reset_done[wIndex])) {
3688 status |= USB_PORT_STAT_C_SUSPEND << 16;
3689 oxu->reset_done[wIndex] = 0;
3690
3691 /* stop resume signaling */
3692 temp = readl(status_reg);
3693 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694 status_reg);
3695 retval = handshake(oxu, status_reg,
3696 PORT_RESUME, 0, 2000 /* 2msec */);
3697 if (retval != 0) {
3698 oxu_err(oxu,
3699 "port %d resume error %d\n",
3700 wIndex + 1, retval);
3701 goto error;
3702 }
3703 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704 }
3705 }
3706
3707 /* whoever resets must GetPortStatus to complete it!! */
3708 if ((temp & PORT_RESET)
3709 && time_after_eq(jiffies,
3710 oxu->reset_done[wIndex])) {
3711 status |= USB_PORT_STAT_C_RESET << 16;
3712 oxu->reset_done[wIndex] = 0;
3713
3714 /* force reset to complete */
3715 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716 status_reg);
3717 /* REVISIT: some hardware needs 550+ usec to clear
3718 * this bit; seems too long to spin routinely...
3719 */
3720 retval = handshake(oxu, status_reg,
3721 PORT_RESET, 0, 750);
3722 if (retval != 0) {
3723 oxu_err(oxu, "port %d reset error %d\n",
3724 wIndex + 1, retval);
3725 goto error;
3726 }
3727
3728 /* see what we found out */
3729 temp = check_reset_complete(oxu, wIndex, status_reg,
3730 readl(status_reg));
3731 }
3732
3733 /* transfer dedicated ports to the companion hc */
3734 if ((temp & PORT_CONNECT) &&
3735 test_bit(wIndex, &oxu->companion_ports)) {
3736 temp &= ~PORT_RWC_BITS;
3737 temp |= PORT_OWNER;
3738 writel(temp, status_reg);
3739 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740 temp = readl(status_reg);
3741 }
3742
3743 /*
3744 * Even if OWNER is set, there's no harm letting hub_wq
3745 * see the wPortStatus values (they should all be 0 except
3746 * for PORT_POWER anyway).
3747 */
3748
3749 if (temp & PORT_CONNECT) {
3750 status |= USB_PORT_STAT_CONNECTION;
3751 /* status may be from integrated TT */
3752 status |= oxu_port_speed(oxu, temp);
3753 }
3754 if (temp & PORT_PE)
3755 status |= USB_PORT_STAT_ENABLE;
3756 if (temp & (PORT_SUSPEND|PORT_RESUME))
3757 status |= USB_PORT_STAT_SUSPEND;
3758 if (temp & PORT_OC)
3759 status |= USB_PORT_STAT_OVERCURRENT;
3760 if (temp & PORT_RESET)
3761 status |= USB_PORT_STAT_RESET;
3762 if (temp & PORT_POWER)
3763 status |= USB_PORT_STAT_POWER;
3764
3765#ifndef OXU_VERBOSE_DEBUG
3766 if (status & ~0xffff) /* only if wPortChange is interesting */
3767#endif
3768 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770 break;
3771 case SetHubFeature:
3772 switch (wValue) {
3773 case C_HUB_LOCAL_POWER:
3774 case C_HUB_OVER_CURRENT:
3775 /* no hub-wide feature/status flags */
3776 break;
3777 default:
3778 goto error;
3779 }
3780 break;
3781 case SetPortFeature:
3782 selector = wIndex >> 8;
3783 wIndex &= 0xff;
3784 if (!wIndex || wIndex > ports)
3785 goto error;
3786 wIndex--;
3787 temp = readl(status_reg);
3788 if (temp & PORT_OWNER)
3789 break;
3790
3791 temp &= ~PORT_RWC_BITS;
3792 switch (wValue) {
3793 case USB_PORT_FEAT_SUSPEND:
3794 if ((temp & PORT_PE) == 0
3795 || (temp & PORT_RESET) != 0)
3796 goto error;
3797 if (device_may_wakeup(&hcd->self.root_hub->dev))
3798 temp |= PORT_WAKE_BITS;
3799 writel(temp | PORT_SUSPEND, status_reg);
3800 break;
3801 case USB_PORT_FEAT_POWER:
3802 if (HCS_PPC(oxu->hcs_params))
3803 writel(temp | PORT_POWER, status_reg);
3804 break;
3805 case USB_PORT_FEAT_RESET:
3806 if (temp & PORT_RESUME)
3807 goto error;
3808 /* line status bits may report this as low speed,
3809 * which can be fine if this root hub has a
3810 * transaction translator built in.
3811 */
3812 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813 temp |= PORT_RESET;
3814 temp &= ~PORT_PE;
3815
3816 /*
3817 * caller must wait, then call GetPortStatus
3818 * usb 2.0 spec says 50 ms resets on root
3819 */
3820 oxu->reset_done[wIndex] = jiffies
3821 + msecs_to_jiffies(50);
3822 writel(temp, status_reg);
3823 break;
3824
3825 /* For downstream facing ports (these): one hub port is put
3826 * into test mode according to USB2 11.24.2.13, then the hub
3827 * must be reset (which for root hub now means rmmod+modprobe,
3828 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3829 * about the EHCI-specific stuff.
3830 */
3831 case USB_PORT_FEAT_TEST:
3832 if (!selector || selector > 5)
3833 goto error;
3834 ehci_quiesce(oxu);
3835 ehci_halt(oxu);
3836 temp |= selector << 16;
3837 writel(temp, status_reg);
3838 break;
3839
3840 default:
3841 goto error;
3842 }
3843 readl(&oxu->regs->command); /* unblock posted writes */
3844 break;
3845
3846 default:
3847error:
3848 /* "stall" on error */
3849 retval = -EPIPE;
3850 }
3851 spin_unlock_irqrestore(&oxu->lock, flags);
3852 return retval;
3853}
3854
3855#ifdef CONFIG_PM
3856
3857static int oxu_bus_suspend(struct usb_hcd *hcd)
3858{
3859 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860 int port;
3861 int mask;
3862
3863 oxu_dbg(oxu, "suspend root hub\n");
3864
3865 if (time_before(jiffies, oxu->next_statechange))
3866 msleep(5);
3867
3868 port = HCS_N_PORTS(oxu->hcs_params);
3869 spin_lock_irq(&oxu->lock);
3870
3871 /* stop schedules, clean any completed work */
3872 if (HC_IS_RUNNING(hcd->state)) {
3873 ehci_quiesce(oxu);
3874 hcd->state = HC_STATE_QUIESCING;
3875 }
3876 oxu->command = readl(&oxu->regs->command);
3877 if (oxu->reclaim)
3878 oxu->reclaim_ready = 1;
3879 ehci_work(oxu);
3880
3881 /* Unlike other USB host controller types, EHCI doesn't have
3882 * any notion of "global" or bus-wide suspend. The driver has
3883 * to manually suspend all the active unsuspended ports, and
3884 * then manually resume them in the bus_resume() routine.
3885 */
3886 oxu->bus_suspended = 0;
3887 while (port--) {
3888 u32 __iomem *reg = &oxu->regs->port_status[port];
3889 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890 u32 t2 = t1;
3891
3892 /* keep track of which ports we suspend */
3893 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894 !(t1 & PORT_SUSPEND)) {
3895 t2 |= PORT_SUSPEND;
3896 set_bit(port, &oxu->bus_suspended);
3897 }
3898
3899 /* enable remote wakeup on all ports */
3900 if (device_may_wakeup(&hcd->self.root_hub->dev))
3901 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902 else
3903 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904
3905 if (t1 != t2) {
3906 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907 port + 1, t1, t2);
3908 writel(t2, reg);
3909 }
3910 }
3911
3912 /* turn off now-idle HC */
3913 del_timer_sync(&oxu->watchdog);
3914 ehci_halt(oxu);
3915 hcd->state = HC_STATE_SUSPENDED;
3916
3917 /* allow remote wakeup */
3918 mask = INTR_MASK;
3919 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3920 mask &= ~STS_PCD;
3921 writel(mask, &oxu->regs->intr_enable);
3922 readl(&oxu->regs->intr_enable);
3923
3924 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3925 spin_unlock_irq(&oxu->lock);
3926 return 0;
3927}
3928
3929/* Caller has locked the root hub, and should reset/reinit on error */
3930static int oxu_bus_resume(struct usb_hcd *hcd)
3931{
3932 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3933 u32 temp;
3934 int i;
3935
3936 if (time_before(jiffies, oxu->next_statechange))
3937 msleep(5);
3938 spin_lock_irq(&oxu->lock);
3939
3940 /* Ideally and we've got a real resume here, and no port's power
3941 * was lost. (For PCI, that means Vaux was maintained.) But we
3942 * could instead be restoring a swsusp snapshot -- so that BIOS was
3943 * the last user of the controller, not reset/pm hardware keeping
3944 * state we gave to it.
3945 */
3946 temp = readl(&oxu->regs->intr_enable);
3947 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3948
3949 /* at least some APM implementations will try to deliver
3950 * IRQs right away, so delay them until we're ready.
3951 */
3952 writel(0, &oxu->regs->intr_enable);
3953
3954 /* re-init operational registers */
3955 writel(0, &oxu->regs->segment);
3956 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3957 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3958
3959 /* restore CMD_RUN, framelist size, and irq threshold */
3960 writel(oxu->command, &oxu->regs->command);
3961
3962 /* Some controller/firmware combinations need a delay during which
3963 * they set up the port statuses. See Bugzilla #8190. */
3964 mdelay(8);
3965
3966 /* manually resume the ports we suspended during bus_suspend() */
3967 i = HCS_N_PORTS(oxu->hcs_params);
3968 while (i--) {
3969 temp = readl(&oxu->regs->port_status[i]);
3970 temp &= ~(PORT_RWC_BITS
3971 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3972 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3973 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3974 temp |= PORT_RESUME;
3975 }
3976 writel(temp, &oxu->regs->port_status[i]);
3977 }
3978 i = HCS_N_PORTS(oxu->hcs_params);
3979 mdelay(20);
3980 while (i--) {
3981 temp = readl(&oxu->regs->port_status[i]);
3982 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3983 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3984 writel(temp, &oxu->regs->port_status[i]);
3985 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3986 }
3987 }
3988 (void) readl(&oxu->regs->command);
3989
3990 /* maybe re-activate the schedule(s) */
3991 temp = 0;
3992 if (oxu->async->qh_next.qh)
3993 temp |= CMD_ASE;
3994 if (oxu->periodic_sched)
3995 temp |= CMD_PSE;
3996 if (temp) {
3997 oxu->command |= temp;
3998 writel(oxu->command, &oxu->regs->command);
3999 }
4000
4001 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4002 hcd->state = HC_STATE_RUNNING;
4003
4004 /* Now we can safely re-enable irqs */
4005 writel(INTR_MASK, &oxu->regs->intr_enable);
4006
4007 spin_unlock_irq(&oxu->lock);
4008 return 0;
4009}
4010
4011#else
4012
4013static int oxu_bus_suspend(struct usb_hcd *hcd)
4014{
4015 return 0;
4016}
4017
4018static int oxu_bus_resume(struct usb_hcd *hcd)
4019{
4020 return 0;
4021}
4022
4023#endif /* CONFIG_PM */
4024
4025static const struct hc_driver oxu_hc_driver = {
4026 .description = "oxu210hp_hcd",
4027 .product_desc = "oxu210hp HCD",
4028 .hcd_priv_size = sizeof(struct oxu_hcd),
4029
4030 /*
4031 * Generic hardware linkage
4032 */
4033 .irq = oxu_irq,
4034 .flags = HCD_MEMORY | HCD_USB2,
4035
4036 /*
4037 * Basic lifecycle operations
4038 */
4039 .reset = oxu_reset,
4040 .start = oxu_run,
4041 .stop = oxu_stop,
4042 .shutdown = oxu_shutdown,
4043
4044 /*
4045 * Managing i/o requests and associated device resources
4046 */
4047 .urb_enqueue = oxu_urb_enqueue,
4048 .urb_dequeue = oxu_urb_dequeue,
4049 .endpoint_disable = oxu_endpoint_disable,
4050
4051 /*
4052 * Scheduling support
4053 */
4054 .get_frame_number = oxu_get_frame,
4055
4056 /*
4057 * Root hub support
4058 */
4059 .hub_status_data = oxu_hub_status_data,
4060 .hub_control = oxu_hub_control,
4061 .bus_suspend = oxu_bus_suspend,
4062 .bus_resume = oxu_bus_resume,
4063};
4064
4065/*
4066 * Module stuff
4067 */
4068
4069static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4070{
4071 u32 tmp;
4072
4073 /* Initialize top level registers.
4074 * First write ever
4075 */
4076 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4077 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4078 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079
4080 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4081 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4082
4083 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4084 OXU_COMPARATOR | OXU_ASO_OP);
4085
4086 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4087 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4088
4089 /* Clear all top interrupt enable */
4090 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4091
4092 /* Clear all top interrupt status */
4093 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4094
4095 /* Enable all needed top interrupt except OTG SPH core */
4096 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4097}
4098
4099static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4100{
4101 u32 id;
4102 static const char * const bo[] = {
4103 "reserved",
4104 "128-pin LQFP",
4105 "84-pin TFBGA",
4106 "reserved",
4107 };
4108
4109 /* Read controller signature register to find a match */
4110 id = oxu_readl(base, OXU_DEVICEID);
4111 dev_info(&pdev->dev, "device ID %x\n", id);
4112 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4113 return -1;
4114
4115 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4116 id >> OXU_REV_SHIFT,
4117 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4118 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4119 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4120
4121 return 0;
4122}
4123
4124static const struct hc_driver oxu_hc_driver;
4125static struct usb_hcd *oxu_create(struct platform_device *pdev,
4126 unsigned long memstart, unsigned long memlen,
4127 void __iomem *base, int irq, int otg)
4128{
4129 struct device *dev = &pdev->dev;
4130
4131 struct usb_hcd *hcd;
4132 struct oxu_hcd *oxu;
4133 int ret;
4134
4135 /* Set endian mode and host mode */
4136 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4137 OXU_USBMODE,
4138 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4139
4140 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4141 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4142 if (!hcd)
4143 return ERR_PTR(-ENOMEM);
4144
4145 hcd->rsrc_start = memstart;
4146 hcd->rsrc_len = memlen;
4147 hcd->regs = base;
4148 hcd->irq = irq;
4149 hcd->state = HC_STATE_HALT;
4150
4151 oxu = hcd_to_oxu(hcd);
4152 oxu->is_otg = otg;
4153
4154 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4155 if (ret < 0)
4156 return ERR_PTR(ret);
4157
4158 device_wakeup_enable(hcd->self.controller);
4159 return hcd;
4160}
4161
4162static int oxu_init(struct platform_device *pdev,
4163 unsigned long memstart, unsigned long memlen,
4164 void __iomem *base, int irq)
4165{
4166 struct oxu_info *info = platform_get_drvdata(pdev);
4167 struct usb_hcd *hcd;
4168 int ret;
4169
4170 /* First time configuration at start up */
4171 oxu_configuration(pdev, base);
4172
4173 ret = oxu_verify_id(pdev, base);
4174 if (ret) {
4175 dev_err(&pdev->dev, "no devices found!\n");
4176 return -ENODEV;
4177 }
4178
4179 /* Create the OTG controller */
4180 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4181 if (IS_ERR(hcd)) {
4182 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4183 ret = PTR_ERR(hcd);
4184 goto error_create_otg;
4185 }
4186 info->hcd[0] = hcd;
4187
4188 /* Create the SPH host controller */
4189 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4190 if (IS_ERR(hcd)) {
4191 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4192 ret = PTR_ERR(hcd);
4193 goto error_create_sph;
4194 }
4195 info->hcd[1] = hcd;
4196
4197 oxu_writel(base, OXU_CHIPIRQEN_SET,
4198 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4199
4200 return 0;
4201
4202error_create_sph:
4203 usb_remove_hcd(info->hcd[0]);
4204 usb_put_hcd(info->hcd[0]);
4205
4206error_create_otg:
4207 return ret;
4208}
4209
4210static int oxu_drv_probe(struct platform_device *pdev)
4211{
4212 struct resource *res;
4213 void __iomem *base;
4214 unsigned long memstart, memlen;
4215 int irq, ret;
4216 struct oxu_info *info;
4217
4218 if (usb_disabled())
4219 return -ENODEV;
4220
4221 /*
4222 * Get the platform resources
4223 */
4224 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
4225 if (!res) {
4226 dev_err(&pdev->dev,
4227 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
4228 return -ENODEV;
4229 }
4230 irq = res->start;
4231 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232
4233 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4234 base = devm_ioremap_resource(&pdev->dev, res);
4235 if (IS_ERR(base)) {
4236 ret = PTR_ERR(base);
4237 goto error;
4238 }
4239 memstart = res->start;
4240 memlen = resource_size(res);
4241
4242 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4243 if (ret) {
4244 dev_err(&pdev->dev, "error setting irq type\n");
4245 ret = -EFAULT;
4246 goto error;
4247 }
4248
4249 /* Allocate a driver data struct to hold useful info for both
4250 * SPH & OTG devices
4251 */
4252 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4253 if (!info) {
4254 ret = -EFAULT;
4255 goto error;
4256 }
4257 platform_set_drvdata(pdev, info);
4258
4259 ret = oxu_init(pdev, memstart, memlen, base, irq);
4260 if (ret < 0) {
4261 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4262 goto error;
4263 }
4264
4265 dev_info(&pdev->dev, "devices enabled and running\n");
4266 platform_set_drvdata(pdev, info);
4267
4268 return 0;
4269
4270error:
4271 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4272 return ret;
4273}
4274
4275static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4276{
4277 usb_remove_hcd(hcd);
4278 usb_put_hcd(hcd);
4279}
4280
4281static int oxu_drv_remove(struct platform_device *pdev)
4282{
4283 struct oxu_info *info = platform_get_drvdata(pdev);
4284
4285 oxu_remove(pdev, info->hcd[0]);
4286 oxu_remove(pdev, info->hcd[1]);
4287
4288 return 0;
4289}
4290
4291static void oxu_drv_shutdown(struct platform_device *pdev)
4292{
4293 oxu_drv_remove(pdev);
4294}
4295
4296#if 0
4297/* FIXME: TODO */
4298static int oxu_drv_suspend(struct device *dev)
4299{
4300 struct platform_device *pdev = to_platform_device(dev);
4301 struct usb_hcd *hcd = dev_get_drvdata(dev);
4302
4303 return 0;
4304}
4305
4306static int oxu_drv_resume(struct device *dev)
4307{
4308 struct platform_device *pdev = to_platform_device(dev);
4309 struct usb_hcd *hcd = dev_get_drvdata(dev);
4310
4311 return 0;
4312}
4313#else
4314#define oxu_drv_suspend NULL
4315#define oxu_drv_resume NULL
4316#endif
4317
4318static struct platform_driver oxu_driver = {
4319 .probe = oxu_drv_probe,
4320 .remove = oxu_drv_remove,
4321 .shutdown = oxu_drv_shutdown,
4322 .suspend = oxu_drv_suspend,
4323 .resume = oxu_drv_resume,
4324 .driver = {
4325 .name = "oxu210hp-hcd",
4326 .bus = &platform_bus_type
4327 }
4328};
4329
4330module_platform_driver(oxu_driver);
4331
4332MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4333MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4334MODULE_LICENSE("GPL");