Loading...
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <linux/bio.h>
32#include <linux/dma-mapping.h>
33#include <linux/crc7.h>
34#include <linux/crc-itu-t.h>
35#include <linux/scatterlist.h>
36
37#include <linux/mmc/host.h>
38#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39#include <linux/mmc/slot-gpio.h>
40
41#include <linux/spi/spi.h>
42#include <linux/spi/mmc_spi.h>
43
44#include <asm/unaligned.h>
45
46
47/* NOTES:
48 *
49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
50 * controller, although some of them do have hardware support for
51 * SPI protocol. The main reason for such configs would be mmc-ish
52 * cards like DataFlash, which don't support that "native" protocol.
53 *
54 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55 * switch between driver stacks, and in any case if "native" mode
56 * is available, it will be faster and hence preferable.
57 *
58 * - MMC depends on a different chipselect management policy than the
59 * SPI interface currently supports for shared bus segments: it needs
60 * to issue multiple spi_message requests with the chipselect active,
61 * using the results of one message to decide the next one to issue.
62 *
63 * Pending updates to the programming interface, this driver expects
64 * that it not share the bus with other drivers (precluding conflicts).
65 *
66 * - We tell the controller to keep the chipselect active from the
67 * beginning of an mmc_host_ops.request until the end. So beware
68 * of SPI controller drivers that mis-handle the cs_change flag!
69 *
70 * However, many cards seem OK with chipselect flapping up/down
71 * during that time ... at least on unshared bus segments.
72 */
73
74
75/*
76 * Local protocol constants, internal to data block protocols.
77 */
78
79/* Response tokens used to ack each block written: */
80#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
81#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
82#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
83#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
84
85/* Read and write blocks start with these tokens and end with crc;
86 * on error, read tokens act like a subset of R2_SPI_* values.
87 */
88#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
89#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
90#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
91
92#define MMC_SPI_BLOCKSIZE 512
93
94
95/* These fixed timeouts come from the latest SD specs, which say to ignore
96 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98 * reads which takes nowhere near that long. Older cards may be able to use
99 * shorter timeouts ... but why bother?
100 */
101#define r1b_timeout (HZ * 3)
102
103/* One of the critical speed parameters is the amount of data which may
104 * be transferred in one command. If this value is too low, the SD card
105 * controller has to do multiple partial block writes (argggh!). With
106 * today (2008) SD cards there is little speed gain if we transfer more
107 * than 64 KBytes at a time. So use this value until there is any indication
108 * that we should do more here.
109 */
110#define MMC_SPI_BLOCKSATONCE 128
111
112/****************************************************************************/
113
114/*
115 * Local Data Structures
116 */
117
118/* "scratch" is per-{command,block} data exchanged with the card */
119struct scratch {
120 u8 status[29];
121 u8 data_token;
122 __be16 crc_val;
123};
124
125struct mmc_spi_host {
126 struct mmc_host *mmc;
127 struct spi_device *spi;
128
129 unsigned char power_mode;
130 u16 powerup_msecs;
131
132 struct mmc_spi_platform_data *pdata;
133
134 /* for bulk data transfers */
135 struct spi_transfer token, t, crc, early_status;
136 struct spi_message m;
137
138 /* for status readback */
139 struct spi_transfer status;
140 struct spi_message readback;
141
142 /* underlying DMA-aware controller, or null */
143 struct device *dma_dev;
144
145 /* buffer used for commands and for message "overhead" */
146 struct scratch *data;
147 dma_addr_t data_dma;
148
149 /* Specs say to write ones most of the time, even when the card
150 * has no need to read its input data; and many cards won't care.
151 * This is our source of those ones.
152 */
153 void *ones;
154 dma_addr_t ones_dma;
155};
156
157
158/****************************************************************************/
159
160/*
161 * MMC-over-SPI protocol glue, used by the MMC stack interface
162 */
163
164static inline int mmc_cs_off(struct mmc_spi_host *host)
165{
166 /* chipselect will always be inactive after setup() */
167 return spi_setup(host->spi);
168}
169
170static int
171mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172{
173 int status;
174
175 if (len > sizeof(*host->data)) {
176 WARN_ON(1);
177 return -EIO;
178 }
179
180 host->status.len = len;
181
182 if (host->dma_dev)
183 dma_sync_single_for_device(host->dma_dev,
184 host->data_dma, sizeof(*host->data),
185 DMA_FROM_DEVICE);
186
187 status = spi_sync_locked(host->spi, &host->readback);
188
189 if (host->dma_dev)
190 dma_sync_single_for_cpu(host->dma_dev,
191 host->data_dma, sizeof(*host->data),
192 DMA_FROM_DEVICE);
193
194 return status;
195}
196
197static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198 unsigned n, u8 byte)
199{
200 u8 *cp = host->data->status;
201 unsigned long start = jiffies;
202
203 while (1) {
204 int status;
205 unsigned i;
206
207 status = mmc_spi_readbytes(host, n);
208 if (status < 0)
209 return status;
210
211 for (i = 0; i < n; i++) {
212 if (cp[i] != byte)
213 return cp[i];
214 }
215
216 if (time_is_before_jiffies(start + timeout))
217 break;
218
219 /* If we need long timeouts, we may release the CPU.
220 * We use jiffies here because we want to have a relation
221 * between elapsed time and the blocking of the scheduler.
222 */
223 if (time_is_before_jiffies(start+1))
224 schedule();
225 }
226 return -ETIMEDOUT;
227}
228
229static inline int
230mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231{
232 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233}
234
235static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236{
237 return mmc_spi_skip(host, timeout, 1, 0xff);
238}
239
240
241/*
242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245 *
246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247 * newer cards R7 (IF_COND).
248 */
249
250static char *maptype(struct mmc_command *cmd)
251{
252 switch (mmc_spi_resp_type(cmd)) {
253 case MMC_RSP_SPI_R1: return "R1";
254 case MMC_RSP_SPI_R1B: return "R1B";
255 case MMC_RSP_SPI_R2: return "R2/R5";
256 case MMC_RSP_SPI_R3: return "R3/R4/R7";
257 default: return "?";
258 }
259}
260
261/* return zero, else negative errno after setting cmd->error */
262static int mmc_spi_response_get(struct mmc_spi_host *host,
263 struct mmc_command *cmd, int cs_on)
264{
265 u8 *cp = host->data->status;
266 u8 *end = cp + host->t.len;
267 int value = 0;
268 int bitshift;
269 u8 leftover = 0;
270 unsigned short rotator;
271 int i;
272 char tag[32];
273
274 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
275 cmd->opcode, maptype(cmd));
276
277 /* Except for data block reads, the whole response will already
278 * be stored in the scratch buffer. It's somewhere after the
279 * command and the first byte we read after it. We ignore that
280 * first byte. After STOP_TRANSMISSION command it may include
281 * two data bits, but otherwise it's all ones.
282 */
283 cp += 8;
284 while (cp < end && *cp == 0xff)
285 cp++;
286
287 /* Data block reads (R1 response types) may need more data... */
288 if (cp == end) {
289 cp = host->data->status;
290 end = cp+1;
291
292 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 * status byte ... and we already scanned 2 bytes.
294 *
295 * REVISIT block read paths use nasty byte-at-a-time I/O
296 * so it can always DMA directly into the target buffer.
297 * It'd probably be better to memcpy() the first chunk and
298 * avoid extra i/o calls...
299 *
300 * Note we check for more than 8 bytes, because in practice,
301 * some SD cards are slow...
302 */
303 for (i = 2; i < 16; i++) {
304 value = mmc_spi_readbytes(host, 1);
305 if (value < 0)
306 goto done;
307 if (*cp != 0xff)
308 goto checkstatus;
309 }
310 value = -ETIMEDOUT;
311 goto done;
312 }
313
314checkstatus:
315 bitshift = 0;
316 if (*cp & 0x80) {
317 /* Houston, we have an ugly card with a bit-shifted response */
318 rotator = *cp++ << 8;
319 /* read the next byte */
320 if (cp == end) {
321 value = mmc_spi_readbytes(host, 1);
322 if (value < 0)
323 goto done;
324 cp = host->data->status;
325 end = cp+1;
326 }
327 rotator |= *cp++;
328 while (rotator & 0x8000) {
329 bitshift++;
330 rotator <<= 1;
331 }
332 cmd->resp[0] = rotator >> 8;
333 leftover = rotator;
334 } else {
335 cmd->resp[0] = *cp++;
336 }
337 cmd->error = 0;
338
339 /* Status byte: the entire seven-bit R1 response. */
340 if (cmd->resp[0] != 0) {
341 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342 & cmd->resp[0])
343 value = -EFAULT; /* Bad address */
344 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345 value = -ENOSYS; /* Function not implemented */
346 else if (R1_SPI_COM_CRC & cmd->resp[0])
347 value = -EILSEQ; /* Illegal byte sequence */
348 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349 & cmd->resp[0])
350 value = -EIO; /* I/O error */
351 /* else R1_SPI_IDLE, "it's resetting" */
352 }
353
354 switch (mmc_spi_resp_type(cmd)) {
355
356 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 * and less-common stuff like various erase operations.
358 */
359 case MMC_RSP_SPI_R1B:
360 /* maybe we read all the busy tokens already */
361 while (cp < end && *cp == 0)
362 cp++;
363 if (cp == end)
364 mmc_spi_wait_unbusy(host, r1b_timeout);
365 break;
366
367 /* SPI R2 == R1 + second status byte; SEND_STATUS
368 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369 */
370 case MMC_RSP_SPI_R2:
371 /* read the next byte */
372 if (cp == end) {
373 value = mmc_spi_readbytes(host, 1);
374 if (value < 0)
375 goto done;
376 cp = host->data->status;
377 end = cp+1;
378 }
379 if (bitshift) {
380 rotator = leftover << 8;
381 rotator |= *cp << bitshift;
382 cmd->resp[0] |= (rotator & 0xFF00);
383 } else {
384 cmd->resp[0] |= *cp << 8;
385 }
386 break;
387
388 /* SPI R3, R4, or R7 == R1 + 4 bytes */
389 case MMC_RSP_SPI_R3:
390 rotator = leftover << 8;
391 cmd->resp[1] = 0;
392 for (i = 0; i < 4; i++) {
393 cmd->resp[1] <<= 8;
394 /* read the next byte */
395 if (cp == end) {
396 value = mmc_spi_readbytes(host, 1);
397 if (value < 0)
398 goto done;
399 cp = host->data->status;
400 end = cp+1;
401 }
402 if (bitshift) {
403 rotator |= *cp++ << bitshift;
404 cmd->resp[1] |= (rotator >> 8);
405 rotator <<= 8;
406 } else {
407 cmd->resp[1] |= *cp++;
408 }
409 }
410 break;
411
412 /* SPI R1 == just one status byte */
413 case MMC_RSP_SPI_R1:
414 break;
415
416 default:
417 dev_dbg(&host->spi->dev, "bad response type %04x\n",
418 mmc_spi_resp_type(cmd));
419 if (value >= 0)
420 value = -EINVAL;
421 goto done;
422 }
423
424 if (value < 0)
425 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426 tag, cmd->resp[0], cmd->resp[1]);
427
428 /* disable chipselect on errors and some success cases */
429 if (value >= 0 && cs_on)
430 return value;
431done:
432 if (value < 0)
433 cmd->error = value;
434 mmc_cs_off(host);
435 return value;
436}
437
438/* Issue command and read its response.
439 * Returns zero on success, negative for error.
440 *
441 * On error, caller must cope with mmc core retry mechanism. That
442 * means immediate low-level resubmit, which affects the bus lock...
443 */
444static int
445mmc_spi_command_send(struct mmc_spi_host *host,
446 struct mmc_request *mrq,
447 struct mmc_command *cmd, int cs_on)
448{
449 struct scratch *data = host->data;
450 u8 *cp = data->status;
451 int status;
452 struct spi_transfer *t;
453
454 /* We can handle most commands (except block reads) in one full
455 * duplex I/O operation before either starting the next transfer
456 * (data block or command) or else deselecting the card.
457 *
458 * First, write 7 bytes:
459 * - an all-ones byte to ensure the card is ready
460 * - opcode byte (plus start and transmission bits)
461 * - four bytes of big-endian argument
462 * - crc7 (plus end bit) ... always computed, it's cheap
463 *
464 * We init the whole buffer to all-ones, which is what we need
465 * to write while we're reading (later) response data.
466 */
467 memset(cp, 0xff, sizeof(data->status));
468
469 cp[1] = 0x40 | cmd->opcode;
470 put_unaligned_be32(cmd->arg, cp+2);
471 cp[6] = crc7_be(0, cp+1, 5) | 0x01;
472 cp += 7;
473
474 /* Then, read up to 13 bytes (while writing all-ones):
475 * - N(CR) (== 1..8) bytes of all-ones
476 * - status byte (for all response types)
477 * - the rest of the response, either:
478 * + nothing, for R1 or R1B responses
479 * + second status byte, for R2 responses
480 * + four data bytes, for R3 and R7 responses
481 *
482 * Finally, read some more bytes ... in the nice cases we know in
483 * advance how many, and reading 1 more is always OK:
484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 * - N(RC) (== 1..N) bytes of all-ones, before next command
486 * - N(WR) (== 1..N) bytes of all-ones, before data write
487 *
488 * So in those cases one full duplex I/O of at most 21 bytes will
489 * handle the whole command, leaving the card ready to receive a
490 * data block or new command. We do that whenever we can, shaving
491 * CPU and IRQ costs (especially when using DMA or FIFOs).
492 *
493 * There are two other cases, where it's not generally practical
494 * to rely on a single I/O:
495 *
496 * - R1B responses need at least N(EC) bytes of all-zeroes.
497 *
498 * In this case we can *try* to fit it into one I/O, then
499 * maybe read more data later.
500 *
501 * - Data block reads are more troublesome, since a variable
502 * number of padding bytes precede the token and data.
503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 * + N(AC) (== 1..many) bytes of all-ones
505 *
506 * In this case we currently only have minimal speedups here:
507 * when N(CR) == 1 we can avoid I/O in response_get().
508 */
509 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510 cp += 2; /* min(N(CR)) + status */
511 /* R1 */
512 } else {
513 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
514 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
515 cp++;
516 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
517 cp += 4;
518 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
519 cp = data->status + sizeof(data->status);
520 /* else: R1 (most commands) */
521 }
522
523 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
524 cmd->opcode, maptype(cmd));
525
526 /* send command, leaving chipselect active */
527 spi_message_init(&host->m);
528
529 t = &host->t;
530 memset(t, 0, sizeof(*t));
531 t->tx_buf = t->rx_buf = data->status;
532 t->tx_dma = t->rx_dma = host->data_dma;
533 t->len = cp - data->status;
534 t->cs_change = 1;
535 spi_message_add_tail(t, &host->m);
536
537 if (host->dma_dev) {
538 host->m.is_dma_mapped = 1;
539 dma_sync_single_for_device(host->dma_dev,
540 host->data_dma, sizeof(*host->data),
541 DMA_BIDIRECTIONAL);
542 }
543 status = spi_sync_locked(host->spi, &host->m);
544
545 if (host->dma_dev)
546 dma_sync_single_for_cpu(host->dma_dev,
547 host->data_dma, sizeof(*host->data),
548 DMA_BIDIRECTIONAL);
549 if (status < 0) {
550 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
551 cmd->error = status;
552 return status;
553 }
554
555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 return mmc_spi_response_get(host, cmd, cs_on);
557}
558
559/* Build data message with up to four separate transfers. For TX, we
560 * start by writing the data token. And in most cases, we finish with
561 * a status transfer.
562 *
563 * We always provide TX data for data and CRC. The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
566 *
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
569 */
570static void
571mmc_spi_setup_data_message(
572 struct mmc_spi_host *host,
573 int multiple,
574 enum dma_data_direction direction)
575{
576 struct spi_transfer *t;
577 struct scratch *scratch = host->data;
578 dma_addr_t dma = host->data_dma;
579
580 spi_message_init(&host->m);
581 if (dma)
582 host->m.is_dma_mapped = 1;
583
584 /* for reads, readblock() skips 0xff bytes before finding
585 * the token; for writes, this transfer issues that token.
586 */
587 if (direction == DMA_TO_DEVICE) {
588 t = &host->token;
589 memset(t, 0, sizeof(*t));
590 t->len = 1;
591 if (multiple)
592 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593 else
594 scratch->data_token = SPI_TOKEN_SINGLE;
595 t->tx_buf = &scratch->data_token;
596 if (dma)
597 t->tx_dma = dma + offsetof(struct scratch, data_token);
598 spi_message_add_tail(t, &host->m);
599 }
600
601 /* Body of transfer is buffer, then CRC ...
602 * either TX-only, or RX with TX-ones.
603 */
604 t = &host->t;
605 memset(t, 0, sizeof(*t));
606 t->tx_buf = host->ones;
607 t->tx_dma = host->ones_dma;
608 /* length and actual buffer info are written later */
609 spi_message_add_tail(t, &host->m);
610
611 t = &host->crc;
612 memset(t, 0, sizeof(*t));
613 t->len = 2;
614 if (direction == DMA_TO_DEVICE) {
615 /* the actual CRC may get written later */
616 t->tx_buf = &scratch->crc_val;
617 if (dma)
618 t->tx_dma = dma + offsetof(struct scratch, crc_val);
619 } else {
620 t->tx_buf = host->ones;
621 t->tx_dma = host->ones_dma;
622 t->rx_buf = &scratch->crc_val;
623 if (dma)
624 t->rx_dma = dma + offsetof(struct scratch, crc_val);
625 }
626 spi_message_add_tail(t, &host->m);
627
628 /*
629 * A single block read is followed by N(EC) [0+] all-ones bytes
630 * before deselect ... don't bother.
631 *
632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
634 * collect that single byte, so readblock() doesn't need to.
635 *
636 * For a write, the one-byte data response follows immediately, then
637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 * Then single block reads may deselect, and multiblock ones issue
639 * the next token (next data block, or STOP_TRAN). We can try to
640 * minimize I/O ops by using a single read to collect end-of-busy.
641 */
642 if (multiple || direction == DMA_TO_DEVICE) {
643 t = &host->early_status;
644 memset(t, 0, sizeof(*t));
645 t->len = (direction == DMA_TO_DEVICE)
646 ? sizeof(scratch->status)
647 : 1;
648 t->tx_buf = host->ones;
649 t->tx_dma = host->ones_dma;
650 t->rx_buf = scratch->status;
651 if (dma)
652 t->rx_dma = dma + offsetof(struct scratch, status);
653 t->cs_change = 1;
654 spi_message_add_tail(t, &host->m);
655 }
656}
657
658/*
659 * Write one block:
660 * - caller handled preceding N(WR) [1+] all-ones bytes
661 * - data block
662 * + token
663 * + data bytes
664 * + crc16
665 * - an all-ones byte ... card writes a data-response byte
666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667 *
668 * Return negative errno, else success.
669 */
670static int
671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672 unsigned long timeout)
673{
674 struct spi_device *spi = host->spi;
675 int status, i;
676 struct scratch *scratch = host->data;
677 u32 pattern;
678
679 if (host->mmc->use_spi_crc)
680 scratch->crc_val = cpu_to_be16(
681 crc_itu_t(0, t->tx_buf, t->len));
682 if (host->dma_dev)
683 dma_sync_single_for_device(host->dma_dev,
684 host->data_dma, sizeof(*scratch),
685 DMA_BIDIRECTIONAL);
686
687 status = spi_sync_locked(spi, &host->m);
688
689 if (status != 0) {
690 dev_dbg(&spi->dev, "write error (%d)\n", status);
691 return status;
692 }
693
694 if (host->dma_dev)
695 dma_sync_single_for_cpu(host->dma_dev,
696 host->data_dma, sizeof(*scratch),
697 DMA_BIDIRECTIONAL);
698
699 /*
700 * Get the transmission data-response reply. It must follow
701 * immediately after the data block we transferred. This reply
702 * doesn't necessarily tell whether the write operation succeeded;
703 * it just says if the transmission was ok and whether *earlier*
704 * writes succeeded; see the standard.
705 *
706 * In practice, there are (even modern SDHC-)cards which are late
707 * in sending the response, and miss the time frame by a few bits,
708 * so we have to cope with this situation and check the response
709 * bit-by-bit. Arggh!!!
710 */
711 pattern = get_unaligned_be32(scratch->status);
712
713 /* First 3 bit of pattern are undefined */
714 pattern |= 0xE0000000;
715
716 /* left-adjust to leading 0 bit */
717 while (pattern & 0x80000000)
718 pattern <<= 1;
719 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
720 pattern >>= 27;
721
722 switch (pattern) {
723 case SPI_RESPONSE_ACCEPTED:
724 status = 0;
725 break;
726 case SPI_RESPONSE_CRC_ERR:
727 /* host shall then issue MMC_STOP_TRANSMISSION */
728 status = -EILSEQ;
729 break;
730 case SPI_RESPONSE_WRITE_ERR:
731 /* host shall then issue MMC_STOP_TRANSMISSION,
732 * and should MMC_SEND_STATUS to sort it out
733 */
734 status = -EIO;
735 break;
736 default:
737 status = -EPROTO;
738 break;
739 }
740 if (status != 0) {
741 dev_dbg(&spi->dev, "write error %02x (%d)\n",
742 scratch->status[0], status);
743 return status;
744 }
745
746 t->tx_buf += t->len;
747 if (host->dma_dev)
748 t->tx_dma += t->len;
749
750 /* Return when not busy. If we didn't collect that status yet,
751 * we'll need some more I/O.
752 */
753 for (i = 4; i < sizeof(scratch->status); i++) {
754 /* card is non-busy if the most recent bit is 1 */
755 if (scratch->status[i] & 0x01)
756 return 0;
757 }
758 return mmc_spi_wait_unbusy(host, timeout);
759}
760
761/*
762 * Read one block:
763 * - skip leading all-ones bytes ... either
764 * + N(AC) [1..f(clock,CSD)] usually, else
765 * + N(CX) [0..8] when reading CSD or CID
766 * - data block
767 * + token ... if error token, no data or crc
768 * + data bytes
769 * + crc16
770 *
771 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
772 * before dropping chipselect.
773 *
774 * For multiblock reads, caller either reads the next block or issues a
775 * STOP_TRANSMISSION command.
776 */
777static int
778mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
779 unsigned long timeout)
780{
781 struct spi_device *spi = host->spi;
782 int status;
783 struct scratch *scratch = host->data;
784 unsigned int bitshift;
785 u8 leftover;
786
787 /* At least one SD card sends an all-zeroes byte when N(CX)
788 * applies, before the all-ones bytes ... just cope with that.
789 */
790 status = mmc_spi_readbytes(host, 1);
791 if (status < 0)
792 return status;
793 status = scratch->status[0];
794 if (status == 0xff || status == 0)
795 status = mmc_spi_readtoken(host, timeout);
796
797 if (status < 0) {
798 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
799 return status;
800 }
801
802 /* The token may be bit-shifted...
803 * the first 0-bit precedes the data stream.
804 */
805 bitshift = 7;
806 while (status & 0x80) {
807 status <<= 1;
808 bitshift--;
809 }
810 leftover = status << 1;
811
812 if (host->dma_dev) {
813 dma_sync_single_for_device(host->dma_dev,
814 host->data_dma, sizeof(*scratch),
815 DMA_BIDIRECTIONAL);
816 dma_sync_single_for_device(host->dma_dev,
817 t->rx_dma, t->len,
818 DMA_FROM_DEVICE);
819 }
820
821 status = spi_sync_locked(spi, &host->m);
822
823 if (host->dma_dev) {
824 dma_sync_single_for_cpu(host->dma_dev,
825 host->data_dma, sizeof(*scratch),
826 DMA_BIDIRECTIONAL);
827 dma_sync_single_for_cpu(host->dma_dev,
828 t->rx_dma, t->len,
829 DMA_FROM_DEVICE);
830 }
831
832 if (bitshift) {
833 /* Walk through the data and the crc and do
834 * all the magic to get byte-aligned data.
835 */
836 u8 *cp = t->rx_buf;
837 unsigned int len;
838 unsigned int bitright = 8 - bitshift;
839 u8 temp;
840 for (len = t->len; len; len--) {
841 temp = *cp;
842 *cp++ = leftover | (temp >> bitshift);
843 leftover = temp << bitright;
844 }
845 cp = (u8 *) &scratch->crc_val;
846 temp = *cp;
847 *cp++ = leftover | (temp >> bitshift);
848 leftover = temp << bitright;
849 temp = *cp;
850 *cp = leftover | (temp >> bitshift);
851 }
852
853 if (host->mmc->use_spi_crc) {
854 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
855
856 be16_to_cpus(&scratch->crc_val);
857 if (scratch->crc_val != crc) {
858 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
859 "computed=0x%04x len=%d\n",
860 scratch->crc_val, crc, t->len);
861 return -EILSEQ;
862 }
863 }
864
865 t->rx_buf += t->len;
866 if (host->dma_dev)
867 t->rx_dma += t->len;
868
869 return 0;
870}
871
872/*
873 * An MMC/SD data stage includes one or more blocks, optional CRCs,
874 * and inline handshaking. That handhaking makes it unlike most
875 * other SPI protocol stacks.
876 */
877static void
878mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
879 struct mmc_data *data, u32 blk_size)
880{
881 struct spi_device *spi = host->spi;
882 struct device *dma_dev = host->dma_dev;
883 struct spi_transfer *t;
884 enum dma_data_direction direction;
885 struct scatterlist *sg;
886 unsigned n_sg;
887 int multiple = (data->blocks > 1);
888 u32 clock_rate;
889 unsigned long timeout;
890
891 if (data->flags & MMC_DATA_READ)
892 direction = DMA_FROM_DEVICE;
893 else
894 direction = DMA_TO_DEVICE;
895 mmc_spi_setup_data_message(host, multiple, direction);
896 t = &host->t;
897
898 if (t->speed_hz)
899 clock_rate = t->speed_hz;
900 else
901 clock_rate = spi->max_speed_hz;
902
903 timeout = data->timeout_ns +
904 data->timeout_clks * 1000000 / clock_rate;
905 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
906
907 /* Handle scatterlist segments one at a time, with synch for
908 * each 512-byte block
909 */
910 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
911 int status = 0;
912 dma_addr_t dma_addr = 0;
913 void *kmap_addr;
914 unsigned length = sg->length;
915 enum dma_data_direction dir = direction;
916
917 /* set up dma mapping for controller drivers that might
918 * use DMA ... though they may fall back to PIO
919 */
920 if (dma_dev) {
921 /* never invalidate whole *shared* pages ... */
922 if ((sg->offset != 0 || length != PAGE_SIZE)
923 && dir == DMA_FROM_DEVICE)
924 dir = DMA_BIDIRECTIONAL;
925
926 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
927 PAGE_SIZE, dir);
928 if (dma_mapping_error(dma_dev, dma_addr)) {
929 data->error = -EFAULT;
930 break;
931 }
932 if (direction == DMA_TO_DEVICE)
933 t->tx_dma = dma_addr + sg->offset;
934 else
935 t->rx_dma = dma_addr + sg->offset;
936 }
937
938 /* allow pio too; we don't allow highmem */
939 kmap_addr = kmap(sg_page(sg));
940 if (direction == DMA_TO_DEVICE)
941 t->tx_buf = kmap_addr + sg->offset;
942 else
943 t->rx_buf = kmap_addr + sg->offset;
944
945 /* transfer each block, and update request status */
946 while (length) {
947 t->len = min(length, blk_size);
948
949 dev_dbg(&host->spi->dev,
950 " mmc_spi: %s block, %d bytes\n",
951 (direction == DMA_TO_DEVICE)
952 ? "write"
953 : "read",
954 t->len);
955
956 if (direction == DMA_TO_DEVICE)
957 status = mmc_spi_writeblock(host, t, timeout);
958 else
959 status = mmc_spi_readblock(host, t, timeout);
960 if (status < 0)
961 break;
962
963 data->bytes_xfered += t->len;
964 length -= t->len;
965
966 if (!multiple)
967 break;
968 }
969
970 /* discard mappings */
971 if (direction == DMA_FROM_DEVICE)
972 flush_kernel_dcache_page(sg_page(sg));
973 kunmap(sg_page(sg));
974 if (dma_dev)
975 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
976
977 if (status < 0) {
978 data->error = status;
979 dev_dbg(&spi->dev, "%s status %d\n",
980 (direction == DMA_TO_DEVICE)
981 ? "write" : "read",
982 status);
983 break;
984 }
985 }
986
987 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
988 * can be issued before multiblock writes. Unlike its more widely
989 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
990 * that can affect the STOP_TRAN logic. Complete (and current)
991 * MMC specs should sort that out before Linux starts using CMD23.
992 */
993 if (direction == DMA_TO_DEVICE && multiple) {
994 struct scratch *scratch = host->data;
995 int tmp;
996 const unsigned statlen = sizeof(scratch->status);
997
998 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
999
1000 /* Tweak the per-block message we set up earlier by morphing
1001 * it to hold single buffer with the token followed by some
1002 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1003 * "not busy any longer" status, and leave chip selected.
1004 */
1005 INIT_LIST_HEAD(&host->m.transfers);
1006 list_add(&host->early_status.transfer_list,
1007 &host->m.transfers);
1008
1009 memset(scratch->status, 0xff, statlen);
1010 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1011
1012 host->early_status.tx_buf = host->early_status.rx_buf;
1013 host->early_status.tx_dma = host->early_status.rx_dma;
1014 host->early_status.len = statlen;
1015
1016 if (host->dma_dev)
1017 dma_sync_single_for_device(host->dma_dev,
1018 host->data_dma, sizeof(*scratch),
1019 DMA_BIDIRECTIONAL);
1020
1021 tmp = spi_sync_locked(spi, &host->m);
1022
1023 if (host->dma_dev)
1024 dma_sync_single_for_cpu(host->dma_dev,
1025 host->data_dma, sizeof(*scratch),
1026 DMA_BIDIRECTIONAL);
1027
1028 if (tmp < 0) {
1029 if (!data->error)
1030 data->error = tmp;
1031 return;
1032 }
1033
1034 /* Ideally we collected "not busy" status with one I/O,
1035 * avoiding wasteful byte-at-a-time scanning... but more
1036 * I/O is often needed.
1037 */
1038 for (tmp = 2; tmp < statlen; tmp++) {
1039 if (scratch->status[tmp] != 0)
1040 return;
1041 }
1042 tmp = mmc_spi_wait_unbusy(host, timeout);
1043 if (tmp < 0 && !data->error)
1044 data->error = tmp;
1045 }
1046}
1047
1048/****************************************************************************/
1049
1050/*
1051 * MMC driver implementation -- the interface to the MMC stack
1052 */
1053
1054static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1055{
1056 struct mmc_spi_host *host = mmc_priv(mmc);
1057 int status = -EINVAL;
1058 int crc_retry = 5;
1059 struct mmc_command stop;
1060
1061#ifdef DEBUG
1062 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1063 {
1064 struct mmc_command *cmd;
1065 int invalid = 0;
1066
1067 cmd = mrq->cmd;
1068 if (!mmc_spi_resp_type(cmd)) {
1069 dev_dbg(&host->spi->dev, "bogus command\n");
1070 cmd->error = -EINVAL;
1071 invalid = 1;
1072 }
1073
1074 cmd = mrq->stop;
1075 if (cmd && !mmc_spi_resp_type(cmd)) {
1076 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1077 cmd->error = -EINVAL;
1078 invalid = 1;
1079 }
1080
1081 if (invalid) {
1082 dump_stack();
1083 mmc_request_done(host->mmc, mrq);
1084 return;
1085 }
1086 }
1087#endif
1088
1089 /* request exclusive bus access */
1090 spi_bus_lock(host->spi->master);
1091
1092crc_recover:
1093 /* issue command; then optionally data and stop */
1094 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1095 if (status == 0 && mrq->data) {
1096 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1097
1098 /*
1099 * The SPI bus is not always reliable for large data transfers.
1100 * If an occasional crc error is reported by the SD device with
1101 * data read/write over SPI, it may be recovered by repeating
1102 * the last SD command again. The retry count is set to 5 to
1103 * ensure the driver passes stress tests.
1104 */
1105 if (mrq->data->error == -EILSEQ && crc_retry) {
1106 stop.opcode = MMC_STOP_TRANSMISSION;
1107 stop.arg = 0;
1108 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1109 status = mmc_spi_command_send(host, mrq, &stop, 0);
1110 crc_retry--;
1111 mrq->data->error = 0;
1112 goto crc_recover;
1113 }
1114
1115 if (mrq->stop)
1116 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1117 else
1118 mmc_cs_off(host);
1119 }
1120
1121 /* release the bus */
1122 spi_bus_unlock(host->spi->master);
1123
1124 mmc_request_done(host->mmc, mrq);
1125}
1126
1127/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1128 *
1129 * NOTE that here we can't know that the card has just been powered up;
1130 * not all MMC/SD sockets support power switching.
1131 *
1132 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1133 * this doesn't seem to do the right thing at all...
1134 */
1135static void mmc_spi_initsequence(struct mmc_spi_host *host)
1136{
1137 /* Try to be very sure any previous command has completed;
1138 * wait till not-busy, skip debris from any old commands.
1139 */
1140 mmc_spi_wait_unbusy(host, r1b_timeout);
1141 mmc_spi_readbytes(host, 10);
1142
1143 /*
1144 * Do a burst with chipselect active-high. We need to do this to
1145 * meet the requirement of 74 clock cycles with both chipselect
1146 * and CMD (MOSI) high before CMD0 ... after the card has been
1147 * powered up to Vdd(min), and so is ready to take commands.
1148 *
1149 * Some cards are particularly needy of this (e.g. Viking "SD256")
1150 * while most others don't seem to care.
1151 *
1152 * Note that this is one of the places MMC/SD plays games with the
1153 * SPI protocol. Another is that when chipselect is released while
1154 * the card returns BUSY status, the clock must issue several cycles
1155 * with chipselect high before the card will stop driving its output.
1156 */
1157 host->spi->mode |= SPI_CS_HIGH;
1158 if (spi_setup(host->spi) != 0) {
1159 /* Just warn; most cards work without it. */
1160 dev_warn(&host->spi->dev,
1161 "can't change chip-select polarity\n");
1162 host->spi->mode &= ~SPI_CS_HIGH;
1163 } else {
1164 mmc_spi_readbytes(host, 18);
1165
1166 host->spi->mode &= ~SPI_CS_HIGH;
1167 if (spi_setup(host->spi) != 0) {
1168 /* Wot, we can't get the same setup we had before? */
1169 dev_err(&host->spi->dev,
1170 "can't restore chip-select polarity\n");
1171 }
1172 }
1173}
1174
1175static char *mmc_powerstring(u8 power_mode)
1176{
1177 switch (power_mode) {
1178 case MMC_POWER_OFF: return "off";
1179 case MMC_POWER_UP: return "up";
1180 case MMC_POWER_ON: return "on";
1181 }
1182 return "?";
1183}
1184
1185static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1186{
1187 struct mmc_spi_host *host = mmc_priv(mmc);
1188
1189 if (host->power_mode != ios->power_mode) {
1190 int canpower;
1191
1192 canpower = host->pdata && host->pdata->setpower;
1193
1194 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1195 mmc_powerstring(ios->power_mode),
1196 ios->vdd,
1197 canpower ? ", can switch" : "");
1198
1199 /* switch power on/off if possible, accounting for
1200 * max 250msec powerup time if needed.
1201 */
1202 if (canpower) {
1203 switch (ios->power_mode) {
1204 case MMC_POWER_OFF:
1205 case MMC_POWER_UP:
1206 host->pdata->setpower(&host->spi->dev,
1207 ios->vdd);
1208 if (ios->power_mode == MMC_POWER_UP)
1209 msleep(host->powerup_msecs);
1210 }
1211 }
1212
1213 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1214 if (ios->power_mode == MMC_POWER_ON)
1215 mmc_spi_initsequence(host);
1216
1217 /* If powering down, ground all card inputs to avoid power
1218 * delivery from data lines! On a shared SPI bus, this
1219 * will probably be temporary; 6.4.2 of the simplified SD
1220 * spec says this must last at least 1msec.
1221 *
1222 * - Clock low means CPOL 0, e.g. mode 0
1223 * - MOSI low comes from writing zero
1224 * - Chipselect is usually active low...
1225 */
1226 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1227 int mres;
1228 u8 nullbyte = 0;
1229
1230 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1231 mres = spi_setup(host->spi);
1232 if (mres < 0)
1233 dev_dbg(&host->spi->dev,
1234 "switch to SPI mode 0 failed\n");
1235
1236 if (spi_write(host->spi, &nullbyte, 1) < 0)
1237 dev_dbg(&host->spi->dev,
1238 "put spi signals to low failed\n");
1239
1240 /*
1241 * Now clock should be low due to spi mode 0;
1242 * MOSI should be low because of written 0x00;
1243 * chipselect should be low (it is active low)
1244 * power supply is off, so now MMC is off too!
1245 *
1246 * FIXME no, chipselect can be high since the
1247 * device is inactive and SPI_CS_HIGH is clear...
1248 */
1249 msleep(10);
1250 if (mres == 0) {
1251 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1252 mres = spi_setup(host->spi);
1253 if (mres < 0)
1254 dev_dbg(&host->spi->dev,
1255 "switch back to SPI mode 3"
1256 " failed\n");
1257 }
1258 }
1259
1260 host->power_mode = ios->power_mode;
1261 }
1262
1263 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1264 int status;
1265
1266 host->spi->max_speed_hz = ios->clock;
1267 status = spi_setup(host->spi);
1268 dev_dbg(&host->spi->dev,
1269 "mmc_spi: clock to %d Hz, %d\n",
1270 host->spi->max_speed_hz, status);
1271 }
1272}
1273
1274static const struct mmc_host_ops mmc_spi_ops = {
1275 .request = mmc_spi_request,
1276 .set_ios = mmc_spi_set_ios,
1277 .get_ro = mmc_gpio_get_ro,
1278 .get_cd = mmc_gpio_get_cd,
1279};
1280
1281
1282/****************************************************************************/
1283
1284/*
1285 * SPI driver implementation
1286 */
1287
1288static irqreturn_t
1289mmc_spi_detect_irq(int irq, void *mmc)
1290{
1291 struct mmc_spi_host *host = mmc_priv(mmc);
1292 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1293
1294 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1295 return IRQ_HANDLED;
1296}
1297
1298static int mmc_spi_probe(struct spi_device *spi)
1299{
1300 void *ones;
1301 struct mmc_host *mmc;
1302 struct mmc_spi_host *host;
1303 int status;
1304 bool has_ro = false;
1305
1306 /* We rely on full duplex transfers, mostly to reduce
1307 * per-transfer overheads (by making fewer transfers).
1308 */
1309 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1310 return -EINVAL;
1311
1312 /* MMC and SD specs only seem to care that sampling is on the
1313 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1314 * should be legit. We'll use mode 0 since the steady state is 0,
1315 * which is appropriate for hotplugging, unless the platform data
1316 * specify mode 3 (if hardware is not compatible to mode 0).
1317 */
1318 if (spi->mode != SPI_MODE_3)
1319 spi->mode = SPI_MODE_0;
1320 spi->bits_per_word = 8;
1321
1322 status = spi_setup(spi);
1323 if (status < 0) {
1324 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1325 spi->mode, spi->max_speed_hz / 1000,
1326 status);
1327 return status;
1328 }
1329
1330 /* We need a supply of ones to transmit. This is the only time
1331 * the CPU touches these, so cache coherency isn't a concern.
1332 *
1333 * NOTE if many systems use more than one MMC-over-SPI connector
1334 * it'd save some memory to share this. That's evidently rare.
1335 */
1336 status = -ENOMEM;
1337 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1338 if (!ones)
1339 goto nomem;
1340 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1341
1342 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1343 if (!mmc)
1344 goto nomem;
1345
1346 mmc->ops = &mmc_spi_ops;
1347 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1348 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1349 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1350 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1351
1352 mmc->caps = MMC_CAP_SPI;
1353
1354 /* SPI doesn't need the lowspeed device identification thing for
1355 * MMC or SD cards, since it never comes up in open drain mode.
1356 * That's good; some SPI masters can't handle very low speeds!
1357 *
1358 * However, low speed SDIO cards need not handle over 400 KHz;
1359 * that's the only reason not to use a few MHz for f_min (until
1360 * the upper layer reads the target frequency from the CSD).
1361 */
1362 mmc->f_min = 400000;
1363 mmc->f_max = spi->max_speed_hz;
1364
1365 host = mmc_priv(mmc);
1366 host->mmc = mmc;
1367 host->spi = spi;
1368
1369 host->ones = ones;
1370
1371 /* Platform data is used to hook up things like card sensing
1372 * and power switching gpios.
1373 */
1374 host->pdata = mmc_spi_get_pdata(spi);
1375 if (host->pdata)
1376 mmc->ocr_avail = host->pdata->ocr_mask;
1377 if (!mmc->ocr_avail) {
1378 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1379 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1380 }
1381 if (host->pdata && host->pdata->setpower) {
1382 host->powerup_msecs = host->pdata->powerup_msecs;
1383 if (!host->powerup_msecs || host->powerup_msecs > 250)
1384 host->powerup_msecs = 250;
1385 }
1386
1387 dev_set_drvdata(&spi->dev, mmc);
1388
1389 /* preallocate dma buffers */
1390 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1391 if (!host->data)
1392 goto fail_nobuf1;
1393
1394 if (spi->master->dev.parent->dma_mask) {
1395 struct device *dev = spi->master->dev.parent;
1396
1397 host->dma_dev = dev;
1398 host->ones_dma = dma_map_single(dev, ones,
1399 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1400 if (dma_mapping_error(dev, host->ones_dma))
1401 goto fail_ones_dma;
1402 host->data_dma = dma_map_single(dev, host->data,
1403 sizeof(*host->data), DMA_BIDIRECTIONAL);
1404 if (dma_mapping_error(dev, host->data_dma))
1405 goto fail_data_dma;
1406
1407 dma_sync_single_for_cpu(host->dma_dev,
1408 host->data_dma, sizeof(*host->data),
1409 DMA_BIDIRECTIONAL);
1410 }
1411
1412 /* setup message for status/busy readback */
1413 spi_message_init(&host->readback);
1414 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1415
1416 spi_message_add_tail(&host->status, &host->readback);
1417 host->status.tx_buf = host->ones;
1418 host->status.tx_dma = host->ones_dma;
1419 host->status.rx_buf = &host->data->status;
1420 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1421 host->status.cs_change = 1;
1422
1423 /* register card detect irq */
1424 if (host->pdata && host->pdata->init) {
1425 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1426 if (status != 0)
1427 goto fail_glue_init;
1428 }
1429
1430 /* pass platform capabilities, if any */
1431 if (host->pdata) {
1432 mmc->caps |= host->pdata->caps;
1433 mmc->caps2 |= host->pdata->caps2;
1434 }
1435
1436 status = mmc_add_host(mmc);
1437 if (status != 0)
1438 goto fail_add_host;
1439
1440 if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1441 status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1442 host->pdata->cd_debounce);
1443 if (status != 0)
1444 goto fail_add_host;
1445
1446 /* The platform has a CD GPIO signal that may support
1447 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1448 * if polling is needed or not.
1449 */
1450 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1451 mmc_gpiod_request_cd_irq(mmc);
1452 }
1453
1454 if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1455 has_ro = true;
1456 status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1457 if (status != 0)
1458 goto fail_add_host;
1459 }
1460
1461 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1462 dev_name(&mmc->class_dev),
1463 host->dma_dev ? "" : ", no DMA",
1464 has_ro ? "" : ", no WP",
1465 (host->pdata && host->pdata->setpower)
1466 ? "" : ", no poweroff",
1467 (mmc->caps & MMC_CAP_NEEDS_POLL)
1468 ? ", cd polling" : "");
1469 return 0;
1470
1471fail_add_host:
1472 mmc_remove_host (mmc);
1473fail_glue_init:
1474 if (host->dma_dev)
1475 dma_unmap_single(host->dma_dev, host->data_dma,
1476 sizeof(*host->data), DMA_BIDIRECTIONAL);
1477fail_data_dma:
1478 if (host->dma_dev)
1479 dma_unmap_single(host->dma_dev, host->ones_dma,
1480 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1481fail_ones_dma:
1482 kfree(host->data);
1483
1484fail_nobuf1:
1485 mmc_free_host(mmc);
1486 mmc_spi_put_pdata(spi);
1487 dev_set_drvdata(&spi->dev, NULL);
1488
1489nomem:
1490 kfree(ones);
1491 return status;
1492}
1493
1494
1495static int mmc_spi_remove(struct spi_device *spi)
1496{
1497 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1498 struct mmc_spi_host *host;
1499
1500 if (mmc) {
1501 host = mmc_priv(mmc);
1502
1503 /* prevent new mmc_detect_change() calls */
1504 if (host->pdata && host->pdata->exit)
1505 host->pdata->exit(&spi->dev, mmc);
1506
1507 mmc_remove_host(mmc);
1508
1509 if (host->dma_dev) {
1510 dma_unmap_single(host->dma_dev, host->ones_dma,
1511 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1512 dma_unmap_single(host->dma_dev, host->data_dma,
1513 sizeof(*host->data), DMA_BIDIRECTIONAL);
1514 }
1515
1516 kfree(host->data);
1517 kfree(host->ones);
1518
1519 spi->max_speed_hz = mmc->f_max;
1520 mmc_free_host(mmc);
1521 mmc_spi_put_pdata(spi);
1522 dev_set_drvdata(&spi->dev, NULL);
1523 }
1524 return 0;
1525}
1526
1527static const struct of_device_id mmc_spi_of_match_table[] = {
1528 { .compatible = "mmc-spi-slot", },
1529 {},
1530};
1531MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1532
1533static struct spi_driver mmc_spi_driver = {
1534 .driver = {
1535 .name = "mmc_spi",
1536 .of_match_table = mmc_spi_of_match_table,
1537 },
1538 .probe = mmc_spi_probe,
1539 .remove = mmc_spi_remove,
1540};
1541
1542module_spi_driver(mmc_spi_driver);
1543
1544MODULE_AUTHOR("Mike Lavender, David Brownell, "
1545 "Hans-Peter Nilsson, Jan Nikitenko");
1546MODULE_DESCRIPTION("SPI SD/MMC host driver");
1547MODULE_LICENSE("GPL");
1548MODULE_ALIAS("spi:mmc_spi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-mapping.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80#define MMC_SPI_R1B_TIMEOUT_MS 3000
81#define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE 128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103};
104
105struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
124
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
127 dma_addr_t data_dma;
128
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
132 */
133 void *ones;
134 dma_addr_t ones_dma;
135};
136
137
138/****************************************************************************/
139
140/*
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
142 */
143
144static inline int mmc_cs_off(struct mmc_spi_host *host)
145{
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
148}
149
150static int
151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152{
153 int status;
154
155 if (len > sizeof(*host->data)) {
156 WARN_ON(1);
157 return -EIO;
158 }
159
160 host->status.len = len;
161
162 if (host->dma_dev)
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
165 DMA_FROM_DEVICE);
166
167 status = spi_sync_locked(host->spi, &host->readback);
168
169 if (host->dma_dev)
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
172 DMA_FROM_DEVICE);
173
174 return status;
175}
176
177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 unsigned n, u8 byte)
179{
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
182
183 while (1) {
184 int status;
185 unsigned i;
186
187 status = mmc_spi_readbytes(host, n);
188 if (status < 0)
189 return status;
190
191 for (i = 0; i < n; i++) {
192 if (cp[i] != byte)
193 return cp[i];
194 }
195
196 if (time_is_before_jiffies(start + timeout))
197 break;
198
199 /* If we need long timeouts, we may release the CPU.
200 * We use jiffies here because we want to have a relation
201 * between elapsed time and the blocking of the scheduler.
202 */
203 if (time_is_before_jiffies(start + 1))
204 schedule();
205 }
206 return -ETIMEDOUT;
207}
208
209static inline int
210mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
211{
212 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
213}
214
215static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
216{
217 return mmc_spi_skip(host, timeout, 1, 0xff);
218}
219
220
221/*
222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
225 *
226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227 * newer cards R7 (IF_COND).
228 */
229
230static char *maptype(struct mmc_command *cmd)
231{
232 switch (mmc_spi_resp_type(cmd)) {
233 case MMC_RSP_SPI_R1: return "R1";
234 case MMC_RSP_SPI_R1B: return "R1B";
235 case MMC_RSP_SPI_R2: return "R2/R5";
236 case MMC_RSP_SPI_R3: return "R3/R4/R7";
237 default: return "?";
238 }
239}
240
241/* return zero, else negative errno after setting cmd->error */
242static int mmc_spi_response_get(struct mmc_spi_host *host,
243 struct mmc_command *cmd, int cs_on)
244{
245 unsigned long timeout_ms;
246 u8 *cp = host->data->status;
247 u8 *end = cp + host->t.len;
248 int value = 0;
249 int bitshift;
250 u8 leftover = 0;
251 unsigned short rotator;
252 int i;
253 char tag[32];
254
255 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
256 cmd->opcode, maptype(cmd));
257
258 /* Except for data block reads, the whole response will already
259 * be stored in the scratch buffer. It's somewhere after the
260 * command and the first byte we read after it. We ignore that
261 * first byte. After STOP_TRANSMISSION command it may include
262 * two data bits, but otherwise it's all ones.
263 */
264 cp += 8;
265 while (cp < end && *cp == 0xff)
266 cp++;
267
268 /* Data block reads (R1 response types) may need more data... */
269 if (cp == end) {
270 cp = host->data->status;
271 end = cp+1;
272
273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 * status byte ... and we already scanned 2 bytes.
275 *
276 * REVISIT block read paths use nasty byte-at-a-time I/O
277 * so it can always DMA directly into the target buffer.
278 * It'd probably be better to memcpy() the first chunk and
279 * avoid extra i/o calls...
280 *
281 * Note we check for more than 8 bytes, because in practice,
282 * some SD cards are slow...
283 */
284 for (i = 2; i < 16; i++) {
285 value = mmc_spi_readbytes(host, 1);
286 if (value < 0)
287 goto done;
288 if (*cp != 0xff)
289 goto checkstatus;
290 }
291 value = -ETIMEDOUT;
292 goto done;
293 }
294
295checkstatus:
296 bitshift = 0;
297 if (*cp & 0x80) {
298 /* Houston, we have an ugly card with a bit-shifted response */
299 rotator = *cp++ << 8;
300 /* read the next byte */
301 if (cp == end) {
302 value = mmc_spi_readbytes(host, 1);
303 if (value < 0)
304 goto done;
305 cp = host->data->status;
306 end = cp+1;
307 }
308 rotator |= *cp++;
309 while (rotator & 0x8000) {
310 bitshift++;
311 rotator <<= 1;
312 }
313 cmd->resp[0] = rotator >> 8;
314 leftover = rotator;
315 } else {
316 cmd->resp[0] = *cp++;
317 }
318 cmd->error = 0;
319
320 /* Status byte: the entire seven-bit R1 response. */
321 if (cmd->resp[0] != 0) {
322 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
323 & cmd->resp[0])
324 value = -EFAULT; /* Bad address */
325 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
326 value = -ENOSYS; /* Function not implemented */
327 else if (R1_SPI_COM_CRC & cmd->resp[0])
328 value = -EILSEQ; /* Illegal byte sequence */
329 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
330 & cmd->resp[0])
331 value = -EIO; /* I/O error */
332 /* else R1_SPI_IDLE, "it's resetting" */
333 }
334
335 switch (mmc_spi_resp_type(cmd)) {
336
337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 * and less-common stuff like various erase operations.
339 */
340 case MMC_RSP_SPI_R1B:
341 /* maybe we read all the busy tokens already */
342 while (cp < end && *cp == 0)
343 cp++;
344 if (cp == end) {
345 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
346 MMC_SPI_R1B_TIMEOUT_MS;
347 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
348 }
349 break;
350
351 /* SPI R2 == R1 + second status byte; SEND_STATUS
352 * SPI R5 == R1 + data byte; IO_RW_DIRECT
353 */
354 case MMC_RSP_SPI_R2:
355 /* read the next byte */
356 if (cp == end) {
357 value = mmc_spi_readbytes(host, 1);
358 if (value < 0)
359 goto done;
360 cp = host->data->status;
361 end = cp+1;
362 }
363 if (bitshift) {
364 rotator = leftover << 8;
365 rotator |= *cp << bitshift;
366 cmd->resp[0] |= (rotator & 0xFF00);
367 } else {
368 cmd->resp[0] |= *cp << 8;
369 }
370 break;
371
372 /* SPI R3, R4, or R7 == R1 + 4 bytes */
373 case MMC_RSP_SPI_R3:
374 rotator = leftover << 8;
375 cmd->resp[1] = 0;
376 for (i = 0; i < 4; i++) {
377 cmd->resp[1] <<= 8;
378 /* read the next byte */
379 if (cp == end) {
380 value = mmc_spi_readbytes(host, 1);
381 if (value < 0)
382 goto done;
383 cp = host->data->status;
384 end = cp+1;
385 }
386 if (bitshift) {
387 rotator |= *cp++ << bitshift;
388 cmd->resp[1] |= (rotator >> 8);
389 rotator <<= 8;
390 } else {
391 cmd->resp[1] |= *cp++;
392 }
393 }
394 break;
395
396 /* SPI R1 == just one status byte */
397 case MMC_RSP_SPI_R1:
398 break;
399
400 default:
401 dev_dbg(&host->spi->dev, "bad response type %04x\n",
402 mmc_spi_resp_type(cmd));
403 if (value >= 0)
404 value = -EINVAL;
405 goto done;
406 }
407
408 if (value < 0)
409 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
410 tag, cmd->resp[0], cmd->resp[1]);
411
412 /* disable chipselect on errors and some success cases */
413 if (value >= 0 && cs_on)
414 return value;
415done:
416 if (value < 0)
417 cmd->error = value;
418 mmc_cs_off(host);
419 return value;
420}
421
422/* Issue command and read its response.
423 * Returns zero on success, negative for error.
424 *
425 * On error, caller must cope with mmc core retry mechanism. That
426 * means immediate low-level resubmit, which affects the bus lock...
427 */
428static int
429mmc_spi_command_send(struct mmc_spi_host *host,
430 struct mmc_request *mrq,
431 struct mmc_command *cmd, int cs_on)
432{
433 struct scratch *data = host->data;
434 u8 *cp = data->status;
435 int status;
436 struct spi_transfer *t;
437
438 /* We can handle most commands (except block reads) in one full
439 * duplex I/O operation before either starting the next transfer
440 * (data block or command) or else deselecting the card.
441 *
442 * First, write 7 bytes:
443 * - an all-ones byte to ensure the card is ready
444 * - opcode byte (plus start and transmission bits)
445 * - four bytes of big-endian argument
446 * - crc7 (plus end bit) ... always computed, it's cheap
447 *
448 * We init the whole buffer to all-ones, which is what we need
449 * to write while we're reading (later) response data.
450 */
451 memset(cp, 0xff, sizeof(data->status));
452
453 cp[1] = 0x40 | cmd->opcode;
454 put_unaligned_be32(cmd->arg, cp + 2);
455 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
456 cp += 7;
457
458 /* Then, read up to 13 bytes (while writing all-ones):
459 * - N(CR) (== 1..8) bytes of all-ones
460 * - status byte (for all response types)
461 * - the rest of the response, either:
462 * + nothing, for R1 or R1B responses
463 * + second status byte, for R2 responses
464 * + four data bytes, for R3 and R7 responses
465 *
466 * Finally, read some more bytes ... in the nice cases we know in
467 * advance how many, and reading 1 more is always OK:
468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 * - N(RC) (== 1..N) bytes of all-ones, before next command
470 * - N(WR) (== 1..N) bytes of all-ones, before data write
471 *
472 * So in those cases one full duplex I/O of at most 21 bytes will
473 * handle the whole command, leaving the card ready to receive a
474 * data block or new command. We do that whenever we can, shaving
475 * CPU and IRQ costs (especially when using DMA or FIFOs).
476 *
477 * There are two other cases, where it's not generally practical
478 * to rely on a single I/O:
479 *
480 * - R1B responses need at least N(EC) bytes of all-zeroes.
481 *
482 * In this case we can *try* to fit it into one I/O, then
483 * maybe read more data later.
484 *
485 * - Data block reads are more troublesome, since a variable
486 * number of padding bytes precede the token and data.
487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 * + N(AC) (== 1..many) bytes of all-ones
489 *
490 * In this case we currently only have minimal speedups here:
491 * when N(CR) == 1 we can avoid I/O in response_get().
492 */
493 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
494 cp += 2; /* min(N(CR)) + status */
495 /* R1 */
496 } else {
497 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
498 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
499 cp++;
500 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
501 cp += 4;
502 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
503 cp = data->status + sizeof(data->status);
504 /* else: R1 (most commands) */
505 }
506
507 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
508 cmd->opcode, maptype(cmd));
509
510 /* send command, leaving chipselect active */
511 spi_message_init(&host->m);
512
513 t = &host->t;
514 memset(t, 0, sizeof(*t));
515 t->tx_buf = t->rx_buf = data->status;
516 t->tx_dma = t->rx_dma = host->data_dma;
517 t->len = cp - data->status;
518 t->cs_change = 1;
519 spi_message_add_tail(t, &host->m);
520
521 if (host->dma_dev) {
522 host->m.is_dma_mapped = 1;
523 dma_sync_single_for_device(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
525 DMA_BIDIRECTIONAL);
526 }
527 status = spi_sync_locked(host->spi, &host->m);
528
529 if (host->dma_dev)
530 dma_sync_single_for_cpu(host->dma_dev,
531 host->data_dma, sizeof(*host->data),
532 DMA_BIDIRECTIONAL);
533 if (status < 0) {
534 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
535 cmd->error = status;
536 return status;
537 }
538
539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 return mmc_spi_response_get(host, cmd, cs_on);
541}
542
543/* Build data message with up to four separate transfers. For TX, we
544 * start by writing the data token. And in most cases, we finish with
545 * a status transfer.
546 *
547 * We always provide TX data for data and CRC. The MMC/SD protocol
548 * requires us to write ones; but Linux defaults to writing zeroes;
549 * so we explicitly initialize it to all ones on RX paths.
550 *
551 * We also handle DMA mapping, so the underlying SPI controller does
552 * not need to (re)do it for each message.
553 */
554static void
555mmc_spi_setup_data_message(
556 struct mmc_spi_host *host,
557 int multiple,
558 enum dma_data_direction direction)
559{
560 struct spi_transfer *t;
561 struct scratch *scratch = host->data;
562 dma_addr_t dma = host->data_dma;
563
564 spi_message_init(&host->m);
565 if (dma)
566 host->m.is_dma_mapped = 1;
567
568 /* for reads, readblock() skips 0xff bytes before finding
569 * the token; for writes, this transfer issues that token.
570 */
571 if (direction == DMA_TO_DEVICE) {
572 t = &host->token;
573 memset(t, 0, sizeof(*t));
574 t->len = 1;
575 if (multiple)
576 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
577 else
578 scratch->data_token = SPI_TOKEN_SINGLE;
579 t->tx_buf = &scratch->data_token;
580 if (dma)
581 t->tx_dma = dma + offsetof(struct scratch, data_token);
582 spi_message_add_tail(t, &host->m);
583 }
584
585 /* Body of transfer is buffer, then CRC ...
586 * either TX-only, or RX with TX-ones.
587 */
588 t = &host->t;
589 memset(t, 0, sizeof(*t));
590 t->tx_buf = host->ones;
591 t->tx_dma = host->ones_dma;
592 /* length and actual buffer info are written later */
593 spi_message_add_tail(t, &host->m);
594
595 t = &host->crc;
596 memset(t, 0, sizeof(*t));
597 t->len = 2;
598 if (direction == DMA_TO_DEVICE) {
599 /* the actual CRC may get written later */
600 t->tx_buf = &scratch->crc_val;
601 if (dma)
602 t->tx_dma = dma + offsetof(struct scratch, crc_val);
603 } else {
604 t->tx_buf = host->ones;
605 t->tx_dma = host->ones_dma;
606 t->rx_buf = &scratch->crc_val;
607 if (dma)
608 t->rx_dma = dma + offsetof(struct scratch, crc_val);
609 }
610 spi_message_add_tail(t, &host->m);
611
612 /*
613 * A single block read is followed by N(EC) [0+] all-ones bytes
614 * before deselect ... don't bother.
615 *
616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
618 * collect that single byte, so readblock() doesn't need to.
619 *
620 * For a write, the one-byte data response follows immediately, then
621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 * Then single block reads may deselect, and multiblock ones issue
623 * the next token (next data block, or STOP_TRAN). We can try to
624 * minimize I/O ops by using a single read to collect end-of-busy.
625 */
626 if (multiple || direction == DMA_TO_DEVICE) {
627 t = &host->early_status;
628 memset(t, 0, sizeof(*t));
629 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
630 t->tx_buf = host->ones;
631 t->tx_dma = host->ones_dma;
632 t->rx_buf = scratch->status;
633 if (dma)
634 t->rx_dma = dma + offsetof(struct scratch, status);
635 t->cs_change = 1;
636 spi_message_add_tail(t, &host->m);
637 }
638}
639
640/*
641 * Write one block:
642 * - caller handled preceding N(WR) [1+] all-ones bytes
643 * - data block
644 * + token
645 * + data bytes
646 * + crc16
647 * - an all-ones byte ... card writes a data-response byte
648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
649 *
650 * Return negative errno, else success.
651 */
652static int
653mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
654 unsigned long timeout)
655{
656 struct spi_device *spi = host->spi;
657 int status, i;
658 struct scratch *scratch = host->data;
659 u32 pattern;
660
661 if (host->mmc->use_spi_crc)
662 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
663 if (host->dma_dev)
664 dma_sync_single_for_device(host->dma_dev,
665 host->data_dma, sizeof(*scratch),
666 DMA_BIDIRECTIONAL);
667
668 status = spi_sync_locked(spi, &host->m);
669
670 if (status != 0) {
671 dev_dbg(&spi->dev, "write error (%d)\n", status);
672 return status;
673 }
674
675 if (host->dma_dev)
676 dma_sync_single_for_cpu(host->dma_dev,
677 host->data_dma, sizeof(*scratch),
678 DMA_BIDIRECTIONAL);
679
680 /*
681 * Get the transmission data-response reply. It must follow
682 * immediately after the data block we transferred. This reply
683 * doesn't necessarily tell whether the write operation succeeded;
684 * it just says if the transmission was ok and whether *earlier*
685 * writes succeeded; see the standard.
686 *
687 * In practice, there are (even modern SDHC-)cards which are late
688 * in sending the response, and miss the time frame by a few bits,
689 * so we have to cope with this situation and check the response
690 * bit-by-bit. Arggh!!!
691 */
692 pattern = get_unaligned_be32(scratch->status);
693
694 /* First 3 bit of pattern are undefined */
695 pattern |= 0xE0000000;
696
697 /* left-adjust to leading 0 bit */
698 while (pattern & 0x80000000)
699 pattern <<= 1;
700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
701 pattern >>= 27;
702
703 switch (pattern) {
704 case SPI_RESPONSE_ACCEPTED:
705 status = 0;
706 break;
707 case SPI_RESPONSE_CRC_ERR:
708 /* host shall then issue MMC_STOP_TRANSMISSION */
709 status = -EILSEQ;
710 break;
711 case SPI_RESPONSE_WRITE_ERR:
712 /* host shall then issue MMC_STOP_TRANSMISSION,
713 * and should MMC_SEND_STATUS to sort it out
714 */
715 status = -EIO;
716 break;
717 default:
718 status = -EPROTO;
719 break;
720 }
721 if (status != 0) {
722 dev_dbg(&spi->dev, "write error %02x (%d)\n",
723 scratch->status[0], status);
724 return status;
725 }
726
727 t->tx_buf += t->len;
728 if (host->dma_dev)
729 t->tx_dma += t->len;
730
731 /* Return when not busy. If we didn't collect that status yet,
732 * we'll need some more I/O.
733 */
734 for (i = 4; i < sizeof(scratch->status); i++) {
735 /* card is non-busy if the most recent bit is 1 */
736 if (scratch->status[i] & 0x01)
737 return 0;
738 }
739 return mmc_spi_wait_unbusy(host, timeout);
740}
741
742/*
743 * Read one block:
744 * - skip leading all-ones bytes ... either
745 * + N(AC) [1..f(clock,CSD)] usually, else
746 * + N(CX) [0..8] when reading CSD or CID
747 * - data block
748 * + token ... if error token, no data or crc
749 * + data bytes
750 * + crc16
751 *
752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753 * before dropping chipselect.
754 *
755 * For multiblock reads, caller either reads the next block or issues a
756 * STOP_TRANSMISSION command.
757 */
758static int
759mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
760 unsigned long timeout)
761{
762 struct spi_device *spi = host->spi;
763 int status;
764 struct scratch *scratch = host->data;
765 unsigned int bitshift;
766 u8 leftover;
767
768 /* At least one SD card sends an all-zeroes byte when N(CX)
769 * applies, before the all-ones bytes ... just cope with that.
770 */
771 status = mmc_spi_readbytes(host, 1);
772 if (status < 0)
773 return status;
774 status = scratch->status[0];
775 if (status == 0xff || status == 0)
776 status = mmc_spi_readtoken(host, timeout);
777
778 if (status < 0) {
779 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
780 return status;
781 }
782
783 /* The token may be bit-shifted...
784 * the first 0-bit precedes the data stream.
785 */
786 bitshift = 7;
787 while (status & 0x80) {
788 status <<= 1;
789 bitshift--;
790 }
791 leftover = status << 1;
792
793 if (host->dma_dev) {
794 dma_sync_single_for_device(host->dma_dev,
795 host->data_dma, sizeof(*scratch),
796 DMA_BIDIRECTIONAL);
797 dma_sync_single_for_device(host->dma_dev,
798 t->rx_dma, t->len,
799 DMA_FROM_DEVICE);
800 }
801
802 status = spi_sync_locked(spi, &host->m);
803 if (status < 0) {
804 dev_dbg(&spi->dev, "read error %d\n", status);
805 return status;
806 }
807
808 if (host->dma_dev) {
809 dma_sync_single_for_cpu(host->dma_dev,
810 host->data_dma, sizeof(*scratch),
811 DMA_BIDIRECTIONAL);
812 dma_sync_single_for_cpu(host->dma_dev,
813 t->rx_dma, t->len,
814 DMA_FROM_DEVICE);
815 }
816
817 if (bitshift) {
818 /* Walk through the data and the crc and do
819 * all the magic to get byte-aligned data.
820 */
821 u8 *cp = t->rx_buf;
822 unsigned int len;
823 unsigned int bitright = 8 - bitshift;
824 u8 temp;
825 for (len = t->len; len; len--) {
826 temp = *cp;
827 *cp++ = leftover | (temp >> bitshift);
828 leftover = temp << bitright;
829 }
830 cp = (u8 *) &scratch->crc_val;
831 temp = *cp;
832 *cp++ = leftover | (temp >> bitshift);
833 leftover = temp << bitright;
834 temp = *cp;
835 *cp = leftover | (temp >> bitshift);
836 }
837
838 if (host->mmc->use_spi_crc) {
839 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
840
841 be16_to_cpus(&scratch->crc_val);
842 if (scratch->crc_val != crc) {
843 dev_dbg(&spi->dev,
844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 scratch->crc_val, crc, t->len);
846 return -EILSEQ;
847 }
848 }
849
850 t->rx_buf += t->len;
851 if (host->dma_dev)
852 t->rx_dma += t->len;
853
854 return 0;
855}
856
857/*
858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
859 * and inline handshaking. That handhaking makes it unlike most
860 * other SPI protocol stacks.
861 */
862static void
863mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
864 struct mmc_data *data, u32 blk_size)
865{
866 struct spi_device *spi = host->spi;
867 struct device *dma_dev = host->dma_dev;
868 struct spi_transfer *t;
869 enum dma_data_direction direction;
870 struct scatterlist *sg;
871 unsigned n_sg;
872 int multiple = (data->blocks > 1);
873 u32 clock_rate;
874 unsigned long timeout;
875
876 direction = mmc_get_dma_dir(data);
877 mmc_spi_setup_data_message(host, multiple, direction);
878 t = &host->t;
879
880 if (t->speed_hz)
881 clock_rate = t->speed_hz;
882 else
883 clock_rate = spi->max_speed_hz;
884
885 timeout = data->timeout_ns +
886 data->timeout_clks * 1000000 / clock_rate;
887 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
888
889 /* Handle scatterlist segments one at a time, with synch for
890 * each 512-byte block
891 */
892 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
893 int status = 0;
894 dma_addr_t dma_addr = 0;
895 void *kmap_addr;
896 unsigned length = sg->length;
897 enum dma_data_direction dir = direction;
898
899 /* set up dma mapping for controller drivers that might
900 * use DMA ... though they may fall back to PIO
901 */
902 if (dma_dev) {
903 /* never invalidate whole *shared* pages ... */
904 if ((sg->offset != 0 || length != PAGE_SIZE)
905 && dir == DMA_FROM_DEVICE)
906 dir = DMA_BIDIRECTIONAL;
907
908 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
909 PAGE_SIZE, dir);
910 if (dma_mapping_error(dma_dev, dma_addr)) {
911 data->error = -EFAULT;
912 break;
913 }
914 if (direction == DMA_TO_DEVICE)
915 t->tx_dma = dma_addr + sg->offset;
916 else
917 t->rx_dma = dma_addr + sg->offset;
918 }
919
920 /* allow pio too; we don't allow highmem */
921 kmap_addr = kmap(sg_page(sg));
922 if (direction == DMA_TO_DEVICE)
923 t->tx_buf = kmap_addr + sg->offset;
924 else
925 t->rx_buf = kmap_addr + sg->offset;
926
927 /* transfer each block, and update request status */
928 while (length) {
929 t->len = min(length, blk_size);
930
931 dev_dbg(&host->spi->dev,
932 " mmc_spi: %s block, %d bytes\n",
933 (direction == DMA_TO_DEVICE) ? "write" : "read",
934 t->len);
935
936 if (direction == DMA_TO_DEVICE)
937 status = mmc_spi_writeblock(host, t, timeout);
938 else
939 status = mmc_spi_readblock(host, t, timeout);
940 if (status < 0)
941 break;
942
943 data->bytes_xfered += t->len;
944 length -= t->len;
945
946 if (!multiple)
947 break;
948 }
949
950 /* discard mappings */
951 if (direction == DMA_FROM_DEVICE)
952 flush_kernel_dcache_page(sg_page(sg));
953 kunmap(sg_page(sg));
954 if (dma_dev)
955 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
956
957 if (status < 0) {
958 data->error = status;
959 dev_dbg(&spi->dev, "%s status %d\n",
960 (direction == DMA_TO_DEVICE) ? "write" : "read",
961 status);
962 break;
963 }
964 }
965
966 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
967 * can be issued before multiblock writes. Unlike its more widely
968 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
969 * that can affect the STOP_TRAN logic. Complete (and current)
970 * MMC specs should sort that out before Linux starts using CMD23.
971 */
972 if (direction == DMA_TO_DEVICE && multiple) {
973 struct scratch *scratch = host->data;
974 int tmp;
975 const unsigned statlen = sizeof(scratch->status);
976
977 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
978
979 /* Tweak the per-block message we set up earlier by morphing
980 * it to hold single buffer with the token followed by some
981 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
982 * "not busy any longer" status, and leave chip selected.
983 */
984 INIT_LIST_HEAD(&host->m.transfers);
985 list_add(&host->early_status.transfer_list,
986 &host->m.transfers);
987
988 memset(scratch->status, 0xff, statlen);
989 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
990
991 host->early_status.tx_buf = host->early_status.rx_buf;
992 host->early_status.tx_dma = host->early_status.rx_dma;
993 host->early_status.len = statlen;
994
995 if (host->dma_dev)
996 dma_sync_single_for_device(host->dma_dev,
997 host->data_dma, sizeof(*scratch),
998 DMA_BIDIRECTIONAL);
999
1000 tmp = spi_sync_locked(spi, &host->m);
1001
1002 if (host->dma_dev)
1003 dma_sync_single_for_cpu(host->dma_dev,
1004 host->data_dma, sizeof(*scratch),
1005 DMA_BIDIRECTIONAL);
1006
1007 if (tmp < 0) {
1008 if (!data->error)
1009 data->error = tmp;
1010 return;
1011 }
1012
1013 /* Ideally we collected "not busy" status with one I/O,
1014 * avoiding wasteful byte-at-a-time scanning... but more
1015 * I/O is often needed.
1016 */
1017 for (tmp = 2; tmp < statlen; tmp++) {
1018 if (scratch->status[tmp] != 0)
1019 return;
1020 }
1021 tmp = mmc_spi_wait_unbusy(host, timeout);
1022 if (tmp < 0 && !data->error)
1023 data->error = tmp;
1024 }
1025}
1026
1027/****************************************************************************/
1028
1029/*
1030 * MMC driver implementation -- the interface to the MMC stack
1031 */
1032
1033static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034{
1035 struct mmc_spi_host *host = mmc_priv(mmc);
1036 int status = -EINVAL;
1037 int crc_retry = 5;
1038 struct mmc_command stop;
1039
1040#ifdef DEBUG
1041 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1042 {
1043 struct mmc_command *cmd;
1044 int invalid = 0;
1045
1046 cmd = mrq->cmd;
1047 if (!mmc_spi_resp_type(cmd)) {
1048 dev_dbg(&host->spi->dev, "bogus command\n");
1049 cmd->error = -EINVAL;
1050 invalid = 1;
1051 }
1052
1053 cmd = mrq->stop;
1054 if (cmd && !mmc_spi_resp_type(cmd)) {
1055 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1056 cmd->error = -EINVAL;
1057 invalid = 1;
1058 }
1059
1060 if (invalid) {
1061 dump_stack();
1062 mmc_request_done(host->mmc, mrq);
1063 return;
1064 }
1065 }
1066#endif
1067
1068 /* request exclusive bus access */
1069 spi_bus_lock(host->spi->master);
1070
1071crc_recover:
1072 /* issue command; then optionally data and stop */
1073 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1074 if (status == 0 && mrq->data) {
1075 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1076
1077 /*
1078 * The SPI bus is not always reliable for large data transfers.
1079 * If an occasional crc error is reported by the SD device with
1080 * data read/write over SPI, it may be recovered by repeating
1081 * the last SD command again. The retry count is set to 5 to
1082 * ensure the driver passes stress tests.
1083 */
1084 if (mrq->data->error == -EILSEQ && crc_retry) {
1085 stop.opcode = MMC_STOP_TRANSMISSION;
1086 stop.arg = 0;
1087 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1088 status = mmc_spi_command_send(host, mrq, &stop, 0);
1089 crc_retry--;
1090 mrq->data->error = 0;
1091 goto crc_recover;
1092 }
1093
1094 if (mrq->stop)
1095 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096 else
1097 mmc_cs_off(host);
1098 }
1099
1100 /* release the bus */
1101 spi_bus_unlock(host->spi->master);
1102
1103 mmc_request_done(host->mmc, mrq);
1104}
1105
1106/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107 *
1108 * NOTE that here we can't know that the card has just been powered up;
1109 * not all MMC/SD sockets support power switching.
1110 *
1111 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112 * this doesn't seem to do the right thing at all...
1113 */
1114static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115{
1116 /* Try to be very sure any previous command has completed;
1117 * wait till not-busy, skip debris from any old commands.
1118 */
1119 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1120 mmc_spi_readbytes(host, 10);
1121
1122 /*
1123 * Do a burst with chipselect active-high. We need to do this to
1124 * meet the requirement of 74 clock cycles with both chipselect
1125 * and CMD (MOSI) high before CMD0 ... after the card has been
1126 * powered up to Vdd(min), and so is ready to take commands.
1127 *
1128 * Some cards are particularly needy of this (e.g. Viking "SD256")
1129 * while most others don't seem to care.
1130 *
1131 * Note that this is one of the places MMC/SD plays games with the
1132 * SPI protocol. Another is that when chipselect is released while
1133 * the card returns BUSY status, the clock must issue several cycles
1134 * with chipselect high before the card will stop driving its output.
1135 *
1136 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1137 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1138 * inverted by gpiolib, so if we want to ascertain to drive it high
1139 * we should toggle the default with an XOR as we do here.
1140 */
1141 host->spi->mode ^= SPI_CS_HIGH;
1142 if (spi_setup(host->spi) != 0) {
1143 /* Just warn; most cards work without it. */
1144 dev_warn(&host->spi->dev,
1145 "can't change chip-select polarity\n");
1146 host->spi->mode ^= SPI_CS_HIGH;
1147 } else {
1148 mmc_spi_readbytes(host, 18);
1149
1150 host->spi->mode ^= SPI_CS_HIGH;
1151 if (spi_setup(host->spi) != 0) {
1152 /* Wot, we can't get the same setup we had before? */
1153 dev_err(&host->spi->dev,
1154 "can't restore chip-select polarity\n");
1155 }
1156 }
1157}
1158
1159static char *mmc_powerstring(u8 power_mode)
1160{
1161 switch (power_mode) {
1162 case MMC_POWER_OFF: return "off";
1163 case MMC_POWER_UP: return "up";
1164 case MMC_POWER_ON: return "on";
1165 }
1166 return "?";
1167}
1168
1169static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1170{
1171 struct mmc_spi_host *host = mmc_priv(mmc);
1172
1173 if (host->power_mode != ios->power_mode) {
1174 int canpower;
1175
1176 canpower = host->pdata && host->pdata->setpower;
1177
1178 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1179 mmc_powerstring(ios->power_mode),
1180 ios->vdd,
1181 canpower ? ", can switch" : "");
1182
1183 /* switch power on/off if possible, accounting for
1184 * max 250msec powerup time if needed.
1185 */
1186 if (canpower) {
1187 switch (ios->power_mode) {
1188 case MMC_POWER_OFF:
1189 case MMC_POWER_UP:
1190 host->pdata->setpower(&host->spi->dev,
1191 ios->vdd);
1192 if (ios->power_mode == MMC_POWER_UP)
1193 msleep(host->powerup_msecs);
1194 }
1195 }
1196
1197 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1198 if (ios->power_mode == MMC_POWER_ON)
1199 mmc_spi_initsequence(host);
1200
1201 /* If powering down, ground all card inputs to avoid power
1202 * delivery from data lines! On a shared SPI bus, this
1203 * will probably be temporary; 6.4.2 of the simplified SD
1204 * spec says this must last at least 1msec.
1205 *
1206 * - Clock low means CPOL 0, e.g. mode 0
1207 * - MOSI low comes from writing zero
1208 * - Chipselect is usually active low...
1209 */
1210 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1211 int mres;
1212 u8 nullbyte = 0;
1213
1214 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1215 mres = spi_setup(host->spi);
1216 if (mres < 0)
1217 dev_dbg(&host->spi->dev,
1218 "switch to SPI mode 0 failed\n");
1219
1220 if (spi_write(host->spi, &nullbyte, 1) < 0)
1221 dev_dbg(&host->spi->dev,
1222 "put spi signals to low failed\n");
1223
1224 /*
1225 * Now clock should be low due to spi mode 0;
1226 * MOSI should be low because of written 0x00;
1227 * chipselect should be low (it is active low)
1228 * power supply is off, so now MMC is off too!
1229 *
1230 * FIXME no, chipselect can be high since the
1231 * device is inactive and SPI_CS_HIGH is clear...
1232 */
1233 msleep(10);
1234 if (mres == 0) {
1235 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1236 mres = spi_setup(host->spi);
1237 if (mres < 0)
1238 dev_dbg(&host->spi->dev,
1239 "switch back to SPI mode 3 failed\n");
1240 }
1241 }
1242
1243 host->power_mode = ios->power_mode;
1244 }
1245
1246 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1247 int status;
1248
1249 host->spi->max_speed_hz = ios->clock;
1250 status = spi_setup(host->spi);
1251 dev_dbg(&host->spi->dev,
1252 "mmc_spi: clock to %d Hz, %d\n",
1253 host->spi->max_speed_hz, status);
1254 }
1255}
1256
1257static const struct mmc_host_ops mmc_spi_ops = {
1258 .request = mmc_spi_request,
1259 .set_ios = mmc_spi_set_ios,
1260 .get_ro = mmc_gpio_get_ro,
1261 .get_cd = mmc_gpio_get_cd,
1262};
1263
1264
1265/****************************************************************************/
1266
1267/*
1268 * SPI driver implementation
1269 */
1270
1271static irqreturn_t
1272mmc_spi_detect_irq(int irq, void *mmc)
1273{
1274 struct mmc_spi_host *host = mmc_priv(mmc);
1275 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1276
1277 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1278 return IRQ_HANDLED;
1279}
1280
1281#ifdef CONFIG_HAS_DMA
1282static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1283{
1284 struct spi_device *spi = host->spi;
1285 struct device *dev;
1286
1287 if (!spi->master->dev.parent->dma_mask)
1288 return 0;
1289
1290 dev = spi->master->dev.parent;
1291
1292 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1293 DMA_TO_DEVICE);
1294 if (dma_mapping_error(dev, host->ones_dma))
1295 return -ENOMEM;
1296
1297 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1298 DMA_BIDIRECTIONAL);
1299 if (dma_mapping_error(dev, host->data_dma)) {
1300 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1301 DMA_TO_DEVICE);
1302 return -ENOMEM;
1303 }
1304
1305 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1306 DMA_BIDIRECTIONAL);
1307
1308 host->dma_dev = dev;
1309 return 0;
1310}
1311
1312static void mmc_spi_dma_free(struct mmc_spi_host *host)
1313{
1314 if (!host->dma_dev)
1315 return;
1316
1317 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1318 DMA_TO_DEVICE);
1319 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1320 DMA_BIDIRECTIONAL);
1321}
1322#else
1323static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1324static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1325#endif
1326
1327static int mmc_spi_probe(struct spi_device *spi)
1328{
1329 void *ones;
1330 struct mmc_host *mmc;
1331 struct mmc_spi_host *host;
1332 int status;
1333 bool has_ro = false;
1334
1335 /* We rely on full duplex transfers, mostly to reduce
1336 * per-transfer overheads (by making fewer transfers).
1337 */
1338 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1339 return -EINVAL;
1340
1341 /* MMC and SD specs only seem to care that sampling is on the
1342 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1343 * should be legit. We'll use mode 0 since the steady state is 0,
1344 * which is appropriate for hotplugging, unless the platform data
1345 * specify mode 3 (if hardware is not compatible to mode 0).
1346 */
1347 if (spi->mode != SPI_MODE_3)
1348 spi->mode = SPI_MODE_0;
1349 spi->bits_per_word = 8;
1350
1351 status = spi_setup(spi);
1352 if (status < 0) {
1353 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1354 spi->mode, spi->max_speed_hz / 1000,
1355 status);
1356 return status;
1357 }
1358
1359 /* We need a supply of ones to transmit. This is the only time
1360 * the CPU touches these, so cache coherency isn't a concern.
1361 *
1362 * NOTE if many systems use more than one MMC-over-SPI connector
1363 * it'd save some memory to share this. That's evidently rare.
1364 */
1365 status = -ENOMEM;
1366 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1367 if (!ones)
1368 goto nomem;
1369 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1370
1371 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1372 if (!mmc)
1373 goto nomem;
1374
1375 mmc->ops = &mmc_spi_ops;
1376 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1377 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1378 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1379 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1380
1381 mmc->caps = MMC_CAP_SPI;
1382
1383 /* SPI doesn't need the lowspeed device identification thing for
1384 * MMC or SD cards, since it never comes up in open drain mode.
1385 * That's good; some SPI masters can't handle very low speeds!
1386 *
1387 * However, low speed SDIO cards need not handle over 400 KHz;
1388 * that's the only reason not to use a few MHz for f_min (until
1389 * the upper layer reads the target frequency from the CSD).
1390 */
1391 mmc->f_min = 400000;
1392 mmc->f_max = spi->max_speed_hz;
1393
1394 host = mmc_priv(mmc);
1395 host->mmc = mmc;
1396 host->spi = spi;
1397
1398 host->ones = ones;
1399
1400 /* Platform data is used to hook up things like card sensing
1401 * and power switching gpios.
1402 */
1403 host->pdata = mmc_spi_get_pdata(spi);
1404 if (host->pdata)
1405 mmc->ocr_avail = host->pdata->ocr_mask;
1406 if (!mmc->ocr_avail) {
1407 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1408 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1409 }
1410 if (host->pdata && host->pdata->setpower) {
1411 host->powerup_msecs = host->pdata->powerup_msecs;
1412 if (!host->powerup_msecs || host->powerup_msecs > 250)
1413 host->powerup_msecs = 250;
1414 }
1415
1416 dev_set_drvdata(&spi->dev, mmc);
1417
1418 /* preallocate dma buffers */
1419 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1420 if (!host->data)
1421 goto fail_nobuf1;
1422
1423 status = mmc_spi_dma_alloc(host);
1424 if (status)
1425 goto fail_dma;
1426
1427 /* setup message for status/busy readback */
1428 spi_message_init(&host->readback);
1429 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1430
1431 spi_message_add_tail(&host->status, &host->readback);
1432 host->status.tx_buf = host->ones;
1433 host->status.tx_dma = host->ones_dma;
1434 host->status.rx_buf = &host->data->status;
1435 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1436 host->status.cs_change = 1;
1437
1438 /* register card detect irq */
1439 if (host->pdata && host->pdata->init) {
1440 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1441 if (status != 0)
1442 goto fail_glue_init;
1443 }
1444
1445 /* pass platform capabilities, if any */
1446 if (host->pdata) {
1447 mmc->caps |= host->pdata->caps;
1448 mmc->caps2 |= host->pdata->caps2;
1449 }
1450
1451 status = mmc_add_host(mmc);
1452 if (status != 0)
1453 goto fail_add_host;
1454
1455 /*
1456 * Index 0 is card detect
1457 * Old boardfiles were specifying 1 ms as debounce
1458 */
1459 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1460 if (status == -EPROBE_DEFER)
1461 goto fail_add_host;
1462 if (!status) {
1463 /*
1464 * The platform has a CD GPIO signal that may support
1465 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1466 * if polling is needed or not.
1467 */
1468 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1469 mmc_gpiod_request_cd_irq(mmc);
1470 }
1471 mmc_detect_change(mmc, 0);
1472
1473 /* Index 1 is write protect/read only */
1474 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1475 if (status == -EPROBE_DEFER)
1476 goto fail_add_host;
1477 if (!status)
1478 has_ro = true;
1479
1480 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1481 dev_name(&mmc->class_dev),
1482 host->dma_dev ? "" : ", no DMA",
1483 has_ro ? "" : ", no WP",
1484 (host->pdata && host->pdata->setpower)
1485 ? "" : ", no poweroff",
1486 (mmc->caps & MMC_CAP_NEEDS_POLL)
1487 ? ", cd polling" : "");
1488 return 0;
1489
1490fail_add_host:
1491 mmc_remove_host(mmc);
1492fail_glue_init:
1493 mmc_spi_dma_free(host);
1494fail_dma:
1495 kfree(host->data);
1496fail_nobuf1:
1497 mmc_free_host(mmc);
1498 mmc_spi_put_pdata(spi);
1499nomem:
1500 kfree(ones);
1501 return status;
1502}
1503
1504
1505static int mmc_spi_remove(struct spi_device *spi)
1506{
1507 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1508 struct mmc_spi_host *host = mmc_priv(mmc);
1509
1510 /* prevent new mmc_detect_change() calls */
1511 if (host->pdata && host->pdata->exit)
1512 host->pdata->exit(&spi->dev, mmc);
1513
1514 mmc_remove_host(mmc);
1515
1516 mmc_spi_dma_free(host);
1517 kfree(host->data);
1518 kfree(host->ones);
1519
1520 spi->max_speed_hz = mmc->f_max;
1521 mmc_free_host(mmc);
1522 mmc_spi_put_pdata(spi);
1523 return 0;
1524}
1525
1526static const struct of_device_id mmc_spi_of_match_table[] = {
1527 { .compatible = "mmc-spi-slot", },
1528 {},
1529};
1530MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1531
1532static struct spi_driver mmc_spi_driver = {
1533 .driver = {
1534 .name = "mmc_spi",
1535 .of_match_table = mmc_spi_of_match_table,
1536 },
1537 .probe = mmc_spi_probe,
1538 .remove = mmc_spi_remove,
1539};
1540
1541module_spi_driver(mmc_spi_driver);
1542
1543MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1544MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545MODULE_LICENSE("GPL");
1546MODULE_ALIAS("spi:mmc_spi");