Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28#include <drm/drmP.h>
 
 
 
  29#include <drm/amdgpu_drm.h>
  30#include "amdgpu.h"
  31#include "amdgpu_trace.h"
 
 
 
  32
  33/*
  34 * GPUVM
 
  35 * GPUVM is similar to the legacy gart on older asics, however
  36 * rather than there being a single global gart table
  37 * for the entire GPU, there are multiple VM page tables active
  38 * at any given time.  The VM page tables can contain a mix
  39 * vram pages and system memory pages and system memory pages
  40 * can be mapped as snooped (cached system pages) or unsnooped
  41 * (uncached system pages).
  42 * Each VM has an ID associated with it and there is a page table
  43 * associated with each VMID.  When execting a command buffer,
  44 * the kernel tells the the ring what VMID to use for that command
  45 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  46 * The userspace drivers maintain their own address space and the kernel
  47 * sets up their pages tables accordingly when they submit their
  48 * command buffers and a VMID is assigned.
  49 * Cayman/Trinity support up to 8 active VMs at any given time;
  50 * SI supports 16.
  51 */
  52
  53/* Special value that no flush is necessary */
  54#define AMDGPU_VM_NO_FLUSH (~0ll)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56/**
  57 * amdgpu_vm_num_pde - return the number of page directory entries
  58 *
  59 * @adev: amdgpu_device pointer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 *
  61 * Calculate the number of page directory entries.
 
 
 
 
  62 */
  63static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
  64{
  65	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
 
 
 
 
 
 
  66}
  67
  68/**
  69 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
  70 *
  71 * @adev: amdgpu_device pointer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72 *
  73 * Calculate the size of the page directory in bytes.
  74 */
  75static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
 
  76{
  77	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
 
 
 
 
 
 
 
 
  78}
  79
 
 
 
 
 
 
 
 
 
  80/**
  81 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
  82 *
  83 * @vm: vm providing the BOs
  84 * @validated: head of validation list
  85 * @entry: entry to add
  86 *
  87 * Add the page directory to the list of BOs to
  88 * validate for command submission.
  89 */
  90void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
  91			 struct list_head *validated,
  92			 struct amdgpu_bo_list_entry *entry)
  93{
  94	entry->robj = vm->page_directory;
  95	entry->priority = 0;
  96	entry->tv.bo = &vm->page_directory->tbo;
  97	entry->tv.shared = true;
 
  98	entry->user_pages = NULL;
  99	list_add(&entry->tv.head, validated);
 100}
 101
 102/**
 103 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104 *
 
 105 * @vm: vm providing the BOs
 106 * @duplicates: head of duplicates list
 107 *
 108 * Add the page directory to the BO duplicates list
 109 * for command submission.
 110 */
 111void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
 
 112{
 113	unsigned i;
 
 
 
 
 
 
 
 
 
 114
 115	/* add the vm page table to the list */
 116	for (i = 0; i <= vm->max_pde_used; ++i) {
 117		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
 118
 119		if (!entry->robj)
 120			continue;
 121
 122		list_add(&entry->tv.head, duplicates);
 
 
 
 123	}
 
 124
 
 125}
 126
 127/**
 128 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
 129 *
 130 * @adev: amdgpu device instance
 131 * @vm: vm providing the BOs
 
 
 132 *
 133 * Move the PT BOs to the tail of the LRU.
 
 
 
 134 */
 135void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
 136				  struct amdgpu_vm *vm)
 
 137{
 138	struct ttm_bo_global *glob = adev->mman.bdev.glob;
 139	unsigned i;
 140
 141	spin_lock(&glob->lru_lock);
 142	for (i = 0; i <= vm->max_pde_used; ++i) {
 143		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
 144
 145		if (!entry->robj)
 146			continue;
 
 
 
 
 147
 148		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
 
 
 
 
 
 149	}
 150	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 151}
 152
 153/**
 154 * amdgpu_vm_grab_id - allocate the next free VMID
 155 *
 156 * @vm: vm to allocate id for
 157 * @ring: ring we want to submit job to
 158 * @sync: sync object where we add dependencies
 159 * @fence: fence protecting ID from reuse
 160 *
 161 * Allocate an id for the vm, adding fences to the sync obj as necessary.
 
 
 
 162 */
 163int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
 164		      struct amdgpu_sync *sync, struct fence *fence,
 165		      unsigned *vm_id, uint64_t *vm_pd_addr)
 166{
 167	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
 168	struct amdgpu_device *adev = ring->adev;
 169	struct amdgpu_vm_id *id = &vm->ids[ring->idx];
 170	struct fence *updates = sync->last_vm_update;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171	int r;
 172
 173	mutex_lock(&adev->vm_manager.lock);
 
 
 
 
 
 
 
 174
 175	/* check if the id is still valid */
 176	if (id->mgr_id) {
 177		struct fence *flushed = id->flushed_updates;
 178		bool is_later;
 179		long owner;
 180
 181		if (!flushed)
 182			is_later = true;
 183		else if (!updates)
 184			is_later = false;
 185		else
 186			is_later = fence_is_later(updates, flushed);
 187
 188		owner = atomic_long_read(&id->mgr_id->owner);
 189		if (!is_later && owner == (long)id &&
 190		    pd_addr == id->pd_gpu_addr) {
 191
 192			r = amdgpu_sync_fence(ring->adev, sync,
 193					      id->mgr_id->active);
 194			if (r) {
 195				mutex_unlock(&adev->vm_manager.lock);
 196				return r;
 197			}
 198
 199			fence_put(id->mgr_id->active);
 200			id->mgr_id->active = fence_get(fence);
 201
 202			list_move_tail(&id->mgr_id->list,
 203				       &adev->vm_manager.ids_lru);
 
 
 
 
 
 
 
 204
 205			*vm_id = id->mgr_id - adev->vm_manager.ids;
 206			*vm_pd_addr = AMDGPU_VM_NO_FLUSH;
 207			trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id,
 208						*vm_pd_addr);
 209
 210			mutex_unlock(&adev->vm_manager.lock);
 211			return 0;
 212		}
 
 
 213	}
 214
 215	id->mgr_id = list_first_entry(&adev->vm_manager.ids_lru,
 216				      struct amdgpu_vm_manager_id,
 217				      list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	r = amdgpu_sync_fence(ring->adev, sync, id->mgr_id->active);
 220	if (!r) {
 221		fence_put(id->mgr_id->active);
 222		id->mgr_id->active = fence_get(fence);
 223
 224		fence_put(id->flushed_updates);
 225		id->flushed_updates = fence_get(updates);
 226
 227		id->pd_gpu_addr = pd_addr;
 
 228
 229		list_move_tail(&id->mgr_id->list, &adev->vm_manager.ids_lru);
 230		atomic_long_set(&id->mgr_id->owner, (long)id);
 
 
 
 
 
 
 
 
 
 231
 232		*vm_id = id->mgr_id - adev->vm_manager.ids;
 233		*vm_pd_addr = pd_addr;
 234		trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
 
 235	}
 236
 237	mutex_unlock(&adev->vm_manager.lock);
 238	return r;
 239}
 240
 241/**
 242 * amdgpu_vm_flush - hardware flush the vm
 243 *
 244 * @ring: ring to use for flush
 245 * @vm_id: vmid number to use
 246 * @pd_addr: address of the page directory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247 *
 248 * Emit a VM flush when it is necessary.
 
 
 
 
 
 
 
 
 
 249 */
 250void amdgpu_vm_flush(struct amdgpu_ring *ring,
 251		     unsigned vm_id, uint64_t pd_addr,
 252		     uint32_t gds_base, uint32_t gds_size,
 253		     uint32_t gws_base, uint32_t gws_size,
 254		     uint32_t oa_base, uint32_t oa_size)
 255{
 256	struct amdgpu_device *adev = ring->adev;
 257	struct amdgpu_vm_manager_id *mgr_id = &adev->vm_manager.ids[vm_id];
 258	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
 259		mgr_id->gds_base != gds_base ||
 260		mgr_id->gds_size != gds_size ||
 261		mgr_id->gws_base != gws_base ||
 262		mgr_id->gws_size != gws_size ||
 263		mgr_id->oa_base != oa_base ||
 264		mgr_id->oa_size != oa_size);
 265
 266	if (ring->funcs->emit_pipeline_sync && (
 267	    pd_addr != AMDGPU_VM_NO_FLUSH || gds_switch_needed))
 268		amdgpu_ring_emit_pipeline_sync(ring);
 269
 270	if (pd_addr != AMDGPU_VM_NO_FLUSH) {
 271		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id);
 272		amdgpu_ring_emit_vm_flush(ring, vm_id, pd_addr);
 
 
 
 273	}
 274
 275	if (gds_switch_needed) {
 276		mgr_id->gds_base = gds_base;
 277		mgr_id->gds_size = gds_size;
 278		mgr_id->gws_base = gws_base;
 279		mgr_id->gws_size = gws_size;
 280		mgr_id->oa_base = oa_base;
 281		mgr_id->oa_size = oa_size;
 282		amdgpu_ring_emit_gds_switch(ring, vm_id,
 283					    gds_base, gds_size,
 284					    gws_base, gws_size,
 285					    oa_base, oa_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286	}
 
 
 287}
 288
 289/**
 290 * amdgpu_vm_reset_id - reset VMID to zero
 291 *
 292 * @adev: amdgpu device structure
 293 * @vm_id: vmid number to use
 
 294 *
 295 * Reset saved GDW, GWS and OA to force switch on next flush.
 296 */
 297void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
 
 
 298{
 299	struct amdgpu_vm_manager_id *mgr_id = &adev->vm_manager.ids[vm_id];
 
 
 
 
 
 
 300
 301	mgr_id->gds_base = 0;
 302	mgr_id->gds_size = 0;
 303	mgr_id->gws_base = 0;
 304	mgr_id->gws_size = 0;
 305	mgr_id->oa_base = 0;
 306	mgr_id->oa_size = 0;
 307}
 308
 309/**
 310 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
 311 *
 312 * @vm: requested vm
 313 * @bo: requested buffer object
 314 *
 315 * Find @bo inside the requested vm.
 316 * Search inside the @bos vm list for the requested vm
 317 * Returns the found bo_va or NULL if none is found
 318 *
 319 * Object has to be reserved!
 320 */
 321struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
 322				       struct amdgpu_bo *bo)
 323{
 324	struct amdgpu_bo_va *bo_va;
 
 
 
 325
 326	list_for_each_entry(bo_va, &bo->va, bo_list) {
 327		if (bo_va->vm == vm) {
 328			return bo_va;
 329		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	}
 331	return NULL;
 332}
 333
 334/**
 335 * amdgpu_vm_update_pages - helper to call the right asic function
 336 *
 337 * @adev: amdgpu_device pointer
 338 * @gtt: GART instance to use for mapping
 339 * @gtt_flags: GTT hw access flags
 340 * @ib: indirect buffer to fill with commands
 341 * @pe: addr of the page entry
 342 * @addr: dst addr to write into pe
 343 * @count: number of page entries to update
 344 * @incr: increase next addr by incr bytes
 345 * @flags: hw access flags
 346 *
 347 * Traces the parameters and calls the right asic functions
 348 * to setup the page table using the DMA.
 349 */
 350static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
 351				   struct amdgpu_gart *gtt,
 352				   uint32_t gtt_flags,
 353				   struct amdgpu_ib *ib,
 354				   uint64_t pe, uint64_t addr,
 355				   unsigned count, uint32_t incr,
 356				   uint32_t flags)
 357{
 358	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359
 360	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
 361		uint64_t src = gtt->table_addr + (addr >> 12) * 8;
 362		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
 363
 364	} else if (gtt) {
 365		dma_addr_t *pages_addr = gtt->pages_addr;
 366		amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
 367				    count, incr, flags);
 368
 369	} else if (count < 3) {
 370		amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
 371				    count, incr, flags);
 372
 373	} else {
 374		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
 375				      count, incr, flags);
 376	}
 377}
 378
 379/**
 380 * amdgpu_vm_clear_bo - initially clear the page dir/table
 381 *
 382 * @adev: amdgpu_device pointer
 383 * @bo: bo to clear
 
 
 
 384 *
 385 * need to reserve bo first before calling it.
 
 386 */
 387static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 388			      struct amdgpu_vm *vm,
 389			      struct amdgpu_bo *bo)
 390{
 391	struct amdgpu_ring *ring;
 392	struct fence *fence = NULL;
 393	struct amdgpu_job *job;
 394	unsigned entries;
 395	uint64_t addr;
 
 
 
 
 
 
 
 
 
 
 
 396	int r;
 397
 398	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
 
 399
 400	r = reservation_object_reserve_shared(bo->tbo.resv);
 401	if (r)
 402		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403
 404	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
 405	if (r)
 406		goto error;
 407
 408	addr = amdgpu_bo_gpu_offset(bo);
 409	entries = amdgpu_bo_size(bo) / 8;
 410
 411	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
 412	if (r)
 413		goto error;
 414
 415	amdgpu_vm_update_pages(adev, NULL, 0, &job->ibs[0], addr, 0, entries,
 416			       0, 0);
 417	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 418
 419	WARN_ON(job->ibs[0].length_dw > 64);
 420	r = amdgpu_job_submit(job, ring, &vm->entity,
 421			      AMDGPU_FENCE_OWNER_VM, &fence);
 422	if (r)
 423		goto error_free;
 
 
 
 
 424
 425	amdgpu_bo_fence(bo, fence, true);
 426	fence_put(fence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	return 0;
 
 428
 429error_free:
 430	amdgpu_job_free(job);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431
 432error:
 433	return r;
 
 
 
 
 
 434}
 435
 436/**
 437 * amdgpu_vm_map_gart - Resolve gart mapping of addr
 438 *
 439 * @pages_addr: optional DMA address to use for lookup
 440 * @addr: the unmapped addr
 441 *
 442 * Look up the physical address of the page that the pte resolves
 443 * to and return the pointer for the page table entry.
 
 
 
 444 */
 445uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
 446{
 447	uint64_t result;
 448
 449	if (pages_addr) {
 450		/* page table offset */
 451		result = pages_addr[addr >> PAGE_SHIFT];
 452
 453		/* in case cpu page size != gpu page size*/
 454		result |= addr & (~PAGE_MASK);
 455
 456	} else {
 457		/* No mapping required */
 458		result = addr;
 459	}
 460
 461	result &= 0xFFFFFFFFFFFFF000ULL;
 462
 463	return result;
 464}
 465
 466/**
 467 * amdgpu_vm_update_pdes - make sure that page directory is valid
 468 *
 469 * @adev: amdgpu_device pointer
 470 * @vm: requested vm
 471 * @start: start of GPU address range
 472 * @end: end of GPU address range
 473 *
 474 * Allocates new page tables if necessary
 475 * and updates the page directory.
 476 * Returns 0 for success, error for failure.
 477 */
 478int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
 479				    struct amdgpu_vm *vm)
 
 480{
 481	struct amdgpu_ring *ring;
 482	struct amdgpu_bo *pd = vm->page_directory;
 483	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
 484	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
 485	uint64_t last_pde = ~0, last_pt = ~0;
 486	unsigned count = 0, pt_idx, ndw;
 487	struct amdgpu_job *job;
 488	struct amdgpu_ib *ib;
 489	struct fence *fence = NULL;
 490
 491	int r;
 
 492
 493	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
 
 
 
 
 494
 495	/* padding, etc. */
 496	ndw = 64;
 
 
 
 
 
 
 
 
 
 
 
 497
 498	/* assume the worst case */
 499	ndw += vm->max_pde_used * 6;
 
 
 500
 501	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
 502	if (r)
 503		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505	ib = &job->ibs[0];
 
 506
 507	/* walk over the address space and update the page directory */
 508	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
 509		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
 510		uint64_t pde, pt;
 511
 512		if (bo == NULL)
 513			continue;
 
 514
 515		pt = amdgpu_bo_gpu_offset(bo);
 516		if (vm->page_tables[pt_idx].addr == pt)
 517			continue;
 518		vm->page_tables[pt_idx].addr = pt;
 519
 520		pde = pd_addr + pt_idx * 8;
 521		if (((last_pde + 8 * count) != pde) ||
 522		    ((last_pt + incr * count) != pt)) {
 523
 524			if (count) {
 525				amdgpu_vm_update_pages(adev, NULL, 0, ib,
 526						       last_pde, last_pt,
 527						       count, incr,
 528						       AMDGPU_PTE_VALID);
 529			}
 530
 531			count = 1;
 532			last_pde = pde;
 533			last_pt = pt;
 534		} else {
 535			++count;
 536		}
 537	}
 538
 539	if (count)
 540		amdgpu_vm_update_pages(adev, NULL, 0, ib, last_pde, last_pt,
 541				       count, incr, AMDGPU_PTE_VALID);
 
 542
 543	if (ib->length_dw != 0) {
 544		amdgpu_ring_pad_ib(ring, ib);
 545		amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
 546				 AMDGPU_FENCE_OWNER_VM);
 547		WARN_ON(ib->length_dw > ndw);
 548		r = amdgpu_job_submit(job, ring, &vm->entity,
 549				      AMDGPU_FENCE_OWNER_VM, &fence);
 550		if (r)
 551			goto error_free;
 552
 553		amdgpu_bo_fence(pd, fence, true);
 554		fence_put(vm->page_directory_fence);
 555		vm->page_directory_fence = fence_get(fence);
 556		fence_put(fence);
 
 
 
 
 
 
 557
 558	} else {
 559		amdgpu_job_free(job);
 560	}
 
 561
 562	return 0;
 
 
 563
 564error_free:
 565	amdgpu_job_free(job);
 566	return r;
 
 
 
 567}
 568
 569/**
 570 * amdgpu_vm_frag_ptes - add fragment information to PTEs
 571 *
 572 * @adev: amdgpu_device pointer
 573 * @gtt: GART instance to use for mapping
 574 * @gtt_flags: GTT hw mapping flags
 575 * @ib: IB for the update
 576 * @pe_start: first PTE to handle
 577 * @pe_end: last PTE to handle
 578 * @addr: addr those PTEs should point to
 579 * @flags: hw mapping flags
 
 
 
 
 580 */
 581static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
 582				struct amdgpu_gart *gtt,
 583				uint32_t gtt_flags,
 584				struct amdgpu_ib *ib,
 585				uint64_t pe_start, uint64_t pe_end,
 586				uint64_t addr, uint32_t flags)
 587{
 588	/**
 589	 * The MC L1 TLB supports variable sized pages, based on a fragment
 590	 * field in the PTE. When this field is set to a non-zero value, page
 591	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
 592	 * flags are considered valid for all PTEs within the fragment range
 593	 * and corresponding mappings are assumed to be physically contiguous.
 594	 *
 595	 * The L1 TLB can store a single PTE for the whole fragment,
 596	 * significantly increasing the space available for translation
 597	 * caching. This leads to large improvements in throughput when the
 598	 * TLB is under pressure.
 599	 *
 600	 * The L2 TLB distributes small and large fragments into two
 601	 * asymmetric partitions. The large fragment cache is significantly
 602	 * larger. Thus, we try to use large fragments wherever possible.
 603	 * Userspace can support this by aligning virtual base address and
 604	 * allocation size to the fragment size.
 
 
 
 605	 */
 
 606
 607	/* SI and newer are optimized for 64KB */
 608	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
 609	uint64_t frag_align = 0x80;
 610
 611	uint64_t frag_start = ALIGN(pe_start, frag_align);
 612	uint64_t frag_end = pe_end & ~(frag_align - 1);
 613
 614	unsigned count;
 615
 616	/* Abort early if there isn't anything to do */
 617	if (pe_start == pe_end)
 618		return;
 619
 620	/* system pages are non continuously */
 621	if (gtt || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
 622
 623		count = (pe_end - pe_start) / 8;
 624		amdgpu_vm_update_pages(adev, gtt, gtt_flags, ib, pe_start,
 625				       addr, count, AMDGPU_GPU_PAGE_SIZE,
 626				       flags);
 627		return;
 628	}
 629
 630	/* handle the 4K area at the beginning */
 631	if (pe_start != frag_start) {
 632		count = (frag_start - pe_start) / 8;
 633		amdgpu_vm_update_pages(adev, NULL, 0, ib, pe_start, addr,
 634				       count, AMDGPU_GPU_PAGE_SIZE, flags);
 635		addr += AMDGPU_GPU_PAGE_SIZE * count;
 636	}
 637
 638	/* handle the area in the middle */
 639	count = (frag_end - frag_start) / 8;
 640	amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_start, addr, count,
 641			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
 642
 643	/* handle the 4K area at the end */
 644	if (frag_end != pe_end) {
 645		addr += AMDGPU_GPU_PAGE_SIZE * count;
 646		count = (pe_end - frag_end) / 8;
 647		amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_end, addr,
 648				       count, AMDGPU_GPU_PAGE_SIZE, flags);
 649	}
 650}
 651
 652/**
 653 * amdgpu_vm_update_ptes - make sure that page tables are valid
 654 *
 655 * @adev: amdgpu_device pointer
 656 * @gtt: GART instance to use for mapping
 657 * @gtt_flags: GTT hw mapping flags
 658 * @vm: requested vm
 659 * @start: start of GPU address range
 660 * @end: end of GPU address range
 661 * @dst: destination address to map to
 662 * @flags: mapping flags
 663 *
 664 * Update the page tables in the range @start - @end.
 
 
 
 665 */
 666static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
 667				  struct amdgpu_gart *gtt,
 668				  uint32_t gtt_flags,
 669				  struct amdgpu_vm *vm,
 670				  struct amdgpu_ib *ib,
 671				  uint64_t start, uint64_t end,
 672				  uint64_t dst, uint32_t flags)
 673{
 674	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
 675
 676	uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
 677	uint64_t addr;
 678
 679	/* walk over the address space and update the page tables */
 680	for (addr = start; addr < end; ) {
 681		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
 682		struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
 683		unsigned nptes;
 684		uint64_t pe_start;
 685
 686		if ((addr & ~mask) == (end & ~mask))
 687			nptes = end - addr;
 688		else
 689			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
 
 
 690
 691		pe_start = amdgpu_bo_gpu_offset(pt);
 692		pe_start += (addr & mask) * 8;
 
 
 
 
 
 
 
 693
 694		if (last_pe_end != pe_start) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695
 696			amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
 697					    last_pe_start, last_pe_end,
 698					    last_dst, flags);
 
 
 
 
 
 
 
 
 699
 700			last_pe_start = pe_start;
 701			last_pe_end = pe_start + 8 * nptes;
 702			last_dst = dst;
 703		} else {
 704			last_pe_end += 8 * nptes;
 705		}
 706
 707		addr += nptes;
 708		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709	}
 710
 711	amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
 712			    last_pe_start, last_pe_end,
 713			    last_dst, flags);
 714}
 715
 716/**
 717 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
 718 *
 719 * @adev: amdgpu_device pointer
 720 * @gtt: GART instance to use for mapping
 721 * @gtt_flags: flags as they are used for GTT
 722 * @vm: requested vm
 
 
 
 723 * @start: start of mapped range
 724 * @last: last mapped entry
 725 * @flags: flags for the entries
 726 * @addr: addr to set the area to
 
 727 * @fence: optional resulting fence
 728 *
 729 * Fill in the page table entries between @start and @last.
 730 * Returns 0 for success, -EINVAL for failure.
 
 
 731 */
 732static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
 733				       struct amdgpu_gart *gtt,
 734				       uint32_t gtt_flags,
 735				       struct amdgpu_vm *vm,
 736				       uint64_t start, uint64_t last,
 737				       uint32_t flags, uint64_t addr,
 738				       struct fence **fence)
 
 739{
 740	struct amdgpu_ring *ring;
 741	void *owner = AMDGPU_FENCE_OWNER_VM;
 742	unsigned nptes, ncmds, ndw;
 743	struct amdgpu_job *job;
 744	struct amdgpu_ib *ib;
 745	struct fence *f = NULL;
 746	int r;
 747
 748	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
 749
 750	/* sync to everything on unmapping */
 751	if (!(flags & AMDGPU_PTE_VALID))
 752		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
 753
 754	nptes = last - start + 1;
 755
 756	/*
 757	 * reserve space for one command every (1 << BLOCK_SIZE)
 758	 *  entries or 2k dwords (whatever is smaller)
 759	 */
 760	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
 761
 762	/* padding, etc. */
 763	ndw = 64;
 764
 765	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
 766		/* only copy commands needed */
 767		ndw += ncmds * 7;
 768
 769	} else if (gtt) {
 770		/* header for write data commands */
 771		ndw += ncmds * 4;
 772
 773		/* body of write data command */
 774		ndw += nptes * 2;
 775
 776	} else {
 777		/* set page commands needed */
 778		ndw += ncmds * 10;
 779
 780		/* two extra commands for begin/end of fragment */
 781		ndw += 2 * 10;
 
 
 782	}
 783
 784	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
 785	if (r)
 786		return r;
 787
 788	ib = &job->ibs[0];
 789
 790	r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
 791			     owner);
 792	if (r)
 793		goto error_free;
 794
 795	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
 796	if (r)
 797		goto error_free;
 798
 799	amdgpu_vm_update_ptes(adev, gtt, gtt_flags, vm, ib, start, last + 1,
 800			      addr, flags);
 801
 802	amdgpu_ring_pad_ib(ring, ib);
 803	WARN_ON(ib->length_dw > ndw);
 804	r = amdgpu_job_submit(job, ring, &vm->entity,
 805			      AMDGPU_FENCE_OWNER_VM, &f);
 806	if (r)
 807		goto error_free;
 808
 809	amdgpu_bo_fence(vm->page_directory, f, true);
 810	if (fence) {
 811		fence_put(*fence);
 812		*fence = fence_get(f);
 813	}
 814	fence_put(f);
 815	return 0;
 816
 817error_free:
 818	amdgpu_job_free(job);
 819	return r;
 820}
 821
 822/**
 823 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
 824 *
 825 * @adev: amdgpu_device pointer
 826 * @gtt: GART instance to use for mapping
 
 827 * @vm: requested vm
 828 * @mapping: mapped range and flags to use for the update
 829 * @addr: addr to set the area to
 830 * @gtt_flags: flags as they are used for GTT
 
 831 * @fence: optional resulting fence
 832 *
 833 * Split the mapping into smaller chunks so that each update fits
 834 * into a SDMA IB.
 835 * Returns 0 for success, -EINVAL for failure.
 
 
 836 */
 837static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
 838				      struct amdgpu_gart *gtt,
 839				      uint32_t gtt_flags,
 840				      struct amdgpu_vm *vm,
 841				      struct amdgpu_bo_va_mapping *mapping,
 842				      uint64_t addr, struct fence **fence)
 
 
 
 843{
 844	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
 845
 846	uint64_t start = mapping->it.start;
 847	uint32_t flags = gtt_flags;
 848	int r;
 849
 850	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
 851	 * but in case of something, we filter the flags in first place
 852	 */
 853	if (!(mapping->flags & AMDGPU_PTE_READABLE))
 854		flags &= ~AMDGPU_PTE_READABLE;
 855	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
 856		flags &= ~AMDGPU_PTE_WRITEABLE;
 857
 
 
 
 858	trace_amdgpu_vm_bo_update(mapping);
 859
 860	addr += mapping->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	if (!gtt || ((gtt == &adev->gart) && (flags == gtt_flags)))
 863		return amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
 864						   start, mapping->it.last,
 865						   flags, addr, fence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867	while (start != mapping->it.last + 1) {
 868		uint64_t last;
 
 
 869
 870		last = min((uint64_t)mapping->it.last, start + max_size - 1);
 871		r = amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
 872						start, last, flags, addr,
 873						fence);
 874		if (r)
 875			return r;
 876
 
 
 
 
 
 877		start = last + 1;
 878		addr += max_size * AMDGPU_GPU_PAGE_SIZE;
 879	}
 880
 881	return 0;
 882}
 883
 884/**
 885 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
 886 *
 887 * @adev: amdgpu_device pointer
 888 * @bo_va: requested BO and VM object
 889 * @mem: ttm mem
 890 *
 891 * Fill in the page table entries for @bo_va.
 892 * Returns 0 for success, -EINVAL for failure.
 893 *
 894 * Object have to be reserved and mutex must be locked!
 
 895 */
 896int amdgpu_vm_bo_update(struct amdgpu_device *adev,
 897			struct amdgpu_bo_va *bo_va,
 898			struct ttm_mem_reg *mem)
 899{
 900	struct amdgpu_vm *vm = bo_va->vm;
 
 901	struct amdgpu_bo_va_mapping *mapping;
 902	struct amdgpu_gart *gtt = NULL;
 903	uint32_t flags;
 904	uint64_t addr;
 
 
 
 
 905	int r;
 906
 907	if (mem) {
 908		addr = (u64)mem->start << PAGE_SHIFT;
 909		switch (mem->mem_type) {
 910		case TTM_PL_TT:
 911			gtt = &bo_va->bo->adev->gart;
 912			break;
 913
 914		case TTM_PL_VRAM:
 915			addr += adev->vm_manager.vram_base_offset;
 916			break;
 917
 918		default:
 919			break;
 
 
 
 920		}
 
 
 
 
 
 
 
 
 
 
 921	} else {
 922		addr = 0;
 923	}
 924
 925	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
 
 
 
 
 
 
 
 
 926
 927	spin_lock(&vm->status_lock);
 928	if (!list_empty(&bo_va->vm_status))
 929		list_splice_init(&bo_va->valids, &bo_va->invalids);
 930	spin_unlock(&vm->status_lock);
 931
 932	list_for_each_entry(mapping, &bo_va->invalids, list) {
 933		r = amdgpu_vm_bo_split_mapping(adev, gtt, flags, vm, mapping, addr,
 934					       &bo_va->last_pt_update);
 
 935		if (r)
 936			return r;
 937	}
 938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	if (trace_amdgpu_vm_bo_mapping_enabled()) {
 940		list_for_each_entry(mapping, &bo_va->valids, list)
 941			trace_amdgpu_vm_bo_mapping(mapping);
 
 942
 943		list_for_each_entry(mapping, &bo_va->invalids, list)
 944			trace_amdgpu_vm_bo_mapping(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945	}
 
 946
 947	spin_lock(&vm->status_lock);
 948	list_splice_init(&bo_va->invalids, &bo_va->valids);
 949	list_del_init(&bo_va->vm_status);
 950	if (!mem)
 951		list_add(&bo_va->vm_status, &vm->cleared);
 952	spin_unlock(&vm->status_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 954	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955}
 956
 957/**
 958 * amdgpu_vm_clear_freed - clear freed BOs in the PT
 959 *
 960 * @adev: amdgpu_device pointer
 961 * @vm: requested vm
 
 
 962 *
 963 * Make sure all freed BOs are cleared in the PT.
 964 * Returns 0 for success.
 965 *
 966 * PTs have to be reserved and mutex must be locked!
 
 
 
 
 967 */
 968int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
 969			  struct amdgpu_vm *vm)
 
 970{
 
 971	struct amdgpu_bo_va_mapping *mapping;
 
 
 972	int r;
 973
 974	while (!list_empty(&vm->freed)) {
 975		mapping = list_first_entry(&vm->freed,
 976			struct amdgpu_bo_va_mapping, list);
 977		list_del(&mapping->list);
 978
 979		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, vm, mapping,
 980					       0, NULL);
 981		kfree(mapping);
 982		if (r)
 
 
 
 
 
 
 983			return r;
 
 
 984
 
 
 
 
 
 985	}
 
 986	return 0;
 987
 988}
 989
 990/**
 991 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
 992 *
 993 * @adev: amdgpu_device pointer
 994 * @vm: requested vm
 995 *
 996 * Make sure all invalidated BOs are cleared in the PT.
 997 * Returns 0 for success.
 998 *
 999 * PTs have to be reserved and mutex must be locked!
 
 
 
1000 */
1001int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1002			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1003{
1004	struct amdgpu_bo_va *bo_va = NULL;
1005	int r = 0;
 
 
 
 
 
 
 
 
 
1006
1007	spin_lock(&vm->status_lock);
1008	while (!list_empty(&vm->invalidated)) {
1009		bo_va = list_first_entry(&vm->invalidated,
1010			struct amdgpu_bo_va, vm_status);
1011		spin_unlock(&vm->status_lock);
 
 
 
 
 
 
 
 
1012
1013		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1014		if (r)
1015			return r;
1016
1017		spin_lock(&vm->status_lock);
 
 
1018	}
1019	spin_unlock(&vm->status_lock);
1020
1021	if (bo_va)
1022		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1023
1024	return r;
1025}
1026
1027/**
1028 * amdgpu_vm_bo_add - add a bo to a specific vm
1029 *
1030 * @adev: amdgpu_device pointer
1031 * @vm: requested vm
1032 * @bo: amdgpu buffer object
1033 *
1034 * Add @bo into the requested vm.
1035 * Add @bo to the list of bos associated with the vm
1036 * Returns newly added bo_va or NULL for failure
 
 
1037 *
1038 * Object has to be reserved!
1039 */
1040struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1041				      struct amdgpu_vm *vm,
1042				      struct amdgpu_bo *bo)
1043{
1044	struct amdgpu_bo_va *bo_va;
1045
1046	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1047	if (bo_va == NULL) {
1048		return NULL;
1049	}
1050	bo_va->vm = vm;
1051	bo_va->bo = bo;
1052	bo_va->ref_count = 1;
1053	INIT_LIST_HEAD(&bo_va->bo_list);
1054	INIT_LIST_HEAD(&bo_va->valids);
1055	INIT_LIST_HEAD(&bo_va->invalids);
1056	INIT_LIST_HEAD(&bo_va->vm_status);
1057
1058	list_add_tail(&bo_va->bo_list, &bo->va);
 
 
 
 
 
1059
1060	return bo_va;
1061}
1062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063/**
1064 * amdgpu_vm_bo_map - map bo inside a vm
1065 *
1066 * @adev: amdgpu_device pointer
1067 * @bo_va: bo_va to store the address
1068 * @saddr: where to map the BO
1069 * @offset: requested offset in the BO
 
1070 * @flags: attributes of pages (read/write/valid/etc.)
1071 *
1072 * Add a mapping of the BO at the specefied addr into the VM.
1073 * Returns 0 for success, error for failure.
 
 
1074 *
1075 * Object has to be reserved and unreserved outside!
1076 */
1077int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1078		     struct amdgpu_bo_va *bo_va,
1079		     uint64_t saddr, uint64_t offset,
1080		     uint64_t size, uint32_t flags)
1081{
1082	struct amdgpu_bo_va_mapping *mapping;
1083	struct amdgpu_vm *vm = bo_va->vm;
1084	struct interval_tree_node *it;
1085	unsigned last_pfn, pt_idx;
1086	uint64_t eaddr;
1087	int r;
1088
1089	/* validate the parameters */
1090	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1091	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1092		return -EINVAL;
1093
1094	/* make sure object fit at this offset */
1095	eaddr = saddr + size - 1;
1096	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1097		return -EINVAL;
1098
1099	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1100	if (last_pfn >= adev->vm_manager.max_pfn) {
1101		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1102			last_pfn, adev->vm_manager.max_pfn);
1103		return -EINVAL;
1104	}
1105
1106	saddr /= AMDGPU_GPU_PAGE_SIZE;
1107	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1108
1109	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1110	if (it) {
1111		struct amdgpu_bo_va_mapping *tmp;
1112		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1113		/* bo and tmp overlap, invalid addr */
1114		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1115			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1116			tmp->it.start, tmp->it.last + 1);
1117		r = -EINVAL;
1118		goto error;
1119	}
1120
1121	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1122	if (!mapping) {
1123		r = -ENOMEM;
1124		goto error;
1125	}
1126
1127	INIT_LIST_HEAD(&mapping->list);
1128	mapping->it.start = saddr;
1129	mapping->it.last = eaddr;
1130	mapping->offset = offset;
1131	mapping->flags = flags;
1132
1133	list_add(&mapping->list, &bo_va->invalids);
1134	interval_tree_insert(&mapping->it, &vm->va);
1135
1136	/* Make sure the page tables are allocated */
1137	saddr >>= amdgpu_vm_block_size;
1138	eaddr >>= amdgpu_vm_block_size;
1139
1140	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	if (eaddr > vm->max_pde_used)
1143		vm->max_pde_used = eaddr;
 
 
1144
1145	/* walk over the address space and allocate the page tables */
1146	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1147		struct reservation_object *resv = vm->page_directory->tbo.resv;
1148		struct amdgpu_bo_list_entry *entry;
1149		struct amdgpu_bo *pt;
 
1150
1151		entry = &vm->page_tables[pt_idx].entry;
1152		if (entry->robj)
1153			continue;
 
1154
1155		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1156				     AMDGPU_GPU_PAGE_SIZE, true,
1157				     AMDGPU_GEM_DOMAIN_VRAM,
1158				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1159				     NULL, resv, &pt);
1160		if (r)
1161			goto error_free;
1162
1163		/* Keep a reference to the page table to avoid freeing
1164		 * them up in the wrong order.
1165		 */
1166		pt->parent = amdgpu_bo_ref(vm->page_directory);
1167
1168		r = amdgpu_vm_clear_bo(adev, vm, pt);
1169		if (r) {
1170			amdgpu_bo_unref(&pt);
1171			goto error_free;
1172		}
1173
1174		entry->robj = pt;
1175		entry->priority = 0;
1176		entry->tv.bo = &entry->robj->tbo;
1177		entry->tv.shared = true;
1178		entry->user_pages = NULL;
1179		vm->page_tables[pt_idx].addr = 0;
1180	}
1181
1182	return 0;
1183
1184error_free:
1185	list_del(&mapping->list);
1186	interval_tree_remove(&mapping->it, &vm->va);
1187	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1188	kfree(mapping);
1189
1190error:
1191	return r;
1192}
1193
1194/**
1195 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1196 *
1197 * @adev: amdgpu_device pointer
1198 * @bo_va: bo_va to remove the address from
1199 * @saddr: where to the BO is mapped
1200 *
1201 * Remove a mapping of the BO at the specefied addr from the VM.
1202 * Returns 0 for success, error for failure.
 
 
1203 *
1204 * Object has to be reserved and unreserved outside!
1205 */
1206int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1207		       struct amdgpu_bo_va *bo_va,
1208		       uint64_t saddr)
1209{
1210	struct amdgpu_bo_va_mapping *mapping;
1211	struct amdgpu_vm *vm = bo_va->vm;
1212	bool valid = true;
1213
1214	saddr /= AMDGPU_GPU_PAGE_SIZE;
1215
1216	list_for_each_entry(mapping, &bo_va->valids, list) {
1217		if (mapping->it.start == saddr)
1218			break;
1219	}
1220
1221	if (&mapping->list == &bo_va->valids) {
1222		valid = false;
1223
1224		list_for_each_entry(mapping, &bo_va->invalids, list) {
1225			if (mapping->it.start == saddr)
1226				break;
1227		}
1228
1229		if (&mapping->list == &bo_va->invalids)
1230			return -ENOENT;
1231	}
1232
1233	list_del(&mapping->list);
1234	interval_tree_remove(&mapping->it, &vm->va);
 
1235	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1236
1237	if (valid)
1238		list_add(&mapping->list, &vm->freed);
1239	else
1240		kfree(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241
1242	return 0;
1243}
1244
1245/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1247 *
1248 * @adev: amdgpu_device pointer
1249 * @bo_va: requested bo_va
1250 *
1251 * Remove @bo_va->bo from the requested vm.
1252 *
1253 * Object have to be reserved!
1254 */
1255void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1256		      struct amdgpu_bo_va *bo_va)
1257{
1258	struct amdgpu_bo_va_mapping *mapping, *next;
1259	struct amdgpu_vm *vm = bo_va->vm;
 
 
 
 
 
 
 
 
 
 
 
1260
1261	list_del(&bo_va->bo_list);
 
 
 
1262
1263	spin_lock(&vm->status_lock);
1264	list_del(&bo_va->vm_status);
1265	spin_unlock(&vm->status_lock);
1266
1267	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1268		list_del(&mapping->list);
1269		interval_tree_remove(&mapping->it, &vm->va);
 
1270		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1271		list_add(&mapping->list, &vm->freed);
1272	}
1273	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1274		list_del(&mapping->list);
1275		interval_tree_remove(&mapping->it, &vm->va);
1276		kfree(mapping);
 
1277	}
1278
1279	fence_put(bo_va->last_pt_update);
 
 
 
 
1280	kfree(bo_va);
1281}
1282
1283/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1285 *
1286 * @adev: amdgpu_device pointer
1287 * @vm: requested vm
1288 * @bo: amdgpu buffer object
 
1289 *
1290 * Mark @bo as invalid.
1291 */
1292void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1293			     struct amdgpu_bo *bo)
1294{
1295	struct amdgpu_bo_va *bo_va;
 
 
 
 
1296
1297	list_for_each_entry(bo_va, &bo->va, bo_list) {
1298		spin_lock(&bo_va->vm->status_lock);
1299		if (list_empty(&bo_va->vm_status))
1300			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1301		spin_unlock(&bo_va->vm->status_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1302	}
1303}
1304
1305/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306 * amdgpu_vm_init - initialize a vm instance
1307 *
1308 * @adev: amdgpu_device pointer
1309 * @vm: requested vm
 
 
1310 *
1311 * Init @vm fields.
 
 
 
1312 */
1313int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
1314{
1315	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1316		AMDGPU_VM_PTE_COUNT * 8);
1317	unsigned pd_size, pd_entries;
1318	unsigned ring_instance;
1319	struct amdgpu_ring *ring;
1320	struct amd_sched_rq *rq;
1321	int i, r;
1322
1323	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1324		vm->ids[i].mgr_id = NULL;
1325		vm->ids[i].flushed_updates = NULL;
1326	}
1327	vm->va = RB_ROOT;
1328	spin_lock_init(&vm->status_lock);
1329	INIT_LIST_HEAD(&vm->invalidated);
1330	INIT_LIST_HEAD(&vm->cleared);
1331	INIT_LIST_HEAD(&vm->freed);
1332
1333	pd_size = amdgpu_vm_directory_size(adev);
1334	pd_entries = amdgpu_vm_num_pdes(adev);
1335
1336	/* allocate page table array */
1337	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1338	if (vm->page_tables == NULL) {
1339		DRM_ERROR("Cannot allocate memory for page table array\n");
1340		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
 
 
 
 
1342
1343	/* create scheduler entity for page table updates */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344
1345	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1346	ring_instance %= adev->vm_manager.vm_pte_num_rings;
1347	ring = adev->vm_manager.vm_pte_rings[ring_instance];
1348	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1349	r = amd_sched_entity_init(&ring->sched, &vm->entity,
1350				  rq, amdgpu_sched_jobs);
1351	if (r)
1352		return r;
1353
1354	vm->page_directory_fence = NULL;
 
 
 
 
1355
1356	r = amdgpu_bo_create(adev, pd_size, align, true,
1357			     AMDGPU_GEM_DOMAIN_VRAM,
1358			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1359			     NULL, NULL, &vm->page_directory);
1360	if (r)
1361		goto error_free_sched_entity;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362
1363	r = amdgpu_bo_reserve(vm->page_directory, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364	if (r)
1365		goto error_free_page_directory;
1366
1367	r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1368	amdgpu_bo_unreserve(vm->page_directory);
1369	if (r)
1370		goto error_free_page_directory;
1371
1372	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373
1374error_free_page_directory:
1375	amdgpu_bo_unref(&vm->page_directory);
1376	vm->page_directory = NULL;
1377
1378error_free_sched_entity:
1379	amd_sched_entity_fini(&ring->sched, &vm->entity);
 
1380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	return r;
1382}
1383
1384/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385 * amdgpu_vm_fini - tear down a vm instance
1386 *
1387 * @adev: amdgpu_device pointer
1388 * @vm: requested vm
1389 *
1390 * Tear down @vm.
1391 * Unbind the VM and remove all bos from the vm bo list
1392 */
1393void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1394{
1395	struct amdgpu_bo_va_mapping *mapping, *tmp;
 
 
1396	int i;
1397
1398	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1399
1400	if (!RB_EMPTY_ROOT(&vm->va)) {
1401		dev_err(adev->dev, "still active bo inside vm\n");
 
 
 
 
 
 
 
1402	}
1403	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
 
 
 
 
 
 
 
 
 
1404		list_del(&mapping->list);
1405		interval_tree_remove(&mapping->it, &vm->va);
1406		kfree(mapping);
1407	}
1408	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409		list_del(&mapping->list);
1410		kfree(mapping);
1411	}
1412
1413	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1414		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1415	drm_free_large(vm->page_tables);
1416
1417	amdgpu_bo_unref(&vm->page_directory);
1418	fence_put(vm->page_directory_fence);
1419
1420	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1421		struct amdgpu_vm_id *id = &vm->ids[i];
1422
1423		if (id->mgr_id)
1424			atomic_long_cmpxchg(&id->mgr_id->owner,
1425					    (long)id, 0);
1426		fence_put(id->flushed_updates);
1427	}
1428}
1429
1430/**
1431 * amdgpu_vm_manager_init - init the VM manager
1432 *
1433 * @adev: amdgpu_device pointer
1434 *
1435 * Initialize the VM manager structures
1436 */
1437void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1438{
1439	unsigned i;
1440
1441	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1442
1443	/* skip over VMID 0, since it is the system VM */
1444	for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1445		amdgpu_vm_reset_id(adev, i);
1446		list_add_tail(&adev->vm_manager.ids[i].list,
1447			      &adev->vm_manager.ids_lru);
1448	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449
1450	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
 
1451}
1452
1453/**
1454 * amdgpu_vm_manager_fini - cleanup VM manager
1455 *
1456 * @adev: amdgpu_device pointer
1457 *
1458 * Cleanup the VM manager and free resources.
1459 */
1460void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1461{
1462	unsigned i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463
1464	for (i = 0; i < AMDGPU_NUM_VM; ++i)
1465		fence_put(adev->vm_manager.ids[i].active);
1466}
v5.9
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28#include <linux/dma-fence-array.h>
  29#include <linux/interval_tree_generic.h>
  30#include <linux/idr.h>
  31
  32#include <drm/amdgpu_drm.h>
  33#include "amdgpu.h"
  34#include "amdgpu_trace.h"
  35#include "amdgpu_amdkfd.h"
  36#include "amdgpu_gmc.h"
  37#include "amdgpu_xgmi.h"
  38
  39/**
  40 * DOC: GPUVM
  41 *
  42 * GPUVM is similar to the legacy gart on older asics, however
  43 * rather than there being a single global gart table
  44 * for the entire GPU, there are multiple VM page tables active
  45 * at any given time.  The VM page tables can contain a mix
  46 * vram pages and system memory pages and system memory pages
  47 * can be mapped as snooped (cached system pages) or unsnooped
  48 * (uncached system pages).
  49 * Each VM has an ID associated with it and there is a page table
  50 * associated with each VMID.  When execting a command buffer,
  51 * the kernel tells the the ring what VMID to use for that command
  52 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  53 * The userspace drivers maintain their own address space and the kernel
  54 * sets up their pages tables accordingly when they submit their
  55 * command buffers and a VMID is assigned.
  56 * Cayman/Trinity support up to 8 active VMs at any given time;
  57 * SI supports 16.
  58 */
  59
  60#define START(node) ((node)->start)
  61#define LAST(node) ((node)->last)
  62
  63INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  64		     START, LAST, static, amdgpu_vm_it)
  65
  66#undef START
  67#undef LAST
  68
  69/**
  70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
  71 */
  72struct amdgpu_prt_cb {
  73
  74	/**
  75	 * @adev: amdgpu device
  76	 */
  77	struct amdgpu_device *adev;
  78
  79	/**
  80	 * @cb: callback
  81	 */
  82	struct dma_fence_cb cb;
  83};
  84
  85/*
  86 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
  87 * happens while holding this lock anywhere to prevent deadlocks when
  88 * an MMU notifier runs in reclaim-FS context.
  89 */
  90static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
  91{
  92	mutex_lock(&vm->eviction_lock);
  93	vm->saved_flags = memalloc_nofs_save();
  94}
  95
  96static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
  97{
  98	if (mutex_trylock(&vm->eviction_lock)) {
  99		vm->saved_flags = memalloc_nofs_save();
 100		return 1;
 101	}
 102	return 0;
 103}
 104
 105static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
 106{
 107	memalloc_nofs_restore(vm->saved_flags);
 108	mutex_unlock(&vm->eviction_lock);
 109}
 110
 111/**
 112 * amdgpu_vm_level_shift - return the addr shift for each level
 113 *
 114 * @adev: amdgpu_device pointer
 115 * @level: VMPT level
 116 *
 117 * Returns:
 118 * The number of bits the pfn needs to be right shifted for a level.
 119 */
 120static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
 121				      unsigned level)
 122{
 123	switch (level) {
 124	case AMDGPU_VM_PDB2:
 125	case AMDGPU_VM_PDB1:
 126	case AMDGPU_VM_PDB0:
 127		return 9 * (AMDGPU_VM_PDB0 - level) +
 128			adev->vm_manager.block_size;
 129	case AMDGPU_VM_PTB:
 130		return 0;
 131	default:
 132		return ~0;
 133	}
 134}
 135
 136/**
 137 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 138 *
 139 * @adev: amdgpu_device pointer
 140 * @level: VMPT level
 141 *
 142 * Returns:
 143 * The number of entries in a page directory or page table.
 144 */
 145static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 146				      unsigned level)
 147{
 148	unsigned shift = amdgpu_vm_level_shift(adev,
 149					       adev->vm_manager.root_level);
 150
 151	if (level == adev->vm_manager.root_level)
 152		/* For the root directory */
 153		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
 154			>> shift;
 155	else if (level != AMDGPU_VM_PTB)
 156		/* Everything in between */
 157		return 512;
 158	else
 159		/* For the page tables on the leaves */
 160		return AMDGPU_VM_PTE_COUNT(adev);
 161}
 162
 163/**
 164 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
 165 *
 166 * @adev: amdgpu_device pointer
 167 *
 168 * Returns:
 169 * The number of entries in the root page directory which needs the ATS setting.
 170 */
 171static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
 172{
 173	unsigned shift;
 174
 175	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
 176	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
 177}
 178
 179/**
 180 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
 181 *
 182 * @adev: amdgpu_device pointer
 183 * @level: VMPT level
 184 *
 185 * Returns:
 186 * The mask to extract the entry number of a PD/PT from an address.
 187 */
 188static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
 189				       unsigned int level)
 190{
 191	if (level <= adev->vm_manager.root_level)
 192		return 0xffffffff;
 193	else if (level != AMDGPU_VM_PTB)
 194		return 0x1ff;
 195	else
 196		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 197}
 198
 199/**
 200 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 201 *
 202 * @adev: amdgpu_device pointer
 203 * @level: VMPT level
 204 *
 205 * Returns:
 206 * The size of the BO for a page directory or page table in bytes.
 207 */
 208static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 209{
 210	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 211}
 212
 213/**
 214 * amdgpu_vm_bo_evicted - vm_bo is evicted
 215 *
 216 * @vm_bo: vm_bo which is evicted
 217 *
 218 * State for PDs/PTs and per VM BOs which are not at the location they should
 219 * be.
 220 */
 221static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 222{
 223	struct amdgpu_vm *vm = vm_bo->vm;
 224	struct amdgpu_bo *bo = vm_bo->bo;
 225
 226	vm_bo->moved = true;
 227	if (bo->tbo.type == ttm_bo_type_kernel)
 228		list_move(&vm_bo->vm_status, &vm->evicted);
 229	else
 230		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 231}
 232/**
 233 * amdgpu_vm_bo_moved - vm_bo is moved
 234 *
 235 * @vm_bo: vm_bo which is moved
 236 *
 237 * State for per VM BOs which are moved, but that change is not yet reflected
 238 * in the page tables.
 239 */
 240static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 241{
 242	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 243}
 244
 245/**
 246 * amdgpu_vm_bo_idle - vm_bo is idle
 247 *
 248 * @vm_bo: vm_bo which is now idle
 249 *
 250 * State for PDs/PTs and per VM BOs which have gone through the state machine
 251 * and are now idle.
 252 */
 253static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 254{
 255	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 256	vm_bo->moved = false;
 257}
 258
 259/**
 260 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 261 *
 262 * @vm_bo: vm_bo which is now invalidated
 263 *
 264 * State for normal BOs which are invalidated and that change not yet reflected
 265 * in the PTs.
 266 */
 267static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 268{
 269	spin_lock(&vm_bo->vm->invalidated_lock);
 270	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 271	spin_unlock(&vm_bo->vm->invalidated_lock);
 272}
 273
 274/**
 275 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 276 *
 277 * @vm_bo: vm_bo which is relocated
 278 *
 279 * State for PDs/PTs which needs to update their parent PD.
 280 * For the root PD, just move to idle state.
 281 */
 282static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 283{
 284	if (vm_bo->bo->parent)
 285		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 286	else
 287		amdgpu_vm_bo_idle(vm_bo);
 288}
 289
 290/**
 291 * amdgpu_vm_bo_done - vm_bo is done
 292 *
 293 * @vm_bo: vm_bo which is now done
 294 *
 295 * State for normal BOs which are invalidated and that change has been updated
 296 * in the PTs.
 297 */
 298static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 299{
 300	spin_lock(&vm_bo->vm->invalidated_lock);
 301	list_del_init(&vm_bo->vm_status);
 302	spin_unlock(&vm_bo->vm->invalidated_lock);
 303}
 304
 305/**
 306 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 307 *
 308 * @base: base structure for tracking BO usage in a VM
 309 * @vm: vm to which bo is to be added
 310 * @bo: amdgpu buffer object
 311 *
 312 * Initialize a bo_va_base structure and add it to the appropriate lists
 313 *
 314 */
 315static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 316				   struct amdgpu_vm *vm,
 317				   struct amdgpu_bo *bo)
 318{
 319	base->vm = vm;
 320	base->bo = bo;
 321	base->next = NULL;
 322	INIT_LIST_HEAD(&base->vm_status);
 323
 324	if (!bo)
 325		return;
 326	base->next = bo->vm_bo;
 327	bo->vm_bo = base;
 328
 329	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
 330		return;
 331
 332	vm->bulk_moveable = false;
 333	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 334		amdgpu_vm_bo_relocated(base);
 335	else
 336		amdgpu_vm_bo_idle(base);
 337
 338	if (bo->preferred_domains &
 339	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
 340		return;
 341
 342	/*
 343	 * we checked all the prerequisites, but it looks like this per vm bo
 344	 * is currently evicted. add the bo to the evicted list to make sure it
 345	 * is validated on next vm use to avoid fault.
 346	 * */
 347	amdgpu_vm_bo_evicted(base);
 348}
 349
 350/**
 351 * amdgpu_vm_pt_parent - get the parent page directory
 352 *
 353 * @pt: child page table
 354 *
 355 * Helper to get the parent entry for the child page table. NULL if we are at
 356 * the root page directory.
 357 */
 358static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
 359{
 360	struct amdgpu_bo *parent = pt->base.bo->parent;
 361
 362	if (!parent)
 363		return NULL;
 364
 365	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
 366}
 367
 368/*
 369 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 370 */
 371struct amdgpu_vm_pt_cursor {
 372	uint64_t pfn;
 373	struct amdgpu_vm_pt *parent;
 374	struct amdgpu_vm_pt *entry;
 375	unsigned level;
 376};
 377
 378/**
 379 * amdgpu_vm_pt_start - start PD/PT walk
 380 *
 381 * @adev: amdgpu_device pointer
 382 * @vm: amdgpu_vm structure
 383 * @start: start address of the walk
 384 * @cursor: state to initialize
 385 *
 386 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 387 */
 388static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 389			       struct amdgpu_vm *vm, uint64_t start,
 390			       struct amdgpu_vm_pt_cursor *cursor)
 391{
 392	cursor->pfn = start;
 393	cursor->parent = NULL;
 394	cursor->entry = &vm->root;
 395	cursor->level = adev->vm_manager.root_level;
 396}
 397
 398/**
 399 * amdgpu_vm_pt_descendant - go to child node
 400 *
 401 * @adev: amdgpu_device pointer
 402 * @cursor: current state
 403 *
 404 * Walk to the child node of the current node.
 405 * Returns:
 406 * True if the walk was possible, false otherwise.
 407 */
 408static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 409				    struct amdgpu_vm_pt_cursor *cursor)
 410{
 411	unsigned mask, shift, idx;
 412
 413	if (!cursor->entry->entries)
 414		return false;
 415
 416	BUG_ON(!cursor->entry->base.bo);
 417	mask = amdgpu_vm_entries_mask(adev, cursor->level);
 418	shift = amdgpu_vm_level_shift(adev, cursor->level);
 419
 420	++cursor->level;
 421	idx = (cursor->pfn >> shift) & mask;
 422	cursor->parent = cursor->entry;
 423	cursor->entry = &cursor->entry->entries[idx];
 424	return true;
 425}
 426
 427/**
 428 * amdgpu_vm_pt_sibling - go to sibling node
 429 *
 430 * @adev: amdgpu_device pointer
 431 * @cursor: current state
 432 *
 433 * Walk to the sibling node of the current node.
 434 * Returns:
 435 * True if the walk was possible, false otherwise.
 436 */
 437static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 438				 struct amdgpu_vm_pt_cursor *cursor)
 439{
 440	unsigned shift, num_entries;
 441
 442	/* Root doesn't have a sibling */
 443	if (!cursor->parent)
 444		return false;
 445
 446	/* Go to our parents and see if we got a sibling */
 447	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
 448	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
 449
 450	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
 451		return false;
 452
 453	cursor->pfn += 1ULL << shift;
 454	cursor->pfn &= ~((1ULL << shift) - 1);
 455	++cursor->entry;
 456	return true;
 457}
 458
 459/**
 460 * amdgpu_vm_pt_ancestor - go to parent node
 461 *
 462 * @cursor: current state
 463 *
 464 * Walk to the parent node of the current node.
 465 * Returns:
 466 * True if the walk was possible, false otherwise.
 467 */
 468static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 469{
 470	if (!cursor->parent)
 471		return false;
 472
 473	--cursor->level;
 474	cursor->entry = cursor->parent;
 475	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 476	return true;
 477}
 478
 479/**
 480 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 481 *
 482 * @adev: amdgpu_device pointer
 483 * @cursor: current state
 484 *
 485 * Walk the PD/PT tree to the next node.
 486 */
 487static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 488			      struct amdgpu_vm_pt_cursor *cursor)
 489{
 490	/* First try a newborn child */
 491	if (amdgpu_vm_pt_descendant(adev, cursor))
 492		return;
 493
 494	/* If that didn't worked try to find a sibling */
 495	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 496		/* No sibling, go to our parents and grandparents */
 497		if (!amdgpu_vm_pt_ancestor(cursor)) {
 498			cursor->pfn = ~0ll;
 499			return;
 500		}
 501	}
 502}
 503
 504/**
 505 * amdgpu_vm_pt_first_dfs - start a deep first search
 506 *
 507 * @adev: amdgpu_device structure
 508 * @vm: amdgpu_vm structure
 509 * @start: optional cursor to start with
 510 * @cursor: state to initialize
 511 *
 512 * Starts a deep first traversal of the PD/PT tree.
 513 */
 514static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 515				   struct amdgpu_vm *vm,
 516				   struct amdgpu_vm_pt_cursor *start,
 517				   struct amdgpu_vm_pt_cursor *cursor)
 518{
 519	if (start)
 520		*cursor = *start;
 521	else
 522		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 523	while (amdgpu_vm_pt_descendant(adev, cursor));
 524}
 525
 526/**
 527 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 528 *
 529 * @start: starting point for the search
 530 * @entry: current entry
 531 *
 532 * Returns:
 533 * True when the search should continue, false otherwise.
 534 */
 535static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 536				      struct amdgpu_vm_pt *entry)
 537{
 538	return entry && (!start || entry != start->entry);
 539}
 540
 541/**
 542 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 543 *
 544 * @adev: amdgpu_device structure
 545 * @cursor: current state
 546 *
 547 * Move the cursor to the next node in a deep first search.
 548 */
 549static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 550				  struct amdgpu_vm_pt_cursor *cursor)
 551{
 552	if (!cursor->entry)
 553		return;
 554
 555	if (!cursor->parent)
 556		cursor->entry = NULL;
 557	else if (amdgpu_vm_pt_sibling(adev, cursor))
 558		while (amdgpu_vm_pt_descendant(adev, cursor));
 559	else
 560		amdgpu_vm_pt_ancestor(cursor);
 561}
 562
 563/*
 564 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 565 */
 566#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 567	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 568	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 569	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 570	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 571
 572/**
 573 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 574 *
 575 * @vm: vm providing the BOs
 576 * @validated: head of validation list
 577 * @entry: entry to add
 578 *
 579 * Add the page directory to the list of BOs to
 580 * validate for command submission.
 581 */
 582void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 583			 struct list_head *validated,
 584			 struct amdgpu_bo_list_entry *entry)
 585{
 
 586	entry->priority = 0;
 587	entry->tv.bo = &vm->root.base.bo->tbo;
 588	/* Two for VM updates, one for TTM and one for the CS job */
 589	entry->tv.num_shared = 4;
 590	entry->user_pages = NULL;
 591	list_add(&entry->tv.head, validated);
 592}
 593
 594/**
 595 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
 596 *
 597 * @bo: BO which was removed from the LRU
 598 *
 599 * Make sure the bulk_moveable flag is updated when a BO is removed from the
 600 * LRU.
 601 */
 602void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
 603{
 604	struct amdgpu_bo *abo;
 605	struct amdgpu_vm_bo_base *bo_base;
 606
 607	if (!amdgpu_bo_is_amdgpu_bo(bo))
 608		return;
 609
 610	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
 611		return;
 612
 613	abo = ttm_to_amdgpu_bo(bo);
 614	if (!abo->parent)
 615		return;
 616	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
 617		struct amdgpu_vm *vm = bo_base->vm;
 618
 619		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
 620			vm->bulk_moveable = false;
 621	}
 622
 623}
 624/**
 625 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 626 *
 627 * @adev: amdgpu device pointer
 628 * @vm: vm providing the BOs
 
 629 *
 630 * Move all BOs to the end of LRU and remember their positions to put them
 631 * together.
 632 */
 633void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 634				struct amdgpu_vm *vm)
 635{
 636	struct amdgpu_vm_bo_base *bo_base;
 637
 638	if (vm->bulk_moveable) {
 639		spin_lock(&ttm_bo_glob.lru_lock);
 640		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
 641		spin_unlock(&ttm_bo_glob.lru_lock);
 642		return;
 643	}
 644
 645	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
 646
 647	spin_lock(&ttm_bo_glob.lru_lock);
 648	list_for_each_entry(bo_base, &vm->idle, vm_status) {
 649		struct amdgpu_bo *bo = bo_base->bo;
 650
 651		if (!bo->parent)
 652			continue;
 653
 654		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
 655		if (bo->shadow)
 656			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
 657						&vm->lru_bulk_move);
 658	}
 659	spin_unlock(&ttm_bo_glob.lru_lock);
 660
 661	vm->bulk_moveable = true;
 662}
 663
 664/**
 665 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 666 *
 667 * @adev: amdgpu device pointer
 668 * @vm: vm providing the BOs
 669 * @validate: callback to do the validation
 670 * @param: parameter for the validation callback
 671 *
 672 * Validate the page table BOs on command submission if neccessary.
 673 *
 674 * Returns:
 675 * Validation result.
 676 */
 677int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 678			      int (*validate)(void *p, struct amdgpu_bo *bo),
 679			      void *param)
 680{
 681	struct amdgpu_vm_bo_base *bo_base, *tmp;
 682	int r;
 683
 684	vm->bulk_moveable &= list_empty(&vm->evicted);
 
 
 685
 686	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
 687		struct amdgpu_bo *bo = bo_base->bo;
 688
 689		r = validate(param, bo);
 690		if (r)
 691			return r;
 692
 693		if (bo->tbo.type != ttm_bo_type_kernel) {
 694			amdgpu_vm_bo_moved(bo_base);
 695		} else {
 696			vm->update_funcs->map_table(bo);
 697			amdgpu_vm_bo_relocated(bo_base);
 698		}
 699	}
 700
 701	amdgpu_vm_eviction_lock(vm);
 702	vm->evicting = false;
 703	amdgpu_vm_eviction_unlock(vm);
 704
 705	return 0;
 706}
 707
 708/**
 709 * amdgpu_vm_ready - check VM is ready for updates
 710 *
 711 * @vm: VM to check
 
 
 
 712 *
 713 * Check if all VM PDs/PTs are ready for updates
 714 *
 715 * Returns:
 716 * True if eviction list is empty.
 717 */
 718bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 
 
 719{
 720	return list_empty(&vm->evicted);
 721}
 722
 723/**
 724 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 725 *
 726 * @adev: amdgpu_device pointer
 727 * @vm: VM to clear BO from
 728 * @bo: BO to clear
 729 * @immediate: use an immediate update
 730 *
 731 * Root PD needs to be reserved when calling this.
 732 *
 733 * Returns:
 734 * 0 on success, errno otherwise.
 735 */
 736static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 737			      struct amdgpu_vm *vm,
 738			      struct amdgpu_bo *bo,
 739			      bool immediate)
 740{
 741	struct ttm_operation_ctx ctx = { true, false };
 742	unsigned level = adev->vm_manager.root_level;
 743	struct amdgpu_vm_update_params params;
 744	struct amdgpu_bo *ancestor = bo;
 745	unsigned entries, ats_entries;
 746	uint64_t addr;
 747	int r;
 748
 749	/* Figure out our place in the hierarchy */
 750	if (ancestor->parent) {
 751		++level;
 752		while (ancestor->parent->parent) {
 753			++level;
 754			ancestor = ancestor->parent;
 755		}
 756	}
 757
 758	entries = amdgpu_bo_size(bo) / 8;
 759	if (!vm->pte_support_ats) {
 760		ats_entries = 0;
 
 
 
 
 
 
 
 
 
 761
 762	} else if (!bo->parent) {
 763		ats_entries = amdgpu_vm_num_ats_entries(adev);
 764		ats_entries = min(ats_entries, entries);
 765		entries -= ats_entries;
 
 
 
 
 
 
 766
 767	} else {
 768		struct amdgpu_vm_pt *pt;
 769
 770		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
 771		ats_entries = amdgpu_vm_num_ats_entries(adev);
 772		if ((pt - vm->root.entries) >= ats_entries) {
 773			ats_entries = 0;
 774		} else {
 775			ats_entries = entries;
 776			entries = 0;
 777		}
 778	}
 779
 780	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 781	if (r)
 782		return r;
 
 783
 784	if (bo->shadow) {
 785		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
 786				    &ctx);
 787		if (r)
 788			return r;
 789	}
 790
 791	r = vm->update_funcs->map_table(bo);
 792	if (r)
 793		return r;
 794
 795	memset(&params, 0, sizeof(params));
 796	params.adev = adev;
 797	params.vm = vm;
 798	params.immediate = immediate;
 799
 800	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 801	if (r)
 802		return r;
 803
 804	addr = 0;
 805	if (ats_entries) {
 806		uint64_t value = 0, flags;
 807
 808		flags = AMDGPU_PTE_DEFAULT_ATC;
 809		if (level != AMDGPU_VM_PTB) {
 810			/* Handle leaf PDEs as PTEs */
 811			flags |= AMDGPU_PDE_PTE;
 812			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
 813		}
 814
 815		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
 816					     value, flags);
 817		if (r)
 818			return r;
 819
 820		addr += ats_entries * 8;
 821	}
 822
 823	if (entries) {
 824		uint64_t value = 0, flags = 0;
 825
 826		if (adev->asic_type >= CHIP_VEGA10) {
 827			if (level != AMDGPU_VM_PTB) {
 828				/* Handle leaf PDEs as PTEs */
 829				flags |= AMDGPU_PDE_PTE;
 830				amdgpu_gmc_get_vm_pde(adev, level,
 831						      &value, &flags);
 832			} else {
 833				/* Workaround for fault priority problem on GMC9 */
 834				flags = AMDGPU_PTE_EXECUTABLE;
 835			}
 836		}
 837
 838		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
 839					     value, flags);
 840		if (r)
 841			return r;
 842	}
 843
 844	return vm->update_funcs->commit(&params, NULL);
 
 845}
 846
 847/**
 848 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
 849 *
 850 * @adev: amdgpu_device pointer
 851 * @vm: requesting vm
 852 * @level: the page table level
 853 * @immediate: use a immediate update
 854 * @bp: resulting BO allocation parameters
 855 */
 856static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 857			       int level, bool immediate,
 858			       struct amdgpu_bo_param *bp)
 859{
 860	memset(bp, 0, sizeof(*bp));
 861
 862	bp->size = amdgpu_vm_bo_size(adev, level);
 863	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
 864	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
 865	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
 866	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 867		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 868	if (vm->use_cpu_for_update)
 869		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 870	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
 871		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
 872	bp->type = ttm_bo_type_kernel;
 873	bp->no_wait_gpu = immediate;
 874	if (vm->root.base.bo)
 875		bp->resv = vm->root.base.bo->tbo.base.resv;
 876}
 877
 878/**
 879 * amdgpu_vm_alloc_pts - Allocate a specific page table
 880 *
 881 * @adev: amdgpu_device pointer
 882 * @vm: VM to allocate page tables for
 883 * @cursor: Which page table to allocate
 884 * @immediate: use an immediate update
 885 *
 886 * Make sure a specific page table or directory is allocated.
 887 *
 888 * Returns:
 889 * 1 if page table needed to be allocated, 0 if page table was already
 890 * allocated, negative errno if an error occurred.
 891 */
 892static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 893			       struct amdgpu_vm *vm,
 894			       struct amdgpu_vm_pt_cursor *cursor,
 895			       bool immediate)
 
 896{
 897	struct amdgpu_vm_pt *entry = cursor->entry;
 898	struct amdgpu_bo_param bp;
 899	struct amdgpu_bo *pt;
 900	int r;
 
 
 
 
 
 901
 902	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
 903		unsigned num_entries;
 
 904
 905		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
 906		entry->entries = kvmalloc_array(num_entries,
 907						sizeof(*entry->entries),
 908						GFP_KERNEL | __GFP_ZERO);
 909		if (!entry->entries)
 910			return -ENOMEM;
 911	}
 912
 913	if (entry->base.bo)
 914		return 0;
 915
 916	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
 917
 918	r = amdgpu_bo_create(adev, &bp, &pt);
 919	if (r)
 920		return r;
 921
 922	/* Keep a reference to the root directory to avoid
 923	 * freeing them up in the wrong order.
 924	 */
 925	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
 926	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
 927
 928	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
 929	if (r)
 930		goto error_free_pt;
 931
 932	return 0;
 933
 934error_free_pt:
 935	amdgpu_bo_unref(&pt->shadow);
 936	amdgpu_bo_unref(&pt);
 937	return r;
 938}
 939
 940/**
 941 * amdgpu_vm_free_table - fre one PD/PT
 942 *
 943 * @entry: PDE to free
 944 */
 945static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
 946{
 947	if (entry->base.bo) {
 948		entry->base.bo->vm_bo = NULL;
 949		list_del(&entry->base.vm_status);
 950		amdgpu_bo_unref(&entry->base.bo->shadow);
 951		amdgpu_bo_unref(&entry->base.bo);
 952	}
 953	kvfree(entry->entries);
 954	entry->entries = NULL;
 955}
 956
 957/**
 958 * amdgpu_vm_free_pts - free PD/PT levels
 959 *
 960 * @adev: amdgpu device structure
 961 * @vm: amdgpu vm structure
 962 * @start: optional cursor where to start freeing PDs/PTs
 963 *
 964 * Free the page directory or page table level and all sub levels.
 965 */
 966static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
 967			       struct amdgpu_vm *vm,
 968			       struct amdgpu_vm_pt_cursor *start)
 969{
 970	struct amdgpu_vm_pt_cursor cursor;
 971	struct amdgpu_vm_pt *entry;
 972
 973	vm->bulk_moveable = false;
 974
 975	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
 976		amdgpu_vm_free_table(entry);
 977
 978	if (start)
 979		amdgpu_vm_free_table(start->entry);
 
 
 
 
 980}
 981
 982/**
 983 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 
 
 
 984 *
 985 * @adev: amdgpu_device pointer
 
 
 
 
 986 */
 987void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 
 988{
 989	const struct amdgpu_ip_block *ip_block;
 990	bool has_compute_vm_bug;
 991	struct amdgpu_ring *ring;
 992	int i;
 993
 994	has_compute_vm_bug = false;
 995
 996	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 997	if (ip_block) {
 998		/* Compute has a VM bug for GFX version < 7.
 999		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000		if (ip_block->version->major <= 7)
1001			has_compute_vm_bug = true;
1002		else if (ip_block->version->major == 8)
1003			if (adev->gfx.mec_fw_version < 673)
1004				has_compute_vm_bug = true;
1005	}
1006
1007	for (i = 0; i < adev->num_rings; i++) {
1008		ring = adev->rings[i];
1009		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010			/* only compute rings */
1011			ring->has_compute_vm_bug = has_compute_vm_bug;
1012		else
1013			ring->has_compute_vm_bug = false;
1014	}
 
1015}
1016
1017/**
1018 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019 *
1020 * @ring: ring on which the job will be submitted
1021 * @job: job to submit
1022 *
1023 * Returns:
1024 * True if sync is needed.
1025 */
1026bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027				  struct amdgpu_job *job)
 
 
 
 
 
 
 
 
 
 
 
 
1028{
1029	struct amdgpu_device *adev = ring->adev;
1030	unsigned vmhub = ring->funcs->vmhub;
1031	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032	struct amdgpu_vmid *id;
1033	bool gds_switch_needed;
1034	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035
1036	if (job->vmid == 0)
1037		return false;
1038	id = &id_mgr->ids[job->vmid];
1039	gds_switch_needed = ring->funcs->emit_gds_switch && (
1040		id->gds_base != job->gds_base ||
1041		id->gds_size != job->gds_size ||
1042		id->gws_base != job->gws_base ||
1043		id->gws_size != job->gws_size ||
1044		id->oa_base != job->oa_base ||
1045		id->oa_size != job->oa_size);
1046
1047	if (amdgpu_vmid_had_gpu_reset(adev, id))
1048		return true;
 
 
 
 
 
 
 
 
 
 
1049
1050	return vm_flush_needed || gds_switch_needed;
 
 
 
1051}
1052
1053/**
1054 * amdgpu_vm_flush - hardware flush the vm
1055 *
1056 * @ring: ring to use for flush
1057 * @job:  related job
1058 * @need_pipe_sync: is pipe sync needed
1059 *
1060 * Emit a VM flush when it is necessary.
1061 *
1062 * Returns:
1063 * 0 on success, errno otherwise.
1064 */
1065int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066		    bool need_pipe_sync)
 
1067{
1068	struct amdgpu_device *adev = ring->adev;
1069	unsigned vmhub = ring->funcs->vmhub;
1070	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073		id->gds_base != job->gds_base ||
1074		id->gds_size != job->gds_size ||
1075		id->gws_base != job->gws_base ||
1076		id->gws_size != job->gws_size ||
1077		id->oa_base != job->oa_base ||
1078		id->oa_size != job->oa_size);
1079	bool vm_flush_needed = job->vm_needs_flush;
1080	struct dma_fence *fence = NULL;
1081	bool pasid_mapping_needed = false;
1082	unsigned patch_offset = 0;
1083	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084	int r;
1085
1086	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088
1089	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090		gds_switch_needed = true;
1091		vm_flush_needed = true;
1092		pasid_mapping_needed = true;
1093	}
1094
1095	mutex_lock(&id_mgr->lock);
1096	if (id->pasid != job->pasid || !id->pasid_mapping ||
1097	    !dma_fence_is_signaled(id->pasid_mapping))
1098		pasid_mapping_needed = true;
1099	mutex_unlock(&id_mgr->lock);
1100
1101	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105		ring->funcs->emit_wreg;
1106
1107	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108		return 0;
 
1109
1110	if (ring->funcs->init_cond_exec)
1111		patch_offset = amdgpu_ring_init_cond_exec(ring);
1112
1113	if (need_pipe_sync)
1114		amdgpu_ring_emit_pipeline_sync(ring);
 
1115
1116	if (vm_flush_needed) {
1117		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119	}
1120
1121	if (pasid_mapping_needed)
1122		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123
1124	if (vm_flush_needed || pasid_mapping_needed) {
1125		r = amdgpu_fence_emit(ring, &fence, 0);
1126		if (r)
1127			return r;
1128	}
1129
1130	if (vm_flush_needed) {
1131		mutex_lock(&id_mgr->lock);
1132		dma_fence_put(id->last_flush);
1133		id->last_flush = dma_fence_get(fence);
1134		id->current_gpu_reset_count =
1135			atomic_read(&adev->gpu_reset_counter);
1136		mutex_unlock(&id_mgr->lock);
1137	}
1138
1139	if (pasid_mapping_needed) {
1140		mutex_lock(&id_mgr->lock);
1141		id->pasid = job->pasid;
1142		dma_fence_put(id->pasid_mapping);
1143		id->pasid_mapping = dma_fence_get(fence);
1144		mutex_unlock(&id_mgr->lock);
1145	}
1146	dma_fence_put(fence);
1147
1148	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149		id->gds_base = job->gds_base;
1150		id->gds_size = job->gds_size;
1151		id->gws_base = job->gws_base;
1152		id->gws_size = job->gws_size;
1153		id->oa_base = job->oa_base;
1154		id->oa_size = job->oa_size;
1155		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156					    job->gds_size, job->gws_base,
1157					    job->gws_size, job->oa_base,
1158					    job->oa_size);
1159	}
1160
1161	if (ring->funcs->patch_cond_exec)
1162		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163
1164	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165	if (ring->funcs->emit_switch_buffer) {
1166		amdgpu_ring_emit_switch_buffer(ring);
1167		amdgpu_ring_emit_switch_buffer(ring);
1168	}
1169	return 0;
1170}
1171
1172/**
1173 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174 *
1175 * @vm: requested vm
1176 * @bo: requested buffer object
1177 *
1178 * Find @bo inside the requested vm.
1179 * Search inside the @bos vm list for the requested vm
1180 * Returns the found bo_va or NULL if none is found
1181 *
1182 * Object has to be reserved!
1183 *
1184 * Returns:
1185 * Found bo_va or NULL.
1186 */
1187struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188				       struct amdgpu_bo *bo)
1189{
1190	struct amdgpu_vm_bo_base *base;
1191
1192	for (base = bo->vm_bo; base; base = base->next) {
1193		if (base->vm != vm)
1194			continue;
1195
1196		return container_of(base, struct amdgpu_bo_va, base);
1197	}
1198	return NULL;
1199}
1200
1201/**
1202 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203 *
1204 * @pages_addr: optional DMA address to use for lookup
1205 * @addr: the unmapped addr
1206 *
1207 * Look up the physical address of the page that the pte resolves
1208 * to.
1209 *
1210 * Returns:
1211 * The pointer for the page table entry.
1212 */
1213uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214{
1215	uint64_t result;
1216
1217	/* page table offset */
1218	result = pages_addr[addr >> PAGE_SHIFT];
 
1219
1220	/* in case cpu page size != gpu page size*/
1221	result |= addr & (~PAGE_MASK);
 
 
 
 
 
1222
1223	result &= 0xFFFFFFFFFFFFF000ULL;
1224
1225	return result;
1226}
1227
1228/**
1229 * amdgpu_vm_update_pde - update a single level in the hierarchy
1230 *
1231 * @params: parameters for the update
1232 * @vm: requested vm
1233 * @entry: entry to update
 
1234 *
1235 * Makes sure the requested entry in parent is up to date.
 
 
1236 */
1237static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238				struct amdgpu_vm *vm,
1239				struct amdgpu_vm_pt *entry)
1240{
1241	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243	uint64_t pde, pt, flags;
1244	unsigned level;
 
 
 
 
 
1245
1246	for (level = 0, pbo = bo->parent; pbo; ++level)
1247		pbo = pbo->parent;
1248
1249	level += params->adev->vm_manager.root_level;
1250	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251	pde = (entry - parent->entries) * 8;
1252	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253}
1254
1255/**
1256 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257 *
1258 * @adev: amdgpu_device pointer
1259 * @vm: related vm
1260 *
1261 * Mark all PD level as invalid after an error.
1262 */
1263static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264				     struct amdgpu_vm *vm)
1265{
1266	struct amdgpu_vm_pt_cursor cursor;
1267	struct amdgpu_vm_pt *entry;
1268
1269	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270		if (entry->base.bo && !entry->base.moved)
1271			amdgpu_vm_bo_relocated(&entry->base);
1272}
1273
1274/**
1275 * amdgpu_vm_update_pdes - make sure that all directories are valid
1276 *
1277 * @adev: amdgpu_device pointer
1278 * @vm: requested vm
1279 * @immediate: submit immediately to the paging queue
1280 *
1281 * Makes sure all directories are up to date.
1282 *
1283 * Returns:
1284 * 0 for success, error for failure.
1285 */
1286int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287			  struct amdgpu_vm *vm, bool immediate)
1288{
1289	struct amdgpu_vm_update_params params;
1290	int r;
1291
1292	if (list_empty(&vm->relocated))
1293		return 0;
1294
1295	memset(&params, 0, sizeof(params));
1296	params.adev = adev;
1297	params.vm = vm;
1298	params.immediate = immediate;
1299
1300	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301	if (r)
1302		return r;
1303
1304	while (!list_empty(&vm->relocated)) {
1305		struct amdgpu_vm_pt *entry;
 
 
1306
1307		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308					 base.vm_status);
1309		amdgpu_vm_bo_idle(&entry->base);
 
 
 
 
 
 
 
1310
1311		r = amdgpu_vm_update_pde(&params, vm, entry);
1312		if (r)
1313			goto error;
 
 
 
1314	}
1315
1316	r = vm->update_funcs->commit(&params, &vm->last_update);
1317	if (r)
1318		goto error;
1319	return 0;
1320
1321error:
1322	amdgpu_vm_invalidate_pds(adev, vm);
1323	return r;
1324}
 
 
 
 
 
1325
1326/*
1327 * amdgpu_vm_update_flags - figure out flags for PTE updates
1328 *
1329 * Make sure to set the right flags for the PTEs at the desired level.
1330 */
1331static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332				   struct amdgpu_bo *bo, unsigned level,
1333				   uint64_t pe, uint64_t addr,
1334				   unsigned count, uint32_t incr,
1335				   uint64_t flags)
1336
1337{
1338	if (level != AMDGPU_VM_PTB) {
1339		flags |= AMDGPU_PDE_PTE;
1340		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341
1342	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343		   !(flags & AMDGPU_PTE_VALID) &&
1344		   !(flags & AMDGPU_PTE_PRT)) {
1345
1346		/* Workaround for fault priority problem on GMC9 */
1347		flags |= AMDGPU_PTE_EXECUTABLE;
1348	}
1349
1350	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351					 flags);
1352}
1353
1354/**
1355 * amdgpu_vm_fragment - get fragment for PTEs
1356 *
1357 * @params: see amdgpu_vm_update_params definition
1358 * @start: first PTE to handle
1359 * @end: last PTE to handle
 
 
 
 
1360 * @flags: hw mapping flags
1361 * @frag: resulting fragment size
1362 * @frag_end: end of this fragment
1363 *
1364 * Returns the first possible fragment for the start and end address.
1365 */
1366static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367			       uint64_t start, uint64_t end, uint64_t flags,
1368			       unsigned int *frag, uint64_t *frag_end)
 
 
 
1369{
1370	/**
1371	 * The MC L1 TLB supports variable sized pages, based on a fragment
1372	 * field in the PTE. When this field is set to a non-zero value, page
1373	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374	 * flags are considered valid for all PTEs within the fragment range
1375	 * and corresponding mappings are assumed to be physically contiguous.
1376	 *
1377	 * The L1 TLB can store a single PTE for the whole fragment,
1378	 * significantly increasing the space available for translation
1379	 * caching. This leads to large improvements in throughput when the
1380	 * TLB is under pressure.
1381	 *
1382	 * The L2 TLB distributes small and large fragments into two
1383	 * asymmetric partitions. The large fragment cache is significantly
1384	 * larger. Thus, we try to use large fragments wherever possible.
1385	 * Userspace can support this by aligning virtual base address and
1386	 * allocation size to the fragment size.
1387	 *
1388	 * Starting with Vega10 the fragment size only controls the L1. The L2
1389	 * is now directly feed with small/huge/giant pages from the walker.
1390	 */
1391	unsigned max_frag;
1392
1393	if (params->adev->asic_type < CHIP_VEGA10)
1394		max_frag = params->adev->vm_manager.fragment_size;
1395	else
1396		max_frag = 31;
 
 
 
 
 
 
 
 
1397
1398	/* system pages are non continuously */
1399	if (params->pages_addr) {
1400		*frag = 0;
1401		*frag_end = end;
 
 
 
1402		return;
1403	}
1404
1405	/* This intentionally wraps around if no bit is set */
1406	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407	if (*frag >= max_frag) {
1408		*frag = max_frag;
1409		*frag_end = end & ~((1ULL << max_frag) - 1);
1410	} else {
1411		*frag_end = start + (1 << *frag);
 
 
 
 
 
 
 
 
 
 
 
 
1412	}
1413}
1414
1415/**
1416 * amdgpu_vm_update_ptes - make sure that page tables are valid
1417 *
1418 * @params: see amdgpu_vm_update_params definition
 
 
 
1419 * @start: start of GPU address range
1420 * @end: end of GPU address range
1421 * @dst: destination address to map to, the next dst inside the function
1422 * @flags: mapping flags
1423 *
1424 * Update the page tables in the range @start - @end.
1425 *
1426 * Returns:
1427 * 0 for success, -EINVAL for failure.
1428 */
1429static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430				 uint64_t start, uint64_t end,
1431				 uint64_t dst, uint64_t flags)
1432{
1433	struct amdgpu_device *adev = params->adev;
1434	struct amdgpu_vm_pt_cursor cursor;
1435	uint64_t frag_start = start, frag_end;
1436	unsigned int frag;
1437	int r;
 
 
 
1438
1439	/* figure out the initial fragment */
1440	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
 
 
 
 
1441
1442	/* walk over the address space and update the PTs */
1443	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444	while (cursor.pfn < end) {
1445		unsigned shift, parent_shift, mask;
1446		uint64_t incr, entry_end, pe_start;
1447		struct amdgpu_bo *pt;
1448
1449		if (!params->unlocked) {
1450			/* make sure that the page tables covering the
1451			 * address range are actually allocated
1452			 */
1453			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454						&cursor, params->immediate);
1455			if (r)
1456				return r;
1457		}
1458
1459		shift = amdgpu_vm_level_shift(adev, cursor.level);
1460		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461		if (params->unlocked) {
1462			/* Unlocked updates are only allowed on the leaves */
1463			if (amdgpu_vm_pt_descendant(adev, &cursor))
1464				continue;
1465		} else if (adev->asic_type < CHIP_VEGA10 &&
1466			   (flags & AMDGPU_PTE_VALID)) {
1467			/* No huge page support before GMC v9 */
1468			if (cursor.level != AMDGPU_VM_PTB) {
1469				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470					return -ENOENT;
1471				continue;
1472			}
1473		} else if (frag < shift) {
1474			/* We can't use this level when the fragment size is
1475			 * smaller than the address shift. Go to the next
1476			 * child entry and try again.
1477			 */
1478			if (amdgpu_vm_pt_descendant(adev, &cursor))
1479				continue;
1480		} else if (frag >= parent_shift) {
1481			/* If the fragment size is even larger than the parent
1482			 * shift we should go up one level and check it again.
1483			 */
1484			if (!amdgpu_vm_pt_ancestor(&cursor))
1485				return -EINVAL;
1486			continue;
1487		}
1488
1489		pt = cursor.entry->base.bo;
1490		if (!pt) {
1491			/* We need all PDs and PTs for mapping something, */
1492			if (flags & AMDGPU_PTE_VALID)
1493				return -ENOENT;
1494
1495			/* but unmapping something can happen at a higher
1496			 * level.
1497			 */
1498			if (!amdgpu_vm_pt_ancestor(&cursor))
1499				return -EINVAL;
1500
1501			pt = cursor.entry->base.bo;
1502			shift = parent_shift;
 
 
 
1503		}
1504
1505		/* Looks good so far, calculate parameters for the update */
1506		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1507		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1508		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1509		entry_end = ((uint64_t)mask + 1) << shift;
1510		entry_end += cursor.pfn & ~(entry_end - 1);
1511		entry_end = min(entry_end, end);
1512
1513		do {
1514			uint64_t upd_end = min(entry_end, frag_end);
1515			unsigned nptes = (upd_end - frag_start) >> shift;
1516
1517			/* This can happen when we set higher level PDs to
1518			 * silent to stop fault floods.
1519			 */
1520			nptes = max(nptes, 1u);
1521			amdgpu_vm_update_flags(params, pt, cursor.level,
1522					       pe_start, dst, nptes, incr,
1523					       flags | AMDGPU_PTE_FRAG(frag));
1524
1525			pe_start += nptes * 8;
1526			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1527
1528			frag_start = upd_end;
1529			if (frag_start >= frag_end) {
1530				/* figure out the next fragment */
1531				amdgpu_vm_fragment(params, frag_start, end,
1532						   flags, &frag, &frag_end);
1533				if (frag < shift)
1534					break;
1535			}
1536		} while (frag_start < entry_end);
1537
1538		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1539			/* Free all child entries.
1540			 * Update the tables with the flags and addresses and free up subsequent
1541			 * tables in the case of huge pages or freed up areas.
1542			 * This is the maximum you can free, because all other page tables are not
1543			 * completely covered by the range and so potentially still in use.
1544			 */
1545			while (cursor.pfn < frag_start) {
1546				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1547				amdgpu_vm_pt_next(adev, &cursor);
1548			}
1549
1550		} else if (frag >= shift) {
1551			/* or just move on to the next on the same level. */
1552			amdgpu_vm_pt_next(adev, &cursor);
1553		}
1554	}
1555
1556	return 0;
 
 
1557}
1558
1559/**
1560 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1561 *
1562 * @adev: amdgpu_device pointer
 
 
1563 * @vm: requested vm
1564 * @immediate: immediate submission in a page fault
1565 * @unlocked: unlocked invalidation during MM callback
1566 * @resv: fences we need to sync to
1567 * @start: start of mapped range
1568 * @last: last mapped entry
1569 * @flags: flags for the entries
1570 * @addr: addr to set the area to
1571 * @pages_addr: DMA addresses to use for mapping
1572 * @fence: optional resulting fence
1573 *
1574 * Fill in the page table entries between @start and @last.
1575 *
1576 * Returns:
1577 * 0 for success, -EINVAL for failure.
1578 */
1579static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1580				       struct amdgpu_vm *vm, bool immediate,
1581				       bool unlocked, struct dma_resv *resv,
 
1582				       uint64_t start, uint64_t last,
1583				       uint64_t flags, uint64_t addr,
1584				       dma_addr_t *pages_addr,
1585				       struct dma_fence **fence)
1586{
1587	struct amdgpu_vm_update_params params;
1588	enum amdgpu_sync_mode sync_mode;
 
 
 
 
1589	int r;
1590
1591	memset(&params, 0, sizeof(params));
1592	params.adev = adev;
1593	params.vm = vm;
1594	params.immediate = immediate;
1595	params.pages_addr = pages_addr;
1596	params.unlocked = unlocked;
 
1597
1598	/* Implicitly sync to command submissions in the same VM before
1599	 * unmapping. Sync to moving fences before mapping.
 
1600	 */
1601	if (!(flags & AMDGPU_PTE_VALID))
1602		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1603	else
1604		sync_mode = AMDGPU_SYNC_EXPLICIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605
1606	amdgpu_vm_eviction_lock(vm);
1607	if (vm->evicting) {
1608		r = -EBUSY;
1609		goto error_unlock;
1610	}
1611
1612	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1613		struct dma_fence *tmp = dma_fence_get_stub();
 
 
 
1614
1615		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1616		swap(vm->last_unlocked, tmp);
1617		dma_fence_put(tmp);
1618	}
1619
1620	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1621	if (r)
1622		goto error_unlock;
1623
1624	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
 
 
 
 
 
 
1625	if (r)
1626		goto error_unlock;
1627
1628	r = vm->update_funcs->commit(&params, fence);
 
 
 
 
 
 
1629
1630error_unlock:
1631	amdgpu_vm_eviction_unlock(vm);
1632	return r;
1633}
1634
1635/**
1636 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1637 *
1638 * @adev: amdgpu_device pointer
1639 * @resv: fences we need to sync to
1640 * @pages_addr: DMA addresses to use for mapping
1641 * @vm: requested vm
1642 * @mapping: mapped range and flags to use for the update
1643 * @flags: HW flags for the mapping
1644 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1645 * @nodes: array of drm_mm_nodes with the MC addresses
1646 * @fence: optional resulting fence
1647 *
1648 * Split the mapping into smaller chunks so that each update fits
1649 * into a SDMA IB.
1650 *
1651 * Returns:
1652 * 0 for success, -EINVAL for failure.
1653 */
1654static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1655				      struct dma_resv *resv,
1656				      dma_addr_t *pages_addr,
1657				      struct amdgpu_vm *vm,
1658				      struct amdgpu_bo_va_mapping *mapping,
1659				      uint64_t flags,
1660				      struct amdgpu_device *bo_adev,
1661				      struct drm_mm_node *nodes,
1662				      struct dma_fence **fence)
1663{
1664	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1665	uint64_t pfn, start = mapping->start;
 
 
1666	int r;
1667
1668	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1669	 * but in case of something, we filter the flags in first place
1670	 */
1671	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1672		flags &= ~AMDGPU_PTE_READABLE;
1673	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1674		flags &= ~AMDGPU_PTE_WRITEABLE;
1675
1676	/* Apply ASIC specific mapping flags */
1677	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1678
1679	trace_amdgpu_vm_bo_update(mapping);
1680
1681	pfn = mapping->offset >> PAGE_SHIFT;
1682	if (nodes) {
1683		while (pfn >= nodes->size) {
1684			pfn -= nodes->size;
1685			++nodes;
1686		}
1687	}
1688
1689	do {
1690		dma_addr_t *dma_addr = NULL;
1691		uint64_t max_entries;
1692		uint64_t addr, last;
1693
1694		if (nodes) {
1695			addr = nodes->start << PAGE_SHIFT;
1696			max_entries = (nodes->size - pfn) *
1697				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698		} else {
1699			addr = 0;
1700			max_entries = S64_MAX;
1701		}
1702
1703		if (pages_addr) {
1704			uint64_t count;
1705
1706			for (count = 1;
1707			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1708			     ++count) {
1709				uint64_t idx = pfn + count;
1710
1711				if (pages_addr[idx] !=
1712				    (pages_addr[idx - 1] + PAGE_SIZE))
1713					break;
1714			}
1715
1716			if (count < min_linear_pages) {
1717				addr = pfn << PAGE_SHIFT;
1718				dma_addr = pages_addr;
1719			} else {
1720				addr = pages_addr[pfn];
1721				max_entries = count *
1722					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723			}
1724
1725		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1726			addr += bo_adev->vm_manager.vram_base_offset;
1727			addr += pfn << PAGE_SHIFT;
1728		}
1729
1730		last = min((uint64_t)mapping->last, start + max_entries - 1);
1731		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1732						start, last, flags, addr,
1733						dma_addr, fence);
1734		if (r)
1735			return r;
1736
1737		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1738		if (nodes && nodes->size == pfn) {
1739			pfn = 0;
1740			++nodes;
1741		}
1742		start = last + 1;
1743
1744	} while (unlikely(start != mapping->last + 1));
1745
1746	return 0;
1747}
1748
1749/**
1750 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1751 *
1752 * @adev: amdgpu_device pointer
1753 * @bo_va: requested BO and VM object
1754 * @clear: if true clear the entries
1755 *
1756 * Fill in the page table entries for @bo_va.
 
1757 *
1758 * Returns:
1759 * 0 for success, -EINVAL for failure.
1760 */
1761int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1762			bool clear)
 
1763{
1764	struct amdgpu_bo *bo = bo_va->base.bo;
1765	struct amdgpu_vm *vm = bo_va->base.vm;
1766	struct amdgpu_bo_va_mapping *mapping;
1767	dma_addr_t *pages_addr = NULL;
1768	struct ttm_mem_reg *mem;
1769	struct drm_mm_node *nodes;
1770	struct dma_fence **last_update;
1771	struct dma_resv *resv;
1772	uint64_t flags;
1773	struct amdgpu_device *bo_adev = adev;
1774	int r;
1775
1776	if (clear || !bo) {
1777		mem = NULL;
1778		nodes = NULL;
1779		resv = vm->root.base.bo->tbo.base.resv;
1780	} else {
1781		struct ttm_dma_tt *ttm;
 
 
 
 
1782
1783		mem = &bo->tbo.mem;
1784		nodes = mem->mm_node;
1785		if (mem->mem_type == TTM_PL_TT) {
1786			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1787			pages_addr = ttm->dma_address;
1788		}
1789		resv = bo->tbo.base.resv;
1790	}
1791
1792	if (bo) {
1793		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794
1795		if (amdgpu_bo_encrypted(bo))
1796			flags |= AMDGPU_PTE_TMZ;
1797
1798		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1799	} else {
1800		flags = 0x0;
1801	}
1802
1803	if (clear || (bo && bo->tbo.base.resv ==
1804		      vm->root.base.bo->tbo.base.resv))
1805		last_update = &vm->last_update;
1806	else
1807		last_update = &bo_va->last_pt_update;
1808
1809	if (!clear && bo_va->base.moved) {
1810		bo_va->base.moved = false;
1811		list_splice_init(&bo_va->valids, &bo_va->invalids);
1812
1813	} else if (bo_va->cleared != clear) {
 
1814		list_splice_init(&bo_va->valids, &bo_va->invalids);
1815	}
1816
1817	list_for_each_entry(mapping, &bo_va->invalids, list) {
1818		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1819					       mapping, flags, bo_adev, nodes,
1820					       last_update);
1821		if (r)
1822			return r;
1823	}
1824
1825	/* If the BO is not in its preferred location add it back to
1826	 * the evicted list so that it gets validated again on the
1827	 * next command submission.
1828	 */
1829	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1830		uint32_t mem_type = bo->tbo.mem.mem_type;
1831
1832		if (!(bo->preferred_domains &
1833		      amdgpu_mem_type_to_domain(mem_type)))
1834			amdgpu_vm_bo_evicted(&bo_va->base);
1835		else
1836			amdgpu_vm_bo_idle(&bo_va->base);
1837	} else {
1838		amdgpu_vm_bo_done(&bo_va->base);
1839	}
1840
1841	list_splice_init(&bo_va->invalids, &bo_va->valids);
1842	bo_va->cleared = clear;
1843
1844	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1845		list_for_each_entry(mapping, &bo_va->valids, list)
1846			trace_amdgpu_vm_bo_mapping(mapping);
1847	}
1848
1849	return 0;
1850}
1851
1852/**
1853 * amdgpu_vm_update_prt_state - update the global PRT state
1854 *
1855 * @adev: amdgpu_device pointer
1856 */
1857static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1858{
1859	unsigned long flags;
1860	bool enable;
1861
1862	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1863	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1864	adev->gmc.gmc_funcs->set_prt(adev, enable);
1865	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1866}
1867
1868/**
1869 * amdgpu_vm_prt_get - add a PRT user
1870 *
1871 * @adev: amdgpu_device pointer
1872 */
1873static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1874{
1875	if (!adev->gmc.gmc_funcs->set_prt)
1876		return;
1877
1878	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1879		amdgpu_vm_update_prt_state(adev);
1880}
1881
1882/**
1883 * amdgpu_vm_prt_put - drop a PRT user
1884 *
1885 * @adev: amdgpu_device pointer
1886 */
1887static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1888{
1889	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1890		amdgpu_vm_update_prt_state(adev);
1891}
1892
1893/**
1894 * amdgpu_vm_prt_cb - callback for updating the PRT status
1895 *
1896 * @fence: fence for the callback
1897 * @_cb: the callback function
1898 */
1899static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1900{
1901	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1902
1903	amdgpu_vm_prt_put(cb->adev);
1904	kfree(cb);
1905}
1906
1907/**
1908 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1909 *
1910 * @adev: amdgpu_device pointer
1911 * @fence: fence for the callback
1912 */
1913static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1914				 struct dma_fence *fence)
1915{
1916	struct amdgpu_prt_cb *cb;
1917
1918	if (!adev->gmc.gmc_funcs->set_prt)
1919		return;
1920
1921	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1922	if (!cb) {
1923		/* Last resort when we are OOM */
1924		if (fence)
1925			dma_fence_wait(fence, false);
1926
1927		amdgpu_vm_prt_put(adev);
1928	} else {
1929		cb->adev = adev;
1930		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1931						     amdgpu_vm_prt_cb))
1932			amdgpu_vm_prt_cb(fence, &cb->cb);
1933	}
1934}
1935
1936/**
1937 * amdgpu_vm_free_mapping - free a mapping
1938 *
1939 * @adev: amdgpu_device pointer
1940 * @vm: requested vm
1941 * @mapping: mapping to be freed
1942 * @fence: fence of the unmap operation
1943 *
1944 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1945 */
1946static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1947				   struct amdgpu_vm *vm,
1948				   struct amdgpu_bo_va_mapping *mapping,
1949				   struct dma_fence *fence)
1950{
1951	if (mapping->flags & AMDGPU_PTE_PRT)
1952		amdgpu_vm_add_prt_cb(adev, fence);
1953	kfree(mapping);
1954}
1955
1956/**
1957 * amdgpu_vm_prt_fini - finish all prt mappings
1958 *
1959 * @adev: amdgpu_device pointer
1960 * @vm: requested vm
1961 *
1962 * Register a cleanup callback to disable PRT support after VM dies.
1963 */
1964static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1965{
1966	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1967	struct dma_fence *excl, **shared;
1968	unsigned i, shared_count;
1969	int r;
1970
1971	r = dma_resv_get_fences_rcu(resv, &excl,
1972					      &shared_count, &shared);
1973	if (r) {
1974		/* Not enough memory to grab the fence list, as last resort
1975		 * block for all the fences to complete.
1976		 */
1977		dma_resv_wait_timeout_rcu(resv, true, false,
1978						    MAX_SCHEDULE_TIMEOUT);
1979		return;
1980	}
1981
1982	/* Add a callback for each fence in the reservation object */
1983	amdgpu_vm_prt_get(adev);
1984	amdgpu_vm_add_prt_cb(adev, excl);
1985
1986	for (i = 0; i < shared_count; ++i) {
1987		amdgpu_vm_prt_get(adev);
1988		amdgpu_vm_add_prt_cb(adev, shared[i]);
1989	}
1990
1991	kfree(shared);
1992}
1993
1994/**
1995 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1996 *
1997 * @adev: amdgpu_device pointer
1998 * @vm: requested vm
1999 * @fence: optional resulting fence (unchanged if no work needed to be done
2000 * or if an error occurred)
2001 *
2002 * Make sure all freed BOs are cleared in the PT.
 
 
2003 * PTs have to be reserved and mutex must be locked!
2004 *
2005 * Returns:
2006 * 0 for success.
2007 *
2008 */
2009int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2010			  struct amdgpu_vm *vm,
2011			  struct dma_fence **fence)
2012{
2013	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2014	struct amdgpu_bo_va_mapping *mapping;
2015	uint64_t init_pte_value = 0;
2016	struct dma_fence *f = NULL;
2017	int r;
2018
2019	while (!list_empty(&vm->freed)) {
2020		mapping = list_first_entry(&vm->freed,
2021			struct amdgpu_bo_va_mapping, list);
2022		list_del(&mapping->list);
2023
2024		if (vm->pte_support_ats &&
2025		    mapping->start < AMDGPU_GMC_HOLE_START)
2026			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2027
2028		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2029						mapping->start, mapping->last,
2030						init_pte_value, 0, NULL, &f);
2031		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2032		if (r) {
2033			dma_fence_put(f);
2034			return r;
2035		}
2036	}
2037
2038	if (fence && f) {
2039		dma_fence_put(*fence);
2040		*fence = f;
2041	} else {
2042		dma_fence_put(f);
2043	}
2044
2045	return 0;
2046
2047}
2048
2049/**
2050 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2051 *
2052 * @adev: amdgpu_device pointer
2053 * @vm: requested vm
2054 *
2055 * Make sure all BOs which are moved are updated in the PTs.
 
2056 *
2057 * Returns:
2058 * 0 for success.
2059 *
2060 * PTs have to be reserved!
2061 */
2062int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2063			   struct amdgpu_vm *vm)
2064{
2065	struct amdgpu_bo_va *bo_va, *tmp;
2066	struct dma_resv *resv;
2067	bool clear;
2068	int r;
2069
2070	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2071		/* Per VM BOs never need to bo cleared in the page tables */
2072		r = amdgpu_vm_bo_update(adev, bo_va, false);
2073		if (r)
2074			return r;
2075	}
2076
2077	spin_lock(&vm->invalidated_lock);
2078	while (!list_empty(&vm->invalidated)) {
2079		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2080					 base.vm_status);
2081		resv = bo_va->base.bo->tbo.base.resv;
2082		spin_unlock(&vm->invalidated_lock);
2083
2084		/* Try to reserve the BO to avoid clearing its ptes */
2085		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2086			clear = false;
2087		/* Somebody else is using the BO right now */
2088		else
2089			clear = true;
2090
2091		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2092		if (r)
2093			return r;
2094
2095		if (!clear)
2096			dma_resv_unlock(resv);
2097		spin_lock(&vm->invalidated_lock);
2098	}
2099	spin_unlock(&vm->invalidated_lock);
 
 
 
2100
2101	return 0;
2102}
2103
2104/**
2105 * amdgpu_vm_bo_add - add a bo to a specific vm
2106 *
2107 * @adev: amdgpu_device pointer
2108 * @vm: requested vm
2109 * @bo: amdgpu buffer object
2110 *
2111 * Add @bo into the requested vm.
2112 * Add @bo to the list of bos associated with the vm
2113 *
2114 * Returns:
2115 * Newly added bo_va or NULL for failure
2116 *
2117 * Object has to be reserved!
2118 */
2119struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2120				      struct amdgpu_vm *vm,
2121				      struct amdgpu_bo *bo)
2122{
2123	struct amdgpu_bo_va *bo_va;
2124
2125	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2126	if (bo_va == NULL) {
2127		return NULL;
2128	}
2129	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2130
2131	bo_va->ref_count = 1;
 
2132	INIT_LIST_HEAD(&bo_va->valids);
2133	INIT_LIST_HEAD(&bo_va->invalids);
 
2134
2135	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2136	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2137		bo_va->is_xgmi = true;
2138		/* Power up XGMI if it can be potentially used */
2139		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2140	}
2141
2142	return bo_va;
2143}
2144
2145
2146/**
2147 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2148 *
2149 * @adev: amdgpu_device pointer
2150 * @bo_va: bo_va to store the address
2151 * @mapping: the mapping to insert
2152 *
2153 * Insert a new mapping into all structures.
2154 */
2155static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2156				    struct amdgpu_bo_va *bo_va,
2157				    struct amdgpu_bo_va_mapping *mapping)
2158{
2159	struct amdgpu_vm *vm = bo_va->base.vm;
2160	struct amdgpu_bo *bo = bo_va->base.bo;
2161
2162	mapping->bo_va = bo_va;
2163	list_add(&mapping->list, &bo_va->invalids);
2164	amdgpu_vm_it_insert(mapping, &vm->va);
2165
2166	if (mapping->flags & AMDGPU_PTE_PRT)
2167		amdgpu_vm_prt_get(adev);
2168
2169	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2170	    !bo_va->base.moved) {
2171		list_move(&bo_va->base.vm_status, &vm->moved);
2172	}
2173	trace_amdgpu_vm_bo_map(bo_va, mapping);
2174}
2175
2176/**
2177 * amdgpu_vm_bo_map - map bo inside a vm
2178 *
2179 * @adev: amdgpu_device pointer
2180 * @bo_va: bo_va to store the address
2181 * @saddr: where to map the BO
2182 * @offset: requested offset in the BO
2183 * @size: BO size in bytes
2184 * @flags: attributes of pages (read/write/valid/etc.)
2185 *
2186 * Add a mapping of the BO at the specefied addr into the VM.
2187 *
2188 * Returns:
2189 * 0 for success, error for failure.
2190 *
2191 * Object has to be reserved and unreserved outside!
2192 */
2193int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2194		     struct amdgpu_bo_va *bo_va,
2195		     uint64_t saddr, uint64_t offset,
2196		     uint64_t size, uint64_t flags)
2197{
2198	struct amdgpu_bo_va_mapping *mapping, *tmp;
2199	struct amdgpu_bo *bo = bo_va->base.bo;
2200	struct amdgpu_vm *vm = bo_va->base.vm;
 
2201	uint64_t eaddr;
 
2202
2203	/* validate the parameters */
2204	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2205	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2206		return -EINVAL;
2207
2208	/* make sure object fit at this offset */
2209	eaddr = saddr + size - 1;
2210	if (saddr >= eaddr ||
2211	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2212	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
 
 
 
 
2213		return -EINVAL;
 
2214
2215	saddr /= AMDGPU_GPU_PAGE_SIZE;
2216	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2217
2218	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2219	if (tmp) {
 
 
2220		/* bo and tmp overlap, invalid addr */
2221		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2222			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2223			tmp->start, tmp->last + 1);
2224		return -EINVAL;
 
2225	}
2226
2227	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2228	if (!mapping)
2229		return -ENOMEM;
 
 
2230
2231	mapping->start = saddr;
2232	mapping->last = eaddr;
 
2233	mapping->offset = offset;
2234	mapping->flags = flags;
2235
2236	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
 
2237
2238	return 0;
2239}
 
2240
2241/**
2242 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2243 *
2244 * @adev: amdgpu_device pointer
2245 * @bo_va: bo_va to store the address
2246 * @saddr: where to map the BO
2247 * @offset: requested offset in the BO
2248 * @size: BO size in bytes
2249 * @flags: attributes of pages (read/write/valid/etc.)
2250 *
2251 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2252 * mappings as we do so.
2253 *
2254 * Returns:
2255 * 0 for success, error for failure.
2256 *
2257 * Object has to be reserved and unreserved outside!
2258 */
2259int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2260			     struct amdgpu_bo_va *bo_va,
2261			     uint64_t saddr, uint64_t offset,
2262			     uint64_t size, uint64_t flags)
2263{
2264	struct amdgpu_bo_va_mapping *mapping;
2265	struct amdgpu_bo *bo = bo_va->base.bo;
2266	uint64_t eaddr;
2267	int r;
2268
2269	/* validate the parameters */
2270	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2271	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2272		return -EINVAL;
2273
2274	/* make sure object fit at this offset */
2275	eaddr = saddr + size - 1;
2276	if (saddr >= eaddr ||
2277	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2278	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2279		return -EINVAL;
2280
2281	/* Allocate all the needed memory */
2282	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2283	if (!mapping)
2284		return -ENOMEM;
2285
2286	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2287	if (r) {
2288		kfree(mapping);
2289		return r;
2290	}
 
 
2291
2292	saddr /= AMDGPU_GPU_PAGE_SIZE;
2293	eaddr /= AMDGPU_GPU_PAGE_SIZE;
 
 
2294
2295	mapping->start = saddr;
2296	mapping->last = eaddr;
2297	mapping->offset = offset;
2298	mapping->flags = flags;
 
2299
2300	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
 
 
 
 
 
 
2301
2302	return 0;
 
 
 
 
 
 
 
 
 
2303}
2304
2305/**
2306 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2307 *
2308 * @adev: amdgpu_device pointer
2309 * @bo_va: bo_va to remove the address from
2310 * @saddr: where to the BO is mapped
2311 *
2312 * Remove a mapping of the BO at the specefied addr from the VM.
2313 *
2314 * Returns:
2315 * 0 for success, error for failure.
2316 *
2317 * Object has to be reserved and unreserved outside!
2318 */
2319int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2320		       struct amdgpu_bo_va *bo_va,
2321		       uint64_t saddr)
2322{
2323	struct amdgpu_bo_va_mapping *mapping;
2324	struct amdgpu_vm *vm = bo_va->base.vm;
2325	bool valid = true;
2326
2327	saddr /= AMDGPU_GPU_PAGE_SIZE;
2328
2329	list_for_each_entry(mapping, &bo_va->valids, list) {
2330		if (mapping->start == saddr)
2331			break;
2332	}
2333
2334	if (&mapping->list == &bo_va->valids) {
2335		valid = false;
2336
2337		list_for_each_entry(mapping, &bo_va->invalids, list) {
2338			if (mapping->start == saddr)
2339				break;
2340		}
2341
2342		if (&mapping->list == &bo_va->invalids)
2343			return -ENOENT;
2344	}
2345
2346	list_del(&mapping->list);
2347	amdgpu_vm_it_remove(mapping, &vm->va);
2348	mapping->bo_va = NULL;
2349	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2350
2351	if (valid)
2352		list_add(&mapping->list, &vm->freed);
2353	else
2354		amdgpu_vm_free_mapping(adev, vm, mapping,
2355				       bo_va->last_pt_update);
2356
2357	return 0;
2358}
2359
2360/**
2361 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2362 *
2363 * @adev: amdgpu_device pointer
2364 * @vm: VM structure to use
2365 * @saddr: start of the range
2366 * @size: size of the range
2367 *
2368 * Remove all mappings in a range, split them as appropriate.
2369 *
2370 * Returns:
2371 * 0 for success, error for failure.
2372 */
2373int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2374				struct amdgpu_vm *vm,
2375				uint64_t saddr, uint64_t size)
2376{
2377	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2378	LIST_HEAD(removed);
2379	uint64_t eaddr;
2380
2381	eaddr = saddr + size - 1;
2382	saddr /= AMDGPU_GPU_PAGE_SIZE;
2383	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2384
2385	/* Allocate all the needed memory */
2386	before = kzalloc(sizeof(*before), GFP_KERNEL);
2387	if (!before)
2388		return -ENOMEM;
2389	INIT_LIST_HEAD(&before->list);
2390
2391	after = kzalloc(sizeof(*after), GFP_KERNEL);
2392	if (!after) {
2393		kfree(before);
2394		return -ENOMEM;
2395	}
2396	INIT_LIST_HEAD(&after->list);
2397
2398	/* Now gather all removed mappings */
2399	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2400	while (tmp) {
2401		/* Remember mapping split at the start */
2402		if (tmp->start < saddr) {
2403			before->start = tmp->start;
2404			before->last = saddr - 1;
2405			before->offset = tmp->offset;
2406			before->flags = tmp->flags;
2407			before->bo_va = tmp->bo_va;
2408			list_add(&before->list, &tmp->bo_va->invalids);
2409		}
2410
2411		/* Remember mapping split at the end */
2412		if (tmp->last > eaddr) {
2413			after->start = eaddr + 1;
2414			after->last = tmp->last;
2415			after->offset = tmp->offset;
2416			after->offset += after->start - tmp->start;
2417			after->flags = tmp->flags;
2418			after->bo_va = tmp->bo_va;
2419			list_add(&after->list, &tmp->bo_va->invalids);
2420		}
2421
2422		list_del(&tmp->list);
2423		list_add(&tmp->list, &removed);
2424
2425		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2426	}
2427
2428	/* And free them up */
2429	list_for_each_entry_safe(tmp, next, &removed, list) {
2430		amdgpu_vm_it_remove(tmp, &vm->va);
2431		list_del(&tmp->list);
2432
2433		if (tmp->start < saddr)
2434		    tmp->start = saddr;
2435		if (tmp->last > eaddr)
2436		    tmp->last = eaddr;
2437
2438		tmp->bo_va = NULL;
2439		list_add(&tmp->list, &vm->freed);
2440		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2441	}
2442
2443	/* Insert partial mapping before the range */
2444	if (!list_empty(&before->list)) {
2445		amdgpu_vm_it_insert(before, &vm->va);
2446		if (before->flags & AMDGPU_PTE_PRT)
2447			amdgpu_vm_prt_get(adev);
2448	} else {
2449		kfree(before);
2450	}
2451
2452	/* Insert partial mapping after the range */
2453	if (!list_empty(&after->list)) {
2454		amdgpu_vm_it_insert(after, &vm->va);
2455		if (after->flags & AMDGPU_PTE_PRT)
2456			amdgpu_vm_prt_get(adev);
2457	} else {
2458		kfree(after);
2459	}
2460
2461	return 0;
2462}
2463
2464/**
2465 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2466 *
2467 * @vm: the requested VM
2468 * @addr: the address
2469 *
2470 * Find a mapping by it's address.
2471 *
2472 * Returns:
2473 * The amdgpu_bo_va_mapping matching for addr or NULL
2474 *
2475 */
2476struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2477							 uint64_t addr)
2478{
2479	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2480}
2481
2482/**
2483 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2484 *
2485 * @vm: the requested vm
2486 * @ticket: CS ticket
2487 *
2488 * Trace all mappings of BOs reserved during a command submission.
2489 */
2490void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2491{
2492	struct amdgpu_bo_va_mapping *mapping;
2493
2494	if (!trace_amdgpu_vm_bo_cs_enabled())
2495		return;
2496
2497	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2498	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2499		if (mapping->bo_va && mapping->bo_va->base.bo) {
2500			struct amdgpu_bo *bo;
2501
2502			bo = mapping->bo_va->base.bo;
2503			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2504			    ticket)
2505				continue;
2506		}
2507
2508		trace_amdgpu_vm_bo_cs(mapping);
2509	}
2510}
2511
2512/**
2513 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2514 *
2515 * @adev: amdgpu_device pointer
2516 * @bo_va: requested bo_va
2517 *
2518 * Remove @bo_va->bo from the requested vm.
2519 *
2520 * Object have to be reserved!
2521 */
2522void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2523		      struct amdgpu_bo_va *bo_va)
2524{
2525	struct amdgpu_bo_va_mapping *mapping, *next;
2526	struct amdgpu_bo *bo = bo_va->base.bo;
2527	struct amdgpu_vm *vm = bo_va->base.vm;
2528	struct amdgpu_vm_bo_base **base;
2529
2530	if (bo) {
2531		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2532			vm->bulk_moveable = false;
2533
2534		for (base = &bo_va->base.bo->vm_bo; *base;
2535		     base = &(*base)->next) {
2536			if (*base != &bo_va->base)
2537				continue;
2538
2539			*base = bo_va->base.next;
2540			break;
2541		}
2542	}
2543
2544	spin_lock(&vm->invalidated_lock);
2545	list_del(&bo_va->base.vm_status);
2546	spin_unlock(&vm->invalidated_lock);
2547
2548	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2549		list_del(&mapping->list);
2550		amdgpu_vm_it_remove(mapping, &vm->va);
2551		mapping->bo_va = NULL;
2552		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2553		list_add(&mapping->list, &vm->freed);
2554	}
2555	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2556		list_del(&mapping->list);
2557		amdgpu_vm_it_remove(mapping, &vm->va);
2558		amdgpu_vm_free_mapping(adev, vm, mapping,
2559				       bo_va->last_pt_update);
2560	}
2561
2562	dma_fence_put(bo_va->last_pt_update);
2563
2564	if (bo && bo_va->is_xgmi)
2565		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2566
2567	kfree(bo_va);
2568}
2569
2570/**
2571 * amdgpu_vm_evictable - check if we can evict a VM
2572 *
2573 * @bo: A page table of the VM.
2574 *
2575 * Check if it is possible to evict a VM.
2576 */
2577bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2578{
2579	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2580
2581	/* Page tables of a destroyed VM can go away immediately */
2582	if (!bo_base || !bo_base->vm)
2583		return true;
2584
2585	/* Don't evict VM page tables while they are busy */
2586	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2587		return false;
2588
2589	/* Try to block ongoing updates */
2590	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2591		return false;
2592
2593	/* Don't evict VM page tables while they are updated */
2594	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2595		amdgpu_vm_eviction_unlock(bo_base->vm);
2596		return false;
2597	}
2598
2599	bo_base->vm->evicting = true;
2600	amdgpu_vm_eviction_unlock(bo_base->vm);
2601	return true;
2602}
2603
2604/**
2605 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2606 *
2607 * @adev: amdgpu_device pointer
 
2608 * @bo: amdgpu buffer object
2609 * @evicted: is the BO evicted
2610 *
2611 * Mark @bo as invalid.
2612 */
2613void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2614			     struct amdgpu_bo *bo, bool evicted)
2615{
2616	struct amdgpu_vm_bo_base *bo_base;
2617
2618	/* shadow bo doesn't have bo base, its validation needs its parent */
2619	if (bo->parent && bo->parent->shadow == bo)
2620		bo = bo->parent;
2621
2622	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2623		struct amdgpu_vm *vm = bo_base->vm;
2624
2625		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2626			amdgpu_vm_bo_evicted(bo_base);
2627			continue;
2628		}
2629
2630		if (bo_base->moved)
2631			continue;
2632		bo_base->moved = true;
2633
2634		if (bo->tbo.type == ttm_bo_type_kernel)
2635			amdgpu_vm_bo_relocated(bo_base);
2636		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2637			amdgpu_vm_bo_moved(bo_base);
2638		else
2639			amdgpu_vm_bo_invalidated(bo_base);
2640	}
2641}
2642
2643/**
2644 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2645 *
2646 * @vm_size: VM size
2647 *
2648 * Returns:
2649 * VM page table as power of two
2650 */
2651static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2652{
2653	/* Total bits covered by PD + PTs */
2654	unsigned bits = ilog2(vm_size) + 18;
2655
2656	/* Make sure the PD is 4K in size up to 8GB address space.
2657	   Above that split equal between PD and PTs */
2658	if (vm_size <= 8)
2659		return (bits - 9);
2660	else
2661		return ((bits + 3) / 2);
2662}
2663
2664/**
2665 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2666 *
2667 * @adev: amdgpu_device pointer
2668 * @min_vm_size: the minimum vm size in GB if it's set auto
2669 * @fragment_size_default: Default PTE fragment size
2670 * @max_level: max VMPT level
2671 * @max_bits: max address space size in bits
2672 *
2673 */
2674void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2675			   uint32_t fragment_size_default, unsigned max_level,
2676			   unsigned max_bits)
2677{
2678	unsigned int max_size = 1 << (max_bits - 30);
2679	unsigned int vm_size;
2680	uint64_t tmp;
2681
2682	/* adjust vm size first */
2683	if (amdgpu_vm_size != -1) {
2684		vm_size = amdgpu_vm_size;
2685		if (vm_size > max_size) {
2686			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2687				 amdgpu_vm_size, max_size);
2688			vm_size = max_size;
2689		}
2690	} else {
2691		struct sysinfo si;
2692		unsigned int phys_ram_gb;
2693
2694		/* Optimal VM size depends on the amount of physical
2695		 * RAM available. Underlying requirements and
2696		 * assumptions:
2697		 *
2698		 *  - Need to map system memory and VRAM from all GPUs
2699		 *     - VRAM from other GPUs not known here
2700		 *     - Assume VRAM <= system memory
2701		 *  - On GFX8 and older, VM space can be segmented for
2702		 *    different MTYPEs
2703		 *  - Need to allow room for fragmentation, guard pages etc.
2704		 *
2705		 * This adds up to a rough guess of system memory x3.
2706		 * Round up to power of two to maximize the available
2707		 * VM size with the given page table size.
2708		 */
2709		si_meminfo(&si);
2710		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2711			       (1 << 30) - 1) >> 30;
2712		vm_size = roundup_pow_of_two(
2713			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2714	}
2715
2716	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2717
2718	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2719	if (amdgpu_vm_block_size != -1)
2720		tmp >>= amdgpu_vm_block_size - 9;
2721	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2722	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2723	switch (adev->vm_manager.num_level) {
2724	case 3:
2725		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2726		break;
2727	case 2:
2728		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2729		break;
2730	case 1:
2731		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2732		break;
2733	default:
2734		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2735	}
2736	/* block size depends on vm size and hw setup*/
2737	if (amdgpu_vm_block_size != -1)
2738		adev->vm_manager.block_size =
2739			min((unsigned)amdgpu_vm_block_size, max_bits
2740			    - AMDGPU_GPU_PAGE_SHIFT
2741			    - 9 * adev->vm_manager.num_level);
2742	else if (adev->vm_manager.num_level > 1)
2743		adev->vm_manager.block_size = 9;
2744	else
2745		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2746
2747	if (amdgpu_vm_fragment_size == -1)
2748		adev->vm_manager.fragment_size = fragment_size_default;
2749	else
2750		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2751
2752	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2753		 vm_size, adev->vm_manager.num_level + 1,
2754		 adev->vm_manager.block_size,
2755		 adev->vm_manager.fragment_size);
2756}
2757
2758/**
2759 * amdgpu_vm_wait_idle - wait for the VM to become idle
2760 *
2761 * @vm: VM object to wait for
2762 * @timeout: timeout to wait for VM to become idle
2763 */
2764long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2765{
2766	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2767					    true, true, timeout);
2768	if (timeout <= 0)
2769		return timeout;
2770
2771	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2772}
2773
2774/**
2775 * amdgpu_vm_init - initialize a vm instance
2776 *
2777 * @adev: amdgpu_device pointer
2778 * @vm: requested vm
2779 * @vm_context: Indicates if it GFX or Compute context
2780 * @pasid: Process address space identifier
2781 *
2782 * Init @vm fields.
2783 *
2784 * Returns:
2785 * 0 for success, error for failure.
2786 */
2787int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2788		   int vm_context, unsigned int pasid)
2789{
2790	struct amdgpu_bo_param bp;
2791	struct amdgpu_bo *root;
2792	int r, i;
2793
2794	vm->va = RB_ROOT_CACHED;
2795	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2796		vm->reserved_vmid[i] = NULL;
2797	INIT_LIST_HEAD(&vm->evicted);
2798	INIT_LIST_HEAD(&vm->relocated);
2799	INIT_LIST_HEAD(&vm->moved);
2800	INIT_LIST_HEAD(&vm->idle);
 
 
 
2801	INIT_LIST_HEAD(&vm->invalidated);
2802	spin_lock_init(&vm->invalidated_lock);
2803	INIT_LIST_HEAD(&vm->freed);
2804
 
 
2805
2806	/* create scheduler entities for page table updates */
2807	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2808				  adev->vm_manager.vm_pte_scheds,
2809				  adev->vm_manager.vm_pte_num_scheds, NULL);
2810	if (r)
2811		return r;
2812
2813	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2814				  adev->vm_manager.vm_pte_scheds,
2815				  adev->vm_manager.vm_pte_num_scheds, NULL);
2816	if (r)
2817		goto error_free_immediate;
2818
2819	vm->pte_support_ats = false;
2820	vm->is_compute_context = false;
2821
2822	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2823		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2824						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2825
2826		if (adev->asic_type == CHIP_RAVEN)
2827			vm->pte_support_ats = true;
2828	} else {
2829		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2830						AMDGPU_VM_USE_CPU_FOR_GFX);
2831	}
2832	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2833			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2834	WARN_ONCE((vm->use_cpu_for_update &&
2835		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2836		  "CPU update of VM recommended only for large BAR system\n");
2837
2838	if (vm->use_cpu_for_update)
2839		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2840	else
2841		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2842	vm->last_update = NULL;
2843	vm->last_unlocked = dma_fence_get_stub();
2844
2845	mutex_init(&vm->eviction_lock);
2846	vm->evicting = false;
2847
2848	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2849	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2850		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2851	r = amdgpu_bo_create(adev, &bp, &root);
2852	if (r)
2853		goto error_free_delayed;
2854
2855	r = amdgpu_bo_reserve(root, true);
 
 
 
 
 
2856	if (r)
2857		goto error_free_root;
2858
2859	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2860	if (r)
2861		goto error_unreserve;
2862
2863	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2864
2865	r = amdgpu_vm_clear_bo(adev, vm, root, false);
 
 
 
2866	if (r)
2867		goto error_unreserve;
2868
2869	amdgpu_bo_unreserve(vm->root.base.bo);
2870
2871	if (pasid) {
2872		unsigned long flags;
2873
2874		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2875		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2876			      GFP_ATOMIC);
2877		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2878		if (r < 0)
2879			goto error_free_root;
2880
2881		vm->pasid = pasid;
2882	}
2883
2884	INIT_KFIFO(vm->faults);
2885
2886	return 0;
2887
2888error_unreserve:
2889	amdgpu_bo_unreserve(vm->root.base.bo);
2890
2891error_free_root:
2892	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2893	amdgpu_bo_unref(&vm->root.base.bo);
2894	vm->root.base.bo = NULL;
2895
2896error_free_delayed:
2897	dma_fence_put(vm->last_unlocked);
2898	drm_sched_entity_destroy(&vm->delayed);
2899
2900error_free_immediate:
2901	drm_sched_entity_destroy(&vm->immediate);
2902
2903	return r;
2904}
2905
2906/**
2907 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2908 *
2909 * @adev: amdgpu_device pointer
2910 * @vm: the VM to check
2911 *
2912 * check all entries of the root PD, if any subsequent PDs are allocated,
2913 * it means there are page table creating and filling, and is no a clean
2914 * VM
2915 *
2916 * Returns:
2917 *	0 if this VM is clean
2918 */
2919static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2920	struct amdgpu_vm *vm)
2921{
2922	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2923	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2924	unsigned int i = 0;
2925
2926	if (!(vm->root.entries))
2927		return 0;
2928
2929	for (i = 0; i < entries; i++) {
2930		if (vm->root.entries[i].base.bo)
2931			return -EINVAL;
2932	}
2933
2934	return 0;
2935}
2936
2937/**
2938 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2939 *
2940 * @adev: amdgpu_device pointer
2941 * @vm: requested vm
2942 * @pasid: pasid to use
2943 *
2944 * This only works on GFX VMs that don't have any BOs added and no
2945 * page tables allocated yet.
2946 *
2947 * Changes the following VM parameters:
2948 * - use_cpu_for_update
2949 * - pte_supports_ats
2950 * - pasid (old PASID is released, because compute manages its own PASIDs)
2951 *
2952 * Reinitializes the page directory to reflect the changed ATS
2953 * setting.
2954 *
2955 * Returns:
2956 * 0 for success, -errno for errors.
2957 */
2958int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2959			   unsigned int pasid)
2960{
2961	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2962	int r;
2963
2964	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2965	if (r)
2966		return r;
2967
2968	/* Sanity checks */
2969	r = amdgpu_vm_check_clean_reserved(adev, vm);
2970	if (r)
2971		goto unreserve_bo;
2972
2973	if (pasid) {
2974		unsigned long flags;
2975
2976		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2977		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2978			      GFP_ATOMIC);
2979		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2980
2981		if (r == -ENOSPC)
2982			goto unreserve_bo;
2983		r = 0;
2984	}
2985
2986	/* Check if PD needs to be reinitialized and do it before
2987	 * changing any other state, in case it fails.
2988	 */
2989	if (pte_support_ats != vm->pte_support_ats) {
2990		vm->pte_support_ats = pte_support_ats;
2991		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2992		if (r)
2993			goto free_idr;
2994	}
2995
2996	/* Update VM state */
2997	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2998				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2999	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3000			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3001	WARN_ONCE((vm->use_cpu_for_update &&
3002		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3003		  "CPU update of VM recommended only for large BAR system\n");
3004
3005	if (vm->use_cpu_for_update) {
3006		/* Sync with last SDMA update/clear before switching to CPU */
3007		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3008					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3009		if (r)
3010			goto free_idr;
3011
3012		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3013	} else {
3014		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3015	}
3016	dma_fence_put(vm->last_update);
3017	vm->last_update = NULL;
3018	vm->is_compute_context = true;
3019
3020	if (vm->pasid) {
3021		unsigned long flags;
 
3022
3023		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3024		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3025		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3026
3027		/* Free the original amdgpu allocated pasid
3028		 * Will be replaced with kfd allocated pasid
3029		 */
3030		amdgpu_pasid_free(vm->pasid);
3031		vm->pasid = 0;
3032	}
3033
3034	/* Free the shadow bo for compute VM */
3035	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3036
3037	if (pasid)
3038		vm->pasid = pasid;
3039
3040	goto unreserve_bo;
3041
3042free_idr:
3043	if (pasid) {
3044		unsigned long flags;
3045
3046		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3047		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3048		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3049	}
3050unreserve_bo:
3051	amdgpu_bo_unreserve(vm->root.base.bo);
3052	return r;
3053}
3054
3055/**
3056 * amdgpu_vm_release_compute - release a compute vm
3057 * @adev: amdgpu_device pointer
3058 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3059 *
3060 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3061 * pasid from vm. Compute should stop use of vm after this call.
3062 */
3063void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3064{
3065	if (vm->pasid) {
3066		unsigned long flags;
3067
3068		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3070		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071	}
3072	vm->pasid = 0;
3073	vm->is_compute_context = false;
3074}
3075
3076/**
3077 * amdgpu_vm_fini - tear down a vm instance
3078 *
3079 * @adev: amdgpu_device pointer
3080 * @vm: requested vm
3081 *
3082 * Tear down @vm.
3083 * Unbind the VM and remove all bos from the vm bo list
3084 */
3085void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086{
3087	struct amdgpu_bo_va_mapping *mapping, *tmp;
3088	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3089	struct amdgpu_bo *root;
3090	int i;
3091
3092	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3093
3094	root = amdgpu_bo_ref(vm->root.base.bo);
3095	amdgpu_bo_reserve(root, true);
3096	if (vm->pasid) {
3097		unsigned long flags;
3098
3099		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3100		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3101		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3102		vm->pasid = 0;
3103	}
3104
3105	dma_fence_wait(vm->last_unlocked, false);
3106	dma_fence_put(vm->last_unlocked);
3107
3108	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3109		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3110			amdgpu_vm_prt_fini(adev, vm);
3111			prt_fini_needed = false;
3112		}
3113
3114		list_del(&mapping->list);
3115		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
 
3116	}
3117
3118	amdgpu_vm_free_pts(adev, vm, NULL);
3119	amdgpu_bo_unreserve(root);
3120	amdgpu_bo_unref(&root);
3121	WARN_ON(vm->root.base.bo);
3122
3123	drm_sched_entity_destroy(&vm->immediate);
3124	drm_sched_entity_destroy(&vm->delayed);
3125
3126	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3127		dev_err(adev->dev, "still active bo inside vm\n");
3128	}
3129	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3130					     &vm->va.rb_root, rb) {
3131		/* Don't remove the mapping here, we don't want to trigger a
3132		 * rebalance and the tree is about to be destroyed anyway.
3133		 */
3134		list_del(&mapping->list);
3135		kfree(mapping);
3136	}
3137
3138	dma_fence_put(vm->last_update);
3139	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3140		amdgpu_vmid_free_reserved(adev, vm, i);
 
 
 
 
 
 
 
 
 
 
 
 
3141}
3142
3143/**
3144 * amdgpu_vm_manager_init - init the VM manager
3145 *
3146 * @adev: amdgpu_device pointer
3147 *
3148 * Initialize the VM manager structures
3149 */
3150void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3151{
3152	unsigned i;
3153
3154	amdgpu_vmid_mgr_init(adev);
3155
3156	adev->vm_manager.fence_context =
3157		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3158	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3159		adev->vm_manager.seqno[i] = 0;
3160
3161	spin_lock_init(&adev->vm_manager.prt_lock);
3162	atomic_set(&adev->vm_manager.num_prt_users, 0);
3163
3164	/* If not overridden by the user, by default, only in large BAR systems
3165	 * Compute VM tables will be updated by CPU
3166	 */
3167#ifdef CONFIG_X86_64
3168	if (amdgpu_vm_update_mode == -1) {
3169		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3170			adev->vm_manager.vm_update_mode =
3171				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3172		else
3173			adev->vm_manager.vm_update_mode = 0;
3174	} else
3175		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3176#else
3177	adev->vm_manager.vm_update_mode = 0;
3178#endif
3179
3180	idr_init(&adev->vm_manager.pasid_idr);
3181	spin_lock_init(&adev->vm_manager.pasid_lock);
3182}
3183
3184/**
3185 * amdgpu_vm_manager_fini - cleanup VM manager
3186 *
3187 * @adev: amdgpu_device pointer
3188 *
3189 * Cleanup the VM manager and free resources.
3190 */
3191void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3192{
3193	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3194	idr_destroy(&adev->vm_manager.pasid_idr);
3195
3196	amdgpu_vmid_mgr_fini(adev);
3197}
3198
3199/**
3200 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3201 *
3202 * @dev: drm device pointer
3203 * @data: drm_amdgpu_vm
3204 * @filp: drm file pointer
3205 *
3206 * Returns:
3207 * 0 for success, -errno for errors.
3208 */
3209int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3210{
3211	union drm_amdgpu_vm *args = data;
3212	struct amdgpu_device *adev = dev->dev_private;
3213	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3214	long timeout = msecs_to_jiffies(2000);
3215	int r;
3216
3217	switch (args->in.op) {
3218	case AMDGPU_VM_OP_RESERVE_VMID:
3219		/* We only have requirement to reserve vmid from gfxhub */
3220		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3221					       AMDGPU_GFXHUB_0);
3222		if (r)
3223			return r;
3224		break;
3225	case AMDGPU_VM_OP_UNRESERVE_VMID:
3226		if (amdgpu_sriov_runtime(adev))
3227			timeout = 8 * timeout;
3228
3229		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3230		 * not referenced anymore.
3231		 */
3232		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3233		if (r)
3234			return r;
3235
3236		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3237		if (r < 0)
3238			return r;
3239
3240		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3241		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3242		break;
3243	default:
3244		return -EINVAL;
3245	}
3246
3247	return 0;
3248}
3249
3250/**
3251 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3252 *
3253 * @adev: drm device pointer
3254 * @pasid: PASID identifier for VM
3255 * @task_info: task_info to fill.
3256 */
3257void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3258			 struct amdgpu_task_info *task_info)
3259{
3260	struct amdgpu_vm *vm;
3261	unsigned long flags;
3262
3263	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3264
3265	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3266	if (vm)
3267		*task_info = vm->task_info;
3268
3269	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3270}
3271
3272/**
3273 * amdgpu_vm_set_task_info - Sets VMs task info.
3274 *
3275 * @vm: vm for which to set the info
3276 */
3277void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3278{
3279	if (vm->task_info.pid)
3280		return;
3281
3282	vm->task_info.pid = current->pid;
3283	get_task_comm(vm->task_info.task_name, current);
3284
3285	if (current->group_leader->mm != current->mm)
3286		return;
3287
3288	vm->task_info.tgid = current->group_leader->pid;
3289	get_task_comm(vm->task_info.process_name, current->group_leader);
3290}
3291
3292/**
3293 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3294 * @adev: amdgpu device pointer
3295 * @pasid: PASID of the VM
3296 * @addr: Address of the fault
3297 *
3298 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3299 * shouldn't be reported any more.
3300 */
3301bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3302			    uint64_t addr)
3303{
3304	struct amdgpu_bo *root;
3305	uint64_t value, flags;
3306	struct amdgpu_vm *vm;
3307	long r;
3308
3309	spin_lock(&adev->vm_manager.pasid_lock);
3310	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3311	if (vm)
3312		root = amdgpu_bo_ref(vm->root.base.bo);
3313	else
3314		root = NULL;
3315	spin_unlock(&adev->vm_manager.pasid_lock);
3316
3317	if (!root)
3318		return false;
3319
3320	r = amdgpu_bo_reserve(root, true);
3321	if (r)
3322		goto error_unref;
3323
3324	/* Double check that the VM still exists */
3325	spin_lock(&adev->vm_manager.pasid_lock);
3326	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3327	if (vm && vm->root.base.bo != root)
3328		vm = NULL;
3329	spin_unlock(&adev->vm_manager.pasid_lock);
3330	if (!vm)
3331		goto error_unlock;
3332
3333	addr /= AMDGPU_GPU_PAGE_SIZE;
3334	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3335		AMDGPU_PTE_SYSTEM;
3336
3337	if (vm->is_compute_context) {
3338		/* Intentionally setting invalid PTE flag
3339		 * combination to force a no-retry-fault
3340		 */
3341		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3342			AMDGPU_PTE_TF;
3343		value = 0;
3344
3345	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3346		/* Redirect the access to the dummy page */
3347		value = adev->dummy_page_addr;
3348		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3349			AMDGPU_PTE_WRITEABLE;
3350
3351	} else {
3352		/* Let the hw retry silently on the PTE */
3353		value = 0;
3354	}
3355
3356	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3357					addr + 1, flags, value, NULL, NULL);
3358	if (r)
3359		goto error_unlock;
3360
3361	r = amdgpu_vm_update_pdes(adev, vm, true);
3362
3363error_unlock:
3364	amdgpu_bo_unreserve(root);
3365	if (r < 0)
3366		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3367
3368error_unref:
3369	amdgpu_bo_unref(&root);
3370
3371	return false;
 
3372}