Loading...
1/*
2 * linux/arch/arm/kernel/ptrace.c
3 *
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/elf.h>
16#include <linux/smp.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/init.h>
21#include <linux/signal.h>
22#include <linux/uaccess.h>
23#include <linux/perf_event.h>
24#include <linux/hw_breakpoint.h>
25#include <linux/regset.h>
26#include <linux/audit.h>
27#include <linux/tracehook.h>
28#include <linux/unistd.h>
29
30#include <asm/pgtable.h>
31#include <asm/traps.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/syscalls.h>
35
36#define REG_PC 15
37#define REG_PSR 16
38/*
39 * does not yet catch signals sent when the child dies.
40 * in exit.c or in signal.c.
41 */
42
43#if 0
44/*
45 * Breakpoint SWI instruction: SWI &9F0001
46 */
47#define BREAKINST_ARM 0xef9f0001
48#define BREAKINST_THUMB 0xdf00 /* fill this in later */
49#else
50/*
51 * New breakpoints - use an undefined instruction. The ARM architecture
52 * reference manual guarantees that the following instruction space
53 * will produce an undefined instruction exception on all CPUs:
54 *
55 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
56 * Thumb: 1101 1110 xxxx xxxx
57 */
58#define BREAKINST_ARM 0xe7f001f0
59#define BREAKINST_THUMB 0xde01
60#endif
61
62struct pt_regs_offset {
63 const char *name;
64 int offset;
65};
66
67#define REG_OFFSET_NAME(r) \
68 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
69#define REG_OFFSET_END {.name = NULL, .offset = 0}
70
71static const struct pt_regs_offset regoffset_table[] = {
72 REG_OFFSET_NAME(r0),
73 REG_OFFSET_NAME(r1),
74 REG_OFFSET_NAME(r2),
75 REG_OFFSET_NAME(r3),
76 REG_OFFSET_NAME(r4),
77 REG_OFFSET_NAME(r5),
78 REG_OFFSET_NAME(r6),
79 REG_OFFSET_NAME(r7),
80 REG_OFFSET_NAME(r8),
81 REG_OFFSET_NAME(r9),
82 REG_OFFSET_NAME(r10),
83 REG_OFFSET_NAME(fp),
84 REG_OFFSET_NAME(ip),
85 REG_OFFSET_NAME(sp),
86 REG_OFFSET_NAME(lr),
87 REG_OFFSET_NAME(pc),
88 REG_OFFSET_NAME(cpsr),
89 REG_OFFSET_NAME(ORIG_r0),
90 REG_OFFSET_END,
91};
92
93/**
94 * regs_query_register_offset() - query register offset from its name
95 * @name: the name of a register
96 *
97 * regs_query_register_offset() returns the offset of a register in struct
98 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
99 */
100int regs_query_register_offset(const char *name)
101{
102 const struct pt_regs_offset *roff;
103 for (roff = regoffset_table; roff->name != NULL; roff++)
104 if (!strcmp(roff->name, name))
105 return roff->offset;
106 return -EINVAL;
107}
108
109/**
110 * regs_query_register_name() - query register name from its offset
111 * @offset: the offset of a register in struct pt_regs.
112 *
113 * regs_query_register_name() returns the name of a register from its
114 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
115 */
116const char *regs_query_register_name(unsigned int offset)
117{
118 const struct pt_regs_offset *roff;
119 for (roff = regoffset_table; roff->name != NULL; roff++)
120 if (roff->offset == offset)
121 return roff->name;
122 return NULL;
123}
124
125/**
126 * regs_within_kernel_stack() - check the address in the stack
127 * @regs: pt_regs which contains kernel stack pointer.
128 * @addr: address which is checked.
129 *
130 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
131 * If @addr is within the kernel stack, it returns true. If not, returns false.
132 */
133bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
134{
135 return ((addr & ~(THREAD_SIZE - 1)) ==
136 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
137}
138
139/**
140 * regs_get_kernel_stack_nth() - get Nth entry of the stack
141 * @regs: pt_regs which contains kernel stack pointer.
142 * @n: stack entry number.
143 *
144 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
145 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
146 * this returns 0.
147 */
148unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
149{
150 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
151 addr += n;
152 if (regs_within_kernel_stack(regs, (unsigned long)addr))
153 return *addr;
154 else
155 return 0;
156}
157
158/*
159 * this routine will get a word off of the processes privileged stack.
160 * the offset is how far from the base addr as stored in the THREAD.
161 * this routine assumes that all the privileged stacks are in our
162 * data space.
163 */
164static inline long get_user_reg(struct task_struct *task, int offset)
165{
166 return task_pt_regs(task)->uregs[offset];
167}
168
169/*
170 * this routine will put a word on the processes privileged stack.
171 * the offset is how far from the base addr as stored in the THREAD.
172 * this routine assumes that all the privileged stacks are in our
173 * data space.
174 */
175static inline int
176put_user_reg(struct task_struct *task, int offset, long data)
177{
178 struct pt_regs newregs, *regs = task_pt_regs(task);
179 int ret = -EINVAL;
180
181 newregs = *regs;
182 newregs.uregs[offset] = data;
183
184 if (valid_user_regs(&newregs)) {
185 regs->uregs[offset] = data;
186 ret = 0;
187 }
188
189 return ret;
190}
191
192/*
193 * Called by kernel/ptrace.c when detaching..
194 */
195void ptrace_disable(struct task_struct *child)
196{
197 /* Nothing to do. */
198}
199
200/*
201 * Handle hitting a breakpoint.
202 */
203void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
204{
205 siginfo_t info;
206
207 info.si_signo = SIGTRAP;
208 info.si_errno = 0;
209 info.si_code = TRAP_BRKPT;
210 info.si_addr = (void __user *)instruction_pointer(regs);
211
212 force_sig_info(SIGTRAP, &info, tsk);
213}
214
215static int break_trap(struct pt_regs *regs, unsigned int instr)
216{
217 ptrace_break(current, regs);
218 return 0;
219}
220
221static struct undef_hook arm_break_hook = {
222 .instr_mask = 0x0fffffff,
223 .instr_val = 0x07f001f0,
224 .cpsr_mask = PSR_T_BIT,
225 .cpsr_val = 0,
226 .fn = break_trap,
227};
228
229static struct undef_hook thumb_break_hook = {
230 .instr_mask = 0xffff,
231 .instr_val = 0xde01,
232 .cpsr_mask = PSR_T_BIT,
233 .cpsr_val = PSR_T_BIT,
234 .fn = break_trap,
235};
236
237static struct undef_hook thumb2_break_hook = {
238 .instr_mask = 0xffffffff,
239 .instr_val = 0xf7f0a000,
240 .cpsr_mask = PSR_T_BIT,
241 .cpsr_val = PSR_T_BIT,
242 .fn = break_trap,
243};
244
245static int __init ptrace_break_init(void)
246{
247 register_undef_hook(&arm_break_hook);
248 register_undef_hook(&thumb_break_hook);
249 register_undef_hook(&thumb2_break_hook);
250 return 0;
251}
252
253core_initcall(ptrace_break_init);
254
255/*
256 * Read the word at offset "off" into the "struct user". We
257 * actually access the pt_regs stored on the kernel stack.
258 */
259static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
260 unsigned long __user *ret)
261{
262 unsigned long tmp;
263
264 if (off & 3)
265 return -EIO;
266
267 tmp = 0;
268 if (off == PT_TEXT_ADDR)
269 tmp = tsk->mm->start_code;
270 else if (off == PT_DATA_ADDR)
271 tmp = tsk->mm->start_data;
272 else if (off == PT_TEXT_END_ADDR)
273 tmp = tsk->mm->end_code;
274 else if (off < sizeof(struct pt_regs))
275 tmp = get_user_reg(tsk, off >> 2);
276 else if (off >= sizeof(struct user))
277 return -EIO;
278
279 return put_user(tmp, ret);
280}
281
282/*
283 * Write the word at offset "off" into "struct user". We
284 * actually access the pt_regs stored on the kernel stack.
285 */
286static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
287 unsigned long val)
288{
289 if (off & 3 || off >= sizeof(struct user))
290 return -EIO;
291
292 if (off >= sizeof(struct pt_regs))
293 return 0;
294
295 return put_user_reg(tsk, off >> 2, val);
296}
297
298#ifdef CONFIG_IWMMXT
299
300/*
301 * Get the child iWMMXt state.
302 */
303static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
304{
305 struct thread_info *thread = task_thread_info(tsk);
306
307 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
308 return -ENODATA;
309 iwmmxt_task_disable(thread); /* force it to ram */
310 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
311 ? -EFAULT : 0;
312}
313
314/*
315 * Set the child iWMMXt state.
316 */
317static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
318{
319 struct thread_info *thread = task_thread_info(tsk);
320
321 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322 return -EACCES;
323 iwmmxt_task_release(thread); /* force a reload */
324 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
325 ? -EFAULT : 0;
326}
327
328#endif
329
330#ifdef CONFIG_CRUNCH
331/*
332 * Get the child Crunch state.
333 */
334static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
335{
336 struct thread_info *thread = task_thread_info(tsk);
337
338 crunch_task_disable(thread); /* force it to ram */
339 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
340 ? -EFAULT : 0;
341}
342
343/*
344 * Set the child Crunch state.
345 */
346static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
347{
348 struct thread_info *thread = task_thread_info(tsk);
349
350 crunch_task_release(thread); /* force a reload */
351 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
352 ? -EFAULT : 0;
353}
354#endif
355
356#ifdef CONFIG_HAVE_HW_BREAKPOINT
357/*
358 * Convert a virtual register number into an index for a thread_info
359 * breakpoint array. Breakpoints are identified using positive numbers
360 * whilst watchpoints are negative. The registers are laid out as pairs
361 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
362 * Register 0 is reserved for describing resource information.
363 */
364static int ptrace_hbp_num_to_idx(long num)
365{
366 if (num < 0)
367 num = (ARM_MAX_BRP << 1) - num;
368 return (num - 1) >> 1;
369}
370
371/*
372 * Returns the virtual register number for the address of the
373 * breakpoint at index idx.
374 */
375static long ptrace_hbp_idx_to_num(int idx)
376{
377 long mid = ARM_MAX_BRP << 1;
378 long num = (idx << 1) + 1;
379 return num > mid ? mid - num : num;
380}
381
382/*
383 * Handle hitting a HW-breakpoint.
384 */
385static void ptrace_hbptriggered(struct perf_event *bp,
386 struct perf_sample_data *data,
387 struct pt_regs *regs)
388{
389 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
390 long num;
391 int i;
392 siginfo_t info;
393
394 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
395 if (current->thread.debug.hbp[i] == bp)
396 break;
397
398 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
399
400 info.si_signo = SIGTRAP;
401 info.si_errno = (int)num;
402 info.si_code = TRAP_HWBKPT;
403 info.si_addr = (void __user *)(bkpt->trigger);
404
405 force_sig_info(SIGTRAP, &info, current);
406}
407
408/*
409 * Set ptrace breakpoint pointers to zero for this task.
410 * This is required in order to prevent child processes from unregistering
411 * breakpoints held by their parent.
412 */
413void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
414{
415 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
416}
417
418/*
419 * Unregister breakpoints from this task and reset the pointers in
420 * the thread_struct.
421 */
422void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
423{
424 int i;
425 struct thread_struct *t = &tsk->thread;
426
427 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
428 if (t->debug.hbp[i]) {
429 unregister_hw_breakpoint(t->debug.hbp[i]);
430 t->debug.hbp[i] = NULL;
431 }
432 }
433}
434
435static u32 ptrace_get_hbp_resource_info(void)
436{
437 u8 num_brps, num_wrps, debug_arch, wp_len;
438 u32 reg = 0;
439
440 num_brps = hw_breakpoint_slots(TYPE_INST);
441 num_wrps = hw_breakpoint_slots(TYPE_DATA);
442 debug_arch = arch_get_debug_arch();
443 wp_len = arch_get_max_wp_len();
444
445 reg |= debug_arch;
446 reg <<= 8;
447 reg |= wp_len;
448 reg <<= 8;
449 reg |= num_wrps;
450 reg <<= 8;
451 reg |= num_brps;
452
453 return reg;
454}
455
456static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
457{
458 struct perf_event_attr attr;
459
460 ptrace_breakpoint_init(&attr);
461
462 /* Initialise fields to sane defaults. */
463 attr.bp_addr = 0;
464 attr.bp_len = HW_BREAKPOINT_LEN_4;
465 attr.bp_type = type;
466 attr.disabled = 1;
467
468 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
469 tsk);
470}
471
472static int ptrace_gethbpregs(struct task_struct *tsk, long num,
473 unsigned long __user *data)
474{
475 u32 reg;
476 int idx, ret = 0;
477 struct perf_event *bp;
478 struct arch_hw_breakpoint_ctrl arch_ctrl;
479
480 if (num == 0) {
481 reg = ptrace_get_hbp_resource_info();
482 } else {
483 idx = ptrace_hbp_num_to_idx(num);
484 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
485 ret = -EINVAL;
486 goto out;
487 }
488
489 bp = tsk->thread.debug.hbp[idx];
490 if (!bp) {
491 reg = 0;
492 goto put;
493 }
494
495 arch_ctrl = counter_arch_bp(bp)->ctrl;
496
497 /*
498 * Fix up the len because we may have adjusted it
499 * to compensate for an unaligned address.
500 */
501 while (!(arch_ctrl.len & 0x1))
502 arch_ctrl.len >>= 1;
503
504 if (num & 0x1)
505 reg = bp->attr.bp_addr;
506 else
507 reg = encode_ctrl_reg(arch_ctrl);
508 }
509
510put:
511 if (put_user(reg, data))
512 ret = -EFAULT;
513
514out:
515 return ret;
516}
517
518static int ptrace_sethbpregs(struct task_struct *tsk, long num,
519 unsigned long __user *data)
520{
521 int idx, gen_len, gen_type, implied_type, ret = 0;
522 u32 user_val;
523 struct perf_event *bp;
524 struct arch_hw_breakpoint_ctrl ctrl;
525 struct perf_event_attr attr;
526
527 if (num == 0)
528 goto out;
529 else if (num < 0)
530 implied_type = HW_BREAKPOINT_RW;
531 else
532 implied_type = HW_BREAKPOINT_X;
533
534 idx = ptrace_hbp_num_to_idx(num);
535 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
536 ret = -EINVAL;
537 goto out;
538 }
539
540 if (get_user(user_val, data)) {
541 ret = -EFAULT;
542 goto out;
543 }
544
545 bp = tsk->thread.debug.hbp[idx];
546 if (!bp) {
547 bp = ptrace_hbp_create(tsk, implied_type);
548 if (IS_ERR(bp)) {
549 ret = PTR_ERR(bp);
550 goto out;
551 }
552 tsk->thread.debug.hbp[idx] = bp;
553 }
554
555 attr = bp->attr;
556
557 if (num & 0x1) {
558 /* Address */
559 attr.bp_addr = user_val;
560 } else {
561 /* Control */
562 decode_ctrl_reg(user_val, &ctrl);
563 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
564 if (ret)
565 goto out;
566
567 if ((gen_type & implied_type) != gen_type) {
568 ret = -EINVAL;
569 goto out;
570 }
571
572 attr.bp_len = gen_len;
573 attr.bp_type = gen_type;
574 attr.disabled = !ctrl.enabled;
575 }
576
577 ret = modify_user_hw_breakpoint(bp, &attr);
578out:
579 return ret;
580}
581#endif
582
583/* regset get/set implementations */
584
585static int gpr_get(struct task_struct *target,
586 const struct user_regset *regset,
587 unsigned int pos, unsigned int count,
588 void *kbuf, void __user *ubuf)
589{
590 struct pt_regs *regs = task_pt_regs(target);
591
592 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
593 regs,
594 0, sizeof(*regs));
595}
596
597static int gpr_set(struct task_struct *target,
598 const struct user_regset *regset,
599 unsigned int pos, unsigned int count,
600 const void *kbuf, const void __user *ubuf)
601{
602 int ret;
603 struct pt_regs newregs;
604
605 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
606 &newregs,
607 0, sizeof(newregs));
608 if (ret)
609 return ret;
610
611 if (!valid_user_regs(&newregs))
612 return -EINVAL;
613
614 *task_pt_regs(target) = newregs;
615 return 0;
616}
617
618static int fpa_get(struct task_struct *target,
619 const struct user_regset *regset,
620 unsigned int pos, unsigned int count,
621 void *kbuf, void __user *ubuf)
622{
623 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
624 &task_thread_info(target)->fpstate,
625 0, sizeof(struct user_fp));
626}
627
628static int fpa_set(struct task_struct *target,
629 const struct user_regset *regset,
630 unsigned int pos, unsigned int count,
631 const void *kbuf, const void __user *ubuf)
632{
633 struct thread_info *thread = task_thread_info(target);
634
635 thread->used_cp[1] = thread->used_cp[2] = 1;
636
637 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
638 &thread->fpstate,
639 0, sizeof(struct user_fp));
640}
641
642#ifdef CONFIG_VFP
643/*
644 * VFP register get/set implementations.
645 *
646 * With respect to the kernel, struct user_fp is divided into three chunks:
647 * 16 or 32 real VFP registers (d0-d15 or d0-31)
648 * These are transferred to/from the real registers in the task's
649 * vfp_hard_struct. The number of registers depends on the kernel
650 * configuration.
651 *
652 * 16 or 0 fake VFP registers (d16-d31 or empty)
653 * i.e., the user_vfp structure has space for 32 registers even if
654 * the kernel doesn't have them all.
655 *
656 * vfp_get() reads this chunk as zero where applicable
657 * vfp_set() ignores this chunk
658 *
659 * 1 word for the FPSCR
660 *
661 * The bounds-checking logic built into user_regset_copyout and friends
662 * means that we can make a simple sequence of calls to map the relevant data
663 * to/from the specified slice of the user regset structure.
664 */
665static int vfp_get(struct task_struct *target,
666 const struct user_regset *regset,
667 unsigned int pos, unsigned int count,
668 void *kbuf, void __user *ubuf)
669{
670 int ret;
671 struct thread_info *thread = task_thread_info(target);
672 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
673 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
674 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
675
676 vfp_sync_hwstate(thread);
677
678 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
679 &vfp->fpregs,
680 user_fpregs_offset,
681 user_fpregs_offset + sizeof(vfp->fpregs));
682 if (ret)
683 return ret;
684
685 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
686 user_fpregs_offset + sizeof(vfp->fpregs),
687 user_fpscr_offset);
688 if (ret)
689 return ret;
690
691 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
692 &vfp->fpscr,
693 user_fpscr_offset,
694 user_fpscr_offset + sizeof(vfp->fpscr));
695}
696
697/*
698 * For vfp_set() a read-modify-write is done on the VFP registers,
699 * in order to avoid writing back a half-modified set of registers on
700 * failure.
701 */
702static int vfp_set(struct task_struct *target,
703 const struct user_regset *regset,
704 unsigned int pos, unsigned int count,
705 const void *kbuf, const void __user *ubuf)
706{
707 int ret;
708 struct thread_info *thread = task_thread_info(target);
709 struct vfp_hard_struct new_vfp;
710 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
711 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
712
713 vfp_sync_hwstate(thread);
714 new_vfp = thread->vfpstate.hard;
715
716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
717 &new_vfp.fpregs,
718 user_fpregs_offset,
719 user_fpregs_offset + sizeof(new_vfp.fpregs));
720 if (ret)
721 return ret;
722
723 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
724 user_fpregs_offset + sizeof(new_vfp.fpregs),
725 user_fpscr_offset);
726 if (ret)
727 return ret;
728
729 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
730 &new_vfp.fpscr,
731 user_fpscr_offset,
732 user_fpscr_offset + sizeof(new_vfp.fpscr));
733 if (ret)
734 return ret;
735
736 vfp_flush_hwstate(thread);
737 thread->vfpstate.hard = new_vfp;
738
739 return 0;
740}
741#endif /* CONFIG_VFP */
742
743enum arm_regset {
744 REGSET_GPR,
745 REGSET_FPR,
746#ifdef CONFIG_VFP
747 REGSET_VFP,
748#endif
749};
750
751static const struct user_regset arm_regsets[] = {
752 [REGSET_GPR] = {
753 .core_note_type = NT_PRSTATUS,
754 .n = ELF_NGREG,
755 .size = sizeof(u32),
756 .align = sizeof(u32),
757 .get = gpr_get,
758 .set = gpr_set
759 },
760 [REGSET_FPR] = {
761 /*
762 * For the FPA regs in fpstate, the real fields are a mixture
763 * of sizes, so pretend that the registers are word-sized:
764 */
765 .core_note_type = NT_PRFPREG,
766 .n = sizeof(struct user_fp) / sizeof(u32),
767 .size = sizeof(u32),
768 .align = sizeof(u32),
769 .get = fpa_get,
770 .set = fpa_set
771 },
772#ifdef CONFIG_VFP
773 [REGSET_VFP] = {
774 /*
775 * Pretend that the VFP regs are word-sized, since the FPSCR is
776 * a single word dangling at the end of struct user_vfp:
777 */
778 .core_note_type = NT_ARM_VFP,
779 .n = ARM_VFPREGS_SIZE / sizeof(u32),
780 .size = sizeof(u32),
781 .align = sizeof(u32),
782 .get = vfp_get,
783 .set = vfp_set
784 },
785#endif /* CONFIG_VFP */
786};
787
788static const struct user_regset_view user_arm_view = {
789 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
790 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
791};
792
793const struct user_regset_view *task_user_regset_view(struct task_struct *task)
794{
795 return &user_arm_view;
796}
797
798long arch_ptrace(struct task_struct *child, long request,
799 unsigned long addr, unsigned long data)
800{
801 int ret;
802 unsigned long __user *datap = (unsigned long __user *) data;
803
804 switch (request) {
805 case PTRACE_PEEKUSR:
806 ret = ptrace_read_user(child, addr, datap);
807 break;
808
809 case PTRACE_POKEUSR:
810 ret = ptrace_write_user(child, addr, data);
811 break;
812
813 case PTRACE_GETREGS:
814 ret = copy_regset_to_user(child,
815 &user_arm_view, REGSET_GPR,
816 0, sizeof(struct pt_regs),
817 datap);
818 break;
819
820 case PTRACE_SETREGS:
821 ret = copy_regset_from_user(child,
822 &user_arm_view, REGSET_GPR,
823 0, sizeof(struct pt_regs),
824 datap);
825 break;
826
827 case PTRACE_GETFPREGS:
828 ret = copy_regset_to_user(child,
829 &user_arm_view, REGSET_FPR,
830 0, sizeof(union fp_state),
831 datap);
832 break;
833
834 case PTRACE_SETFPREGS:
835 ret = copy_regset_from_user(child,
836 &user_arm_view, REGSET_FPR,
837 0, sizeof(union fp_state),
838 datap);
839 break;
840
841#ifdef CONFIG_IWMMXT
842 case PTRACE_GETWMMXREGS:
843 ret = ptrace_getwmmxregs(child, datap);
844 break;
845
846 case PTRACE_SETWMMXREGS:
847 ret = ptrace_setwmmxregs(child, datap);
848 break;
849#endif
850
851 case PTRACE_GET_THREAD_AREA:
852 ret = put_user(task_thread_info(child)->tp_value[0],
853 datap);
854 break;
855
856 case PTRACE_SET_SYSCALL:
857 task_thread_info(child)->syscall = data;
858 ret = 0;
859 break;
860
861#ifdef CONFIG_CRUNCH
862 case PTRACE_GETCRUNCHREGS:
863 ret = ptrace_getcrunchregs(child, datap);
864 break;
865
866 case PTRACE_SETCRUNCHREGS:
867 ret = ptrace_setcrunchregs(child, datap);
868 break;
869#endif
870
871#ifdef CONFIG_VFP
872 case PTRACE_GETVFPREGS:
873 ret = copy_regset_to_user(child,
874 &user_arm_view, REGSET_VFP,
875 0, ARM_VFPREGS_SIZE,
876 datap);
877 break;
878
879 case PTRACE_SETVFPREGS:
880 ret = copy_regset_from_user(child,
881 &user_arm_view, REGSET_VFP,
882 0, ARM_VFPREGS_SIZE,
883 datap);
884 break;
885#endif
886
887#ifdef CONFIG_HAVE_HW_BREAKPOINT
888 case PTRACE_GETHBPREGS:
889 ret = ptrace_gethbpregs(child, addr,
890 (unsigned long __user *)data);
891 break;
892 case PTRACE_SETHBPREGS:
893 ret = ptrace_sethbpregs(child, addr,
894 (unsigned long __user *)data);
895 break;
896#endif
897
898 default:
899 ret = ptrace_request(child, request, addr, data);
900 break;
901 }
902
903 return ret;
904}
905
906enum ptrace_syscall_dir {
907 PTRACE_SYSCALL_ENTER = 0,
908 PTRACE_SYSCALL_EXIT,
909};
910
911static void tracehook_report_syscall(struct pt_regs *regs,
912 enum ptrace_syscall_dir dir)
913{
914 unsigned long ip;
915
916 /*
917 * IP is used to denote syscall entry/exit:
918 * IP = 0 -> entry, =1 -> exit
919 */
920 ip = regs->ARM_ip;
921 regs->ARM_ip = dir;
922
923 if (dir == PTRACE_SYSCALL_EXIT)
924 tracehook_report_syscall_exit(regs, 0);
925 else if (tracehook_report_syscall_entry(regs))
926 current_thread_info()->syscall = -1;
927
928 regs->ARM_ip = ip;
929}
930
931asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
932{
933 current_thread_info()->syscall = scno;
934
935 /* Do the secure computing check first; failures should be fast. */
936#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
937 if (secure_computing() == -1)
938 return -1;
939#else
940 /* XXX: remove this once OABI gets fixed */
941 secure_computing_strict(scno);
942#endif
943
944 if (test_thread_flag(TIF_SYSCALL_TRACE))
945 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
946
947 scno = current_thread_info()->syscall;
948
949 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
950 trace_sys_enter(regs, scno);
951
952 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
953 regs->ARM_r3);
954
955 return scno;
956}
957
958asmlinkage void syscall_trace_exit(struct pt_regs *regs)
959{
960 /*
961 * Audit the syscall before anything else, as a debugger may
962 * come in and change the current registers.
963 */
964 audit_syscall_exit(regs);
965
966 /*
967 * Note that we haven't updated the ->syscall field for the
968 * current thread. This isn't a problem because it will have
969 * been set on syscall entry and there hasn't been an opportunity
970 * for a PTRACE_SET_SYSCALL since then.
971 */
972 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
973 trace_sys_exit(regs, regs_return_value(regs));
974
975 if (test_thread_flag(TIF_SYSCALL_TRACE))
976 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
977}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 */
9#include <linux/kernel.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/task_stack.h>
12#include <linux/mm.h>
13#include <linux/elf.h>
14#include <linux/smp.h>
15#include <linux/ptrace.h>
16#include <linux/user.h>
17#include <linux/security.h>
18#include <linux/init.h>
19#include <linux/signal.h>
20#include <linux/uaccess.h>
21#include <linux/perf_event.h>
22#include <linux/hw_breakpoint.h>
23#include <linux/regset.h>
24#include <linux/audit.h>
25#include <linux/tracehook.h>
26#include <linux/unistd.h>
27
28#include <asm/traps.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/syscalls.h>
32
33#define REG_PC 15
34#define REG_PSR 16
35/*
36 * does not yet catch signals sent when the child dies.
37 * in exit.c or in signal.c.
38 */
39
40#if 0
41/*
42 * Breakpoint SWI instruction: SWI &9F0001
43 */
44#define BREAKINST_ARM 0xef9f0001
45#define BREAKINST_THUMB 0xdf00 /* fill this in later */
46#else
47/*
48 * New breakpoints - use an undefined instruction. The ARM architecture
49 * reference manual guarantees that the following instruction space
50 * will produce an undefined instruction exception on all CPUs:
51 *
52 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53 * Thumb: 1101 1110 xxxx xxxx
54 */
55#define BREAKINST_ARM 0xe7f001f0
56#define BREAKINST_THUMB 0xde01
57#endif
58
59struct pt_regs_offset {
60 const char *name;
61 int offset;
62};
63
64#define REG_OFFSET_NAME(r) \
65 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66#define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68static const struct pt_regs_offset regoffset_table[] = {
69 REG_OFFSET_NAME(r0),
70 REG_OFFSET_NAME(r1),
71 REG_OFFSET_NAME(r2),
72 REG_OFFSET_NAME(r3),
73 REG_OFFSET_NAME(r4),
74 REG_OFFSET_NAME(r5),
75 REG_OFFSET_NAME(r6),
76 REG_OFFSET_NAME(r7),
77 REG_OFFSET_NAME(r8),
78 REG_OFFSET_NAME(r9),
79 REG_OFFSET_NAME(r10),
80 REG_OFFSET_NAME(fp),
81 REG_OFFSET_NAME(ip),
82 REG_OFFSET_NAME(sp),
83 REG_OFFSET_NAME(lr),
84 REG_OFFSET_NAME(pc),
85 REG_OFFSET_NAME(cpsr),
86 REG_OFFSET_NAME(ORIG_r0),
87 REG_OFFSET_END,
88};
89
90/**
91 * regs_query_register_offset() - query register offset from its name
92 * @name: the name of a register
93 *
94 * regs_query_register_offset() returns the offset of a register in struct
95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96 */
97int regs_query_register_offset(const char *name)
98{
99 const struct pt_regs_offset *roff;
100 for (roff = regoffset_table; roff->name != NULL; roff++)
101 if (!strcmp(roff->name, name))
102 return roff->offset;
103 return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset: the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115 const struct pt_regs_offset *roff;
116 for (roff = regoffset_table; roff->name != NULL; roff++)
117 if (roff->offset == offset)
118 return roff->name;
119 return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs: pt_regs which contains kernel stack pointer.
125 * @addr: address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132 return ((addr & ~(THREAD_SIZE - 1)) ==
133 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs: pt_regs which contains kernel stack pointer.
139 * @n: stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148 addr += n;
149 if (regs_within_kernel_stack(regs, (unsigned long)addr))
150 return *addr;
151 else
152 return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163 return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175 struct pt_regs newregs, *regs = task_pt_regs(task);
176 int ret = -EINVAL;
177
178 newregs = *regs;
179 newregs.uregs[offset] = data;
180
181 if (valid_user_regs(&newregs)) {
182 regs->uregs[offset] = data;
183 ret = 0;
184 }
185
186 return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194 /* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202 force_sig_fault(SIGTRAP, TRAP_BRKPT,
203 (void __user *)instruction_pointer(regs));
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208 ptrace_break(regs);
209 return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213 .instr_mask = 0x0fffffff,
214 .instr_val = 0x07f001f0,
215 .cpsr_mask = PSR_T_BIT,
216 .cpsr_val = 0,
217 .fn = break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221 .instr_mask = 0xffffffff,
222 .instr_val = 0x0000de01,
223 .cpsr_mask = PSR_T_BIT,
224 .cpsr_val = PSR_T_BIT,
225 .fn = break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229 .instr_mask = 0xffffffff,
230 .instr_val = 0xf7f0a000,
231 .cpsr_mask = PSR_T_BIT,
232 .cpsr_val = PSR_T_BIT,
233 .fn = break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238 register_undef_hook(&arm_break_hook);
239 register_undef_hook(&thumb_break_hook);
240 register_undef_hook(&thumb2_break_hook);
241 return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user". We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251 unsigned long __user *ret)
252{
253 unsigned long tmp;
254
255 if (off & 3)
256 return -EIO;
257
258 tmp = 0;
259 if (off == PT_TEXT_ADDR)
260 tmp = tsk->mm->start_code;
261 else if (off == PT_DATA_ADDR)
262 tmp = tsk->mm->start_data;
263 else if (off == PT_TEXT_END_ADDR)
264 tmp = tsk->mm->end_code;
265 else if (off < sizeof(struct pt_regs))
266 tmp = get_user_reg(tsk, off >> 2);
267 else if (off >= sizeof(struct user))
268 return -EIO;
269
270 return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user". We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278 unsigned long val)
279{
280 if (off & 3 || off >= sizeof(struct user))
281 return -EIO;
282
283 if (off >= sizeof(struct pt_regs))
284 return 0;
285
286 return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296 struct thread_info *thread = task_thread_info(tsk);
297
298 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299 return -ENODATA;
300 iwmmxt_task_disable(thread); /* force it to ram */
301 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302 ? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310 struct thread_info *thread = task_thread_info(tsk);
311
312 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313 return -EACCES;
314 iwmmxt_task_release(thread); /* force a reload */
315 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316 ? -EFAULT : 0;
317}
318
319#endif
320
321#ifdef CONFIG_CRUNCH
322/*
323 * Get the child Crunch state.
324 */
325static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
326{
327 struct thread_info *thread = task_thread_info(tsk);
328
329 crunch_task_disable(thread); /* force it to ram */
330 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
331 ? -EFAULT : 0;
332}
333
334/*
335 * Set the child Crunch state.
336 */
337static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
338{
339 struct thread_info *thread = task_thread_info(tsk);
340
341 crunch_task_release(thread); /* force a reload */
342 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
343 ? -EFAULT : 0;
344}
345#endif
346
347#ifdef CONFIG_HAVE_HW_BREAKPOINT
348/*
349 * Convert a virtual register number into an index for a thread_info
350 * breakpoint array. Breakpoints are identified using positive numbers
351 * whilst watchpoints are negative. The registers are laid out as pairs
352 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
353 * Register 0 is reserved for describing resource information.
354 */
355static int ptrace_hbp_num_to_idx(long num)
356{
357 if (num < 0)
358 num = (ARM_MAX_BRP << 1) - num;
359 return (num - 1) >> 1;
360}
361
362/*
363 * Returns the virtual register number for the address of the
364 * breakpoint at index idx.
365 */
366static long ptrace_hbp_idx_to_num(int idx)
367{
368 long mid = ARM_MAX_BRP << 1;
369 long num = (idx << 1) + 1;
370 return num > mid ? mid - num : num;
371}
372
373/*
374 * Handle hitting a HW-breakpoint.
375 */
376static void ptrace_hbptriggered(struct perf_event *bp,
377 struct perf_sample_data *data,
378 struct pt_regs *regs)
379{
380 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
381 long num;
382 int i;
383
384 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
385 if (current->thread.debug.hbp[i] == bp)
386 break;
387
388 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
389
390 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
391}
392
393/*
394 * Set ptrace breakpoint pointers to zero for this task.
395 * This is required in order to prevent child processes from unregistering
396 * breakpoints held by their parent.
397 */
398void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
399{
400 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
401}
402
403/*
404 * Unregister breakpoints from this task and reset the pointers in
405 * the thread_struct.
406 */
407void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408{
409 int i;
410 struct thread_struct *t = &tsk->thread;
411
412 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
413 if (t->debug.hbp[i]) {
414 unregister_hw_breakpoint(t->debug.hbp[i]);
415 t->debug.hbp[i] = NULL;
416 }
417 }
418}
419
420static u32 ptrace_get_hbp_resource_info(void)
421{
422 u8 num_brps, num_wrps, debug_arch, wp_len;
423 u32 reg = 0;
424
425 num_brps = hw_breakpoint_slots(TYPE_INST);
426 num_wrps = hw_breakpoint_slots(TYPE_DATA);
427 debug_arch = arch_get_debug_arch();
428 wp_len = arch_get_max_wp_len();
429
430 reg |= debug_arch;
431 reg <<= 8;
432 reg |= wp_len;
433 reg <<= 8;
434 reg |= num_wrps;
435 reg <<= 8;
436 reg |= num_brps;
437
438 return reg;
439}
440
441static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
442{
443 struct perf_event_attr attr;
444
445 ptrace_breakpoint_init(&attr);
446
447 /* Initialise fields to sane defaults. */
448 attr.bp_addr = 0;
449 attr.bp_len = HW_BREAKPOINT_LEN_4;
450 attr.bp_type = type;
451 attr.disabled = 1;
452
453 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
454 tsk);
455}
456
457static int ptrace_gethbpregs(struct task_struct *tsk, long num,
458 unsigned long __user *data)
459{
460 u32 reg;
461 int idx, ret = 0;
462 struct perf_event *bp;
463 struct arch_hw_breakpoint_ctrl arch_ctrl;
464
465 if (num == 0) {
466 reg = ptrace_get_hbp_resource_info();
467 } else {
468 idx = ptrace_hbp_num_to_idx(num);
469 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
470 ret = -EINVAL;
471 goto out;
472 }
473
474 bp = tsk->thread.debug.hbp[idx];
475 if (!bp) {
476 reg = 0;
477 goto put;
478 }
479
480 arch_ctrl = counter_arch_bp(bp)->ctrl;
481
482 /*
483 * Fix up the len because we may have adjusted it
484 * to compensate for an unaligned address.
485 */
486 while (!(arch_ctrl.len & 0x1))
487 arch_ctrl.len >>= 1;
488
489 if (num & 0x1)
490 reg = bp->attr.bp_addr;
491 else
492 reg = encode_ctrl_reg(arch_ctrl);
493 }
494
495put:
496 if (put_user(reg, data))
497 ret = -EFAULT;
498
499out:
500 return ret;
501}
502
503static int ptrace_sethbpregs(struct task_struct *tsk, long num,
504 unsigned long __user *data)
505{
506 int idx, gen_len, gen_type, implied_type, ret = 0;
507 u32 user_val;
508 struct perf_event *bp;
509 struct arch_hw_breakpoint_ctrl ctrl;
510 struct perf_event_attr attr;
511
512 if (num == 0)
513 goto out;
514 else if (num < 0)
515 implied_type = HW_BREAKPOINT_RW;
516 else
517 implied_type = HW_BREAKPOINT_X;
518
519 idx = ptrace_hbp_num_to_idx(num);
520 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
521 ret = -EINVAL;
522 goto out;
523 }
524
525 if (get_user(user_val, data)) {
526 ret = -EFAULT;
527 goto out;
528 }
529
530 bp = tsk->thread.debug.hbp[idx];
531 if (!bp) {
532 bp = ptrace_hbp_create(tsk, implied_type);
533 if (IS_ERR(bp)) {
534 ret = PTR_ERR(bp);
535 goto out;
536 }
537 tsk->thread.debug.hbp[idx] = bp;
538 }
539
540 attr = bp->attr;
541
542 if (num & 0x1) {
543 /* Address */
544 attr.bp_addr = user_val;
545 } else {
546 /* Control */
547 decode_ctrl_reg(user_val, &ctrl);
548 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
549 if (ret)
550 goto out;
551
552 if ((gen_type & implied_type) != gen_type) {
553 ret = -EINVAL;
554 goto out;
555 }
556
557 attr.bp_len = gen_len;
558 attr.bp_type = gen_type;
559 attr.disabled = !ctrl.enabled;
560 }
561
562 ret = modify_user_hw_breakpoint(bp, &attr);
563out:
564 return ret;
565}
566#endif
567
568/* regset get/set implementations */
569
570static int gpr_get(struct task_struct *target,
571 const struct user_regset *regset,
572 struct membuf to)
573{
574 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
575}
576
577static int gpr_set(struct task_struct *target,
578 const struct user_regset *regset,
579 unsigned int pos, unsigned int count,
580 const void *kbuf, const void __user *ubuf)
581{
582 int ret;
583 struct pt_regs newregs = *task_pt_regs(target);
584
585 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
586 &newregs,
587 0, sizeof(newregs));
588 if (ret)
589 return ret;
590
591 if (!valid_user_regs(&newregs))
592 return -EINVAL;
593
594 *task_pt_regs(target) = newregs;
595 return 0;
596}
597
598static int fpa_get(struct task_struct *target,
599 const struct user_regset *regset,
600 struct membuf to)
601{
602 return membuf_write(&to, &task_thread_info(target)->fpstate,
603 sizeof(struct user_fp));
604}
605
606static int fpa_set(struct task_struct *target,
607 const struct user_regset *regset,
608 unsigned int pos, unsigned int count,
609 const void *kbuf, const void __user *ubuf)
610{
611 struct thread_info *thread = task_thread_info(target);
612
613 thread->used_cp[1] = thread->used_cp[2] = 1;
614
615 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
616 &thread->fpstate,
617 0, sizeof(struct user_fp));
618}
619
620#ifdef CONFIG_VFP
621/*
622 * VFP register get/set implementations.
623 *
624 * With respect to the kernel, struct user_fp is divided into three chunks:
625 * 16 or 32 real VFP registers (d0-d15 or d0-31)
626 * These are transferred to/from the real registers in the task's
627 * vfp_hard_struct. The number of registers depends on the kernel
628 * configuration.
629 *
630 * 16 or 0 fake VFP registers (d16-d31 or empty)
631 * i.e., the user_vfp structure has space for 32 registers even if
632 * the kernel doesn't have them all.
633 *
634 * vfp_get() reads this chunk as zero where applicable
635 * vfp_set() ignores this chunk
636 *
637 * 1 word for the FPSCR
638 */
639static int vfp_get(struct task_struct *target,
640 const struct user_regset *regset,
641 struct membuf to)
642{
643 struct thread_info *thread = task_thread_info(target);
644 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
645 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
646
647 vfp_sync_hwstate(thread);
648
649 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
650 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
651 return membuf_store(&to, vfp->fpscr);
652}
653
654/*
655 * For vfp_set() a read-modify-write is done on the VFP registers,
656 * in order to avoid writing back a half-modified set of registers on
657 * failure.
658 */
659static int vfp_set(struct task_struct *target,
660 const struct user_regset *regset,
661 unsigned int pos, unsigned int count,
662 const void *kbuf, const void __user *ubuf)
663{
664 int ret;
665 struct thread_info *thread = task_thread_info(target);
666 struct vfp_hard_struct new_vfp;
667 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670 vfp_sync_hwstate(thread);
671 new_vfp = thread->vfpstate.hard;
672
673 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674 &new_vfp.fpregs,
675 user_fpregs_offset,
676 user_fpregs_offset + sizeof(new_vfp.fpregs));
677 if (ret)
678 return ret;
679
680 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
681 user_fpregs_offset + sizeof(new_vfp.fpregs),
682 user_fpscr_offset);
683 if (ret)
684 return ret;
685
686 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
687 &new_vfp.fpscr,
688 user_fpscr_offset,
689 user_fpscr_offset + sizeof(new_vfp.fpscr));
690 if (ret)
691 return ret;
692
693 thread->vfpstate.hard = new_vfp;
694 vfp_flush_hwstate(thread);
695
696 return 0;
697}
698#endif /* CONFIG_VFP */
699
700enum arm_regset {
701 REGSET_GPR,
702 REGSET_FPR,
703#ifdef CONFIG_VFP
704 REGSET_VFP,
705#endif
706};
707
708static const struct user_regset arm_regsets[] = {
709 [REGSET_GPR] = {
710 .core_note_type = NT_PRSTATUS,
711 .n = ELF_NGREG,
712 .size = sizeof(u32),
713 .align = sizeof(u32),
714 .regset_get = gpr_get,
715 .set = gpr_set
716 },
717 [REGSET_FPR] = {
718 /*
719 * For the FPA regs in fpstate, the real fields are a mixture
720 * of sizes, so pretend that the registers are word-sized:
721 */
722 .core_note_type = NT_PRFPREG,
723 .n = sizeof(struct user_fp) / sizeof(u32),
724 .size = sizeof(u32),
725 .align = sizeof(u32),
726 .regset_get = fpa_get,
727 .set = fpa_set
728 },
729#ifdef CONFIG_VFP
730 [REGSET_VFP] = {
731 /*
732 * Pretend that the VFP regs are word-sized, since the FPSCR is
733 * a single word dangling at the end of struct user_vfp:
734 */
735 .core_note_type = NT_ARM_VFP,
736 .n = ARM_VFPREGS_SIZE / sizeof(u32),
737 .size = sizeof(u32),
738 .align = sizeof(u32),
739 .regset_get = vfp_get,
740 .set = vfp_set
741 },
742#endif /* CONFIG_VFP */
743};
744
745static const struct user_regset_view user_arm_view = {
746 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
747 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
748};
749
750const struct user_regset_view *task_user_regset_view(struct task_struct *task)
751{
752 return &user_arm_view;
753}
754
755long arch_ptrace(struct task_struct *child, long request,
756 unsigned long addr, unsigned long data)
757{
758 int ret;
759 unsigned long __user *datap = (unsigned long __user *) data;
760
761 switch (request) {
762 case PTRACE_PEEKUSR:
763 ret = ptrace_read_user(child, addr, datap);
764 break;
765
766 case PTRACE_POKEUSR:
767 ret = ptrace_write_user(child, addr, data);
768 break;
769
770 case PTRACE_GETREGS:
771 ret = copy_regset_to_user(child,
772 &user_arm_view, REGSET_GPR,
773 0, sizeof(struct pt_regs),
774 datap);
775 break;
776
777 case PTRACE_SETREGS:
778 ret = copy_regset_from_user(child,
779 &user_arm_view, REGSET_GPR,
780 0, sizeof(struct pt_regs),
781 datap);
782 break;
783
784 case PTRACE_GETFPREGS:
785 ret = copy_regset_to_user(child,
786 &user_arm_view, REGSET_FPR,
787 0, sizeof(union fp_state),
788 datap);
789 break;
790
791 case PTRACE_SETFPREGS:
792 ret = copy_regset_from_user(child,
793 &user_arm_view, REGSET_FPR,
794 0, sizeof(union fp_state),
795 datap);
796 break;
797
798#ifdef CONFIG_IWMMXT
799 case PTRACE_GETWMMXREGS:
800 ret = ptrace_getwmmxregs(child, datap);
801 break;
802
803 case PTRACE_SETWMMXREGS:
804 ret = ptrace_setwmmxregs(child, datap);
805 break;
806#endif
807
808 case PTRACE_GET_THREAD_AREA:
809 ret = put_user(task_thread_info(child)->tp_value[0],
810 datap);
811 break;
812
813 case PTRACE_SET_SYSCALL:
814 task_thread_info(child)->syscall = data;
815 ret = 0;
816 break;
817
818#ifdef CONFIG_CRUNCH
819 case PTRACE_GETCRUNCHREGS:
820 ret = ptrace_getcrunchregs(child, datap);
821 break;
822
823 case PTRACE_SETCRUNCHREGS:
824 ret = ptrace_setcrunchregs(child, datap);
825 break;
826#endif
827
828#ifdef CONFIG_VFP
829 case PTRACE_GETVFPREGS:
830 ret = copy_regset_to_user(child,
831 &user_arm_view, REGSET_VFP,
832 0, ARM_VFPREGS_SIZE,
833 datap);
834 break;
835
836 case PTRACE_SETVFPREGS:
837 ret = copy_regset_from_user(child,
838 &user_arm_view, REGSET_VFP,
839 0, ARM_VFPREGS_SIZE,
840 datap);
841 break;
842#endif
843
844#ifdef CONFIG_HAVE_HW_BREAKPOINT
845 case PTRACE_GETHBPREGS:
846 ret = ptrace_gethbpregs(child, addr,
847 (unsigned long __user *)data);
848 break;
849 case PTRACE_SETHBPREGS:
850 ret = ptrace_sethbpregs(child, addr,
851 (unsigned long __user *)data);
852 break;
853#endif
854
855 default:
856 ret = ptrace_request(child, request, addr, data);
857 break;
858 }
859
860 return ret;
861}
862
863enum ptrace_syscall_dir {
864 PTRACE_SYSCALL_ENTER = 0,
865 PTRACE_SYSCALL_EXIT,
866};
867
868static void tracehook_report_syscall(struct pt_regs *regs,
869 enum ptrace_syscall_dir dir)
870{
871 unsigned long ip;
872
873 /*
874 * IP is used to denote syscall entry/exit:
875 * IP = 0 -> entry, =1 -> exit
876 */
877 ip = regs->ARM_ip;
878 regs->ARM_ip = dir;
879
880 if (dir == PTRACE_SYSCALL_EXIT)
881 tracehook_report_syscall_exit(regs, 0);
882 else if (tracehook_report_syscall_entry(regs))
883 current_thread_info()->syscall = -1;
884
885 regs->ARM_ip = ip;
886}
887
888asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
889{
890 current_thread_info()->syscall = scno;
891
892 if (test_thread_flag(TIF_SYSCALL_TRACE))
893 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
894
895 /* Do seccomp after ptrace; syscall may have changed. */
896#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
897 if (secure_computing() == -1)
898 return -1;
899#else
900 /* XXX: remove this once OABI gets fixed */
901 secure_computing_strict(current_thread_info()->syscall);
902#endif
903
904 /* Tracer or seccomp may have changed syscall. */
905 scno = current_thread_info()->syscall;
906
907 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
908 trace_sys_enter(regs, scno);
909
910 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
911 regs->ARM_r3);
912
913 return scno;
914}
915
916asmlinkage void syscall_trace_exit(struct pt_regs *regs)
917{
918 /*
919 * Audit the syscall before anything else, as a debugger may
920 * come in and change the current registers.
921 */
922 audit_syscall_exit(regs);
923
924 /*
925 * Note that we haven't updated the ->syscall field for the
926 * current thread. This isn't a problem because it will have
927 * been set on syscall entry and there hasn't been an opportunity
928 * for a PTRACE_SET_SYSCALL since then.
929 */
930 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
931 trace_sys_exit(regs, regs_return_value(regs));
932
933 if (test_thread_flag(TIF_SYSCALL_TRACE))
934 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
935}