Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2015-2018 Linaro Limited.
   4 *
   5 * Author: Tor Jeremiassen <tor@ti.com>
   6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   7 */
   8
   9#include <linux/bitops.h>
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/log2.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include <opencsd/ocsd_if_types.h>
  17#include <stdlib.h>
  18
  19#include "auxtrace.h"
  20#include "color.h"
  21#include "cs-etm.h"
  22#include "cs-etm-decoder/cs-etm-decoder.h"
  23#include "debug.h"
  24#include "dso.h"
  25#include "evlist.h"
  26#include "intlist.h"
  27#include "machine.h"
  28#include "map.h"
  29#include "perf.h"
  30#include "session.h"
  31#include "map_symbol.h"
  32#include "branch.h"
  33#include "symbol.h"
  34#include "tool.h"
  35#include "thread.h"
  36#include "thread-stack.h"
  37#include <tools/libc_compat.h>
  38#include "util/synthetic-events.h"
  39
  40#define MAX_TIMESTAMP (~0ULL)
  41
  42struct cs_etm_auxtrace {
  43	struct auxtrace auxtrace;
  44	struct auxtrace_queues queues;
  45	struct auxtrace_heap heap;
  46	struct itrace_synth_opts synth_opts;
  47	struct perf_session *session;
  48	struct machine *machine;
  49	struct thread *unknown_thread;
  50
  51	u8 timeless_decoding;
  52	u8 snapshot_mode;
  53	u8 data_queued;
  54	u8 sample_branches;
  55	u8 sample_instructions;
  56
  57	int num_cpu;
  58	u32 auxtrace_type;
  59	u64 branches_sample_type;
  60	u64 branches_id;
  61	u64 instructions_sample_type;
  62	u64 instructions_sample_period;
  63	u64 instructions_id;
  64	u64 **metadata;
  65	u64 kernel_start;
  66	unsigned int pmu_type;
  67};
  68
  69struct cs_etm_traceid_queue {
  70	u8 trace_chan_id;
  71	pid_t pid, tid;
  72	u64 period_instructions;
  73	size_t last_branch_pos;
  74	union perf_event *event_buf;
  75	struct thread *thread;
  76	struct branch_stack *last_branch;
  77	struct branch_stack *last_branch_rb;
  78	struct cs_etm_packet *prev_packet;
  79	struct cs_etm_packet *packet;
  80	struct cs_etm_packet_queue packet_queue;
  81};
  82
  83struct cs_etm_queue {
  84	struct cs_etm_auxtrace *etm;
  85	struct cs_etm_decoder *decoder;
  86	struct auxtrace_buffer *buffer;
  87	unsigned int queue_nr;
  88	u8 pending_timestamp;
  89	u64 offset;
  90	const unsigned char *buf;
  91	size_t buf_len, buf_used;
  92	/* Conversion between traceID and index in traceid_queues array */
  93	struct intlist *traceid_queues_list;
  94	struct cs_etm_traceid_queue **traceid_queues;
  95};
  96
  97static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
  98static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
  99static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
 100					   pid_t tid);
 101static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
 102static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
 103
 104/* PTMs ETMIDR [11:8] set to b0011 */
 105#define ETMIDR_PTM_VERSION 0x00000300
 106
 107/*
 108 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 109 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 110 * encode the etm queue number as the upper 16 bit and the channel as
 111 * the lower 16 bit.
 112 */
 113#define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
 114		      (queue_nr << 16 | trace_chan_id)
 115#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
 116#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
 117
 118static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
 119{
 120	etmidr &= ETMIDR_PTM_VERSION;
 121
 122	if (etmidr == ETMIDR_PTM_VERSION)
 123		return CS_ETM_PROTO_PTM;
 124
 125	return CS_ETM_PROTO_ETMV3;
 126}
 127
 128static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
 129{
 130	struct int_node *inode;
 131	u64 *metadata;
 132
 133	inode = intlist__find(traceid_list, trace_chan_id);
 134	if (!inode)
 135		return -EINVAL;
 136
 137	metadata = inode->priv;
 138	*magic = metadata[CS_ETM_MAGIC];
 139	return 0;
 140}
 141
 142int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
 143{
 144	struct int_node *inode;
 145	u64 *metadata;
 146
 147	inode = intlist__find(traceid_list, trace_chan_id);
 148	if (!inode)
 149		return -EINVAL;
 150
 151	metadata = inode->priv;
 152	*cpu = (int)metadata[CS_ETM_CPU];
 153	return 0;
 154}
 155
 156void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
 157					      u8 trace_chan_id)
 158{
 159	/*
 160	 * Wnen a timestamp packet is encountered the backend code
 161	 * is stopped so that the front end has time to process packets
 162	 * that were accumulated in the traceID queue.  Since there can
 163	 * be more than one channel per cs_etm_queue, we need to specify
 164	 * what traceID queue needs servicing.
 165	 */
 166	etmq->pending_timestamp = trace_chan_id;
 167}
 168
 169static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
 170				      u8 *trace_chan_id)
 171{
 172	struct cs_etm_packet_queue *packet_queue;
 173
 174	if (!etmq->pending_timestamp)
 175		return 0;
 176
 177	if (trace_chan_id)
 178		*trace_chan_id = etmq->pending_timestamp;
 179
 180	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
 181						     etmq->pending_timestamp);
 182	if (!packet_queue)
 183		return 0;
 184
 185	/* Acknowledge pending status */
 186	etmq->pending_timestamp = 0;
 187
 188	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
 189	return packet_queue->timestamp;
 190}
 191
 192static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
 193{
 194	int i;
 195
 196	queue->head = 0;
 197	queue->tail = 0;
 198	queue->packet_count = 0;
 199	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
 200		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
 201		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
 202		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
 203		queue->packet_buffer[i].instr_count = 0;
 204		queue->packet_buffer[i].last_instr_taken_branch = false;
 205		queue->packet_buffer[i].last_instr_size = 0;
 206		queue->packet_buffer[i].last_instr_type = 0;
 207		queue->packet_buffer[i].last_instr_subtype = 0;
 208		queue->packet_buffer[i].last_instr_cond = 0;
 209		queue->packet_buffer[i].flags = 0;
 210		queue->packet_buffer[i].exception_number = UINT32_MAX;
 211		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
 212		queue->packet_buffer[i].cpu = INT_MIN;
 213	}
 214}
 215
 216static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
 217{
 218	int idx;
 219	struct int_node *inode;
 220	struct cs_etm_traceid_queue *tidq;
 221	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 222
 223	intlist__for_each_entry(inode, traceid_queues_list) {
 224		idx = (int)(intptr_t)inode->priv;
 225		tidq = etmq->traceid_queues[idx];
 226		cs_etm__clear_packet_queue(&tidq->packet_queue);
 227	}
 228}
 229
 230static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
 231				      struct cs_etm_traceid_queue *tidq,
 232				      u8 trace_chan_id)
 233{
 234	int rc = -ENOMEM;
 235	struct auxtrace_queue *queue;
 236	struct cs_etm_auxtrace *etm = etmq->etm;
 237
 238	cs_etm__clear_packet_queue(&tidq->packet_queue);
 239
 240	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
 241	tidq->tid = queue->tid;
 242	tidq->pid = -1;
 243	tidq->trace_chan_id = trace_chan_id;
 244
 245	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
 246	if (!tidq->packet)
 247		goto out;
 248
 249	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
 250	if (!tidq->prev_packet)
 251		goto out_free;
 252
 253	if (etm->synth_opts.last_branch) {
 254		size_t sz = sizeof(struct branch_stack);
 255
 256		sz += etm->synth_opts.last_branch_sz *
 257		      sizeof(struct branch_entry);
 258		tidq->last_branch = zalloc(sz);
 259		if (!tidq->last_branch)
 260			goto out_free;
 261		tidq->last_branch_rb = zalloc(sz);
 262		if (!tidq->last_branch_rb)
 263			goto out_free;
 264	}
 265
 266	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 267	if (!tidq->event_buf)
 268		goto out_free;
 269
 270	return 0;
 271
 272out_free:
 273	zfree(&tidq->last_branch_rb);
 274	zfree(&tidq->last_branch);
 275	zfree(&tidq->prev_packet);
 276	zfree(&tidq->packet);
 277out:
 278	return rc;
 279}
 280
 281static struct cs_etm_traceid_queue
 282*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 283{
 284	int idx;
 285	struct int_node *inode;
 286	struct intlist *traceid_queues_list;
 287	struct cs_etm_traceid_queue *tidq, **traceid_queues;
 288	struct cs_etm_auxtrace *etm = etmq->etm;
 289
 290	if (etm->timeless_decoding)
 291		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
 292
 293	traceid_queues_list = etmq->traceid_queues_list;
 294
 295	/*
 296	 * Check if the traceid_queue exist for this traceID by looking
 297	 * in the queue list.
 298	 */
 299	inode = intlist__find(traceid_queues_list, trace_chan_id);
 300	if (inode) {
 301		idx = (int)(intptr_t)inode->priv;
 302		return etmq->traceid_queues[idx];
 303	}
 304
 305	/* We couldn't find a traceid_queue for this traceID, allocate one */
 306	tidq = malloc(sizeof(*tidq));
 307	if (!tidq)
 308		return NULL;
 309
 310	memset(tidq, 0, sizeof(*tidq));
 311
 312	/* Get a valid index for the new traceid_queue */
 313	idx = intlist__nr_entries(traceid_queues_list);
 314	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
 315	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
 316	if (!inode)
 317		goto out_free;
 318
 319	/* Associate this traceID with this index */
 320	inode->priv = (void *)(intptr_t)idx;
 321
 322	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
 323		goto out_free;
 324
 325	/* Grow the traceid_queues array by one unit */
 326	traceid_queues = etmq->traceid_queues;
 327	traceid_queues = reallocarray(traceid_queues,
 328				      idx + 1,
 329				      sizeof(*traceid_queues));
 330
 331	/*
 332	 * On failure reallocarray() returns NULL and the original block of
 333	 * memory is left untouched.
 334	 */
 335	if (!traceid_queues)
 336		goto out_free;
 337
 338	traceid_queues[idx] = tidq;
 339	etmq->traceid_queues = traceid_queues;
 340
 341	return etmq->traceid_queues[idx];
 342
 343out_free:
 344	/*
 345	 * Function intlist__remove() removes the inode from the list
 346	 * and delete the memory associated to it.
 347	 */
 348	intlist__remove(traceid_queues_list, inode);
 349	free(tidq);
 350
 351	return NULL;
 352}
 353
 354struct cs_etm_packet_queue
 355*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 356{
 357	struct cs_etm_traceid_queue *tidq;
 358
 359	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 360	if (tidq)
 361		return &tidq->packet_queue;
 362
 363	return NULL;
 364}
 365
 366static void cs_etm__packet_dump(const char *pkt_string)
 367{
 368	const char *color = PERF_COLOR_BLUE;
 369	int len = strlen(pkt_string);
 370
 371	if (len && (pkt_string[len-1] == '\n'))
 372		color_fprintf(stdout, color, "	%s", pkt_string);
 373	else
 374		color_fprintf(stdout, color, "	%s\n", pkt_string);
 375
 376	fflush(stdout);
 377}
 378
 379static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
 380					  struct cs_etm_auxtrace *etm, int idx,
 381					  u32 etmidr)
 382{
 383	u64 **metadata = etm->metadata;
 384
 385	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
 386	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
 387	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
 388}
 389
 390static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
 391					  struct cs_etm_auxtrace *etm, int idx)
 392{
 393	u64 **metadata = etm->metadata;
 394
 395	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
 396	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
 397	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
 398	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
 399	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
 400	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
 401	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
 402}
 403
 404static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
 405				     struct cs_etm_auxtrace *etm)
 406{
 407	int i;
 408	u32 etmidr;
 409	u64 architecture;
 410
 411	for (i = 0; i < etm->num_cpu; i++) {
 412		architecture = etm->metadata[i][CS_ETM_MAGIC];
 413
 414		switch (architecture) {
 415		case __perf_cs_etmv3_magic:
 416			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
 417			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
 418			break;
 419		case __perf_cs_etmv4_magic:
 420			cs_etm__set_trace_param_etmv4(t_params, etm, i);
 421			break;
 422		default:
 423			return -EINVAL;
 424		}
 425	}
 426
 427	return 0;
 428}
 429
 430static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
 431				       struct cs_etm_queue *etmq,
 432				       enum cs_etm_decoder_operation mode)
 433{
 434	int ret = -EINVAL;
 435
 436	if (!(mode < CS_ETM_OPERATION_MAX))
 437		goto out;
 438
 439	d_params->packet_printer = cs_etm__packet_dump;
 440	d_params->operation = mode;
 441	d_params->data = etmq;
 442	d_params->formatted = true;
 443	d_params->fsyncs = false;
 444	d_params->hsyncs = false;
 445	d_params->frame_aligned = true;
 446
 447	ret = 0;
 448out:
 449	return ret;
 450}
 451
 452static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
 453			       struct auxtrace_buffer *buffer)
 454{
 455	int ret;
 456	const char *color = PERF_COLOR_BLUE;
 457	struct cs_etm_decoder_params d_params;
 458	struct cs_etm_trace_params *t_params;
 459	struct cs_etm_decoder *decoder;
 460	size_t buffer_used = 0;
 461
 462	fprintf(stdout, "\n");
 463	color_fprintf(stdout, color,
 464		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
 465		     buffer->size);
 466
 467	/* Use metadata to fill in trace parameters for trace decoder */
 468	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 469
 470	if (!t_params)
 471		return;
 472
 473	if (cs_etm__init_trace_params(t_params, etm))
 474		goto out_free;
 475
 476	/* Set decoder parameters to simply print the trace packets */
 477	if (cs_etm__init_decoder_params(&d_params, NULL,
 478					CS_ETM_OPERATION_PRINT))
 479		goto out_free;
 480
 481	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 482
 483	if (!decoder)
 484		goto out_free;
 485	do {
 486		size_t consumed;
 487
 488		ret = cs_etm_decoder__process_data_block(
 489				decoder, buffer->offset,
 490				&((u8 *)buffer->data)[buffer_used],
 491				buffer->size - buffer_used, &consumed);
 492		if (ret)
 493			break;
 494
 495		buffer_used += consumed;
 496	} while (buffer_used < buffer->size);
 497
 498	cs_etm_decoder__free(decoder);
 499
 500out_free:
 501	zfree(&t_params);
 502}
 503
 504static int cs_etm__flush_events(struct perf_session *session,
 505				struct perf_tool *tool)
 506{
 507	int ret;
 508	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
 509						   struct cs_etm_auxtrace,
 510						   auxtrace);
 511	if (dump_trace)
 512		return 0;
 513
 514	if (!tool->ordered_events)
 515		return -EINVAL;
 516
 517	ret = cs_etm__update_queues(etm);
 518
 519	if (ret < 0)
 520		return ret;
 521
 522	if (etm->timeless_decoding)
 523		return cs_etm__process_timeless_queues(etm, -1);
 524
 525	return cs_etm__process_queues(etm);
 526}
 527
 528static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
 529{
 530	int idx;
 531	uintptr_t priv;
 532	struct int_node *inode, *tmp;
 533	struct cs_etm_traceid_queue *tidq;
 534	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 535
 536	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
 537		priv = (uintptr_t)inode->priv;
 538		idx = priv;
 539
 540		/* Free this traceid_queue from the array */
 541		tidq = etmq->traceid_queues[idx];
 542		thread__zput(tidq->thread);
 543		zfree(&tidq->event_buf);
 544		zfree(&tidq->last_branch);
 545		zfree(&tidq->last_branch_rb);
 546		zfree(&tidq->prev_packet);
 547		zfree(&tidq->packet);
 548		zfree(&tidq);
 549
 550		/*
 551		 * Function intlist__remove() removes the inode from the list
 552		 * and delete the memory associated to it.
 553		 */
 554		intlist__remove(traceid_queues_list, inode);
 555	}
 556
 557	/* Then the RB tree itself */
 558	intlist__delete(traceid_queues_list);
 559	etmq->traceid_queues_list = NULL;
 560
 561	/* finally free the traceid_queues array */
 562	zfree(&etmq->traceid_queues);
 563}
 564
 565static void cs_etm__free_queue(void *priv)
 566{
 567	struct cs_etm_queue *etmq = priv;
 568
 569	if (!etmq)
 570		return;
 571
 572	cs_etm_decoder__free(etmq->decoder);
 573	cs_etm__free_traceid_queues(etmq);
 574	free(etmq);
 575}
 576
 577static void cs_etm__free_events(struct perf_session *session)
 578{
 579	unsigned int i;
 580	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 581						   struct cs_etm_auxtrace,
 582						   auxtrace);
 583	struct auxtrace_queues *queues = &aux->queues;
 584
 585	for (i = 0; i < queues->nr_queues; i++) {
 586		cs_etm__free_queue(queues->queue_array[i].priv);
 587		queues->queue_array[i].priv = NULL;
 588	}
 589
 590	auxtrace_queues__free(queues);
 591}
 592
 593static void cs_etm__free(struct perf_session *session)
 594{
 595	int i;
 596	struct int_node *inode, *tmp;
 597	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 598						   struct cs_etm_auxtrace,
 599						   auxtrace);
 600	cs_etm__free_events(session);
 601	session->auxtrace = NULL;
 602
 603	/* First remove all traceID/metadata nodes for the RB tree */
 604	intlist__for_each_entry_safe(inode, tmp, traceid_list)
 605		intlist__remove(traceid_list, inode);
 606	/* Then the RB tree itself */
 607	intlist__delete(traceid_list);
 608
 609	for (i = 0; i < aux->num_cpu; i++)
 610		zfree(&aux->metadata[i]);
 611
 612	thread__zput(aux->unknown_thread);
 613	zfree(&aux->metadata);
 614	zfree(&aux);
 615}
 616
 617static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
 618{
 619	struct machine *machine;
 620
 621	machine = etmq->etm->machine;
 622
 623	if (address >= etmq->etm->kernel_start) {
 624		if (machine__is_host(machine))
 625			return PERF_RECORD_MISC_KERNEL;
 626		else
 627			return PERF_RECORD_MISC_GUEST_KERNEL;
 628	} else {
 629		if (machine__is_host(machine))
 630			return PERF_RECORD_MISC_USER;
 631		else if (perf_guest)
 632			return PERF_RECORD_MISC_GUEST_USER;
 633		else
 634			return PERF_RECORD_MISC_HYPERVISOR;
 635	}
 636}
 637
 638static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
 639			      u64 address, size_t size, u8 *buffer)
 640{
 641	u8  cpumode;
 642	u64 offset;
 643	int len;
 644	struct thread *thread;
 645	struct machine *machine;
 646	struct addr_location al;
 647	struct cs_etm_traceid_queue *tidq;
 648
 649	if (!etmq)
 650		return 0;
 651
 652	machine = etmq->etm->machine;
 653	cpumode = cs_etm__cpu_mode(etmq, address);
 654	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 655	if (!tidq)
 656		return 0;
 657
 658	thread = tidq->thread;
 659	if (!thread) {
 660		if (cpumode != PERF_RECORD_MISC_KERNEL)
 661			return 0;
 662		thread = etmq->etm->unknown_thread;
 663	}
 664
 665	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
 666		return 0;
 667
 668	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 669	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
 670		return 0;
 671
 672	offset = al.map->map_ip(al.map, address);
 673
 674	map__load(al.map);
 675
 676	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
 677
 678	if (len <= 0)
 679		return 0;
 680
 681	return len;
 682}
 683
 684static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
 685{
 686	struct cs_etm_decoder_params d_params;
 687	struct cs_etm_trace_params  *t_params = NULL;
 688	struct cs_etm_queue *etmq;
 689
 690	etmq = zalloc(sizeof(*etmq));
 691	if (!etmq)
 692		return NULL;
 693
 694	etmq->traceid_queues_list = intlist__new(NULL);
 695	if (!etmq->traceid_queues_list)
 696		goto out_free;
 697
 698	/* Use metadata to fill in trace parameters for trace decoder */
 699	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 700
 701	if (!t_params)
 702		goto out_free;
 703
 704	if (cs_etm__init_trace_params(t_params, etm))
 705		goto out_free;
 706
 707	/* Set decoder parameters to decode trace packets */
 708	if (cs_etm__init_decoder_params(&d_params, etmq,
 709					CS_ETM_OPERATION_DECODE))
 710		goto out_free;
 711
 712	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 713
 714	if (!etmq->decoder)
 715		goto out_free;
 716
 717	/*
 718	 * Register a function to handle all memory accesses required by
 719	 * the trace decoder library.
 720	 */
 721	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
 722					      0x0L, ((u64) -1L),
 723					      cs_etm__mem_access))
 724		goto out_free_decoder;
 725
 726	zfree(&t_params);
 727	return etmq;
 728
 729out_free_decoder:
 730	cs_etm_decoder__free(etmq->decoder);
 731out_free:
 732	intlist__delete(etmq->traceid_queues_list);
 733	free(etmq);
 734
 735	return NULL;
 736}
 737
 738static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
 739			       struct auxtrace_queue *queue,
 740			       unsigned int queue_nr)
 741{
 742	int ret = 0;
 743	unsigned int cs_queue_nr;
 744	u8 trace_chan_id;
 745	u64 timestamp;
 746	struct cs_etm_queue *etmq = queue->priv;
 747
 748	if (list_empty(&queue->head) || etmq)
 749		goto out;
 750
 751	etmq = cs_etm__alloc_queue(etm);
 752
 753	if (!etmq) {
 754		ret = -ENOMEM;
 755		goto out;
 756	}
 757
 758	queue->priv = etmq;
 759	etmq->etm = etm;
 760	etmq->queue_nr = queue_nr;
 761	etmq->offset = 0;
 762
 763	if (etm->timeless_decoding)
 764		goto out;
 765
 766	/*
 767	 * We are under a CPU-wide trace scenario.  As such we need to know
 768	 * when the code that generated the traces started to execute so that
 769	 * it can be correlated with execution on other CPUs.  So we get a
 770	 * handle on the beginning of traces and decode until we find a
 771	 * timestamp.  The timestamp is then added to the auxtrace min heap
 772	 * in order to know what nibble (of all the etmqs) to decode first.
 773	 */
 774	while (1) {
 775		/*
 776		 * Fetch an aux_buffer from this etmq.  Bail if no more
 777		 * blocks or an error has been encountered.
 778		 */
 779		ret = cs_etm__get_data_block(etmq);
 780		if (ret <= 0)
 781			goto out;
 782
 783		/*
 784		 * Run decoder on the trace block.  The decoder will stop when
 785		 * encountering a timestamp, a full packet queue or the end of
 786		 * trace for that block.
 787		 */
 788		ret = cs_etm__decode_data_block(etmq);
 789		if (ret)
 790			goto out;
 791
 792		/*
 793		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
 794		 * the timestamp calculation for us.
 795		 */
 796		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
 797
 798		/* We found a timestamp, no need to continue. */
 799		if (timestamp)
 800			break;
 801
 802		/*
 803		 * We didn't find a timestamp so empty all the traceid packet
 804		 * queues before looking for another timestamp packet, either
 805		 * in the current data block or a new one.  Packets that were
 806		 * just decoded are useless since no timestamp has been
 807		 * associated with them.  As such simply discard them.
 808		 */
 809		cs_etm__clear_all_packet_queues(etmq);
 810	}
 811
 812	/*
 813	 * We have a timestamp.  Add it to the min heap to reflect when
 814	 * instructions conveyed by the range packets of this traceID queue
 815	 * started to execute.  Once the same has been done for all the traceID
 816	 * queues of each etmq, redenring and decoding can start in
 817	 * chronological order.
 818	 *
 819	 * Note that packets decoded above are still in the traceID's packet
 820	 * queue and will be processed in cs_etm__process_queues().
 821	 */
 822	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
 823	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
 824out:
 825	return ret;
 826}
 827
 828static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
 829{
 830	unsigned int i;
 831	int ret;
 832
 833	if (!etm->kernel_start)
 834		etm->kernel_start = machine__kernel_start(etm->machine);
 835
 836	for (i = 0; i < etm->queues.nr_queues; i++) {
 837		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
 838		if (ret)
 839			return ret;
 840	}
 841
 842	return 0;
 843}
 844
 845static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
 846{
 847	if (etm->queues.new_data) {
 848		etm->queues.new_data = false;
 849		return cs_etm__setup_queues(etm);
 850	}
 851
 852	return 0;
 853}
 854
 855static inline
 856void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
 857				 struct cs_etm_traceid_queue *tidq)
 858{
 859	struct branch_stack *bs_src = tidq->last_branch_rb;
 860	struct branch_stack *bs_dst = tidq->last_branch;
 861	size_t nr = 0;
 862
 863	/*
 864	 * Set the number of records before early exit: ->nr is used to
 865	 * determine how many branches to copy from ->entries.
 866	 */
 867	bs_dst->nr = bs_src->nr;
 868
 869	/*
 870	 * Early exit when there is nothing to copy.
 871	 */
 872	if (!bs_src->nr)
 873		return;
 874
 875	/*
 876	 * As bs_src->entries is a circular buffer, we need to copy from it in
 877	 * two steps.  First, copy the branches from the most recently inserted
 878	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
 879	 */
 880	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
 881	memcpy(&bs_dst->entries[0],
 882	       &bs_src->entries[tidq->last_branch_pos],
 883	       sizeof(struct branch_entry) * nr);
 884
 885	/*
 886	 * If we wrapped around at least once, the branches from the beginning
 887	 * of the bs_src->entries buffer and until the ->last_branch_pos element
 888	 * are older valid branches: copy them over.  The total number of
 889	 * branches copied over will be equal to the number of branches asked by
 890	 * the user in last_branch_sz.
 891	 */
 892	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
 893		memcpy(&bs_dst->entries[nr],
 894		       &bs_src->entries[0],
 895		       sizeof(struct branch_entry) * tidq->last_branch_pos);
 896	}
 897}
 898
 899static inline
 900void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
 901{
 902	tidq->last_branch_pos = 0;
 903	tidq->last_branch_rb->nr = 0;
 904}
 905
 906static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
 907					 u8 trace_chan_id, u64 addr)
 908{
 909	u8 instrBytes[2];
 910
 911	cs_etm__mem_access(etmq, trace_chan_id, addr,
 912			   ARRAY_SIZE(instrBytes), instrBytes);
 913	/*
 914	 * T32 instruction size is indicated by bits[15:11] of the first
 915	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
 916	 * denote a 32-bit instruction.
 917	 */
 918	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
 919}
 920
 921static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
 922{
 923	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 924	if (packet->sample_type == CS_ETM_DISCONTINUITY)
 925		return 0;
 926
 927	return packet->start_addr;
 928}
 929
 930static inline
 931u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
 932{
 933	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 934	if (packet->sample_type == CS_ETM_DISCONTINUITY)
 935		return 0;
 936
 937	return packet->end_addr - packet->last_instr_size;
 938}
 939
 940static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
 941				     u64 trace_chan_id,
 942				     const struct cs_etm_packet *packet,
 943				     u64 offset)
 944{
 945	if (packet->isa == CS_ETM_ISA_T32) {
 946		u64 addr = packet->start_addr;
 947
 948		while (offset > 0) {
 949			addr += cs_etm__t32_instr_size(etmq,
 950						       trace_chan_id, addr);
 951			offset--;
 952		}
 953		return addr;
 954	}
 955
 956	/* Assume a 4 byte instruction size (A32/A64) */
 957	return packet->start_addr + offset * 4;
 958}
 959
 960static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
 961					  struct cs_etm_traceid_queue *tidq)
 962{
 963	struct branch_stack *bs = tidq->last_branch_rb;
 964	struct branch_entry *be;
 965
 966	/*
 967	 * The branches are recorded in a circular buffer in reverse
 968	 * chronological order: we start recording from the last element of the
 969	 * buffer down.  After writing the first element of the stack, move the
 970	 * insert position back to the end of the buffer.
 971	 */
 972	if (!tidq->last_branch_pos)
 973		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
 974
 975	tidq->last_branch_pos -= 1;
 976
 977	be       = &bs->entries[tidq->last_branch_pos];
 978	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
 979	be->to	 = cs_etm__first_executed_instr(tidq->packet);
 980	/* No support for mispredict */
 981	be->flags.mispred = 0;
 982	be->flags.predicted = 1;
 983
 984	/*
 985	 * Increment bs->nr until reaching the number of last branches asked by
 986	 * the user on the command line.
 987	 */
 988	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
 989		bs->nr += 1;
 990}
 991
 992static int cs_etm__inject_event(union perf_event *event,
 993			       struct perf_sample *sample, u64 type)
 994{
 995	event->header.size = perf_event__sample_event_size(sample, type, 0);
 996	return perf_event__synthesize_sample(event, type, 0, sample);
 997}
 998
 999
1000static int
1001cs_etm__get_trace(struct cs_etm_queue *etmq)
1002{
1003	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1004	struct auxtrace_buffer *old_buffer = aux_buffer;
1005	struct auxtrace_queue *queue;
1006
1007	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1008
1009	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1010
1011	/* If no more data, drop the previous auxtrace_buffer and return */
1012	if (!aux_buffer) {
1013		if (old_buffer)
1014			auxtrace_buffer__drop_data(old_buffer);
1015		etmq->buf_len = 0;
1016		return 0;
1017	}
1018
1019	etmq->buffer = aux_buffer;
1020
1021	/* If the aux_buffer doesn't have data associated, try to load it */
1022	if (!aux_buffer->data) {
1023		/* get the file desc associated with the perf data file */
1024		int fd = perf_data__fd(etmq->etm->session->data);
1025
1026		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1027		if (!aux_buffer->data)
1028			return -ENOMEM;
1029	}
1030
1031	/* If valid, drop the previous buffer */
1032	if (old_buffer)
1033		auxtrace_buffer__drop_data(old_buffer);
1034
1035	etmq->buf_used = 0;
1036	etmq->buf_len = aux_buffer->size;
1037	etmq->buf = aux_buffer->data;
1038
1039	return etmq->buf_len;
1040}
1041
1042static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1043				    struct cs_etm_traceid_queue *tidq)
1044{
1045	if ((!tidq->thread) && (tidq->tid != -1))
1046		tidq->thread = machine__find_thread(etm->machine, -1,
1047						    tidq->tid);
1048
1049	if (tidq->thread)
1050		tidq->pid = tidq->thread->pid_;
1051}
1052
1053int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1054			 pid_t tid, u8 trace_chan_id)
1055{
1056	int cpu, err = -EINVAL;
1057	struct cs_etm_auxtrace *etm = etmq->etm;
1058	struct cs_etm_traceid_queue *tidq;
1059
1060	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1061	if (!tidq)
1062		return err;
1063
1064	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1065		return err;
1066
1067	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1068	if (err)
1069		return err;
1070
1071	tidq->tid = tid;
1072	thread__zput(tidq->thread);
1073
1074	cs_etm__set_pid_tid_cpu(etm, tidq);
1075	return 0;
1076}
1077
1078bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1079{
1080	return !!etmq->etm->timeless_decoding;
1081}
1082
1083static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1084			      u64 trace_chan_id,
1085			      const struct cs_etm_packet *packet,
1086			      struct perf_sample *sample)
1087{
1088	/*
1089	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1090	 * packet, so directly bail out with 'insn_len' = 0.
1091	 */
1092	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1093		sample->insn_len = 0;
1094		return;
1095	}
1096
1097	/*
1098	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1099	 * cs_etm__t32_instr_size().
1100	 */
1101	if (packet->isa == CS_ETM_ISA_T32)
1102		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1103							  sample->ip);
1104	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1105	else
1106		sample->insn_len = 4;
1107
1108	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1109			   sample->insn_len, (void *)sample->insn);
1110}
1111
1112static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1113					    struct cs_etm_traceid_queue *tidq,
1114					    u64 addr, u64 period)
1115{
1116	int ret = 0;
1117	struct cs_etm_auxtrace *etm = etmq->etm;
1118	union perf_event *event = tidq->event_buf;
1119	struct perf_sample sample = {.ip = 0,};
1120
1121	event->sample.header.type = PERF_RECORD_SAMPLE;
1122	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1123	event->sample.header.size = sizeof(struct perf_event_header);
1124
1125	sample.ip = addr;
1126	sample.pid = tidq->pid;
1127	sample.tid = tidq->tid;
1128	sample.id = etmq->etm->instructions_id;
1129	sample.stream_id = etmq->etm->instructions_id;
1130	sample.period = period;
1131	sample.cpu = tidq->packet->cpu;
1132	sample.flags = tidq->prev_packet->flags;
1133	sample.cpumode = event->sample.header.misc;
1134
1135	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1136
1137	if (etm->synth_opts.last_branch) {
1138		cs_etm__copy_last_branch_rb(etmq, tidq);
1139		sample.branch_stack = tidq->last_branch;
1140	}
1141
1142	if (etm->synth_opts.inject) {
1143		ret = cs_etm__inject_event(event, &sample,
1144					   etm->instructions_sample_type);
1145		if (ret)
1146			return ret;
1147	}
1148
1149	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1150
1151	if (ret)
1152		pr_err(
1153			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1154			ret);
1155
1156	if (etm->synth_opts.last_branch)
1157		cs_etm__reset_last_branch_rb(tidq);
1158
1159	return ret;
1160}
1161
1162/*
1163 * The cs etm packet encodes an instruction range between a branch target
1164 * and the next taken branch. Generate sample accordingly.
1165 */
1166static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1167				       struct cs_etm_traceid_queue *tidq)
1168{
1169	int ret = 0;
1170	struct cs_etm_auxtrace *etm = etmq->etm;
1171	struct perf_sample sample = {.ip = 0,};
1172	union perf_event *event = tidq->event_buf;
1173	struct dummy_branch_stack {
1174		u64			nr;
1175		struct branch_entry	entries;
1176	} dummy_bs;
1177	u64 ip;
1178
1179	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1180
1181	event->sample.header.type = PERF_RECORD_SAMPLE;
1182	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1183	event->sample.header.size = sizeof(struct perf_event_header);
1184
1185	sample.ip = ip;
1186	sample.pid = tidq->pid;
1187	sample.tid = tidq->tid;
1188	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1189	sample.id = etmq->etm->branches_id;
1190	sample.stream_id = etmq->etm->branches_id;
1191	sample.period = 1;
1192	sample.cpu = tidq->packet->cpu;
1193	sample.flags = tidq->prev_packet->flags;
1194	sample.cpumode = event->sample.header.misc;
1195
1196	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1197			  &sample);
1198
1199	/*
1200	 * perf report cannot handle events without a branch stack
1201	 */
1202	if (etm->synth_opts.last_branch) {
1203		dummy_bs = (struct dummy_branch_stack){
1204			.nr = 1,
1205			.entries = {
1206				.from = sample.ip,
1207				.to = sample.addr,
1208			},
1209		};
1210		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1211	}
1212
1213	if (etm->synth_opts.inject) {
1214		ret = cs_etm__inject_event(event, &sample,
1215					   etm->branches_sample_type);
1216		if (ret)
1217			return ret;
1218	}
1219
1220	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221
1222	if (ret)
1223		pr_err(
1224		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1225		ret);
1226
1227	return ret;
1228}
1229
1230struct cs_etm_synth {
1231	struct perf_tool dummy_tool;
1232	struct perf_session *session;
1233};
1234
1235static int cs_etm__event_synth(struct perf_tool *tool,
1236			       union perf_event *event,
1237			       struct perf_sample *sample __maybe_unused,
1238			       struct machine *machine __maybe_unused)
1239{
1240	struct cs_etm_synth *cs_etm_synth =
1241		      container_of(tool, struct cs_etm_synth, dummy_tool);
1242
1243	return perf_session__deliver_synth_event(cs_etm_synth->session,
1244						 event, NULL);
1245}
1246
1247static int cs_etm__synth_event(struct perf_session *session,
1248			       struct perf_event_attr *attr, u64 id)
1249{
1250	struct cs_etm_synth cs_etm_synth;
1251
1252	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1253	cs_etm_synth.session = session;
1254
1255	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1256					   &id, cs_etm__event_synth);
1257}
1258
1259static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1260				struct perf_session *session)
1261{
1262	struct evlist *evlist = session->evlist;
1263	struct evsel *evsel;
1264	struct perf_event_attr attr;
1265	bool found = false;
1266	u64 id;
1267	int err;
1268
1269	evlist__for_each_entry(evlist, evsel) {
1270		if (evsel->core.attr.type == etm->pmu_type) {
1271			found = true;
1272			break;
1273		}
1274	}
1275
1276	if (!found) {
1277		pr_debug("No selected events with CoreSight Trace data\n");
1278		return 0;
1279	}
1280
1281	memset(&attr, 0, sizeof(struct perf_event_attr));
1282	attr.size = sizeof(struct perf_event_attr);
1283	attr.type = PERF_TYPE_HARDWARE;
1284	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1285	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1286			    PERF_SAMPLE_PERIOD;
1287	if (etm->timeless_decoding)
1288		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1289	else
1290		attr.sample_type |= PERF_SAMPLE_TIME;
1291
1292	attr.exclude_user = evsel->core.attr.exclude_user;
1293	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1294	attr.exclude_hv = evsel->core.attr.exclude_hv;
1295	attr.exclude_host = evsel->core.attr.exclude_host;
1296	attr.exclude_guest = evsel->core.attr.exclude_guest;
1297	attr.sample_id_all = evsel->core.attr.sample_id_all;
1298	attr.read_format = evsel->core.attr.read_format;
1299
1300	/* create new id val to be a fixed offset from evsel id */
1301	id = evsel->core.id[0] + 1000000000;
1302
1303	if (!id)
1304		id = 1;
1305
1306	if (etm->synth_opts.branches) {
1307		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1308		attr.sample_period = 1;
1309		attr.sample_type |= PERF_SAMPLE_ADDR;
1310		err = cs_etm__synth_event(session, &attr, id);
1311		if (err)
1312			return err;
1313		etm->sample_branches = true;
1314		etm->branches_sample_type = attr.sample_type;
1315		etm->branches_id = id;
1316		id += 1;
1317		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1318	}
1319
1320	if (etm->synth_opts.last_branch)
1321		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1322
1323	if (etm->synth_opts.instructions) {
1324		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1325		attr.sample_period = etm->synth_opts.period;
1326		etm->instructions_sample_period = attr.sample_period;
1327		err = cs_etm__synth_event(session, &attr, id);
1328		if (err)
1329			return err;
1330		etm->sample_instructions = true;
1331		etm->instructions_sample_type = attr.sample_type;
1332		etm->instructions_id = id;
1333		id += 1;
1334	}
1335
1336	return 0;
1337}
1338
1339static int cs_etm__sample(struct cs_etm_queue *etmq,
1340			  struct cs_etm_traceid_queue *tidq)
1341{
1342	struct cs_etm_auxtrace *etm = etmq->etm;
1343	struct cs_etm_packet *tmp;
1344	int ret;
1345	u8 trace_chan_id = tidq->trace_chan_id;
1346	u64 instrs_executed = tidq->packet->instr_count;
1347
1348	tidq->period_instructions += instrs_executed;
1349
1350	/*
1351	 * Record a branch when the last instruction in
1352	 * PREV_PACKET is a branch.
1353	 */
1354	if (etm->synth_opts.last_branch &&
1355	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1356	    tidq->prev_packet->last_instr_taken_branch)
1357		cs_etm__update_last_branch_rb(etmq, tidq);
1358
1359	if (etm->sample_instructions &&
1360	    tidq->period_instructions >= etm->instructions_sample_period) {
1361		/*
1362		 * Emit instruction sample periodically
1363		 * TODO: allow period to be defined in cycles and clock time
1364		 */
1365
1366		/* Get number of instructions executed after the sample point */
1367		u64 instrs_over = tidq->period_instructions -
1368			etm->instructions_sample_period;
1369
1370		/*
1371		 * Calculate the address of the sampled instruction (-1 as
1372		 * sample is reported as though instruction has just been
1373		 * executed, but PC has not advanced to next instruction)
1374		 */
1375		u64 offset = (instrs_executed - instrs_over - 1);
1376		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1377					      tidq->packet, offset);
1378
1379		ret = cs_etm__synth_instruction_sample(
1380			etmq, tidq, addr, etm->instructions_sample_period);
1381		if (ret)
1382			return ret;
1383
1384		/* Carry remaining instructions into next sample period */
1385		tidq->period_instructions = instrs_over;
1386	}
1387
1388	if (etm->sample_branches) {
1389		bool generate_sample = false;
1390
1391		/* Generate sample for tracing on packet */
1392		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1393			generate_sample = true;
1394
1395		/* Generate sample for branch taken packet */
1396		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1397		    tidq->prev_packet->last_instr_taken_branch)
1398			generate_sample = true;
1399
1400		if (generate_sample) {
1401			ret = cs_etm__synth_branch_sample(etmq, tidq);
1402			if (ret)
1403				return ret;
1404		}
1405	}
1406
1407	if (etm->sample_branches || etm->synth_opts.last_branch) {
1408		/*
1409		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1410		 * the next incoming packet.
1411		 */
1412		tmp = tidq->packet;
1413		tidq->packet = tidq->prev_packet;
1414		tidq->prev_packet = tmp;
1415	}
1416
1417	return 0;
1418}
1419
1420static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1421{
1422	/*
1423	 * When the exception packet is inserted, whether the last instruction
1424	 * in previous range packet is taken branch or not, we need to force
1425	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1426	 * to generate branch sample for the instruction range before the
1427	 * exception is trapped to kernel or before the exception returning.
1428	 *
1429	 * The exception packet includes the dummy address values, so don't
1430	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1431	 * for generating instruction and branch samples.
1432	 */
1433	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1434		tidq->prev_packet->last_instr_taken_branch = true;
1435
1436	return 0;
1437}
1438
1439static int cs_etm__flush(struct cs_etm_queue *etmq,
1440			 struct cs_etm_traceid_queue *tidq)
1441{
1442	int err = 0;
1443	struct cs_etm_auxtrace *etm = etmq->etm;
1444	struct cs_etm_packet *tmp;
1445
1446	/* Handle start tracing packet */
1447	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1448		goto swap_packet;
1449
1450	if (etmq->etm->synth_opts.last_branch &&
1451	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1452		/*
1453		 * Generate a last branch event for the branches left in the
1454		 * circular buffer at the end of the trace.
1455		 *
1456		 * Use the address of the end of the last reported execution
1457		 * range
1458		 */
1459		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1460
1461		err = cs_etm__synth_instruction_sample(
1462			etmq, tidq, addr,
1463			tidq->period_instructions);
1464		if (err)
1465			return err;
1466
1467		tidq->period_instructions = 0;
1468
1469	}
1470
1471	if (etm->sample_branches &&
1472	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1473		err = cs_etm__synth_branch_sample(etmq, tidq);
1474		if (err)
1475			return err;
1476	}
1477
1478swap_packet:
1479	if (etm->sample_branches || etm->synth_opts.last_branch) {
1480		/*
1481		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1482		 * the next incoming packet.
1483		 */
1484		tmp = tidq->packet;
1485		tidq->packet = tidq->prev_packet;
1486		tidq->prev_packet = tmp;
1487	}
1488
1489	return err;
1490}
1491
1492static int cs_etm__end_block(struct cs_etm_queue *etmq,
1493			     struct cs_etm_traceid_queue *tidq)
1494{
1495	int err;
1496
1497	/*
1498	 * It has no new packet coming and 'etmq->packet' contains the stale
1499	 * packet which was set at the previous time with packets swapping;
1500	 * so skip to generate branch sample to avoid stale packet.
1501	 *
1502	 * For this case only flush branch stack and generate a last branch
1503	 * event for the branches left in the circular buffer at the end of
1504	 * the trace.
1505	 */
1506	if (etmq->etm->synth_opts.last_branch &&
1507	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1508		/*
1509		 * Use the address of the end of the last reported execution
1510		 * range.
1511		 */
1512		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1513
1514		err = cs_etm__synth_instruction_sample(
1515			etmq, tidq, addr,
1516			tidq->period_instructions);
1517		if (err)
1518			return err;
1519
1520		tidq->period_instructions = 0;
1521	}
1522
1523	return 0;
1524}
1525/*
1526 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1527 *			   if need be.
1528 * Returns:	< 0	if error
1529 *		= 0	if no more auxtrace_buffer to read
1530 *		> 0	if the current buffer isn't empty yet
1531 */
1532static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1533{
1534	int ret;
1535
1536	if (!etmq->buf_len) {
1537		ret = cs_etm__get_trace(etmq);
1538		if (ret <= 0)
1539			return ret;
1540		/*
1541		 * We cannot assume consecutive blocks in the data file
1542		 * are contiguous, reset the decoder to force re-sync.
1543		 */
1544		ret = cs_etm_decoder__reset(etmq->decoder);
1545		if (ret)
1546			return ret;
1547	}
1548
1549	return etmq->buf_len;
1550}
1551
1552static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1553				 struct cs_etm_packet *packet,
1554				 u64 end_addr)
1555{
1556	/* Initialise to keep compiler happy */
1557	u16 instr16 = 0;
1558	u32 instr32 = 0;
1559	u64 addr;
1560
1561	switch (packet->isa) {
1562	case CS_ETM_ISA_T32:
1563		/*
1564		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1565		 *
1566		 *  b'15         b'8
1567		 * +-----------------+--------+
1568		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1569		 * +-----------------+--------+
1570		 *
1571		 * According to the specifiction, it only defines SVC for T32
1572		 * with 16 bits instruction and has no definition for 32bits;
1573		 * so below only read 2 bytes as instruction size for T32.
1574		 */
1575		addr = end_addr - 2;
1576		cs_etm__mem_access(etmq, trace_chan_id, addr,
1577				   sizeof(instr16), (u8 *)&instr16);
1578		if ((instr16 & 0xFF00) == 0xDF00)
1579			return true;
1580
1581		break;
1582	case CS_ETM_ISA_A32:
1583		/*
1584		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1585		 *
1586		 *  b'31 b'28 b'27 b'24
1587		 * +---------+---------+-------------------------+
1588		 * |  !1111  | 1 1 1 1 |        imm24            |
1589		 * +---------+---------+-------------------------+
1590		 */
1591		addr = end_addr - 4;
1592		cs_etm__mem_access(etmq, trace_chan_id, addr,
1593				   sizeof(instr32), (u8 *)&instr32);
1594		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1595		    (instr32 & 0xF0000000) != 0xF0000000)
1596			return true;
1597
1598		break;
1599	case CS_ETM_ISA_A64:
1600		/*
1601		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1602		 *
1603		 *  b'31               b'21           b'4     b'0
1604		 * +-----------------------+---------+-----------+
1605		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1606		 * +-----------------------+---------+-----------+
1607		 */
1608		addr = end_addr - 4;
1609		cs_etm__mem_access(etmq, trace_chan_id, addr,
1610				   sizeof(instr32), (u8 *)&instr32);
1611		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1612			return true;
1613
1614		break;
1615	case CS_ETM_ISA_UNKNOWN:
1616	default:
1617		break;
1618	}
1619
1620	return false;
1621}
1622
1623static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1624			       struct cs_etm_traceid_queue *tidq, u64 magic)
1625{
1626	u8 trace_chan_id = tidq->trace_chan_id;
1627	struct cs_etm_packet *packet = tidq->packet;
1628	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1629
1630	if (magic == __perf_cs_etmv3_magic)
1631		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1632			return true;
1633
1634	/*
1635	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1636	 * HVC cases; need to check if it's SVC instruction based on
1637	 * packet address.
1638	 */
1639	if (magic == __perf_cs_etmv4_magic) {
1640		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1641		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1642					 prev_packet->end_addr))
1643			return true;
1644	}
1645
1646	return false;
1647}
1648
1649static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1650				       u64 magic)
1651{
1652	struct cs_etm_packet *packet = tidq->packet;
1653
1654	if (magic == __perf_cs_etmv3_magic)
1655		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1656		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1657		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1658		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1659		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1660			return true;
1661
1662	if (magic == __perf_cs_etmv4_magic)
1663		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1664		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1665		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1666		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1667		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1668		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1669		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1670			return true;
1671
1672	return false;
1673}
1674
1675static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1676				      struct cs_etm_traceid_queue *tidq,
1677				      u64 magic)
1678{
1679	u8 trace_chan_id = tidq->trace_chan_id;
1680	struct cs_etm_packet *packet = tidq->packet;
1681	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1682
1683	if (magic == __perf_cs_etmv3_magic)
1684		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1685		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1686		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1687		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1688		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1689		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1690		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1691			return true;
1692
1693	if (magic == __perf_cs_etmv4_magic) {
1694		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1695		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1696		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1697		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1698			return true;
1699
1700		/*
1701		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1702		 * (SMC, HVC) are taken as sync exceptions.
1703		 */
1704		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1705		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1706					  prev_packet->end_addr))
1707			return true;
1708
1709		/*
1710		 * ETMv4 has 5 bits for exception number; if the numbers
1711		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1712		 * they are implementation defined exceptions.
1713		 *
1714		 * For this case, simply take it as sync exception.
1715		 */
1716		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1717		    packet->exception_number <= CS_ETMV4_EXC_END)
1718			return true;
1719	}
1720
1721	return false;
1722}
1723
1724static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1725				    struct cs_etm_traceid_queue *tidq)
1726{
1727	struct cs_etm_packet *packet = tidq->packet;
1728	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1729	u8 trace_chan_id = tidq->trace_chan_id;
1730	u64 magic;
1731	int ret;
1732
1733	switch (packet->sample_type) {
1734	case CS_ETM_RANGE:
1735		/*
1736		 * Immediate branch instruction without neither link nor
1737		 * return flag, it's normal branch instruction within
1738		 * the function.
1739		 */
1740		if (packet->last_instr_type == OCSD_INSTR_BR &&
1741		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1742			packet->flags = PERF_IP_FLAG_BRANCH;
1743
1744			if (packet->last_instr_cond)
1745				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1746		}
1747
1748		/*
1749		 * Immediate branch instruction with link (e.g. BL), this is
1750		 * branch instruction for function call.
1751		 */
1752		if (packet->last_instr_type == OCSD_INSTR_BR &&
1753		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1754			packet->flags = PERF_IP_FLAG_BRANCH |
1755					PERF_IP_FLAG_CALL;
1756
1757		/*
1758		 * Indirect branch instruction with link (e.g. BLR), this is
1759		 * branch instruction for function call.
1760		 */
1761		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1762		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1763			packet->flags = PERF_IP_FLAG_BRANCH |
1764					PERF_IP_FLAG_CALL;
1765
1766		/*
1767		 * Indirect branch instruction with subtype of
1768		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1769		 * function return for A32/T32.
1770		 */
1771		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1772		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1773			packet->flags = PERF_IP_FLAG_BRANCH |
1774					PERF_IP_FLAG_RETURN;
1775
1776		/*
1777		 * Indirect branch instruction without link (e.g. BR), usually
1778		 * this is used for function return, especially for functions
1779		 * within dynamic link lib.
1780		 */
1781		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1782		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1783			packet->flags = PERF_IP_FLAG_BRANCH |
1784					PERF_IP_FLAG_RETURN;
1785
1786		/* Return instruction for function return. */
1787		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1788		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1789			packet->flags = PERF_IP_FLAG_BRANCH |
1790					PERF_IP_FLAG_RETURN;
1791
1792		/*
1793		 * Decoder might insert a discontinuity in the middle of
1794		 * instruction packets, fixup prev_packet with flag
1795		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1796		 */
1797		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1798			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1799					      PERF_IP_FLAG_TRACE_BEGIN;
1800
1801		/*
1802		 * If the previous packet is an exception return packet
1803		 * and the return address just follows SVC instuction,
1804		 * it needs to calibrate the previous packet sample flags
1805		 * as PERF_IP_FLAG_SYSCALLRET.
1806		 */
1807		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1808					   PERF_IP_FLAG_RETURN |
1809					   PERF_IP_FLAG_INTERRUPT) &&
1810		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1811					 packet, packet->start_addr))
1812			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1813					     PERF_IP_FLAG_RETURN |
1814					     PERF_IP_FLAG_SYSCALLRET;
1815		break;
1816	case CS_ETM_DISCONTINUITY:
1817		/*
1818		 * The trace is discontinuous, if the previous packet is
1819		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1820		 * for previous packet.
1821		 */
1822		if (prev_packet->sample_type == CS_ETM_RANGE)
1823			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1824					      PERF_IP_FLAG_TRACE_END;
1825		break;
1826	case CS_ETM_EXCEPTION:
1827		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1828		if (ret)
1829			return ret;
1830
1831		/* The exception is for system call. */
1832		if (cs_etm__is_syscall(etmq, tidq, magic))
1833			packet->flags = PERF_IP_FLAG_BRANCH |
1834					PERF_IP_FLAG_CALL |
1835					PERF_IP_FLAG_SYSCALLRET;
1836		/*
1837		 * The exceptions are triggered by external signals from bus,
1838		 * interrupt controller, debug module, PE reset or halt.
1839		 */
1840		else if (cs_etm__is_async_exception(tidq, magic))
1841			packet->flags = PERF_IP_FLAG_BRANCH |
1842					PERF_IP_FLAG_CALL |
1843					PERF_IP_FLAG_ASYNC |
1844					PERF_IP_FLAG_INTERRUPT;
1845		/*
1846		 * Otherwise, exception is caused by trap, instruction &
1847		 * data fault, or alignment errors.
1848		 */
1849		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1850			packet->flags = PERF_IP_FLAG_BRANCH |
1851					PERF_IP_FLAG_CALL |
1852					PERF_IP_FLAG_INTERRUPT;
1853
1854		/*
1855		 * When the exception packet is inserted, since exception
1856		 * packet is not used standalone for generating samples
1857		 * and it's affiliation to the previous instruction range
1858		 * packet; so set previous range packet flags to tell perf
1859		 * it is an exception taken branch.
1860		 */
1861		if (prev_packet->sample_type == CS_ETM_RANGE)
1862			prev_packet->flags = packet->flags;
1863		break;
1864	case CS_ETM_EXCEPTION_RET:
1865		/*
1866		 * When the exception return packet is inserted, since
1867		 * exception return packet is not used standalone for
1868		 * generating samples and it's affiliation to the previous
1869		 * instruction range packet; so set previous range packet
1870		 * flags to tell perf it is an exception return branch.
1871		 *
1872		 * The exception return can be for either system call or
1873		 * other exception types; unfortunately the packet doesn't
1874		 * contain exception type related info so we cannot decide
1875		 * the exception type purely based on exception return packet.
1876		 * If we record the exception number from exception packet and
1877		 * reuse it for excpetion return packet, this is not reliable
1878		 * due the trace can be discontinuity or the interrupt can
1879		 * be nested, thus the recorded exception number cannot be
1880		 * used for exception return packet for these two cases.
1881		 *
1882		 * For exception return packet, we only need to distinguish the
1883		 * packet is for system call or for other types.  Thus the
1884		 * decision can be deferred when receive the next packet which
1885		 * contains the return address, based on the return address we
1886		 * can read out the previous instruction and check if it's a
1887		 * system call instruction and then calibrate the sample flag
1888		 * as needed.
1889		 */
1890		if (prev_packet->sample_type == CS_ETM_RANGE)
1891			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1892					     PERF_IP_FLAG_RETURN |
1893					     PERF_IP_FLAG_INTERRUPT;
1894		break;
1895	case CS_ETM_EMPTY:
1896	default:
1897		break;
1898	}
1899
1900	return 0;
1901}
1902
1903static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1904{
1905	int ret = 0;
1906	size_t processed = 0;
1907
1908	/*
1909	 * Packets are decoded and added to the decoder's packet queue
1910	 * until the decoder packet processing callback has requested that
1911	 * processing stops or there is nothing left in the buffer.  Normal
1912	 * operations that stop processing are a timestamp packet or a full
1913	 * decoder buffer queue.
1914	 */
1915	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1916						 etmq->offset,
1917						 &etmq->buf[etmq->buf_used],
1918						 etmq->buf_len,
1919						 &processed);
1920	if (ret)
1921		goto out;
1922
1923	etmq->offset += processed;
1924	etmq->buf_used += processed;
1925	etmq->buf_len -= processed;
1926
1927out:
1928	return ret;
1929}
1930
1931static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1932					 struct cs_etm_traceid_queue *tidq)
1933{
1934	int ret;
1935	struct cs_etm_packet_queue *packet_queue;
1936
1937	packet_queue = &tidq->packet_queue;
1938
1939	/* Process each packet in this chunk */
1940	while (1) {
1941		ret = cs_etm_decoder__get_packet(packet_queue,
1942						 tidq->packet);
1943		if (ret <= 0)
1944			/*
1945			 * Stop processing this chunk on
1946			 * end of data or error
1947			 */
1948			break;
1949
1950		/*
1951		 * Since packet addresses are swapped in packet
1952		 * handling within below switch() statements,
1953		 * thus setting sample flags must be called
1954		 * prior to switch() statement to use address
1955		 * information before packets swapping.
1956		 */
1957		ret = cs_etm__set_sample_flags(etmq, tidq);
1958		if (ret < 0)
1959			break;
1960
1961		switch (tidq->packet->sample_type) {
1962		case CS_ETM_RANGE:
1963			/*
1964			 * If the packet contains an instruction
1965			 * range, generate instruction sequence
1966			 * events.
1967			 */
1968			cs_etm__sample(etmq, tidq);
1969			break;
1970		case CS_ETM_EXCEPTION:
1971		case CS_ETM_EXCEPTION_RET:
1972			/*
1973			 * If the exception packet is coming,
1974			 * make sure the previous instruction
1975			 * range packet to be handled properly.
1976			 */
1977			cs_etm__exception(tidq);
1978			break;
1979		case CS_ETM_DISCONTINUITY:
1980			/*
1981			 * Discontinuity in trace, flush
1982			 * previous branch stack
1983			 */
1984			cs_etm__flush(etmq, tidq);
1985			break;
1986		case CS_ETM_EMPTY:
1987			/*
1988			 * Should not receive empty packet,
1989			 * report error.
1990			 */
1991			pr_err("CS ETM Trace: empty packet\n");
1992			return -EINVAL;
1993		default:
1994			break;
1995		}
1996	}
1997
1998	return ret;
1999}
2000
2001static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2002{
2003	int idx;
2004	struct int_node *inode;
2005	struct cs_etm_traceid_queue *tidq;
2006	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2007
2008	intlist__for_each_entry(inode, traceid_queues_list) {
2009		idx = (int)(intptr_t)inode->priv;
2010		tidq = etmq->traceid_queues[idx];
2011
2012		/* Ignore return value */
2013		cs_etm__process_traceid_queue(etmq, tidq);
2014
2015		/*
2016		 * Generate an instruction sample with the remaining
2017		 * branchstack entries.
2018		 */
2019		cs_etm__flush(etmq, tidq);
2020	}
2021}
2022
2023static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2024{
2025	int err = 0;
2026	struct cs_etm_traceid_queue *tidq;
2027
2028	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2029	if (!tidq)
2030		return -EINVAL;
2031
2032	/* Go through each buffer in the queue and decode them one by one */
2033	while (1) {
2034		err = cs_etm__get_data_block(etmq);
2035		if (err <= 0)
2036			return err;
2037
2038		/* Run trace decoder until buffer consumed or end of trace */
2039		do {
2040			err = cs_etm__decode_data_block(etmq);
2041			if (err)
2042				return err;
2043
2044			/*
2045			 * Process each packet in this chunk, nothing to do if
2046			 * an error occurs other than hoping the next one will
2047			 * be better.
2048			 */
2049			err = cs_etm__process_traceid_queue(etmq, tidq);
2050
2051		} while (etmq->buf_len);
2052
2053		if (err == 0)
2054			/* Flush any remaining branch stack entries */
2055			err = cs_etm__end_block(etmq, tidq);
2056	}
2057
2058	return err;
2059}
2060
2061static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2062					   pid_t tid)
2063{
2064	unsigned int i;
2065	struct auxtrace_queues *queues = &etm->queues;
2066
2067	for (i = 0; i < queues->nr_queues; i++) {
2068		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2069		struct cs_etm_queue *etmq = queue->priv;
2070		struct cs_etm_traceid_queue *tidq;
2071
2072		if (!etmq)
2073			continue;
2074
2075		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2076						CS_ETM_PER_THREAD_TRACEID);
2077
2078		if (!tidq)
2079			continue;
2080
2081		if ((tid == -1) || (tidq->tid == tid)) {
2082			cs_etm__set_pid_tid_cpu(etm, tidq);
2083			cs_etm__run_decoder(etmq);
2084		}
2085	}
2086
2087	return 0;
2088}
2089
2090static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2091{
2092	int ret = 0;
2093	unsigned int cs_queue_nr, queue_nr;
2094	u8 trace_chan_id;
2095	u64 timestamp;
2096	struct auxtrace_queue *queue;
2097	struct cs_etm_queue *etmq;
2098	struct cs_etm_traceid_queue *tidq;
2099
2100	while (1) {
2101		if (!etm->heap.heap_cnt)
2102			goto out;
2103
2104		/* Take the entry at the top of the min heap */
2105		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2106		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2107		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2108		queue = &etm->queues.queue_array[queue_nr];
2109		etmq = queue->priv;
2110
2111		/*
2112		 * Remove the top entry from the heap since we are about
2113		 * to process it.
2114		 */
2115		auxtrace_heap__pop(&etm->heap);
2116
2117		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2118		if (!tidq) {
2119			/*
2120			 * No traceID queue has been allocated for this traceID,
2121			 * which means something somewhere went very wrong.  No
2122			 * other choice than simply exit.
2123			 */
2124			ret = -EINVAL;
2125			goto out;
2126		}
2127
2128		/*
2129		 * Packets associated with this timestamp are already in
2130		 * the etmq's traceID queue, so process them.
2131		 */
2132		ret = cs_etm__process_traceid_queue(etmq, tidq);
2133		if (ret < 0)
2134			goto out;
2135
2136		/*
2137		 * Packets for this timestamp have been processed, time to
2138		 * move on to the next timestamp, fetching a new auxtrace_buffer
2139		 * if need be.
2140		 */
2141refetch:
2142		ret = cs_etm__get_data_block(etmq);
2143		if (ret < 0)
2144			goto out;
2145
2146		/*
2147		 * No more auxtrace_buffers to process in this etmq, simply
2148		 * move on to another entry in the auxtrace_heap.
2149		 */
2150		if (!ret)
2151			continue;
2152
2153		ret = cs_etm__decode_data_block(etmq);
2154		if (ret)
2155			goto out;
2156
2157		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2158
2159		if (!timestamp) {
2160			/*
2161			 * Function cs_etm__decode_data_block() returns when
2162			 * there is no more traces to decode in the current
2163			 * auxtrace_buffer OR when a timestamp has been
2164			 * encountered on any of the traceID queues.  Since we
2165			 * did not get a timestamp, there is no more traces to
2166			 * process in this auxtrace_buffer.  As such empty and
2167			 * flush all traceID queues.
2168			 */
2169			cs_etm__clear_all_traceid_queues(etmq);
2170
2171			/* Fetch another auxtrace_buffer for this etmq */
2172			goto refetch;
2173		}
2174
2175		/*
2176		 * Add to the min heap the timestamp for packets that have
2177		 * just been decoded.  They will be processed and synthesized
2178		 * during the next call to cs_etm__process_traceid_queue() for
2179		 * this queue/traceID.
2180		 */
2181		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2182		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2183	}
2184
2185out:
2186	return ret;
2187}
2188
2189static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2190					union perf_event *event)
2191{
2192	struct thread *th;
2193
2194	if (etm->timeless_decoding)
2195		return 0;
2196
2197	/*
2198	 * Add the tid/pid to the log so that we can get a match when
2199	 * we get a contextID from the decoder.
2200	 */
2201	th = machine__findnew_thread(etm->machine,
2202				     event->itrace_start.pid,
2203				     event->itrace_start.tid);
2204	if (!th)
2205		return -ENOMEM;
2206
2207	thread__put(th);
2208
2209	return 0;
2210}
2211
2212static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2213					   union perf_event *event)
2214{
2215	struct thread *th;
2216	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2217
2218	/*
2219	 * Context switch in per-thread mode are irrelevant since perf
2220	 * will start/stop tracing as the process is scheduled.
2221	 */
2222	if (etm->timeless_decoding)
2223		return 0;
2224
2225	/*
2226	 * SWITCH_IN events carry the next process to be switched out while
2227	 * SWITCH_OUT events carry the process to be switched in.  As such
2228	 * we don't care about IN events.
2229	 */
2230	if (!out)
2231		return 0;
2232
2233	/*
2234	 * Add the tid/pid to the log so that we can get a match when
2235	 * we get a contextID from the decoder.
2236	 */
2237	th = machine__findnew_thread(etm->machine,
2238				     event->context_switch.next_prev_pid,
2239				     event->context_switch.next_prev_tid);
2240	if (!th)
2241		return -ENOMEM;
2242
2243	thread__put(th);
2244
2245	return 0;
2246}
2247
2248static int cs_etm__process_event(struct perf_session *session,
2249				 union perf_event *event,
2250				 struct perf_sample *sample,
2251				 struct perf_tool *tool)
2252{
2253	int err = 0;
2254	u64 timestamp;
2255	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2256						   struct cs_etm_auxtrace,
2257						   auxtrace);
2258
2259	if (dump_trace)
2260		return 0;
2261
2262	if (!tool->ordered_events) {
2263		pr_err("CoreSight ETM Trace requires ordered events\n");
2264		return -EINVAL;
2265	}
2266
2267	if (sample->time && (sample->time != (u64) -1))
2268		timestamp = sample->time;
2269	else
2270		timestamp = 0;
2271
2272	if (timestamp || etm->timeless_decoding) {
2273		err = cs_etm__update_queues(etm);
2274		if (err)
2275			return err;
2276	}
2277
2278	if (etm->timeless_decoding &&
2279	    event->header.type == PERF_RECORD_EXIT)
2280		return cs_etm__process_timeless_queues(etm,
2281						       event->fork.tid);
2282
2283	if (event->header.type == PERF_RECORD_ITRACE_START)
2284		return cs_etm__process_itrace_start(etm, event);
2285	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2286		return cs_etm__process_switch_cpu_wide(etm, event);
2287
2288	if (!etm->timeless_decoding &&
2289	    event->header.type == PERF_RECORD_AUX)
2290		return cs_etm__process_queues(etm);
2291
2292	return 0;
2293}
2294
2295static int cs_etm__process_auxtrace_event(struct perf_session *session,
2296					  union perf_event *event,
2297					  struct perf_tool *tool __maybe_unused)
2298{
2299	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2300						   struct cs_etm_auxtrace,
2301						   auxtrace);
2302	if (!etm->data_queued) {
2303		struct auxtrace_buffer *buffer;
2304		off_t  data_offset;
2305		int fd = perf_data__fd(session->data);
2306		bool is_pipe = perf_data__is_pipe(session->data);
2307		int err;
2308
2309		if (is_pipe)
2310			data_offset = 0;
2311		else {
2312			data_offset = lseek(fd, 0, SEEK_CUR);
2313			if (data_offset == -1)
2314				return -errno;
2315		}
2316
2317		err = auxtrace_queues__add_event(&etm->queues, session,
2318						 event, data_offset, &buffer);
2319		if (err)
2320			return err;
2321
2322		if (dump_trace)
2323			if (auxtrace_buffer__get_data(buffer, fd)) {
2324				cs_etm__dump_event(etm, buffer);
2325				auxtrace_buffer__put_data(buffer);
2326			}
2327	}
2328
2329	return 0;
2330}
2331
2332static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2333{
2334	struct evsel *evsel;
2335	struct evlist *evlist = etm->session->evlist;
2336	bool timeless_decoding = true;
2337
2338	/*
2339	 * Circle through the list of event and complain if we find one
2340	 * with the time bit set.
2341	 */
2342	evlist__for_each_entry(evlist, evsel) {
2343		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2344			timeless_decoding = false;
2345	}
2346
2347	return timeless_decoding;
2348}
2349
2350static const char * const cs_etm_global_header_fmts[] = {
2351	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2352	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2353	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2354};
2355
2356static const char * const cs_etm_priv_fmts[] = {
2357	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2358	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2359	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2360	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2361	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2362	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2363};
2364
2365static const char * const cs_etmv4_priv_fmts[] = {
2366	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2367	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2368	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2369	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2370	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2371	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2372	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2373	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2374	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2375};
2376
2377static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2378{
2379	int i, j, cpu = 0;
2380
2381	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2382		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2383
2384	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2385		if (val[i] == __perf_cs_etmv3_magic)
2386			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2387				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2388		else if (val[i] == __perf_cs_etmv4_magic)
2389			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2390				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2391		else
2392			/* failure.. return */
2393			return;
2394	}
2395}
2396
2397int cs_etm__process_auxtrace_info(union perf_event *event,
2398				  struct perf_session *session)
2399{
2400	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2401	struct cs_etm_auxtrace *etm = NULL;
2402	struct int_node *inode;
2403	unsigned int pmu_type;
2404	int event_header_size = sizeof(struct perf_event_header);
2405	int info_header_size;
2406	int total_size = auxtrace_info->header.size;
2407	int priv_size = 0;
2408	int num_cpu;
2409	int err = 0, idx = -1;
2410	int i, j, k;
2411	u64 *ptr, *hdr = NULL;
2412	u64 **metadata = NULL;
2413
2414	/*
2415	 * sizeof(auxtrace_info_event::type) +
2416	 * sizeof(auxtrace_info_event::reserved) == 8
2417	 */
2418	info_header_size = 8;
2419
2420	if (total_size < (event_header_size + info_header_size))
2421		return -EINVAL;
2422
2423	priv_size = total_size - event_header_size - info_header_size;
2424
2425	/* First the global part */
2426	ptr = (u64 *) auxtrace_info->priv;
2427
2428	/* Look for version '0' of the header */
2429	if (ptr[0] != 0)
2430		return -EINVAL;
2431
2432	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2433	if (!hdr)
2434		return -ENOMEM;
2435
2436	/* Extract header information - see cs-etm.h for format */
2437	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2438		hdr[i] = ptr[i];
2439	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2440	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2441				    0xffffffff);
2442
2443	/*
2444	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2445	 * has to be made for each packet that gets decoded, optimizing access
2446	 * in anything other than a sequential array is worth doing.
2447	 */
2448	traceid_list = intlist__new(NULL);
2449	if (!traceid_list) {
2450		err = -ENOMEM;
2451		goto err_free_hdr;
2452	}
2453
2454	metadata = zalloc(sizeof(*metadata) * num_cpu);
2455	if (!metadata) {
2456		err = -ENOMEM;
2457		goto err_free_traceid_list;
2458	}
2459
2460	/*
2461	 * The metadata is stored in the auxtrace_info section and encodes
2462	 * the configuration of the ARM embedded trace macrocell which is
2463	 * required by the trace decoder to properly decode the trace due
2464	 * to its highly compressed nature.
2465	 */
2466	for (j = 0; j < num_cpu; j++) {
2467		if (ptr[i] == __perf_cs_etmv3_magic) {
2468			metadata[j] = zalloc(sizeof(*metadata[j]) *
2469					     CS_ETM_PRIV_MAX);
2470			if (!metadata[j]) {
2471				err = -ENOMEM;
2472				goto err_free_metadata;
2473			}
2474			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2475				metadata[j][k] = ptr[i + k];
2476
2477			/* The traceID is our handle */
2478			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2479			i += CS_ETM_PRIV_MAX;
2480		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2481			metadata[j] = zalloc(sizeof(*metadata[j]) *
2482					     CS_ETMV4_PRIV_MAX);
2483			if (!metadata[j]) {
2484				err = -ENOMEM;
2485				goto err_free_metadata;
2486			}
2487			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2488				metadata[j][k] = ptr[i + k];
2489
2490			/* The traceID is our handle */
2491			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2492			i += CS_ETMV4_PRIV_MAX;
2493		}
2494
2495		/* Get an RB node for this CPU */
2496		inode = intlist__findnew(traceid_list, idx);
2497
2498		/* Something went wrong, no need to continue */
2499		if (!inode) {
2500			err = -ENOMEM;
2501			goto err_free_metadata;
2502		}
2503
2504		/*
2505		 * The node for that CPU should not be taken.
2506		 * Back out if that's the case.
2507		 */
2508		if (inode->priv) {
2509			err = -EINVAL;
2510			goto err_free_metadata;
2511		}
2512		/* All good, associate the traceID with the metadata pointer */
2513		inode->priv = metadata[j];
2514	}
2515
2516	/*
2517	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2518	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2519	 * global metadata, and each cpu's metadata respectively.
2520	 * The following tests if the correct number of double words was
2521	 * present in the auxtrace info section.
2522	 */
2523	if (i * 8 != priv_size) {
2524		err = -EINVAL;
2525		goto err_free_metadata;
2526	}
2527
2528	etm = zalloc(sizeof(*etm));
2529
2530	if (!etm) {
2531		err = -ENOMEM;
2532		goto err_free_metadata;
2533	}
2534
2535	err = auxtrace_queues__init(&etm->queues);
2536	if (err)
2537		goto err_free_etm;
2538
2539	etm->session = session;
2540	etm->machine = &session->machines.host;
2541
2542	etm->num_cpu = num_cpu;
2543	etm->pmu_type = pmu_type;
2544	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2545	etm->metadata = metadata;
2546	etm->auxtrace_type = auxtrace_info->type;
2547	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2548
2549	etm->auxtrace.process_event = cs_etm__process_event;
2550	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2551	etm->auxtrace.flush_events = cs_etm__flush_events;
2552	etm->auxtrace.free_events = cs_etm__free_events;
2553	etm->auxtrace.free = cs_etm__free;
2554	session->auxtrace = &etm->auxtrace;
2555
2556	etm->unknown_thread = thread__new(999999999, 999999999);
2557	if (!etm->unknown_thread) {
2558		err = -ENOMEM;
2559		goto err_free_queues;
2560	}
2561
2562	/*
2563	 * Initialize list node so that at thread__zput() we can avoid
2564	 * segmentation fault at list_del_init().
2565	 */
2566	INIT_LIST_HEAD(&etm->unknown_thread->node);
2567
2568	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2569	if (err)
2570		goto err_delete_thread;
2571
2572	if (thread__init_map_groups(etm->unknown_thread, etm->machine)) {
2573		err = -ENOMEM;
2574		goto err_delete_thread;
2575	}
2576
2577	if (dump_trace) {
2578		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2579		return 0;
2580	}
2581
2582	if (session->itrace_synth_opts->set) {
2583		etm->synth_opts = *session->itrace_synth_opts;
2584	} else {
2585		itrace_synth_opts__set_default(&etm->synth_opts,
2586				session->itrace_synth_opts->default_no_sample);
2587		etm->synth_opts.callchain = false;
2588	}
2589
2590	err = cs_etm__synth_events(etm, session);
2591	if (err)
2592		goto err_delete_thread;
2593
2594	err = auxtrace_queues__process_index(&etm->queues, session);
2595	if (err)
2596		goto err_delete_thread;
2597
2598	etm->data_queued = etm->queues.populated;
2599
2600	return 0;
2601
2602err_delete_thread:
2603	thread__zput(etm->unknown_thread);
2604err_free_queues:
2605	auxtrace_queues__free(&etm->queues);
2606	session->auxtrace = NULL;
2607err_free_etm:
2608	zfree(&etm);
2609err_free_metadata:
2610	/* No need to check @metadata[j], free(NULL) is supported */
2611	for (j = 0; j < num_cpu; j++)
2612		zfree(&metadata[j]);
2613	zfree(&metadata);
2614err_free_traceid_list:
2615	intlist__delete(traceid_list);
2616err_free_hdr:
2617	zfree(&hdr);
2618
2619	return err;
2620}