Loading...
1/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
49#include <linux/prefetch.h>
50#include <linux/vmalloc.h>
51#include <net/netlink.h>
52#include <net/pkt_sched.h>
53#include <net/sock.h>
54#include <net/tcp_states.h>
55#include <net/tcp.h>
56
57/*
58 * Per flow structure, dynamically allocated
59 */
60struct fq_flow {
61 struct sk_buff *head; /* list of skbs for this flow : first skb */
62 union {
63 struct sk_buff *tail; /* last skb in the list */
64 unsigned long age; /* jiffies when flow was emptied, for gc */
65 };
66 struct rb_node fq_node; /* anchor in fq_root[] trees */
67 struct sock *sk;
68 int qlen; /* number of packets in flow queue */
69 int credit;
70 u32 socket_hash; /* sk_hash */
71 struct fq_flow *next; /* next pointer in RR lists, or &detached */
72
73 struct rb_node rate_node; /* anchor in q->delayed tree */
74 u64 time_next_packet;
75};
76
77struct fq_flow_head {
78 struct fq_flow *first;
79 struct fq_flow *last;
80};
81
82struct fq_sched_data {
83 struct fq_flow_head new_flows;
84
85 struct fq_flow_head old_flows;
86
87 struct rb_root delayed; /* for rate limited flows */
88 u64 time_next_delayed_flow;
89
90 struct fq_flow internal; /* for non classified or high prio packets */
91 u32 quantum;
92 u32 initial_quantum;
93 u32 flow_refill_delay;
94 u32 flow_max_rate; /* optional max rate per flow */
95 u32 flow_plimit; /* max packets per flow */
96 u32 orphan_mask; /* mask for orphaned skb */
97 struct rb_root *fq_root;
98 u8 rate_enable;
99 u8 fq_trees_log;
100
101 u32 flows;
102 u32 inactive_flows;
103 u32 throttled_flows;
104
105 u64 stat_gc_flows;
106 u64 stat_internal_packets;
107 u64 stat_tcp_retrans;
108 u64 stat_throttled;
109 u64 stat_flows_plimit;
110 u64 stat_pkts_too_long;
111 u64 stat_allocation_errors;
112 struct qdisc_watchdog watchdog;
113};
114
115/* special value to mark a detached flow (not on old/new list) */
116static struct fq_flow detached, throttled;
117
118static void fq_flow_set_detached(struct fq_flow *f)
119{
120 f->next = &detached;
121 f->age = jiffies;
122}
123
124static bool fq_flow_is_detached(const struct fq_flow *f)
125{
126 return f->next == &detached;
127}
128
129static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130{
131 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132
133 while (*p) {
134 struct fq_flow *aux;
135
136 parent = *p;
137 aux = container_of(parent, struct fq_flow, rate_node);
138 if (f->time_next_packet >= aux->time_next_packet)
139 p = &parent->rb_right;
140 else
141 p = &parent->rb_left;
142 }
143 rb_link_node(&f->rate_node, parent, p);
144 rb_insert_color(&f->rate_node, &q->delayed);
145 q->throttled_flows++;
146 q->stat_throttled++;
147
148 f->next = &throttled;
149 if (q->time_next_delayed_flow > f->time_next_packet)
150 q->time_next_delayed_flow = f->time_next_packet;
151}
152
153
154static struct kmem_cache *fq_flow_cachep __read_mostly;
155
156static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157{
158 if (head->first)
159 head->last->next = flow;
160 else
161 head->first = flow;
162 head->last = flow;
163 flow->next = NULL;
164}
165
166/* limit number of collected flows per round */
167#define FQ_GC_MAX 8
168#define FQ_GC_AGE (3*HZ)
169
170static bool fq_gc_candidate(const struct fq_flow *f)
171{
172 return fq_flow_is_detached(f) &&
173 time_after(jiffies, f->age + FQ_GC_AGE);
174}
175
176static void fq_gc(struct fq_sched_data *q,
177 struct rb_root *root,
178 struct sock *sk)
179{
180 struct fq_flow *f, *tofree[FQ_GC_MAX];
181 struct rb_node **p, *parent;
182 int fcnt = 0;
183
184 p = &root->rb_node;
185 parent = NULL;
186 while (*p) {
187 parent = *p;
188
189 f = container_of(parent, struct fq_flow, fq_node);
190 if (f->sk == sk)
191 break;
192
193 if (fq_gc_candidate(f)) {
194 tofree[fcnt++] = f;
195 if (fcnt == FQ_GC_MAX)
196 break;
197 }
198
199 if (f->sk > sk)
200 p = &parent->rb_right;
201 else
202 p = &parent->rb_left;
203 }
204
205 q->flows -= fcnt;
206 q->inactive_flows -= fcnt;
207 q->stat_gc_flows += fcnt;
208 while (fcnt) {
209 struct fq_flow *f = tofree[--fcnt];
210
211 rb_erase(&f->fq_node, root);
212 kmem_cache_free(fq_flow_cachep, f);
213 }
214}
215
216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217{
218 struct rb_node **p, *parent;
219 struct sock *sk = skb->sk;
220 struct rb_root *root;
221 struct fq_flow *f;
222
223 /* warning: no starvation prevention... */
224 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225 return &q->internal;
226
227 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
228 * or a listener (SYNCOOKIE mode)
229 * 1) request sockets are not full blown,
230 * they do not contain sk_pacing_rate
231 * 2) They are not part of a 'flow' yet
232 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
233 * especially if the listener set SO_MAX_PACING_RATE
234 * 4) We pretend they are orphaned
235 */
236 if (!sk || sk_listener(sk)) {
237 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
238
239 /* By forcing low order bit to 1, we make sure to not
240 * collide with a local flow (socket pointers are word aligned)
241 */
242 sk = (struct sock *)((hash << 1) | 1UL);
243 skb_orphan(skb);
244 }
245
246 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
247
248 if (q->flows >= (2U << q->fq_trees_log) &&
249 q->inactive_flows > q->flows/2)
250 fq_gc(q, root, sk);
251
252 p = &root->rb_node;
253 parent = NULL;
254 while (*p) {
255 parent = *p;
256
257 f = container_of(parent, struct fq_flow, fq_node);
258 if (f->sk == sk) {
259 /* socket might have been reallocated, so check
260 * if its sk_hash is the same.
261 * It not, we need to refill credit with
262 * initial quantum
263 */
264 if (unlikely(skb->sk &&
265 f->socket_hash != sk->sk_hash)) {
266 f->credit = q->initial_quantum;
267 f->socket_hash = sk->sk_hash;
268 f->time_next_packet = 0ULL;
269 }
270 return f;
271 }
272 if (f->sk > sk)
273 p = &parent->rb_right;
274 else
275 p = &parent->rb_left;
276 }
277
278 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
279 if (unlikely(!f)) {
280 q->stat_allocation_errors++;
281 return &q->internal;
282 }
283 fq_flow_set_detached(f);
284 f->sk = sk;
285 if (skb->sk)
286 f->socket_hash = sk->sk_hash;
287 f->credit = q->initial_quantum;
288
289 rb_link_node(&f->fq_node, parent, p);
290 rb_insert_color(&f->fq_node, root);
291
292 q->flows++;
293 q->inactive_flows++;
294 return f;
295}
296
297
298/* remove one skb from head of flow queue */
299static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
300{
301 struct sk_buff *skb = flow->head;
302
303 if (skb) {
304 flow->head = skb->next;
305 skb->next = NULL;
306 flow->qlen--;
307 qdisc_qstats_backlog_dec(sch, skb);
308 sch->q.qlen--;
309 }
310 return skb;
311}
312
313/* We might add in the future detection of retransmits
314 * For the time being, just return false
315 */
316static bool skb_is_retransmit(struct sk_buff *skb)
317{
318 return false;
319}
320
321/* add skb to flow queue
322 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
323 * We special case tcp retransmits to be transmitted before other packets.
324 * We rely on fact that TCP retransmits are unlikely, so we do not waste
325 * a separate queue or a pointer.
326 * head-> [retrans pkt 1]
327 * [retrans pkt 2]
328 * [ normal pkt 1]
329 * [ normal pkt 2]
330 * [ normal pkt 3]
331 * tail-> [ normal pkt 4]
332 */
333static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
334{
335 struct sk_buff *prev, *head = flow->head;
336
337 skb->next = NULL;
338 if (!head) {
339 flow->head = skb;
340 flow->tail = skb;
341 return;
342 }
343 if (likely(!skb_is_retransmit(skb))) {
344 flow->tail->next = skb;
345 flow->tail = skb;
346 return;
347 }
348
349 /* This skb is a tcp retransmit,
350 * find the last retrans packet in the queue
351 */
352 prev = NULL;
353 while (skb_is_retransmit(head)) {
354 prev = head;
355 head = head->next;
356 if (!head)
357 break;
358 }
359 if (!prev) { /* no rtx packet in queue, become the new head */
360 skb->next = flow->head;
361 flow->head = skb;
362 } else {
363 if (prev == flow->tail)
364 flow->tail = skb;
365 else
366 skb->next = prev->next;
367 prev->next = skb;
368 }
369}
370
371static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
372{
373 struct fq_sched_data *q = qdisc_priv(sch);
374 struct fq_flow *f;
375
376 if (unlikely(sch->q.qlen >= sch->limit))
377 return qdisc_drop(skb, sch);
378
379 f = fq_classify(skb, q);
380 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
381 q->stat_flows_plimit++;
382 return qdisc_drop(skb, sch);
383 }
384
385 f->qlen++;
386 if (skb_is_retransmit(skb))
387 q->stat_tcp_retrans++;
388 qdisc_qstats_backlog_inc(sch, skb);
389 if (fq_flow_is_detached(f)) {
390 fq_flow_add_tail(&q->new_flows, f);
391 if (time_after(jiffies, f->age + q->flow_refill_delay))
392 f->credit = max_t(u32, f->credit, q->quantum);
393 q->inactive_flows--;
394 }
395
396 /* Note: this overwrites f->age */
397 flow_queue_add(f, skb);
398
399 if (unlikely(f == &q->internal)) {
400 q->stat_internal_packets++;
401 }
402 sch->q.qlen++;
403
404 return NET_XMIT_SUCCESS;
405}
406
407static void fq_check_throttled(struct fq_sched_data *q, u64 now)
408{
409 struct rb_node *p;
410
411 if (q->time_next_delayed_flow > now)
412 return;
413
414 q->time_next_delayed_flow = ~0ULL;
415 while ((p = rb_first(&q->delayed)) != NULL) {
416 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
417
418 if (f->time_next_packet > now) {
419 q->time_next_delayed_flow = f->time_next_packet;
420 break;
421 }
422 rb_erase(p, &q->delayed);
423 q->throttled_flows--;
424 fq_flow_add_tail(&q->old_flows, f);
425 }
426}
427
428static struct sk_buff *fq_dequeue(struct Qdisc *sch)
429{
430 struct fq_sched_data *q = qdisc_priv(sch);
431 u64 now = ktime_get_ns();
432 struct fq_flow_head *head;
433 struct sk_buff *skb;
434 struct fq_flow *f;
435 u32 rate;
436
437 skb = fq_dequeue_head(sch, &q->internal);
438 if (skb)
439 goto out;
440 fq_check_throttled(q, now);
441begin:
442 head = &q->new_flows;
443 if (!head->first) {
444 head = &q->old_flows;
445 if (!head->first) {
446 if (q->time_next_delayed_flow != ~0ULL)
447 qdisc_watchdog_schedule_ns(&q->watchdog,
448 q->time_next_delayed_flow,
449 false);
450 return NULL;
451 }
452 }
453 f = head->first;
454
455 if (f->credit <= 0) {
456 f->credit += q->quantum;
457 head->first = f->next;
458 fq_flow_add_tail(&q->old_flows, f);
459 goto begin;
460 }
461
462 skb = f->head;
463 if (unlikely(skb && now < f->time_next_packet &&
464 !skb_is_tcp_pure_ack(skb))) {
465 head->first = f->next;
466 fq_flow_set_throttled(q, f);
467 goto begin;
468 }
469
470 skb = fq_dequeue_head(sch, f);
471 if (!skb) {
472 head->first = f->next;
473 /* force a pass through old_flows to prevent starvation */
474 if ((head == &q->new_flows) && q->old_flows.first) {
475 fq_flow_add_tail(&q->old_flows, f);
476 } else {
477 fq_flow_set_detached(f);
478 q->inactive_flows++;
479 }
480 goto begin;
481 }
482 prefetch(&skb->end);
483 f->credit -= qdisc_pkt_len(skb);
484
485 if (f->credit > 0 || !q->rate_enable)
486 goto out;
487
488 /* Do not pace locally generated ack packets */
489 if (skb_is_tcp_pure_ack(skb))
490 goto out;
491
492 rate = q->flow_max_rate;
493 if (skb->sk)
494 rate = min(skb->sk->sk_pacing_rate, rate);
495
496 if (rate != ~0U) {
497 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
498 u64 len = (u64)plen * NSEC_PER_SEC;
499
500 if (likely(rate))
501 do_div(len, rate);
502 /* Since socket rate can change later,
503 * clamp the delay to 1 second.
504 * Really, providers of too big packets should be fixed !
505 */
506 if (unlikely(len > NSEC_PER_SEC)) {
507 len = NSEC_PER_SEC;
508 q->stat_pkts_too_long++;
509 }
510
511 f->time_next_packet = now + len;
512 }
513out:
514 qdisc_bstats_update(sch, skb);
515 return skb;
516}
517
518static void fq_reset(struct Qdisc *sch)
519{
520 struct fq_sched_data *q = qdisc_priv(sch);
521 struct rb_root *root;
522 struct sk_buff *skb;
523 struct rb_node *p;
524 struct fq_flow *f;
525 unsigned int idx;
526
527 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
528 kfree_skb(skb);
529
530 if (!q->fq_root)
531 return;
532
533 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
534 root = &q->fq_root[idx];
535 while ((p = rb_first(root)) != NULL) {
536 f = container_of(p, struct fq_flow, fq_node);
537 rb_erase(p, root);
538
539 while ((skb = fq_dequeue_head(sch, f)) != NULL)
540 kfree_skb(skb);
541
542 kmem_cache_free(fq_flow_cachep, f);
543 }
544 }
545 q->new_flows.first = NULL;
546 q->old_flows.first = NULL;
547 q->delayed = RB_ROOT;
548 q->flows = 0;
549 q->inactive_flows = 0;
550 q->throttled_flows = 0;
551}
552
553static void fq_rehash(struct fq_sched_data *q,
554 struct rb_root *old_array, u32 old_log,
555 struct rb_root *new_array, u32 new_log)
556{
557 struct rb_node *op, **np, *parent;
558 struct rb_root *oroot, *nroot;
559 struct fq_flow *of, *nf;
560 int fcnt = 0;
561 u32 idx;
562
563 for (idx = 0; idx < (1U << old_log); idx++) {
564 oroot = &old_array[idx];
565 while ((op = rb_first(oroot)) != NULL) {
566 rb_erase(op, oroot);
567 of = container_of(op, struct fq_flow, fq_node);
568 if (fq_gc_candidate(of)) {
569 fcnt++;
570 kmem_cache_free(fq_flow_cachep, of);
571 continue;
572 }
573 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
574
575 np = &nroot->rb_node;
576 parent = NULL;
577 while (*np) {
578 parent = *np;
579
580 nf = container_of(parent, struct fq_flow, fq_node);
581 BUG_ON(nf->sk == of->sk);
582
583 if (nf->sk > of->sk)
584 np = &parent->rb_right;
585 else
586 np = &parent->rb_left;
587 }
588
589 rb_link_node(&of->fq_node, parent, np);
590 rb_insert_color(&of->fq_node, nroot);
591 }
592 }
593 q->flows -= fcnt;
594 q->inactive_flows -= fcnt;
595 q->stat_gc_flows += fcnt;
596}
597
598static void *fq_alloc_node(size_t sz, int node)
599{
600 void *ptr;
601
602 ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
603 if (!ptr)
604 ptr = vmalloc_node(sz, node);
605 return ptr;
606}
607
608static void fq_free(void *addr)
609{
610 kvfree(addr);
611}
612
613static int fq_resize(struct Qdisc *sch, u32 log)
614{
615 struct fq_sched_data *q = qdisc_priv(sch);
616 struct rb_root *array;
617 void *old_fq_root;
618 u32 idx;
619
620 if (q->fq_root && log == q->fq_trees_log)
621 return 0;
622
623 /* If XPS was setup, we can allocate memory on right NUMA node */
624 array = fq_alloc_node(sizeof(struct rb_root) << log,
625 netdev_queue_numa_node_read(sch->dev_queue));
626 if (!array)
627 return -ENOMEM;
628
629 for (idx = 0; idx < (1U << log); idx++)
630 array[idx] = RB_ROOT;
631
632 sch_tree_lock(sch);
633
634 old_fq_root = q->fq_root;
635 if (old_fq_root)
636 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
637
638 q->fq_root = array;
639 q->fq_trees_log = log;
640
641 sch_tree_unlock(sch);
642
643 fq_free(old_fq_root);
644
645 return 0;
646}
647
648static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
649 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
650 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
651 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
652 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
653 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
654 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
655 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
656 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
657 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
658};
659
660static int fq_change(struct Qdisc *sch, struct nlattr *opt)
661{
662 struct fq_sched_data *q = qdisc_priv(sch);
663 struct nlattr *tb[TCA_FQ_MAX + 1];
664 int err, drop_count = 0;
665 unsigned drop_len = 0;
666 u32 fq_log;
667
668 if (!opt)
669 return -EINVAL;
670
671 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
672 if (err < 0)
673 return err;
674
675 sch_tree_lock(sch);
676
677 fq_log = q->fq_trees_log;
678
679 if (tb[TCA_FQ_BUCKETS_LOG]) {
680 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
681
682 if (nval >= 1 && nval <= ilog2(256*1024))
683 fq_log = nval;
684 else
685 err = -EINVAL;
686 }
687 if (tb[TCA_FQ_PLIMIT])
688 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
689
690 if (tb[TCA_FQ_FLOW_PLIMIT])
691 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
692
693 if (tb[TCA_FQ_QUANTUM]) {
694 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
695
696 if (quantum > 0)
697 q->quantum = quantum;
698 else
699 err = -EINVAL;
700 }
701
702 if (tb[TCA_FQ_INITIAL_QUANTUM])
703 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
704
705 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
706 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
707 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
708
709 if (tb[TCA_FQ_FLOW_MAX_RATE])
710 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
711
712 if (tb[TCA_FQ_RATE_ENABLE]) {
713 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
714
715 if (enable <= 1)
716 q->rate_enable = enable;
717 else
718 err = -EINVAL;
719 }
720
721 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
722 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
723
724 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
725 }
726
727 if (tb[TCA_FQ_ORPHAN_MASK])
728 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
729
730 if (!err) {
731 sch_tree_unlock(sch);
732 err = fq_resize(sch, fq_log);
733 sch_tree_lock(sch);
734 }
735 while (sch->q.qlen > sch->limit) {
736 struct sk_buff *skb = fq_dequeue(sch);
737
738 if (!skb)
739 break;
740 drop_len += qdisc_pkt_len(skb);
741 kfree_skb(skb);
742 drop_count++;
743 }
744 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
745
746 sch_tree_unlock(sch);
747 return err;
748}
749
750static void fq_destroy(struct Qdisc *sch)
751{
752 struct fq_sched_data *q = qdisc_priv(sch);
753
754 fq_reset(sch);
755 fq_free(q->fq_root);
756 qdisc_watchdog_cancel(&q->watchdog);
757}
758
759static int fq_init(struct Qdisc *sch, struct nlattr *opt)
760{
761 struct fq_sched_data *q = qdisc_priv(sch);
762 int err;
763
764 sch->limit = 10000;
765 q->flow_plimit = 100;
766 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
767 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
768 q->flow_refill_delay = msecs_to_jiffies(40);
769 q->flow_max_rate = ~0U;
770 q->rate_enable = 1;
771 q->new_flows.first = NULL;
772 q->old_flows.first = NULL;
773 q->delayed = RB_ROOT;
774 q->fq_root = NULL;
775 q->fq_trees_log = ilog2(1024);
776 q->orphan_mask = 1024 - 1;
777 qdisc_watchdog_init(&q->watchdog, sch);
778
779 if (opt)
780 err = fq_change(sch, opt);
781 else
782 err = fq_resize(sch, q->fq_trees_log);
783
784 return err;
785}
786
787static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
788{
789 struct fq_sched_data *q = qdisc_priv(sch);
790 struct nlattr *opts;
791
792 opts = nla_nest_start(skb, TCA_OPTIONS);
793 if (opts == NULL)
794 goto nla_put_failure;
795
796 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
797
798 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
799 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
800 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
801 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
802 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
803 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
804 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
805 jiffies_to_usecs(q->flow_refill_delay)) ||
806 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
807 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
808 goto nla_put_failure;
809
810 return nla_nest_end(skb, opts);
811
812nla_put_failure:
813 return -1;
814}
815
816static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
817{
818 struct fq_sched_data *q = qdisc_priv(sch);
819 u64 now = ktime_get_ns();
820 struct tc_fq_qd_stats st = {
821 .gc_flows = q->stat_gc_flows,
822 .highprio_packets = q->stat_internal_packets,
823 .tcp_retrans = q->stat_tcp_retrans,
824 .throttled = q->stat_throttled,
825 .flows_plimit = q->stat_flows_plimit,
826 .pkts_too_long = q->stat_pkts_too_long,
827 .allocation_errors = q->stat_allocation_errors,
828 .flows = q->flows,
829 .inactive_flows = q->inactive_flows,
830 .throttled_flows = q->throttled_flows,
831 .time_next_delayed_flow = q->time_next_delayed_flow - now,
832 };
833
834 return gnet_stats_copy_app(d, &st, sizeof(st));
835}
836
837static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
838 .id = "fq",
839 .priv_size = sizeof(struct fq_sched_data),
840
841 .enqueue = fq_enqueue,
842 .dequeue = fq_dequeue,
843 .peek = qdisc_peek_dequeued,
844 .init = fq_init,
845 .reset = fq_reset,
846 .destroy = fq_destroy,
847 .change = fq_change,
848 .dump = fq_dump,
849 .dump_stats = fq_dump_stats,
850 .owner = THIS_MODULE,
851};
852
853static int __init fq_module_init(void)
854{
855 int ret;
856
857 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
858 sizeof(struct fq_flow),
859 0, 0, NULL);
860 if (!fq_flow_cachep)
861 return -ENOMEM;
862
863 ret = register_qdisc(&fq_qdisc_ops);
864 if (ret)
865 kmem_cache_destroy(fq_flow_cachep);
866 return ret;
867}
868
869static void __exit fq_module_exit(void)
870{
871 unregister_qdisc(&fq_qdisc_ops);
872 kmem_cache_destroy(fq_flow_cachep);
873}
874
875module_init(fq_module_init)
876module_exit(fq_module_exit)
877MODULE_AUTHOR("Eric Dumazet");
878MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 *
5 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6 *
7 * Meant to be mostly used for locally generated traffic :
8 * Fast classification depends on skb->sk being set before reaching us.
9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10 * All packets belonging to a socket are considered as a 'flow'.
11 *
12 * Flows are dynamically allocated and stored in a hash table of RB trees
13 * They are also part of one Round Robin 'queues' (new or old flows)
14 *
15 * Burst avoidance (aka pacing) capability :
16 *
17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18 * bunch of packets, and this packet scheduler adds delay between
19 * packets to respect rate limitation.
20 *
21 * enqueue() :
22 * - lookup one RB tree (out of 1024 or more) to find the flow.
23 * If non existent flow, create it, add it to the tree.
24 * Add skb to the per flow list of skb (fifo).
25 * - Use a special fifo for high prio packets
26 *
27 * dequeue() : serves flows in Round Robin
28 * Note : When a flow becomes empty, we do not immediately remove it from
29 * rb trees, for performance reasons (its expected to send additional packets,
30 * or SLAB cache will reuse socket for another flow)
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/kernel.h>
36#include <linux/jiffies.h>
37#include <linux/string.h>
38#include <linux/in.h>
39#include <linux/errno.h>
40#include <linux/init.h>
41#include <linux/skbuff.h>
42#include <linux/slab.h>
43#include <linux/rbtree.h>
44#include <linux/hash.h>
45#include <linux/prefetch.h>
46#include <linux/vmalloc.h>
47#include <net/netlink.h>
48#include <net/pkt_sched.h>
49#include <net/sock.h>
50#include <net/tcp_states.h>
51#include <net/tcp.h>
52
53struct fq_skb_cb {
54 u64 time_to_send;
55};
56
57static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
58{
59 qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60 return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
61}
62
63/*
64 * Per flow structure, dynamically allocated.
65 * If packets have monotically increasing time_to_send, they are placed in O(1)
66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
67 */
68struct fq_flow {
69 struct rb_root t_root;
70 struct sk_buff *head; /* list of skbs for this flow : first skb */
71 union {
72 struct sk_buff *tail; /* last skb in the list */
73 unsigned long age; /* jiffies when flow was emptied, for gc */
74 };
75 struct rb_node fq_node; /* anchor in fq_root[] trees */
76 struct sock *sk;
77 int qlen; /* number of packets in flow queue */
78 int credit;
79 u32 socket_hash; /* sk_hash */
80 struct fq_flow *next; /* next pointer in RR lists, or &detached */
81
82 struct rb_node rate_node; /* anchor in q->delayed tree */
83 u64 time_next_packet;
84};
85
86struct fq_flow_head {
87 struct fq_flow *first;
88 struct fq_flow *last;
89};
90
91struct fq_sched_data {
92 struct fq_flow_head new_flows;
93
94 struct fq_flow_head old_flows;
95
96 struct rb_root delayed; /* for rate limited flows */
97 u64 time_next_delayed_flow;
98 unsigned long unthrottle_latency_ns;
99
100 struct fq_flow internal; /* for non classified or high prio packets */
101 u32 quantum;
102 u32 initial_quantum;
103 u32 flow_refill_delay;
104 u32 flow_plimit; /* max packets per flow */
105 unsigned long flow_max_rate; /* optional max rate per flow */
106 u64 ce_threshold;
107 u32 orphan_mask; /* mask for orphaned skb */
108 u32 low_rate_threshold;
109 struct rb_root *fq_root;
110 u8 rate_enable;
111 u8 fq_trees_log;
112
113 u32 flows;
114 u32 inactive_flows;
115 u32 throttled_flows;
116
117 u64 stat_gc_flows;
118 u64 stat_internal_packets;
119 u64 stat_throttled;
120 u64 stat_ce_mark;
121 u64 stat_flows_plimit;
122 u64 stat_pkts_too_long;
123 u64 stat_allocation_errors;
124 struct qdisc_watchdog watchdog;
125};
126
127/* special value to mark a detached flow (not on old/new list) */
128static struct fq_flow detached, throttled;
129
130static void fq_flow_set_detached(struct fq_flow *f)
131{
132 f->next = &detached;
133 f->age = jiffies;
134}
135
136static bool fq_flow_is_detached(const struct fq_flow *f)
137{
138 return f->next == &detached;
139}
140
141static bool fq_flow_is_throttled(const struct fq_flow *f)
142{
143 return f->next == &throttled;
144}
145
146static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
147{
148 if (head->first)
149 head->last->next = flow;
150 else
151 head->first = flow;
152 head->last = flow;
153 flow->next = NULL;
154}
155
156static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
157{
158 rb_erase(&f->rate_node, &q->delayed);
159 q->throttled_flows--;
160 fq_flow_add_tail(&q->old_flows, f);
161}
162
163static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
164{
165 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
166
167 while (*p) {
168 struct fq_flow *aux;
169
170 parent = *p;
171 aux = rb_entry(parent, struct fq_flow, rate_node);
172 if (f->time_next_packet >= aux->time_next_packet)
173 p = &parent->rb_right;
174 else
175 p = &parent->rb_left;
176 }
177 rb_link_node(&f->rate_node, parent, p);
178 rb_insert_color(&f->rate_node, &q->delayed);
179 q->throttled_flows++;
180 q->stat_throttled++;
181
182 f->next = &throttled;
183 if (q->time_next_delayed_flow > f->time_next_packet)
184 q->time_next_delayed_flow = f->time_next_packet;
185}
186
187
188static struct kmem_cache *fq_flow_cachep __read_mostly;
189
190
191/* limit number of collected flows per round */
192#define FQ_GC_MAX 8
193#define FQ_GC_AGE (3*HZ)
194
195static bool fq_gc_candidate(const struct fq_flow *f)
196{
197 return fq_flow_is_detached(f) &&
198 time_after(jiffies, f->age + FQ_GC_AGE);
199}
200
201static void fq_gc(struct fq_sched_data *q,
202 struct rb_root *root,
203 struct sock *sk)
204{
205 struct fq_flow *f, *tofree[FQ_GC_MAX];
206 struct rb_node **p, *parent;
207 int fcnt = 0;
208
209 p = &root->rb_node;
210 parent = NULL;
211 while (*p) {
212 parent = *p;
213
214 f = rb_entry(parent, struct fq_flow, fq_node);
215 if (f->sk == sk)
216 break;
217
218 if (fq_gc_candidate(f)) {
219 tofree[fcnt++] = f;
220 if (fcnt == FQ_GC_MAX)
221 break;
222 }
223
224 if (f->sk > sk)
225 p = &parent->rb_right;
226 else
227 p = &parent->rb_left;
228 }
229
230 q->flows -= fcnt;
231 q->inactive_flows -= fcnt;
232 q->stat_gc_flows += fcnt;
233 while (fcnt) {
234 struct fq_flow *f = tofree[--fcnt];
235
236 rb_erase(&f->fq_node, root);
237 kmem_cache_free(fq_flow_cachep, f);
238 }
239}
240
241static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
242{
243 struct rb_node **p, *parent;
244 struct sock *sk = skb->sk;
245 struct rb_root *root;
246 struct fq_flow *f;
247
248 /* warning: no starvation prevention... */
249 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
250 return &q->internal;
251
252 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
253 * or a listener (SYNCOOKIE mode)
254 * 1) request sockets are not full blown,
255 * they do not contain sk_pacing_rate
256 * 2) They are not part of a 'flow' yet
257 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
258 * especially if the listener set SO_MAX_PACING_RATE
259 * 4) We pretend they are orphaned
260 */
261 if (!sk || sk_listener(sk)) {
262 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
263
264 /* By forcing low order bit to 1, we make sure to not
265 * collide with a local flow (socket pointers are word aligned)
266 */
267 sk = (struct sock *)((hash << 1) | 1UL);
268 skb_orphan(skb);
269 } else if (sk->sk_state == TCP_CLOSE) {
270 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
271 /*
272 * Sockets in TCP_CLOSE are non connected.
273 * Typical use case is UDP sockets, they can send packets
274 * with sendto() to many different destinations.
275 * We probably could use a generic bit advertising
276 * non connected sockets, instead of sk_state == TCP_CLOSE,
277 * if we care enough.
278 */
279 sk = (struct sock *)((hash << 1) | 1UL);
280 }
281
282 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
283
284 if (q->flows >= (2U << q->fq_trees_log) &&
285 q->inactive_flows > q->flows/2)
286 fq_gc(q, root, sk);
287
288 p = &root->rb_node;
289 parent = NULL;
290 while (*p) {
291 parent = *p;
292
293 f = rb_entry(parent, struct fq_flow, fq_node);
294 if (f->sk == sk) {
295 /* socket might have been reallocated, so check
296 * if its sk_hash is the same.
297 * It not, we need to refill credit with
298 * initial quantum
299 */
300 if (unlikely(skb->sk == sk &&
301 f->socket_hash != sk->sk_hash)) {
302 f->credit = q->initial_quantum;
303 f->socket_hash = sk->sk_hash;
304 if (fq_flow_is_throttled(f))
305 fq_flow_unset_throttled(q, f);
306 f->time_next_packet = 0ULL;
307 }
308 return f;
309 }
310 if (f->sk > sk)
311 p = &parent->rb_right;
312 else
313 p = &parent->rb_left;
314 }
315
316 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
317 if (unlikely(!f)) {
318 q->stat_allocation_errors++;
319 return &q->internal;
320 }
321 /* f->t_root is already zeroed after kmem_cache_zalloc() */
322
323 fq_flow_set_detached(f);
324 f->sk = sk;
325 if (skb->sk == sk)
326 f->socket_hash = sk->sk_hash;
327 f->credit = q->initial_quantum;
328
329 rb_link_node(&f->fq_node, parent, p);
330 rb_insert_color(&f->fq_node, root);
331
332 q->flows++;
333 q->inactive_flows++;
334 return f;
335}
336
337static struct sk_buff *fq_peek(struct fq_flow *flow)
338{
339 struct sk_buff *skb = skb_rb_first(&flow->t_root);
340 struct sk_buff *head = flow->head;
341
342 if (!skb)
343 return head;
344
345 if (!head)
346 return skb;
347
348 if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
349 return skb;
350 return head;
351}
352
353static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
354 struct sk_buff *skb)
355{
356 if (skb == flow->head) {
357 flow->head = skb->next;
358 } else {
359 rb_erase(&skb->rbnode, &flow->t_root);
360 skb->dev = qdisc_dev(sch);
361 }
362}
363
364/* remove one skb from head of flow queue */
365static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
366{
367 struct sk_buff *skb = fq_peek(flow);
368
369 if (skb) {
370 fq_erase_head(sch, flow, skb);
371 skb_mark_not_on_list(skb);
372 flow->qlen--;
373 qdisc_qstats_backlog_dec(sch, skb);
374 sch->q.qlen--;
375 }
376 return skb;
377}
378
379static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
380{
381 struct rb_node **p, *parent;
382 struct sk_buff *head, *aux;
383
384 fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
385
386 head = flow->head;
387 if (!head ||
388 fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
389 if (!head)
390 flow->head = skb;
391 else
392 flow->tail->next = skb;
393 flow->tail = skb;
394 skb->next = NULL;
395 return;
396 }
397
398 p = &flow->t_root.rb_node;
399 parent = NULL;
400
401 while (*p) {
402 parent = *p;
403 aux = rb_to_skb(parent);
404 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
405 p = &parent->rb_right;
406 else
407 p = &parent->rb_left;
408 }
409 rb_link_node(&skb->rbnode, parent, p);
410 rb_insert_color(&skb->rbnode, &flow->t_root);
411}
412
413static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414 struct sk_buff **to_free)
415{
416 struct fq_sched_data *q = qdisc_priv(sch);
417 struct fq_flow *f;
418
419 if (unlikely(sch->q.qlen >= sch->limit))
420 return qdisc_drop(skb, sch, to_free);
421
422 f = fq_classify(skb, q);
423 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
424 q->stat_flows_plimit++;
425 return qdisc_drop(skb, sch, to_free);
426 }
427
428 f->qlen++;
429 qdisc_qstats_backlog_inc(sch, skb);
430 if (fq_flow_is_detached(f)) {
431 struct sock *sk = skb->sk;
432
433 fq_flow_add_tail(&q->new_flows, f);
434 if (time_after(jiffies, f->age + q->flow_refill_delay))
435 f->credit = max_t(u32, f->credit, q->quantum);
436 if (sk && q->rate_enable) {
437 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
438 SK_PACING_FQ))
439 smp_store_release(&sk->sk_pacing_status,
440 SK_PACING_FQ);
441 }
442 q->inactive_flows--;
443 }
444
445 /* Note: this overwrites f->age */
446 flow_queue_add(f, skb);
447
448 if (unlikely(f == &q->internal)) {
449 q->stat_internal_packets++;
450 }
451 sch->q.qlen++;
452
453 return NET_XMIT_SUCCESS;
454}
455
456static void fq_check_throttled(struct fq_sched_data *q, u64 now)
457{
458 unsigned long sample;
459 struct rb_node *p;
460
461 if (q->time_next_delayed_flow > now)
462 return;
463
464 /* Update unthrottle latency EWMA.
465 * This is cheap and can help diagnosing timer/latency problems.
466 */
467 sample = (unsigned long)(now - q->time_next_delayed_flow);
468 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
469 q->unthrottle_latency_ns += sample >> 3;
470
471 q->time_next_delayed_flow = ~0ULL;
472 while ((p = rb_first(&q->delayed)) != NULL) {
473 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
474
475 if (f->time_next_packet > now) {
476 q->time_next_delayed_flow = f->time_next_packet;
477 break;
478 }
479 fq_flow_unset_throttled(q, f);
480 }
481}
482
483static struct sk_buff *fq_dequeue(struct Qdisc *sch)
484{
485 struct fq_sched_data *q = qdisc_priv(sch);
486 struct fq_flow_head *head;
487 struct sk_buff *skb;
488 struct fq_flow *f;
489 unsigned long rate;
490 u32 plen;
491 u64 now;
492
493 if (!sch->q.qlen)
494 return NULL;
495
496 skb = fq_dequeue_head(sch, &q->internal);
497 if (skb)
498 goto out;
499
500 now = ktime_get_ns();
501 fq_check_throttled(q, now);
502begin:
503 head = &q->new_flows;
504 if (!head->first) {
505 head = &q->old_flows;
506 if (!head->first) {
507 if (q->time_next_delayed_flow != ~0ULL)
508 qdisc_watchdog_schedule_ns(&q->watchdog,
509 q->time_next_delayed_flow);
510 return NULL;
511 }
512 }
513 f = head->first;
514
515 if (f->credit <= 0) {
516 f->credit += q->quantum;
517 head->first = f->next;
518 fq_flow_add_tail(&q->old_flows, f);
519 goto begin;
520 }
521
522 skb = fq_peek(f);
523 if (skb) {
524 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
525 f->time_next_packet);
526
527 if (now < time_next_packet) {
528 head->first = f->next;
529 f->time_next_packet = time_next_packet;
530 fq_flow_set_throttled(q, f);
531 goto begin;
532 }
533 if (time_next_packet &&
534 (s64)(now - time_next_packet - q->ce_threshold) > 0) {
535 INET_ECN_set_ce(skb);
536 q->stat_ce_mark++;
537 }
538 }
539
540 skb = fq_dequeue_head(sch, f);
541 if (!skb) {
542 head->first = f->next;
543 /* force a pass through old_flows to prevent starvation */
544 if ((head == &q->new_flows) && q->old_flows.first) {
545 fq_flow_add_tail(&q->old_flows, f);
546 } else {
547 fq_flow_set_detached(f);
548 q->inactive_flows++;
549 }
550 goto begin;
551 }
552 prefetch(&skb->end);
553 plen = qdisc_pkt_len(skb);
554 f->credit -= plen;
555
556 if (!q->rate_enable)
557 goto out;
558
559 rate = q->flow_max_rate;
560
561 /* If EDT time was provided for this skb, we need to
562 * update f->time_next_packet only if this qdisc enforces
563 * a flow max rate.
564 */
565 if (!skb->tstamp) {
566 if (skb->sk)
567 rate = min(skb->sk->sk_pacing_rate, rate);
568
569 if (rate <= q->low_rate_threshold) {
570 f->credit = 0;
571 } else {
572 plen = max(plen, q->quantum);
573 if (f->credit > 0)
574 goto out;
575 }
576 }
577 if (rate != ~0UL) {
578 u64 len = (u64)plen * NSEC_PER_SEC;
579
580 if (likely(rate))
581 len = div64_ul(len, rate);
582 /* Since socket rate can change later,
583 * clamp the delay to 1 second.
584 * Really, providers of too big packets should be fixed !
585 */
586 if (unlikely(len > NSEC_PER_SEC)) {
587 len = NSEC_PER_SEC;
588 q->stat_pkts_too_long++;
589 }
590 /* Account for schedule/timers drifts.
591 * f->time_next_packet was set when prior packet was sent,
592 * and current time (@now) can be too late by tens of us.
593 */
594 if (f->time_next_packet)
595 len -= min(len/2, now - f->time_next_packet);
596 f->time_next_packet = now + len;
597 }
598out:
599 qdisc_bstats_update(sch, skb);
600 return skb;
601}
602
603static void fq_flow_purge(struct fq_flow *flow)
604{
605 struct rb_node *p = rb_first(&flow->t_root);
606
607 while (p) {
608 struct sk_buff *skb = rb_to_skb(p);
609
610 p = rb_next(p);
611 rb_erase(&skb->rbnode, &flow->t_root);
612 rtnl_kfree_skbs(skb, skb);
613 }
614 rtnl_kfree_skbs(flow->head, flow->tail);
615 flow->head = NULL;
616 flow->qlen = 0;
617}
618
619static void fq_reset(struct Qdisc *sch)
620{
621 struct fq_sched_data *q = qdisc_priv(sch);
622 struct rb_root *root;
623 struct rb_node *p;
624 struct fq_flow *f;
625 unsigned int idx;
626
627 sch->q.qlen = 0;
628 sch->qstats.backlog = 0;
629
630 fq_flow_purge(&q->internal);
631
632 if (!q->fq_root)
633 return;
634
635 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
636 root = &q->fq_root[idx];
637 while ((p = rb_first(root)) != NULL) {
638 f = rb_entry(p, struct fq_flow, fq_node);
639 rb_erase(p, root);
640
641 fq_flow_purge(f);
642
643 kmem_cache_free(fq_flow_cachep, f);
644 }
645 }
646 q->new_flows.first = NULL;
647 q->old_flows.first = NULL;
648 q->delayed = RB_ROOT;
649 q->flows = 0;
650 q->inactive_flows = 0;
651 q->throttled_flows = 0;
652}
653
654static void fq_rehash(struct fq_sched_data *q,
655 struct rb_root *old_array, u32 old_log,
656 struct rb_root *new_array, u32 new_log)
657{
658 struct rb_node *op, **np, *parent;
659 struct rb_root *oroot, *nroot;
660 struct fq_flow *of, *nf;
661 int fcnt = 0;
662 u32 idx;
663
664 for (idx = 0; idx < (1U << old_log); idx++) {
665 oroot = &old_array[idx];
666 while ((op = rb_first(oroot)) != NULL) {
667 rb_erase(op, oroot);
668 of = rb_entry(op, struct fq_flow, fq_node);
669 if (fq_gc_candidate(of)) {
670 fcnt++;
671 kmem_cache_free(fq_flow_cachep, of);
672 continue;
673 }
674 nroot = &new_array[hash_ptr(of->sk, new_log)];
675
676 np = &nroot->rb_node;
677 parent = NULL;
678 while (*np) {
679 parent = *np;
680
681 nf = rb_entry(parent, struct fq_flow, fq_node);
682 BUG_ON(nf->sk == of->sk);
683
684 if (nf->sk > of->sk)
685 np = &parent->rb_right;
686 else
687 np = &parent->rb_left;
688 }
689
690 rb_link_node(&of->fq_node, parent, np);
691 rb_insert_color(&of->fq_node, nroot);
692 }
693 }
694 q->flows -= fcnt;
695 q->inactive_flows -= fcnt;
696 q->stat_gc_flows += fcnt;
697}
698
699static void fq_free(void *addr)
700{
701 kvfree(addr);
702}
703
704static int fq_resize(struct Qdisc *sch, u32 log)
705{
706 struct fq_sched_data *q = qdisc_priv(sch);
707 struct rb_root *array;
708 void *old_fq_root;
709 u32 idx;
710
711 if (q->fq_root && log == q->fq_trees_log)
712 return 0;
713
714 /* If XPS was setup, we can allocate memory on right NUMA node */
715 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
716 netdev_queue_numa_node_read(sch->dev_queue));
717 if (!array)
718 return -ENOMEM;
719
720 for (idx = 0; idx < (1U << log); idx++)
721 array[idx] = RB_ROOT;
722
723 sch_tree_lock(sch);
724
725 old_fq_root = q->fq_root;
726 if (old_fq_root)
727 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
728
729 q->fq_root = array;
730 q->fq_trees_log = log;
731
732 sch_tree_unlock(sch);
733
734 fq_free(old_fq_root);
735
736 return 0;
737}
738
739static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
740 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
741 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
742 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
743 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
744 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
745 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
746 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
747 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
748 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
749 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
750 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
751};
752
753static int fq_change(struct Qdisc *sch, struct nlattr *opt,
754 struct netlink_ext_ack *extack)
755{
756 struct fq_sched_data *q = qdisc_priv(sch);
757 struct nlattr *tb[TCA_FQ_MAX + 1];
758 int err, drop_count = 0;
759 unsigned drop_len = 0;
760 u32 fq_log;
761
762 if (!opt)
763 return -EINVAL;
764
765 err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
766 NULL);
767 if (err < 0)
768 return err;
769
770 sch_tree_lock(sch);
771
772 fq_log = q->fq_trees_log;
773
774 if (tb[TCA_FQ_BUCKETS_LOG]) {
775 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
776
777 if (nval >= 1 && nval <= ilog2(256*1024))
778 fq_log = nval;
779 else
780 err = -EINVAL;
781 }
782 if (tb[TCA_FQ_PLIMIT])
783 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
784
785 if (tb[TCA_FQ_FLOW_PLIMIT])
786 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
787
788 if (tb[TCA_FQ_QUANTUM]) {
789 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
790
791 if (quantum > 0)
792 q->quantum = quantum;
793 else
794 err = -EINVAL;
795 }
796
797 if (tb[TCA_FQ_INITIAL_QUANTUM])
798 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
799
800 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
801 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
802 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
803
804 if (tb[TCA_FQ_FLOW_MAX_RATE]) {
805 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
806
807 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
808 }
809 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
810 q->low_rate_threshold =
811 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
812
813 if (tb[TCA_FQ_RATE_ENABLE]) {
814 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
815
816 if (enable <= 1)
817 q->rate_enable = enable;
818 else
819 err = -EINVAL;
820 }
821
822 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
823 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
824
825 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
826 }
827
828 if (tb[TCA_FQ_ORPHAN_MASK])
829 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
830
831 if (tb[TCA_FQ_CE_THRESHOLD])
832 q->ce_threshold = (u64)NSEC_PER_USEC *
833 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
834
835 if (!err) {
836 sch_tree_unlock(sch);
837 err = fq_resize(sch, fq_log);
838 sch_tree_lock(sch);
839 }
840 while (sch->q.qlen > sch->limit) {
841 struct sk_buff *skb = fq_dequeue(sch);
842
843 if (!skb)
844 break;
845 drop_len += qdisc_pkt_len(skb);
846 rtnl_kfree_skbs(skb, skb);
847 drop_count++;
848 }
849 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
850
851 sch_tree_unlock(sch);
852 return err;
853}
854
855static void fq_destroy(struct Qdisc *sch)
856{
857 struct fq_sched_data *q = qdisc_priv(sch);
858
859 fq_reset(sch);
860 fq_free(q->fq_root);
861 qdisc_watchdog_cancel(&q->watchdog);
862}
863
864static int fq_init(struct Qdisc *sch, struct nlattr *opt,
865 struct netlink_ext_ack *extack)
866{
867 struct fq_sched_data *q = qdisc_priv(sch);
868 int err;
869
870 sch->limit = 10000;
871 q->flow_plimit = 100;
872 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
873 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
874 q->flow_refill_delay = msecs_to_jiffies(40);
875 q->flow_max_rate = ~0UL;
876 q->time_next_delayed_flow = ~0ULL;
877 q->rate_enable = 1;
878 q->new_flows.first = NULL;
879 q->old_flows.first = NULL;
880 q->delayed = RB_ROOT;
881 q->fq_root = NULL;
882 q->fq_trees_log = ilog2(1024);
883 q->orphan_mask = 1024 - 1;
884 q->low_rate_threshold = 550000 / 8;
885
886 /* Default ce_threshold of 4294 seconds */
887 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
888
889 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
890
891 if (opt)
892 err = fq_change(sch, opt, extack);
893 else
894 err = fq_resize(sch, q->fq_trees_log);
895
896 return err;
897}
898
899static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
900{
901 struct fq_sched_data *q = qdisc_priv(sch);
902 u64 ce_threshold = q->ce_threshold;
903 struct nlattr *opts;
904
905 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
906 if (opts == NULL)
907 goto nla_put_failure;
908
909 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
910
911 do_div(ce_threshold, NSEC_PER_USEC);
912
913 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
914 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
915 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
916 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
917 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
918 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
919 min_t(unsigned long, q->flow_max_rate, ~0U)) ||
920 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
921 jiffies_to_usecs(q->flow_refill_delay)) ||
922 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
923 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
924 q->low_rate_threshold) ||
925 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
926 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
927 goto nla_put_failure;
928
929 return nla_nest_end(skb, opts);
930
931nla_put_failure:
932 return -1;
933}
934
935static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
936{
937 struct fq_sched_data *q = qdisc_priv(sch);
938 struct tc_fq_qd_stats st;
939
940 sch_tree_lock(sch);
941
942 st.gc_flows = q->stat_gc_flows;
943 st.highprio_packets = q->stat_internal_packets;
944 st.tcp_retrans = 0;
945 st.throttled = q->stat_throttled;
946 st.flows_plimit = q->stat_flows_plimit;
947 st.pkts_too_long = q->stat_pkts_too_long;
948 st.allocation_errors = q->stat_allocation_errors;
949 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
950 st.flows = q->flows;
951 st.inactive_flows = q->inactive_flows;
952 st.throttled_flows = q->throttled_flows;
953 st.unthrottle_latency_ns = min_t(unsigned long,
954 q->unthrottle_latency_ns, ~0U);
955 st.ce_mark = q->stat_ce_mark;
956 sch_tree_unlock(sch);
957
958 return gnet_stats_copy_app(d, &st, sizeof(st));
959}
960
961static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
962 .id = "fq",
963 .priv_size = sizeof(struct fq_sched_data),
964
965 .enqueue = fq_enqueue,
966 .dequeue = fq_dequeue,
967 .peek = qdisc_peek_dequeued,
968 .init = fq_init,
969 .reset = fq_reset,
970 .destroy = fq_destroy,
971 .change = fq_change,
972 .dump = fq_dump,
973 .dump_stats = fq_dump_stats,
974 .owner = THIS_MODULE,
975};
976
977static int __init fq_module_init(void)
978{
979 int ret;
980
981 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
982 sizeof(struct fq_flow),
983 0, 0, NULL);
984 if (!fq_flow_cachep)
985 return -ENOMEM;
986
987 ret = register_qdisc(&fq_qdisc_ops);
988 if (ret)
989 kmem_cache_destroy(fq_flow_cachep);
990 return ret;
991}
992
993static void __exit fq_module_exit(void)
994{
995 unregister_qdisc(&fq_qdisc_ops);
996 kmem_cache_destroy(fq_flow_cachep);
997}
998
999module_init(fq_module_init)
1000module_exit(fq_module_exit)
1001MODULE_AUTHOR("Eric Dumazet");
1002MODULE_LICENSE("GPL");