Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.6
 
  1#
  2# Traffic control configuration.
  3# 
  4
  5menuconfig NET_SCHED
  6	bool "QoS and/or fair queueing"
  7	select NET_SCH_FIFO
  8	---help---
  9	  When the kernel has several packets to send out over a network
 10	  device, it has to decide which ones to send first, which ones to
 11	  delay, and which ones to drop. This is the job of the queueing
 12	  disciplines, several different algorithms for how to do this
 13	  "fairly" have been proposed.
 14
 15	  If you say N here, you will get the standard packet scheduler, which
 16	  is a FIFO (first come, first served). If you say Y here, you will be
 17	  able to choose from among several alternative algorithms which can
 18	  then be attached to different network devices. This is useful for
 19	  example if some of your network devices are real time devices that
 20	  need a certain minimum data flow rate, or if you need to limit the
 21	  maximum data flow rate for traffic which matches specified criteria.
 22	  This code is considered to be experimental.
 23
 24	  To administer these schedulers, you'll need the user-level utilities
 25	  from the package iproute2+tc at
 26	  <https://www.kernel.org/pub/linux/utils/net/iproute2/>.  That package
 27	  also contains some documentation; for more, check out
 28	  <http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2>.
 29
 30	  This Quality of Service (QoS) support will enable you to use
 31	  Differentiated Services (diffserv) and Resource Reservation Protocol
 32	  (RSVP) on your Linux router if you also say Y to the corresponding
 33	  classifiers below.  Documentation and software is at
 34	  <http://diffserv.sourceforge.net/>.
 35
 36	  If you say Y here and to "/proc file system" below, you will be able
 37	  to read status information about packet schedulers from the file
 38	  /proc/net/psched.
 39
 40	  The available schedulers are listed in the following questions; you
 41	  can say Y to as many as you like. If unsure, say N now.
 42
 43if NET_SCHED
 44
 45comment "Queueing/Scheduling"
 46
 47config NET_SCH_CBQ
 48	tristate "Class Based Queueing (CBQ)"
 49	---help---
 50	  Say Y here if you want to use the Class-Based Queueing (CBQ) packet
 51	  scheduling algorithm. This algorithm classifies the waiting packets
 52	  into a tree-like hierarchy of classes; the leaves of this tree are
 53	  in turn scheduled by separate algorithms.
 54
 55	  See the top of <file:net/sched/sch_cbq.c> for more details.
 56
 57	  CBQ is a commonly used scheduler, so if you're unsure, you should
 58	  say Y here. Then say Y to all the queueing algorithms below that you
 59	  want to use as leaf disciplines.
 60
 61	  To compile this code as a module, choose M here: the
 62	  module will be called sch_cbq.
 63
 64config NET_SCH_HTB
 65	tristate "Hierarchical Token Bucket (HTB)"
 66	---help---
 67	  Say Y here if you want to use the Hierarchical Token Buckets (HTB)
 68	  packet scheduling algorithm. See
 69	  <http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
 70	  in-depth articles.
 71
 72	  HTB is very similar to CBQ regarding its goals however is has
 73	  different properties and different algorithm.
 74
 75	  To compile this code as a module, choose M here: the
 76	  module will be called sch_htb.
 77
 78config NET_SCH_HFSC
 79	tristate "Hierarchical Fair Service Curve (HFSC)"
 80	---help---
 81	  Say Y here if you want to use the Hierarchical Fair Service Curve
 82	  (HFSC) packet scheduling algorithm.
 83
 84	  To compile this code as a module, choose M here: the
 85	  module will be called sch_hfsc.
 86
 87config NET_SCH_ATM
 88	tristate "ATM Virtual Circuits (ATM)"
 89	depends on ATM
 90	---help---
 91	  Say Y here if you want to use the ATM pseudo-scheduler.  This
 92	  provides a framework for invoking classifiers, which in turn
 93	  select classes of this queuing discipline.  Each class maps
 94	  the flow(s) it is handling to a given virtual circuit.
 95
 96	  See the top of <file:net/sched/sch_atm.c> for more details.
 97
 98	  To compile this code as a module, choose M here: the
 99	  module will be called sch_atm.
100
101config NET_SCH_PRIO
102	tristate "Multi Band Priority Queueing (PRIO)"
103	---help---
104	  Say Y here if you want to use an n-band priority queue packet
105	  scheduler.
106
107	  To compile this code as a module, choose M here: the
108	  module will be called sch_prio.
109
110config NET_SCH_MULTIQ
111	tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
112	---help---
113	  Say Y here if you want to use an n-band queue packet scheduler
114	  to support devices that have multiple hardware transmit queues.
115
116	  To compile this code as a module, choose M here: the
117	  module will be called sch_multiq.
118
119config NET_SCH_RED
120	tristate "Random Early Detection (RED)"
121	---help---
122	  Say Y here if you want to use the Random Early Detection (RED)
123	  packet scheduling algorithm.
124
125	  See the top of <file:net/sched/sch_red.c> for more details.
126
127	  To compile this code as a module, choose M here: the
128	  module will be called sch_red.
129
130config NET_SCH_SFB
131	tristate "Stochastic Fair Blue (SFB)"
132	---help---
133	  Say Y here if you want to use the Stochastic Fair Blue (SFB)
134	  packet scheduling algorithm.
135
136	  See the top of <file:net/sched/sch_sfb.c> for more details.
137
138	  To compile this code as a module, choose M here: the
139	  module will be called sch_sfb.
140
141config NET_SCH_SFQ
142	tristate "Stochastic Fairness Queueing (SFQ)"
143	---help---
144	  Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
145	  packet scheduling algorithm.
146
147	  See the top of <file:net/sched/sch_sfq.c> for more details.
148
149	  To compile this code as a module, choose M here: the
150	  module will be called sch_sfq.
151
152config NET_SCH_TEQL
153	tristate "True Link Equalizer (TEQL)"
154	---help---
155	  Say Y here if you want to use the True Link Equalizer (TLE) packet
156	  scheduling algorithm. This queueing discipline allows the combination
157	  of several physical devices into one virtual device.
158
159	  See the top of <file:net/sched/sch_teql.c> for more details.
160
161	  To compile this code as a module, choose M here: the
162	  module will be called sch_teql.
163
164config NET_SCH_TBF
165	tristate "Token Bucket Filter (TBF)"
166	---help---
167	  Say Y here if you want to use the Token Bucket Filter (TBF) packet
168	  scheduling algorithm.
169
170	  See the top of <file:net/sched/sch_tbf.c> for more details.
171
172	  To compile this code as a module, choose M here: the
173	  module will be called sch_tbf.
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175config NET_SCH_GRED
176	tristate "Generic Random Early Detection (GRED)"
177	---help---
178	  Say Y here if you want to use the Generic Random Early Detection
179	  (GRED) packet scheduling algorithm for some of your network devices
180	  (see the top of <file:net/sched/sch_red.c> for details and
181	  references about the algorithm).
182
183	  To compile this code as a module, choose M here: the
184	  module will be called sch_gred.
185
186config NET_SCH_DSMARK
187	tristate "Differentiated Services marker (DSMARK)"
188	---help---
189	  Say Y if you want to schedule packets according to the
190	  Differentiated Services architecture proposed in RFC 2475.
191	  Technical information on this method, with pointers to associated
192	  RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
193
194	  To compile this code as a module, choose M here: the
195	  module will be called sch_dsmark.
196
197config NET_SCH_NETEM
198	tristate "Network emulator (NETEM)"
199	---help---
200	  Say Y if you want to emulate network delay, loss, and packet
201	  re-ordering. This is often useful to simulate networks when
202	  testing applications or protocols.
203
204	  To compile this driver as a module, choose M here: the module
205	  will be called sch_netem.
206
207	  If unsure, say N.
208
209config NET_SCH_DRR
210	tristate "Deficit Round Robin scheduler (DRR)"
211	help
212	  Say Y here if you want to use the Deficit Round Robin (DRR) packet
213	  scheduling algorithm.
214
215	  To compile this driver as a module, choose M here: the module
216	  will be called sch_drr.
217
218	  If unsure, say N.
219
220config NET_SCH_MQPRIO
221	tristate "Multi-queue priority scheduler (MQPRIO)"
222	help
223	  Say Y here if you want to use the Multi-queue Priority scheduler.
224	  This scheduler allows QOS to be offloaded on NICs that have support
225	  for offloading QOS schedulers.
226
227	  To compile this driver as a module, choose M here: the module will
228	  be called sch_mqprio.
229
230	  If unsure, say N.
231
 
 
 
 
 
 
 
 
 
 
 
 
 
232config NET_SCH_CHOKE
233	tristate "CHOose and Keep responsive flow scheduler (CHOKE)"
234	help
235	  Say Y here if you want to use the CHOKe packet scheduler (CHOose
236	  and Keep for responsive flows, CHOose and Kill for unresponsive
237	  flows). This is a variation of RED which trys to penalize flows
238	  that monopolize the queue.
239
240	  To compile this code as a module, choose M here: the
241	  module will be called sch_choke.
242
243config NET_SCH_QFQ
244	tristate "Quick Fair Queueing scheduler (QFQ)"
245	help
246	  Say Y here if you want to use the Quick Fair Queueing Scheduler (QFQ)
247	  packet scheduling algorithm.
248
249	  To compile this driver as a module, choose M here: the module
250	  will be called sch_qfq.
251
252	  If unsure, say N.
253
254config NET_SCH_CODEL
255	tristate "Controlled Delay AQM (CODEL)"
256	help
257	  Say Y here if you want to use the Controlled Delay (CODEL)
258	  packet scheduling algorithm.
259
260	  To compile this driver as a module, choose M here: the module
261	  will be called sch_codel.
262
263	  If unsure, say N.
264
265config NET_SCH_FQ_CODEL
266	tristate "Fair Queue Controlled Delay AQM (FQ_CODEL)"
267	help
268	  Say Y here if you want to use the FQ Controlled Delay (FQ_CODEL)
269	  packet scheduling algorithm.
270
271	  To compile this driver as a module, choose M here: the module
272	  will be called sch_fq_codel.
273
274	  If unsure, say N.
275
 
 
 
 
 
 
 
 
 
 
 
276config NET_SCH_FQ
277	tristate "Fair Queue"
278	help
279	  Say Y here if you want to use the FQ packet scheduling algorithm.
280
281	  FQ does flow separation, and is able to respect pacing requirements
282	  set by TCP stack into sk->sk_pacing_rate (for localy generated
283	  traffic)
284
285	  To compile this driver as a module, choose M here: the module
286	  will be called sch_fq.
287
288	  If unsure, say N.
289
290config NET_SCH_HHF
291	tristate "Heavy-Hitter Filter (HHF)"
292	help
293	  Say Y here if you want to use the Heavy-Hitter Filter (HHF)
294	  packet scheduling algorithm.
295
296	  To compile this driver as a module, choose M here: the module
297	  will be called sch_hhf.
298
299config NET_SCH_PIE
300	tristate "Proportional Integral controller Enhanced (PIE) scheduler"
301	help
302	  Say Y here if you want to use the Proportional Integral controller
303	  Enhanced scheduler packet scheduling algorithm.
304	  For more information, please see
305	  http://tools.ietf.org/html/draft-pan-tsvwg-pie-00
306
307	  To compile this driver as a module, choose M here: the module
308	  will be called sch_pie.
309
310	  If unsure, say N.
311
312config NET_SCH_INGRESS
313	tristate "Ingress/classifier-action Qdisc"
314	depends on NET_CLS_ACT
315	select NET_INGRESS
316	select NET_EGRESS
317	---help---
318	  Say Y here if you want to use classifiers for incoming and/or outgoing
319	  packets. This qdisc doesn't do anything else besides running classifiers,
320	  which can also have actions attached to them. In case of outgoing packets,
321	  classifiers that this qdisc holds are executed in the transmit path
322	  before real enqueuing to an egress qdisc happens.
323
324	  If unsure, say Y.
325
326	  To compile this code as a module, choose M here: the module will be
327	  called sch_ingress with alias of sch_clsact.
328
329config NET_SCH_PLUG
330	tristate "Plug network traffic until release (PLUG)"
331	---help---
332
333	  This queuing discipline allows userspace to plug/unplug a network
334	  output queue, using the netlink interface.  When it receives an
335	  enqueue command it inserts a plug into the outbound queue that
336	  causes following packets to enqueue until a dequeue command arrives
337	  over netlink, causing the plug to be removed and resuming the normal
338	  packet flow.
339
340	  This module also provides a generic "network output buffering"
341	  functionality (aka output commit), wherein upon arrival of a dequeue
342	  command, only packets up to the first plug are released for delivery.
343	  The Remus HA project uses this module to enable speculative execution
344	  of virtual machines by allowing the generated network output to be rolled
345	  back if needed.
346
347	  For more information, please refer to <http://wiki.xenproject.org/wiki/Remus>
348
349	  Say Y here if you are using this kernel for Xen dom0 and
350	  want to protect Xen guests with Remus.
351
352	  To compile this code as a module, choose M here: the
353	  module will be called sch_plug.
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355comment "Classification"
356
357config NET_CLS
358	bool
359
360config NET_CLS_BASIC
361	tristate "Elementary classification (BASIC)"
362	select NET_CLS
363	---help---
364	  Say Y here if you want to be able to classify packets using
365	  only extended matches and actions.
366
367	  To compile this code as a module, choose M here: the
368	  module will be called cls_basic.
369
370config NET_CLS_TCINDEX
371	tristate "Traffic-Control Index (TCINDEX)"
372	select NET_CLS
373	---help---
374	  Say Y here if you want to be able to classify packets based on
375	  traffic control indices. You will want this feature if you want
376	  to implement Differentiated Services together with DSMARK.
377
378	  To compile this code as a module, choose M here: the
379	  module will be called cls_tcindex.
380
381config NET_CLS_ROUTE4
382	tristate "Routing decision (ROUTE)"
383	depends on INET
384	select IP_ROUTE_CLASSID
385	select NET_CLS
386	---help---
387	  If you say Y here, you will be able to classify packets
388	  according to the route table entry they matched.
389
390	  To compile this code as a module, choose M here: the
391	  module will be called cls_route.
392
393config NET_CLS_FW
394	tristate "Netfilter mark (FW)"
395	select NET_CLS
396	---help---
397	  If you say Y here, you will be able to classify packets
398	  according to netfilter/firewall marks.
399
400	  To compile this code as a module, choose M here: the
401	  module will be called cls_fw.
402
403config NET_CLS_U32
404	tristate "Universal 32bit comparisons w/ hashing (U32)"
405	select NET_CLS
406	---help---
407	  Say Y here to be able to classify packets using a universal
408	  32bit pieces based comparison scheme.
409
410	  To compile this code as a module, choose M here: the
411	  module will be called cls_u32.
412
413config CLS_U32_PERF
414	bool "Performance counters support"
415	depends on NET_CLS_U32
416	---help---
417	  Say Y here to make u32 gather additional statistics useful for
418	  fine tuning u32 classifiers.
419
420config CLS_U32_MARK
421	bool "Netfilter marks support"
422	depends on NET_CLS_U32
423	---help---
424	  Say Y here to be able to use netfilter marks as u32 key.
425
426config NET_CLS_RSVP
427	tristate "IPv4 Resource Reservation Protocol (RSVP)"
428	select NET_CLS
429	---help---
430	  The Resource Reservation Protocol (RSVP) permits end systems to
431	  request a minimum and maximum data flow rate for a connection; this
432	  is important for real time data such as streaming sound or video.
433
434	  Say Y here if you want to be able to classify outgoing packets based
435	  on their RSVP requests.
436
437	  To compile this code as a module, choose M here: the
438	  module will be called cls_rsvp.
439
440config NET_CLS_RSVP6
441	tristate "IPv6 Resource Reservation Protocol (RSVP6)"
442	select NET_CLS
443	---help---
444	  The Resource Reservation Protocol (RSVP) permits end systems to
445	  request a minimum and maximum data flow rate for a connection; this
446	  is important for real time data such as streaming sound or video.
447
448	  Say Y here if you want to be able to classify outgoing packets based
449	  on their RSVP requests and you are using the IPv6 protocol.
450
451	  To compile this code as a module, choose M here: the
452	  module will be called cls_rsvp6.
453
454config NET_CLS_FLOW
455	tristate "Flow classifier"
456	select NET_CLS
457	---help---
458	  If you say Y here, you will be able to classify packets based on
459	  a configurable combination of packet keys. This is mostly useful
460	  in combination with SFQ.
461
462	  To compile this code as a module, choose M here: the
463	  module will be called cls_flow.
464
465config NET_CLS_CGROUP
466	tristate "Control Group Classifier"
467	select NET_CLS
468	select CGROUP_NET_CLASSID
469	depends on CGROUPS
470	---help---
471	  Say Y here if you want to classify packets based on the control
472	  cgroup of their process.
473
474	  To compile this code as a module, choose M here: the
475	  module will be called cls_cgroup.
476
477config NET_CLS_BPF
478	tristate "BPF-based classifier"
479	select NET_CLS
480	---help---
481	  If you say Y here, you will be able to classify packets based on
482	  programmable BPF (JIT'ed) filters as an alternative to ematches.
483
484	  To compile this code as a module, choose M here: the module will
485	  be called cls_bpf.
486
487config NET_CLS_FLOWER
488	tristate "Flower classifier"
489	select NET_CLS
490	---help---
491	  If you say Y here, you will be able to classify packets based on
492	  a configurable combination of packet keys and masks.
493
494	  To compile this code as a module, choose M here: the module will
495	  be called cls_flower.
496
 
 
 
 
 
 
 
 
 
 
497config NET_EMATCH
498	bool "Extended Matches"
499	select NET_CLS
500	---help---
501	  Say Y here if you want to use extended matches on top of classifiers
502	  and select the extended matches below.
503
504	  Extended matches are small classification helpers not worth writing
505	  a separate classifier for.
506
507	  A recent version of the iproute2 package is required to use
508	  extended matches.
509
510config NET_EMATCH_STACK
511	int "Stack size"
512	depends on NET_EMATCH
513	default "32"
514	---help---
515	  Size of the local stack variable used while evaluating the tree of
516	  ematches. Limits the depth of the tree, i.e. the number of
517	  encapsulated precedences. Every level requires 4 bytes of additional
518	  stack space.
519
520config NET_EMATCH_CMP
521	tristate "Simple packet data comparison"
522	depends on NET_EMATCH
523	---help---
524	  Say Y here if you want to be able to classify packets based on
525	  simple packet data comparisons for 8, 16, and 32bit values.
526
527	  To compile this code as a module, choose M here: the
528	  module will be called em_cmp.
529
530config NET_EMATCH_NBYTE
531	tristate "Multi byte comparison"
532	depends on NET_EMATCH
533	---help---
534	  Say Y here if you want to be able to classify packets based on
535	  multiple byte comparisons mainly useful for IPv6 address comparisons.
536
537	  To compile this code as a module, choose M here: the
538	  module will be called em_nbyte.
539
540config NET_EMATCH_U32
541	tristate "U32 key"
542	depends on NET_EMATCH
543	---help---
544	  Say Y here if you want to be able to classify packets using
545	  the famous u32 key in combination with logic relations.
546
547	  To compile this code as a module, choose M here: the
548	  module will be called em_u32.
549
550config NET_EMATCH_META
551	tristate "Metadata"
552	depends on NET_EMATCH
553	---help---
554	  Say Y here if you want to be able to classify packets based on
555	  metadata such as load average, netfilter attributes, socket
556	  attributes and routing decisions.
557
558	  To compile this code as a module, choose M here: the
559	  module will be called em_meta.
560
561config NET_EMATCH_TEXT
562	tristate "Textsearch"
563	depends on NET_EMATCH
564	select TEXTSEARCH
565	select TEXTSEARCH_KMP
566	select TEXTSEARCH_BM
567	select TEXTSEARCH_FSM
568	---help---
569	  Say Y here if you want to be able to classify packets based on
570	  textsearch comparisons.
571
572	  To compile this code as a module, choose M here: the
573	  module will be called em_text.
574
575config NET_EMATCH_CANID
576	tristate "CAN Identifier"
577	depends on NET_EMATCH && (CAN=y || CAN=m)
578	---help---
579	  Say Y here if you want to be able to classify CAN frames based
580	  on CAN Identifier.
581
582	  To compile this code as a module, choose M here: the
583	  module will be called em_canid.
584
585config NET_EMATCH_IPSET
586	tristate "IPset"
587	depends on NET_EMATCH && IP_SET
588	---help---
589	  Say Y here if you want to be able to classify packets based on
590	  ipset membership.
591
592	  To compile this code as a module, choose M here: the
593	  module will be called em_ipset.
594
 
 
 
 
 
 
 
 
 
 
 
 
595config NET_CLS_ACT
596	bool "Actions"
 
597	---help---
598	  Say Y here if you want to use traffic control actions. Actions
599	  get attached to classifiers and are invoked after a successful
600	  classification. They are used to overwrite the classification
601	  result, instantly drop or redirect packets, etc.
602
603	  A recent version of the iproute2 package is required to use
604	  extended matches.
605
606config NET_ACT_POLICE
607	tristate "Traffic Policing"
608        depends on NET_CLS_ACT 
609        ---help---
610	  Say Y here if you want to do traffic policing, i.e. strict
611	  bandwidth limiting. This action replaces the existing policing
612	  module.
613
614	  To compile this code as a module, choose M here: the
615	  module will be called act_police.
616
617config NET_ACT_GACT
618        tristate "Generic actions"
619        depends on NET_CLS_ACT
620        ---help---
621	  Say Y here to take generic actions such as dropping and
622	  accepting packets.
623
624	  To compile this code as a module, choose M here: the
625	  module will be called act_gact.
626
627config GACT_PROB
628        bool "Probability support"
629        depends on NET_ACT_GACT
630        ---help---
631	  Say Y here to use the generic action randomly or deterministically.
632
633config NET_ACT_MIRRED
634        tristate "Redirecting and Mirroring"
635        depends on NET_CLS_ACT
636        ---help---
637	  Say Y here to allow packets to be mirrored or redirected to
638	  other devices.
639
640	  To compile this code as a module, choose M here: the
641	  module will be called act_mirred.
642
 
 
 
 
 
 
 
 
 
 
 
 
643config NET_ACT_IPT
644        tristate "IPtables targets"
645        depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
646        ---help---
647	  Say Y here to be able to invoke iptables targets after successful
648	  classification.
649
650	  To compile this code as a module, choose M here: the
651	  module will be called act_ipt.
652
653config NET_ACT_NAT
654        tristate "Stateless NAT"
655        depends on NET_CLS_ACT
656        ---help---
657	  Say Y here to do stateless NAT on IPv4 packets.  You should use
658	  netfilter for NAT unless you know what you are doing.
659
660	  To compile this code as a module, choose M here: the
661	  module will be called act_nat.
662
663config NET_ACT_PEDIT
664        tristate "Packet Editing"
665        depends on NET_CLS_ACT
666        ---help---
667	  Say Y here if you want to mangle the content of packets.
668
669	  To compile this code as a module, choose M here: the
670	  module will be called act_pedit.
671
672config NET_ACT_SIMP
673        tristate "Simple Example (Debug)"
674        depends on NET_CLS_ACT
675        ---help---
676	  Say Y here to add a simple action for demonstration purposes.
677	  It is meant as an example and for debugging purposes. It will
678	  print a configured policy string followed by the packet count
679	  to the console for every packet that passes by.
680
681	  If unsure, say N.
682
683	  To compile this code as a module, choose M here: the
684	  module will be called act_simple.
685
686config NET_ACT_SKBEDIT
687        tristate "SKB Editing"
688        depends on NET_CLS_ACT
689        ---help---
690	  Say Y here to change skb priority or queue_mapping settings.
691
692	  If unsure, say N.
693
694	  To compile this code as a module, choose M here: the
695	  module will be called act_skbedit.
696
697config NET_ACT_CSUM
698        tristate "Checksum Updating"
699        depends on NET_CLS_ACT && INET
700        ---help---
 
701	  Say Y here to update some common checksum after some direct
702	  packet alterations.
703
704	  To compile this code as a module, choose M here: the
705	  module will be called act_csum.
706
 
 
 
 
 
 
 
 
 
 
 
707config NET_ACT_VLAN
708        tristate "Vlan manipulation"
709        depends on NET_CLS_ACT
710        ---help---
711	  Say Y here to push or pop vlan headers.
712
713	  If unsure, say N.
714
715	  To compile this code as a module, choose M here: the
716	  module will be called act_vlan.
717
718config NET_ACT_BPF
719        tristate "BPF based action"
720        depends on NET_CLS_ACT
721        ---help---
722	  Say Y here to execute BPF code on packets. The BPF code will decide
723	  if the packet should be dropped or not.
724
725	  If unsure, say N.
726
727	  To compile this code as a module, choose M here: the
728	  module will be called act_bpf.
729
730config NET_ACT_CONNMARK
731        tristate "Netfilter Connection Mark Retriever"
732        depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
733        depends on NF_CONNTRACK && NF_CONNTRACK_MARK
734        ---help---
735	  Say Y here to allow retrieving of conn mark
736
737	  If unsure, say N.
738
739	  To compile this code as a module, choose M here: the
740	  module will be called act_connmark.
741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742config NET_ACT_IFE
743        tristate "Inter-FE action based on IETF ForCES InterFE LFB"
744        depends on NET_CLS_ACT
745        ---help---
 
746	  Say Y here to allow for sourcing and terminating metadata
747	  For details refer to netdev01 paper:
748	  "Distributing Linux Traffic Control Classifier-Action Subsystem"
749	   Authors: Jamal Hadi Salim and Damascene M. Joachimpillai
750
751	  To compile this code as a module, choose M here: the
752	  module will be called act_ife.
753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754config NET_IFE_SKBMARK
755        tristate "Support to encoding decoding skb mark on IFE action"
756        depends on NET_ACT_IFE
757        ---help---
758
759config NET_IFE_SKBPRIO
760        tristate "Support to encoding decoding skb prio on IFE action"
761        depends on NET_ACT_IFE
762        ---help---
763
764config NET_CLS_IND
765	bool "Incoming device classification"
766	depends on NET_CLS_U32 || NET_CLS_FW
767	---help---
768	  Say Y here to extend the u32 and fw classifier to support
769	  classification based on the incoming device. This option is
770	  likely to disappear in favour of the metadata ematch.
 
 
 
 
 
 
 
771
772endif # NET_SCHED
773
774config NET_SCH_FIFO
775	bool
v5.4
  1# SPDX-License-Identifier: GPL-2.0-only
  2#
  3# Traffic control configuration.
  4#
  5
  6menuconfig NET_SCHED
  7	bool "QoS and/or fair queueing"
  8	select NET_SCH_FIFO
  9	---help---
 10	  When the kernel has several packets to send out over a network
 11	  device, it has to decide which ones to send first, which ones to
 12	  delay, and which ones to drop. This is the job of the queueing
 13	  disciplines, several different algorithms for how to do this
 14	  "fairly" have been proposed.
 15
 16	  If you say N here, you will get the standard packet scheduler, which
 17	  is a FIFO (first come, first served). If you say Y here, you will be
 18	  able to choose from among several alternative algorithms which can
 19	  then be attached to different network devices. This is useful for
 20	  example if some of your network devices are real time devices that
 21	  need a certain minimum data flow rate, or if you need to limit the
 22	  maximum data flow rate for traffic which matches specified criteria.
 23	  This code is considered to be experimental.
 24
 25	  To administer these schedulers, you'll need the user-level utilities
 26	  from the package iproute2+tc at
 27	  <https://www.kernel.org/pub/linux/utils/net/iproute2/>.  That package
 28	  also contains some documentation; for more, check out
 29	  <http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2>.
 30
 31	  This Quality of Service (QoS) support will enable you to use
 32	  Differentiated Services (diffserv) and Resource Reservation Protocol
 33	  (RSVP) on your Linux router if you also say Y to the corresponding
 34	  classifiers below.  Documentation and software is at
 35	  <http://diffserv.sourceforge.net/>.
 36
 37	  If you say Y here and to "/proc file system" below, you will be able
 38	  to read status information about packet schedulers from the file
 39	  /proc/net/psched.
 40
 41	  The available schedulers are listed in the following questions; you
 42	  can say Y to as many as you like. If unsure, say N now.
 43
 44if NET_SCHED
 45
 46comment "Queueing/Scheduling"
 47
 48config NET_SCH_CBQ
 49	tristate "Class Based Queueing (CBQ)"
 50	---help---
 51	  Say Y here if you want to use the Class-Based Queueing (CBQ) packet
 52	  scheduling algorithm. This algorithm classifies the waiting packets
 53	  into a tree-like hierarchy of classes; the leaves of this tree are
 54	  in turn scheduled by separate algorithms.
 55
 56	  See the top of <file:net/sched/sch_cbq.c> for more details.
 57
 58	  CBQ is a commonly used scheduler, so if you're unsure, you should
 59	  say Y here. Then say Y to all the queueing algorithms below that you
 60	  want to use as leaf disciplines.
 61
 62	  To compile this code as a module, choose M here: the
 63	  module will be called sch_cbq.
 64
 65config NET_SCH_HTB
 66	tristate "Hierarchical Token Bucket (HTB)"
 67	---help---
 68	  Say Y here if you want to use the Hierarchical Token Buckets (HTB)
 69	  packet scheduling algorithm. See
 70	  <http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
 71	  in-depth articles.
 72
 73	  HTB is very similar to CBQ regarding its goals however is has
 74	  different properties and different algorithm.
 75
 76	  To compile this code as a module, choose M here: the
 77	  module will be called sch_htb.
 78
 79config NET_SCH_HFSC
 80	tristate "Hierarchical Fair Service Curve (HFSC)"
 81	---help---
 82	  Say Y here if you want to use the Hierarchical Fair Service Curve
 83	  (HFSC) packet scheduling algorithm.
 84
 85	  To compile this code as a module, choose M here: the
 86	  module will be called sch_hfsc.
 87
 88config NET_SCH_ATM
 89	tristate "ATM Virtual Circuits (ATM)"
 90	depends on ATM
 91	---help---
 92	  Say Y here if you want to use the ATM pseudo-scheduler.  This
 93	  provides a framework for invoking classifiers, which in turn
 94	  select classes of this queuing discipline.  Each class maps
 95	  the flow(s) it is handling to a given virtual circuit.
 96
 97	  See the top of <file:net/sched/sch_atm.c> for more details.
 98
 99	  To compile this code as a module, choose M here: the
100	  module will be called sch_atm.
101
102config NET_SCH_PRIO
103	tristate "Multi Band Priority Queueing (PRIO)"
104	---help---
105	  Say Y here if you want to use an n-band priority queue packet
106	  scheduler.
107
108	  To compile this code as a module, choose M here: the
109	  module will be called sch_prio.
110
111config NET_SCH_MULTIQ
112	tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
113	---help---
114	  Say Y here if you want to use an n-band queue packet scheduler
115	  to support devices that have multiple hardware transmit queues.
116
117	  To compile this code as a module, choose M here: the
118	  module will be called sch_multiq.
119
120config NET_SCH_RED
121	tristate "Random Early Detection (RED)"
122	---help---
123	  Say Y here if you want to use the Random Early Detection (RED)
124	  packet scheduling algorithm.
125
126	  See the top of <file:net/sched/sch_red.c> for more details.
127
128	  To compile this code as a module, choose M here: the
129	  module will be called sch_red.
130
131config NET_SCH_SFB
132	tristate "Stochastic Fair Blue (SFB)"
133	---help---
134	  Say Y here if you want to use the Stochastic Fair Blue (SFB)
135	  packet scheduling algorithm.
136
137	  See the top of <file:net/sched/sch_sfb.c> for more details.
138
139	  To compile this code as a module, choose M here: the
140	  module will be called sch_sfb.
141
142config NET_SCH_SFQ
143	tristate "Stochastic Fairness Queueing (SFQ)"
144	---help---
145	  Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
146	  packet scheduling algorithm.
147
148	  See the top of <file:net/sched/sch_sfq.c> for more details.
149
150	  To compile this code as a module, choose M here: the
151	  module will be called sch_sfq.
152
153config NET_SCH_TEQL
154	tristate "True Link Equalizer (TEQL)"
155	---help---
156	  Say Y here if you want to use the True Link Equalizer (TLE) packet
157	  scheduling algorithm. This queueing discipline allows the combination
158	  of several physical devices into one virtual device.
159
160	  See the top of <file:net/sched/sch_teql.c> for more details.
161
162	  To compile this code as a module, choose M here: the
163	  module will be called sch_teql.
164
165config NET_SCH_TBF
166	tristate "Token Bucket Filter (TBF)"
167	---help---
168	  Say Y here if you want to use the Token Bucket Filter (TBF) packet
169	  scheduling algorithm.
170
171	  See the top of <file:net/sched/sch_tbf.c> for more details.
172
173	  To compile this code as a module, choose M here: the
174	  module will be called sch_tbf.
175
176config NET_SCH_CBS
177	tristate "Credit Based Shaper (CBS)"
178	---help---
179	  Say Y here if you want to use the Credit Based Shaper (CBS) packet
180	  scheduling algorithm.
181
182	  See the top of <file:net/sched/sch_cbs.c> for more details.
183
184	  To compile this code as a module, choose M here: the
185	  module will be called sch_cbs.
186
187config NET_SCH_ETF
188	tristate "Earliest TxTime First (ETF)"
189	help
190	  Say Y here if you want to use the Earliest TxTime First (ETF) packet
191	  scheduling algorithm.
192
193	  See the top of <file:net/sched/sch_etf.c> for more details.
194
195	  To compile this code as a module, choose M here: the
196	  module will be called sch_etf.
197
198config NET_SCH_TAPRIO
199	tristate "Time Aware Priority (taprio) Scheduler"
200	help
201	  Say Y here if you want to use the Time Aware Priority (taprio) packet
202	  scheduling algorithm.
203
204	  See the top of <file:net/sched/sch_taprio.c> for more details.
205
206	  To compile this code as a module, choose M here: the
207	  module will be called sch_taprio.
208
209config NET_SCH_GRED
210	tristate "Generic Random Early Detection (GRED)"
211	---help---
212	  Say Y here if you want to use the Generic Random Early Detection
213	  (GRED) packet scheduling algorithm for some of your network devices
214	  (see the top of <file:net/sched/sch_red.c> for details and
215	  references about the algorithm).
216
217	  To compile this code as a module, choose M here: the
218	  module will be called sch_gred.
219
220config NET_SCH_DSMARK
221	tristate "Differentiated Services marker (DSMARK)"
222	---help---
223	  Say Y if you want to schedule packets according to the
224	  Differentiated Services architecture proposed in RFC 2475.
225	  Technical information on this method, with pointers to associated
226	  RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
227
228	  To compile this code as a module, choose M here: the
229	  module will be called sch_dsmark.
230
231config NET_SCH_NETEM
232	tristate "Network emulator (NETEM)"
233	---help---
234	  Say Y if you want to emulate network delay, loss, and packet
235	  re-ordering. This is often useful to simulate networks when
236	  testing applications or protocols.
237
238	  To compile this driver as a module, choose M here: the module
239	  will be called sch_netem.
240
241	  If unsure, say N.
242
243config NET_SCH_DRR
244	tristate "Deficit Round Robin scheduler (DRR)"
245	help
246	  Say Y here if you want to use the Deficit Round Robin (DRR) packet
247	  scheduling algorithm.
248
249	  To compile this driver as a module, choose M here: the module
250	  will be called sch_drr.
251
252	  If unsure, say N.
253
254config NET_SCH_MQPRIO
255	tristate "Multi-queue priority scheduler (MQPRIO)"
256	help
257	  Say Y here if you want to use the Multi-queue Priority scheduler.
258	  This scheduler allows QOS to be offloaded on NICs that have support
259	  for offloading QOS schedulers.
260
261	  To compile this driver as a module, choose M here: the module will
262	  be called sch_mqprio.
263
264	  If unsure, say N.
265
266config NET_SCH_SKBPRIO
267	tristate "SKB priority queue scheduler (SKBPRIO)"
268	help
269	  Say Y here if you want to use the SKB priority queue
270	  scheduler. This schedules packets according to skb->priority,
271	  which is useful for request packets in DoS mitigation systems such
272	  as Gatekeeper.
273
274	  To compile this driver as a module, choose M here: the module will
275	  be called sch_skbprio.
276
277	  If unsure, say N.
278
279config NET_SCH_CHOKE
280	tristate "CHOose and Keep responsive flow scheduler (CHOKE)"
281	help
282	  Say Y here if you want to use the CHOKe packet scheduler (CHOose
283	  and Keep for responsive flows, CHOose and Kill for unresponsive
284	  flows). This is a variation of RED which trys to penalize flows
285	  that monopolize the queue.
286
287	  To compile this code as a module, choose M here: the
288	  module will be called sch_choke.
289
290config NET_SCH_QFQ
291	tristate "Quick Fair Queueing scheduler (QFQ)"
292	help
293	  Say Y here if you want to use the Quick Fair Queueing Scheduler (QFQ)
294	  packet scheduling algorithm.
295
296	  To compile this driver as a module, choose M here: the module
297	  will be called sch_qfq.
298
299	  If unsure, say N.
300
301config NET_SCH_CODEL
302	tristate "Controlled Delay AQM (CODEL)"
303	help
304	  Say Y here if you want to use the Controlled Delay (CODEL)
305	  packet scheduling algorithm.
306
307	  To compile this driver as a module, choose M here: the module
308	  will be called sch_codel.
309
310	  If unsure, say N.
311
312config NET_SCH_FQ_CODEL
313	tristate "Fair Queue Controlled Delay AQM (FQ_CODEL)"
314	help
315	  Say Y here if you want to use the FQ Controlled Delay (FQ_CODEL)
316	  packet scheduling algorithm.
317
318	  To compile this driver as a module, choose M here: the module
319	  will be called sch_fq_codel.
320
321	  If unsure, say N.
322
323config NET_SCH_CAKE
324	tristate "Common Applications Kept Enhanced (CAKE)"
325	help
326	  Say Y here if you want to use the Common Applications Kept Enhanced
327	  (CAKE) queue management algorithm.
328
329	  To compile this driver as a module, choose M here: the module
330	  will be called sch_cake.
331
332	  If unsure, say N.
333
334config NET_SCH_FQ
335	tristate "Fair Queue"
336	help
337	  Say Y here if you want to use the FQ packet scheduling algorithm.
338
339	  FQ does flow separation, and is able to respect pacing requirements
340	  set by TCP stack into sk->sk_pacing_rate (for localy generated
341	  traffic)
342
343	  To compile this driver as a module, choose M here: the module
344	  will be called sch_fq.
345
346	  If unsure, say N.
347
348config NET_SCH_HHF
349	tristate "Heavy-Hitter Filter (HHF)"
350	help
351	  Say Y here if you want to use the Heavy-Hitter Filter (HHF)
352	  packet scheduling algorithm.
353
354	  To compile this driver as a module, choose M here: the module
355	  will be called sch_hhf.
356
357config NET_SCH_PIE
358	tristate "Proportional Integral controller Enhanced (PIE) scheduler"
359	help
360	  Say Y here if you want to use the Proportional Integral controller
361	  Enhanced scheduler packet scheduling algorithm.
362	  For more information, please see https://tools.ietf.org/html/rfc8033
 
363
364	  To compile this driver as a module, choose M here: the module
365	  will be called sch_pie.
366
367	  If unsure, say N.
368
369config NET_SCH_INGRESS
370	tristate "Ingress/classifier-action Qdisc"
371	depends on NET_CLS_ACT
372	select NET_INGRESS
373	select NET_EGRESS
374	---help---
375	  Say Y here if you want to use classifiers for incoming and/or outgoing
376	  packets. This qdisc doesn't do anything else besides running classifiers,
377	  which can also have actions attached to them. In case of outgoing packets,
378	  classifiers that this qdisc holds are executed in the transmit path
379	  before real enqueuing to an egress qdisc happens.
380
381	  If unsure, say Y.
382
383	  To compile this code as a module, choose M here: the module will be
384	  called sch_ingress with alias of sch_clsact.
385
386config NET_SCH_PLUG
387	tristate "Plug network traffic until release (PLUG)"
388	---help---
389
390	  This queuing discipline allows userspace to plug/unplug a network
391	  output queue, using the netlink interface.  When it receives an
392	  enqueue command it inserts a plug into the outbound queue that
393	  causes following packets to enqueue until a dequeue command arrives
394	  over netlink, causing the plug to be removed and resuming the normal
395	  packet flow.
396
397	  This module also provides a generic "network output buffering"
398	  functionality (aka output commit), wherein upon arrival of a dequeue
399	  command, only packets up to the first plug are released for delivery.
400	  The Remus HA project uses this module to enable speculative execution
401	  of virtual machines by allowing the generated network output to be rolled
402	  back if needed.
403
404	  For more information, please refer to <http://wiki.xenproject.org/wiki/Remus>
405
406	  Say Y here if you are using this kernel for Xen dom0 and
407	  want to protect Xen guests with Remus.
408
409	  To compile this code as a module, choose M here: the
410	  module will be called sch_plug.
411
412menuconfig NET_SCH_DEFAULT
413	bool "Allow override default queue discipline"
414	---help---
415	  Support for selection of default queuing discipline.
416
417	  Nearly all users can safely say no here, and the default
418	  of pfifo_fast will be used. Many distributions already set
419	  the default value via /proc/sys/net/core/default_qdisc.
420
421	  If unsure, say N.
422
423if NET_SCH_DEFAULT
424
425choice
426	prompt "Default queuing discipline"
427	default DEFAULT_PFIFO_FAST
428	help
429	  Select the queueing discipline that will be used by default
430	  for all network devices.
431
432	config DEFAULT_FQ
433		bool "Fair Queue" if NET_SCH_FQ
434
435	config DEFAULT_CODEL
436		bool "Controlled Delay" if NET_SCH_CODEL
437
438	config DEFAULT_FQ_CODEL
439		bool "Fair Queue Controlled Delay" if NET_SCH_FQ_CODEL
440
441	config DEFAULT_SFQ
442		bool "Stochastic Fair Queue" if NET_SCH_SFQ
443
444	config DEFAULT_PFIFO_FAST
445		bool "Priority FIFO Fast"
446endchoice
447
448config DEFAULT_NET_SCH
449	string
450	default "pfifo_fast" if DEFAULT_PFIFO_FAST
451	default "fq" if DEFAULT_FQ
452	default "fq_codel" if DEFAULT_FQ_CODEL
453	default "sfq" if DEFAULT_SFQ
454	default "pfifo_fast"
455endif
456
457comment "Classification"
458
459config NET_CLS
460	bool
461
462config NET_CLS_BASIC
463	tristate "Elementary classification (BASIC)"
464	select NET_CLS
465	---help---
466	  Say Y here if you want to be able to classify packets using
467	  only extended matches and actions.
468
469	  To compile this code as a module, choose M here: the
470	  module will be called cls_basic.
471
472config NET_CLS_TCINDEX
473	tristate "Traffic-Control Index (TCINDEX)"
474	select NET_CLS
475	---help---
476	  Say Y here if you want to be able to classify packets based on
477	  traffic control indices. You will want this feature if you want
478	  to implement Differentiated Services together with DSMARK.
479
480	  To compile this code as a module, choose M here: the
481	  module will be called cls_tcindex.
482
483config NET_CLS_ROUTE4
484	tristate "Routing decision (ROUTE)"
485	depends on INET
486	select IP_ROUTE_CLASSID
487	select NET_CLS
488	---help---
489	  If you say Y here, you will be able to classify packets
490	  according to the route table entry they matched.
491
492	  To compile this code as a module, choose M here: the
493	  module will be called cls_route.
494
495config NET_CLS_FW
496	tristate "Netfilter mark (FW)"
497	select NET_CLS
498	---help---
499	  If you say Y here, you will be able to classify packets
500	  according to netfilter/firewall marks.
501
502	  To compile this code as a module, choose M here: the
503	  module will be called cls_fw.
504
505config NET_CLS_U32
506	tristate "Universal 32bit comparisons w/ hashing (U32)"
507	select NET_CLS
508	---help---
509	  Say Y here to be able to classify packets using a universal
510	  32bit pieces based comparison scheme.
511
512	  To compile this code as a module, choose M here: the
513	  module will be called cls_u32.
514
515config CLS_U32_PERF
516	bool "Performance counters support"
517	depends on NET_CLS_U32
518	---help---
519	  Say Y here to make u32 gather additional statistics useful for
520	  fine tuning u32 classifiers.
521
522config CLS_U32_MARK
523	bool "Netfilter marks support"
524	depends on NET_CLS_U32
525	---help---
526	  Say Y here to be able to use netfilter marks as u32 key.
527
528config NET_CLS_RSVP
529	tristate "IPv4 Resource Reservation Protocol (RSVP)"
530	select NET_CLS
531	---help---
532	  The Resource Reservation Protocol (RSVP) permits end systems to
533	  request a minimum and maximum data flow rate for a connection; this
534	  is important for real time data such as streaming sound or video.
535
536	  Say Y here if you want to be able to classify outgoing packets based
537	  on their RSVP requests.
538
539	  To compile this code as a module, choose M here: the
540	  module will be called cls_rsvp.
541
542config NET_CLS_RSVP6
543	tristate "IPv6 Resource Reservation Protocol (RSVP6)"
544	select NET_CLS
545	---help---
546	  The Resource Reservation Protocol (RSVP) permits end systems to
547	  request a minimum and maximum data flow rate for a connection; this
548	  is important for real time data such as streaming sound or video.
549
550	  Say Y here if you want to be able to classify outgoing packets based
551	  on their RSVP requests and you are using the IPv6 protocol.
552
553	  To compile this code as a module, choose M here: the
554	  module will be called cls_rsvp6.
555
556config NET_CLS_FLOW
557	tristate "Flow classifier"
558	select NET_CLS
559	---help---
560	  If you say Y here, you will be able to classify packets based on
561	  a configurable combination of packet keys. This is mostly useful
562	  in combination with SFQ.
563
564	  To compile this code as a module, choose M here: the
565	  module will be called cls_flow.
566
567config NET_CLS_CGROUP
568	tristate "Control Group Classifier"
569	select NET_CLS
570	select CGROUP_NET_CLASSID
571	depends on CGROUPS
572	---help---
573	  Say Y here if you want to classify packets based on the control
574	  cgroup of their process.
575
576	  To compile this code as a module, choose M here: the
577	  module will be called cls_cgroup.
578
579config NET_CLS_BPF
580	tristate "BPF-based classifier"
581	select NET_CLS
582	---help---
583	  If you say Y here, you will be able to classify packets based on
584	  programmable BPF (JIT'ed) filters as an alternative to ematches.
585
586	  To compile this code as a module, choose M here: the module will
587	  be called cls_bpf.
588
589config NET_CLS_FLOWER
590	tristate "Flower classifier"
591	select NET_CLS
592	---help---
593	  If you say Y here, you will be able to classify packets based on
594	  a configurable combination of packet keys and masks.
595
596	  To compile this code as a module, choose M here: the module will
597	  be called cls_flower.
598
599config NET_CLS_MATCHALL
600	tristate "Match-all classifier"
601	select NET_CLS
602	---help---
603	  If you say Y here, you will be able to classify packets based on
604	  nothing. Every packet will match.
605
606	  To compile this code as a module, choose M here: the module will
607	  be called cls_matchall.
608
609config NET_EMATCH
610	bool "Extended Matches"
611	select NET_CLS
612	---help---
613	  Say Y here if you want to use extended matches on top of classifiers
614	  and select the extended matches below.
615
616	  Extended matches are small classification helpers not worth writing
617	  a separate classifier for.
618
619	  A recent version of the iproute2 package is required to use
620	  extended matches.
621
622config NET_EMATCH_STACK
623	int "Stack size"
624	depends on NET_EMATCH
625	default "32"
626	---help---
627	  Size of the local stack variable used while evaluating the tree of
628	  ematches. Limits the depth of the tree, i.e. the number of
629	  encapsulated precedences. Every level requires 4 bytes of additional
630	  stack space.
631
632config NET_EMATCH_CMP
633	tristate "Simple packet data comparison"
634	depends on NET_EMATCH
635	---help---
636	  Say Y here if you want to be able to classify packets based on
637	  simple packet data comparisons for 8, 16, and 32bit values.
638
639	  To compile this code as a module, choose M here: the
640	  module will be called em_cmp.
641
642config NET_EMATCH_NBYTE
643	tristate "Multi byte comparison"
644	depends on NET_EMATCH
645	---help---
646	  Say Y here if you want to be able to classify packets based on
647	  multiple byte comparisons mainly useful for IPv6 address comparisons.
648
649	  To compile this code as a module, choose M here: the
650	  module will be called em_nbyte.
651
652config NET_EMATCH_U32
653	tristate "U32 key"
654	depends on NET_EMATCH
655	---help---
656	  Say Y here if you want to be able to classify packets using
657	  the famous u32 key in combination with logic relations.
658
659	  To compile this code as a module, choose M here: the
660	  module will be called em_u32.
661
662config NET_EMATCH_META
663	tristate "Metadata"
664	depends on NET_EMATCH
665	---help---
666	  Say Y here if you want to be able to classify packets based on
667	  metadata such as load average, netfilter attributes, socket
668	  attributes and routing decisions.
669
670	  To compile this code as a module, choose M here: the
671	  module will be called em_meta.
672
673config NET_EMATCH_TEXT
674	tristate "Textsearch"
675	depends on NET_EMATCH
676	select TEXTSEARCH
677	select TEXTSEARCH_KMP
678	select TEXTSEARCH_BM
679	select TEXTSEARCH_FSM
680	---help---
681	  Say Y here if you want to be able to classify packets based on
682	  textsearch comparisons.
683
684	  To compile this code as a module, choose M here: the
685	  module will be called em_text.
686
687config NET_EMATCH_CANID
688	tristate "CAN Identifier"
689	depends on NET_EMATCH && (CAN=y || CAN=m)
690	---help---
691	  Say Y here if you want to be able to classify CAN frames based
692	  on CAN Identifier.
693
694	  To compile this code as a module, choose M here: the
695	  module will be called em_canid.
696
697config NET_EMATCH_IPSET
698	tristate "IPset"
699	depends on NET_EMATCH && IP_SET
700	---help---
701	  Say Y here if you want to be able to classify packets based on
702	  ipset membership.
703
704	  To compile this code as a module, choose M here: the
705	  module will be called em_ipset.
706
707config NET_EMATCH_IPT
708	tristate "IPtables Matches"
709	depends on NET_EMATCH && NETFILTER && NETFILTER_XTABLES
710	---help---
711	  Say Y here to be able to classify packets based on iptables
712	  matches.
713	  Current supported match is "policy" which allows packet classification
714	  based on IPsec policy that was used during decapsulation
715
716	  To compile this code as a module, choose M here: the
717	  module will be called em_ipt.
718
719config NET_CLS_ACT
720	bool "Actions"
721	select NET_CLS
722	---help---
723	  Say Y here if you want to use traffic control actions. Actions
724	  get attached to classifiers and are invoked after a successful
725	  classification. They are used to overwrite the classification
726	  result, instantly drop or redirect packets, etc.
727
728	  A recent version of the iproute2 package is required to use
729	  extended matches.
730
731config NET_ACT_POLICE
732	tristate "Traffic Policing"
733	depends on NET_CLS_ACT
734	---help---
735	  Say Y here if you want to do traffic policing, i.e. strict
736	  bandwidth limiting. This action replaces the existing policing
737	  module.
738
739	  To compile this code as a module, choose M here: the
740	  module will be called act_police.
741
742config NET_ACT_GACT
743	tristate "Generic actions"
744	depends on NET_CLS_ACT
745	---help---
746	  Say Y here to take generic actions such as dropping and
747	  accepting packets.
748
749	  To compile this code as a module, choose M here: the
750	  module will be called act_gact.
751
752config GACT_PROB
753	bool "Probability support"
754	depends on NET_ACT_GACT
755	---help---
756	  Say Y here to use the generic action randomly or deterministically.
757
758config NET_ACT_MIRRED
759	tristate "Redirecting and Mirroring"
760	depends on NET_CLS_ACT
761	---help---
762	  Say Y here to allow packets to be mirrored or redirected to
763	  other devices.
764
765	  To compile this code as a module, choose M here: the
766	  module will be called act_mirred.
767
768config NET_ACT_SAMPLE
769	tristate "Traffic Sampling"
770	depends on NET_CLS_ACT
771	select PSAMPLE
772	---help---
773	  Say Y here to allow packet sampling tc action. The packet sample
774	  action consists of statistically choosing packets and sampling
775	  them using the psample module.
776
777	  To compile this code as a module, choose M here: the
778	  module will be called act_sample.
779
780config NET_ACT_IPT
781	tristate "IPtables targets"
782	depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
783	---help---
784	  Say Y here to be able to invoke iptables targets after successful
785	  classification.
786
787	  To compile this code as a module, choose M here: the
788	  module will be called act_ipt.
789
790config NET_ACT_NAT
791	tristate "Stateless NAT"
792	depends on NET_CLS_ACT
793	---help---
794	  Say Y here to do stateless NAT on IPv4 packets.  You should use
795	  netfilter for NAT unless you know what you are doing.
796
797	  To compile this code as a module, choose M here: the
798	  module will be called act_nat.
799
800config NET_ACT_PEDIT
801	tristate "Packet Editing"
802	depends on NET_CLS_ACT
803	---help---
804	  Say Y here if you want to mangle the content of packets.
805
806	  To compile this code as a module, choose M here: the
807	  module will be called act_pedit.
808
809config NET_ACT_SIMP
810	tristate "Simple Example (Debug)"
811	depends on NET_CLS_ACT
812	---help---
813	  Say Y here to add a simple action for demonstration purposes.
814	  It is meant as an example and for debugging purposes. It will
815	  print a configured policy string followed by the packet count
816	  to the console for every packet that passes by.
817
818	  If unsure, say N.
819
820	  To compile this code as a module, choose M here: the
821	  module will be called act_simple.
822
823config NET_ACT_SKBEDIT
824	tristate "SKB Editing"
825	depends on NET_CLS_ACT
826	---help---
827	  Say Y here to change skb priority or queue_mapping settings.
828
829	  If unsure, say N.
830
831	  To compile this code as a module, choose M here: the
832	  module will be called act_skbedit.
833
834config NET_ACT_CSUM
835	tristate "Checksum Updating"
836	depends on NET_CLS_ACT && INET
837	select LIBCRC32C
838	---help---
839	  Say Y here to update some common checksum after some direct
840	  packet alterations.
841
842	  To compile this code as a module, choose M here: the
843	  module will be called act_csum.
844
845config NET_ACT_MPLS
846	tristate "MPLS manipulation"
847	depends on NET_CLS_ACT
848	help
849	  Say Y here to push or pop MPLS headers.
850
851	  If unsure, say N.
852
853	  To compile this code as a module, choose M here: the
854	  module will be called act_mpls.
855
856config NET_ACT_VLAN
857	tristate "Vlan manipulation"
858	depends on NET_CLS_ACT
859	---help---
860	  Say Y here to push or pop vlan headers.
861
862	  If unsure, say N.
863
864	  To compile this code as a module, choose M here: the
865	  module will be called act_vlan.
866
867config NET_ACT_BPF
868	tristate "BPF based action"
869	depends on NET_CLS_ACT
870	---help---
871	  Say Y here to execute BPF code on packets. The BPF code will decide
872	  if the packet should be dropped or not.
873
874	  If unsure, say N.
875
876	  To compile this code as a module, choose M here: the
877	  module will be called act_bpf.
878
879config NET_ACT_CONNMARK
880	tristate "Netfilter Connection Mark Retriever"
881	depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
882	depends on NF_CONNTRACK && NF_CONNTRACK_MARK
883	---help---
884	  Say Y here to allow retrieving of conn mark
885
886	  If unsure, say N.
887
888	  To compile this code as a module, choose M here: the
889	  module will be called act_connmark.
890
891config NET_ACT_CTINFO
892	tristate "Netfilter Connection Mark Actions"
893	depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
894	depends on NF_CONNTRACK && NF_CONNTRACK_MARK
895	help
896	  Say Y here to allow transfer of a connmark stored information.
897	  Current actions transfer connmark stored DSCP into
898	  ipv4/v6 diffserv and/or to transfer connmark to packet
899	  mark.  Both are useful for restoring egress based marks
900	  back onto ingress connections for qdisc priority mapping
901	  purposes.
902
903	  If unsure, say N.
904
905	  To compile this code as a module, choose M here: the
906	  module will be called act_ctinfo.
907
908config NET_ACT_SKBMOD
909	tristate "skb data modification action"
910	depends on NET_CLS_ACT
911	---help---
912	 Say Y here to allow modification of skb data
913
914	 If unsure, say N.
915
916	 To compile this code as a module, choose M here: the
917	 module will be called act_skbmod.
918
919config NET_ACT_IFE
920	tristate "Inter-FE action based on IETF ForCES InterFE LFB"
921	depends on NET_CLS_ACT
922	select NET_IFE
923	---help---
924	  Say Y here to allow for sourcing and terminating metadata
925	  For details refer to netdev01 paper:
926	  "Distributing Linux Traffic Control Classifier-Action Subsystem"
927	   Authors: Jamal Hadi Salim and Damascene M. Joachimpillai
928
929	  To compile this code as a module, choose M here: the
930	  module will be called act_ife.
931
932config NET_ACT_TUNNEL_KEY
933	tristate "IP tunnel metadata manipulation"
934	depends on NET_CLS_ACT
935	---help---
936	  Say Y here to set/release ip tunnel metadata.
937
938	  If unsure, say N.
939
940	  To compile this code as a module, choose M here: the
941	  module will be called act_tunnel_key.
942
943config NET_ACT_CT
944	tristate "connection tracking tc action"
945	depends on NET_CLS_ACT && NF_CONNTRACK && NF_NAT
946	help
947	  Say Y here to allow sending the packets to conntrack module.
948
949	  If unsure, say N.
950
951	  To compile this code as a module, choose M here: the
952	  module will be called act_ct.
953
954config NET_IFE_SKBMARK
955	tristate "Support to encoding decoding skb mark on IFE action"
956	depends on NET_ACT_IFE
 
957
958config NET_IFE_SKBPRIO
959	tristate "Support to encoding decoding skb prio on IFE action"
960	depends on NET_ACT_IFE
961
962config NET_IFE_SKBTCINDEX
963	tristate "Support to encoding decoding skb tcindex on IFE action"
964	depends on NET_ACT_IFE
965
966config NET_TC_SKB_EXT
967	bool "TC recirculation support"
968	depends on NET_CLS_ACT
969	select SKB_EXTENSIONS
970
971	help
972	  Say Y here to allow tc chain misses to continue in OvS datapath in
973	  the correct recirc_id, and hardware chain misses to continue in
974	  the correct chain in tc software datapath.
975
976	  Say N here if you won't be using tc<->ovs offload or tc chains offload.
977
978endif # NET_SCHED
979
980config NET_SCH_FIFO
981	bool