Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * zswap.c - zswap driver file
   3 *
   4 * zswap is a backend for frontswap that takes pages that are in the process
   5 * of being swapped out and attempts to compress and store them in a
   6 * RAM-based memory pool.  This can result in a significant I/O reduction on
   7 * the swap device and, in the case where decompressing from RAM is faster
   8 * than reading from the swap device, can also improve workload performance.
   9 *
  10 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License
  14 * as published by the Free Software Foundation; either version 2
  15 * of the License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21*/
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/cpu.h>
  27#include <linux/highmem.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/types.h>
  31#include <linux/atomic.h>
  32#include <linux/frontswap.h>
  33#include <linux/rbtree.h>
  34#include <linux/swap.h>
  35#include <linux/crypto.h>
  36#include <linux/mempool.h>
  37#include <linux/zpool.h>
  38
  39#include <linux/mm_types.h>
  40#include <linux/page-flags.h>
  41#include <linux/swapops.h>
  42#include <linux/writeback.h>
  43#include <linux/pagemap.h>
  44
  45/*********************************
  46* statistics
  47**********************************/
  48/* Total bytes used by the compressed storage */
  49static u64 zswap_pool_total_size;
  50/* The number of compressed pages currently stored in zswap */
  51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
 
 
  52
  53/*
  54 * The statistics below are not protected from concurrent access for
  55 * performance reasons so they may not be a 100% accurate.  However,
  56 * they do provide useful information on roughly how many times a
  57 * certain event is occurring.
  58*/
  59
  60/* Pool limit was hit (see zswap_max_pool_percent) */
  61static u64 zswap_pool_limit_hit;
  62/* Pages written back when pool limit was reached */
  63static u64 zswap_written_back_pages;
  64/* Store failed due to a reclaim failure after pool limit was reached */
  65static u64 zswap_reject_reclaim_fail;
  66/* Compressed page was too big for the allocator to (optimally) store */
  67static u64 zswap_reject_compress_poor;
  68/* Store failed because underlying allocator could not get memory */
  69static u64 zswap_reject_alloc_fail;
  70/* Store failed because the entry metadata could not be allocated (rare) */
  71static u64 zswap_reject_kmemcache_fail;
  72/* Duplicate store was encountered (rare) */
  73static u64 zswap_duplicate_entry;
  74
  75/*********************************
  76* tunables
  77**********************************/
  78
 
 
  79/* Enable/disable zswap (disabled by default) */
  80static bool zswap_enabled;
  81module_param_named(enabled, zswap_enabled, bool, 0644);
 
 
 
 
 
 
  82
  83/* Crypto compressor to use */
  84#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  85static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  86static int zswap_compressor_param_set(const char *,
  87				      const struct kernel_param *);
  88static struct kernel_param_ops zswap_compressor_param_ops = {
  89	.set =		zswap_compressor_param_set,
  90	.get =		param_get_charp,
  91	.free =		param_free_charp,
  92};
  93module_param_cb(compressor, &zswap_compressor_param_ops,
  94		&zswap_compressor, 0644);
  95
  96/* Compressed storage zpool to use */
  97#define ZSWAP_ZPOOL_DEFAULT "zbud"
  98static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
  99static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 100static struct kernel_param_ops zswap_zpool_param_ops = {
 101	.set =		zswap_zpool_param_set,
 102	.get =		param_get_charp,
 103	.free =		param_free_charp,
 104};
 105module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 106
 107/* The maximum percentage of memory that the compressed pool can occupy */
 108static unsigned int zswap_max_pool_percent = 20;
 109module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 110
 
 
 
 
 
 111/*********************************
 112* data structures
 113**********************************/
 114
 115struct zswap_pool {
 116	struct zpool *zpool;
 117	struct crypto_comp * __percpu *tfm;
 118	struct kref kref;
 119	struct list_head list;
 120	struct rcu_head rcu_head;
 121	struct notifier_block notifier;
 122	char tfm_name[CRYPTO_MAX_ALG_NAME];
 123};
 124
 125/*
 126 * struct zswap_entry
 127 *
 128 * This structure contains the metadata for tracking a single compressed
 129 * page within zswap.
 130 *
 131 * rbnode - links the entry into red-black tree for the appropriate swap type
 132 * offset - the swap offset for the entry.  Index into the red-black tree.
 133 * refcount - the number of outstanding reference to the entry. This is needed
 134 *            to protect against premature freeing of the entry by code
 135 *            concurrent calls to load, invalidate, and writeback.  The lock
 136 *            for the zswap_tree structure that contains the entry must
 137 *            be held while changing the refcount.  Since the lock must
 138 *            be held, there is no reason to also make refcount atomic.
 139 * length - the length in bytes of the compressed page data.  Needed during
 140 *          decompression
 141 * pool - the zswap_pool the entry's data is in
 142 * handle - zpool allocation handle that stores the compressed page data
 
 143 */
 144struct zswap_entry {
 145	struct rb_node rbnode;
 146	pgoff_t offset;
 147	int refcount;
 148	unsigned int length;
 149	struct zswap_pool *pool;
 150	unsigned long handle;
 
 
 
 151};
 152
 153struct zswap_header {
 154	swp_entry_t swpentry;
 155};
 156
 157/*
 158 * The tree lock in the zswap_tree struct protects a few things:
 159 * - the rbtree
 160 * - the refcount field of each entry in the tree
 161 */
 162struct zswap_tree {
 163	struct rb_root rbroot;
 164	spinlock_t lock;
 165};
 166
 167static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 168
 169/* RCU-protected iteration */
 170static LIST_HEAD(zswap_pools);
 171/* protects zswap_pools list modification */
 172static DEFINE_SPINLOCK(zswap_pools_lock);
 173/* pool counter to provide unique names to zpool */
 174static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 175
 176/* used by param callback function */
 177static bool zswap_init_started;
 178
 
 
 
 
 
 
 179/*********************************
 180* helpers and fwd declarations
 181**********************************/
 182
 183#define zswap_pool_debug(msg, p)				\
 184	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 185		 zpool_get_type((p)->zpool))
 186
 187static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 188static int zswap_pool_get(struct zswap_pool *pool);
 189static void zswap_pool_put(struct zswap_pool *pool);
 190
 191static const struct zpool_ops zswap_zpool_ops = {
 192	.evict = zswap_writeback_entry
 193};
 194
 195static bool zswap_is_full(void)
 196{
 197	return totalram_pages * zswap_max_pool_percent / 100 <
 198		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 199}
 200
 201static void zswap_update_total_size(void)
 202{
 203	struct zswap_pool *pool;
 204	u64 total = 0;
 205
 206	rcu_read_lock();
 207
 208	list_for_each_entry_rcu(pool, &zswap_pools, list)
 209		total += zpool_get_total_size(pool->zpool);
 210
 211	rcu_read_unlock();
 212
 213	zswap_pool_total_size = total;
 214}
 215
 216/*********************************
 217* zswap entry functions
 218**********************************/
 219static struct kmem_cache *zswap_entry_cache;
 220
 221static int __init zswap_entry_cache_create(void)
 222{
 223	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 224	return zswap_entry_cache == NULL;
 225}
 226
 227static void __init zswap_entry_cache_destroy(void)
 228{
 229	kmem_cache_destroy(zswap_entry_cache);
 230}
 231
 232static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 233{
 234	struct zswap_entry *entry;
 235	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 236	if (!entry)
 237		return NULL;
 238	entry->refcount = 1;
 239	RB_CLEAR_NODE(&entry->rbnode);
 240	return entry;
 241}
 242
 243static void zswap_entry_cache_free(struct zswap_entry *entry)
 244{
 245	kmem_cache_free(zswap_entry_cache, entry);
 246}
 247
 248/*********************************
 249* rbtree functions
 250**********************************/
 251static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 252{
 253	struct rb_node *node = root->rb_node;
 254	struct zswap_entry *entry;
 255
 256	while (node) {
 257		entry = rb_entry(node, struct zswap_entry, rbnode);
 258		if (entry->offset > offset)
 259			node = node->rb_left;
 260		else if (entry->offset < offset)
 261			node = node->rb_right;
 262		else
 263			return entry;
 264	}
 265	return NULL;
 266}
 267
 268/*
 269 * In the case that a entry with the same offset is found, a pointer to
 270 * the existing entry is stored in dupentry and the function returns -EEXIST
 271 */
 272static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 273			struct zswap_entry **dupentry)
 274{
 275	struct rb_node **link = &root->rb_node, *parent = NULL;
 276	struct zswap_entry *myentry;
 277
 278	while (*link) {
 279		parent = *link;
 280		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 281		if (myentry->offset > entry->offset)
 282			link = &(*link)->rb_left;
 283		else if (myentry->offset < entry->offset)
 284			link = &(*link)->rb_right;
 285		else {
 286			*dupentry = myentry;
 287			return -EEXIST;
 288		}
 289	}
 290	rb_link_node(&entry->rbnode, parent, link);
 291	rb_insert_color(&entry->rbnode, root);
 292	return 0;
 293}
 294
 295static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 296{
 297	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 298		rb_erase(&entry->rbnode, root);
 299		RB_CLEAR_NODE(&entry->rbnode);
 300	}
 301}
 302
 303/*
 304 * Carries out the common pattern of freeing and entry's zpool allocation,
 305 * freeing the entry itself, and decrementing the number of stored pages.
 306 */
 307static void zswap_free_entry(struct zswap_entry *entry)
 308{
 309	zpool_free(entry->pool->zpool, entry->handle);
 310	zswap_pool_put(entry->pool);
 
 
 
 
 311	zswap_entry_cache_free(entry);
 312	atomic_dec(&zswap_stored_pages);
 313	zswap_update_total_size();
 314}
 315
 316/* caller must hold the tree lock */
 317static void zswap_entry_get(struct zswap_entry *entry)
 318{
 319	entry->refcount++;
 320}
 321
 322/* caller must hold the tree lock
 323* remove from the tree and free it, if nobody reference the entry
 324*/
 325static void zswap_entry_put(struct zswap_tree *tree,
 326			struct zswap_entry *entry)
 327{
 328	int refcount = --entry->refcount;
 329
 330	BUG_ON(refcount < 0);
 331	if (refcount == 0) {
 332		zswap_rb_erase(&tree->rbroot, entry);
 333		zswap_free_entry(entry);
 334	}
 335}
 336
 337/* caller must hold the tree lock */
 338static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 339				pgoff_t offset)
 340{
 341	struct zswap_entry *entry;
 342
 343	entry = zswap_rb_search(root, offset);
 344	if (entry)
 345		zswap_entry_get(entry);
 346
 347	return entry;
 348}
 349
 350/*********************************
 351* per-cpu code
 352**********************************/
 353static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 354
 355static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
 356{
 357	u8 *dst;
 358
 359	switch (action) {
 360	case CPU_UP_PREPARE:
 361		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 362		if (!dst) {
 363			pr_err("can't allocate compressor buffer\n");
 364			return NOTIFY_BAD;
 365		}
 366		per_cpu(zswap_dstmem, cpu) = dst;
 367		break;
 368	case CPU_DEAD:
 369	case CPU_UP_CANCELED:
 370		dst = per_cpu(zswap_dstmem, cpu);
 371		kfree(dst);
 372		per_cpu(zswap_dstmem, cpu) = NULL;
 373		break;
 374	default:
 375		break;
 376	}
 377	return NOTIFY_OK;
 378}
 379
 380static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
 381				     unsigned long action, void *pcpu)
 382{
 383	return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
 384}
 385
 386static struct notifier_block zswap_dstmem_notifier = {
 387	.notifier_call =	zswap_cpu_dstmem_notifier,
 388};
 389
 390static int __init zswap_cpu_dstmem_init(void)
 391{
 392	unsigned long cpu;
 393
 394	cpu_notifier_register_begin();
 395	for_each_online_cpu(cpu)
 396		if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
 397		    NOTIFY_BAD)
 398			goto cleanup;
 399	__register_cpu_notifier(&zswap_dstmem_notifier);
 400	cpu_notifier_register_done();
 401	return 0;
 402
 403cleanup:
 404	for_each_online_cpu(cpu)
 405		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
 406	cpu_notifier_register_done();
 407	return -ENOMEM;
 408}
 409
 410static void zswap_cpu_dstmem_destroy(void)
 411{
 412	unsigned long cpu;
 
 
 
 
 413
 414	cpu_notifier_register_begin();
 415	for_each_online_cpu(cpu)
 416		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
 417	__unregister_cpu_notifier(&zswap_dstmem_notifier);
 418	cpu_notifier_register_done();
 419}
 420
 421static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
 422				     unsigned long action, unsigned long cpu)
 423{
 
 424	struct crypto_comp *tfm;
 425
 426	switch (action) {
 427	case CPU_UP_PREPARE:
 428		if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
 429			break;
 430		tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
 431		if (IS_ERR_OR_NULL(tfm)) {
 432			pr_err("could not alloc crypto comp %s : %ld\n",
 433			       pool->tfm_name, PTR_ERR(tfm));
 434			return NOTIFY_BAD;
 435		}
 436		*per_cpu_ptr(pool->tfm, cpu) = tfm;
 437		break;
 438	case CPU_DEAD:
 439	case CPU_UP_CANCELED:
 440		tfm = *per_cpu_ptr(pool->tfm, cpu);
 441		if (!IS_ERR_OR_NULL(tfm))
 442			crypto_free_comp(tfm);
 443		*per_cpu_ptr(pool->tfm, cpu) = NULL;
 444		break;
 445	default:
 446		break;
 447	}
 448	return NOTIFY_OK;
 449}
 450
 451static int zswap_cpu_comp_notifier(struct notifier_block *nb,
 452				   unsigned long action, void *pcpu)
 453{
 454	unsigned long cpu = (unsigned long)pcpu;
 455	struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
 456
 457	return __zswap_cpu_comp_notifier(pool, action, cpu);
 
 
 
 
 
 
 
 458}
 459
 460static int zswap_cpu_comp_init(struct zswap_pool *pool)
 461{
 462	unsigned long cpu;
 463
 464	memset(&pool->notifier, 0, sizeof(pool->notifier));
 465	pool->notifier.notifier_call = zswap_cpu_comp_notifier;
 466
 467	cpu_notifier_register_begin();
 468	for_each_online_cpu(cpu)
 469		if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
 470		    NOTIFY_BAD)
 471			goto cleanup;
 472	__register_cpu_notifier(&pool->notifier);
 473	cpu_notifier_register_done();
 474	return 0;
 475
 476cleanup:
 477	for_each_online_cpu(cpu)
 478		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
 479	cpu_notifier_register_done();
 480	return -ENOMEM;
 481}
 482
 483static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
 484{
 485	unsigned long cpu;
 486
 487	cpu_notifier_register_begin();
 488	for_each_online_cpu(cpu)
 489		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
 490	__unregister_cpu_notifier(&pool->notifier);
 491	cpu_notifier_register_done();
 492}
 493
 494/*********************************
 495* pool functions
 496**********************************/
 497
 498static struct zswap_pool *__zswap_pool_current(void)
 499{
 500	struct zswap_pool *pool;
 501
 502	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 503	WARN_ON(!pool);
 
 504
 505	return pool;
 506}
 507
 508static struct zswap_pool *zswap_pool_current(void)
 509{
 510	assert_spin_locked(&zswap_pools_lock);
 511
 512	return __zswap_pool_current();
 513}
 514
 515static struct zswap_pool *zswap_pool_current_get(void)
 516{
 517	struct zswap_pool *pool;
 518
 519	rcu_read_lock();
 520
 521	pool = __zswap_pool_current();
 522	if (!pool || !zswap_pool_get(pool))
 523		pool = NULL;
 524
 525	rcu_read_unlock();
 526
 527	return pool;
 528}
 529
 530static struct zswap_pool *zswap_pool_last_get(void)
 531{
 532	struct zswap_pool *pool, *last = NULL;
 533
 534	rcu_read_lock();
 535
 536	list_for_each_entry_rcu(pool, &zswap_pools, list)
 537		last = pool;
 538	if (!WARN_ON(!last) && !zswap_pool_get(last))
 
 
 539		last = NULL;
 540
 541	rcu_read_unlock();
 542
 543	return last;
 544}
 545
 546/* type and compressor must be null-terminated */
 547static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 548{
 549	struct zswap_pool *pool;
 550
 551	assert_spin_locked(&zswap_pools_lock);
 552
 553	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 554		if (strcmp(pool->tfm_name, compressor))
 555			continue;
 556		if (strcmp(zpool_get_type(pool->zpool), type))
 557			continue;
 558		/* if we can't get it, it's about to be destroyed */
 559		if (!zswap_pool_get(pool))
 560			continue;
 561		return pool;
 562	}
 563
 564	return NULL;
 565}
 566
 567static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 568{
 569	struct zswap_pool *pool;
 570	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 571	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 574	if (!pool) {
 575		pr_err("pool alloc failed\n");
 576		return NULL;
 577	}
 578
 579	/* unique name for each pool specifically required by zsmalloc */
 580	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 581
 582	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 583	if (!pool->zpool) {
 584		pr_err("%s zpool not available\n", type);
 585		goto error;
 586	}
 587	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 588
 589	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 590	pool->tfm = alloc_percpu(struct crypto_comp *);
 591	if (!pool->tfm) {
 592		pr_err("percpu alloc failed\n");
 593		goto error;
 594	}
 595
 596	if (zswap_cpu_comp_init(pool))
 
 
 597		goto error;
 598	pr_debug("using %s compressor\n", pool->tfm_name);
 599
 600	/* being the current pool takes 1 ref; this func expects the
 601	 * caller to always add the new pool as the current pool
 602	 */
 603	kref_init(&pool->kref);
 604	INIT_LIST_HEAD(&pool->list);
 605
 606	zswap_pool_debug("created", pool);
 607
 608	return pool;
 609
 610error:
 611	free_percpu(pool->tfm);
 612	if (pool->zpool)
 613		zpool_destroy_pool(pool->zpool);
 614	kfree(pool);
 615	return NULL;
 616}
 617
 618static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 619{
 620	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
 621		if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
 622			pr_err("default compressor %s not available\n",
 623			       zswap_compressor);
 624			return NULL;
 625		}
 626		pr_err("compressor %s not available, using default %s\n",
 627		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
 628		param_free_charp(&zswap_compressor);
 629		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 
 630	}
 631	if (!zpool_has_pool(zswap_zpool_type)) {
 632		if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
 633			pr_err("default zpool %s not available\n",
 634			       zswap_zpool_type);
 635			return NULL;
 636		}
 
 
 
 637		pr_err("zpool %s not available, using default %s\n",
 638		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
 639		param_free_charp(&zswap_zpool_type);
 640		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 
 641	}
 
 
 
 
 
 
 
 
 
 642
 643	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 644}
 645
 646static void zswap_pool_destroy(struct zswap_pool *pool)
 647{
 648	zswap_pool_debug("destroying", pool);
 649
 650	zswap_cpu_comp_destroy(pool);
 651	free_percpu(pool->tfm);
 652	zpool_destroy_pool(pool->zpool);
 653	kfree(pool);
 654}
 655
 656static int __must_check zswap_pool_get(struct zswap_pool *pool)
 657{
 
 
 
 658	return kref_get_unless_zero(&pool->kref);
 659}
 660
 661static void __zswap_pool_release(struct rcu_head *head)
 662{
 663	struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
 
 
 664
 665	/* nobody should have been able to get a kref... */
 666	WARN_ON(kref_get_unless_zero(&pool->kref));
 667
 668	/* pool is now off zswap_pools list and has no references. */
 669	zswap_pool_destroy(pool);
 670}
 671
 672static void __zswap_pool_empty(struct kref *kref)
 673{
 674	struct zswap_pool *pool;
 675
 676	pool = container_of(kref, typeof(*pool), kref);
 677
 678	spin_lock(&zswap_pools_lock);
 679
 680	WARN_ON(pool == zswap_pool_current());
 681
 682	list_del_rcu(&pool->list);
 683	call_rcu(&pool->rcu_head, __zswap_pool_release);
 
 
 684
 685	spin_unlock(&zswap_pools_lock);
 686}
 687
 688static void zswap_pool_put(struct zswap_pool *pool)
 689{
 690	kref_put(&pool->kref, __zswap_pool_empty);
 691}
 692
 693/*********************************
 694* param callbacks
 695**********************************/
 696
 697/* val must be a null-terminated string */
 698static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 699			     char *type, char *compressor)
 700{
 701	struct zswap_pool *pool, *put_pool = NULL;
 702	char *s = strstrip((char *)val);
 703	int ret;
 704
 
 
 
 
 
 705	/* no change required */
 706	if (!strcmp(s, *(char **)kp->arg))
 707		return 0;
 708
 709	/* if this is load-time (pre-init) param setting,
 710	 * don't create a pool; that's done during init.
 711	 */
 712	if (!zswap_init_started)
 713		return param_set_charp(s, kp);
 714
 715	if (!type) {
 716		if (!zpool_has_pool(s)) {
 717			pr_err("zpool %s not available\n", s);
 718			return -ENOENT;
 719		}
 720		type = s;
 721	} else if (!compressor) {
 722		if (!crypto_has_comp(s, 0, 0)) {
 723			pr_err("compressor %s not available\n", s);
 724			return -ENOENT;
 725		}
 726		compressor = s;
 727	} else {
 728		WARN_ON(1);
 729		return -EINVAL;
 730	}
 731
 732	spin_lock(&zswap_pools_lock);
 733
 734	pool = zswap_pool_find_get(type, compressor);
 735	if (pool) {
 736		zswap_pool_debug("using existing", pool);
 
 737		list_del_rcu(&pool->list);
 738	} else {
 739		spin_unlock(&zswap_pools_lock);
 740		pool = zswap_pool_create(type, compressor);
 741		spin_lock(&zswap_pools_lock);
 742	}
 743
 
 
 
 
 
 744	if (pool)
 745		ret = param_set_charp(s, kp);
 746	else
 747		ret = -EINVAL;
 748
 
 
 749	if (!ret) {
 750		put_pool = zswap_pool_current();
 751		list_add_rcu(&pool->list, &zswap_pools);
 
 752	} else if (pool) {
 753		/* add the possibly pre-existing pool to the end of the pools
 754		 * list; if it's new (and empty) then it'll be removed and
 755		 * destroyed by the put after we drop the lock
 756		 */
 757		list_add_tail_rcu(&pool->list, &zswap_pools);
 758		put_pool = pool;
 759	}
 760
 761	spin_unlock(&zswap_pools_lock);
 762
 
 
 
 
 
 
 
 
 
 
 
 763	/* drop the ref from either the old current pool,
 764	 * or the new pool we failed to add
 765	 */
 766	if (put_pool)
 767		zswap_pool_put(put_pool);
 768
 769	return ret;
 770}
 771
 772static int zswap_compressor_param_set(const char *val,
 773				      const struct kernel_param *kp)
 774{
 775	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 776}
 777
 778static int zswap_zpool_param_set(const char *val,
 779				 const struct kernel_param *kp)
 780{
 781	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 782}
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784/*********************************
 785* writeback code
 786**********************************/
 787/* return enum for zswap_get_swap_cache_page */
 788enum zswap_get_swap_ret {
 789	ZSWAP_SWAPCACHE_NEW,
 790	ZSWAP_SWAPCACHE_EXIST,
 791	ZSWAP_SWAPCACHE_FAIL,
 792};
 793
 794/*
 795 * zswap_get_swap_cache_page
 796 *
 797 * This is an adaption of read_swap_cache_async()
 798 *
 799 * This function tries to find a page with the given swap entry
 800 * in the swapper_space address space (the swap cache).  If the page
 801 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 802 * added to the swap cache, and returned in retpage.
 803 *
 804 * If success, the swap cache page is returned in retpage
 805 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 806 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 807 *     the new page is added to swapcache and locked
 808 * Returns ZSWAP_SWAPCACHE_FAIL on error
 809 */
 810static int zswap_get_swap_cache_page(swp_entry_t entry,
 811				struct page **retpage)
 812{
 813	bool page_was_allocated;
 814
 815	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 816			NULL, 0, &page_was_allocated);
 817	if (page_was_allocated)
 818		return ZSWAP_SWAPCACHE_NEW;
 819	if (!*retpage)
 820		return ZSWAP_SWAPCACHE_FAIL;
 821	return ZSWAP_SWAPCACHE_EXIST;
 822}
 823
 824/*
 825 * Attempts to free an entry by adding a page to the swap cache,
 826 * decompressing the entry data into the page, and issuing a
 827 * bio write to write the page back to the swap device.
 828 *
 829 * This can be thought of as a "resumed writeback" of the page
 830 * to the swap device.  We are basically resuming the same swap
 831 * writeback path that was intercepted with the frontswap_store()
 832 * in the first place.  After the page has been decompressed into
 833 * the swap cache, the compressed version stored by zswap can be
 834 * freed.
 835 */
 836static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 837{
 838	struct zswap_header *zhdr;
 839	swp_entry_t swpentry;
 840	struct zswap_tree *tree;
 841	pgoff_t offset;
 842	struct zswap_entry *entry;
 843	struct page *page;
 844	struct crypto_comp *tfm;
 845	u8 *src, *dst;
 846	unsigned int dlen;
 847	int ret;
 848	struct writeback_control wbc = {
 849		.sync_mode = WB_SYNC_NONE,
 850	};
 851
 852	/* extract swpentry from data */
 853	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 854	swpentry = zhdr->swpentry; /* here */
 855	zpool_unmap_handle(pool, handle);
 856	tree = zswap_trees[swp_type(swpentry)];
 857	offset = swp_offset(swpentry);
 858
 859	/* find and ref zswap entry */
 860	spin_lock(&tree->lock);
 861	entry = zswap_entry_find_get(&tree->rbroot, offset);
 862	if (!entry) {
 863		/* entry was invalidated */
 864		spin_unlock(&tree->lock);
 
 865		return 0;
 866	}
 867	spin_unlock(&tree->lock);
 868	BUG_ON(offset != entry->offset);
 869
 870	/* try to allocate swap cache page */
 871	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 872	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 873		ret = -ENOMEM;
 874		goto fail;
 875
 876	case ZSWAP_SWAPCACHE_EXIST:
 877		/* page is already in the swap cache, ignore for now */
 878		put_page(page);
 879		ret = -EEXIST;
 880		goto fail;
 881
 882	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 883		/* decompress */
 884		dlen = PAGE_SIZE;
 885		src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
 886				ZPOOL_MM_RO) + sizeof(struct zswap_header);
 887		dst = kmap_atomic(page);
 888		tfm = *get_cpu_ptr(entry->pool->tfm);
 889		ret = crypto_comp_decompress(tfm, src, entry->length,
 890					     dst, &dlen);
 891		put_cpu_ptr(entry->pool->tfm);
 892		kunmap_atomic(dst);
 893		zpool_unmap_handle(entry->pool->zpool, entry->handle);
 894		BUG_ON(ret);
 895		BUG_ON(dlen != PAGE_SIZE);
 896
 897		/* page is up to date */
 898		SetPageUptodate(page);
 899	}
 900
 901	/* move it to the tail of the inactive list after end_writeback */
 902	SetPageReclaim(page);
 903
 904	/* start writeback */
 905	__swap_writepage(page, &wbc, end_swap_bio_write);
 906	put_page(page);
 907	zswap_written_back_pages++;
 908
 909	spin_lock(&tree->lock);
 910	/* drop local reference */
 911	zswap_entry_put(tree, entry);
 912
 913	/*
 914	* There are two possible situations for entry here:
 915	* (1) refcount is 1(normal case),  entry is valid and on the tree
 916	* (2) refcount is 0, entry is freed and not on the tree
 917	*     because invalidate happened during writeback
 918	*  search the tree and free the entry if find entry
 919	*/
 920	if (entry == zswap_rb_search(&tree->rbroot, offset))
 921		zswap_entry_put(tree, entry);
 922	spin_unlock(&tree->lock);
 923
 924	goto end;
 925
 926	/*
 927	* if we get here due to ZSWAP_SWAPCACHE_EXIST
 928	* a load may happening concurrently
 929	* it is safe and okay to not free the entry
 930	* if we free the entry in the following put
 931	* it it either okay to return !0
 932	*/
 933fail:
 934	spin_lock(&tree->lock);
 935	zswap_entry_put(tree, entry);
 936	spin_unlock(&tree->lock);
 937
 938end:
 
 939	return ret;
 940}
 941
 942static int zswap_shrink(void)
 943{
 944	struct zswap_pool *pool;
 945	int ret;
 946
 947	pool = zswap_pool_last_get();
 948	if (!pool)
 949		return -ENOENT;
 950
 951	ret = zpool_shrink(pool->zpool, 1, NULL);
 952
 953	zswap_pool_put(pool);
 954
 955	return ret;
 956}
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958/*********************************
 959* frontswap hooks
 960**********************************/
 961/* attempts to compress and store an single page */
 962static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 963				struct page *page)
 964{
 965	struct zswap_tree *tree = zswap_trees[type];
 966	struct zswap_entry *entry, *dupentry;
 967	struct crypto_comp *tfm;
 968	int ret;
 969	unsigned int dlen = PAGE_SIZE, len;
 970	unsigned long handle;
 971	char *buf;
 972	u8 *src, *dst;
 973	struct zswap_header *zhdr;
 
 
 
 
 
 
 
 974
 975	if (!zswap_enabled || !tree) {
 976		ret = -ENODEV;
 977		goto reject;
 978	}
 979
 980	/* reclaim space if needed */
 981	if (zswap_is_full()) {
 982		zswap_pool_limit_hit++;
 983		if (zswap_shrink()) {
 984			zswap_reject_reclaim_fail++;
 985			ret = -ENOMEM;
 986			goto reject;
 987		}
 
 
 
 
 
 
 
 
 
 988	}
 989
 990	/* allocate entry */
 991	entry = zswap_entry_cache_alloc(GFP_KERNEL);
 992	if (!entry) {
 993		zswap_reject_kmemcache_fail++;
 994		ret = -ENOMEM;
 995		goto reject;
 996	}
 997
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	/* if entry is successfully added, it keeps the reference */
 999	entry->pool = zswap_pool_current_get();
1000	if (!entry->pool) {
1001		ret = -EINVAL;
1002		goto freepage;
1003	}
1004
1005	/* compress */
1006	dst = get_cpu_var(zswap_dstmem);
1007	tfm = *get_cpu_ptr(entry->pool->tfm);
1008	src = kmap_atomic(page);
1009	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1010	kunmap_atomic(src);
1011	put_cpu_ptr(entry->pool->tfm);
1012	if (ret) {
1013		ret = -EINVAL;
1014		goto put_dstmem;
1015	}
1016
1017	/* store */
1018	len = dlen + sizeof(struct zswap_header);
1019	ret = zpool_malloc(entry->pool->zpool, len,
1020			   __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1021			   &handle);
 
1022	if (ret == -ENOSPC) {
1023		zswap_reject_compress_poor++;
1024		goto put_dstmem;
1025	}
1026	if (ret) {
1027		zswap_reject_alloc_fail++;
1028		goto put_dstmem;
1029	}
1030	zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1031	zhdr->swpentry = swp_entry(type, offset);
1032	buf = (u8 *)(zhdr + 1);
1033	memcpy(buf, dst, dlen);
1034	zpool_unmap_handle(entry->pool->zpool, handle);
1035	put_cpu_var(zswap_dstmem);
1036
1037	/* populate entry */
1038	entry->offset = offset;
1039	entry->handle = handle;
1040	entry->length = dlen;
1041
 
1042	/* map */
1043	spin_lock(&tree->lock);
1044	do {
1045		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1046		if (ret == -EEXIST) {
1047			zswap_duplicate_entry++;
1048			/* remove from rbtree */
1049			zswap_rb_erase(&tree->rbroot, dupentry);
1050			zswap_entry_put(tree, dupentry);
1051		}
1052	} while (ret == -EEXIST);
1053	spin_unlock(&tree->lock);
1054
1055	/* update stats */
1056	atomic_inc(&zswap_stored_pages);
1057	zswap_update_total_size();
1058
1059	return 0;
1060
1061put_dstmem:
1062	put_cpu_var(zswap_dstmem);
1063	zswap_pool_put(entry->pool);
1064freepage:
1065	zswap_entry_cache_free(entry);
1066reject:
1067	return ret;
1068}
1069
1070/*
1071 * returns 0 if the page was successfully decompressed
1072 * return -1 on entry not found or error
1073*/
1074static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1075				struct page *page)
1076{
1077	struct zswap_tree *tree = zswap_trees[type];
1078	struct zswap_entry *entry;
1079	struct crypto_comp *tfm;
1080	u8 *src, *dst;
1081	unsigned int dlen;
1082	int ret;
1083
1084	/* find */
1085	spin_lock(&tree->lock);
1086	entry = zswap_entry_find_get(&tree->rbroot, offset);
1087	if (!entry) {
1088		/* entry was written back */
1089		spin_unlock(&tree->lock);
1090		return -1;
1091	}
1092	spin_unlock(&tree->lock);
1093
 
 
 
 
 
 
 
1094	/* decompress */
1095	dlen = PAGE_SIZE;
1096	src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1097			ZPOOL_MM_RO) + sizeof(struct zswap_header);
 
1098	dst = kmap_atomic(page);
1099	tfm = *get_cpu_ptr(entry->pool->tfm);
1100	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1101	put_cpu_ptr(entry->pool->tfm);
1102	kunmap_atomic(dst);
1103	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1104	BUG_ON(ret);
1105
 
1106	spin_lock(&tree->lock);
1107	zswap_entry_put(tree, entry);
1108	spin_unlock(&tree->lock);
1109
1110	return 0;
1111}
1112
1113/* frees an entry in zswap */
1114static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1115{
1116	struct zswap_tree *tree = zswap_trees[type];
1117	struct zswap_entry *entry;
1118
1119	/* find */
1120	spin_lock(&tree->lock);
1121	entry = zswap_rb_search(&tree->rbroot, offset);
1122	if (!entry) {
1123		/* entry was written back */
1124		spin_unlock(&tree->lock);
1125		return;
1126	}
1127
1128	/* remove from rbtree */
1129	zswap_rb_erase(&tree->rbroot, entry);
1130
1131	/* drop the initial reference from entry creation */
1132	zswap_entry_put(tree, entry);
1133
1134	spin_unlock(&tree->lock);
1135}
1136
1137/* frees all zswap entries for the given swap type */
1138static void zswap_frontswap_invalidate_area(unsigned type)
1139{
1140	struct zswap_tree *tree = zswap_trees[type];
1141	struct zswap_entry *entry, *n;
1142
1143	if (!tree)
1144		return;
1145
1146	/* walk the tree and free everything */
1147	spin_lock(&tree->lock);
1148	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1149		zswap_free_entry(entry);
1150	tree->rbroot = RB_ROOT;
1151	spin_unlock(&tree->lock);
1152	kfree(tree);
1153	zswap_trees[type] = NULL;
1154}
1155
1156static void zswap_frontswap_init(unsigned type)
1157{
1158	struct zswap_tree *tree;
1159
1160	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1161	if (!tree) {
1162		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1163		return;
1164	}
1165
1166	tree->rbroot = RB_ROOT;
1167	spin_lock_init(&tree->lock);
1168	zswap_trees[type] = tree;
1169}
1170
1171static struct frontswap_ops zswap_frontswap_ops = {
1172	.store = zswap_frontswap_store,
1173	.load = zswap_frontswap_load,
1174	.invalidate_page = zswap_frontswap_invalidate_page,
1175	.invalidate_area = zswap_frontswap_invalidate_area,
1176	.init = zswap_frontswap_init
1177};
1178
1179/*********************************
1180* debugfs functions
1181**********************************/
1182#ifdef CONFIG_DEBUG_FS
1183#include <linux/debugfs.h>
1184
1185static struct dentry *zswap_debugfs_root;
1186
1187static int __init zswap_debugfs_init(void)
1188{
1189	if (!debugfs_initialized())
1190		return -ENODEV;
1191
1192	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1193	if (!zswap_debugfs_root)
1194		return -ENOMEM;
1195
1196	debugfs_create_u64("pool_limit_hit", S_IRUGO,
1197			zswap_debugfs_root, &zswap_pool_limit_hit);
1198	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1199			zswap_debugfs_root, &zswap_reject_reclaim_fail);
1200	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1201			zswap_debugfs_root, &zswap_reject_alloc_fail);
1202	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1203			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1204	debugfs_create_u64("reject_compress_poor", S_IRUGO,
1205			zswap_debugfs_root, &zswap_reject_compress_poor);
1206	debugfs_create_u64("written_back_pages", S_IRUGO,
1207			zswap_debugfs_root, &zswap_written_back_pages);
1208	debugfs_create_u64("duplicate_entry", S_IRUGO,
1209			zswap_debugfs_root, &zswap_duplicate_entry);
1210	debugfs_create_u64("pool_total_size", S_IRUGO,
1211			zswap_debugfs_root, &zswap_pool_total_size);
1212	debugfs_create_atomic_t("stored_pages", S_IRUGO,
1213			zswap_debugfs_root, &zswap_stored_pages);
 
 
1214
1215	return 0;
1216}
1217
1218static void __exit zswap_debugfs_exit(void)
1219{
1220	debugfs_remove_recursive(zswap_debugfs_root);
1221}
1222#else
1223static int __init zswap_debugfs_init(void)
1224{
1225	return 0;
1226}
1227
1228static void __exit zswap_debugfs_exit(void) { }
1229#endif
1230
1231/*********************************
1232* module init and exit
1233**********************************/
1234static int __init init_zswap(void)
1235{
1236	struct zswap_pool *pool;
 
1237
1238	zswap_init_started = true;
1239
1240	if (zswap_entry_cache_create()) {
1241		pr_err("entry cache creation failed\n");
1242		goto cache_fail;
1243	}
1244
1245	if (zswap_cpu_dstmem_init()) {
 
 
1246		pr_err("dstmem alloc failed\n");
1247		goto dstmem_fail;
1248	}
1249
 
 
 
 
 
 
 
1250	pool = __zswap_pool_create_fallback();
1251	if (!pool) {
 
 
 
 
 
1252		pr_err("pool creation failed\n");
1253		goto pool_fail;
1254	}
1255	pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1256		zpool_get_type(pool->zpool));
1257
1258	list_add(&pool->list, &zswap_pools);
1259
1260	frontswap_register_ops(&zswap_frontswap_ops);
1261	if (zswap_debugfs_init())
1262		pr_warn("debugfs initialization failed\n");
1263	return 0;
1264
1265pool_fail:
1266	zswap_cpu_dstmem_destroy();
1267dstmem_fail:
1268	zswap_entry_cache_destroy();
1269cache_fail:
 
 
 
1270	return -ENOMEM;
1271}
1272/* must be late so crypto has time to come up */
1273late_initcall(init_zswap);
1274
1275MODULE_LICENSE("GPL");
1276MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1277MODULE_DESCRIPTION("Compressed cache for swap pages");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a backend for frontswap that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
 
 
 
 
 
 
 
 
 
 
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
  23#include <linux/frontswap.h>
  24#include <linux/rbtree.h>
  25#include <linux/swap.h>
  26#include <linux/crypto.h>
  27#include <linux/mempool.h>
  28#include <linux/zpool.h>
  29
  30#include <linux/mm_types.h>
  31#include <linux/page-flags.h>
  32#include <linux/swapops.h>
  33#include <linux/writeback.h>
  34#include <linux/pagemap.h>
  35
  36/*********************************
  37* statistics
  38**********************************/
  39/* Total bytes used by the compressed storage */
  40static u64 zswap_pool_total_size;
  41/* The number of compressed pages currently stored in zswap */
  42static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  43/* The number of same-value filled pages currently stored in zswap */
  44static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  45
  46/*
  47 * The statistics below are not protected from concurrent access for
  48 * performance reasons so they may not be a 100% accurate.  However,
  49 * they do provide useful information on roughly how many times a
  50 * certain event is occurring.
  51*/
  52
  53/* Pool limit was hit (see zswap_max_pool_percent) */
  54static u64 zswap_pool_limit_hit;
  55/* Pages written back when pool limit was reached */
  56static u64 zswap_written_back_pages;
  57/* Store failed due to a reclaim failure after pool limit was reached */
  58static u64 zswap_reject_reclaim_fail;
  59/* Compressed page was too big for the allocator to (optimally) store */
  60static u64 zswap_reject_compress_poor;
  61/* Store failed because underlying allocator could not get memory */
  62static u64 zswap_reject_alloc_fail;
  63/* Store failed because the entry metadata could not be allocated (rare) */
  64static u64 zswap_reject_kmemcache_fail;
  65/* Duplicate store was encountered (rare) */
  66static u64 zswap_duplicate_entry;
  67
  68/*********************************
  69* tunables
  70**********************************/
  71
  72#define ZSWAP_PARAM_UNSET ""
  73
  74/* Enable/disable zswap (disabled by default) */
  75static bool zswap_enabled;
  76static int zswap_enabled_param_set(const char *,
  77				   const struct kernel_param *);
  78static struct kernel_param_ops zswap_enabled_param_ops = {
  79	.set =		zswap_enabled_param_set,
  80	.get =		param_get_bool,
  81};
  82module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  83
  84/* Crypto compressor to use */
  85#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  86static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  87static int zswap_compressor_param_set(const char *,
  88				      const struct kernel_param *);
  89static struct kernel_param_ops zswap_compressor_param_ops = {
  90	.set =		zswap_compressor_param_set,
  91	.get =		param_get_charp,
  92	.free =		param_free_charp,
  93};
  94module_param_cb(compressor, &zswap_compressor_param_ops,
  95		&zswap_compressor, 0644);
  96
  97/* Compressed storage zpool to use */
  98#define ZSWAP_ZPOOL_DEFAULT "zbud"
  99static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 100static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 101static struct kernel_param_ops zswap_zpool_param_ops = {
 102	.set =		zswap_zpool_param_set,
 103	.get =		param_get_charp,
 104	.free =		param_free_charp,
 105};
 106module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 107
 108/* The maximum percentage of memory that the compressed pool can occupy */
 109static unsigned int zswap_max_pool_percent = 20;
 110module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 111
 112/* Enable/disable handling same-value filled pages (enabled by default) */
 113static bool zswap_same_filled_pages_enabled = true;
 114module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 115		   bool, 0644);
 116
 117/*********************************
 118* data structures
 119**********************************/
 120
 121struct zswap_pool {
 122	struct zpool *zpool;
 123	struct crypto_comp * __percpu *tfm;
 124	struct kref kref;
 125	struct list_head list;
 126	struct work_struct work;
 127	struct hlist_node node;
 128	char tfm_name[CRYPTO_MAX_ALG_NAME];
 129};
 130
 131/*
 132 * struct zswap_entry
 133 *
 134 * This structure contains the metadata for tracking a single compressed
 135 * page within zswap.
 136 *
 137 * rbnode - links the entry into red-black tree for the appropriate swap type
 138 * offset - the swap offset for the entry.  Index into the red-black tree.
 139 * refcount - the number of outstanding reference to the entry. This is needed
 140 *            to protect against premature freeing of the entry by code
 141 *            concurrent calls to load, invalidate, and writeback.  The lock
 142 *            for the zswap_tree structure that contains the entry must
 143 *            be held while changing the refcount.  Since the lock must
 144 *            be held, there is no reason to also make refcount atomic.
 145 * length - the length in bytes of the compressed page data.  Needed during
 146 *          decompression. For a same value filled page length is 0.
 147 * pool - the zswap_pool the entry's data is in
 148 * handle - zpool allocation handle that stores the compressed page data
 149 * value - value of the same-value filled pages which have same content
 150 */
 151struct zswap_entry {
 152	struct rb_node rbnode;
 153	pgoff_t offset;
 154	int refcount;
 155	unsigned int length;
 156	struct zswap_pool *pool;
 157	union {
 158		unsigned long handle;
 159		unsigned long value;
 160	};
 161};
 162
 163struct zswap_header {
 164	swp_entry_t swpentry;
 165};
 166
 167/*
 168 * The tree lock in the zswap_tree struct protects a few things:
 169 * - the rbtree
 170 * - the refcount field of each entry in the tree
 171 */
 172struct zswap_tree {
 173	struct rb_root rbroot;
 174	spinlock_t lock;
 175};
 176
 177static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 178
 179/* RCU-protected iteration */
 180static LIST_HEAD(zswap_pools);
 181/* protects zswap_pools list modification */
 182static DEFINE_SPINLOCK(zswap_pools_lock);
 183/* pool counter to provide unique names to zpool */
 184static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 185
 186/* used by param callback function */
 187static bool zswap_init_started;
 188
 189/* fatal error during init */
 190static bool zswap_init_failed;
 191
 192/* init completed, but couldn't create the initial pool */
 193static bool zswap_has_pool;
 194
 195/*********************************
 196* helpers and fwd declarations
 197**********************************/
 198
 199#define zswap_pool_debug(msg, p)				\
 200	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 201		 zpool_get_type((p)->zpool))
 202
 203static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 204static int zswap_pool_get(struct zswap_pool *pool);
 205static void zswap_pool_put(struct zswap_pool *pool);
 206
 207static const struct zpool_ops zswap_zpool_ops = {
 208	.evict = zswap_writeback_entry
 209};
 210
 211static bool zswap_is_full(void)
 212{
 213	return totalram_pages() * zswap_max_pool_percent / 100 <
 214			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 215}
 216
 217static void zswap_update_total_size(void)
 218{
 219	struct zswap_pool *pool;
 220	u64 total = 0;
 221
 222	rcu_read_lock();
 223
 224	list_for_each_entry_rcu(pool, &zswap_pools, list)
 225		total += zpool_get_total_size(pool->zpool);
 226
 227	rcu_read_unlock();
 228
 229	zswap_pool_total_size = total;
 230}
 231
 232/*********************************
 233* zswap entry functions
 234**********************************/
 235static struct kmem_cache *zswap_entry_cache;
 236
 237static int __init zswap_entry_cache_create(void)
 238{
 239	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 240	return zswap_entry_cache == NULL;
 241}
 242
 243static void __init zswap_entry_cache_destroy(void)
 244{
 245	kmem_cache_destroy(zswap_entry_cache);
 246}
 247
 248static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 249{
 250	struct zswap_entry *entry;
 251	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 252	if (!entry)
 253		return NULL;
 254	entry->refcount = 1;
 255	RB_CLEAR_NODE(&entry->rbnode);
 256	return entry;
 257}
 258
 259static void zswap_entry_cache_free(struct zswap_entry *entry)
 260{
 261	kmem_cache_free(zswap_entry_cache, entry);
 262}
 263
 264/*********************************
 265* rbtree functions
 266**********************************/
 267static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 268{
 269	struct rb_node *node = root->rb_node;
 270	struct zswap_entry *entry;
 271
 272	while (node) {
 273		entry = rb_entry(node, struct zswap_entry, rbnode);
 274		if (entry->offset > offset)
 275			node = node->rb_left;
 276		else if (entry->offset < offset)
 277			node = node->rb_right;
 278		else
 279			return entry;
 280	}
 281	return NULL;
 282}
 283
 284/*
 285 * In the case that a entry with the same offset is found, a pointer to
 286 * the existing entry is stored in dupentry and the function returns -EEXIST
 287 */
 288static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 289			struct zswap_entry **dupentry)
 290{
 291	struct rb_node **link = &root->rb_node, *parent = NULL;
 292	struct zswap_entry *myentry;
 293
 294	while (*link) {
 295		parent = *link;
 296		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 297		if (myentry->offset > entry->offset)
 298			link = &(*link)->rb_left;
 299		else if (myentry->offset < entry->offset)
 300			link = &(*link)->rb_right;
 301		else {
 302			*dupentry = myentry;
 303			return -EEXIST;
 304		}
 305	}
 306	rb_link_node(&entry->rbnode, parent, link);
 307	rb_insert_color(&entry->rbnode, root);
 308	return 0;
 309}
 310
 311static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 312{
 313	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 314		rb_erase(&entry->rbnode, root);
 315		RB_CLEAR_NODE(&entry->rbnode);
 316	}
 317}
 318
 319/*
 320 * Carries out the common pattern of freeing and entry's zpool allocation,
 321 * freeing the entry itself, and decrementing the number of stored pages.
 322 */
 323static void zswap_free_entry(struct zswap_entry *entry)
 324{
 325	if (!entry->length)
 326		atomic_dec(&zswap_same_filled_pages);
 327	else {
 328		zpool_free(entry->pool->zpool, entry->handle);
 329		zswap_pool_put(entry->pool);
 330	}
 331	zswap_entry_cache_free(entry);
 332	atomic_dec(&zswap_stored_pages);
 333	zswap_update_total_size();
 334}
 335
 336/* caller must hold the tree lock */
 337static void zswap_entry_get(struct zswap_entry *entry)
 338{
 339	entry->refcount++;
 340}
 341
 342/* caller must hold the tree lock
 343* remove from the tree and free it, if nobody reference the entry
 344*/
 345static void zswap_entry_put(struct zswap_tree *tree,
 346			struct zswap_entry *entry)
 347{
 348	int refcount = --entry->refcount;
 349
 350	BUG_ON(refcount < 0);
 351	if (refcount == 0) {
 352		zswap_rb_erase(&tree->rbroot, entry);
 353		zswap_free_entry(entry);
 354	}
 355}
 356
 357/* caller must hold the tree lock */
 358static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 359				pgoff_t offset)
 360{
 361	struct zswap_entry *entry;
 362
 363	entry = zswap_rb_search(root, offset);
 364	if (entry)
 365		zswap_entry_get(entry);
 366
 367	return entry;
 368}
 369
 370/*********************************
 371* per-cpu code
 372**********************************/
 373static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 374
 375static int zswap_dstmem_prepare(unsigned int cpu)
 376{
 377	u8 *dst;
 378
 379	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 380	if (!dst)
 381		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	per_cpu(zswap_dstmem, cpu) = dst;
 
 
 
 
 
 
 384	return 0;
 
 
 
 
 
 
 385}
 386
 387static int zswap_dstmem_dead(unsigned int cpu)
 388{
 389	u8 *dst;
 390
 391	dst = per_cpu(zswap_dstmem, cpu);
 392	kfree(dst);
 393	per_cpu(zswap_dstmem, cpu) = NULL;
 394
 395	return 0;
 
 
 
 
 396}
 397
 398static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 
 399{
 400	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 401	struct crypto_comp *tfm;
 402
 403	if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
 404		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405
 406	tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
 407	if (IS_ERR_OR_NULL(tfm)) {
 408		pr_err("could not alloc crypto comp %s : %ld\n",
 409		       pool->tfm_name, PTR_ERR(tfm));
 410		return -ENOMEM;
 411	}
 412	*per_cpu_ptr(pool->tfm, cpu) = tfm;
 413	return 0;
 414}
 415
 416static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 417{
 418	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 419	struct crypto_comp *tfm;
 
 
 420
 421	tfm = *per_cpu_ptr(pool->tfm, cpu);
 422	if (!IS_ERR_OR_NULL(tfm))
 423		crypto_free_comp(tfm);
 424	*per_cpu_ptr(pool->tfm, cpu) = NULL;
 
 
 
 425	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428/*********************************
 429* pool functions
 430**********************************/
 431
 432static struct zswap_pool *__zswap_pool_current(void)
 433{
 434	struct zswap_pool *pool;
 435
 436	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 437	WARN_ONCE(!pool && zswap_has_pool,
 438		  "%s: no page storage pool!\n", __func__);
 439
 440	return pool;
 441}
 442
 443static struct zswap_pool *zswap_pool_current(void)
 444{
 445	assert_spin_locked(&zswap_pools_lock);
 446
 447	return __zswap_pool_current();
 448}
 449
 450static struct zswap_pool *zswap_pool_current_get(void)
 451{
 452	struct zswap_pool *pool;
 453
 454	rcu_read_lock();
 455
 456	pool = __zswap_pool_current();
 457	if (!zswap_pool_get(pool))
 458		pool = NULL;
 459
 460	rcu_read_unlock();
 461
 462	return pool;
 463}
 464
 465static struct zswap_pool *zswap_pool_last_get(void)
 466{
 467	struct zswap_pool *pool, *last = NULL;
 468
 469	rcu_read_lock();
 470
 471	list_for_each_entry_rcu(pool, &zswap_pools, list)
 472		last = pool;
 473	WARN_ONCE(!last && zswap_has_pool,
 474		  "%s: no page storage pool!\n", __func__);
 475	if (!zswap_pool_get(last))
 476		last = NULL;
 477
 478	rcu_read_unlock();
 479
 480	return last;
 481}
 482
 483/* type and compressor must be null-terminated */
 484static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 485{
 486	struct zswap_pool *pool;
 487
 488	assert_spin_locked(&zswap_pools_lock);
 489
 490	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 491		if (strcmp(pool->tfm_name, compressor))
 492			continue;
 493		if (strcmp(zpool_get_type(pool->zpool), type))
 494			continue;
 495		/* if we can't get it, it's about to be destroyed */
 496		if (!zswap_pool_get(pool))
 497			continue;
 498		return pool;
 499	}
 500
 501	return NULL;
 502}
 503
 504static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 505{
 506	struct zswap_pool *pool;
 507	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 508	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 509	int ret;
 510
 511	if (!zswap_has_pool) {
 512		/* if either are unset, pool initialization failed, and we
 513		 * need both params to be set correctly before trying to
 514		 * create a pool.
 515		 */
 516		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 517			return NULL;
 518		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 519			return NULL;
 520	}
 521
 522	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 523	if (!pool)
 
 524		return NULL;
 
 525
 526	/* unique name for each pool specifically required by zsmalloc */
 527	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 528
 529	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 530	if (!pool->zpool) {
 531		pr_err("%s zpool not available\n", type);
 532		goto error;
 533	}
 534	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 535
 536	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 537	pool->tfm = alloc_percpu(struct crypto_comp *);
 538	if (!pool->tfm) {
 539		pr_err("percpu alloc failed\n");
 540		goto error;
 541	}
 542
 543	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 544				       &pool->node);
 545	if (ret)
 546		goto error;
 547	pr_debug("using %s compressor\n", pool->tfm_name);
 548
 549	/* being the current pool takes 1 ref; this func expects the
 550	 * caller to always add the new pool as the current pool
 551	 */
 552	kref_init(&pool->kref);
 553	INIT_LIST_HEAD(&pool->list);
 554
 555	zswap_pool_debug("created", pool);
 556
 557	return pool;
 558
 559error:
 560	free_percpu(pool->tfm);
 561	if (pool->zpool)
 562		zpool_destroy_pool(pool->zpool);
 563	kfree(pool);
 564	return NULL;
 565}
 566
 567static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 568{
 569	bool has_comp, has_zpool;
 570
 571	has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 572	if (!has_comp && strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
 
 
 573		pr_err("compressor %s not available, using default %s\n",
 574		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
 575		param_free_charp(&zswap_compressor);
 576		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 577		has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 578	}
 579	if (!has_comp) {
 580		pr_err("default compressor %s not available\n",
 581		       zswap_compressor);
 582		param_free_charp(&zswap_compressor);
 583		zswap_compressor = ZSWAP_PARAM_UNSET;
 584	}
 585
 586	has_zpool = zpool_has_pool(zswap_zpool_type);
 587	if (!has_zpool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
 588		pr_err("zpool %s not available, using default %s\n",
 589		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
 590		param_free_charp(&zswap_zpool_type);
 591		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 592		has_zpool = zpool_has_pool(zswap_zpool_type);
 593	}
 594	if (!has_zpool) {
 595		pr_err("default zpool %s not available\n",
 596		       zswap_zpool_type);
 597		param_free_charp(&zswap_zpool_type);
 598		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 599	}
 600
 601	if (!has_comp || !has_zpool)
 602		return NULL;
 603
 604	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 605}
 606
 607static void zswap_pool_destroy(struct zswap_pool *pool)
 608{
 609	zswap_pool_debug("destroying", pool);
 610
 611	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 612	free_percpu(pool->tfm);
 613	zpool_destroy_pool(pool->zpool);
 614	kfree(pool);
 615}
 616
 617static int __must_check zswap_pool_get(struct zswap_pool *pool)
 618{
 619	if (!pool)
 620		return 0;
 621
 622	return kref_get_unless_zero(&pool->kref);
 623}
 624
 625static void __zswap_pool_release(struct work_struct *work)
 626{
 627	struct zswap_pool *pool = container_of(work, typeof(*pool), work);
 628
 629	synchronize_rcu();
 630
 631	/* nobody should have been able to get a kref... */
 632	WARN_ON(kref_get_unless_zero(&pool->kref));
 633
 634	/* pool is now off zswap_pools list and has no references. */
 635	zswap_pool_destroy(pool);
 636}
 637
 638static void __zswap_pool_empty(struct kref *kref)
 639{
 640	struct zswap_pool *pool;
 641
 642	pool = container_of(kref, typeof(*pool), kref);
 643
 644	spin_lock(&zswap_pools_lock);
 645
 646	WARN_ON(pool == zswap_pool_current());
 647
 648	list_del_rcu(&pool->list);
 649
 650	INIT_WORK(&pool->work, __zswap_pool_release);
 651	schedule_work(&pool->work);
 652
 653	spin_unlock(&zswap_pools_lock);
 654}
 655
 656static void zswap_pool_put(struct zswap_pool *pool)
 657{
 658	kref_put(&pool->kref, __zswap_pool_empty);
 659}
 660
 661/*********************************
 662* param callbacks
 663**********************************/
 664
 665/* val must be a null-terminated string */
 666static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 667			     char *type, char *compressor)
 668{
 669	struct zswap_pool *pool, *put_pool = NULL;
 670	char *s = strstrip((char *)val);
 671	int ret;
 672
 673	if (zswap_init_failed) {
 674		pr_err("can't set param, initialization failed\n");
 675		return -ENODEV;
 676	}
 677
 678	/* no change required */
 679	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 680		return 0;
 681
 682	/* if this is load-time (pre-init) param setting,
 683	 * don't create a pool; that's done during init.
 684	 */
 685	if (!zswap_init_started)
 686		return param_set_charp(s, kp);
 687
 688	if (!type) {
 689		if (!zpool_has_pool(s)) {
 690			pr_err("zpool %s not available\n", s);
 691			return -ENOENT;
 692		}
 693		type = s;
 694	} else if (!compressor) {
 695		if (!crypto_has_comp(s, 0, 0)) {
 696			pr_err("compressor %s not available\n", s);
 697			return -ENOENT;
 698		}
 699		compressor = s;
 700	} else {
 701		WARN_ON(1);
 702		return -EINVAL;
 703	}
 704
 705	spin_lock(&zswap_pools_lock);
 706
 707	pool = zswap_pool_find_get(type, compressor);
 708	if (pool) {
 709		zswap_pool_debug("using existing", pool);
 710		WARN_ON(pool == zswap_pool_current());
 711		list_del_rcu(&pool->list);
 
 
 
 
 712	}
 713
 714	spin_unlock(&zswap_pools_lock);
 715
 716	if (!pool)
 717		pool = zswap_pool_create(type, compressor);
 718
 719	if (pool)
 720		ret = param_set_charp(s, kp);
 721	else
 722		ret = -EINVAL;
 723
 724	spin_lock(&zswap_pools_lock);
 725
 726	if (!ret) {
 727		put_pool = zswap_pool_current();
 728		list_add_rcu(&pool->list, &zswap_pools);
 729		zswap_has_pool = true;
 730	} else if (pool) {
 731		/* add the possibly pre-existing pool to the end of the pools
 732		 * list; if it's new (and empty) then it'll be removed and
 733		 * destroyed by the put after we drop the lock
 734		 */
 735		list_add_tail_rcu(&pool->list, &zswap_pools);
 736		put_pool = pool;
 737	}
 738
 739	spin_unlock(&zswap_pools_lock);
 740
 741	if (!zswap_has_pool && !pool) {
 742		/* if initial pool creation failed, and this pool creation also
 743		 * failed, maybe both compressor and zpool params were bad.
 744		 * Allow changing this param, so pool creation will succeed
 745		 * when the other param is changed. We already verified this
 746		 * param is ok in the zpool_has_pool() or crypto_has_comp()
 747		 * checks above.
 748		 */
 749		ret = param_set_charp(s, kp);
 750	}
 751
 752	/* drop the ref from either the old current pool,
 753	 * or the new pool we failed to add
 754	 */
 755	if (put_pool)
 756		zswap_pool_put(put_pool);
 757
 758	return ret;
 759}
 760
 761static int zswap_compressor_param_set(const char *val,
 762				      const struct kernel_param *kp)
 763{
 764	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 765}
 766
 767static int zswap_zpool_param_set(const char *val,
 768				 const struct kernel_param *kp)
 769{
 770	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 771}
 772
 773static int zswap_enabled_param_set(const char *val,
 774				   const struct kernel_param *kp)
 775{
 776	if (zswap_init_failed) {
 777		pr_err("can't enable, initialization failed\n");
 778		return -ENODEV;
 779	}
 780	if (!zswap_has_pool && zswap_init_started) {
 781		pr_err("can't enable, no pool configured\n");
 782		return -ENODEV;
 783	}
 784
 785	return param_set_bool(val, kp);
 786}
 787
 788/*********************************
 789* writeback code
 790**********************************/
 791/* return enum for zswap_get_swap_cache_page */
 792enum zswap_get_swap_ret {
 793	ZSWAP_SWAPCACHE_NEW,
 794	ZSWAP_SWAPCACHE_EXIST,
 795	ZSWAP_SWAPCACHE_FAIL,
 796};
 797
 798/*
 799 * zswap_get_swap_cache_page
 800 *
 801 * This is an adaption of read_swap_cache_async()
 802 *
 803 * This function tries to find a page with the given swap entry
 804 * in the swapper_space address space (the swap cache).  If the page
 805 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 806 * added to the swap cache, and returned in retpage.
 807 *
 808 * If success, the swap cache page is returned in retpage
 809 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 810 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 811 *     the new page is added to swapcache and locked
 812 * Returns ZSWAP_SWAPCACHE_FAIL on error
 813 */
 814static int zswap_get_swap_cache_page(swp_entry_t entry,
 815				struct page **retpage)
 816{
 817	bool page_was_allocated;
 818
 819	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 820			NULL, 0, &page_was_allocated);
 821	if (page_was_allocated)
 822		return ZSWAP_SWAPCACHE_NEW;
 823	if (!*retpage)
 824		return ZSWAP_SWAPCACHE_FAIL;
 825	return ZSWAP_SWAPCACHE_EXIST;
 826}
 827
 828/*
 829 * Attempts to free an entry by adding a page to the swap cache,
 830 * decompressing the entry data into the page, and issuing a
 831 * bio write to write the page back to the swap device.
 832 *
 833 * This can be thought of as a "resumed writeback" of the page
 834 * to the swap device.  We are basically resuming the same swap
 835 * writeback path that was intercepted with the frontswap_store()
 836 * in the first place.  After the page has been decompressed into
 837 * the swap cache, the compressed version stored by zswap can be
 838 * freed.
 839 */
 840static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 841{
 842	struct zswap_header *zhdr;
 843	swp_entry_t swpentry;
 844	struct zswap_tree *tree;
 845	pgoff_t offset;
 846	struct zswap_entry *entry;
 847	struct page *page;
 848	struct crypto_comp *tfm;
 849	u8 *src, *dst;
 850	unsigned int dlen;
 851	int ret;
 852	struct writeback_control wbc = {
 853		.sync_mode = WB_SYNC_NONE,
 854	};
 855
 856	/* extract swpentry from data */
 857	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 858	swpentry = zhdr->swpentry; /* here */
 
 859	tree = zswap_trees[swp_type(swpentry)];
 860	offset = swp_offset(swpentry);
 861
 862	/* find and ref zswap entry */
 863	spin_lock(&tree->lock);
 864	entry = zswap_entry_find_get(&tree->rbroot, offset);
 865	if (!entry) {
 866		/* entry was invalidated */
 867		spin_unlock(&tree->lock);
 868		zpool_unmap_handle(pool, handle);
 869		return 0;
 870	}
 871	spin_unlock(&tree->lock);
 872	BUG_ON(offset != entry->offset);
 873
 874	/* try to allocate swap cache page */
 875	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 876	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 877		ret = -ENOMEM;
 878		goto fail;
 879
 880	case ZSWAP_SWAPCACHE_EXIST:
 881		/* page is already in the swap cache, ignore for now */
 882		put_page(page);
 883		ret = -EEXIST;
 884		goto fail;
 885
 886	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 887		/* decompress */
 888		dlen = PAGE_SIZE;
 889		src = (u8 *)zhdr + sizeof(struct zswap_header);
 
 890		dst = kmap_atomic(page);
 891		tfm = *get_cpu_ptr(entry->pool->tfm);
 892		ret = crypto_comp_decompress(tfm, src, entry->length,
 893					     dst, &dlen);
 894		put_cpu_ptr(entry->pool->tfm);
 895		kunmap_atomic(dst);
 
 896		BUG_ON(ret);
 897		BUG_ON(dlen != PAGE_SIZE);
 898
 899		/* page is up to date */
 900		SetPageUptodate(page);
 901	}
 902
 903	/* move it to the tail of the inactive list after end_writeback */
 904	SetPageReclaim(page);
 905
 906	/* start writeback */
 907	__swap_writepage(page, &wbc, end_swap_bio_write);
 908	put_page(page);
 909	zswap_written_back_pages++;
 910
 911	spin_lock(&tree->lock);
 912	/* drop local reference */
 913	zswap_entry_put(tree, entry);
 914
 915	/*
 916	* There are two possible situations for entry here:
 917	* (1) refcount is 1(normal case),  entry is valid and on the tree
 918	* (2) refcount is 0, entry is freed and not on the tree
 919	*     because invalidate happened during writeback
 920	*  search the tree and free the entry if find entry
 921	*/
 922	if (entry == zswap_rb_search(&tree->rbroot, offset))
 923		zswap_entry_put(tree, entry);
 924	spin_unlock(&tree->lock);
 925
 926	goto end;
 927
 928	/*
 929	* if we get here due to ZSWAP_SWAPCACHE_EXIST
 930	* a load may happening concurrently
 931	* it is safe and okay to not free the entry
 932	* if we free the entry in the following put
 933	* it it either okay to return !0
 934	*/
 935fail:
 936	spin_lock(&tree->lock);
 937	zswap_entry_put(tree, entry);
 938	spin_unlock(&tree->lock);
 939
 940end:
 941	zpool_unmap_handle(pool, handle);
 942	return ret;
 943}
 944
 945static int zswap_shrink(void)
 946{
 947	struct zswap_pool *pool;
 948	int ret;
 949
 950	pool = zswap_pool_last_get();
 951	if (!pool)
 952		return -ENOENT;
 953
 954	ret = zpool_shrink(pool->zpool, 1, NULL);
 955
 956	zswap_pool_put(pool);
 957
 958	return ret;
 959}
 960
 961static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
 962{
 963	unsigned int pos;
 964	unsigned long *page;
 965
 966	page = (unsigned long *)ptr;
 967	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
 968		if (page[pos] != page[0])
 969			return 0;
 970	}
 971	*value = page[0];
 972	return 1;
 973}
 974
 975static void zswap_fill_page(void *ptr, unsigned long value)
 976{
 977	unsigned long *page;
 978
 979	page = (unsigned long *)ptr;
 980	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
 981}
 982
 983/*********************************
 984* frontswap hooks
 985**********************************/
 986/* attempts to compress and store an single page */
 987static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 988				struct page *page)
 989{
 990	struct zswap_tree *tree = zswap_trees[type];
 991	struct zswap_entry *entry, *dupentry;
 992	struct crypto_comp *tfm;
 993	int ret;
 994	unsigned int hlen, dlen = PAGE_SIZE;
 995	unsigned long handle, value;
 996	char *buf;
 997	u8 *src, *dst;
 998	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
 999	gfp_t gfp;
1000
1001	/* THP isn't supported */
1002	if (PageTransHuge(page)) {
1003		ret = -EINVAL;
1004		goto reject;
1005	}
1006
1007	if (!zswap_enabled || !tree) {
1008		ret = -ENODEV;
1009		goto reject;
1010	}
1011
1012	/* reclaim space if needed */
1013	if (zswap_is_full()) {
1014		zswap_pool_limit_hit++;
1015		if (zswap_shrink()) {
1016			zswap_reject_reclaim_fail++;
1017			ret = -ENOMEM;
1018			goto reject;
1019		}
1020
1021		/* A second zswap_is_full() check after
1022		 * zswap_shrink() to make sure it's now
1023		 * under the max_pool_percent
1024		 */
1025		if (zswap_is_full()) {
1026			ret = -ENOMEM;
1027			goto reject;
1028		}
1029	}
1030
1031	/* allocate entry */
1032	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1033	if (!entry) {
1034		zswap_reject_kmemcache_fail++;
1035		ret = -ENOMEM;
1036		goto reject;
1037	}
1038
1039	if (zswap_same_filled_pages_enabled) {
1040		src = kmap_atomic(page);
1041		if (zswap_is_page_same_filled(src, &value)) {
1042			kunmap_atomic(src);
1043			entry->offset = offset;
1044			entry->length = 0;
1045			entry->value = value;
1046			atomic_inc(&zswap_same_filled_pages);
1047			goto insert_entry;
1048		}
1049		kunmap_atomic(src);
1050	}
1051
1052	/* if entry is successfully added, it keeps the reference */
1053	entry->pool = zswap_pool_current_get();
1054	if (!entry->pool) {
1055		ret = -EINVAL;
1056		goto freepage;
1057	}
1058
1059	/* compress */
1060	dst = get_cpu_var(zswap_dstmem);
1061	tfm = *get_cpu_ptr(entry->pool->tfm);
1062	src = kmap_atomic(page);
1063	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1064	kunmap_atomic(src);
1065	put_cpu_ptr(entry->pool->tfm);
1066	if (ret) {
1067		ret = -EINVAL;
1068		goto put_dstmem;
1069	}
1070
1071	/* store */
1072	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1073	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1074	if (zpool_malloc_support_movable(entry->pool->zpool))
1075		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1076	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1077	if (ret == -ENOSPC) {
1078		zswap_reject_compress_poor++;
1079		goto put_dstmem;
1080	}
1081	if (ret) {
1082		zswap_reject_alloc_fail++;
1083		goto put_dstmem;
1084	}
1085	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1086	memcpy(buf, &zhdr, hlen);
1087	memcpy(buf + hlen, dst, dlen);
 
1088	zpool_unmap_handle(entry->pool->zpool, handle);
1089	put_cpu_var(zswap_dstmem);
1090
1091	/* populate entry */
1092	entry->offset = offset;
1093	entry->handle = handle;
1094	entry->length = dlen;
1095
1096insert_entry:
1097	/* map */
1098	spin_lock(&tree->lock);
1099	do {
1100		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1101		if (ret == -EEXIST) {
1102			zswap_duplicate_entry++;
1103			/* remove from rbtree */
1104			zswap_rb_erase(&tree->rbroot, dupentry);
1105			zswap_entry_put(tree, dupentry);
1106		}
1107	} while (ret == -EEXIST);
1108	spin_unlock(&tree->lock);
1109
1110	/* update stats */
1111	atomic_inc(&zswap_stored_pages);
1112	zswap_update_total_size();
1113
1114	return 0;
1115
1116put_dstmem:
1117	put_cpu_var(zswap_dstmem);
1118	zswap_pool_put(entry->pool);
1119freepage:
1120	zswap_entry_cache_free(entry);
1121reject:
1122	return ret;
1123}
1124
1125/*
1126 * returns 0 if the page was successfully decompressed
1127 * return -1 on entry not found or error
1128*/
1129static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1130				struct page *page)
1131{
1132	struct zswap_tree *tree = zswap_trees[type];
1133	struct zswap_entry *entry;
1134	struct crypto_comp *tfm;
1135	u8 *src, *dst;
1136	unsigned int dlen;
1137	int ret;
1138
1139	/* find */
1140	spin_lock(&tree->lock);
1141	entry = zswap_entry_find_get(&tree->rbroot, offset);
1142	if (!entry) {
1143		/* entry was written back */
1144		spin_unlock(&tree->lock);
1145		return -1;
1146	}
1147	spin_unlock(&tree->lock);
1148
1149	if (!entry->length) {
1150		dst = kmap_atomic(page);
1151		zswap_fill_page(dst, entry->value);
1152		kunmap_atomic(dst);
1153		goto freeentry;
1154	}
1155
1156	/* decompress */
1157	dlen = PAGE_SIZE;
1158	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1159	if (zpool_evictable(entry->pool->zpool))
1160		src += sizeof(struct zswap_header);
1161	dst = kmap_atomic(page);
1162	tfm = *get_cpu_ptr(entry->pool->tfm);
1163	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1164	put_cpu_ptr(entry->pool->tfm);
1165	kunmap_atomic(dst);
1166	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1167	BUG_ON(ret);
1168
1169freeentry:
1170	spin_lock(&tree->lock);
1171	zswap_entry_put(tree, entry);
1172	spin_unlock(&tree->lock);
1173
1174	return 0;
1175}
1176
1177/* frees an entry in zswap */
1178static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1179{
1180	struct zswap_tree *tree = zswap_trees[type];
1181	struct zswap_entry *entry;
1182
1183	/* find */
1184	spin_lock(&tree->lock);
1185	entry = zswap_rb_search(&tree->rbroot, offset);
1186	if (!entry) {
1187		/* entry was written back */
1188		spin_unlock(&tree->lock);
1189		return;
1190	}
1191
1192	/* remove from rbtree */
1193	zswap_rb_erase(&tree->rbroot, entry);
1194
1195	/* drop the initial reference from entry creation */
1196	zswap_entry_put(tree, entry);
1197
1198	spin_unlock(&tree->lock);
1199}
1200
1201/* frees all zswap entries for the given swap type */
1202static void zswap_frontswap_invalidate_area(unsigned type)
1203{
1204	struct zswap_tree *tree = zswap_trees[type];
1205	struct zswap_entry *entry, *n;
1206
1207	if (!tree)
1208		return;
1209
1210	/* walk the tree and free everything */
1211	spin_lock(&tree->lock);
1212	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1213		zswap_free_entry(entry);
1214	tree->rbroot = RB_ROOT;
1215	spin_unlock(&tree->lock);
1216	kfree(tree);
1217	zswap_trees[type] = NULL;
1218}
1219
1220static void zswap_frontswap_init(unsigned type)
1221{
1222	struct zswap_tree *tree;
1223
1224	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1225	if (!tree) {
1226		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1227		return;
1228	}
1229
1230	tree->rbroot = RB_ROOT;
1231	spin_lock_init(&tree->lock);
1232	zswap_trees[type] = tree;
1233}
1234
1235static struct frontswap_ops zswap_frontswap_ops = {
1236	.store = zswap_frontswap_store,
1237	.load = zswap_frontswap_load,
1238	.invalidate_page = zswap_frontswap_invalidate_page,
1239	.invalidate_area = zswap_frontswap_invalidate_area,
1240	.init = zswap_frontswap_init
1241};
1242
1243/*********************************
1244* debugfs functions
1245**********************************/
1246#ifdef CONFIG_DEBUG_FS
1247#include <linux/debugfs.h>
1248
1249static struct dentry *zswap_debugfs_root;
1250
1251static int __init zswap_debugfs_init(void)
1252{
1253	if (!debugfs_initialized())
1254		return -ENODEV;
1255
1256	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
 
 
1257
1258	debugfs_create_u64("pool_limit_hit", 0444,
1259			   zswap_debugfs_root, &zswap_pool_limit_hit);
1260	debugfs_create_u64("reject_reclaim_fail", 0444,
1261			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1262	debugfs_create_u64("reject_alloc_fail", 0444,
1263			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1264	debugfs_create_u64("reject_kmemcache_fail", 0444,
1265			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1266	debugfs_create_u64("reject_compress_poor", 0444,
1267			   zswap_debugfs_root, &zswap_reject_compress_poor);
1268	debugfs_create_u64("written_back_pages", 0444,
1269			   zswap_debugfs_root, &zswap_written_back_pages);
1270	debugfs_create_u64("duplicate_entry", 0444,
1271			   zswap_debugfs_root, &zswap_duplicate_entry);
1272	debugfs_create_u64("pool_total_size", 0444,
1273			   zswap_debugfs_root, &zswap_pool_total_size);
1274	debugfs_create_atomic_t("stored_pages", 0444,
1275				zswap_debugfs_root, &zswap_stored_pages);
1276	debugfs_create_atomic_t("same_filled_pages", 0444,
1277				zswap_debugfs_root, &zswap_same_filled_pages);
1278
1279	return 0;
1280}
1281
1282static void __exit zswap_debugfs_exit(void)
1283{
1284	debugfs_remove_recursive(zswap_debugfs_root);
1285}
1286#else
1287static int __init zswap_debugfs_init(void)
1288{
1289	return 0;
1290}
1291
1292static void __exit zswap_debugfs_exit(void) { }
1293#endif
1294
1295/*********************************
1296* module init and exit
1297**********************************/
1298static int __init init_zswap(void)
1299{
1300	struct zswap_pool *pool;
1301	int ret;
1302
1303	zswap_init_started = true;
1304
1305	if (zswap_entry_cache_create()) {
1306		pr_err("entry cache creation failed\n");
1307		goto cache_fail;
1308	}
1309
1310	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1311				zswap_dstmem_prepare, zswap_dstmem_dead);
1312	if (ret) {
1313		pr_err("dstmem alloc failed\n");
1314		goto dstmem_fail;
1315	}
1316
1317	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1318				      "mm/zswap_pool:prepare",
1319				      zswap_cpu_comp_prepare,
1320				      zswap_cpu_comp_dead);
1321	if (ret)
1322		goto hp_fail;
1323
1324	pool = __zswap_pool_create_fallback();
1325	if (pool) {
1326		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1327			zpool_get_type(pool->zpool));
1328		list_add(&pool->list, &zswap_pools);
1329		zswap_has_pool = true;
1330	} else {
1331		pr_err("pool creation failed\n");
1332		zswap_enabled = false;
1333	}
 
 
 
 
1334
1335	frontswap_register_ops(&zswap_frontswap_ops);
1336	if (zswap_debugfs_init())
1337		pr_warn("debugfs initialization failed\n");
1338	return 0;
1339
1340hp_fail:
1341	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1342dstmem_fail:
1343	zswap_entry_cache_destroy();
1344cache_fail:
1345	/* if built-in, we aren't unloaded on failure; don't allow use */
1346	zswap_init_failed = true;
1347	zswap_enabled = false;
1348	return -ENOMEM;
1349}
1350/* must be late so crypto has time to come up */
1351late_initcall(init_zswap);
1352
1353MODULE_LICENSE("GPL");
1354MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1355MODULE_DESCRIPTION("Compressed cache for swap pages");