Loading...
1/*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29#include <linux/mm.h>
30#include <linux/export.h>
31#include <linux/slab.h>
32#include <linux/init.h>
33#include <linux/rculist.h>
34#include <linux/bootmem.h>
35#include <linux/hash.h>
36#include <linux/pid_namespace.h>
37#include <linux/init_task.h>
38#include <linux/syscalls.h>
39#include <linux/proc_ns.h>
40#include <linux/proc_fs.h>
41
42#define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44static struct hlist_head *pid_hash;
45static unsigned int pidhash_shift = 4;
46struct pid init_struct_pid = INIT_STRUCT_PID;
47
48int pid_max = PID_MAX_DEFAULT;
49
50#define RESERVED_PIDS 300
51
52int pid_max_min = RESERVED_PIDS + 1;
53int pid_max_max = PID_MAX_LIMIT;
54
55static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57{
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59}
60
61#define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64/*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
73 },
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 },
77 .last_pid = 0,
78 .nr_hashed = PIDNS_HASH_ADDING,
79 .level = 0,
80 .child_reaper = &init_task,
81 .user_ns = &init_user_ns,
82 .ns.inum = PROC_PID_INIT_INO,
83#ifdef CONFIG_PID_NS
84 .ns.ops = &pidns_operations,
85#endif
86};
87EXPORT_SYMBOL_GPL(init_pid_ns);
88
89/*
90 * Note: disable interrupts while the pidmap_lock is held as an
91 * interrupt might come in and do read_lock(&tasklist_lock).
92 *
93 * If we don't disable interrupts there is a nasty deadlock between
94 * detach_pid()->free_pid() and another cpu that does
95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
96 * read_lock(&tasklist_lock);
97 *
98 * After we clean up the tasklist_lock and know there are no
99 * irq handlers that take it we can leave the interrupts enabled.
100 * For now it is easier to be safe than to prove it can't happen.
101 */
102
103static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104
105static void free_pidmap(struct upid *upid)
106{
107 int nr = upid->nr;
108 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
109 int offset = nr & BITS_PER_PAGE_MASK;
110
111 clear_bit(offset, map->page);
112 atomic_inc(&map->nr_free);
113}
114
115/*
116 * If we started walking pids at 'base', is 'a' seen before 'b'?
117 */
118static int pid_before(int base, int a, int b)
119{
120 /*
121 * This is the same as saying
122 *
123 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
124 * and that mapping orders 'a' and 'b' with respect to 'base'.
125 */
126 return (unsigned)(a - base) < (unsigned)(b - base);
127}
128
129/*
130 * We might be racing with someone else trying to set pid_ns->last_pid
131 * at the pid allocation time (there's also a sysctl for this, but racing
132 * with this one is OK, see comment in kernel/pid_namespace.c about it).
133 * We want the winner to have the "later" value, because if the
134 * "earlier" value prevails, then a pid may get reused immediately.
135 *
136 * Since pids rollover, it is not sufficient to just pick the bigger
137 * value. We have to consider where we started counting from.
138 *
139 * 'base' is the value of pid_ns->last_pid that we observed when
140 * we started looking for a pid.
141 *
142 * 'pid' is the pid that we eventually found.
143 */
144static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
145{
146 int prev;
147 int last_write = base;
148 do {
149 prev = last_write;
150 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
151 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
152}
153
154static int alloc_pidmap(struct pid_namespace *pid_ns)
155{
156 int i, offset, max_scan, pid, last = pid_ns->last_pid;
157 struct pidmap *map;
158
159 pid = last + 1;
160 if (pid >= pid_max)
161 pid = RESERVED_PIDS;
162 offset = pid & BITS_PER_PAGE_MASK;
163 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
164 /*
165 * If last_pid points into the middle of the map->page we
166 * want to scan this bitmap block twice, the second time
167 * we start with offset == 0 (or RESERVED_PIDS).
168 */
169 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
170 for (i = 0; i <= max_scan; ++i) {
171 if (unlikely(!map->page)) {
172 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
173 /*
174 * Free the page if someone raced with us
175 * installing it:
176 */
177 spin_lock_irq(&pidmap_lock);
178 if (!map->page) {
179 map->page = page;
180 page = NULL;
181 }
182 spin_unlock_irq(&pidmap_lock);
183 kfree(page);
184 if (unlikely(!map->page))
185 return -ENOMEM;
186 }
187 if (likely(atomic_read(&map->nr_free))) {
188 for ( ; ; ) {
189 if (!test_and_set_bit(offset, map->page)) {
190 atomic_dec(&map->nr_free);
191 set_last_pid(pid_ns, last, pid);
192 return pid;
193 }
194 offset = find_next_offset(map, offset);
195 if (offset >= BITS_PER_PAGE)
196 break;
197 pid = mk_pid(pid_ns, map, offset);
198 if (pid >= pid_max)
199 break;
200 }
201 }
202 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
203 ++map;
204 offset = 0;
205 } else {
206 map = &pid_ns->pidmap[0];
207 offset = RESERVED_PIDS;
208 if (unlikely(last == offset))
209 break;
210 }
211 pid = mk_pid(pid_ns, map, offset);
212 }
213 return -EAGAIN;
214}
215
216int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
217{
218 int offset;
219 struct pidmap *map, *end;
220
221 if (last >= PID_MAX_LIMIT)
222 return -1;
223
224 offset = (last + 1) & BITS_PER_PAGE_MASK;
225 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
226 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
227 for (; map < end; map++, offset = 0) {
228 if (unlikely(!map->page))
229 continue;
230 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
231 if (offset < BITS_PER_PAGE)
232 return mk_pid(pid_ns, map, offset);
233 }
234 return -1;
235}
236
237void put_pid(struct pid *pid)
238{
239 struct pid_namespace *ns;
240
241 if (!pid)
242 return;
243
244 ns = pid->numbers[pid->level].ns;
245 if ((atomic_read(&pid->count) == 1) ||
246 atomic_dec_and_test(&pid->count)) {
247 kmem_cache_free(ns->pid_cachep, pid);
248 put_pid_ns(ns);
249 }
250}
251EXPORT_SYMBOL_GPL(put_pid);
252
253static void delayed_put_pid(struct rcu_head *rhp)
254{
255 struct pid *pid = container_of(rhp, struct pid, rcu);
256 put_pid(pid);
257}
258
259void free_pid(struct pid *pid)
260{
261 /* We can be called with write_lock_irq(&tasklist_lock) held */
262 int i;
263 unsigned long flags;
264
265 spin_lock_irqsave(&pidmap_lock, flags);
266 for (i = 0; i <= pid->level; i++) {
267 struct upid *upid = pid->numbers + i;
268 struct pid_namespace *ns = upid->ns;
269 hlist_del_rcu(&upid->pid_chain);
270 switch(--ns->nr_hashed) {
271 case 2:
272 case 1:
273 /* When all that is left in the pid namespace
274 * is the reaper wake up the reaper. The reaper
275 * may be sleeping in zap_pid_ns_processes().
276 */
277 wake_up_process(ns->child_reaper);
278 break;
279 case PIDNS_HASH_ADDING:
280 /* Handle a fork failure of the first process */
281 WARN_ON(ns->child_reaper);
282 ns->nr_hashed = 0;
283 /* fall through */
284 case 0:
285 schedule_work(&ns->proc_work);
286 break;
287 }
288 }
289 spin_unlock_irqrestore(&pidmap_lock, flags);
290
291 for (i = 0; i <= pid->level; i++)
292 free_pidmap(pid->numbers + i);
293
294 call_rcu(&pid->rcu, delayed_put_pid);
295}
296
297struct pid *alloc_pid(struct pid_namespace *ns)
298{
299 struct pid *pid;
300 enum pid_type type;
301 int i, nr;
302 struct pid_namespace *tmp;
303 struct upid *upid;
304 int retval = -ENOMEM;
305
306 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
307 if (!pid)
308 return ERR_PTR(retval);
309
310 tmp = ns;
311 pid->level = ns->level;
312 for (i = ns->level; i >= 0; i--) {
313 nr = alloc_pidmap(tmp);
314 if (IS_ERR_VALUE(nr)) {
315 retval = nr;
316 goto out_free;
317 }
318
319 pid->numbers[i].nr = nr;
320 pid->numbers[i].ns = tmp;
321 tmp = tmp->parent;
322 }
323
324 if (unlikely(is_child_reaper(pid))) {
325 if (pid_ns_prepare_proc(ns))
326 goto out_free;
327 }
328
329 get_pid_ns(ns);
330 atomic_set(&pid->count, 1);
331 for (type = 0; type < PIDTYPE_MAX; ++type)
332 INIT_HLIST_HEAD(&pid->tasks[type]);
333
334 upid = pid->numbers + ns->level;
335 spin_lock_irq(&pidmap_lock);
336 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
337 goto out_unlock;
338 for ( ; upid >= pid->numbers; --upid) {
339 hlist_add_head_rcu(&upid->pid_chain,
340 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
341 upid->ns->nr_hashed++;
342 }
343 spin_unlock_irq(&pidmap_lock);
344
345 return pid;
346
347out_unlock:
348 spin_unlock_irq(&pidmap_lock);
349 put_pid_ns(ns);
350
351out_free:
352 while (++i <= ns->level)
353 free_pidmap(pid->numbers + i);
354
355 kmem_cache_free(ns->pid_cachep, pid);
356 return ERR_PTR(retval);
357}
358
359void disable_pid_allocation(struct pid_namespace *ns)
360{
361 spin_lock_irq(&pidmap_lock);
362 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
363 spin_unlock_irq(&pidmap_lock);
364}
365
366struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
367{
368 struct upid *pnr;
369
370 hlist_for_each_entry_rcu(pnr,
371 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
372 if (pnr->nr == nr && pnr->ns == ns)
373 return container_of(pnr, struct pid,
374 numbers[ns->level]);
375
376 return NULL;
377}
378EXPORT_SYMBOL_GPL(find_pid_ns);
379
380struct pid *find_vpid(int nr)
381{
382 return find_pid_ns(nr, task_active_pid_ns(current));
383}
384EXPORT_SYMBOL_GPL(find_vpid);
385
386/*
387 * attach_pid() must be called with the tasklist_lock write-held.
388 */
389void attach_pid(struct task_struct *task, enum pid_type type)
390{
391 struct pid_link *link = &task->pids[type];
392 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
393}
394
395static void __change_pid(struct task_struct *task, enum pid_type type,
396 struct pid *new)
397{
398 struct pid_link *link;
399 struct pid *pid;
400 int tmp;
401
402 link = &task->pids[type];
403 pid = link->pid;
404
405 hlist_del_rcu(&link->node);
406 link->pid = new;
407
408 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
409 if (!hlist_empty(&pid->tasks[tmp]))
410 return;
411
412 free_pid(pid);
413}
414
415void detach_pid(struct task_struct *task, enum pid_type type)
416{
417 __change_pid(task, type, NULL);
418}
419
420void change_pid(struct task_struct *task, enum pid_type type,
421 struct pid *pid)
422{
423 __change_pid(task, type, pid);
424 attach_pid(task, type);
425}
426
427/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
428void transfer_pid(struct task_struct *old, struct task_struct *new,
429 enum pid_type type)
430{
431 new->pids[type].pid = old->pids[type].pid;
432 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
433}
434
435struct task_struct *pid_task(struct pid *pid, enum pid_type type)
436{
437 struct task_struct *result = NULL;
438 if (pid) {
439 struct hlist_node *first;
440 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
441 lockdep_tasklist_lock_is_held());
442 if (first)
443 result = hlist_entry(first, struct task_struct, pids[(type)].node);
444 }
445 return result;
446}
447EXPORT_SYMBOL(pid_task);
448
449/*
450 * Must be called under rcu_read_lock().
451 */
452struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
453{
454 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
455 "find_task_by_pid_ns() needs rcu_read_lock() protection");
456 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
457}
458
459struct task_struct *find_task_by_vpid(pid_t vnr)
460{
461 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
462}
463
464struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
465{
466 struct pid *pid;
467 rcu_read_lock();
468 if (type != PIDTYPE_PID)
469 task = task->group_leader;
470 pid = get_pid(rcu_dereference(task->pids[type].pid));
471 rcu_read_unlock();
472 return pid;
473}
474EXPORT_SYMBOL_GPL(get_task_pid);
475
476struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
477{
478 struct task_struct *result;
479 rcu_read_lock();
480 result = pid_task(pid, type);
481 if (result)
482 get_task_struct(result);
483 rcu_read_unlock();
484 return result;
485}
486EXPORT_SYMBOL_GPL(get_pid_task);
487
488struct pid *find_get_pid(pid_t nr)
489{
490 struct pid *pid;
491
492 rcu_read_lock();
493 pid = get_pid(find_vpid(nr));
494 rcu_read_unlock();
495
496 return pid;
497}
498EXPORT_SYMBOL_GPL(find_get_pid);
499
500pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
501{
502 struct upid *upid;
503 pid_t nr = 0;
504
505 if (pid && ns->level <= pid->level) {
506 upid = &pid->numbers[ns->level];
507 if (upid->ns == ns)
508 nr = upid->nr;
509 }
510 return nr;
511}
512EXPORT_SYMBOL_GPL(pid_nr_ns);
513
514pid_t pid_vnr(struct pid *pid)
515{
516 return pid_nr_ns(pid, task_active_pid_ns(current));
517}
518EXPORT_SYMBOL_GPL(pid_vnr);
519
520pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
521 struct pid_namespace *ns)
522{
523 pid_t nr = 0;
524
525 rcu_read_lock();
526 if (!ns)
527 ns = task_active_pid_ns(current);
528 if (likely(pid_alive(task))) {
529 if (type != PIDTYPE_PID)
530 task = task->group_leader;
531 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
532 }
533 rcu_read_unlock();
534
535 return nr;
536}
537EXPORT_SYMBOL(__task_pid_nr_ns);
538
539pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
540{
541 return pid_nr_ns(task_tgid(tsk), ns);
542}
543EXPORT_SYMBOL(task_tgid_nr_ns);
544
545struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
546{
547 return ns_of_pid(task_pid(tsk));
548}
549EXPORT_SYMBOL_GPL(task_active_pid_ns);
550
551/*
552 * Used by proc to find the first pid that is greater than or equal to nr.
553 *
554 * If there is a pid at nr this function is exactly the same as find_pid_ns.
555 */
556struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
557{
558 struct pid *pid;
559
560 do {
561 pid = find_pid_ns(nr, ns);
562 if (pid)
563 break;
564 nr = next_pidmap(ns, nr);
565 } while (nr > 0);
566
567 return pid;
568}
569
570/*
571 * The pid hash table is scaled according to the amount of memory in the
572 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
573 * more.
574 */
575void __init pidhash_init(void)
576{
577 unsigned int i, pidhash_size;
578
579 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
580 HASH_EARLY | HASH_SMALL,
581 &pidhash_shift, NULL,
582 0, 4096);
583 pidhash_size = 1U << pidhash_shift;
584
585 for (i = 0; i < pidhash_size; i++)
586 INIT_HLIST_HEAD(&pid_hash[i]);
587}
588
589void __init pidmap_init(void)
590{
591 /* Verify no one has done anything silly: */
592 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
593
594 /* bump default and minimum pid_max based on number of cpus */
595 pid_max = min(pid_max_max, max_t(int, pid_max,
596 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
597 pid_max_min = max_t(int, pid_max_min,
598 PIDS_PER_CPU_MIN * num_possible_cpus());
599 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
600
601 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
602 /* Reserve PID 0. We never call free_pidmap(0) */
603 set_bit(0, init_pid_ns.pidmap[0].page);
604 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
605
606 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
607 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
608}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/slab.h>
33#include <linux/init.h>
34#include <linux/rculist.h>
35#include <linux/memblock.h>
36#include <linux/pid_namespace.h>
37#include <linux/init_task.h>
38#include <linux/syscalls.h>
39#include <linux/proc_ns.h>
40#include <linux/refcount.h>
41#include <linux/anon_inodes.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/idr.h>
45
46struct pid init_struct_pid = {
47 .count = REFCOUNT_INIT(1),
48 .tasks = {
49 { .first = NULL },
50 { .first = NULL },
51 { .first = NULL },
52 },
53 .level = 0,
54 .numbers = { {
55 .nr = 0,
56 .ns = &init_pid_ns,
57 }, }
58};
59
60int pid_max = PID_MAX_DEFAULT;
61
62#define RESERVED_PIDS 300
63
64int pid_max_min = RESERVED_PIDS + 1;
65int pid_max_max = PID_MAX_LIMIT;
66
67/*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73struct pid_namespace init_pid_ns = {
74 .kref = KREF_INIT(2),
75 .idr = IDR_INIT(init_pid_ns.idr),
76 .pid_allocated = PIDNS_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81#ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83#endif
84};
85EXPORT_SYMBOL_GPL(init_pid_ns);
86
87/*
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
90 *
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
95 *
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
99 */
100
101static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103void put_pid(struct pid *pid)
104{
105 struct pid_namespace *ns;
106
107 if (!pid)
108 return;
109
110 ns = pid->numbers[pid->level].ns;
111 if (refcount_dec_and_test(&pid->count)) {
112 kmem_cache_free(ns->pid_cachep, pid);
113 put_pid_ns(ns);
114 }
115}
116EXPORT_SYMBOL_GPL(put_pid);
117
118static void delayed_put_pid(struct rcu_head *rhp)
119{
120 struct pid *pid = container_of(rhp, struct pid, rcu);
121 put_pid(pid);
122}
123
124void free_pid(struct pid *pid)
125{
126 /* We can be called with write_lock_irq(&tasklist_lock) held */
127 int i;
128 unsigned long flags;
129
130 spin_lock_irqsave(&pidmap_lock, flags);
131 for (i = 0; i <= pid->level; i++) {
132 struct upid *upid = pid->numbers + i;
133 struct pid_namespace *ns = upid->ns;
134 switch (--ns->pid_allocated) {
135 case 2:
136 case 1:
137 /* When all that is left in the pid namespace
138 * is the reaper wake up the reaper. The reaper
139 * may be sleeping in zap_pid_ns_processes().
140 */
141 wake_up_process(ns->child_reaper);
142 break;
143 case PIDNS_ADDING:
144 /* Handle a fork failure of the first process */
145 WARN_ON(ns->child_reaper);
146 ns->pid_allocated = 0;
147 /* fall through */
148 case 0:
149 schedule_work(&ns->proc_work);
150 break;
151 }
152
153 idr_remove(&ns->idr, upid->nr);
154 }
155 spin_unlock_irqrestore(&pidmap_lock, flags);
156
157 call_rcu(&pid->rcu, delayed_put_pid);
158}
159
160struct pid *alloc_pid(struct pid_namespace *ns)
161{
162 struct pid *pid;
163 enum pid_type type;
164 int i, nr;
165 struct pid_namespace *tmp;
166 struct upid *upid;
167 int retval = -ENOMEM;
168
169 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170 if (!pid)
171 return ERR_PTR(retval);
172
173 tmp = ns;
174 pid->level = ns->level;
175
176 for (i = ns->level; i >= 0; i--) {
177 int pid_min = 1;
178
179 idr_preload(GFP_KERNEL);
180 spin_lock_irq(&pidmap_lock);
181
182 /*
183 * init really needs pid 1, but after reaching the maximum
184 * wrap back to RESERVED_PIDS
185 */
186 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187 pid_min = RESERVED_PIDS;
188
189 /*
190 * Store a null pointer so find_pid_ns does not find
191 * a partially initialized PID (see below).
192 */
193 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194 pid_max, GFP_ATOMIC);
195 spin_unlock_irq(&pidmap_lock);
196 idr_preload_end();
197
198 if (nr < 0) {
199 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200 goto out_free;
201 }
202
203 pid->numbers[i].nr = nr;
204 pid->numbers[i].ns = tmp;
205 tmp = tmp->parent;
206 }
207
208 if (unlikely(is_child_reaper(pid))) {
209 if (pid_ns_prepare_proc(ns))
210 goto out_free;
211 }
212
213 get_pid_ns(ns);
214 refcount_set(&pid->count, 1);
215 for (type = 0; type < PIDTYPE_MAX; ++type)
216 INIT_HLIST_HEAD(&pid->tasks[type]);
217
218 init_waitqueue_head(&pid->wait_pidfd);
219
220 upid = pid->numbers + ns->level;
221 spin_lock_irq(&pidmap_lock);
222 if (!(ns->pid_allocated & PIDNS_ADDING))
223 goto out_unlock;
224 for ( ; upid >= pid->numbers; --upid) {
225 /* Make the PID visible to find_pid_ns. */
226 idr_replace(&upid->ns->idr, pid, upid->nr);
227 upid->ns->pid_allocated++;
228 }
229 spin_unlock_irq(&pidmap_lock);
230
231 return pid;
232
233out_unlock:
234 spin_unlock_irq(&pidmap_lock);
235 put_pid_ns(ns);
236
237out_free:
238 spin_lock_irq(&pidmap_lock);
239 while (++i <= ns->level) {
240 upid = pid->numbers + i;
241 idr_remove(&upid->ns->idr, upid->nr);
242 }
243
244 /* On failure to allocate the first pid, reset the state */
245 if (ns->pid_allocated == PIDNS_ADDING)
246 idr_set_cursor(&ns->idr, 0);
247
248 spin_unlock_irq(&pidmap_lock);
249
250 kmem_cache_free(ns->pid_cachep, pid);
251 return ERR_PTR(retval);
252}
253
254void disable_pid_allocation(struct pid_namespace *ns)
255{
256 spin_lock_irq(&pidmap_lock);
257 ns->pid_allocated &= ~PIDNS_ADDING;
258 spin_unlock_irq(&pidmap_lock);
259}
260
261struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262{
263 return idr_find(&ns->idr, nr);
264}
265EXPORT_SYMBOL_GPL(find_pid_ns);
266
267struct pid *find_vpid(int nr)
268{
269 return find_pid_ns(nr, task_active_pid_ns(current));
270}
271EXPORT_SYMBOL_GPL(find_vpid);
272
273static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274{
275 return (type == PIDTYPE_PID) ?
276 &task->thread_pid :
277 &task->signal->pids[type];
278}
279
280/*
281 * attach_pid() must be called with the tasklist_lock write-held.
282 */
283void attach_pid(struct task_struct *task, enum pid_type type)
284{
285 struct pid *pid = *task_pid_ptr(task, type);
286 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
287}
288
289static void __change_pid(struct task_struct *task, enum pid_type type,
290 struct pid *new)
291{
292 struct pid **pid_ptr = task_pid_ptr(task, type);
293 struct pid *pid;
294 int tmp;
295
296 pid = *pid_ptr;
297
298 hlist_del_rcu(&task->pid_links[type]);
299 *pid_ptr = new;
300
301 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302 if (!hlist_empty(&pid->tasks[tmp]))
303 return;
304
305 free_pid(pid);
306}
307
308void detach_pid(struct task_struct *task, enum pid_type type)
309{
310 __change_pid(task, type, NULL);
311}
312
313void change_pid(struct task_struct *task, enum pid_type type,
314 struct pid *pid)
315{
316 __change_pid(task, type, pid);
317 attach_pid(task, type);
318}
319
320/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321void transfer_pid(struct task_struct *old, struct task_struct *new,
322 enum pid_type type)
323{
324 if (type == PIDTYPE_PID)
325 new->thread_pid = old->thread_pid;
326 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327}
328
329struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330{
331 struct task_struct *result = NULL;
332 if (pid) {
333 struct hlist_node *first;
334 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335 lockdep_tasklist_lock_is_held());
336 if (first)
337 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338 }
339 return result;
340}
341EXPORT_SYMBOL(pid_task);
342
343/*
344 * Must be called under rcu_read_lock().
345 */
346struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347{
348 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349 "find_task_by_pid_ns() needs rcu_read_lock() protection");
350 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351}
352
353struct task_struct *find_task_by_vpid(pid_t vnr)
354{
355 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356}
357
358struct task_struct *find_get_task_by_vpid(pid_t nr)
359{
360 struct task_struct *task;
361
362 rcu_read_lock();
363 task = find_task_by_vpid(nr);
364 if (task)
365 get_task_struct(task);
366 rcu_read_unlock();
367
368 return task;
369}
370
371struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372{
373 struct pid *pid;
374 rcu_read_lock();
375 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
376 rcu_read_unlock();
377 return pid;
378}
379EXPORT_SYMBOL_GPL(get_task_pid);
380
381struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382{
383 struct task_struct *result;
384 rcu_read_lock();
385 result = pid_task(pid, type);
386 if (result)
387 get_task_struct(result);
388 rcu_read_unlock();
389 return result;
390}
391EXPORT_SYMBOL_GPL(get_pid_task);
392
393struct pid *find_get_pid(pid_t nr)
394{
395 struct pid *pid;
396
397 rcu_read_lock();
398 pid = get_pid(find_vpid(nr));
399 rcu_read_unlock();
400
401 return pid;
402}
403EXPORT_SYMBOL_GPL(find_get_pid);
404
405pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406{
407 struct upid *upid;
408 pid_t nr = 0;
409
410 if (pid && ns->level <= pid->level) {
411 upid = &pid->numbers[ns->level];
412 if (upid->ns == ns)
413 nr = upid->nr;
414 }
415 return nr;
416}
417EXPORT_SYMBOL_GPL(pid_nr_ns);
418
419pid_t pid_vnr(struct pid *pid)
420{
421 return pid_nr_ns(pid, task_active_pid_ns(current));
422}
423EXPORT_SYMBOL_GPL(pid_vnr);
424
425pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426 struct pid_namespace *ns)
427{
428 pid_t nr = 0;
429
430 rcu_read_lock();
431 if (!ns)
432 ns = task_active_pid_ns(current);
433 if (likely(pid_alive(task)))
434 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
435 rcu_read_unlock();
436
437 return nr;
438}
439EXPORT_SYMBOL(__task_pid_nr_ns);
440
441struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442{
443 return ns_of_pid(task_pid(tsk));
444}
445EXPORT_SYMBOL_GPL(task_active_pid_ns);
446
447/*
448 * Used by proc to find the first pid that is greater than or equal to nr.
449 *
450 * If there is a pid at nr this function is exactly the same as find_pid_ns.
451 */
452struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453{
454 return idr_get_next(&ns->idr, &nr);
455}
456
457/**
458 * pidfd_create() - Create a new pid file descriptor.
459 *
460 * @pid: struct pid that the pidfd will reference
461 *
462 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463 *
464 * Note, that this function can only be called after the fd table has
465 * been unshared to avoid leaking the pidfd to the new process.
466 *
467 * Return: On success, a cloexec pidfd is returned.
468 * On error, a negative errno number will be returned.
469 */
470static int pidfd_create(struct pid *pid)
471{
472 int fd;
473
474 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475 O_RDWR | O_CLOEXEC);
476 if (fd < 0)
477 put_pid(pid);
478
479 return fd;
480}
481
482/**
483 * pidfd_open() - Open new pid file descriptor.
484 *
485 * @pid: pid for which to retrieve a pidfd
486 * @flags: flags to pass
487 *
488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489 * the process identified by @pid. Currently, the process identified by
490 * @pid must be a thread-group leader. This restriction currently exists
491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493 * leaders).
494 *
495 * Return: On success, a cloexec pidfd is returned.
496 * On error, a negative errno number will be returned.
497 */
498SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499{
500 int fd, ret;
501 struct pid *p;
502
503 if (flags)
504 return -EINVAL;
505
506 if (pid <= 0)
507 return -EINVAL;
508
509 p = find_get_pid(pid);
510 if (!p)
511 return -ESRCH;
512
513 ret = 0;
514 rcu_read_lock();
515 if (!pid_task(p, PIDTYPE_TGID))
516 ret = -EINVAL;
517 rcu_read_unlock();
518
519 fd = ret ?: pidfd_create(p);
520 put_pid(p);
521 return fd;
522}
523
524void __init pid_idr_init(void)
525{
526 /* Verify no one has done anything silly: */
527 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528
529 /* bump default and minimum pid_max based on number of cpus */
530 pid_max = min(pid_max_max, max_t(int, pid_max,
531 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532 pid_max_min = max_t(int, pid_max_min,
533 PIDS_PER_CPU_MIN * num_possible_cpus());
534 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535
536 idr_init(&init_pid_ns.idr);
537
538 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
540}