Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/kernel/irq/manage.c
   3 *
   4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   5 * Copyright (C) 2005-2006 Thomas Gleixner
   6 *
   7 * This file contains driver APIs to the irq subsystem.
   8 */
   9
  10#define pr_fmt(fmt) "genirq: " fmt
  11
  12#include <linux/irq.h>
  13#include <linux/kthread.h>
  14#include <linux/module.h>
  15#include <linux/random.h>
  16#include <linux/interrupt.h>
 
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
 
 
  20#include <linux/task_work.h>
  21
  22#include "internals.h"
  23
  24#ifdef CONFIG_IRQ_FORCED_THREADING
  25__read_mostly bool force_irqthreads;
 
  26
  27static int __init setup_forced_irqthreads(char *arg)
  28{
  29	force_irqthreads = true;
  30	return 0;
  31}
  32early_param("threadirqs", setup_forced_irqthreads);
  33#endif
  34
  35static void __synchronize_hardirq(struct irq_desc *desc)
  36{
 
  37	bool inprogress;
  38
  39	do {
  40		unsigned long flags;
  41
  42		/*
  43		 * Wait until we're out of the critical section.  This might
  44		 * give the wrong answer due to the lack of memory barriers.
  45		 */
  46		while (irqd_irq_inprogress(&desc->irq_data))
  47			cpu_relax();
  48
  49		/* Ok, that indicated we're done: double-check carefully. */
  50		raw_spin_lock_irqsave(&desc->lock, flags);
  51		inprogress = irqd_irq_inprogress(&desc->irq_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52		raw_spin_unlock_irqrestore(&desc->lock, flags);
  53
  54		/* Oops, that failed? */
  55	} while (inprogress);
  56}
  57
  58/**
  59 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  60 *	@irq: interrupt number to wait for
  61 *
  62 *	This function waits for any pending hard IRQ handlers for this
  63 *	interrupt to complete before returning. If you use this
  64 *	function while holding a resource the IRQ handler may need you
  65 *	will deadlock. It does not take associated threaded handlers
  66 *	into account.
  67 *
  68 *	Do not use this for shutdown scenarios where you must be sure
  69 *	that all parts (hardirq and threaded handler) have completed.
  70 *
  71 *	Returns: false if a threaded handler is active.
  72 *
  73 *	This function may be called - with care - from IRQ context.
 
 
 
 
 
  74 */
  75bool synchronize_hardirq(unsigned int irq)
  76{
  77	struct irq_desc *desc = irq_to_desc(irq);
  78
  79	if (desc) {
  80		__synchronize_hardirq(desc);
  81		return !atomic_read(&desc->threads_active);
  82	}
  83
  84	return true;
  85}
  86EXPORT_SYMBOL(synchronize_hardirq);
  87
  88/**
  89 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  90 *	@irq: interrupt number to wait for
  91 *
  92 *	This function waits for any pending IRQ handlers for this interrupt
  93 *	to complete before returning. If you use this function while
  94 *	holding a resource the IRQ handler may need you will deadlock.
  95 *
  96 *	This function may be called - with care - from IRQ context.
 
 
 
 
 
  97 */
  98void synchronize_irq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc);
 104		/*
 105		 * We made sure that no hardirq handler is
 106		 * running. Now verify that no threaded handlers are
 107		 * active.
 108		 */
 109		wait_event(desc->wait_for_threads,
 110			   !atomic_read(&desc->threads_active));
 111	}
 112}
 113EXPORT_SYMBOL(synchronize_irq);
 114
 115#ifdef CONFIG_SMP
 116cpumask_var_t irq_default_affinity;
 117
 118static int __irq_can_set_affinity(struct irq_desc *desc)
 119{
 120	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 121	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 122		return 0;
 123	return 1;
 124}
 125
 126/**
 127 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 128 *	@irq:		Interrupt to check
 129 *
 130 */
 131int irq_can_set_affinity(unsigned int irq)
 132{
 133	return __irq_can_set_affinity(irq_to_desc(irq));
 134}
 135
 136/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 138 *	@desc:		irq descriptor which has affitnity changed
 139 *
 140 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 141 *	to the interrupt thread itself. We can not call
 142 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 143 *	code can be called from hard interrupt context.
 144 */
 145void irq_set_thread_affinity(struct irq_desc *desc)
 146{
 147	struct irqaction *action;
 148
 149	for_each_action_of_desc(desc, action)
 150		if (action->thread)
 151			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 152}
 153
 154#ifdef CONFIG_GENERIC_PENDING_IRQ
 155static inline bool irq_can_move_pcntxt(struct irq_data *data)
 156{
 157	return irqd_can_move_in_process_context(data);
 158}
 159static inline bool irq_move_pending(struct irq_data *data)
 160{
 161	return irqd_is_setaffinity_pending(data);
 162}
 163static inline void
 164irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
 165{
 166	cpumask_copy(desc->pending_mask, mask);
 167}
 168static inline void
 169irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
 170{
 171	cpumask_copy(mask, desc->pending_mask);
 172}
 173#else
 174static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
 175static inline bool irq_move_pending(struct irq_data *data) { return false; }
 176static inline void
 177irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
 178static inline void
 179irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
 180#endif
 
 181
 182int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 183			bool force)
 184{
 185	struct irq_desc *desc = irq_data_to_desc(data);
 186	struct irq_chip *chip = irq_data_get_irq_chip(data);
 187	int ret;
 188
 
 
 
 189	ret = chip->irq_set_affinity(data, mask, force);
 190	switch (ret) {
 191	case IRQ_SET_MASK_OK:
 192	case IRQ_SET_MASK_OK_DONE:
 193		cpumask_copy(desc->irq_common_data.affinity, mask);
 
 194	case IRQ_SET_MASK_OK_NOCOPY:
 
 195		irq_set_thread_affinity(desc);
 196		ret = 0;
 197	}
 198
 199	return ret;
 200}
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 203			    bool force)
 204{
 205	struct irq_chip *chip = irq_data_get_irq_chip(data);
 206	struct irq_desc *desc = irq_data_to_desc(data);
 207	int ret = 0;
 208
 209	if (!chip || !chip->irq_set_affinity)
 210		return -EINVAL;
 211
 212	if (irq_can_move_pcntxt(data)) {
 213		ret = irq_do_set_affinity(data, mask, force);
 214	} else {
 215		irqd_set_move_pending(data);
 216		irq_copy_pending(desc, mask);
 217	}
 218
 219	if (desc->affinity_notify) {
 220		kref_get(&desc->affinity_notify->kref);
 221		schedule_work(&desc->affinity_notify->work);
 222	}
 223	irqd_set(data, IRQD_AFFINITY_SET);
 224
 225	return ret;
 226}
 227
 228int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 229{
 230	struct irq_desc *desc = irq_to_desc(irq);
 231	unsigned long flags;
 232	int ret;
 233
 234	if (!desc)
 235		return -EINVAL;
 236
 237	raw_spin_lock_irqsave(&desc->lock, flags);
 238	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 239	raw_spin_unlock_irqrestore(&desc->lock, flags);
 240	return ret;
 241}
 242
 243int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 244{
 245	unsigned long flags;
 246	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 247
 248	if (!desc)
 249		return -EINVAL;
 250	desc->affinity_hint = m;
 251	irq_put_desc_unlock(desc, flags);
 252	/* set the initial affinity to prevent every interrupt being on CPU0 */
 253	if (m)
 254		__irq_set_affinity(irq, m, false);
 255	return 0;
 256}
 257EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 258
 259static void irq_affinity_notify(struct work_struct *work)
 260{
 261	struct irq_affinity_notify *notify =
 262		container_of(work, struct irq_affinity_notify, work);
 263	struct irq_desc *desc = irq_to_desc(notify->irq);
 264	cpumask_var_t cpumask;
 265	unsigned long flags;
 266
 267	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 268		goto out;
 269
 270	raw_spin_lock_irqsave(&desc->lock, flags);
 271	if (irq_move_pending(&desc->irq_data))
 272		irq_get_pending(cpumask, desc);
 273	else
 274		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 275	raw_spin_unlock_irqrestore(&desc->lock, flags);
 276
 277	notify->notify(notify, cpumask);
 278
 279	free_cpumask_var(cpumask);
 280out:
 281	kref_put(&notify->kref, notify->release);
 282}
 283
 284/**
 285 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 286 *	@irq:		Interrupt for which to enable/disable notification
 287 *	@notify:	Context for notification, or %NULL to disable
 288 *			notification.  Function pointers must be initialised;
 289 *			the other fields will be initialised by this function.
 290 *
 291 *	Must be called in process context.  Notification may only be enabled
 292 *	after the IRQ is allocated and must be disabled before the IRQ is
 293 *	freed using free_irq().
 294 */
 295int
 296irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 297{
 298	struct irq_desc *desc = irq_to_desc(irq);
 299	struct irq_affinity_notify *old_notify;
 300	unsigned long flags;
 301
 302	/* The release function is promised process context */
 303	might_sleep();
 304
 305	if (!desc)
 306		return -EINVAL;
 307
 308	/* Complete initialisation of *notify */
 309	if (notify) {
 310		notify->irq = irq;
 311		kref_init(&notify->kref);
 312		INIT_WORK(&notify->work, irq_affinity_notify);
 313	}
 314
 315	raw_spin_lock_irqsave(&desc->lock, flags);
 316	old_notify = desc->affinity_notify;
 317	desc->affinity_notify = notify;
 318	raw_spin_unlock_irqrestore(&desc->lock, flags);
 319
 320	if (old_notify)
 
 321		kref_put(&old_notify->kref, old_notify->release);
 
 322
 323	return 0;
 324}
 325EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 326
 327#ifndef CONFIG_AUTO_IRQ_AFFINITY
 328/*
 329 * Generic version of the affinity autoselector.
 330 */
 331static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
 332{
 333	struct cpumask *set = irq_default_affinity;
 334	int node = irq_desc_get_node(desc);
 
 
 335
 336	/* Excludes PER_CPU and NO_BALANCE interrupts */
 337	if (!__irq_can_set_affinity(desc))
 338		return 0;
 339
 
 340	/*
 341	 * Preserve an userspace affinity setup, but make sure that
 342	 * one of the targets is online.
 343	 */
 344	if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 
 345		if (cpumask_intersects(desc->irq_common_data.affinity,
 346				       cpu_online_mask))
 347			set = desc->irq_common_data.affinity;
 348		else
 349			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 350	}
 351
 352	cpumask_and(mask, cpu_online_mask, set);
 
 
 
 353	if (node != NUMA_NO_NODE) {
 354		const struct cpumask *nodemask = cpumask_of_node(node);
 355
 356		/* make sure at least one of the cpus in nodemask is online */
 357		if (cpumask_intersects(mask, nodemask))
 358			cpumask_and(mask, mask, nodemask);
 359	}
 360	irq_do_set_affinity(&desc->irq_data, mask, false);
 361	return 0;
 
 362}
 363#else
 364/* Wrapper for ALPHA specific affinity selector magic */
 365static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
 366{
 367	return irq_select_affinity(irq_desc_get_irq(d));
 368}
 369#endif
 370
 371/*
 372 * Called when affinity is set via /proc/irq
 373 */
 374int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
 375{
 376	struct irq_desc *desc = irq_to_desc(irq);
 377	unsigned long flags;
 378	int ret;
 379
 380	raw_spin_lock_irqsave(&desc->lock, flags);
 381	ret = setup_affinity(desc, mask);
 382	raw_spin_unlock_irqrestore(&desc->lock, flags);
 383	return ret;
 384}
 385
 386#else
 387static inline int
 388setup_affinity(struct irq_desc *desc, struct cpumask *mask)
 389{
 390	return 0;
 391}
 392#endif
 393
 394/**
 395 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 396 *	@irq: interrupt number to set affinity
 397 *	@vcpu_info: vCPU specific data
 
 398 *
 399 *	This function uses the vCPU specific data to set the vCPU
 400 *	affinity for an irq. The vCPU specific data is passed from
 401 *	outside, such as KVM. One example code path is as below:
 402 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 403 */
 404int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 405{
 406	unsigned long flags;
 407	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 408	struct irq_data *data;
 409	struct irq_chip *chip;
 410	int ret = -ENOSYS;
 411
 412	if (!desc)
 413		return -EINVAL;
 414
 415	data = irq_desc_get_irq_data(desc);
 416	chip = irq_data_get_irq_chip(data);
 417	if (chip && chip->irq_set_vcpu_affinity)
 
 
 
 
 
 
 
 
 
 
 418		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 419	irq_put_desc_unlock(desc, flags);
 420
 421	return ret;
 422}
 423EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 424
 425void __disable_irq(struct irq_desc *desc)
 426{
 427	if (!desc->depth++)
 428		irq_disable(desc);
 429}
 430
 431static int __disable_irq_nosync(unsigned int irq)
 432{
 433	unsigned long flags;
 434	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 435
 436	if (!desc)
 437		return -EINVAL;
 438	__disable_irq(desc);
 439	irq_put_desc_busunlock(desc, flags);
 440	return 0;
 441}
 442
 443/**
 444 *	disable_irq_nosync - disable an irq without waiting
 445 *	@irq: Interrupt to disable
 446 *
 447 *	Disable the selected interrupt line.  Disables and Enables are
 448 *	nested.
 449 *	Unlike disable_irq(), this function does not ensure existing
 450 *	instances of the IRQ handler have completed before returning.
 451 *
 452 *	This function may be called from IRQ context.
 453 */
 454void disable_irq_nosync(unsigned int irq)
 455{
 456	__disable_irq_nosync(irq);
 457}
 458EXPORT_SYMBOL(disable_irq_nosync);
 459
 460/**
 461 *	disable_irq - disable an irq and wait for completion
 462 *	@irq: Interrupt to disable
 463 *
 464 *	Disable the selected interrupt line.  Enables and Disables are
 465 *	nested.
 466 *	This function waits for any pending IRQ handlers for this interrupt
 467 *	to complete before returning. If you use this function while
 468 *	holding a resource the IRQ handler may need you will deadlock.
 469 *
 470 *	This function may be called - with care - from IRQ context.
 471 */
 472void disable_irq(unsigned int irq)
 473{
 474	if (!__disable_irq_nosync(irq))
 475		synchronize_irq(irq);
 476}
 477EXPORT_SYMBOL(disable_irq);
 478
 479/**
 480 *	disable_hardirq - disables an irq and waits for hardirq completion
 481 *	@irq: Interrupt to disable
 482 *
 483 *	Disable the selected interrupt line.  Enables and Disables are
 484 *	nested.
 485 *	This function waits for any pending hard IRQ handlers for this
 486 *	interrupt to complete before returning. If you use this function while
 487 *	holding a resource the hard IRQ handler may need you will deadlock.
 488 *
 489 *	When used to optimistically disable an interrupt from atomic context
 490 *	the return value must be checked.
 491 *
 492 *	Returns: false if a threaded handler is active.
 493 *
 494 *	This function may be called - with care - from IRQ context.
 495 */
 496bool disable_hardirq(unsigned int irq)
 497{
 498	if (!__disable_irq_nosync(irq))
 499		return synchronize_hardirq(irq);
 500
 501	return false;
 502}
 503EXPORT_SYMBOL_GPL(disable_hardirq);
 504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505void __enable_irq(struct irq_desc *desc)
 506{
 507	switch (desc->depth) {
 508	case 0:
 509 err_out:
 510		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 511		     irq_desc_get_irq(desc));
 512		break;
 513	case 1: {
 514		if (desc->istate & IRQS_SUSPENDED)
 515			goto err_out;
 516		/* Prevent probing on this irq: */
 517		irq_settings_set_noprobe(desc);
 518		irq_enable(desc);
 519		check_irq_resend(desc);
 520		/* fall-through */
 
 
 
 
 
 
 521	}
 522	default:
 523		desc->depth--;
 524	}
 525}
 526
 527/**
 528 *	enable_irq - enable handling of an irq
 529 *	@irq: Interrupt to enable
 530 *
 531 *	Undoes the effect of one call to disable_irq().  If this
 532 *	matches the last disable, processing of interrupts on this
 533 *	IRQ line is re-enabled.
 534 *
 535 *	This function may be called from IRQ context only when
 536 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 537 */
 538void enable_irq(unsigned int irq)
 539{
 540	unsigned long flags;
 541	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 542
 543	if (!desc)
 544		return;
 545	if (WARN(!desc->irq_data.chip,
 546		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 547		goto out;
 548
 549	__enable_irq(desc);
 550out:
 551	irq_put_desc_busunlock(desc, flags);
 552}
 553EXPORT_SYMBOL(enable_irq);
 554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555static int set_irq_wake_real(unsigned int irq, unsigned int on)
 556{
 557	struct irq_desc *desc = irq_to_desc(irq);
 558	int ret = -ENXIO;
 559
 560	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 561		return 0;
 562
 563	if (desc->irq_data.chip->irq_set_wake)
 564		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 565
 566	return ret;
 567}
 568
 569/**
 570 *	irq_set_irq_wake - control irq power management wakeup
 571 *	@irq:	interrupt to control
 572 *	@on:	enable/disable power management wakeup
 573 *
 574 *	Enable/disable power management wakeup mode, which is
 575 *	disabled by default.  Enables and disables must match,
 576 *	just as they match for non-wakeup mode support.
 577 *
 578 *	Wakeup mode lets this IRQ wake the system from sleep
 579 *	states like "suspend to RAM".
 580 */
 581int irq_set_irq_wake(unsigned int irq, unsigned int on)
 582{
 583	unsigned long flags;
 584	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 585	int ret = 0;
 586
 587	if (!desc)
 588		return -EINVAL;
 589
 
 
 
 
 
 
 590	/* wakeup-capable irqs can be shared between drivers that
 591	 * don't need to have the same sleep mode behaviors.
 592	 */
 593	if (on) {
 594		if (desc->wake_depth++ == 0) {
 595			ret = set_irq_wake_real(irq, on);
 596			if (ret)
 597				desc->wake_depth = 0;
 598			else
 599				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 600		}
 601	} else {
 602		if (desc->wake_depth == 0) {
 603			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 604		} else if (--desc->wake_depth == 0) {
 605			ret = set_irq_wake_real(irq, on);
 606			if (ret)
 607				desc->wake_depth = 1;
 608			else
 609				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 610		}
 611	}
 
 
 612	irq_put_desc_busunlock(desc, flags);
 613	return ret;
 614}
 615EXPORT_SYMBOL(irq_set_irq_wake);
 616
 617/*
 618 * Internal function that tells the architecture code whether a
 619 * particular irq has been exclusively allocated or is available
 620 * for driver use.
 621 */
 622int can_request_irq(unsigned int irq, unsigned long irqflags)
 623{
 624	unsigned long flags;
 625	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 626	int canrequest = 0;
 627
 628	if (!desc)
 629		return 0;
 630
 631	if (irq_settings_can_request(desc)) {
 632		if (!desc->action ||
 633		    irqflags & desc->action->flags & IRQF_SHARED)
 634			canrequest = 1;
 635	}
 636	irq_put_desc_unlock(desc, flags);
 637	return canrequest;
 638}
 639
 640int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 641{
 642	struct irq_chip *chip = desc->irq_data.chip;
 643	int ret, unmask = 0;
 644
 645	if (!chip || !chip->irq_set_type) {
 646		/*
 647		 * IRQF_TRIGGER_* but the PIC does not support multiple
 648		 * flow-types?
 649		 */
 650		pr_debug("No set_type function for IRQ %d (%s)\n",
 651			 irq_desc_get_irq(desc),
 652			 chip ? (chip->name ? : "unknown") : "unknown");
 653		return 0;
 654	}
 655
 656	flags &= IRQ_TYPE_SENSE_MASK;
 657
 658	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 659		if (!irqd_irq_masked(&desc->irq_data))
 660			mask_irq(desc);
 661		if (!irqd_irq_disabled(&desc->irq_data))
 662			unmask = 1;
 663	}
 664
 665	/* caller masked out all except trigger mode flags */
 
 666	ret = chip->irq_set_type(&desc->irq_data, flags);
 667
 668	switch (ret) {
 669	case IRQ_SET_MASK_OK:
 670	case IRQ_SET_MASK_OK_DONE:
 671		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 672		irqd_set(&desc->irq_data, flags);
 
 673
 674	case IRQ_SET_MASK_OK_NOCOPY:
 675		flags = irqd_get_trigger_type(&desc->irq_data);
 676		irq_settings_set_trigger_mask(desc, flags);
 677		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 678		irq_settings_clr_level(desc);
 679		if (flags & IRQ_TYPE_LEVEL_MASK) {
 680			irq_settings_set_level(desc);
 681			irqd_set(&desc->irq_data, IRQD_LEVEL);
 682		}
 683
 684		ret = 0;
 685		break;
 686	default:
 687		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 688		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 689	}
 690	if (unmask)
 691		unmask_irq(desc);
 692	return ret;
 693}
 694
 695#ifdef CONFIG_HARDIRQS_SW_RESEND
 696int irq_set_parent(int irq, int parent_irq)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 700
 701	if (!desc)
 702		return -EINVAL;
 703
 704	desc->parent_irq = parent_irq;
 705
 706	irq_put_desc_unlock(desc, flags);
 707	return 0;
 708}
 
 709#endif
 710
 711/*
 712 * Default primary interrupt handler for threaded interrupts. Is
 713 * assigned as primary handler when request_threaded_irq is called
 714 * with handler == NULL. Useful for oneshot interrupts.
 715 */
 716static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 717{
 718	return IRQ_WAKE_THREAD;
 719}
 720
 721/*
 722 * Primary handler for nested threaded interrupts. Should never be
 723 * called.
 724 */
 725static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 726{
 727	WARN(1, "Primary handler called for nested irq %d\n", irq);
 728	return IRQ_NONE;
 729}
 730
 731static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 732{
 733	WARN(1, "Secondary action handler called for irq %d\n", irq);
 734	return IRQ_NONE;
 735}
 736
 737static int irq_wait_for_interrupt(struct irqaction *action)
 738{
 739	set_current_state(TASK_INTERRUPTIBLE);
 
 740
 741	while (!kthread_should_stop()) {
 
 
 
 
 
 
 
 
 
 742
 743		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 744				       &action->thread_flags)) {
 745			__set_current_state(TASK_RUNNING);
 746			return 0;
 747		}
 748		schedule();
 749		set_current_state(TASK_INTERRUPTIBLE);
 750	}
 751	__set_current_state(TASK_RUNNING);
 752	return -1;
 753}
 754
 755/*
 756 * Oneshot interrupts keep the irq line masked until the threaded
 757 * handler finished. unmask if the interrupt has not been disabled and
 758 * is marked MASKED.
 759 */
 760static void irq_finalize_oneshot(struct irq_desc *desc,
 761				 struct irqaction *action)
 762{
 763	if (!(desc->istate & IRQS_ONESHOT) ||
 764	    action->handler == irq_forced_secondary_handler)
 765		return;
 766again:
 767	chip_bus_lock(desc);
 768	raw_spin_lock_irq(&desc->lock);
 769
 770	/*
 771	 * Implausible though it may be we need to protect us against
 772	 * the following scenario:
 773	 *
 774	 * The thread is faster done than the hard interrupt handler
 775	 * on the other CPU. If we unmask the irq line then the
 776	 * interrupt can come in again and masks the line, leaves due
 777	 * to IRQS_INPROGRESS and the irq line is masked forever.
 778	 *
 779	 * This also serializes the state of shared oneshot handlers
 780	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 781	 * irq_wake_thread(). See the comment there which explains the
 782	 * serialization.
 783	 */
 784	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 785		raw_spin_unlock_irq(&desc->lock);
 786		chip_bus_sync_unlock(desc);
 787		cpu_relax();
 788		goto again;
 789	}
 790
 791	/*
 792	 * Now check again, whether the thread should run. Otherwise
 793	 * we would clear the threads_oneshot bit of this thread which
 794	 * was just set.
 795	 */
 796	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 797		goto out_unlock;
 798
 799	desc->threads_oneshot &= ~action->thread_mask;
 800
 801	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 802	    irqd_irq_masked(&desc->irq_data))
 803		unmask_threaded_irq(desc);
 804
 805out_unlock:
 806	raw_spin_unlock_irq(&desc->lock);
 807	chip_bus_sync_unlock(desc);
 808}
 809
 810#ifdef CONFIG_SMP
 811/*
 812 * Check whether we need to change the affinity of the interrupt thread.
 813 */
 814static void
 815irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 816{
 817	cpumask_var_t mask;
 818	bool valid = true;
 819
 820	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 821		return;
 822
 823	/*
 824	 * In case we are out of memory we set IRQTF_AFFINITY again and
 825	 * try again next time
 826	 */
 827	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 828		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 829		return;
 830	}
 831
 832	raw_spin_lock_irq(&desc->lock);
 833	/*
 834	 * This code is triggered unconditionally. Check the affinity
 835	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 836	 */
 837	if (desc->irq_common_data.affinity)
 838		cpumask_copy(mask, desc->irq_common_data.affinity);
 839	else
 
 
 
 840		valid = false;
 
 841	raw_spin_unlock_irq(&desc->lock);
 842
 843	if (valid)
 844		set_cpus_allowed_ptr(current, mask);
 845	free_cpumask_var(mask);
 846}
 847#else
 848static inline void
 849irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 850#endif
 851
 852/*
 853 * Interrupts which are not explicitely requested as threaded
 854 * interrupts rely on the implicit bh/preempt disable of the hard irq
 855 * context. So we need to disable bh here to avoid deadlocks and other
 856 * side effects.
 857 */
 858static irqreturn_t
 859irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 860{
 861	irqreturn_t ret;
 862
 863	local_bh_disable();
 864	ret = action->thread_fn(action->irq, action->dev_id);
 
 
 
 865	irq_finalize_oneshot(desc, action);
 866	local_bh_enable();
 867	return ret;
 868}
 869
 870/*
 871 * Interrupts explicitly requested as threaded interrupts want to be
 872 * preemtible - many of them need to sleep and wait for slow busses to
 873 * complete.
 874 */
 875static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 876		struct irqaction *action)
 877{
 878	irqreturn_t ret;
 879
 880	ret = action->thread_fn(action->irq, action->dev_id);
 
 
 
 881	irq_finalize_oneshot(desc, action);
 882	return ret;
 883}
 884
 885static void wake_threads_waitq(struct irq_desc *desc)
 886{
 887	if (atomic_dec_and_test(&desc->threads_active))
 888		wake_up(&desc->wait_for_threads);
 889}
 890
 891static void irq_thread_dtor(struct callback_head *unused)
 892{
 893	struct task_struct *tsk = current;
 894	struct irq_desc *desc;
 895	struct irqaction *action;
 896
 897	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 898		return;
 899
 900	action = kthread_data(tsk);
 901
 902	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 903	       tsk->comm, tsk->pid, action->irq);
 904
 905
 906	desc = irq_to_desc(action->irq);
 907	/*
 908	 * If IRQTF_RUNTHREAD is set, we need to decrement
 909	 * desc->threads_active and wake possible waiters.
 910	 */
 911	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 912		wake_threads_waitq(desc);
 913
 914	/* Prevent a stale desc->threads_oneshot */
 915	irq_finalize_oneshot(desc, action);
 916}
 917
 918static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 919{
 920	struct irqaction *secondary = action->secondary;
 921
 922	if (WARN_ON_ONCE(!secondary))
 923		return;
 924
 925	raw_spin_lock_irq(&desc->lock);
 926	__irq_wake_thread(desc, secondary);
 927	raw_spin_unlock_irq(&desc->lock);
 928}
 929
 930/*
 931 * Interrupt handler thread
 932 */
 933static int irq_thread(void *data)
 934{
 935	struct callback_head on_exit_work;
 936	struct irqaction *action = data;
 937	struct irq_desc *desc = irq_to_desc(action->irq);
 938	irqreturn_t (*handler_fn)(struct irq_desc *desc,
 939			struct irqaction *action);
 940
 941	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
 942					&action->thread_flags))
 943		handler_fn = irq_forced_thread_fn;
 944	else
 945		handler_fn = irq_thread_fn;
 946
 947	init_task_work(&on_exit_work, irq_thread_dtor);
 948	task_work_add(current, &on_exit_work, false);
 949
 950	irq_thread_check_affinity(desc, action);
 951
 952	while (!irq_wait_for_interrupt(action)) {
 953		irqreturn_t action_ret;
 954
 955		irq_thread_check_affinity(desc, action);
 956
 957		action_ret = handler_fn(desc, action);
 958		if (action_ret == IRQ_HANDLED)
 959			atomic_inc(&desc->threads_handled);
 960		if (action_ret == IRQ_WAKE_THREAD)
 961			irq_wake_secondary(desc, action);
 962
 963		wake_threads_waitq(desc);
 964	}
 965
 966	/*
 967	 * This is the regular exit path. __free_irq() is stopping the
 968	 * thread via kthread_stop() after calling
 969	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
 970	 * oneshot mask bit can be set. We cannot verify that as we
 971	 * cannot touch the oneshot mask at this point anymore as
 972	 * __setup_irq() might have given out currents thread_mask
 973	 * again.
 974	 */
 975	task_work_cancel(current, irq_thread_dtor);
 976	return 0;
 977}
 978
 979/**
 980 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
 981 *	@irq:		Interrupt line
 982 *	@dev_id:	Device identity for which the thread should be woken
 983 *
 984 */
 985void irq_wake_thread(unsigned int irq, void *dev_id)
 986{
 987	struct irq_desc *desc = irq_to_desc(irq);
 988	struct irqaction *action;
 989	unsigned long flags;
 990
 991	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
 992		return;
 993
 994	raw_spin_lock_irqsave(&desc->lock, flags);
 995	for_each_action_of_desc(desc, action) {
 996		if (action->dev_id == dev_id) {
 997			if (action->thread)
 998				__irq_wake_thread(desc, action);
 999			break;
1000		}
1001	}
1002	raw_spin_unlock_irqrestore(&desc->lock, flags);
1003}
1004EXPORT_SYMBOL_GPL(irq_wake_thread);
1005
1006static int irq_setup_forced_threading(struct irqaction *new)
1007{
1008	if (!force_irqthreads)
1009		return 0;
1010	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1011		return 0;
1012
 
 
 
 
 
 
 
1013	new->flags |= IRQF_ONESHOT;
1014
1015	/*
1016	 * Handle the case where we have a real primary handler and a
1017	 * thread handler. We force thread them as well by creating a
1018	 * secondary action.
1019	 */
1020	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1021		/* Allocate the secondary action */
1022		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1023		if (!new->secondary)
1024			return -ENOMEM;
1025		new->secondary->handler = irq_forced_secondary_handler;
1026		new->secondary->thread_fn = new->thread_fn;
1027		new->secondary->dev_id = new->dev_id;
1028		new->secondary->irq = new->irq;
1029		new->secondary->name = new->name;
1030	}
1031	/* Deal with the primary handler */
1032	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1033	new->thread_fn = new->handler;
1034	new->handler = irq_default_primary_handler;
1035	return 0;
1036}
1037
1038static int irq_request_resources(struct irq_desc *desc)
1039{
1040	struct irq_data *d = &desc->irq_data;
1041	struct irq_chip *c = d->chip;
1042
1043	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1044}
1045
1046static void irq_release_resources(struct irq_desc *desc)
1047{
1048	struct irq_data *d = &desc->irq_data;
1049	struct irq_chip *c = d->chip;
1050
1051	if (c->irq_release_resources)
1052		c->irq_release_resources(d);
1053}
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055static int
1056setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1057{
1058	struct task_struct *t;
1059	struct sched_param param = {
1060		.sched_priority = MAX_USER_RT_PRIO/2,
1061	};
1062
1063	if (!secondary) {
1064		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1065				   new->name);
1066	} else {
1067		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1068				   new->name);
1069		param.sched_priority -= 1;
1070	}
1071
1072	if (IS_ERR(t))
1073		return PTR_ERR(t);
1074
1075	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1076
1077	/*
1078	 * We keep the reference to the task struct even if
1079	 * the thread dies to avoid that the interrupt code
1080	 * references an already freed task_struct.
1081	 */
1082	get_task_struct(t);
1083	new->thread = t;
1084	/*
1085	 * Tell the thread to set its affinity. This is
1086	 * important for shared interrupt handlers as we do
1087	 * not invoke setup_affinity() for the secondary
1088	 * handlers as everything is already set up. Even for
1089	 * interrupts marked with IRQF_NO_BALANCE this is
1090	 * correct as we want the thread to move to the cpu(s)
1091	 * on which the requesting code placed the interrupt.
1092	 */
1093	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1094	return 0;
1095}
1096
1097/*
1098 * Internal function to register an irqaction - typically used to
1099 * allocate special interrupts that are part of the architecture.
 
 
 
 
 
 
 
 
 
 
1100 */
1101static int
1102__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1103{
1104	struct irqaction *old, **old_ptr;
1105	unsigned long flags, thread_mask = 0;
1106	int ret, nested, shared = 0;
1107	cpumask_var_t mask;
1108
1109	if (!desc)
1110		return -EINVAL;
1111
1112	if (desc->irq_data.chip == &no_irq_chip)
1113		return -ENOSYS;
1114	if (!try_module_get(desc->owner))
1115		return -ENODEV;
1116
1117	new->irq = irq;
1118
1119	/*
 
 
 
 
 
 
 
1120	 * Check whether the interrupt nests into another interrupt
1121	 * thread.
1122	 */
1123	nested = irq_settings_is_nested_thread(desc);
1124	if (nested) {
1125		if (!new->thread_fn) {
1126			ret = -EINVAL;
1127			goto out_mput;
1128		}
1129		/*
1130		 * Replace the primary handler which was provided from
1131		 * the driver for non nested interrupt handling by the
1132		 * dummy function which warns when called.
1133		 */
1134		new->handler = irq_nested_primary_handler;
1135	} else {
1136		if (irq_settings_can_thread(desc)) {
1137			ret = irq_setup_forced_threading(new);
1138			if (ret)
1139				goto out_mput;
1140		}
1141	}
1142
1143	/*
1144	 * Create a handler thread when a thread function is supplied
1145	 * and the interrupt does not nest into another interrupt
1146	 * thread.
1147	 */
1148	if (new->thread_fn && !nested) {
1149		ret = setup_irq_thread(new, irq, false);
1150		if (ret)
1151			goto out_mput;
1152		if (new->secondary) {
1153			ret = setup_irq_thread(new->secondary, irq, true);
1154			if (ret)
1155				goto out_thread;
1156		}
1157	}
1158
1159	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1160		ret = -ENOMEM;
1161		goto out_thread;
1162	}
1163
1164	/*
1165	 * Drivers are often written to work w/o knowledge about the
1166	 * underlying irq chip implementation, so a request for a
1167	 * threaded irq without a primary hard irq context handler
1168	 * requires the ONESHOT flag to be set. Some irq chips like
1169	 * MSI based interrupts are per se one shot safe. Check the
1170	 * chip flags, so we can avoid the unmask dance at the end of
1171	 * the threaded handler for those.
1172	 */
1173	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1174		new->flags &= ~IRQF_ONESHOT;
1175
1176	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177	 * The following block of code has to be executed atomically
 
 
 
1178	 */
1179	raw_spin_lock_irqsave(&desc->lock, flags);
1180	old_ptr = &desc->action;
1181	old = *old_ptr;
1182	if (old) {
1183		/*
1184		 * Can't share interrupts unless both agree to and are
1185		 * the same type (level, edge, polarity). So both flag
1186		 * fields must have IRQF_SHARED set and the bits which
1187		 * set the trigger type must match. Also all must
1188		 * agree on ONESHOT.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189		 */
 
 
 
 
 
 
 
1190		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1191		    ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1192		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1193			goto mismatch;
1194
1195		/* All handlers must agree on per-cpuness */
1196		if ((old->flags & IRQF_PERCPU) !=
1197		    (new->flags & IRQF_PERCPU))
1198			goto mismatch;
1199
1200		/* add new interrupt at end of irq queue */
1201		do {
1202			/*
1203			 * Or all existing action->thread_mask bits,
1204			 * so we can find the next zero bit for this
1205			 * new action.
1206			 */
1207			thread_mask |= old->thread_mask;
1208			old_ptr = &old->next;
1209			old = *old_ptr;
1210		} while (old);
1211		shared = 1;
1212	}
1213
1214	/*
1215	 * Setup the thread mask for this irqaction for ONESHOT. For
1216	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1217	 * conditional in irq_wake_thread().
1218	 */
1219	if (new->flags & IRQF_ONESHOT) {
1220		/*
1221		 * Unlikely to have 32 resp 64 irqs sharing one line,
1222		 * but who knows.
1223		 */
1224		if (thread_mask == ~0UL) {
1225			ret = -EBUSY;
1226			goto out_mask;
1227		}
1228		/*
1229		 * The thread_mask for the action is or'ed to
1230		 * desc->thread_active to indicate that the
1231		 * IRQF_ONESHOT thread handler has been woken, but not
1232		 * yet finished. The bit is cleared when a thread
1233		 * completes. When all threads of a shared interrupt
1234		 * line have completed desc->threads_active becomes
1235		 * zero and the interrupt line is unmasked. See
1236		 * handle.c:irq_wake_thread() for further information.
1237		 *
1238		 * If no thread is woken by primary (hard irq context)
1239		 * interrupt handlers, then desc->threads_active is
1240		 * also checked for zero to unmask the irq line in the
1241		 * affected hard irq flow handlers
1242		 * (handle_[fasteoi|level]_irq).
1243		 *
1244		 * The new action gets the first zero bit of
1245		 * thread_mask assigned. See the loop above which or's
1246		 * all existing action->thread_mask bits.
1247		 */
1248		new->thread_mask = 1 << ffz(thread_mask);
1249
1250	} else if (new->handler == irq_default_primary_handler &&
1251		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1252		/*
1253		 * The interrupt was requested with handler = NULL, so
1254		 * we use the default primary handler for it. But it
1255		 * does not have the oneshot flag set. In combination
1256		 * with level interrupts this is deadly, because the
1257		 * default primary handler just wakes the thread, then
1258		 * the irq lines is reenabled, but the device still
1259		 * has the level irq asserted. Rinse and repeat....
1260		 *
1261		 * While this works for edge type interrupts, we play
1262		 * it safe and reject unconditionally because we can't
1263		 * say for sure which type this interrupt really
1264		 * has. The type flags are unreliable as the
1265		 * underlying chip implementation can override them.
1266		 */
1267		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1268		       irq);
1269		ret = -EINVAL;
1270		goto out_mask;
1271	}
1272
1273	if (!shared) {
1274		ret = irq_request_resources(desc);
1275		if (ret) {
1276			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1277			       new->name, irq, desc->irq_data.chip->name);
1278			goto out_mask;
1279		}
1280
1281		init_waitqueue_head(&desc->wait_for_threads);
1282
1283		/* Setup the type (level, edge polarity) if configured: */
1284		if (new->flags & IRQF_TRIGGER_MASK) {
1285			ret = __irq_set_trigger(desc,
1286						new->flags & IRQF_TRIGGER_MASK);
1287
1288			if (ret)
1289				goto out_mask;
1290		}
1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1293				  IRQS_ONESHOT | IRQS_WAITING);
1294		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1295
1296		if (new->flags & IRQF_PERCPU) {
1297			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1298			irq_settings_set_per_cpu(desc);
1299		}
1300
1301		if (new->flags & IRQF_ONESHOT)
1302			desc->istate |= IRQS_ONESHOT;
1303
1304		if (irq_settings_can_autoenable(desc))
1305			irq_startup(desc, true);
1306		else
1307			/* Undo nested disables: */
1308			desc->depth = 1;
1309
1310		/* Exclude IRQ from balancing if requested */
1311		if (new->flags & IRQF_NOBALANCING) {
1312			irq_settings_set_no_balancing(desc);
1313			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1314		}
1315
1316		/* Set default affinity mask once everything is setup */
1317		setup_affinity(desc, mask);
 
 
 
 
 
 
 
 
 
 
 
1318
1319	} else if (new->flags & IRQF_TRIGGER_MASK) {
1320		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1321		unsigned int omsk = irq_settings_get_trigger_mask(desc);
1322
1323		if (nmsk != omsk)
1324			/* hope the handler works with current  trigger mode */
1325			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1326				irq, nmsk, omsk);
1327	}
1328
1329	*old_ptr = new;
1330
1331	irq_pm_install_action(desc, new);
1332
1333	/* Reset broken irq detection when installing new handler */
1334	desc->irq_count = 0;
1335	desc->irqs_unhandled = 0;
1336
1337	/*
1338	 * Check whether we disabled the irq via the spurious handler
1339	 * before. Reenable it and give it another chance.
1340	 */
1341	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1342		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1343		__enable_irq(desc);
1344	}
1345
1346	raw_spin_unlock_irqrestore(&desc->lock, flags);
 
 
 
 
1347
1348	/*
1349	 * Strictly no need to wake it up, but hung_task complains
1350	 * when no hard interrupt wakes the thread up.
1351	 */
1352	if (new->thread)
1353		wake_up_process(new->thread);
1354	if (new->secondary)
1355		wake_up_process(new->secondary->thread);
1356
1357	register_irq_proc(irq, desc);
1358	new->dir = NULL;
1359	register_handler_proc(irq, new);
1360	free_cpumask_var(mask);
1361
1362	return 0;
1363
1364mismatch:
1365	if (!(new->flags & IRQF_PROBE_SHARED)) {
1366		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1367		       irq, new->flags, new->name, old->flags, old->name);
1368#ifdef CONFIG_DEBUG_SHIRQ
1369		dump_stack();
1370#endif
1371	}
1372	ret = -EBUSY;
1373
1374out_mask:
1375	raw_spin_unlock_irqrestore(&desc->lock, flags);
1376	free_cpumask_var(mask);
 
 
 
 
 
1377
1378out_thread:
1379	if (new->thread) {
1380		struct task_struct *t = new->thread;
1381
1382		new->thread = NULL;
1383		kthread_stop(t);
1384		put_task_struct(t);
1385	}
1386	if (new->secondary && new->secondary->thread) {
1387		struct task_struct *t = new->secondary->thread;
1388
1389		new->secondary->thread = NULL;
1390		kthread_stop(t);
1391		put_task_struct(t);
1392	}
1393out_mput:
1394	module_put(desc->owner);
1395	return ret;
1396}
1397
1398/**
1399 *	setup_irq - setup an interrupt
1400 *	@irq: Interrupt line to setup
1401 *	@act: irqaction for the interrupt
1402 *
1403 * Used to statically setup interrupts in the early boot process.
1404 */
1405int setup_irq(unsigned int irq, struct irqaction *act)
1406{
1407	int retval;
1408	struct irq_desc *desc = irq_to_desc(irq);
1409
1410	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1411		return -EINVAL;
1412	chip_bus_lock(desc);
 
 
 
 
1413	retval = __setup_irq(irq, desc, act);
1414	chip_bus_sync_unlock(desc);
 
 
1415
1416	return retval;
1417}
1418EXPORT_SYMBOL_GPL(setup_irq);
1419
1420/*
1421 * Internal function to unregister an irqaction - used to free
1422 * regular and special interrupts that are part of the architecture.
1423 */
1424static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1425{
1426	struct irq_desc *desc = irq_to_desc(irq);
1427	struct irqaction *action, **action_ptr;
1428	unsigned long flags;
1429
1430	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1431
1432	if (!desc)
1433		return NULL;
1434
1435	chip_bus_lock(desc);
1436	raw_spin_lock_irqsave(&desc->lock, flags);
1437
1438	/*
1439	 * There can be multiple actions per IRQ descriptor, find the right
1440	 * one based on the dev_id:
1441	 */
1442	action_ptr = &desc->action;
1443	for (;;) {
1444		action = *action_ptr;
1445
1446		if (!action) {
1447			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1448			raw_spin_unlock_irqrestore(&desc->lock, flags);
1449			chip_bus_sync_unlock(desc);
 
1450			return NULL;
1451		}
1452
1453		if (action->dev_id == dev_id)
1454			break;
1455		action_ptr = &action->next;
1456	}
1457
1458	/* Found it - now remove it from the list of entries: */
1459	*action_ptr = action->next;
1460
1461	irq_pm_remove_action(desc, action);
1462
1463	/* If this was the last handler, shut down the IRQ line: */
1464	if (!desc->action) {
1465		irq_settings_clr_disable_unlazy(desc);
 
1466		irq_shutdown(desc);
1467		irq_release_resources(desc);
1468	}
1469
1470#ifdef CONFIG_SMP
1471	/* make sure affinity_hint is cleaned up */
1472	if (WARN_ON_ONCE(desc->affinity_hint))
1473		desc->affinity_hint = NULL;
1474#endif
1475
1476	raw_spin_unlock_irqrestore(&desc->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	chip_bus_sync_unlock(desc);
1478
1479	unregister_handler_proc(irq, action);
1480
1481	/* Make sure it's not being used on another CPU: */
1482	synchronize_irq(irq);
 
 
 
 
1483
1484#ifdef CONFIG_DEBUG_SHIRQ
1485	/*
1486	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1487	 * event to happen even now it's being freed, so let's make sure that
1488	 * is so by doing an extra call to the handler ....
1489	 *
1490	 * ( We do this after actually deregistering it, to make sure that a
1491	 *   'real' IRQ doesn't run in * parallel with our fake. )
1492	 */
1493	if (action->flags & IRQF_SHARED) {
1494		local_irq_save(flags);
1495		action->handler(irq, dev_id);
1496		local_irq_restore(flags);
1497	}
1498#endif
1499
 
 
 
 
 
 
1500	if (action->thread) {
1501		kthread_stop(action->thread);
1502		put_task_struct(action->thread);
1503		if (action->secondary && action->secondary->thread) {
1504			kthread_stop(action->secondary->thread);
1505			put_task_struct(action->secondary->thread);
1506		}
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509	module_put(desc->owner);
1510	kfree(action->secondary);
1511	return action;
1512}
1513
1514/**
1515 *	remove_irq - free an interrupt
1516 *	@irq: Interrupt line to free
1517 *	@act: irqaction for the interrupt
1518 *
1519 * Used to remove interrupts statically setup by the early boot process.
1520 */
1521void remove_irq(unsigned int irq, struct irqaction *act)
1522{
1523	struct irq_desc *desc = irq_to_desc(irq);
1524
1525	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1526	    __free_irq(irq, act->dev_id);
1527}
1528EXPORT_SYMBOL_GPL(remove_irq);
1529
1530/**
1531 *	free_irq - free an interrupt allocated with request_irq
1532 *	@irq: Interrupt line to free
1533 *	@dev_id: Device identity to free
1534 *
1535 *	Remove an interrupt handler. The handler is removed and if the
1536 *	interrupt line is no longer in use by any driver it is disabled.
1537 *	On a shared IRQ the caller must ensure the interrupt is disabled
1538 *	on the card it drives before calling this function. The function
1539 *	does not return until any executing interrupts for this IRQ
1540 *	have completed.
1541 *
1542 *	This function must not be called from interrupt context.
 
 
1543 */
1544void free_irq(unsigned int irq, void *dev_id)
1545{
1546	struct irq_desc *desc = irq_to_desc(irq);
 
 
1547
1548	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1549		return;
1550
1551#ifdef CONFIG_SMP
1552	if (WARN_ON(desc->affinity_notify))
1553		desc->affinity_notify = NULL;
1554#endif
1555
1556	kfree(__free_irq(irq, dev_id));
 
 
 
 
 
 
 
1557}
1558EXPORT_SYMBOL(free_irq);
1559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560/**
1561 *	request_threaded_irq - allocate an interrupt line
1562 *	@irq: Interrupt line to allocate
1563 *	@handler: Function to be called when the IRQ occurs.
1564 *		  Primary handler for threaded interrupts
1565 *		  If NULL and thread_fn != NULL the default
1566 *		  primary handler is installed
1567 *	@thread_fn: Function called from the irq handler thread
1568 *		    If NULL, no irq thread is created
1569 *	@irqflags: Interrupt type flags
1570 *	@devname: An ascii name for the claiming device
1571 *	@dev_id: A cookie passed back to the handler function
1572 *
1573 *	This call allocates interrupt resources and enables the
1574 *	interrupt line and IRQ handling. From the point this
1575 *	call is made your handler function may be invoked. Since
1576 *	your handler function must clear any interrupt the board
1577 *	raises, you must take care both to initialise your hardware
1578 *	and to set up the interrupt handler in the right order.
1579 *
1580 *	If you want to set up a threaded irq handler for your device
1581 *	then you need to supply @handler and @thread_fn. @handler is
1582 *	still called in hard interrupt context and has to check
1583 *	whether the interrupt originates from the device. If yes it
1584 *	needs to disable the interrupt on the device and return
1585 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1586 *	@thread_fn. This split handler design is necessary to support
1587 *	shared interrupts.
1588 *
1589 *	Dev_id must be globally unique. Normally the address of the
1590 *	device data structure is used as the cookie. Since the handler
1591 *	receives this value it makes sense to use it.
1592 *
1593 *	If your interrupt is shared you must pass a non NULL dev_id
1594 *	as this is required when freeing the interrupt.
1595 *
1596 *	Flags:
1597 *
1598 *	IRQF_SHARED		Interrupt is shared
1599 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1600 *
1601 */
1602int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1603			 irq_handler_t thread_fn, unsigned long irqflags,
1604			 const char *devname, void *dev_id)
1605{
1606	struct irqaction *action;
1607	struct irq_desc *desc;
1608	int retval;
1609
1610	if (irq == IRQ_NOTCONNECTED)
1611		return -ENOTCONN;
1612
1613	/*
1614	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1615	 * otherwise we'll have trouble later trying to figure out
1616	 * which interrupt is which (messes up the interrupt freeing
1617	 * logic etc).
1618	 *
1619	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1620	 * it cannot be set along with IRQF_NO_SUSPEND.
1621	 */
1622	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1623	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1624	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1625		return -EINVAL;
1626
1627	desc = irq_to_desc(irq);
1628	if (!desc)
1629		return -EINVAL;
1630
1631	if (!irq_settings_can_request(desc) ||
1632	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1633		return -EINVAL;
1634
1635	if (!handler) {
1636		if (!thread_fn)
1637			return -EINVAL;
1638		handler = irq_default_primary_handler;
1639	}
1640
1641	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1642	if (!action)
1643		return -ENOMEM;
1644
1645	action->handler = handler;
1646	action->thread_fn = thread_fn;
1647	action->flags = irqflags;
1648	action->name = devname;
1649	action->dev_id = dev_id;
1650
1651	chip_bus_lock(desc);
 
 
 
 
 
1652	retval = __setup_irq(irq, desc, action);
1653	chip_bus_sync_unlock(desc);
1654
1655	if (retval) {
 
1656		kfree(action->secondary);
1657		kfree(action);
1658	}
1659
1660#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1661	if (!retval && (irqflags & IRQF_SHARED)) {
1662		/*
1663		 * It's a shared IRQ -- the driver ought to be prepared for it
1664		 * to happen immediately, so let's make sure....
1665		 * We disable the irq to make sure that a 'real' IRQ doesn't
1666		 * run in parallel with our fake.
1667		 */
1668		unsigned long flags;
1669
1670		disable_irq(irq);
1671		local_irq_save(flags);
1672
1673		handler(irq, dev_id);
1674
1675		local_irq_restore(flags);
1676		enable_irq(irq);
1677	}
1678#endif
1679	return retval;
1680}
1681EXPORT_SYMBOL(request_threaded_irq);
1682
1683/**
1684 *	request_any_context_irq - allocate an interrupt line
1685 *	@irq: Interrupt line to allocate
1686 *	@handler: Function to be called when the IRQ occurs.
1687 *		  Threaded handler for threaded interrupts.
1688 *	@flags: Interrupt type flags
1689 *	@name: An ascii name for the claiming device
1690 *	@dev_id: A cookie passed back to the handler function
1691 *
1692 *	This call allocates interrupt resources and enables the
1693 *	interrupt line and IRQ handling. It selects either a
1694 *	hardirq or threaded handling method depending on the
1695 *	context.
1696 *
1697 *	On failure, it returns a negative value. On success,
1698 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1699 */
1700int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1701			    unsigned long flags, const char *name, void *dev_id)
1702{
1703	struct irq_desc *desc;
1704	int ret;
1705
1706	if (irq == IRQ_NOTCONNECTED)
1707		return -ENOTCONN;
1708
1709	desc = irq_to_desc(irq);
1710	if (!desc)
1711		return -EINVAL;
1712
1713	if (irq_settings_is_nested_thread(desc)) {
1714		ret = request_threaded_irq(irq, NULL, handler,
1715					   flags, name, dev_id);
1716		return !ret ? IRQC_IS_NESTED : ret;
1717	}
1718
1719	ret = request_irq(irq, handler, flags, name, dev_id);
1720	return !ret ? IRQC_IS_HARDIRQ : ret;
1721}
1722EXPORT_SYMBOL_GPL(request_any_context_irq);
1723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724void enable_percpu_irq(unsigned int irq, unsigned int type)
1725{
1726	unsigned int cpu = smp_processor_id();
1727	unsigned long flags;
1728	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1729
1730	if (!desc)
1731		return;
1732
 
 
 
 
1733	type &= IRQ_TYPE_SENSE_MASK;
 
 
 
1734	if (type != IRQ_TYPE_NONE) {
1735		int ret;
1736
1737		ret = __irq_set_trigger(desc, type);
1738
1739		if (ret) {
1740			WARN(1, "failed to set type for IRQ%d\n", irq);
1741			goto out;
1742		}
1743	}
1744
1745	irq_percpu_enable(desc, cpu);
1746out:
1747	irq_put_desc_unlock(desc, flags);
1748}
1749EXPORT_SYMBOL_GPL(enable_percpu_irq);
1750
 
 
 
 
 
1751/**
1752 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1753 * @irq:	Linux irq number to check for
1754 *
1755 * Must be called from a non migratable context. Returns the enable
1756 * state of a per cpu interrupt on the current cpu.
1757 */
1758bool irq_percpu_is_enabled(unsigned int irq)
1759{
1760	unsigned int cpu = smp_processor_id();
1761	struct irq_desc *desc;
1762	unsigned long flags;
1763	bool is_enabled;
1764
1765	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1766	if (!desc)
1767		return false;
1768
1769	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1770	irq_put_desc_unlock(desc, flags);
1771
1772	return is_enabled;
1773}
1774EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1775
1776void disable_percpu_irq(unsigned int irq)
1777{
1778	unsigned int cpu = smp_processor_id();
1779	unsigned long flags;
1780	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1781
1782	if (!desc)
1783		return;
1784
1785	irq_percpu_disable(desc, cpu);
1786	irq_put_desc_unlock(desc, flags);
1787}
1788EXPORT_SYMBOL_GPL(disable_percpu_irq);
1789
 
 
 
 
 
1790/*
1791 * Internal function to unregister a percpu irqaction.
1792 */
1793static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1794{
1795	struct irq_desc *desc = irq_to_desc(irq);
1796	struct irqaction *action;
1797	unsigned long flags;
1798
1799	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1800
1801	if (!desc)
1802		return NULL;
1803
1804	raw_spin_lock_irqsave(&desc->lock, flags);
1805
1806	action = desc->action;
1807	if (!action || action->percpu_dev_id != dev_id) {
1808		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1809		goto bad;
1810	}
1811
1812	if (!cpumask_empty(desc->percpu_enabled)) {
1813		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1814		     irq, cpumask_first(desc->percpu_enabled));
1815		goto bad;
1816	}
1817
1818	/* Found it - now remove it from the list of entries: */
1819	desc->action = NULL;
1820
 
 
1821	raw_spin_unlock_irqrestore(&desc->lock, flags);
1822
1823	unregister_handler_proc(irq, action);
1824
 
1825	module_put(desc->owner);
1826	return action;
1827
1828bad:
1829	raw_spin_unlock_irqrestore(&desc->lock, flags);
1830	return NULL;
1831}
1832
1833/**
1834 *	remove_percpu_irq - free a per-cpu interrupt
1835 *	@irq: Interrupt line to free
1836 *	@act: irqaction for the interrupt
1837 *
1838 * Used to remove interrupts statically setup by the early boot process.
1839 */
1840void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1841{
1842	struct irq_desc *desc = irq_to_desc(irq);
1843
1844	if (desc && irq_settings_is_per_cpu_devid(desc))
1845	    __free_percpu_irq(irq, act->percpu_dev_id);
1846}
1847
1848/**
1849 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1850 *	@irq: Interrupt line to free
1851 *	@dev_id: Device identity to free
1852 *
1853 *	Remove a percpu interrupt handler. The handler is removed, but
1854 *	the interrupt line is not disabled. This must be done on each
1855 *	CPU before calling this function. The function does not return
1856 *	until any executing interrupts for this IRQ have completed.
1857 *
1858 *	This function must not be called from interrupt context.
1859 */
1860void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1861{
1862	struct irq_desc *desc = irq_to_desc(irq);
1863
1864	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1865		return;
1866
1867	chip_bus_lock(desc);
1868	kfree(__free_percpu_irq(irq, dev_id));
1869	chip_bus_sync_unlock(desc);
1870}
1871EXPORT_SYMBOL_GPL(free_percpu_irq);
1872
 
 
 
 
 
 
 
 
 
 
 
 
 
1873/**
1874 *	setup_percpu_irq - setup a per-cpu interrupt
1875 *	@irq: Interrupt line to setup
1876 *	@act: irqaction for the interrupt
1877 *
1878 * Used to statically setup per-cpu interrupts in the early boot process.
1879 */
1880int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1881{
1882	struct irq_desc *desc = irq_to_desc(irq);
1883	int retval;
1884
1885	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1886		return -EINVAL;
1887	chip_bus_lock(desc);
 
 
 
 
1888	retval = __setup_irq(irq, desc, act);
1889	chip_bus_sync_unlock(desc);
 
 
1890
1891	return retval;
1892}
1893
1894/**
1895 *	request_percpu_irq - allocate a percpu interrupt line
1896 *	@irq: Interrupt line to allocate
1897 *	@handler: Function to be called when the IRQ occurs.
 
1898 *	@devname: An ascii name for the claiming device
1899 *	@dev_id: A percpu cookie passed back to the handler function
1900 *
1901 *	This call allocates interrupt resources and enables the
1902 *	interrupt on the local CPU. If the interrupt is supposed to be
1903 *	enabled on other CPUs, it has to be done on each CPU using
1904 *	enable_percpu_irq().
1905 *
1906 *	Dev_id must be globally unique. It is a per-cpu variable, and
1907 *	the handler gets called with the interrupted CPU's instance of
1908 *	that variable.
1909 */
1910int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1911		       const char *devname, void __percpu *dev_id)
 
1912{
1913	struct irqaction *action;
1914	struct irq_desc *desc;
1915	int retval;
1916
1917	if (!dev_id)
1918		return -EINVAL;
1919
1920	desc = irq_to_desc(irq);
1921	if (!desc || !irq_settings_can_request(desc) ||
1922	    !irq_settings_is_per_cpu_devid(desc))
1923		return -EINVAL;
1924
 
 
 
1925	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1926	if (!action)
1927		return -ENOMEM;
1928
1929	action->handler = handler;
1930	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1931	action->name = devname;
1932	action->percpu_dev_id = dev_id;
1933
1934	chip_bus_lock(desc);
 
 
 
 
 
1935	retval = __setup_irq(irq, desc, action);
1936	chip_bus_sync_unlock(desc);
1937
1938	if (retval)
 
1939		kfree(action);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940
1941	return retval;
1942}
1943EXPORT_SYMBOL_GPL(request_percpu_irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944
1945/**
1946 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
1947 *	@irq: Interrupt line that is forwarded to a VM
1948 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
1949 *	@state: a pointer to a boolean where the state is to be storeed
1950 *
1951 *	This call snapshots the internal irqchip state of an
1952 *	interrupt, returning into @state the bit corresponding to
1953 *	stage @which
1954 *
1955 *	This function should be called with preemption disabled if the
1956 *	interrupt controller has per-cpu registers.
1957 */
1958int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
1959			  bool *state)
1960{
1961	struct irq_desc *desc;
1962	struct irq_data *data;
1963	struct irq_chip *chip;
1964	unsigned long flags;
1965	int err = -EINVAL;
1966
1967	desc = irq_get_desc_buslock(irq, &flags, 0);
1968	if (!desc)
1969		return err;
1970
1971	data = irq_desc_get_irq_data(desc);
1972
1973	do {
1974		chip = irq_data_get_irq_chip(data);
1975		if (chip->irq_get_irqchip_state)
1976			break;
1977#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1978		data = data->parent_data;
1979#else
1980		data = NULL;
1981#endif
1982	} while (data);
1983
1984	if (data)
1985		err = chip->irq_get_irqchip_state(data, which, state);
1986
1987	irq_put_desc_busunlock(desc, flags);
1988	return err;
1989}
1990EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
1991
1992/**
1993 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
1994 *	@irq: Interrupt line that is forwarded to a VM
1995 *	@which: State to be restored (one of IRQCHIP_STATE_*)
1996 *	@val: Value corresponding to @which
1997 *
1998 *	This call sets the internal irqchip state of an interrupt,
1999 *	depending on the value of @which.
2000 *
2001 *	This function should be called with preemption disabled if the
2002 *	interrupt controller has per-cpu registers.
2003 */
2004int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2005			  bool val)
2006{
2007	struct irq_desc *desc;
2008	struct irq_data *data;
2009	struct irq_chip *chip;
2010	unsigned long flags;
2011	int err = -EINVAL;
2012
2013	desc = irq_get_desc_buslock(irq, &flags, 0);
2014	if (!desc)
2015		return err;
2016
2017	data = irq_desc_get_irq_data(desc);
2018
2019	do {
2020		chip = irq_data_get_irq_chip(data);
2021		if (chip->irq_set_irqchip_state)
2022			break;
2023#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2024		data = data->parent_data;
2025#else
2026		data = NULL;
2027#endif
2028	} while (data);
2029
2030	if (data)
2031		err = chip->irq_set_irqchip_state(data, which, val);
2032
2033	irq_put_desc_busunlock(desc, flags);
2034	return err;
2035}
2036EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <uapi/linux/sched/types.h>
  22#include <linux/task_work.h>
  23
  24#include "internals.h"
  25
  26#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  27__read_mostly bool force_irqthreads;
  28EXPORT_SYMBOL_GPL(force_irqthreads);
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	force_irqthreads = true;
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111/**
 112 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 113 *	@irq: interrupt number to wait for
 114 *
 115 *	This function waits for any pending IRQ handlers for this interrupt
 116 *	to complete before returning. If you use this function while
 117 *	holding a resource the IRQ handler may need you will deadlock.
 118 *
 119 *	Can only be called from preemptible code as it might sleep when
 120 *	an interrupt thread is associated to @irq.
 121 *
 122 *	It optionally makes sure (when the irq chip supports that method)
 123 *	that the interrupt is not pending in any CPU and waiting for
 124 *	service.
 125 */
 126void synchronize_irq(unsigned int irq)
 127{
 128	struct irq_desc *desc = irq_to_desc(irq);
 129
 130	if (desc) {
 131		__synchronize_hardirq(desc, true);
 132		/*
 133		 * We made sure that no hardirq handler is
 134		 * running. Now verify that no threaded handlers are
 135		 * active.
 136		 */
 137		wait_event(desc->wait_for_threads,
 138			   !atomic_read(&desc->threads_active));
 139	}
 140}
 141EXPORT_SYMBOL(synchronize_irq);
 142
 143#ifdef CONFIG_SMP
 144cpumask_var_t irq_default_affinity;
 145
 146static bool __irq_can_set_affinity(struct irq_desc *desc)
 147{
 148	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 149	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 150		return false;
 151	return true;
 152}
 153
 154/**
 155 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 156 *	@irq:		Interrupt to check
 157 *
 158 */
 159int irq_can_set_affinity(unsigned int irq)
 160{
 161	return __irq_can_set_affinity(irq_to_desc(irq));
 162}
 163
 164/**
 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 166 * @irq:	Interrupt to check
 167 *
 168 * Like irq_can_set_affinity() above, but additionally checks for the
 169 * AFFINITY_MANAGED flag.
 170 */
 171bool irq_can_set_affinity_usr(unsigned int irq)
 172{
 173	struct irq_desc *desc = irq_to_desc(irq);
 174
 175	return __irq_can_set_affinity(desc) &&
 176		!irqd_affinity_is_managed(&desc->irq_data);
 177}
 178
 179/**
 180 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 181 *	@desc:		irq descriptor which has affitnity changed
 182 *
 183 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 184 *	to the interrupt thread itself. We can not call
 185 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 186 *	code can be called from hard interrupt context.
 187 */
 188void irq_set_thread_affinity(struct irq_desc *desc)
 189{
 190	struct irqaction *action;
 191
 192	for_each_action_of_desc(desc, action)
 193		if (action->thread)
 194			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 195}
 196
 197static void irq_validate_effective_affinity(struct irq_data *data)
 
 
 
 
 
 198{
 199#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 200	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 201	struct irq_chip *chip = irq_data_get_irq_chip(data);
 202
 203	if (!cpumask_empty(m))
 204		return;
 205	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 206		     chip->name, data->irq);
 
 
 
 
 
 
 
 
 
 
 
 207#endif
 208}
 209
 210int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 211			bool force)
 212{
 213	struct irq_desc *desc = irq_data_to_desc(data);
 214	struct irq_chip *chip = irq_data_get_irq_chip(data);
 215	int ret;
 216
 217	if (!chip || !chip->irq_set_affinity)
 218		return -EINVAL;
 219
 220	ret = chip->irq_set_affinity(data, mask, force);
 221	switch (ret) {
 222	case IRQ_SET_MASK_OK:
 223	case IRQ_SET_MASK_OK_DONE:
 224		cpumask_copy(desc->irq_common_data.affinity, mask);
 225		/* fall through */
 226	case IRQ_SET_MASK_OK_NOCOPY:
 227		irq_validate_effective_affinity(data);
 228		irq_set_thread_affinity(desc);
 229		ret = 0;
 230	}
 231
 232	return ret;
 233}
 234
 235#ifdef CONFIG_GENERIC_PENDING_IRQ
 236static inline int irq_set_affinity_pending(struct irq_data *data,
 237					   const struct cpumask *dest)
 238{
 239	struct irq_desc *desc = irq_data_to_desc(data);
 240
 241	irqd_set_move_pending(data);
 242	irq_copy_pending(desc, dest);
 243	return 0;
 244}
 245#else
 246static inline int irq_set_affinity_pending(struct irq_data *data,
 247					   const struct cpumask *dest)
 248{
 249	return -EBUSY;
 250}
 251#endif
 252
 253static int irq_try_set_affinity(struct irq_data *data,
 254				const struct cpumask *dest, bool force)
 255{
 256	int ret = irq_do_set_affinity(data, dest, force);
 257
 258	/*
 259	 * In case that the underlying vector management is busy and the
 260	 * architecture supports the generic pending mechanism then utilize
 261	 * this to avoid returning an error to user space.
 262	 */
 263	if (ret == -EBUSY && !force)
 264		ret = irq_set_affinity_pending(data, dest);
 265	return ret;
 266}
 267
 268int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 269			    bool force)
 270{
 271	struct irq_chip *chip = irq_data_get_irq_chip(data);
 272	struct irq_desc *desc = irq_data_to_desc(data);
 273	int ret = 0;
 274
 275	if (!chip || !chip->irq_set_affinity)
 276		return -EINVAL;
 277
 278	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 279		ret = irq_try_set_affinity(data, mask, force);
 280	} else {
 281		irqd_set_move_pending(data);
 282		irq_copy_pending(desc, mask);
 283	}
 284
 285	if (desc->affinity_notify) {
 286		kref_get(&desc->affinity_notify->kref);
 287		schedule_work(&desc->affinity_notify->work);
 288	}
 289	irqd_set(data, IRQD_AFFINITY_SET);
 290
 291	return ret;
 292}
 293
 294int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 295{
 296	struct irq_desc *desc = irq_to_desc(irq);
 297	unsigned long flags;
 298	int ret;
 299
 300	if (!desc)
 301		return -EINVAL;
 302
 303	raw_spin_lock_irqsave(&desc->lock, flags);
 304	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 305	raw_spin_unlock_irqrestore(&desc->lock, flags);
 306	return ret;
 307}
 308
 309int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 310{
 311	unsigned long flags;
 312	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 313
 314	if (!desc)
 315		return -EINVAL;
 316	desc->affinity_hint = m;
 317	irq_put_desc_unlock(desc, flags);
 318	/* set the initial affinity to prevent every interrupt being on CPU0 */
 319	if (m)
 320		__irq_set_affinity(irq, m, false);
 321	return 0;
 322}
 323EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 324
 325static void irq_affinity_notify(struct work_struct *work)
 326{
 327	struct irq_affinity_notify *notify =
 328		container_of(work, struct irq_affinity_notify, work);
 329	struct irq_desc *desc = irq_to_desc(notify->irq);
 330	cpumask_var_t cpumask;
 331	unsigned long flags;
 332
 333	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 334		goto out;
 335
 336	raw_spin_lock_irqsave(&desc->lock, flags);
 337	if (irq_move_pending(&desc->irq_data))
 338		irq_get_pending(cpumask, desc);
 339	else
 340		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 341	raw_spin_unlock_irqrestore(&desc->lock, flags);
 342
 343	notify->notify(notify, cpumask);
 344
 345	free_cpumask_var(cpumask);
 346out:
 347	kref_put(&notify->kref, notify->release);
 348}
 349
 350/**
 351 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 352 *	@irq:		Interrupt for which to enable/disable notification
 353 *	@notify:	Context for notification, or %NULL to disable
 354 *			notification.  Function pointers must be initialised;
 355 *			the other fields will be initialised by this function.
 356 *
 357 *	Must be called in process context.  Notification may only be enabled
 358 *	after the IRQ is allocated and must be disabled before the IRQ is
 359 *	freed using free_irq().
 360 */
 361int
 362irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 363{
 364	struct irq_desc *desc = irq_to_desc(irq);
 365	struct irq_affinity_notify *old_notify;
 366	unsigned long flags;
 367
 368	/* The release function is promised process context */
 369	might_sleep();
 370
 371	if (!desc || desc->istate & IRQS_NMI)
 372		return -EINVAL;
 373
 374	/* Complete initialisation of *notify */
 375	if (notify) {
 376		notify->irq = irq;
 377		kref_init(&notify->kref);
 378		INIT_WORK(&notify->work, irq_affinity_notify);
 379	}
 380
 381	raw_spin_lock_irqsave(&desc->lock, flags);
 382	old_notify = desc->affinity_notify;
 383	desc->affinity_notify = notify;
 384	raw_spin_unlock_irqrestore(&desc->lock, flags);
 385
 386	if (old_notify) {
 387		cancel_work_sync(&old_notify->work);
 388		kref_put(&old_notify->kref, old_notify->release);
 389	}
 390
 391	return 0;
 392}
 393EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 394
 395#ifndef CONFIG_AUTO_IRQ_AFFINITY
 396/*
 397 * Generic version of the affinity autoselector.
 398 */
 399int irq_setup_affinity(struct irq_desc *desc)
 400{
 401	struct cpumask *set = irq_default_affinity;
 402	int ret, node = irq_desc_get_node(desc);
 403	static DEFINE_RAW_SPINLOCK(mask_lock);
 404	static struct cpumask mask;
 405
 406	/* Excludes PER_CPU and NO_BALANCE interrupts */
 407	if (!__irq_can_set_affinity(desc))
 408		return 0;
 409
 410	raw_spin_lock(&mask_lock);
 411	/*
 412	 * Preserve the managed affinity setting and a userspace affinity
 413	 * setup, but make sure that one of the targets is online.
 414	 */
 415	if (irqd_affinity_is_managed(&desc->irq_data) ||
 416	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 417		if (cpumask_intersects(desc->irq_common_data.affinity,
 418				       cpu_online_mask))
 419			set = desc->irq_common_data.affinity;
 420		else
 421			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 422	}
 423
 424	cpumask_and(&mask, cpu_online_mask, set);
 425	if (cpumask_empty(&mask))
 426		cpumask_copy(&mask, cpu_online_mask);
 427
 428	if (node != NUMA_NO_NODE) {
 429		const struct cpumask *nodemask = cpumask_of_node(node);
 430
 431		/* make sure at least one of the cpus in nodemask is online */
 432		if (cpumask_intersects(&mask, nodemask))
 433			cpumask_and(&mask, &mask, nodemask);
 434	}
 435	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 436	raw_spin_unlock(&mask_lock);
 437	return ret;
 438}
 439#else
 440/* Wrapper for ALPHA specific affinity selector magic */
 441int irq_setup_affinity(struct irq_desc *desc)
 442{
 443	return irq_select_affinity(irq_desc_get_irq(desc));
 444}
 445#endif
 446
 447/*
 448 * Called when a bogus affinity is set via /proc/irq
 449 */
 450int irq_select_affinity_usr(unsigned int irq)
 451{
 452	struct irq_desc *desc = irq_to_desc(irq);
 453	unsigned long flags;
 454	int ret;
 455
 456	raw_spin_lock_irqsave(&desc->lock, flags);
 457	ret = irq_setup_affinity(desc);
 458	raw_spin_unlock_irqrestore(&desc->lock, flags);
 459	return ret;
 460}
 
 
 
 
 
 
 
 461#endif
 462
 463/**
 464 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 465 *	@irq: interrupt number to set affinity
 466 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 467 *	            specific data for percpu_devid interrupts
 468 *
 469 *	This function uses the vCPU specific data to set the vCPU
 470 *	affinity for an irq. The vCPU specific data is passed from
 471 *	outside, such as KVM. One example code path is as below:
 472 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 473 */
 474int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 475{
 476	unsigned long flags;
 477	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 478	struct irq_data *data;
 479	struct irq_chip *chip;
 480	int ret = -ENOSYS;
 481
 482	if (!desc)
 483		return -EINVAL;
 484
 485	data = irq_desc_get_irq_data(desc);
 486	do {
 487		chip = irq_data_get_irq_chip(data);
 488		if (chip && chip->irq_set_vcpu_affinity)
 489			break;
 490#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 491		data = data->parent_data;
 492#else
 493		data = NULL;
 494#endif
 495	} while (data);
 496
 497	if (data)
 498		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 499	irq_put_desc_unlock(desc, flags);
 500
 501	return ret;
 502}
 503EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 504
 505void __disable_irq(struct irq_desc *desc)
 506{
 507	if (!desc->depth++)
 508		irq_disable(desc);
 509}
 510
 511static int __disable_irq_nosync(unsigned int irq)
 512{
 513	unsigned long flags;
 514	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 515
 516	if (!desc)
 517		return -EINVAL;
 518	__disable_irq(desc);
 519	irq_put_desc_busunlock(desc, flags);
 520	return 0;
 521}
 522
 523/**
 524 *	disable_irq_nosync - disable an irq without waiting
 525 *	@irq: Interrupt to disable
 526 *
 527 *	Disable the selected interrupt line.  Disables and Enables are
 528 *	nested.
 529 *	Unlike disable_irq(), this function does not ensure existing
 530 *	instances of the IRQ handler have completed before returning.
 531 *
 532 *	This function may be called from IRQ context.
 533 */
 534void disable_irq_nosync(unsigned int irq)
 535{
 536	__disable_irq_nosync(irq);
 537}
 538EXPORT_SYMBOL(disable_irq_nosync);
 539
 540/**
 541 *	disable_irq - disable an irq and wait for completion
 542 *	@irq: Interrupt to disable
 543 *
 544 *	Disable the selected interrupt line.  Enables and Disables are
 545 *	nested.
 546 *	This function waits for any pending IRQ handlers for this interrupt
 547 *	to complete before returning. If you use this function while
 548 *	holding a resource the IRQ handler may need you will deadlock.
 549 *
 550 *	This function may be called - with care - from IRQ context.
 551 */
 552void disable_irq(unsigned int irq)
 553{
 554	if (!__disable_irq_nosync(irq))
 555		synchronize_irq(irq);
 556}
 557EXPORT_SYMBOL(disable_irq);
 558
 559/**
 560 *	disable_hardirq - disables an irq and waits for hardirq completion
 561 *	@irq: Interrupt to disable
 562 *
 563 *	Disable the selected interrupt line.  Enables and Disables are
 564 *	nested.
 565 *	This function waits for any pending hard IRQ handlers for this
 566 *	interrupt to complete before returning. If you use this function while
 567 *	holding a resource the hard IRQ handler may need you will deadlock.
 568 *
 569 *	When used to optimistically disable an interrupt from atomic context
 570 *	the return value must be checked.
 571 *
 572 *	Returns: false if a threaded handler is active.
 573 *
 574 *	This function may be called - with care - from IRQ context.
 575 */
 576bool disable_hardirq(unsigned int irq)
 577{
 578	if (!__disable_irq_nosync(irq))
 579		return synchronize_hardirq(irq);
 580
 581	return false;
 582}
 583EXPORT_SYMBOL_GPL(disable_hardirq);
 584
 585/**
 586 *	disable_nmi_nosync - disable an nmi without waiting
 587 *	@irq: Interrupt to disable
 588 *
 589 *	Disable the selected interrupt line. Disables and enables are
 590 *	nested.
 591 *	The interrupt to disable must have been requested through request_nmi.
 592 *	Unlike disable_nmi(), this function does not ensure existing
 593 *	instances of the IRQ handler have completed before returning.
 594 */
 595void disable_nmi_nosync(unsigned int irq)
 596{
 597	disable_irq_nosync(irq);
 598}
 599
 600void __enable_irq(struct irq_desc *desc)
 601{
 602	switch (desc->depth) {
 603	case 0:
 604 err_out:
 605		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 606		     irq_desc_get_irq(desc));
 607		break;
 608	case 1: {
 609		if (desc->istate & IRQS_SUSPENDED)
 610			goto err_out;
 611		/* Prevent probing on this irq: */
 612		irq_settings_set_noprobe(desc);
 613		/*
 614		 * Call irq_startup() not irq_enable() here because the
 615		 * interrupt might be marked NOAUTOEN. So irq_startup()
 616		 * needs to be invoked when it gets enabled the first
 617		 * time. If it was already started up, then irq_startup()
 618		 * will invoke irq_enable() under the hood.
 619		 */
 620		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 621		break;
 622	}
 623	default:
 624		desc->depth--;
 625	}
 626}
 627
 628/**
 629 *	enable_irq - enable handling of an irq
 630 *	@irq: Interrupt to enable
 631 *
 632 *	Undoes the effect of one call to disable_irq().  If this
 633 *	matches the last disable, processing of interrupts on this
 634 *	IRQ line is re-enabled.
 635 *
 636 *	This function may be called from IRQ context only when
 637 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 638 */
 639void enable_irq(unsigned int irq)
 640{
 641	unsigned long flags;
 642	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 643
 644	if (!desc)
 645		return;
 646	if (WARN(!desc->irq_data.chip,
 647		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 648		goto out;
 649
 650	__enable_irq(desc);
 651out:
 652	irq_put_desc_busunlock(desc, flags);
 653}
 654EXPORT_SYMBOL(enable_irq);
 655
 656/**
 657 *	enable_nmi - enable handling of an nmi
 658 *	@irq: Interrupt to enable
 659 *
 660 *	The interrupt to enable must have been requested through request_nmi.
 661 *	Undoes the effect of one call to disable_nmi(). If this
 662 *	matches the last disable, processing of interrupts on this
 663 *	IRQ line is re-enabled.
 664 */
 665void enable_nmi(unsigned int irq)
 666{
 667	enable_irq(irq);
 668}
 669
 670static int set_irq_wake_real(unsigned int irq, unsigned int on)
 671{
 672	struct irq_desc *desc = irq_to_desc(irq);
 673	int ret = -ENXIO;
 674
 675	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 676		return 0;
 677
 678	if (desc->irq_data.chip->irq_set_wake)
 679		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 680
 681	return ret;
 682}
 683
 684/**
 685 *	irq_set_irq_wake - control irq power management wakeup
 686 *	@irq:	interrupt to control
 687 *	@on:	enable/disable power management wakeup
 688 *
 689 *	Enable/disable power management wakeup mode, which is
 690 *	disabled by default.  Enables and disables must match,
 691 *	just as they match for non-wakeup mode support.
 692 *
 693 *	Wakeup mode lets this IRQ wake the system from sleep
 694 *	states like "suspend to RAM".
 695 */
 696int irq_set_irq_wake(unsigned int irq, unsigned int on)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 700	int ret = 0;
 701
 702	if (!desc)
 703		return -EINVAL;
 704
 705	/* Don't use NMIs as wake up interrupts please */
 706	if (desc->istate & IRQS_NMI) {
 707		ret = -EINVAL;
 708		goto out_unlock;
 709	}
 710
 711	/* wakeup-capable irqs can be shared between drivers that
 712	 * don't need to have the same sleep mode behaviors.
 713	 */
 714	if (on) {
 715		if (desc->wake_depth++ == 0) {
 716			ret = set_irq_wake_real(irq, on);
 717			if (ret)
 718				desc->wake_depth = 0;
 719			else
 720				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 721		}
 722	} else {
 723		if (desc->wake_depth == 0) {
 724			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 725		} else if (--desc->wake_depth == 0) {
 726			ret = set_irq_wake_real(irq, on);
 727			if (ret)
 728				desc->wake_depth = 1;
 729			else
 730				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 731		}
 732	}
 733
 734out_unlock:
 735	irq_put_desc_busunlock(desc, flags);
 736	return ret;
 737}
 738EXPORT_SYMBOL(irq_set_irq_wake);
 739
 740/*
 741 * Internal function that tells the architecture code whether a
 742 * particular irq has been exclusively allocated or is available
 743 * for driver use.
 744 */
 745int can_request_irq(unsigned int irq, unsigned long irqflags)
 746{
 747	unsigned long flags;
 748	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 749	int canrequest = 0;
 750
 751	if (!desc)
 752		return 0;
 753
 754	if (irq_settings_can_request(desc)) {
 755		if (!desc->action ||
 756		    irqflags & desc->action->flags & IRQF_SHARED)
 757			canrequest = 1;
 758	}
 759	irq_put_desc_unlock(desc, flags);
 760	return canrequest;
 761}
 762
 763int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 764{
 765	struct irq_chip *chip = desc->irq_data.chip;
 766	int ret, unmask = 0;
 767
 768	if (!chip || !chip->irq_set_type) {
 769		/*
 770		 * IRQF_TRIGGER_* but the PIC does not support multiple
 771		 * flow-types?
 772		 */
 773		pr_debug("No set_type function for IRQ %d (%s)\n",
 774			 irq_desc_get_irq(desc),
 775			 chip ? (chip->name ? : "unknown") : "unknown");
 776		return 0;
 777	}
 778
 
 
 779	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 780		if (!irqd_irq_masked(&desc->irq_data))
 781			mask_irq(desc);
 782		if (!irqd_irq_disabled(&desc->irq_data))
 783			unmask = 1;
 784	}
 785
 786	/* Mask all flags except trigger mode */
 787	flags &= IRQ_TYPE_SENSE_MASK;
 788	ret = chip->irq_set_type(&desc->irq_data, flags);
 789
 790	switch (ret) {
 791	case IRQ_SET_MASK_OK:
 792	case IRQ_SET_MASK_OK_DONE:
 793		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 794		irqd_set(&desc->irq_data, flags);
 795		/* fall through */
 796
 797	case IRQ_SET_MASK_OK_NOCOPY:
 798		flags = irqd_get_trigger_type(&desc->irq_data);
 799		irq_settings_set_trigger_mask(desc, flags);
 800		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 801		irq_settings_clr_level(desc);
 802		if (flags & IRQ_TYPE_LEVEL_MASK) {
 803			irq_settings_set_level(desc);
 804			irqd_set(&desc->irq_data, IRQD_LEVEL);
 805		}
 806
 807		ret = 0;
 808		break;
 809	default:
 810		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 811		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 812	}
 813	if (unmask)
 814		unmask_irq(desc);
 815	return ret;
 816}
 817
 818#ifdef CONFIG_HARDIRQS_SW_RESEND
 819int irq_set_parent(int irq, int parent_irq)
 820{
 821	unsigned long flags;
 822	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 823
 824	if (!desc)
 825		return -EINVAL;
 826
 827	desc->parent_irq = parent_irq;
 828
 829	irq_put_desc_unlock(desc, flags);
 830	return 0;
 831}
 832EXPORT_SYMBOL_GPL(irq_set_parent);
 833#endif
 834
 835/*
 836 * Default primary interrupt handler for threaded interrupts. Is
 837 * assigned as primary handler when request_threaded_irq is called
 838 * with handler == NULL. Useful for oneshot interrupts.
 839 */
 840static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 841{
 842	return IRQ_WAKE_THREAD;
 843}
 844
 845/*
 846 * Primary handler for nested threaded interrupts. Should never be
 847 * called.
 848 */
 849static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 850{
 851	WARN(1, "Primary handler called for nested irq %d\n", irq);
 852	return IRQ_NONE;
 853}
 854
 855static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 856{
 857	WARN(1, "Secondary action handler called for irq %d\n", irq);
 858	return IRQ_NONE;
 859}
 860
 861static int irq_wait_for_interrupt(struct irqaction *action)
 862{
 863	for (;;) {
 864		set_current_state(TASK_INTERRUPTIBLE);
 865
 866		if (kthread_should_stop()) {
 867			/* may need to run one last time */
 868			if (test_and_clear_bit(IRQTF_RUNTHREAD,
 869					       &action->thread_flags)) {
 870				__set_current_state(TASK_RUNNING);
 871				return 0;
 872			}
 873			__set_current_state(TASK_RUNNING);
 874			return -1;
 875		}
 876
 877		if (test_and_clear_bit(IRQTF_RUNTHREAD,
 878				       &action->thread_flags)) {
 879			__set_current_state(TASK_RUNNING);
 880			return 0;
 881		}
 882		schedule();
 
 883	}
 
 
 884}
 885
 886/*
 887 * Oneshot interrupts keep the irq line masked until the threaded
 888 * handler finished. unmask if the interrupt has not been disabled and
 889 * is marked MASKED.
 890 */
 891static void irq_finalize_oneshot(struct irq_desc *desc,
 892				 struct irqaction *action)
 893{
 894	if (!(desc->istate & IRQS_ONESHOT) ||
 895	    action->handler == irq_forced_secondary_handler)
 896		return;
 897again:
 898	chip_bus_lock(desc);
 899	raw_spin_lock_irq(&desc->lock);
 900
 901	/*
 902	 * Implausible though it may be we need to protect us against
 903	 * the following scenario:
 904	 *
 905	 * The thread is faster done than the hard interrupt handler
 906	 * on the other CPU. If we unmask the irq line then the
 907	 * interrupt can come in again and masks the line, leaves due
 908	 * to IRQS_INPROGRESS and the irq line is masked forever.
 909	 *
 910	 * This also serializes the state of shared oneshot handlers
 911	 * versus "desc->threads_onehsot |= action->thread_mask;" in
 912	 * irq_wake_thread(). See the comment there which explains the
 913	 * serialization.
 914	 */
 915	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 916		raw_spin_unlock_irq(&desc->lock);
 917		chip_bus_sync_unlock(desc);
 918		cpu_relax();
 919		goto again;
 920	}
 921
 922	/*
 923	 * Now check again, whether the thread should run. Otherwise
 924	 * we would clear the threads_oneshot bit of this thread which
 925	 * was just set.
 926	 */
 927	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 928		goto out_unlock;
 929
 930	desc->threads_oneshot &= ~action->thread_mask;
 931
 932	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 933	    irqd_irq_masked(&desc->irq_data))
 934		unmask_threaded_irq(desc);
 935
 936out_unlock:
 937	raw_spin_unlock_irq(&desc->lock);
 938	chip_bus_sync_unlock(desc);
 939}
 940
 941#ifdef CONFIG_SMP
 942/*
 943 * Check whether we need to change the affinity of the interrupt thread.
 944 */
 945static void
 946irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 947{
 948	cpumask_var_t mask;
 949	bool valid = true;
 950
 951	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 952		return;
 953
 954	/*
 955	 * In case we are out of memory we set IRQTF_AFFINITY again and
 956	 * try again next time
 957	 */
 958	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 959		set_bit(IRQTF_AFFINITY, &action->thread_flags);
 960		return;
 961	}
 962
 963	raw_spin_lock_irq(&desc->lock);
 964	/*
 965	 * This code is triggered unconditionally. Check the affinity
 966	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 967	 */
 968	if (cpumask_available(desc->irq_common_data.affinity)) {
 969		const struct cpumask *m;
 970
 971		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 972		cpumask_copy(mask, m);
 973	} else {
 974		valid = false;
 975	}
 976	raw_spin_unlock_irq(&desc->lock);
 977
 978	if (valid)
 979		set_cpus_allowed_ptr(current, mask);
 980	free_cpumask_var(mask);
 981}
 982#else
 983static inline void
 984irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 985#endif
 986
 987/*
 988 * Interrupts which are not explicitly requested as threaded
 989 * interrupts rely on the implicit bh/preempt disable of the hard irq
 990 * context. So we need to disable bh here to avoid deadlocks and other
 991 * side effects.
 992 */
 993static irqreturn_t
 994irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 995{
 996	irqreturn_t ret;
 997
 998	local_bh_disable();
 999	ret = action->thread_fn(action->irq, action->dev_id);
1000	if (ret == IRQ_HANDLED)
1001		atomic_inc(&desc->threads_handled);
1002
1003	irq_finalize_oneshot(desc, action);
1004	local_bh_enable();
1005	return ret;
1006}
1007
1008/*
1009 * Interrupts explicitly requested as threaded interrupts want to be
1010 * preemtible - many of them need to sleep and wait for slow busses to
1011 * complete.
1012 */
1013static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014		struct irqaction *action)
1015{
1016	irqreturn_t ret;
1017
1018	ret = action->thread_fn(action->irq, action->dev_id);
1019	if (ret == IRQ_HANDLED)
1020		atomic_inc(&desc->threads_handled);
1021
1022	irq_finalize_oneshot(desc, action);
1023	return ret;
1024}
1025
1026static void wake_threads_waitq(struct irq_desc *desc)
1027{
1028	if (atomic_dec_and_test(&desc->threads_active))
1029		wake_up(&desc->wait_for_threads);
1030}
1031
1032static void irq_thread_dtor(struct callback_head *unused)
1033{
1034	struct task_struct *tsk = current;
1035	struct irq_desc *desc;
1036	struct irqaction *action;
1037
1038	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039		return;
1040
1041	action = kthread_data(tsk);
1042
1043	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044	       tsk->comm, tsk->pid, action->irq);
1045
1046
1047	desc = irq_to_desc(action->irq);
1048	/*
1049	 * If IRQTF_RUNTHREAD is set, we need to decrement
1050	 * desc->threads_active and wake possible waiters.
1051	 */
1052	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053		wake_threads_waitq(desc);
1054
1055	/* Prevent a stale desc->threads_oneshot */
1056	irq_finalize_oneshot(desc, action);
1057}
1058
1059static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060{
1061	struct irqaction *secondary = action->secondary;
1062
1063	if (WARN_ON_ONCE(!secondary))
1064		return;
1065
1066	raw_spin_lock_irq(&desc->lock);
1067	__irq_wake_thread(desc, secondary);
1068	raw_spin_unlock_irq(&desc->lock);
1069}
1070
1071/*
1072 * Interrupt handler thread
1073 */
1074static int irq_thread(void *data)
1075{
1076	struct callback_head on_exit_work;
1077	struct irqaction *action = data;
1078	struct irq_desc *desc = irq_to_desc(action->irq);
1079	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080			struct irqaction *action);
1081
1082	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083					&action->thread_flags))
1084		handler_fn = irq_forced_thread_fn;
1085	else
1086		handler_fn = irq_thread_fn;
1087
1088	init_task_work(&on_exit_work, irq_thread_dtor);
1089	task_work_add(current, &on_exit_work, false);
1090
1091	irq_thread_check_affinity(desc, action);
1092
1093	while (!irq_wait_for_interrupt(action)) {
1094		irqreturn_t action_ret;
1095
1096		irq_thread_check_affinity(desc, action);
1097
1098		action_ret = handler_fn(desc, action);
 
 
1099		if (action_ret == IRQ_WAKE_THREAD)
1100			irq_wake_secondary(desc, action);
1101
1102		wake_threads_waitq(desc);
1103	}
1104
1105	/*
1106	 * This is the regular exit path. __free_irq() is stopping the
1107	 * thread via kthread_stop() after calling
1108	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109	 * oneshot mask bit can be set.
 
 
 
1110	 */
1111	task_work_cancel(current, irq_thread_dtor);
1112	return 0;
1113}
1114
1115/**
1116 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1117 *	@irq:		Interrupt line
1118 *	@dev_id:	Device identity for which the thread should be woken
1119 *
1120 */
1121void irq_wake_thread(unsigned int irq, void *dev_id)
1122{
1123	struct irq_desc *desc = irq_to_desc(irq);
1124	struct irqaction *action;
1125	unsigned long flags;
1126
1127	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128		return;
1129
1130	raw_spin_lock_irqsave(&desc->lock, flags);
1131	for_each_action_of_desc(desc, action) {
1132		if (action->dev_id == dev_id) {
1133			if (action->thread)
1134				__irq_wake_thread(desc, action);
1135			break;
1136		}
1137	}
1138	raw_spin_unlock_irqrestore(&desc->lock, flags);
1139}
1140EXPORT_SYMBOL_GPL(irq_wake_thread);
1141
1142static int irq_setup_forced_threading(struct irqaction *new)
1143{
1144	if (!force_irqthreads)
1145		return 0;
1146	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147		return 0;
1148
1149	/*
1150	 * No further action required for interrupts which are requested as
1151	 * threaded interrupts already
1152	 */
1153	if (new->handler == irq_default_primary_handler)
1154		return 0;
1155
1156	new->flags |= IRQF_ONESHOT;
1157
1158	/*
1159	 * Handle the case where we have a real primary handler and a
1160	 * thread handler. We force thread them as well by creating a
1161	 * secondary action.
1162	 */
1163	if (new->handler && new->thread_fn) {
1164		/* Allocate the secondary action */
1165		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166		if (!new->secondary)
1167			return -ENOMEM;
1168		new->secondary->handler = irq_forced_secondary_handler;
1169		new->secondary->thread_fn = new->thread_fn;
1170		new->secondary->dev_id = new->dev_id;
1171		new->secondary->irq = new->irq;
1172		new->secondary->name = new->name;
1173	}
1174	/* Deal with the primary handler */
1175	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176	new->thread_fn = new->handler;
1177	new->handler = irq_default_primary_handler;
1178	return 0;
1179}
1180
1181static int irq_request_resources(struct irq_desc *desc)
1182{
1183	struct irq_data *d = &desc->irq_data;
1184	struct irq_chip *c = d->chip;
1185
1186	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187}
1188
1189static void irq_release_resources(struct irq_desc *desc)
1190{
1191	struct irq_data *d = &desc->irq_data;
1192	struct irq_chip *c = d->chip;
1193
1194	if (c->irq_release_resources)
1195		c->irq_release_resources(d);
1196}
1197
1198static bool irq_supports_nmi(struct irq_desc *desc)
1199{
1200	struct irq_data *d = irq_desc_get_irq_data(desc);
1201
1202#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1204	if (d->parent_data)
1205		return false;
1206#endif
1207	/* Don't support NMIs for chips behind a slow bus */
1208	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209		return false;
1210
1211	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212}
1213
1214static int irq_nmi_setup(struct irq_desc *desc)
1215{
1216	struct irq_data *d = irq_desc_get_irq_data(desc);
1217	struct irq_chip *c = d->chip;
1218
1219	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220}
1221
1222static void irq_nmi_teardown(struct irq_desc *desc)
1223{
1224	struct irq_data *d = irq_desc_get_irq_data(desc);
1225	struct irq_chip *c = d->chip;
1226
1227	if (c->irq_nmi_teardown)
1228		c->irq_nmi_teardown(d);
1229}
1230
1231static int
1232setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233{
1234	struct task_struct *t;
1235	struct sched_param param = {
1236		.sched_priority = MAX_USER_RT_PRIO/2,
1237	};
1238
1239	if (!secondary) {
1240		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241				   new->name);
1242	} else {
1243		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244				   new->name);
1245		param.sched_priority -= 1;
1246	}
1247
1248	if (IS_ERR(t))
1249		return PTR_ERR(t);
1250
1251	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252
1253	/*
1254	 * We keep the reference to the task struct even if
1255	 * the thread dies to avoid that the interrupt code
1256	 * references an already freed task_struct.
1257	 */
1258	new->thread = get_task_struct(t);
 
1259	/*
1260	 * Tell the thread to set its affinity. This is
1261	 * important for shared interrupt handlers as we do
1262	 * not invoke setup_affinity() for the secondary
1263	 * handlers as everything is already set up. Even for
1264	 * interrupts marked with IRQF_NO_BALANCE this is
1265	 * correct as we want the thread to move to the cpu(s)
1266	 * on which the requesting code placed the interrupt.
1267	 */
1268	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1269	return 0;
1270}
1271
1272/*
1273 * Internal function to register an irqaction - typically used to
1274 * allocate special interrupts that are part of the architecture.
1275 *
1276 * Locking rules:
1277 *
1278 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1279 *   chip_bus_lock	Provides serialization for slow bus operations
1280 *     desc->lock	Provides serialization against hard interrupts
1281 *
1282 * chip_bus_lock and desc->lock are sufficient for all other management and
1283 * interrupt related functions. desc->request_mutex solely serializes
1284 * request/free_irq().
1285 */
1286static int
1287__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1288{
1289	struct irqaction *old, **old_ptr;
1290	unsigned long flags, thread_mask = 0;
1291	int ret, nested, shared = 0;
 
1292
1293	if (!desc)
1294		return -EINVAL;
1295
1296	if (desc->irq_data.chip == &no_irq_chip)
1297		return -ENOSYS;
1298	if (!try_module_get(desc->owner))
1299		return -ENODEV;
1300
1301	new->irq = irq;
1302
1303	/*
1304	 * If the trigger type is not specified by the caller,
1305	 * then use the default for this interrupt.
1306	 */
1307	if (!(new->flags & IRQF_TRIGGER_MASK))
1308		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1309
1310	/*
1311	 * Check whether the interrupt nests into another interrupt
1312	 * thread.
1313	 */
1314	nested = irq_settings_is_nested_thread(desc);
1315	if (nested) {
1316		if (!new->thread_fn) {
1317			ret = -EINVAL;
1318			goto out_mput;
1319		}
1320		/*
1321		 * Replace the primary handler which was provided from
1322		 * the driver for non nested interrupt handling by the
1323		 * dummy function which warns when called.
1324		 */
1325		new->handler = irq_nested_primary_handler;
1326	} else {
1327		if (irq_settings_can_thread(desc)) {
1328			ret = irq_setup_forced_threading(new);
1329			if (ret)
1330				goto out_mput;
1331		}
1332	}
1333
1334	/*
1335	 * Create a handler thread when a thread function is supplied
1336	 * and the interrupt does not nest into another interrupt
1337	 * thread.
1338	 */
1339	if (new->thread_fn && !nested) {
1340		ret = setup_irq_thread(new, irq, false);
1341		if (ret)
1342			goto out_mput;
1343		if (new->secondary) {
1344			ret = setup_irq_thread(new->secondary, irq, true);
1345			if (ret)
1346				goto out_thread;
1347		}
1348	}
1349
 
 
 
 
 
1350	/*
1351	 * Drivers are often written to work w/o knowledge about the
1352	 * underlying irq chip implementation, so a request for a
1353	 * threaded irq without a primary hard irq context handler
1354	 * requires the ONESHOT flag to be set. Some irq chips like
1355	 * MSI based interrupts are per se one shot safe. Check the
1356	 * chip flags, so we can avoid the unmask dance at the end of
1357	 * the threaded handler for those.
1358	 */
1359	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1360		new->flags &= ~IRQF_ONESHOT;
1361
1362	/*
1363	 * Protects against a concurrent __free_irq() call which might wait
1364	 * for synchronize_hardirq() to complete without holding the optional
1365	 * chip bus lock and desc->lock. Also protects against handing out
1366	 * a recycled oneshot thread_mask bit while it's still in use by
1367	 * its previous owner.
1368	 */
1369	mutex_lock(&desc->request_mutex);
1370
1371	/*
1372	 * Acquire bus lock as the irq_request_resources() callback below
1373	 * might rely on the serialization or the magic power management
1374	 * functions which are abusing the irq_bus_lock() callback,
1375	 */
1376	chip_bus_lock(desc);
1377
1378	/* First installed action requests resources. */
1379	if (!desc->action) {
1380		ret = irq_request_resources(desc);
1381		if (ret) {
1382			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1383			       new->name, irq, desc->irq_data.chip->name);
1384			goto out_bus_unlock;
1385		}
1386	}
1387
1388	/*
1389	 * The following block of code has to be executed atomically
1390	 * protected against a concurrent interrupt and any of the other
1391	 * management calls which are not serialized via
1392	 * desc->request_mutex or the optional bus lock.
1393	 */
1394	raw_spin_lock_irqsave(&desc->lock, flags);
1395	old_ptr = &desc->action;
1396	old = *old_ptr;
1397	if (old) {
1398		/*
1399		 * Can't share interrupts unless both agree to and are
1400		 * the same type (level, edge, polarity). So both flag
1401		 * fields must have IRQF_SHARED set and the bits which
1402		 * set the trigger type must match. Also all must
1403		 * agree on ONESHOT.
1404		 * Interrupt lines used for NMIs cannot be shared.
1405		 */
1406		unsigned int oldtype;
1407
1408		if (desc->istate & IRQS_NMI) {
1409			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1410				new->name, irq, desc->irq_data.chip->name);
1411			ret = -EINVAL;
1412			goto out_unlock;
1413		}
1414
1415		/*
1416		 * If nobody did set the configuration before, inherit
1417		 * the one provided by the requester.
1418		 */
1419		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1420			oldtype = irqd_get_trigger_type(&desc->irq_data);
1421		} else {
1422			oldtype = new->flags & IRQF_TRIGGER_MASK;
1423			irqd_set_trigger_type(&desc->irq_data, oldtype);
1424		}
1425
1426		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1427		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1428		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1429			goto mismatch;
1430
1431		/* All handlers must agree on per-cpuness */
1432		if ((old->flags & IRQF_PERCPU) !=
1433		    (new->flags & IRQF_PERCPU))
1434			goto mismatch;
1435
1436		/* add new interrupt at end of irq queue */
1437		do {
1438			/*
1439			 * Or all existing action->thread_mask bits,
1440			 * so we can find the next zero bit for this
1441			 * new action.
1442			 */
1443			thread_mask |= old->thread_mask;
1444			old_ptr = &old->next;
1445			old = *old_ptr;
1446		} while (old);
1447		shared = 1;
1448	}
1449
1450	/*
1451	 * Setup the thread mask for this irqaction for ONESHOT. For
1452	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1453	 * conditional in irq_wake_thread().
1454	 */
1455	if (new->flags & IRQF_ONESHOT) {
1456		/*
1457		 * Unlikely to have 32 resp 64 irqs sharing one line,
1458		 * but who knows.
1459		 */
1460		if (thread_mask == ~0UL) {
1461			ret = -EBUSY;
1462			goto out_unlock;
1463		}
1464		/*
1465		 * The thread_mask for the action is or'ed to
1466		 * desc->thread_active to indicate that the
1467		 * IRQF_ONESHOT thread handler has been woken, but not
1468		 * yet finished. The bit is cleared when a thread
1469		 * completes. When all threads of a shared interrupt
1470		 * line have completed desc->threads_active becomes
1471		 * zero and the interrupt line is unmasked. See
1472		 * handle.c:irq_wake_thread() for further information.
1473		 *
1474		 * If no thread is woken by primary (hard irq context)
1475		 * interrupt handlers, then desc->threads_active is
1476		 * also checked for zero to unmask the irq line in the
1477		 * affected hard irq flow handlers
1478		 * (handle_[fasteoi|level]_irq).
1479		 *
1480		 * The new action gets the first zero bit of
1481		 * thread_mask assigned. See the loop above which or's
1482		 * all existing action->thread_mask bits.
1483		 */
1484		new->thread_mask = 1UL << ffz(thread_mask);
1485
1486	} else if (new->handler == irq_default_primary_handler &&
1487		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1488		/*
1489		 * The interrupt was requested with handler = NULL, so
1490		 * we use the default primary handler for it. But it
1491		 * does not have the oneshot flag set. In combination
1492		 * with level interrupts this is deadly, because the
1493		 * default primary handler just wakes the thread, then
1494		 * the irq lines is reenabled, but the device still
1495		 * has the level irq asserted. Rinse and repeat....
1496		 *
1497		 * While this works for edge type interrupts, we play
1498		 * it safe and reject unconditionally because we can't
1499		 * say for sure which type this interrupt really
1500		 * has. The type flags are unreliable as the
1501		 * underlying chip implementation can override them.
1502		 */
1503		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1504		       irq);
1505		ret = -EINVAL;
1506		goto out_unlock;
1507	}
1508
1509	if (!shared) {
 
 
 
 
 
 
 
1510		init_waitqueue_head(&desc->wait_for_threads);
1511
1512		/* Setup the type (level, edge polarity) if configured: */
1513		if (new->flags & IRQF_TRIGGER_MASK) {
1514			ret = __irq_set_trigger(desc,
1515						new->flags & IRQF_TRIGGER_MASK);
1516
1517			if (ret)
1518				goto out_unlock;
1519		}
1520
1521		/*
1522		 * Activate the interrupt. That activation must happen
1523		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1524		 * and the callers are supposed to handle
1525		 * that. enable_irq() of an interrupt requested with
1526		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1527		 * keeps it in shutdown mode, it merily associates
1528		 * resources if necessary and if that's not possible it
1529		 * fails. Interrupts which are in managed shutdown mode
1530		 * will simply ignore that activation request.
1531		 */
1532		ret = irq_activate(desc);
1533		if (ret)
1534			goto out_unlock;
1535
1536		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1537				  IRQS_ONESHOT | IRQS_WAITING);
1538		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1539
1540		if (new->flags & IRQF_PERCPU) {
1541			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1542			irq_settings_set_per_cpu(desc);
1543		}
1544
1545		if (new->flags & IRQF_ONESHOT)
1546			desc->istate |= IRQS_ONESHOT;
1547
 
 
 
 
 
 
1548		/* Exclude IRQ from balancing if requested */
1549		if (new->flags & IRQF_NOBALANCING) {
1550			irq_settings_set_no_balancing(desc);
1551			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1552		}
1553
1554		if (irq_settings_can_autoenable(desc)) {
1555			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1556		} else {
1557			/*
1558			 * Shared interrupts do not go well with disabling
1559			 * auto enable. The sharing interrupt might request
1560			 * it while it's still disabled and then wait for
1561			 * interrupts forever.
1562			 */
1563			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1564			/* Undo nested disables: */
1565			desc->depth = 1;
1566		}
1567
1568	} else if (new->flags & IRQF_TRIGGER_MASK) {
1569		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1570		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1571
1572		if (nmsk != omsk)
1573			/* hope the handler works with current  trigger mode */
1574			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1575				irq, omsk, nmsk);
1576	}
1577
1578	*old_ptr = new;
1579
1580	irq_pm_install_action(desc, new);
1581
1582	/* Reset broken irq detection when installing new handler */
1583	desc->irq_count = 0;
1584	desc->irqs_unhandled = 0;
1585
1586	/*
1587	 * Check whether we disabled the irq via the spurious handler
1588	 * before. Reenable it and give it another chance.
1589	 */
1590	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1591		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1592		__enable_irq(desc);
1593	}
1594
1595	raw_spin_unlock_irqrestore(&desc->lock, flags);
1596	chip_bus_sync_unlock(desc);
1597	mutex_unlock(&desc->request_mutex);
1598
1599	irq_setup_timings(desc, new);
1600
1601	/*
1602	 * Strictly no need to wake it up, but hung_task complains
1603	 * when no hard interrupt wakes the thread up.
1604	 */
1605	if (new->thread)
1606		wake_up_process(new->thread);
1607	if (new->secondary)
1608		wake_up_process(new->secondary->thread);
1609
1610	register_irq_proc(irq, desc);
1611	new->dir = NULL;
1612	register_handler_proc(irq, new);
 
 
1613	return 0;
1614
1615mismatch:
1616	if (!(new->flags & IRQF_PROBE_SHARED)) {
1617		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1618		       irq, new->flags, new->name, old->flags, old->name);
1619#ifdef CONFIG_DEBUG_SHIRQ
1620		dump_stack();
1621#endif
1622	}
1623	ret = -EBUSY;
1624
1625out_unlock:
1626	raw_spin_unlock_irqrestore(&desc->lock, flags);
1627
1628	if (!desc->action)
1629		irq_release_resources(desc);
1630out_bus_unlock:
1631	chip_bus_sync_unlock(desc);
1632	mutex_unlock(&desc->request_mutex);
1633
1634out_thread:
1635	if (new->thread) {
1636		struct task_struct *t = new->thread;
1637
1638		new->thread = NULL;
1639		kthread_stop(t);
1640		put_task_struct(t);
1641	}
1642	if (new->secondary && new->secondary->thread) {
1643		struct task_struct *t = new->secondary->thread;
1644
1645		new->secondary->thread = NULL;
1646		kthread_stop(t);
1647		put_task_struct(t);
1648	}
1649out_mput:
1650	module_put(desc->owner);
1651	return ret;
1652}
1653
1654/**
1655 *	setup_irq - setup an interrupt
1656 *	@irq: Interrupt line to setup
1657 *	@act: irqaction for the interrupt
1658 *
1659 * Used to statically setup interrupts in the early boot process.
1660 */
1661int setup_irq(unsigned int irq, struct irqaction *act)
1662{
1663	int retval;
1664	struct irq_desc *desc = irq_to_desc(irq);
1665
1666	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667		return -EINVAL;
1668
1669	retval = irq_chip_pm_get(&desc->irq_data);
1670	if (retval < 0)
1671		return retval;
1672
1673	retval = __setup_irq(irq, desc, act);
1674
1675	if (retval)
1676		irq_chip_pm_put(&desc->irq_data);
1677
1678	return retval;
1679}
1680EXPORT_SYMBOL_GPL(setup_irq);
1681
1682/*
1683 * Internal function to unregister an irqaction - used to free
1684 * regular and special interrupts that are part of the architecture.
1685 */
1686static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1687{
1688	unsigned irq = desc->irq_data.irq;
1689	struct irqaction *action, **action_ptr;
1690	unsigned long flags;
1691
1692	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1693
1694	mutex_lock(&desc->request_mutex);
 
 
1695	chip_bus_lock(desc);
1696	raw_spin_lock_irqsave(&desc->lock, flags);
1697
1698	/*
1699	 * There can be multiple actions per IRQ descriptor, find the right
1700	 * one based on the dev_id:
1701	 */
1702	action_ptr = &desc->action;
1703	for (;;) {
1704		action = *action_ptr;
1705
1706		if (!action) {
1707			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1708			raw_spin_unlock_irqrestore(&desc->lock, flags);
1709			chip_bus_sync_unlock(desc);
1710			mutex_unlock(&desc->request_mutex);
1711			return NULL;
1712		}
1713
1714		if (action->dev_id == dev_id)
1715			break;
1716		action_ptr = &action->next;
1717	}
1718
1719	/* Found it - now remove it from the list of entries: */
1720	*action_ptr = action->next;
1721
1722	irq_pm_remove_action(desc, action);
1723
1724	/* If this was the last handler, shut down the IRQ line: */
1725	if (!desc->action) {
1726		irq_settings_clr_disable_unlazy(desc);
1727		/* Only shutdown. Deactivate after synchronize_hardirq() */
1728		irq_shutdown(desc);
 
1729	}
1730
1731#ifdef CONFIG_SMP
1732	/* make sure affinity_hint is cleaned up */
1733	if (WARN_ON_ONCE(desc->affinity_hint))
1734		desc->affinity_hint = NULL;
1735#endif
1736
1737	raw_spin_unlock_irqrestore(&desc->lock, flags);
1738	/*
1739	 * Drop bus_lock here so the changes which were done in the chip
1740	 * callbacks above are synced out to the irq chips which hang
1741	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1742	 *
1743	 * Aside of that the bus_lock can also be taken from the threaded
1744	 * handler in irq_finalize_oneshot() which results in a deadlock
1745	 * because kthread_stop() would wait forever for the thread to
1746	 * complete, which is blocked on the bus lock.
1747	 *
1748	 * The still held desc->request_mutex() protects against a
1749	 * concurrent request_irq() of this irq so the release of resources
1750	 * and timing data is properly serialized.
1751	 */
1752	chip_bus_sync_unlock(desc);
1753
1754	unregister_handler_proc(irq, action);
1755
1756	/*
1757	 * Make sure it's not being used on another CPU and if the chip
1758	 * supports it also make sure that there is no (not yet serviced)
1759	 * interrupt in flight at the hardware level.
1760	 */
1761	__synchronize_hardirq(desc, true);
1762
1763#ifdef CONFIG_DEBUG_SHIRQ
1764	/*
1765	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1766	 * event to happen even now it's being freed, so let's make sure that
1767	 * is so by doing an extra call to the handler ....
1768	 *
1769	 * ( We do this after actually deregistering it, to make sure that a
1770	 *   'real' IRQ doesn't run in parallel with our fake. )
1771	 */
1772	if (action->flags & IRQF_SHARED) {
1773		local_irq_save(flags);
1774		action->handler(irq, dev_id);
1775		local_irq_restore(flags);
1776	}
1777#endif
1778
1779	/*
1780	 * The action has already been removed above, but the thread writes
1781	 * its oneshot mask bit when it completes. Though request_mutex is
1782	 * held across this which prevents __setup_irq() from handing out
1783	 * the same bit to a newly requested action.
1784	 */
1785	if (action->thread) {
1786		kthread_stop(action->thread);
1787		put_task_struct(action->thread);
1788		if (action->secondary && action->secondary->thread) {
1789			kthread_stop(action->secondary->thread);
1790			put_task_struct(action->secondary->thread);
1791		}
1792	}
1793
1794	/* Last action releases resources */
1795	if (!desc->action) {
1796		/*
1797		 * Reaquire bus lock as irq_release_resources() might
1798		 * require it to deallocate resources over the slow bus.
1799		 */
1800		chip_bus_lock(desc);
1801		/*
1802		 * There is no interrupt on the fly anymore. Deactivate it
1803		 * completely.
1804		 */
1805		raw_spin_lock_irqsave(&desc->lock, flags);
1806		irq_domain_deactivate_irq(&desc->irq_data);
1807		raw_spin_unlock_irqrestore(&desc->lock, flags);
1808
1809		irq_release_resources(desc);
1810		chip_bus_sync_unlock(desc);
1811		irq_remove_timings(desc);
1812	}
1813
1814	mutex_unlock(&desc->request_mutex);
1815
1816	irq_chip_pm_put(&desc->irq_data);
1817	module_put(desc->owner);
1818	kfree(action->secondary);
1819	return action;
1820}
1821
1822/**
1823 *	remove_irq - free an interrupt
1824 *	@irq: Interrupt line to free
1825 *	@act: irqaction for the interrupt
1826 *
1827 * Used to remove interrupts statically setup by the early boot process.
1828 */
1829void remove_irq(unsigned int irq, struct irqaction *act)
1830{
1831	struct irq_desc *desc = irq_to_desc(irq);
1832
1833	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1834		__free_irq(desc, act->dev_id);
1835}
1836EXPORT_SYMBOL_GPL(remove_irq);
1837
1838/**
1839 *	free_irq - free an interrupt allocated with request_irq
1840 *	@irq: Interrupt line to free
1841 *	@dev_id: Device identity to free
1842 *
1843 *	Remove an interrupt handler. The handler is removed and if the
1844 *	interrupt line is no longer in use by any driver it is disabled.
1845 *	On a shared IRQ the caller must ensure the interrupt is disabled
1846 *	on the card it drives before calling this function. The function
1847 *	does not return until any executing interrupts for this IRQ
1848 *	have completed.
1849 *
1850 *	This function must not be called from interrupt context.
1851 *
1852 *	Returns the devname argument passed to request_irq.
1853 */
1854const void *free_irq(unsigned int irq, void *dev_id)
1855{
1856	struct irq_desc *desc = irq_to_desc(irq);
1857	struct irqaction *action;
1858	const char *devname;
1859
1860	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1861		return NULL;
1862
1863#ifdef CONFIG_SMP
1864	if (WARN_ON(desc->affinity_notify))
1865		desc->affinity_notify = NULL;
1866#endif
1867
1868	action = __free_irq(desc, dev_id);
1869
1870	if (!action)
1871		return NULL;
1872
1873	devname = action->name;
1874	kfree(action);
1875	return devname;
1876}
1877EXPORT_SYMBOL(free_irq);
1878
1879/* This function must be called with desc->lock held */
1880static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1881{
1882	const char *devname = NULL;
1883
1884	desc->istate &= ~IRQS_NMI;
1885
1886	if (!WARN_ON(desc->action == NULL)) {
1887		irq_pm_remove_action(desc, desc->action);
1888		devname = desc->action->name;
1889		unregister_handler_proc(irq, desc->action);
1890
1891		kfree(desc->action);
1892		desc->action = NULL;
1893	}
1894
1895	irq_settings_clr_disable_unlazy(desc);
1896	irq_shutdown_and_deactivate(desc);
1897
1898	irq_release_resources(desc);
1899
1900	irq_chip_pm_put(&desc->irq_data);
1901	module_put(desc->owner);
1902
1903	return devname;
1904}
1905
1906const void *free_nmi(unsigned int irq, void *dev_id)
1907{
1908	struct irq_desc *desc = irq_to_desc(irq);
1909	unsigned long flags;
1910	const void *devname;
1911
1912	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1913		return NULL;
1914
1915	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1916		return NULL;
1917
1918	/* NMI still enabled */
1919	if (WARN_ON(desc->depth == 0))
1920		disable_nmi_nosync(irq);
1921
1922	raw_spin_lock_irqsave(&desc->lock, flags);
1923
1924	irq_nmi_teardown(desc);
1925	devname = __cleanup_nmi(irq, desc);
1926
1927	raw_spin_unlock_irqrestore(&desc->lock, flags);
1928
1929	return devname;
1930}
1931
1932/**
1933 *	request_threaded_irq - allocate an interrupt line
1934 *	@irq: Interrupt line to allocate
1935 *	@handler: Function to be called when the IRQ occurs.
1936 *		  Primary handler for threaded interrupts
1937 *		  If NULL and thread_fn != NULL the default
1938 *		  primary handler is installed
1939 *	@thread_fn: Function called from the irq handler thread
1940 *		    If NULL, no irq thread is created
1941 *	@irqflags: Interrupt type flags
1942 *	@devname: An ascii name for the claiming device
1943 *	@dev_id: A cookie passed back to the handler function
1944 *
1945 *	This call allocates interrupt resources and enables the
1946 *	interrupt line and IRQ handling. From the point this
1947 *	call is made your handler function may be invoked. Since
1948 *	your handler function must clear any interrupt the board
1949 *	raises, you must take care both to initialise your hardware
1950 *	and to set up the interrupt handler in the right order.
1951 *
1952 *	If you want to set up a threaded irq handler for your device
1953 *	then you need to supply @handler and @thread_fn. @handler is
1954 *	still called in hard interrupt context and has to check
1955 *	whether the interrupt originates from the device. If yes it
1956 *	needs to disable the interrupt on the device and return
1957 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1958 *	@thread_fn. This split handler design is necessary to support
1959 *	shared interrupts.
1960 *
1961 *	Dev_id must be globally unique. Normally the address of the
1962 *	device data structure is used as the cookie. Since the handler
1963 *	receives this value it makes sense to use it.
1964 *
1965 *	If your interrupt is shared you must pass a non NULL dev_id
1966 *	as this is required when freeing the interrupt.
1967 *
1968 *	Flags:
1969 *
1970 *	IRQF_SHARED		Interrupt is shared
1971 *	IRQF_TRIGGER_*		Specify active edge(s) or level
1972 *
1973 */
1974int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1975			 irq_handler_t thread_fn, unsigned long irqflags,
1976			 const char *devname, void *dev_id)
1977{
1978	struct irqaction *action;
1979	struct irq_desc *desc;
1980	int retval;
1981
1982	if (irq == IRQ_NOTCONNECTED)
1983		return -ENOTCONN;
1984
1985	/*
1986	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1987	 * otherwise we'll have trouble later trying to figure out
1988	 * which interrupt is which (messes up the interrupt freeing
1989	 * logic etc).
1990	 *
1991	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1992	 * it cannot be set along with IRQF_NO_SUSPEND.
1993	 */
1994	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1995	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1996	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1997		return -EINVAL;
1998
1999	desc = irq_to_desc(irq);
2000	if (!desc)
2001		return -EINVAL;
2002
2003	if (!irq_settings_can_request(desc) ||
2004	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2005		return -EINVAL;
2006
2007	if (!handler) {
2008		if (!thread_fn)
2009			return -EINVAL;
2010		handler = irq_default_primary_handler;
2011	}
2012
2013	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2014	if (!action)
2015		return -ENOMEM;
2016
2017	action->handler = handler;
2018	action->thread_fn = thread_fn;
2019	action->flags = irqflags;
2020	action->name = devname;
2021	action->dev_id = dev_id;
2022
2023	retval = irq_chip_pm_get(&desc->irq_data);
2024	if (retval < 0) {
2025		kfree(action);
2026		return retval;
2027	}
2028
2029	retval = __setup_irq(irq, desc, action);
 
2030
2031	if (retval) {
2032		irq_chip_pm_put(&desc->irq_data);
2033		kfree(action->secondary);
2034		kfree(action);
2035	}
2036
2037#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2038	if (!retval && (irqflags & IRQF_SHARED)) {
2039		/*
2040		 * It's a shared IRQ -- the driver ought to be prepared for it
2041		 * to happen immediately, so let's make sure....
2042		 * We disable the irq to make sure that a 'real' IRQ doesn't
2043		 * run in parallel with our fake.
2044		 */
2045		unsigned long flags;
2046
2047		disable_irq(irq);
2048		local_irq_save(flags);
2049
2050		handler(irq, dev_id);
2051
2052		local_irq_restore(flags);
2053		enable_irq(irq);
2054	}
2055#endif
2056	return retval;
2057}
2058EXPORT_SYMBOL(request_threaded_irq);
2059
2060/**
2061 *	request_any_context_irq - allocate an interrupt line
2062 *	@irq: Interrupt line to allocate
2063 *	@handler: Function to be called when the IRQ occurs.
2064 *		  Threaded handler for threaded interrupts.
2065 *	@flags: Interrupt type flags
2066 *	@name: An ascii name for the claiming device
2067 *	@dev_id: A cookie passed back to the handler function
2068 *
2069 *	This call allocates interrupt resources and enables the
2070 *	interrupt line and IRQ handling. It selects either a
2071 *	hardirq or threaded handling method depending on the
2072 *	context.
2073 *
2074 *	On failure, it returns a negative value. On success,
2075 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2076 */
2077int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2078			    unsigned long flags, const char *name, void *dev_id)
2079{
2080	struct irq_desc *desc;
2081	int ret;
2082
2083	if (irq == IRQ_NOTCONNECTED)
2084		return -ENOTCONN;
2085
2086	desc = irq_to_desc(irq);
2087	if (!desc)
2088		return -EINVAL;
2089
2090	if (irq_settings_is_nested_thread(desc)) {
2091		ret = request_threaded_irq(irq, NULL, handler,
2092					   flags, name, dev_id);
2093		return !ret ? IRQC_IS_NESTED : ret;
2094	}
2095
2096	ret = request_irq(irq, handler, flags, name, dev_id);
2097	return !ret ? IRQC_IS_HARDIRQ : ret;
2098}
2099EXPORT_SYMBOL_GPL(request_any_context_irq);
2100
2101/**
2102 *	request_nmi - allocate an interrupt line for NMI delivery
2103 *	@irq: Interrupt line to allocate
2104 *	@handler: Function to be called when the IRQ occurs.
2105 *		  Threaded handler for threaded interrupts.
2106 *	@irqflags: Interrupt type flags
2107 *	@name: An ascii name for the claiming device
2108 *	@dev_id: A cookie passed back to the handler function
2109 *
2110 *	This call allocates interrupt resources and enables the
2111 *	interrupt line and IRQ handling. It sets up the IRQ line
2112 *	to be handled as an NMI.
2113 *
2114 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2115 *	cannot be threaded.
2116 *
2117 *	Interrupt lines requested for NMI delivering must produce per cpu
2118 *	interrupts and have auto enabling setting disabled.
2119 *
2120 *	Dev_id must be globally unique. Normally the address of the
2121 *	device data structure is used as the cookie. Since the handler
2122 *	receives this value it makes sense to use it.
2123 *
2124 *	If the interrupt line cannot be used to deliver NMIs, function
2125 *	will fail and return a negative value.
2126 */
2127int request_nmi(unsigned int irq, irq_handler_t handler,
2128		unsigned long irqflags, const char *name, void *dev_id)
2129{
2130	struct irqaction *action;
2131	struct irq_desc *desc;
2132	unsigned long flags;
2133	int retval;
2134
2135	if (irq == IRQ_NOTCONNECTED)
2136		return -ENOTCONN;
2137
2138	/* NMI cannot be shared, used for Polling */
2139	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2140		return -EINVAL;
2141
2142	if (!(irqflags & IRQF_PERCPU))
2143		return -EINVAL;
2144
2145	if (!handler)
2146		return -EINVAL;
2147
2148	desc = irq_to_desc(irq);
2149
2150	if (!desc || irq_settings_can_autoenable(desc) ||
2151	    !irq_settings_can_request(desc) ||
2152	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2153	    !irq_supports_nmi(desc))
2154		return -EINVAL;
2155
2156	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157	if (!action)
2158		return -ENOMEM;
2159
2160	action->handler = handler;
2161	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2162	action->name = name;
2163	action->dev_id = dev_id;
2164
2165	retval = irq_chip_pm_get(&desc->irq_data);
2166	if (retval < 0)
2167		goto err_out;
2168
2169	retval = __setup_irq(irq, desc, action);
2170	if (retval)
2171		goto err_irq_setup;
2172
2173	raw_spin_lock_irqsave(&desc->lock, flags);
2174
2175	/* Setup NMI state */
2176	desc->istate |= IRQS_NMI;
2177	retval = irq_nmi_setup(desc);
2178	if (retval) {
2179		__cleanup_nmi(irq, desc);
2180		raw_spin_unlock_irqrestore(&desc->lock, flags);
2181		return -EINVAL;
2182	}
2183
2184	raw_spin_unlock_irqrestore(&desc->lock, flags);
2185
2186	return 0;
2187
2188err_irq_setup:
2189	irq_chip_pm_put(&desc->irq_data);
2190err_out:
2191	kfree(action);
2192
2193	return retval;
2194}
2195
2196void enable_percpu_irq(unsigned int irq, unsigned int type)
2197{
2198	unsigned int cpu = smp_processor_id();
2199	unsigned long flags;
2200	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2201
2202	if (!desc)
2203		return;
2204
2205	/*
2206	 * If the trigger type is not specified by the caller, then
2207	 * use the default for this interrupt.
2208	 */
2209	type &= IRQ_TYPE_SENSE_MASK;
2210	if (type == IRQ_TYPE_NONE)
2211		type = irqd_get_trigger_type(&desc->irq_data);
2212
2213	if (type != IRQ_TYPE_NONE) {
2214		int ret;
2215
2216		ret = __irq_set_trigger(desc, type);
2217
2218		if (ret) {
2219			WARN(1, "failed to set type for IRQ%d\n", irq);
2220			goto out;
2221		}
2222	}
2223
2224	irq_percpu_enable(desc, cpu);
2225out:
2226	irq_put_desc_unlock(desc, flags);
2227}
2228EXPORT_SYMBOL_GPL(enable_percpu_irq);
2229
2230void enable_percpu_nmi(unsigned int irq, unsigned int type)
2231{
2232	enable_percpu_irq(irq, type);
2233}
2234
2235/**
2236 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2237 * @irq:	Linux irq number to check for
2238 *
2239 * Must be called from a non migratable context. Returns the enable
2240 * state of a per cpu interrupt on the current cpu.
2241 */
2242bool irq_percpu_is_enabled(unsigned int irq)
2243{
2244	unsigned int cpu = smp_processor_id();
2245	struct irq_desc *desc;
2246	unsigned long flags;
2247	bool is_enabled;
2248
2249	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2250	if (!desc)
2251		return false;
2252
2253	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2254	irq_put_desc_unlock(desc, flags);
2255
2256	return is_enabled;
2257}
2258EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2259
2260void disable_percpu_irq(unsigned int irq)
2261{
2262	unsigned int cpu = smp_processor_id();
2263	unsigned long flags;
2264	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2265
2266	if (!desc)
2267		return;
2268
2269	irq_percpu_disable(desc, cpu);
2270	irq_put_desc_unlock(desc, flags);
2271}
2272EXPORT_SYMBOL_GPL(disable_percpu_irq);
2273
2274void disable_percpu_nmi(unsigned int irq)
2275{
2276	disable_percpu_irq(irq);
2277}
2278
2279/*
2280 * Internal function to unregister a percpu irqaction.
2281 */
2282static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2283{
2284	struct irq_desc *desc = irq_to_desc(irq);
2285	struct irqaction *action;
2286	unsigned long flags;
2287
2288	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2289
2290	if (!desc)
2291		return NULL;
2292
2293	raw_spin_lock_irqsave(&desc->lock, flags);
2294
2295	action = desc->action;
2296	if (!action || action->percpu_dev_id != dev_id) {
2297		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2298		goto bad;
2299	}
2300
2301	if (!cpumask_empty(desc->percpu_enabled)) {
2302		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2303		     irq, cpumask_first(desc->percpu_enabled));
2304		goto bad;
2305	}
2306
2307	/* Found it - now remove it from the list of entries: */
2308	desc->action = NULL;
2309
2310	desc->istate &= ~IRQS_NMI;
2311
2312	raw_spin_unlock_irqrestore(&desc->lock, flags);
2313
2314	unregister_handler_proc(irq, action);
2315
2316	irq_chip_pm_put(&desc->irq_data);
2317	module_put(desc->owner);
2318	return action;
2319
2320bad:
2321	raw_spin_unlock_irqrestore(&desc->lock, flags);
2322	return NULL;
2323}
2324
2325/**
2326 *	remove_percpu_irq - free a per-cpu interrupt
2327 *	@irq: Interrupt line to free
2328 *	@act: irqaction for the interrupt
2329 *
2330 * Used to remove interrupts statically setup by the early boot process.
2331 */
2332void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2333{
2334	struct irq_desc *desc = irq_to_desc(irq);
2335
2336	if (desc && irq_settings_is_per_cpu_devid(desc))
2337	    __free_percpu_irq(irq, act->percpu_dev_id);
2338}
2339
2340/**
2341 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2342 *	@irq: Interrupt line to free
2343 *	@dev_id: Device identity to free
2344 *
2345 *	Remove a percpu interrupt handler. The handler is removed, but
2346 *	the interrupt line is not disabled. This must be done on each
2347 *	CPU before calling this function. The function does not return
2348 *	until any executing interrupts for this IRQ have completed.
2349 *
2350 *	This function must not be called from interrupt context.
2351 */
2352void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2353{
2354	struct irq_desc *desc = irq_to_desc(irq);
2355
2356	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2357		return;
2358
2359	chip_bus_lock(desc);
2360	kfree(__free_percpu_irq(irq, dev_id));
2361	chip_bus_sync_unlock(desc);
2362}
2363EXPORT_SYMBOL_GPL(free_percpu_irq);
2364
2365void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2366{
2367	struct irq_desc *desc = irq_to_desc(irq);
2368
2369	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2370		return;
2371
2372	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2373		return;
2374
2375	kfree(__free_percpu_irq(irq, dev_id));
2376}
2377
2378/**
2379 *	setup_percpu_irq - setup a per-cpu interrupt
2380 *	@irq: Interrupt line to setup
2381 *	@act: irqaction for the interrupt
2382 *
2383 * Used to statically setup per-cpu interrupts in the early boot process.
2384 */
2385int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2386{
2387	struct irq_desc *desc = irq_to_desc(irq);
2388	int retval;
2389
2390	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2391		return -EINVAL;
2392
2393	retval = irq_chip_pm_get(&desc->irq_data);
2394	if (retval < 0)
2395		return retval;
2396
2397	retval = __setup_irq(irq, desc, act);
2398
2399	if (retval)
2400		irq_chip_pm_put(&desc->irq_data);
2401
2402	return retval;
2403}
2404
2405/**
2406 *	__request_percpu_irq - allocate a percpu interrupt line
2407 *	@irq: Interrupt line to allocate
2408 *	@handler: Function to be called when the IRQ occurs.
2409 *	@flags: Interrupt type flags (IRQF_TIMER only)
2410 *	@devname: An ascii name for the claiming device
2411 *	@dev_id: A percpu cookie passed back to the handler function
2412 *
2413 *	This call allocates interrupt resources and enables the
2414 *	interrupt on the local CPU. If the interrupt is supposed to be
2415 *	enabled on other CPUs, it has to be done on each CPU using
2416 *	enable_percpu_irq().
2417 *
2418 *	Dev_id must be globally unique. It is a per-cpu variable, and
2419 *	the handler gets called with the interrupted CPU's instance of
2420 *	that variable.
2421 */
2422int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2423			 unsigned long flags, const char *devname,
2424			 void __percpu *dev_id)
2425{
2426	struct irqaction *action;
2427	struct irq_desc *desc;
2428	int retval;
2429
2430	if (!dev_id)
2431		return -EINVAL;
2432
2433	desc = irq_to_desc(irq);
2434	if (!desc || !irq_settings_can_request(desc) ||
2435	    !irq_settings_is_per_cpu_devid(desc))
2436		return -EINVAL;
2437
2438	if (flags && flags != IRQF_TIMER)
2439		return -EINVAL;
2440
2441	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2442	if (!action)
2443		return -ENOMEM;
2444
2445	action->handler = handler;
2446	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2447	action->name = devname;
2448	action->percpu_dev_id = dev_id;
2449
2450	retval = irq_chip_pm_get(&desc->irq_data);
2451	if (retval < 0) {
2452		kfree(action);
2453		return retval;
2454	}
2455
2456	retval = __setup_irq(irq, desc, action);
 
2457
2458	if (retval) {
2459		irq_chip_pm_put(&desc->irq_data);
2460		kfree(action);
2461	}
2462
2463	return retval;
2464}
2465EXPORT_SYMBOL_GPL(__request_percpu_irq);
2466
2467/**
2468 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2469 *	@irq: Interrupt line to allocate
2470 *	@handler: Function to be called when the IRQ occurs.
2471 *	@name: An ascii name for the claiming device
2472 *	@dev_id: A percpu cookie passed back to the handler function
2473 *
2474 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2475 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2476 *	being enabled on the same CPU by using enable_percpu_nmi().
2477 *
2478 *	Dev_id must be globally unique. It is a per-cpu variable, and
2479 *	the handler gets called with the interrupted CPU's instance of
2480 *	that variable.
2481 *
2482 *	Interrupt lines requested for NMI delivering should have auto enabling
2483 *	setting disabled.
2484 *
2485 *	If the interrupt line cannot be used to deliver NMIs, function
2486 *	will fail returning a negative value.
2487 */
2488int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2489		       const char *name, void __percpu *dev_id)
2490{
2491	struct irqaction *action;
2492	struct irq_desc *desc;
2493	unsigned long flags;
2494	int retval;
2495
2496	if (!handler)
2497		return -EINVAL;
2498
2499	desc = irq_to_desc(irq);
2500
2501	if (!desc || !irq_settings_can_request(desc) ||
2502	    !irq_settings_is_per_cpu_devid(desc) ||
2503	    irq_settings_can_autoenable(desc) ||
2504	    !irq_supports_nmi(desc))
2505		return -EINVAL;
2506
2507	/* The line cannot already be NMI */
2508	if (desc->istate & IRQS_NMI)
2509		return -EINVAL;
2510
2511	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2512	if (!action)
2513		return -ENOMEM;
2514
2515	action->handler = handler;
2516	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2517		| IRQF_NOBALANCING;
2518	action->name = name;
2519	action->percpu_dev_id = dev_id;
2520
2521	retval = irq_chip_pm_get(&desc->irq_data);
2522	if (retval < 0)
2523		goto err_out;
2524
2525	retval = __setup_irq(irq, desc, action);
2526	if (retval)
2527		goto err_irq_setup;
2528
2529	raw_spin_lock_irqsave(&desc->lock, flags);
2530	desc->istate |= IRQS_NMI;
2531	raw_spin_unlock_irqrestore(&desc->lock, flags);
2532
2533	return 0;
2534
2535err_irq_setup:
2536	irq_chip_pm_put(&desc->irq_data);
2537err_out:
2538	kfree(action);
2539
2540	return retval;
2541}
2542
2543/**
2544 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2545 *	@irq: Interrupt line to prepare for NMI delivery
2546 *
2547 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2548 *	before that interrupt line gets enabled with enable_percpu_nmi().
2549 *
2550 *	As a CPU local operation, this should be called from non-preemptible
2551 *	context.
2552 *
2553 *	If the interrupt line cannot be used to deliver NMIs, function
2554 *	will fail returning a negative value.
2555 */
2556int prepare_percpu_nmi(unsigned int irq)
2557{
2558	unsigned long flags;
2559	struct irq_desc *desc;
2560	int ret = 0;
2561
2562	WARN_ON(preemptible());
2563
2564	desc = irq_get_desc_lock(irq, &flags,
2565				 IRQ_GET_DESC_CHECK_PERCPU);
2566	if (!desc)
2567		return -EINVAL;
2568
2569	if (WARN(!(desc->istate & IRQS_NMI),
2570		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2571		 irq)) {
2572		ret = -EINVAL;
2573		goto out;
2574	}
2575
2576	ret = irq_nmi_setup(desc);
2577	if (ret) {
2578		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2579		goto out;
2580	}
2581
2582out:
2583	irq_put_desc_unlock(desc, flags);
2584	return ret;
2585}
2586
2587/**
2588 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2589 *	@irq: Interrupt line from which CPU local NMI configuration should be
2590 *	      removed
2591 *
2592 *	This call undoes the setup done by prepare_percpu_nmi().
2593 *
2594 *	IRQ line should not be enabled for the current CPU.
2595 *
2596 *	As a CPU local operation, this should be called from non-preemptible
2597 *	context.
2598 */
2599void teardown_percpu_nmi(unsigned int irq)
2600{
2601	unsigned long flags;
2602	struct irq_desc *desc;
2603
2604	WARN_ON(preemptible());
2605
2606	desc = irq_get_desc_lock(irq, &flags,
2607				 IRQ_GET_DESC_CHECK_PERCPU);
2608	if (!desc)
2609		return;
2610
2611	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2612		goto out;
2613
2614	irq_nmi_teardown(desc);
2615out:
2616	irq_put_desc_unlock(desc, flags);
2617}
2618
2619int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2620			    bool *state)
2621{
2622	struct irq_chip *chip;
2623	int err = -EINVAL;
2624
2625	do {
2626		chip = irq_data_get_irq_chip(data);
2627		if (chip->irq_get_irqchip_state)
2628			break;
2629#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2630		data = data->parent_data;
2631#else
2632		data = NULL;
2633#endif
2634	} while (data);
2635
2636	if (data)
2637		err = chip->irq_get_irqchip_state(data, which, state);
2638	return err;
2639}
2640
2641/**
2642 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2643 *	@irq: Interrupt line that is forwarded to a VM
2644 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2645 *	@state: a pointer to a boolean where the state is to be storeed
2646 *
2647 *	This call snapshots the internal irqchip state of an
2648 *	interrupt, returning into @state the bit corresponding to
2649 *	stage @which
2650 *
2651 *	This function should be called with preemption disabled if the
2652 *	interrupt controller has per-cpu registers.
2653 */
2654int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2655			  bool *state)
2656{
2657	struct irq_desc *desc;
2658	struct irq_data *data;
 
2659	unsigned long flags;
2660	int err = -EINVAL;
2661
2662	desc = irq_get_desc_buslock(irq, &flags, 0);
2663	if (!desc)
2664		return err;
2665
2666	data = irq_desc_get_irq_data(desc);
2667
2668	err = __irq_get_irqchip_state(data, which, state);
 
 
 
 
 
 
 
 
 
 
 
 
2669
2670	irq_put_desc_busunlock(desc, flags);
2671	return err;
2672}
2673EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2674
2675/**
2676 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2677 *	@irq: Interrupt line that is forwarded to a VM
2678 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2679 *	@val: Value corresponding to @which
2680 *
2681 *	This call sets the internal irqchip state of an interrupt,
2682 *	depending on the value of @which.
2683 *
2684 *	This function should be called with preemption disabled if the
2685 *	interrupt controller has per-cpu registers.
2686 */
2687int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2688			  bool val)
2689{
2690	struct irq_desc *desc;
2691	struct irq_data *data;
2692	struct irq_chip *chip;
2693	unsigned long flags;
2694	int err = -EINVAL;
2695
2696	desc = irq_get_desc_buslock(irq, &flags, 0);
2697	if (!desc)
2698		return err;
2699
2700	data = irq_desc_get_irq_data(desc);
2701
2702	do {
2703		chip = irq_data_get_irq_chip(data);
2704		if (chip->irq_set_irqchip_state)
2705			break;
2706#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2707		data = data->parent_data;
2708#else
2709		data = NULL;
2710#endif
2711	} while (data);
2712
2713	if (data)
2714		err = chip->irq_set_irqchip_state(data, which, val);
2715
2716	irq_put_desc_busunlock(desc, flags);
2717	return err;
2718}
2719EXPORT_SYMBOL_GPL(irq_set_irqchip_state);