Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
 
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
 
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
 
 
 
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <asm/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;	/* Handle normal Linux uptimes. */
 106int nr_threads;			/* The idle threads do not count.. */
 107
 108int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117	return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124	int cpu;
 125	int total = 0;
 126
 127	for_each_possible_cpu(cpu)
 128		total += per_cpu(process_counts, cpu);
 129
 130	return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147	kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_info(struct thread_info *ti)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE
 162static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 163						  int node)
 
 
 
 
 
 
 
 
 164{
 165	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
 166						  THREAD_SIZE_ORDER);
 167
 168	if (page)
 169		memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 170					    1 << THREAD_SIZE_ORDER);
 171
 172	return page ? page_address(page) : NULL;
 
 
 
 
 
 
 
 173}
 
 174
 175static inline void free_thread_info(struct thread_info *ti)
 176{
 177	struct page *page = virt_to_page(ti);
 
 
 
 
 
 
 
 
 
 
 178
 179	memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 180				    -(1 << THREAD_SIZE_ORDER));
 181	__free_kmem_pages(page, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182}
 183# else
 184static struct kmem_cache *thread_info_cache;
 185
 186static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 187						  int node)
 188{
 189	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
 
 
 
 190}
 191
 192static void free_thread_info(struct thread_info *ti)
 193{
 194	kmem_cache_free(thread_info_cache, ti);
 195}
 196
 197void thread_info_cache_init(void)
 198{
 199	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 200					      THREAD_SIZE, 0, NULL);
 201	BUG_ON(thread_info_cache == NULL);
 
 202}
 203# endif
 204#endif
 205
 206/* SLAB cache for signal_struct structures (tsk->signal) */
 207static struct kmem_cache *signal_cachep;
 208
 209/* SLAB cache for sighand_struct structures (tsk->sighand) */
 210struct kmem_cache *sighand_cachep;
 211
 212/* SLAB cache for files_struct structures (tsk->files) */
 213struct kmem_cache *files_cachep;
 214
 215/* SLAB cache for fs_struct structures (tsk->fs) */
 216struct kmem_cache *fs_cachep;
 217
 218/* SLAB cache for vm_area_struct structures */
 219struct kmem_cache *vm_area_cachep;
 220
 221/* SLAB cache for mm_struct structures (tsk->mm) */
 222static struct kmem_cache *mm_cachep;
 223
 224static void account_kernel_stack(struct thread_info *ti, int account)
 225{
 226	struct zone *zone = page_zone(virt_to_page(ti));
 227
 228	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 
 
 
 229}
 230
 231void free_task(struct task_struct *tsk)
 232{
 233	account_kernel_stack(tsk->stack, -1);
 234	arch_release_thread_info(tsk->stack);
 235	free_thread_info(tsk->stack);
 236	rt_mutex_debug_task_free(tsk);
 237	ftrace_graph_exit_task(tsk);
 238	put_seccomp_filter(tsk);
 239	arch_release_task_struct(tsk);
 240	free_task_struct(tsk);
 241}
 242EXPORT_SYMBOL(free_task);
 243
 244static inline void free_signal_struct(struct signal_struct *sig)
 245{
 246	taskstats_tgid_free(sig);
 247	sched_autogroup_exit(sig);
 248	kmem_cache_free(signal_cachep, sig);
 249}
 250
 251static inline void put_signal_struct(struct signal_struct *sig)
 252{
 253	if (atomic_dec_and_test(&sig->sigcnt))
 254		free_signal_struct(sig);
 255}
 256
 257void __put_task_struct(struct task_struct *tsk)
 258{
 259	WARN_ON(!tsk->exit_state);
 260	WARN_ON(atomic_read(&tsk->usage));
 261	WARN_ON(tsk == current);
 262
 263	cgroup_free(tsk);
 264	task_numa_free(tsk);
 265	security_task_free(tsk);
 266	exit_creds(tsk);
 267	delayacct_tsk_free(tsk);
 268	put_signal_struct(tsk->signal);
 269
 270	if (!profile_handoff_task(tsk))
 271		free_task(tsk);
 272}
 273EXPORT_SYMBOL_GPL(__put_task_struct);
 274
 275void __init __weak arch_task_cache_init(void) { }
 276
 277/*
 278 * set_max_threads
 279 */
 280static void set_max_threads(unsigned int max_threads_suggested)
 281{
 282	u64 threads;
 283
 284	/*
 285	 * The number of threads shall be limited such that the thread
 286	 * structures may only consume a small part of the available memory.
 287	 */
 288	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 289		threads = MAX_THREADS;
 290	else
 291		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 292				    (u64) THREAD_SIZE * 8UL);
 
 
 293
 294	if (threads > max_threads_suggested)
 295		threads = max_threads_suggested;
 296
 297	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 
 
 298}
 299
 300#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 301/* Initialized by the architecture: */
 302int arch_task_struct_size __read_mostly;
 303#endif
 304
 305void __init fork_init(void)
 306{
 307#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 308#ifndef ARCH_MIN_TASKALIGN
 309#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 310#endif
 311	/* create a slab on which task_structs can be allocated */
 312	task_struct_cachep = kmem_cache_create("task_struct",
 313			arch_task_struct_size, ARCH_MIN_TASKALIGN,
 314			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 315#endif
 316
 317	/* do the arch specific task caches init */
 318	arch_task_cache_init();
 319
 320	set_max_threads(MAX_THREADS);
 
 321
 322	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 323	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 324	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 325		init_task.signal->rlim[RLIMIT_NPROC];
 326}
 327
 328int __weak arch_dup_task_struct(struct task_struct *dst,
 329					       struct task_struct *src)
 330{
 331	*dst = *src;
 
 
 
 
 
 
 
 332	return 0;
 333}
 334
 335void set_task_stack_end_magic(struct task_struct *tsk)
 336{
 337	unsigned long *stackend;
 
 338
 339	stackend = end_of_stack(tsk);
 340	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 
 
 
 
 341}
 342
 343static struct task_struct *dup_task_struct(struct task_struct *orig)
 
 344{
 345	struct task_struct *tsk;
 346	struct thread_info *ti;
 347	int node = tsk_fork_get_node(orig);
 348	int err;
 349
 350	tsk = alloc_task_struct_node(node);
 351	if (!tsk)
 352		return NULL;
 353
 354	ti = alloc_thread_info_node(tsk, node);
 355	if (!ti)
 356		goto free_tsk;
 357
 358	err = arch_dup_task_struct(tsk, orig);
 359	if (err)
 360		goto free_ti;
 361
 362	tsk->stack = ti;
 363#ifdef CONFIG_SECCOMP
 
 364	/*
 365	 * We must handle setting up seccomp filters once we're under
 366	 * the sighand lock in case orig has changed between now and
 367	 * then. Until then, filter must be NULL to avoid messing up
 368	 * the usage counts on the error path calling free_task.
 369	 */
 370	tsk->seccomp.filter = NULL;
 371#endif
 372
 373	setup_thread_stack(tsk, orig);
 374	clear_user_return_notifier(tsk);
 375	clear_tsk_need_resched(tsk);
 376	set_task_stack_end_magic(tsk);
 377
 378#ifdef CONFIG_CC_STACKPROTECTOR
 379	tsk->stack_canary = get_random_int();
 380#endif
 381
 382	/*
 383	 * One for us, one for whoever does the "release_task()" (usually
 384	 * parent)
 385	 */
 386	atomic_set(&tsk->usage, 2);
 387#ifdef CONFIG_BLK_DEV_IO_TRACE
 388	tsk->btrace_seq = 0;
 389#endif
 390	tsk->splice_pipe = NULL;
 391	tsk->task_frag.page = NULL;
 392	tsk->wake_q.next = NULL;
 393
 394	account_kernel_stack(ti, 1);
 395
 396	kcov_task_init(tsk);
 397
 398	return tsk;
 399
 400free_ti:
 401	free_thread_info(ti);
 402free_tsk:
 403	free_task_struct(tsk);
 404	return NULL;
 405}
 
 406
 407#ifdef CONFIG_MMU
 408static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 
 409{
 410	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 411	struct rb_node **rb_link, *rb_parent;
 412	int retval;
 413	unsigned long charge;
 
 414
 415	uprobe_start_dup_mmap();
 416	down_write(&oldmm->mmap_sem);
 
 
 
 417	flush_cache_dup_mm(oldmm);
 418	uprobe_dup_mmap(oldmm, mm);
 419	/*
 420	 * Not linked in yet - no deadlock potential:
 421	 */
 422	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 423
 424	/* No ordering required: file already has been exposed. */
 425	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 426
 427	mm->total_vm = oldmm->total_vm;
 428	mm->data_vm = oldmm->data_vm;
 429	mm->exec_vm = oldmm->exec_vm;
 430	mm->stack_vm = oldmm->stack_vm;
 431
 432	rb_link = &mm->mm_rb.rb_node;
 433	rb_parent = NULL;
 434	pprev = &mm->mmap;
 435	retval = ksm_fork(mm, oldmm);
 436	if (retval)
 437		goto out;
 438	retval = khugepaged_fork(mm, oldmm);
 439	if (retval)
 440		goto out;
 441
 442	prev = NULL;
 443	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 444		struct file *file;
 445
 446		if (mpnt->vm_flags & VM_DONTCOPY) {
 447			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 448			continue;
 449		}
 450		charge = 0;
 
 
 
 
 
 
 
 
 451		if (mpnt->vm_flags & VM_ACCOUNT) {
 452			unsigned long len = vma_pages(mpnt);
 453
 454			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 455				goto fail_nomem;
 456			charge = len;
 457		}
 458		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 459		if (!tmp)
 460			goto fail_nomem;
 461		*tmp = *mpnt;
 462		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 463		retval = vma_dup_policy(mpnt, tmp);
 464		if (retval)
 465			goto fail_nomem_policy;
 466		tmp->vm_mm = mm;
 467		if (anon_vma_fork(tmp, mpnt))
 
 
 
 
 
 
 
 
 468			goto fail_nomem_anon_vma_fork;
 469		tmp->vm_flags &=
 470			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 471		tmp->vm_next = tmp->vm_prev = NULL;
 472		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 473		file = tmp->vm_file;
 474		if (file) {
 475			struct inode *inode = file_inode(file);
 476			struct address_space *mapping = file->f_mapping;
 477
 478			get_file(file);
 479			if (tmp->vm_flags & VM_DENYWRITE)
 480				atomic_dec(&inode->i_writecount);
 481			i_mmap_lock_write(mapping);
 482			if (tmp->vm_flags & VM_SHARED)
 483				atomic_inc(&mapping->i_mmap_writable);
 484			flush_dcache_mmap_lock(mapping);
 485			/* insert tmp into the share list, just after mpnt */
 486			vma_interval_tree_insert_after(tmp, mpnt,
 487					&mapping->i_mmap);
 488			flush_dcache_mmap_unlock(mapping);
 489			i_mmap_unlock_write(mapping);
 490		}
 491
 492		/*
 493		 * Clear hugetlb-related page reserves for children. This only
 494		 * affects MAP_PRIVATE mappings. Faults generated by the child
 495		 * are not guaranteed to succeed, even if read-only
 496		 */
 497		if (is_vm_hugetlb_page(tmp))
 498			reset_vma_resv_huge_pages(tmp);
 499
 500		/*
 501		 * Link in the new vma and copy the page table entries.
 502		 */
 503		*pprev = tmp;
 504		pprev = &tmp->vm_next;
 505		tmp->vm_prev = prev;
 506		prev = tmp;
 507
 508		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 509		rb_link = &tmp->vm_rb.rb_right;
 510		rb_parent = &tmp->vm_rb;
 511
 512		mm->map_count++;
 513		retval = copy_page_range(mm, oldmm, mpnt);
 
 514
 515		if (tmp->vm_ops && tmp->vm_ops->open)
 516			tmp->vm_ops->open(tmp);
 517
 518		if (retval)
 519			goto out;
 520	}
 521	/* a new mm has just been created */
 522	arch_dup_mmap(oldmm, mm);
 523	retval = 0;
 524out:
 525	up_write(&mm->mmap_sem);
 526	flush_tlb_mm(oldmm);
 527	up_write(&oldmm->mmap_sem);
 
 
 528	uprobe_end_dup_mmap();
 529	return retval;
 530fail_nomem_anon_vma_fork:
 531	mpol_put(vma_policy(tmp));
 532fail_nomem_policy:
 533	kmem_cache_free(vm_area_cachep, tmp);
 534fail_nomem:
 535	retval = -ENOMEM;
 536	vm_unacct_memory(charge);
 537	goto out;
 538}
 539
 540static inline int mm_alloc_pgd(struct mm_struct *mm)
 541{
 542	mm->pgd = pgd_alloc(mm);
 543	if (unlikely(!mm->pgd))
 544		return -ENOMEM;
 545	return 0;
 546}
 547
 548static inline void mm_free_pgd(struct mm_struct *mm)
 549{
 550	pgd_free(mm, mm->pgd);
 551}
 552#else
 553static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 554{
 555	down_write(&oldmm->mmap_sem);
 556	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 557	up_write(&oldmm->mmap_sem);
 558	return 0;
 559}
 560#define mm_alloc_pgd(mm)	(0)
 561#define mm_free_pgd(mm)
 562#endif /* CONFIG_MMU */
 563
 564__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 567#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 570
 571static int __init coredump_filter_setup(char *s)
 572{
 573	default_dump_filter =
 574		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 575		MMF_DUMP_FILTER_MASK;
 576	return 1;
 577}
 578
 579__setup("coredump_filter=", coredump_filter_setup);
 580
 581#include <linux/init_task.h>
 582
 583static void mm_init_aio(struct mm_struct *mm)
 584{
 585#ifdef CONFIG_AIO
 586	spin_lock_init(&mm->ioctx_lock);
 587	mm->ioctx_table = NULL;
 588#endif
 589}
 590
 
 
 
 
 
 
 
 
 
 591static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 592{
 593#ifdef CONFIG_MEMCG
 594	mm->owner = p;
 595#endif
 596}
 597
 598static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 
 
 
 
 
 
 
 
 599{
 600	mm->mmap = NULL;
 601	mm->mm_rb = RB_ROOT;
 602	mm->vmacache_seqnum = 0;
 603	atomic_set(&mm->mm_users, 1);
 604	atomic_set(&mm->mm_count, 1);
 605	init_rwsem(&mm->mmap_sem);
 606	INIT_LIST_HEAD(&mm->mmlist);
 607	mm->core_state = NULL;
 608	atomic_long_set(&mm->nr_ptes, 0);
 609	mm_nr_pmds_init(mm);
 610	mm->map_count = 0;
 611	mm->locked_vm = 0;
 612	mm->pinned_vm = 0;
 613	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 614	spin_lock_init(&mm->page_table_lock);
 
 615	mm_init_cpumask(mm);
 616	mm_init_aio(mm);
 617	mm_init_owner(mm, p);
 
 618	mmu_notifier_mm_init(mm);
 619	clear_tlb_flush_pending(mm);
 620#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 621	mm->pmd_huge_pte = NULL;
 622#endif
 
 623
 624	if (current->mm) {
 625		mm->flags = current->mm->flags & MMF_INIT_MASK;
 626		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 627	} else {
 628		mm->flags = default_dump_filter;
 629		mm->def_flags = 0;
 630	}
 631
 632	if (mm_alloc_pgd(mm))
 633		goto fail_nopgd;
 634
 635	if (init_new_context(p, mm))
 636		goto fail_nocontext;
 637
 
 638	return mm;
 639
 640fail_nocontext:
 641	mm_free_pgd(mm);
 642fail_nopgd:
 643	free_mm(mm);
 644	return NULL;
 645}
 646
 647static void check_mm(struct mm_struct *mm)
 648{
 649	int i;
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			printk(KERN_ALERT "BUG: Bad rss-counter state "
 656					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 657	}
 658
 659	if (atomic_long_read(&mm->nr_ptes))
 660		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 661				atomic_long_read(&mm->nr_ptes));
 662	if (mm_nr_pmds(mm))
 663		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 664				mm_nr_pmds(mm));
 665
 666#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 667	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 668#endif
 669}
 670
 671/*
 672 * Allocate and initialize an mm_struct.
 673 */
 674struct mm_struct *mm_alloc(void)
 675{
 676	struct mm_struct *mm;
 677
 678	mm = allocate_mm();
 679	if (!mm)
 680		return NULL;
 681
 682	memset(mm, 0, sizeof(*mm));
 683	return mm_init(mm, current);
 684}
 685
 686/*
 687 * Called when the last reference to the mm
 688 * is dropped: either by a lazy thread or by
 689 * mmput. Free the page directory and the mm.
 690 */
 691void __mmdrop(struct mm_struct *mm)
 692{
 693	BUG_ON(mm == &init_mm);
 694	mm_free_pgd(mm);
 695	destroy_context(mm);
 696	mmu_notifier_mm_destroy(mm);
 697	check_mm(mm);
 698	free_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 699}
 700EXPORT_SYMBOL_GPL(__mmdrop);
 701
 702/*
 703 * Decrement the use count and release all resources for an mm.
 704 */
 705void mmput(struct mm_struct *mm)
 706{
 707	might_sleep();
 708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709	if (atomic_dec_and_test(&mm->mm_users)) {
 710		uprobe_clear_state(mm);
 711		exit_aio(mm);
 712		ksm_exit(mm);
 713		khugepaged_exit(mm); /* must run before exit_mmap */
 714		exit_mmap(mm);
 715		set_mm_exe_file(mm, NULL);
 716		if (!list_empty(&mm->mmlist)) {
 717			spin_lock(&mmlist_lock);
 718			list_del(&mm->mmlist);
 719			spin_unlock(&mmlist_lock);
 720		}
 721		if (mm->binfmt)
 722			module_put(mm->binfmt->module);
 723		mmdrop(mm);
 724	}
 725}
 726EXPORT_SYMBOL_GPL(mmput);
 727
 728/**
 729 * set_mm_exe_file - change a reference to the mm's executable file
 730 *
 731 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 732 *
 733 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 734 * invocations: in mmput() nobody alive left, in execve task is single
 735 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 736 * mm->exe_file, but does so without using set_mm_exe_file() in order
 737 * to do avoid the need for any locks.
 738 */
 739void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 740{
 741	struct file *old_exe_file;
 742
 743	/*
 744	 * It is safe to dereference the exe_file without RCU as
 745	 * this function is only called if nobody else can access
 746	 * this mm -- see comment above for justification.
 747	 */
 748	old_exe_file = rcu_dereference_raw(mm->exe_file);
 749
 750	if (new_exe_file)
 751		get_file(new_exe_file);
 752	rcu_assign_pointer(mm->exe_file, new_exe_file);
 753	if (old_exe_file)
 754		fput(old_exe_file);
 755}
 756
 757/**
 758 * get_mm_exe_file - acquire a reference to the mm's executable file
 759 *
 760 * Returns %NULL if mm has no associated executable file.
 761 * User must release file via fput().
 762 */
 763struct file *get_mm_exe_file(struct mm_struct *mm)
 764{
 765	struct file *exe_file;
 766
 767	rcu_read_lock();
 768	exe_file = rcu_dereference(mm->exe_file);
 769	if (exe_file && !get_file_rcu(exe_file))
 770		exe_file = NULL;
 771	rcu_read_unlock();
 772	return exe_file;
 773}
 774EXPORT_SYMBOL(get_mm_exe_file);
 775
 776/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777 * get_task_mm - acquire a reference to the task's mm
 778 *
 779 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 780 * this kernel workthread has transiently adopted a user mm with use_mm,
 781 * to do its AIO) is not set and if so returns a reference to it, after
 782 * bumping up the use count.  User must release the mm via mmput()
 783 * after use.  Typically used by /proc and ptrace.
 784 */
 785struct mm_struct *get_task_mm(struct task_struct *task)
 786{
 787	struct mm_struct *mm;
 788
 789	task_lock(task);
 790	mm = task->mm;
 791	if (mm) {
 792		if (task->flags & PF_KTHREAD)
 793			mm = NULL;
 794		else
 795			atomic_inc(&mm->mm_users);
 796	}
 797	task_unlock(task);
 798	return mm;
 799}
 800EXPORT_SYMBOL_GPL(get_task_mm);
 801
 802struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 803{
 804	struct mm_struct *mm;
 805	int err;
 806
 807	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 808	if (err)
 809		return ERR_PTR(err);
 810
 811	mm = get_task_mm(task);
 812	if (mm && mm != current->mm &&
 813			!ptrace_may_access(task, mode)) {
 814		mmput(mm);
 815		mm = ERR_PTR(-EACCES);
 816	}
 817	mutex_unlock(&task->signal->cred_guard_mutex);
 818
 819	return mm;
 820}
 821
 822static void complete_vfork_done(struct task_struct *tsk)
 823{
 824	struct completion *vfork;
 825
 826	task_lock(tsk);
 827	vfork = tsk->vfork_done;
 828	if (likely(vfork)) {
 829		tsk->vfork_done = NULL;
 830		complete(vfork);
 831	}
 832	task_unlock(tsk);
 833}
 834
 835static int wait_for_vfork_done(struct task_struct *child,
 836				struct completion *vfork)
 837{
 838	int killed;
 839
 840	freezer_do_not_count();
 
 841	killed = wait_for_completion_killable(vfork);
 
 842	freezer_count();
 843
 844	if (killed) {
 845		task_lock(child);
 846		child->vfork_done = NULL;
 847		task_unlock(child);
 848	}
 849
 850	put_task_struct(child);
 851	return killed;
 852}
 853
 854/* Please note the differences between mmput and mm_release.
 855 * mmput is called whenever we stop holding onto a mm_struct,
 856 * error success whatever.
 857 *
 858 * mm_release is called after a mm_struct has been removed
 859 * from the current process.
 860 *
 861 * This difference is important for error handling, when we
 862 * only half set up a mm_struct for a new process and need to restore
 863 * the old one.  Because we mmput the new mm_struct before
 864 * restoring the old one. . .
 865 * Eric Biederman 10 January 1998
 866 */
 867void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 868{
 869	/* Get rid of any futexes when releasing the mm */
 870#ifdef CONFIG_FUTEX
 871	if (unlikely(tsk->robust_list)) {
 872		exit_robust_list(tsk);
 873		tsk->robust_list = NULL;
 874	}
 875#ifdef CONFIG_COMPAT
 876	if (unlikely(tsk->compat_robust_list)) {
 877		compat_exit_robust_list(tsk);
 878		tsk->compat_robust_list = NULL;
 879	}
 880#endif
 881	if (unlikely(!list_empty(&tsk->pi_state_list)))
 882		exit_pi_state_list(tsk);
 883#endif
 884
 885	uprobe_free_utask(tsk);
 886
 887	/* Get rid of any cached register state */
 888	deactivate_mm(tsk, mm);
 889
 890	/*
 891	 * If we're exiting normally, clear a user-space tid field if
 892	 * requested.  We leave this alone when dying by signal, to leave
 893	 * the value intact in a core dump, and to save the unnecessary
 894	 * trouble, say, a killed vfork parent shouldn't touch this mm.
 895	 * Userland only wants this done for a sys_exit.
 896	 */
 897	if (tsk->clear_child_tid) {
 898		if (!(tsk->flags & PF_SIGNALED) &&
 899		    atomic_read(&mm->mm_users) > 1) {
 900			/*
 901			 * We don't check the error code - if userspace has
 902			 * not set up a proper pointer then tough luck.
 903			 */
 904			put_user(0, tsk->clear_child_tid);
 905			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 906					1, NULL, NULL, 0);
 907		}
 908		tsk->clear_child_tid = NULL;
 909	}
 910
 911	/*
 912	 * All done, finally we can wake up parent and return this mm to him.
 913	 * Also kthread_stop() uses this completion for synchronization.
 914	 */
 915	if (tsk->vfork_done)
 916		complete_vfork_done(tsk);
 917}
 918
 919/*
 920 * Allocate a new mm structure and copy contents from the
 921 * mm structure of the passed in task structure.
 
 
 
 
 
 
 922 */
 923static struct mm_struct *dup_mm(struct task_struct *tsk)
 
 924{
 925	struct mm_struct *mm, *oldmm = current->mm;
 926	int err;
 927
 928	mm = allocate_mm();
 929	if (!mm)
 930		goto fail_nomem;
 931
 932	memcpy(mm, oldmm, sizeof(*mm));
 933
 934	if (!mm_init(mm, tsk))
 935		goto fail_nomem;
 936
 937	err = dup_mmap(mm, oldmm);
 938	if (err)
 939		goto free_pt;
 940
 941	mm->hiwater_rss = get_mm_rss(mm);
 942	mm->hiwater_vm = mm->total_vm;
 943
 944	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 945		goto free_pt;
 946
 947	return mm;
 948
 949free_pt:
 950	/* don't put binfmt in mmput, we haven't got module yet */
 951	mm->binfmt = NULL;
 
 952	mmput(mm);
 953
 954fail_nomem:
 955	return NULL;
 956}
 957
 958static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 959{
 960	struct mm_struct *mm, *oldmm;
 961	int retval;
 962
 963	tsk->min_flt = tsk->maj_flt = 0;
 964	tsk->nvcsw = tsk->nivcsw = 0;
 965#ifdef CONFIG_DETECT_HUNG_TASK
 966	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
 967#endif
 968
 969	tsk->mm = NULL;
 970	tsk->active_mm = NULL;
 971
 972	/*
 973	 * Are we cloning a kernel thread?
 974	 *
 975	 * We need to steal a active VM for that..
 976	 */
 977	oldmm = current->mm;
 978	if (!oldmm)
 979		return 0;
 980
 981	/* initialize the new vmacache entries */
 982	vmacache_flush(tsk);
 983
 984	if (clone_flags & CLONE_VM) {
 985		atomic_inc(&oldmm->mm_users);
 986		mm = oldmm;
 987		goto good_mm;
 988	}
 989
 990	retval = -ENOMEM;
 991	mm = dup_mm(tsk);
 992	if (!mm)
 993		goto fail_nomem;
 994
 995good_mm:
 996	tsk->mm = mm;
 997	tsk->active_mm = mm;
 998	return 0;
 999
1000fail_nomem:
1001	return retval;
1002}
1003
1004static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1005{
1006	struct fs_struct *fs = current->fs;
1007	if (clone_flags & CLONE_FS) {
1008		/* tsk->fs is already what we want */
1009		spin_lock(&fs->lock);
1010		if (fs->in_exec) {
1011			spin_unlock(&fs->lock);
1012			return -EAGAIN;
1013		}
1014		fs->users++;
1015		spin_unlock(&fs->lock);
1016		return 0;
1017	}
1018	tsk->fs = copy_fs_struct(fs);
1019	if (!tsk->fs)
1020		return -ENOMEM;
1021	return 0;
1022}
1023
1024static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1025{
1026	struct files_struct *oldf, *newf;
1027	int error = 0;
1028
1029	/*
1030	 * A background process may not have any files ...
1031	 */
1032	oldf = current->files;
1033	if (!oldf)
1034		goto out;
1035
1036	if (clone_flags & CLONE_FILES) {
1037		atomic_inc(&oldf->count);
1038		goto out;
1039	}
1040
1041	newf = dup_fd(oldf, &error);
1042	if (!newf)
1043		goto out;
1044
1045	tsk->files = newf;
1046	error = 0;
1047out:
1048	return error;
1049}
1050
1051static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1052{
1053#ifdef CONFIG_BLOCK
1054	struct io_context *ioc = current->io_context;
1055	struct io_context *new_ioc;
1056
1057	if (!ioc)
1058		return 0;
1059	/*
1060	 * Share io context with parent, if CLONE_IO is set
1061	 */
1062	if (clone_flags & CLONE_IO) {
1063		ioc_task_link(ioc);
1064		tsk->io_context = ioc;
1065	} else if (ioprio_valid(ioc->ioprio)) {
1066		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1067		if (unlikely(!new_ioc))
1068			return -ENOMEM;
1069
1070		new_ioc->ioprio = ioc->ioprio;
1071		put_io_context(new_ioc);
1072	}
1073#endif
1074	return 0;
1075}
1076
1077static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1078{
1079	struct sighand_struct *sig;
1080
1081	if (clone_flags & CLONE_SIGHAND) {
1082		atomic_inc(&current->sighand->count);
1083		return 0;
1084	}
1085	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1086	rcu_assign_pointer(tsk->sighand, sig);
1087	if (!sig)
1088		return -ENOMEM;
1089
1090	atomic_set(&sig->count, 1);
 
1091	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
1092	return 0;
1093}
1094
1095void __cleanup_sighand(struct sighand_struct *sighand)
1096{
1097	if (atomic_dec_and_test(&sighand->count)) {
1098		signalfd_cleanup(sighand);
1099		/*
1100		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1101		 * without an RCU grace period, see __lock_task_sighand().
1102		 */
1103		kmem_cache_free(sighand_cachep, sighand);
1104	}
1105}
1106
1107/*
1108 * Initialize POSIX timer handling for a thread group.
1109 */
1110static void posix_cpu_timers_init_group(struct signal_struct *sig)
1111{
 
1112	unsigned long cpu_limit;
1113
1114	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1115	if (cpu_limit != RLIM_INFINITY) {
1116		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1117		sig->cputimer.running = true;
1118	}
1119
1120	/* The timer lists. */
1121	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1122	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1123	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1124}
1125
1126static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1127{
1128	struct signal_struct *sig;
1129
1130	if (clone_flags & CLONE_THREAD)
1131		return 0;
1132
1133	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1134	tsk->signal = sig;
1135	if (!sig)
1136		return -ENOMEM;
1137
1138	sig->nr_threads = 1;
1139	atomic_set(&sig->live, 1);
1140	atomic_set(&sig->sigcnt, 1);
1141
1142	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1143	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1144	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1145
1146	init_waitqueue_head(&sig->wait_chldexit);
1147	sig->curr_target = tsk;
1148	init_sigpending(&sig->shared_pending);
1149	INIT_LIST_HEAD(&sig->posix_timers);
1150	seqlock_init(&sig->stats_lock);
1151	prev_cputime_init(&sig->prev_cputime);
1152
 
 
1153	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1154	sig->real_timer.function = it_real_fn;
 
1155
1156	task_lock(current->group_leader);
1157	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1158	task_unlock(current->group_leader);
1159
1160	posix_cpu_timers_init_group(sig);
1161
1162	tty_audit_fork(sig);
1163	sched_autogroup_fork(sig);
1164
1165	sig->oom_score_adj = current->signal->oom_score_adj;
1166	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1167
1168	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1169				   current->signal->is_child_subreaper;
1170
1171	mutex_init(&sig->cred_guard_mutex);
1172
1173	return 0;
1174}
1175
1176static void copy_seccomp(struct task_struct *p)
1177{
1178#ifdef CONFIG_SECCOMP
1179	/*
1180	 * Must be called with sighand->lock held, which is common to
1181	 * all threads in the group. Holding cred_guard_mutex is not
1182	 * needed because this new task is not yet running and cannot
1183	 * be racing exec.
1184	 */
1185	assert_spin_locked(&current->sighand->siglock);
1186
1187	/* Ref-count the new filter user, and assign it. */
1188	get_seccomp_filter(current);
1189	p->seccomp = current->seccomp;
1190
1191	/*
1192	 * Explicitly enable no_new_privs here in case it got set
1193	 * between the task_struct being duplicated and holding the
1194	 * sighand lock. The seccomp state and nnp must be in sync.
1195	 */
1196	if (task_no_new_privs(current))
1197		task_set_no_new_privs(p);
1198
1199	/*
1200	 * If the parent gained a seccomp mode after copying thread
1201	 * flags and between before we held the sighand lock, we have
1202	 * to manually enable the seccomp thread flag here.
1203	 */
1204	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1205		set_tsk_thread_flag(p, TIF_SECCOMP);
1206#endif
1207}
1208
1209SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1210{
1211	current->clear_child_tid = tidptr;
1212
1213	return task_pid_vnr(current);
1214}
1215
1216static void rt_mutex_init_task(struct task_struct *p)
1217{
1218	raw_spin_lock_init(&p->pi_lock);
1219#ifdef CONFIG_RT_MUTEXES
1220	p->pi_waiters = RB_ROOT;
1221	p->pi_waiters_leftmost = NULL;
1222	p->pi_blocked_on = NULL;
1223#endif
1224}
1225
1226/*
1227 * Initialize POSIX timer handling for a single task.
1228 */
1229static void posix_cpu_timers_init(struct task_struct *tsk)
1230{
1231	tsk->cputime_expires.prof_exp = 0;
1232	tsk->cputime_expires.virt_exp = 0;
1233	tsk->cputime_expires.sched_exp = 0;
1234	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1235	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1236	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1237}
1238
1239static inline void
1240init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1241{
1242	 task->pids[type].pid = pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243}
1244
1245/*
1246 * This creates a new process as a copy of the old one,
1247 * but does not actually start it yet.
1248 *
1249 * It copies the registers, and all the appropriate
1250 * parts of the process environment (as per the clone
1251 * flags). The actual kick-off is left to the caller.
1252 */
1253static struct task_struct *copy_process(unsigned long clone_flags,
1254					unsigned long stack_start,
1255					unsigned long stack_size,
1256					int __user *child_tidptr,
1257					struct pid *pid,
1258					int trace,
1259					unsigned long tls)
 
1260{
1261	int retval;
1262	struct task_struct *p;
 
 
 
1263
 
 
 
 
1264	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1265		return ERR_PTR(-EINVAL);
1266
1267	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1268		return ERR_PTR(-EINVAL);
1269
1270	/*
1271	 * Thread groups must share signals as well, and detached threads
1272	 * can only be started up within the thread group.
1273	 */
1274	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1275		return ERR_PTR(-EINVAL);
1276
1277	/*
1278	 * Shared signal handlers imply shared VM. By way of the above,
1279	 * thread groups also imply shared VM. Blocking this case allows
1280	 * for various simplifications in other code.
1281	 */
1282	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1283		return ERR_PTR(-EINVAL);
1284
1285	/*
1286	 * Siblings of global init remain as zombies on exit since they are
1287	 * not reaped by their parent (swapper). To solve this and to avoid
1288	 * multi-rooted process trees, prevent global and container-inits
1289	 * from creating siblings.
1290	 */
1291	if ((clone_flags & CLONE_PARENT) &&
1292				current->signal->flags & SIGNAL_UNKILLABLE)
1293		return ERR_PTR(-EINVAL);
1294
1295	/*
1296	 * If the new process will be in a different pid or user namespace
1297	 * do not allow it to share a thread group with the forking task.
1298	 */
1299	if (clone_flags & CLONE_THREAD) {
1300		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1301		    (task_active_pid_ns(current) !=
1302				current->nsproxy->pid_ns_for_children))
1303			return ERR_PTR(-EINVAL);
1304	}
1305
1306	retval = security_task_create(clone_flags);
1307	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308		goto fork_out;
1309
1310	retval = -ENOMEM;
1311	p = dup_task_struct(current);
1312	if (!p)
1313		goto fork_out;
1314
 
 
 
 
 
 
 
 
 
 
 
 
1315	ftrace_graph_init_task(p);
1316
1317	rt_mutex_init_task(p);
1318
1319#ifdef CONFIG_PROVE_LOCKING
1320	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1321	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1322#endif
1323	retval = -EAGAIN;
1324	if (atomic_read(&p->real_cred->user->processes) >=
1325			task_rlimit(p, RLIMIT_NPROC)) {
1326		if (p->real_cred->user != INIT_USER &&
1327		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1328			goto bad_fork_free;
1329	}
1330	current->flags &= ~PF_NPROC_EXCEEDED;
1331
1332	retval = copy_creds(p, clone_flags);
1333	if (retval < 0)
1334		goto bad_fork_free;
1335
1336	/*
1337	 * If multiple threads are within copy_process(), then this check
1338	 * triggers too late. This doesn't hurt, the check is only there
1339	 * to stop root fork bombs.
1340	 */
1341	retval = -EAGAIN;
1342	if (nr_threads >= max_threads)
1343		goto bad_fork_cleanup_count;
1344
1345	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1346	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1347	p->flags |= PF_FORKNOEXEC;
1348	INIT_LIST_HEAD(&p->children);
1349	INIT_LIST_HEAD(&p->sibling);
1350	rcu_copy_process(p);
1351	p->vfork_done = NULL;
1352	spin_lock_init(&p->alloc_lock);
1353
1354	init_sigpending(&p->pending);
1355
1356	p->utime = p->stime = p->gtime = 0;
 
1357	p->utimescaled = p->stimescaled = 0;
 
1358	prev_cputime_init(&p->prev_cputime);
1359
1360#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1361	seqcount_init(&p->vtime_seqcount);
1362	p->vtime_snap = 0;
1363	p->vtime_snap_whence = VTIME_INACTIVE;
1364#endif
1365
1366#if defined(SPLIT_RSS_COUNTING)
1367	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1368#endif
1369
1370	p->default_timer_slack_ns = current->timer_slack_ns;
1371
 
 
 
 
1372	task_io_accounting_init(&p->ioac);
1373	acct_clear_integrals(p);
1374
1375	posix_cpu_timers_init(p);
1376
1377	p->start_time = ktime_get_ns();
1378	p->real_start_time = ktime_get_boot_ns();
1379	p->io_context = NULL;
1380	p->audit_context = NULL;
1381	threadgroup_change_begin(current);
1382	cgroup_fork(p);
1383#ifdef CONFIG_NUMA
1384	p->mempolicy = mpol_dup(p->mempolicy);
1385	if (IS_ERR(p->mempolicy)) {
1386		retval = PTR_ERR(p->mempolicy);
1387		p->mempolicy = NULL;
1388		goto bad_fork_cleanup_threadgroup_lock;
1389	}
1390#endif
1391#ifdef CONFIG_CPUSETS
1392	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1393	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1394	seqcount_init(&p->mems_allowed_seq);
1395#endif
1396#ifdef CONFIG_TRACE_IRQFLAGS
1397	p->irq_events = 0;
1398	p->hardirqs_enabled = 0;
1399	p->hardirq_enable_ip = 0;
1400	p->hardirq_enable_event = 0;
1401	p->hardirq_disable_ip = _THIS_IP_;
1402	p->hardirq_disable_event = 0;
1403	p->softirqs_enabled = 1;
1404	p->softirq_enable_ip = _THIS_IP_;
1405	p->softirq_enable_event = 0;
1406	p->softirq_disable_ip = 0;
1407	p->softirq_disable_event = 0;
1408	p->hardirq_context = 0;
1409	p->softirq_context = 0;
1410#endif
1411
1412	p->pagefault_disabled = 0;
1413
1414#ifdef CONFIG_LOCKDEP
1415	p->lockdep_depth = 0; /* no locks held yet */
1416	p->curr_chain_key = 0;
1417	p->lockdep_recursion = 0;
1418#endif
1419
1420#ifdef CONFIG_DEBUG_MUTEXES
1421	p->blocked_on = NULL; /* not blocked yet */
1422#endif
1423#ifdef CONFIG_BCACHE
1424	p->sequential_io	= 0;
1425	p->sequential_io_avg	= 0;
1426#endif
1427
1428	/* Perform scheduler related setup. Assign this task to a CPU. */
1429	retval = sched_fork(clone_flags, p);
1430	if (retval)
1431		goto bad_fork_cleanup_policy;
1432
1433	retval = perf_event_init_task(p);
1434	if (retval)
1435		goto bad_fork_cleanup_policy;
1436	retval = audit_alloc(p);
1437	if (retval)
1438		goto bad_fork_cleanup_perf;
1439	/* copy all the process information */
1440	shm_init_task(p);
1441	retval = copy_semundo(clone_flags, p);
1442	if (retval)
1443		goto bad_fork_cleanup_audit;
 
 
 
1444	retval = copy_files(clone_flags, p);
1445	if (retval)
1446		goto bad_fork_cleanup_semundo;
1447	retval = copy_fs(clone_flags, p);
1448	if (retval)
1449		goto bad_fork_cleanup_files;
1450	retval = copy_sighand(clone_flags, p);
1451	if (retval)
1452		goto bad_fork_cleanup_fs;
1453	retval = copy_signal(clone_flags, p);
1454	if (retval)
1455		goto bad_fork_cleanup_sighand;
1456	retval = copy_mm(clone_flags, p);
1457	if (retval)
1458		goto bad_fork_cleanup_signal;
1459	retval = copy_namespaces(clone_flags, p);
1460	if (retval)
1461		goto bad_fork_cleanup_mm;
1462	retval = copy_io(clone_flags, p);
1463	if (retval)
1464		goto bad_fork_cleanup_namespaces;
1465	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
 
1466	if (retval)
1467		goto bad_fork_cleanup_io;
1468
 
 
1469	if (pid != &init_struct_pid) {
1470		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1471		if (IS_ERR(pid)) {
1472			retval = PTR_ERR(pid);
1473			goto bad_fork_cleanup_io;
1474		}
1475	}
1476
1477	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1478	/*
1479	 * Clear TID on mm_release()?
1480	 */
1481	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482#ifdef CONFIG_BLOCK
1483	p->plug = NULL;
1484#endif
1485#ifdef CONFIG_FUTEX
1486	p->robust_list = NULL;
1487#ifdef CONFIG_COMPAT
1488	p->compat_robust_list = NULL;
1489#endif
1490	INIT_LIST_HEAD(&p->pi_state_list);
1491	p->pi_state_cache = NULL;
1492#endif
1493	/*
1494	 * sigaltstack should be cleared when sharing the same VM
1495	 */
1496	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1497		p->sas_ss_sp = p->sas_ss_size = 0;
1498
1499	/*
1500	 * Syscall tracing and stepping should be turned off in the
1501	 * child regardless of CLONE_PTRACE.
1502	 */
1503	user_disable_single_step(p);
1504	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1505#ifdef TIF_SYSCALL_EMU
1506	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1507#endif
1508	clear_all_latency_tracing(p);
1509
1510	/* ok, now we should be set up.. */
1511	p->pid = pid_nr(pid);
1512	if (clone_flags & CLONE_THREAD) {
1513		p->exit_signal = -1;
1514		p->group_leader = current->group_leader;
1515		p->tgid = current->tgid;
1516	} else {
1517		if (clone_flags & CLONE_PARENT)
1518			p->exit_signal = current->group_leader->exit_signal;
1519		else
1520			p->exit_signal = (clone_flags & CSIGNAL);
1521		p->group_leader = p;
1522		p->tgid = p->pid;
1523	}
1524
1525	p->nr_dirtied = 0;
1526	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1527	p->dirty_paused_when = 0;
1528
1529	p->pdeath_signal = 0;
1530	INIT_LIST_HEAD(&p->thread_group);
1531	p->task_works = NULL;
1532
 
1533	/*
1534	 * Ensure that the cgroup subsystem policies allow the new process to be
1535	 * forked. It should be noted the the new process's css_set can be changed
1536	 * between here and cgroup_post_fork() if an organisation operation is in
1537	 * progress.
1538	 */
1539	retval = cgroup_can_fork(p);
1540	if (retval)
1541		goto bad_fork_free_pid;
 
 
 
 
 
 
 
 
 
 
 
1542
1543	/*
1544	 * Make it visible to the rest of the system, but dont wake it up yet.
1545	 * Need tasklist lock for parent etc handling!
1546	 */
1547	write_lock_irq(&tasklist_lock);
1548
1549	/* CLONE_PARENT re-uses the old parent */
1550	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1551		p->real_parent = current->real_parent;
1552		p->parent_exec_id = current->parent_exec_id;
1553	} else {
1554		p->real_parent = current;
1555		p->parent_exec_id = current->self_exec_id;
1556	}
1557
 
 
1558	spin_lock(&current->sighand->siglock);
1559
1560	/*
1561	 * Copy seccomp details explicitly here, in case they were changed
1562	 * before holding sighand lock.
1563	 */
1564	copy_seccomp(p);
1565
1566	/*
1567	 * Process group and session signals need to be delivered to just the
1568	 * parent before the fork or both the parent and the child after the
1569	 * fork. Restart if a signal comes in before we add the new process to
1570	 * it's process group.
1571	 * A fatal signal pending means that current will exit, so the new
1572	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1573	*/
1574	recalc_sigpending();
1575	if (signal_pending(current)) {
1576		spin_unlock(&current->sighand->siglock);
1577		write_unlock_irq(&tasklist_lock);
1578		retval = -ERESTARTNOINTR;
1579		goto bad_fork_cancel_cgroup;
1580	}
1581
 
 
 
 
 
 
 
 
 
 
 
1582	if (likely(p->pid)) {
1583		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1584
1585		init_task_pid(p, PIDTYPE_PID, pid);
1586		if (thread_group_leader(p)) {
 
1587			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1588			init_task_pid(p, PIDTYPE_SID, task_session(current));
1589
1590			if (is_child_reaper(pid)) {
1591				ns_of_pid(pid)->child_reaper = p;
1592				p->signal->flags |= SIGNAL_UNKILLABLE;
1593			}
1594
1595			p->signal->leader_pid = pid;
1596			p->signal->tty = tty_kref_get(current->signal->tty);
 
 
 
 
 
 
 
1597			list_add_tail(&p->sibling, &p->real_parent->children);
1598			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
1599			attach_pid(p, PIDTYPE_PGID);
1600			attach_pid(p, PIDTYPE_SID);
1601			__this_cpu_inc(process_counts);
1602		} else {
1603			current->signal->nr_threads++;
1604			atomic_inc(&current->signal->live);
1605			atomic_inc(&current->signal->sigcnt);
 
1606			list_add_tail_rcu(&p->thread_group,
1607					  &p->group_leader->thread_group);
1608			list_add_tail_rcu(&p->thread_node,
1609					  &p->signal->thread_head);
1610		}
1611		attach_pid(p, PIDTYPE_PID);
1612		nr_threads++;
1613	}
1614
1615	total_forks++;
 
1616	spin_unlock(&current->sighand->siglock);
1617	syscall_tracepoint_update(p);
1618	write_unlock_irq(&tasklist_lock);
1619
1620	proc_fork_connector(p);
1621	cgroup_post_fork(p);
1622	threadgroup_change_end(current);
1623	perf_event_fork(p);
1624
1625	trace_task_newtask(p, clone_flags);
1626	uprobe_copy_process(p, clone_flags);
1627
1628	return p;
1629
1630bad_fork_cancel_cgroup:
 
 
1631	cgroup_cancel_fork(p);
 
 
 
 
 
 
 
1632bad_fork_free_pid:
1633	if (pid != &init_struct_pid)
1634		free_pid(pid);
 
 
1635bad_fork_cleanup_io:
1636	if (p->io_context)
1637		exit_io_context(p);
1638bad_fork_cleanup_namespaces:
1639	exit_task_namespaces(p);
1640bad_fork_cleanup_mm:
1641	if (p->mm)
 
1642		mmput(p->mm);
 
1643bad_fork_cleanup_signal:
1644	if (!(clone_flags & CLONE_THREAD))
1645		free_signal_struct(p->signal);
1646bad_fork_cleanup_sighand:
1647	__cleanup_sighand(p->sighand);
1648bad_fork_cleanup_fs:
1649	exit_fs(p); /* blocking */
1650bad_fork_cleanup_files:
1651	exit_files(p); /* blocking */
1652bad_fork_cleanup_semundo:
1653	exit_sem(p);
 
 
1654bad_fork_cleanup_audit:
1655	audit_free(p);
1656bad_fork_cleanup_perf:
1657	perf_event_free_task(p);
1658bad_fork_cleanup_policy:
 
1659#ifdef CONFIG_NUMA
1660	mpol_put(p->mempolicy);
1661bad_fork_cleanup_threadgroup_lock:
1662#endif
1663	threadgroup_change_end(current);
1664	delayacct_tsk_free(p);
1665bad_fork_cleanup_count:
1666	atomic_dec(&p->cred->user->processes);
1667	exit_creds(p);
1668bad_fork_free:
1669	free_task(p);
 
 
1670fork_out:
 
 
 
1671	return ERR_PTR(retval);
1672}
1673
1674static inline void init_idle_pids(struct pid_link *links)
1675{
1676	enum pid_type type;
1677
1678	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1679		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1680		links[type].pid = &init_struct_pid;
1681	}
1682}
1683
1684struct task_struct *fork_idle(int cpu)
1685{
1686	struct task_struct *task;
1687	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
 
 
 
 
1688	if (!IS_ERR(task)) {
1689		init_idle_pids(task->pids);
1690		init_idle(task, cpu);
1691	}
1692
1693	return task;
1694}
1695
 
 
 
 
 
1696/*
1697 *  Ok, this is the main fork-routine.
1698 *
1699 * It copies the process, and if successful kick-starts
1700 * it and waits for it to finish using the VM if required.
 
 
1701 */
1702long _do_fork(unsigned long clone_flags,
1703	      unsigned long stack_start,
1704	      unsigned long stack_size,
1705	      int __user *parent_tidptr,
1706	      int __user *child_tidptr,
1707	      unsigned long tls)
1708{
 
 
 
1709	struct task_struct *p;
1710	int trace = 0;
1711	long nr;
1712
1713	/*
1714	 * Determine whether and which event to report to ptracer.  When
1715	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1716	 * requested, no event is reported; otherwise, report if the event
1717	 * for the type of forking is enabled.
1718	 */
1719	if (!(clone_flags & CLONE_UNTRACED)) {
1720		if (clone_flags & CLONE_VFORK)
1721			trace = PTRACE_EVENT_VFORK;
1722		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1723			trace = PTRACE_EVENT_CLONE;
1724		else
1725			trace = PTRACE_EVENT_FORK;
1726
1727		if (likely(!ptrace_event_enabled(current, trace)))
1728			trace = 0;
1729	}
1730
1731	p = copy_process(clone_flags, stack_start, stack_size,
1732			 child_tidptr, NULL, trace, tls);
 
 
 
 
1733	/*
1734	 * Do this prior waking up the new thread - the thread pointer
1735	 * might get invalid after that point, if the thread exits quickly.
1736	 */
1737	if (!IS_ERR(p)) {
1738		struct completion vfork;
1739		struct pid *pid;
1740
1741		trace_sched_process_fork(current, p);
1742
1743		pid = get_task_pid(p, PIDTYPE_PID);
1744		nr = pid_vnr(pid);
1745
1746		if (clone_flags & CLONE_PARENT_SETTID)
1747			put_user(nr, parent_tidptr);
1748
1749		if (clone_flags & CLONE_VFORK) {
1750			p->vfork_done = &vfork;
1751			init_completion(&vfork);
1752			get_task_struct(p);
1753		}
1754
1755		wake_up_new_task(p);
 
1756
1757		/* forking complete and child started to run, tell ptracer */
1758		if (unlikely(trace))
1759			ptrace_event_pid(trace, pid);
1760
1761		if (clone_flags & CLONE_VFORK) {
1762			if (!wait_for_vfork_done(p, &vfork))
1763				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1764		}
1765
1766		put_pid(pid);
1767	} else {
1768		nr = PTR_ERR(p);
 
 
 
 
 
 
 
 
 
 
 
 
1769	}
 
 
1770	return nr;
1771}
1772
 
 
 
 
 
 
 
 
 
 
1773#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1774/* For compatibility with architectures that call do_fork directly rather than
1775 * using the syscall entry points below. */
1776long do_fork(unsigned long clone_flags,
1777	      unsigned long stack_start,
1778	      unsigned long stack_size,
1779	      int __user *parent_tidptr,
1780	      int __user *child_tidptr)
1781{
1782	return _do_fork(clone_flags, stack_start, stack_size,
1783			parent_tidptr, child_tidptr, 0);
 
 
 
 
 
 
 
 
 
 
 
 
1784}
1785#endif
1786
1787/*
1788 * Create a kernel thread.
1789 */
1790pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1791{
1792	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1793		(unsigned long)arg, NULL, NULL, 0);
 
 
 
 
 
 
1794}
1795
1796#ifdef __ARCH_WANT_SYS_FORK
1797SYSCALL_DEFINE0(fork)
1798{
1799#ifdef CONFIG_MMU
1800	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
 
 
 
 
1801#else
1802	/* can not support in nommu mode */
1803	return -EINVAL;
1804#endif
1805}
1806#endif
1807
1808#ifdef __ARCH_WANT_SYS_VFORK
1809SYSCALL_DEFINE0(vfork)
1810{
1811	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1812			0, NULL, NULL, 0);
 
 
 
 
1813}
1814#endif
1815
1816#ifdef __ARCH_WANT_SYS_CLONE
1817#ifdef CONFIG_CLONE_BACKWARDS
1818SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1819		 int __user *, parent_tidptr,
1820		 unsigned long, tls,
1821		 int __user *, child_tidptr)
1822#elif defined(CONFIG_CLONE_BACKWARDS2)
1823SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1824		 int __user *, parent_tidptr,
1825		 int __user *, child_tidptr,
1826		 unsigned long, tls)
1827#elif defined(CONFIG_CLONE_BACKWARDS3)
1828SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1829		int, stack_size,
1830		int __user *, parent_tidptr,
1831		int __user *, child_tidptr,
1832		unsigned long, tls)
1833#else
1834SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1835		 int __user *, parent_tidptr,
1836		 int __user *, child_tidptr,
1837		 unsigned long, tls)
1838#endif
1839{
1840	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841}
1842#endif
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1845#define ARCH_MIN_MMSTRUCT_ALIGN 0
1846#endif
1847
1848static void sighand_ctor(void *data)
1849{
1850	struct sighand_struct *sighand = data;
1851
1852	spin_lock_init(&sighand->siglock);
1853	init_waitqueue_head(&sighand->signalfd_wqh);
1854}
1855
1856void __init proc_caches_init(void)
1857{
 
 
1858	sighand_cachep = kmem_cache_create("sighand_cache",
1859			sizeof(struct sighand_struct), 0,
1860			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1861			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1862	signal_cachep = kmem_cache_create("signal_cache",
1863			sizeof(struct signal_struct), 0,
1864			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1865			NULL);
1866	files_cachep = kmem_cache_create("files_cache",
1867			sizeof(struct files_struct), 0,
1868			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1869			NULL);
1870	fs_cachep = kmem_cache_create("fs_cache",
1871			sizeof(struct fs_struct), 0,
1872			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1873			NULL);
 
1874	/*
1875	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1876	 * whole struct cpumask for the OFFSTACK case. We could change
1877	 * this to *only* allocate as much of it as required by the
1878	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1879	 * is at the end of the structure, exactly for that reason.
1880	 */
1881	mm_cachep = kmem_cache_create("mm_struct",
1882			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1883			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
 
 
1884			NULL);
1885	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1886	mmap_init();
1887	nsproxy_cache_init();
1888}
1889
1890/*
1891 * Check constraints on flags passed to the unshare system call.
1892 */
1893static int check_unshare_flags(unsigned long unshare_flags)
1894{
1895	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1896				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1897				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1898				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1899		return -EINVAL;
1900	/*
1901	 * Not implemented, but pretend it works if there is nothing
1902	 * to unshare.  Note that unsharing the address space or the
1903	 * signal handlers also need to unshare the signal queues (aka
1904	 * CLONE_THREAD).
1905	 */
1906	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1907		if (!thread_group_empty(current))
1908			return -EINVAL;
1909	}
1910	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1911		if (atomic_read(&current->sighand->count) > 1)
1912			return -EINVAL;
1913	}
1914	if (unshare_flags & CLONE_VM) {
1915		if (!current_is_single_threaded())
1916			return -EINVAL;
1917	}
1918
1919	return 0;
1920}
1921
1922/*
1923 * Unshare the filesystem structure if it is being shared
1924 */
1925static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1926{
1927	struct fs_struct *fs = current->fs;
1928
1929	if (!(unshare_flags & CLONE_FS) || !fs)
1930		return 0;
1931
1932	/* don't need lock here; in the worst case we'll do useless copy */
1933	if (fs->users == 1)
1934		return 0;
1935
1936	*new_fsp = copy_fs_struct(fs);
1937	if (!*new_fsp)
1938		return -ENOMEM;
1939
1940	return 0;
1941}
1942
1943/*
1944 * Unshare file descriptor table if it is being shared
1945 */
1946static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1947{
1948	struct files_struct *fd = current->files;
1949	int error = 0;
1950
1951	if ((unshare_flags & CLONE_FILES) &&
1952	    (fd && atomic_read(&fd->count) > 1)) {
1953		*new_fdp = dup_fd(fd, &error);
1954		if (!*new_fdp)
1955			return error;
1956	}
1957
1958	return 0;
1959}
1960
1961/*
1962 * unshare allows a process to 'unshare' part of the process
1963 * context which was originally shared using clone.  copy_*
1964 * functions used by do_fork() cannot be used here directly
1965 * because they modify an inactive task_struct that is being
1966 * constructed. Here we are modifying the current, active,
1967 * task_struct.
1968 */
1969SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1970{
1971	struct fs_struct *fs, *new_fs = NULL;
1972	struct files_struct *fd, *new_fd = NULL;
1973	struct cred *new_cred = NULL;
1974	struct nsproxy *new_nsproxy = NULL;
1975	int do_sysvsem = 0;
1976	int err;
1977
1978	/*
1979	 * If unsharing a user namespace must also unshare the thread group
1980	 * and unshare the filesystem root and working directories.
1981	 */
1982	if (unshare_flags & CLONE_NEWUSER)
1983		unshare_flags |= CLONE_THREAD | CLONE_FS;
1984	/*
1985	 * If unsharing vm, must also unshare signal handlers.
1986	 */
1987	if (unshare_flags & CLONE_VM)
1988		unshare_flags |= CLONE_SIGHAND;
1989	/*
1990	 * If unsharing a signal handlers, must also unshare the signal queues.
1991	 */
1992	if (unshare_flags & CLONE_SIGHAND)
1993		unshare_flags |= CLONE_THREAD;
1994	/*
1995	 * If unsharing namespace, must also unshare filesystem information.
1996	 */
1997	if (unshare_flags & CLONE_NEWNS)
1998		unshare_flags |= CLONE_FS;
1999
2000	err = check_unshare_flags(unshare_flags);
2001	if (err)
2002		goto bad_unshare_out;
2003	/*
2004	 * CLONE_NEWIPC must also detach from the undolist: after switching
2005	 * to a new ipc namespace, the semaphore arrays from the old
2006	 * namespace are unreachable.
2007	 */
2008	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2009		do_sysvsem = 1;
2010	err = unshare_fs(unshare_flags, &new_fs);
2011	if (err)
2012		goto bad_unshare_out;
2013	err = unshare_fd(unshare_flags, &new_fd);
2014	if (err)
2015		goto bad_unshare_cleanup_fs;
2016	err = unshare_userns(unshare_flags, &new_cred);
2017	if (err)
2018		goto bad_unshare_cleanup_fd;
2019	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2020					 new_cred, new_fs);
2021	if (err)
2022		goto bad_unshare_cleanup_cred;
2023
2024	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2025		if (do_sysvsem) {
2026			/*
2027			 * CLONE_SYSVSEM is equivalent to sys_exit().
2028			 */
2029			exit_sem(current);
2030		}
2031		if (unshare_flags & CLONE_NEWIPC) {
2032			/* Orphan segments in old ns (see sem above). */
2033			exit_shm(current);
2034			shm_init_task(current);
2035		}
2036
2037		if (new_nsproxy)
2038			switch_task_namespaces(current, new_nsproxy);
2039
2040		task_lock(current);
2041
2042		if (new_fs) {
2043			fs = current->fs;
2044			spin_lock(&fs->lock);
2045			current->fs = new_fs;
2046			if (--fs->users)
2047				new_fs = NULL;
2048			else
2049				new_fs = fs;
2050			spin_unlock(&fs->lock);
2051		}
2052
2053		if (new_fd) {
2054			fd = current->files;
2055			current->files = new_fd;
2056			new_fd = fd;
2057		}
2058
2059		task_unlock(current);
2060
2061		if (new_cred) {
2062			/* Install the new user namespace */
2063			commit_creds(new_cred);
2064			new_cred = NULL;
2065		}
2066	}
2067
 
 
2068bad_unshare_cleanup_cred:
2069	if (new_cred)
2070		put_cred(new_cred);
2071bad_unshare_cleanup_fd:
2072	if (new_fd)
2073		put_files_struct(new_fd);
2074
2075bad_unshare_cleanup_fs:
2076	if (new_fs)
2077		free_fs_struct(new_fs);
2078
2079bad_unshare_out:
2080	return err;
2081}
2082
 
 
 
 
 
2083/*
2084 *	Helper to unshare the files of the current task.
2085 *	We don't want to expose copy_files internals to
2086 *	the exec layer of the kernel.
2087 */
2088
2089int unshare_files(struct files_struct **displaced)
2090{
2091	struct task_struct *task = current;
2092	struct files_struct *copy = NULL;
2093	int error;
2094
2095	error = unshare_fd(CLONE_FILES, &copy);
2096	if (error || !copy) {
2097		*displaced = NULL;
2098		return error;
2099	}
2100	*displaced = task->files;
2101	task_lock(task);
2102	task->files = copy;
2103	task_unlock(task);
2104	return 0;
2105}
2106
2107int sysctl_max_threads(struct ctl_table *table, int write,
2108		       void __user *buffer, size_t *lenp, loff_t *ppos)
2109{
2110	struct ctl_table t;
2111	int ret;
2112	int threads = max_threads;
2113	int min = MIN_THREADS;
2114	int max = MAX_THREADS;
2115
2116	t = *table;
2117	t.data = &threads;
2118	t.extra1 = &min;
2119	t.extra2 = &max;
2120
2121	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2122	if (ret || !write)
2123		return ret;
2124
2125	set_max_threads(threads);
2126
2127	return 0;
2128}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/hmm.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/vmacache.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
  78#include <linux/random.h>
  79#include <linux/tty.h>
  80#include <linux/blkdev.h>
  81#include <linux/fs_struct.h>
  82#include <linux/magic.h>
  83#include <linux/perf_event.h>
  84#include <linux/posix-timers.h>
  85#include <linux/user-return-notifier.h>
  86#include <linux/oom.h>
  87#include <linux/khugepaged.h>
  88#include <linux/signalfd.h>
  89#include <linux/uprobes.h>
  90#include <linux/aio.h>
  91#include <linux/compiler.h>
  92#include <linux/sysctl.h>
  93#include <linux/kcov.h>
  94#include <linux/livepatch.h>
  95#include <linux/thread_info.h>
  96#include <linux/stackleak.h>
  97
  98#include <asm/pgtable.h>
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 
 
 
 
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear stale pointers from reused stack. */
 228		memset(s->addr, 0, THREAD_SIZE);
 229
 230		tsk->stack_vm_area = s;
 231		tsk->stack = s->addr;
 232		return s->addr;
 233	}
 234
 235	/*
 236	 * Allocated stacks are cached and later reused by new threads,
 237	 * so memcg accounting is performed manually on assigning/releasing
 238	 * stacks to tasks. Drop __GFP_ACCOUNT.
 239	 */
 240	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 241				     VMALLOC_START, VMALLOC_END,
 242				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 243				     PAGE_KERNEL,
 244				     0, node, __builtin_return_address(0));
 245
 246	/*
 247	 * We can't call find_vm_area() in interrupt context, and
 248	 * free_thread_stack() can be called in interrupt context,
 249	 * so cache the vm_struct.
 250	 */
 251	if (stack) {
 252		tsk->stack_vm_area = find_vm_area(stack);
 253		tsk->stack = stack;
 254	}
 255	return stack;
 256#else
 257	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 258					     THREAD_SIZE_ORDER);
 259
 260	if (likely(page)) {
 261		tsk->stack = page_address(page);
 262		return tsk->stack;
 263	}
 264	return NULL;
 265#endif
 266}
 267
 268static inline void free_thread_stack(struct task_struct *tsk)
 269{
 270#ifdef CONFIG_VMAP_STACK
 271	struct vm_struct *vm = task_stack_vm_area(tsk);
 272
 273	if (vm) {
 274		int i;
 275
 276		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 277			mod_memcg_page_state(vm->pages[i],
 278					     MEMCG_KERNEL_STACK_KB,
 279					     -(int)(PAGE_SIZE / 1024));
 280
 281			memcg_kmem_uncharge(vm->pages[i], 0);
 282		}
 283
 284		for (i = 0; i < NR_CACHED_STACKS; i++) {
 285			if (this_cpu_cmpxchg(cached_stacks[i],
 286					NULL, tsk->stack_vm_area) != NULL)
 287				continue;
 288
 289			return;
 290		}
 291
 292		vfree_atomic(tsk->stack);
 293		return;
 294	}
 295#endif
 296
 297	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 298}
 299# else
 300static struct kmem_cache *thread_stack_cache;
 301
 302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 303						  int node)
 304{
 305	unsigned long *stack;
 306	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 307	tsk->stack = stack;
 308	return stack;
 309}
 310
 311static void free_thread_stack(struct task_struct *tsk)
 312{
 313	kmem_cache_free(thread_stack_cache, tsk->stack);
 314}
 315
 316void thread_stack_cache_init(void)
 317{
 318	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 319					THREAD_SIZE, THREAD_SIZE, 0, 0,
 320					THREAD_SIZE, NULL);
 321	BUG_ON(thread_stack_cache == NULL);
 322}
 323# endif
 324#endif
 325
 326/* SLAB cache for signal_struct structures (tsk->signal) */
 327static struct kmem_cache *signal_cachep;
 328
 329/* SLAB cache for sighand_struct structures (tsk->sighand) */
 330struct kmem_cache *sighand_cachep;
 331
 332/* SLAB cache for files_struct structures (tsk->files) */
 333struct kmem_cache *files_cachep;
 334
 335/* SLAB cache for fs_struct structures (tsk->fs) */
 336struct kmem_cache *fs_cachep;
 337
 338/* SLAB cache for vm_area_struct structures */
 339static struct kmem_cache *vm_area_cachep;
 340
 341/* SLAB cache for mm_struct structures (tsk->mm) */
 342static struct kmem_cache *mm_cachep;
 343
 344struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 345{
 346	struct vm_area_struct *vma;
 347
 348	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 349	if (vma)
 350		vma_init(vma, mm);
 351	return vma;
 352}
 353
 354struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 355{
 356	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 357
 358	if (new) {
 359		*new = *orig;
 360		INIT_LIST_HEAD(&new->anon_vma_chain);
 361	}
 362	return new;
 363}
 364
 365void vm_area_free(struct vm_area_struct *vma)
 366{
 367	kmem_cache_free(vm_area_cachep, vma);
 
 368}
 369
 370static void account_kernel_stack(struct task_struct *tsk, int account)
 371{
 372	void *stack = task_stack_page(tsk);
 373	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 374
 375	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 
 
 
 
 
 376
 377	if (vm) {
 378		int i;
 
 
 
 
 379
 380		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 
 381
 382		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 383			mod_zone_page_state(page_zone(vm->pages[i]),
 384					    NR_KERNEL_STACK_KB,
 385					    PAGE_SIZE / 1024 * account);
 386		}
 387	} else {
 388		/*
 389		 * All stack pages are in the same zone and belong to the
 390		 * same memcg.
 391		 */
 392		struct page *first_page = virt_to_page(stack);
 393
 394		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 395				    THREAD_SIZE / 1024 * account);
 396
 397		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 398				     account * (THREAD_SIZE / 1024));
 399	}
 400}
 401
 402static int memcg_charge_kernel_stack(struct task_struct *tsk)
 
 
 
 
 
 403{
 404#ifdef CONFIG_VMAP_STACK
 405	struct vm_struct *vm = task_stack_vm_area(tsk);
 406	int ret;
 
 
 
 
 
 
 
 
 
 407
 408	if (vm) {
 409		int i;
 410
 411		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 412			/*
 413			 * If memcg_kmem_charge() fails, page->mem_cgroup
 414			 * pointer is NULL, and both memcg_kmem_uncharge()
 415			 * and mod_memcg_page_state() in free_thread_stack()
 416			 * will ignore this page. So it's safe.
 417			 */
 418			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
 419			if (ret)
 420				return ret;
 421
 422			mod_memcg_page_state(vm->pages[i],
 423					     MEMCG_KERNEL_STACK_KB,
 424					     PAGE_SIZE / 1024);
 425		}
 426	}
 427#endif
 428	return 0;
 429}
 430
 431static void release_task_stack(struct task_struct *tsk)
 432{
 433	if (WARN_ON(tsk->state != TASK_DEAD))
 434		return;  /* Better to leak the stack than to free prematurely */
 435
 436	account_kernel_stack(tsk, -1);
 437	free_thread_stack(tsk);
 438	tsk->stack = NULL;
 439#ifdef CONFIG_VMAP_STACK
 440	tsk->stack_vm_area = NULL;
 441#endif
 442}
 443
 444#ifdef CONFIG_THREAD_INFO_IN_TASK
 445void put_task_stack(struct task_struct *tsk)
 446{
 447	if (refcount_dec_and_test(&tsk->stack_refcount))
 448		release_task_stack(tsk);
 449}
 450#endif
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452void free_task(struct task_struct *tsk)
 453{
 454#ifndef CONFIG_THREAD_INFO_IN_TASK
 455	/*
 456	 * The task is finally done with both the stack and thread_info,
 457	 * so free both.
 
 
 458	 */
 459	release_task_stack(tsk);
 460#else
 
 
 
 
 
 
 
 
 
 
 461	/*
 462	 * If the task had a separate stack allocation, it should be gone
 463	 * by now.
 464	 */
 465	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 
 
 466#endif
 467	rt_mutex_debug_task_free(tsk);
 468	ftrace_graph_exit_task(tsk);
 469	put_seccomp_filter(tsk);
 470	arch_release_task_struct(tsk);
 471	if (tsk->flags & PF_KTHREAD)
 472		free_kthread_struct(tsk);
 
 
 
 
 
 
 
 473	free_task_struct(tsk);
 
 474}
 475EXPORT_SYMBOL(free_task);
 476
 477#ifdef CONFIG_MMU
 478static __latent_entropy int dup_mmap(struct mm_struct *mm,
 479					struct mm_struct *oldmm)
 480{
 481	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 482	struct rb_node **rb_link, *rb_parent;
 483	int retval;
 484	unsigned long charge;
 485	LIST_HEAD(uf);
 486
 487	uprobe_start_dup_mmap();
 488	if (down_write_killable(&oldmm->mmap_sem)) {
 489		retval = -EINTR;
 490		goto fail_uprobe_end;
 491	}
 492	flush_cache_dup_mm(oldmm);
 493	uprobe_dup_mmap(oldmm, mm);
 494	/*
 495	 * Not linked in yet - no deadlock potential:
 496	 */
 497	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 498
 499	/* No ordering required: file already has been exposed. */
 500	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 501
 502	mm->total_vm = oldmm->total_vm;
 503	mm->data_vm = oldmm->data_vm;
 504	mm->exec_vm = oldmm->exec_vm;
 505	mm->stack_vm = oldmm->stack_vm;
 506
 507	rb_link = &mm->mm_rb.rb_node;
 508	rb_parent = NULL;
 509	pprev = &mm->mmap;
 510	retval = ksm_fork(mm, oldmm);
 511	if (retval)
 512		goto out;
 513	retval = khugepaged_fork(mm, oldmm);
 514	if (retval)
 515		goto out;
 516
 517	prev = NULL;
 518	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 519		struct file *file;
 520
 521		if (mpnt->vm_flags & VM_DONTCOPY) {
 522			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 523			continue;
 524		}
 525		charge = 0;
 526		/*
 527		 * Don't duplicate many vmas if we've been oom-killed (for
 528		 * example)
 529		 */
 530		if (fatal_signal_pending(current)) {
 531			retval = -EINTR;
 532			goto out;
 533		}
 534		if (mpnt->vm_flags & VM_ACCOUNT) {
 535			unsigned long len = vma_pages(mpnt);
 536
 537			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 538				goto fail_nomem;
 539			charge = len;
 540		}
 541		tmp = vm_area_dup(mpnt);
 542		if (!tmp)
 543			goto fail_nomem;
 
 
 544		retval = vma_dup_policy(mpnt, tmp);
 545		if (retval)
 546			goto fail_nomem_policy;
 547		tmp->vm_mm = mm;
 548		retval = dup_userfaultfd(tmp, &uf);
 549		if (retval)
 550			goto fail_nomem_anon_vma_fork;
 551		if (tmp->vm_flags & VM_WIPEONFORK) {
 552			/* VM_WIPEONFORK gets a clean slate in the child. */
 553			tmp->anon_vma = NULL;
 554			if (anon_vma_prepare(tmp))
 555				goto fail_nomem_anon_vma_fork;
 556		} else if (anon_vma_fork(tmp, mpnt))
 557			goto fail_nomem_anon_vma_fork;
 558		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 
 559		tmp->vm_next = tmp->vm_prev = NULL;
 
 560		file = tmp->vm_file;
 561		if (file) {
 562			struct inode *inode = file_inode(file);
 563			struct address_space *mapping = file->f_mapping;
 564
 565			get_file(file);
 566			if (tmp->vm_flags & VM_DENYWRITE)
 567				atomic_dec(&inode->i_writecount);
 568			i_mmap_lock_write(mapping);
 569			if (tmp->vm_flags & VM_SHARED)
 570				atomic_inc(&mapping->i_mmap_writable);
 571			flush_dcache_mmap_lock(mapping);
 572			/* insert tmp into the share list, just after mpnt */
 573			vma_interval_tree_insert_after(tmp, mpnt,
 574					&mapping->i_mmap);
 575			flush_dcache_mmap_unlock(mapping);
 576			i_mmap_unlock_write(mapping);
 577		}
 578
 579		/*
 580		 * Clear hugetlb-related page reserves for children. This only
 581		 * affects MAP_PRIVATE mappings. Faults generated by the child
 582		 * are not guaranteed to succeed, even if read-only
 583		 */
 584		if (is_vm_hugetlb_page(tmp))
 585			reset_vma_resv_huge_pages(tmp);
 586
 587		/*
 588		 * Link in the new vma and copy the page table entries.
 589		 */
 590		*pprev = tmp;
 591		pprev = &tmp->vm_next;
 592		tmp->vm_prev = prev;
 593		prev = tmp;
 594
 595		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 596		rb_link = &tmp->vm_rb.rb_right;
 597		rb_parent = &tmp->vm_rb;
 598
 599		mm->map_count++;
 600		if (!(tmp->vm_flags & VM_WIPEONFORK))
 601			retval = copy_page_range(mm, oldmm, mpnt);
 602
 603		if (tmp->vm_ops && tmp->vm_ops->open)
 604			tmp->vm_ops->open(tmp);
 605
 606		if (retval)
 607			goto out;
 608	}
 609	/* a new mm has just been created */
 610	retval = arch_dup_mmap(oldmm, mm);
 
 611out:
 612	up_write(&mm->mmap_sem);
 613	flush_tlb_mm(oldmm);
 614	up_write(&oldmm->mmap_sem);
 615	dup_userfaultfd_complete(&uf);
 616fail_uprobe_end:
 617	uprobe_end_dup_mmap();
 618	return retval;
 619fail_nomem_anon_vma_fork:
 620	mpol_put(vma_policy(tmp));
 621fail_nomem_policy:
 622	vm_area_free(tmp);
 623fail_nomem:
 624	retval = -ENOMEM;
 625	vm_unacct_memory(charge);
 626	goto out;
 627}
 628
 629static inline int mm_alloc_pgd(struct mm_struct *mm)
 630{
 631	mm->pgd = pgd_alloc(mm);
 632	if (unlikely(!mm->pgd))
 633		return -ENOMEM;
 634	return 0;
 635}
 636
 637static inline void mm_free_pgd(struct mm_struct *mm)
 638{
 639	pgd_free(mm, mm->pgd);
 640}
 641#else
 642static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 643{
 644	down_write(&oldmm->mmap_sem);
 645	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 646	up_write(&oldmm->mmap_sem);
 647	return 0;
 648}
 649#define mm_alloc_pgd(mm)	(0)
 650#define mm_free_pgd(mm)
 651#endif /* CONFIG_MMU */
 652
 653static void check_mm(struct mm_struct *mm)
 654{
 655	int i;
 656
 657	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 658			 "Please make sure 'struct resident_page_types[]' is updated as well");
 659
 660	for (i = 0; i < NR_MM_COUNTERS; i++) {
 661		long x = atomic_long_read(&mm->rss_stat.count[i]);
 662
 663		if (unlikely(x))
 664			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 665				 mm, resident_page_types[i], x);
 666	}
 667
 668	if (mm_pgtables_bytes(mm))
 669		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 670				mm_pgtables_bytes(mm));
 671
 672#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 673	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 674#endif
 675}
 676
 677#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 678#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 679
 680/*
 681 * Called when the last reference to the mm
 682 * is dropped: either by a lazy thread or by
 683 * mmput. Free the page directory and the mm.
 684 */
 685void __mmdrop(struct mm_struct *mm)
 686{
 687	BUG_ON(mm == &init_mm);
 688	WARN_ON_ONCE(mm == current->mm);
 689	WARN_ON_ONCE(mm == current->active_mm);
 690	mm_free_pgd(mm);
 691	destroy_context(mm);
 692	mmu_notifier_mm_destroy(mm);
 693	check_mm(mm);
 694	put_user_ns(mm->user_ns);
 695	free_mm(mm);
 696}
 697EXPORT_SYMBOL_GPL(__mmdrop);
 698
 699static void mmdrop_async_fn(struct work_struct *work)
 700{
 701	struct mm_struct *mm;
 702
 703	mm = container_of(work, struct mm_struct, async_put_work);
 704	__mmdrop(mm);
 705}
 706
 707static void mmdrop_async(struct mm_struct *mm)
 708{
 709	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 710		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 711		schedule_work(&mm->async_put_work);
 712	}
 713}
 714
 715static inline void free_signal_struct(struct signal_struct *sig)
 716{
 717	taskstats_tgid_free(sig);
 718	sched_autogroup_exit(sig);
 719	/*
 720	 * __mmdrop is not safe to call from softirq context on x86 due to
 721	 * pgd_dtor so postpone it to the async context
 722	 */
 723	if (sig->oom_mm)
 724		mmdrop_async(sig->oom_mm);
 725	kmem_cache_free(signal_cachep, sig);
 726}
 727
 728static inline void put_signal_struct(struct signal_struct *sig)
 729{
 730	if (refcount_dec_and_test(&sig->sigcnt))
 731		free_signal_struct(sig);
 732}
 733
 734void __put_task_struct(struct task_struct *tsk)
 735{
 736	WARN_ON(!tsk->exit_state);
 737	WARN_ON(refcount_read(&tsk->usage));
 738	WARN_ON(tsk == current);
 739
 740	cgroup_free(tsk);
 741	task_numa_free(tsk, true);
 742	security_task_free(tsk);
 743	exit_creds(tsk);
 744	delayacct_tsk_free(tsk);
 745	put_signal_struct(tsk->signal);
 746
 747	if (!profile_handoff_task(tsk))
 748		free_task(tsk);
 749}
 750EXPORT_SYMBOL_GPL(__put_task_struct);
 751
 752void __init __weak arch_task_cache_init(void) { }
 753
 754/*
 755 * set_max_threads
 756 */
 757static void set_max_threads(unsigned int max_threads_suggested)
 758{
 759	u64 threads;
 760	unsigned long nr_pages = totalram_pages();
 761
 762	/*
 763	 * The number of threads shall be limited such that the thread
 764	 * structures may only consume a small part of the available memory.
 765	 */
 766	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 767		threads = MAX_THREADS;
 768	else
 769		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 770				    (u64) THREAD_SIZE * 8UL);
 771
 772	if (threads > max_threads_suggested)
 773		threads = max_threads_suggested;
 774
 775	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 776}
 777
 778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 779/* Initialized by the architecture: */
 780int arch_task_struct_size __read_mostly;
 781#endif
 782
 783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 785{
 786	/* Fetch thread_struct whitelist for the architecture. */
 787	arch_thread_struct_whitelist(offset, size);
 788
 789	/*
 790	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 791	 * adjust offset to position of thread_struct in task_struct.
 792	 */
 793	if (unlikely(*size == 0))
 794		*offset = 0;
 795	else
 796		*offset += offsetof(struct task_struct, thread);
 797}
 798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 799
 800void __init fork_init(void)
 801{
 802	int i;
 803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 804#ifndef ARCH_MIN_TASKALIGN
 805#define ARCH_MIN_TASKALIGN	0
 806#endif
 807	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 808	unsigned long useroffset, usersize;
 809
 810	/* create a slab on which task_structs can be allocated */
 811	task_struct_whitelist(&useroffset, &usersize);
 812	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 813			arch_task_struct_size, align,
 814			SLAB_PANIC|SLAB_ACCOUNT,
 815			useroffset, usersize, NULL);
 816#endif
 817
 818	/* do the arch specific task caches init */
 819	arch_task_cache_init();
 820
 821	set_max_threads(MAX_THREADS);
 822
 823	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 824	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 825	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 826		init_task.signal->rlim[RLIMIT_NPROC];
 827
 828	for (i = 0; i < UCOUNT_COUNTS; i++) {
 829		init_user_ns.ucount_max[i] = max_threads/2;
 830	}
 831
 832#ifdef CONFIG_VMAP_STACK
 833	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 834			  NULL, free_vm_stack_cache);
 835#endif
 836
 837	lockdep_init_task(&init_task);
 838	uprobes_init();
 839}
 840
 841int __weak arch_dup_task_struct(struct task_struct *dst,
 842					       struct task_struct *src)
 843{
 844	*dst = *src;
 845	return 0;
 846}
 847
 848void set_task_stack_end_magic(struct task_struct *tsk)
 849{
 850	unsigned long *stackend;
 851
 852	stackend = end_of_stack(tsk);
 853	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 854}
 855
 856static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 857{
 858	struct task_struct *tsk;
 859	unsigned long *stack;
 860	struct vm_struct *stack_vm_area __maybe_unused;
 861	int err;
 862
 863	if (node == NUMA_NO_NODE)
 864		node = tsk_fork_get_node(orig);
 865	tsk = alloc_task_struct_node(node);
 866	if (!tsk)
 867		return NULL;
 868
 869	stack = alloc_thread_stack_node(tsk, node);
 870	if (!stack)
 871		goto free_tsk;
 872
 873	if (memcg_charge_kernel_stack(tsk))
 874		goto free_stack;
 875
 876	stack_vm_area = task_stack_vm_area(tsk);
 877
 878	err = arch_dup_task_struct(tsk, orig);
 879
 880	/*
 881	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 882	 * sure they're properly initialized before using any stack-related
 883	 * functions again.
 884	 */
 885	tsk->stack = stack;
 886#ifdef CONFIG_VMAP_STACK
 887	tsk->stack_vm_area = stack_vm_area;
 888#endif
 889#ifdef CONFIG_THREAD_INFO_IN_TASK
 890	refcount_set(&tsk->stack_refcount, 1);
 891#endif
 892
 893	if (err)
 894		goto free_stack;
 895
 896#ifdef CONFIG_SECCOMP
 897	/*
 898	 * We must handle setting up seccomp filters once we're under
 899	 * the sighand lock in case orig has changed between now and
 900	 * then. Until then, filter must be NULL to avoid messing up
 901	 * the usage counts on the error path calling free_task.
 902	 */
 903	tsk->seccomp.filter = NULL;
 904#endif
 905
 906	setup_thread_stack(tsk, orig);
 907	clear_user_return_notifier(tsk);
 908	clear_tsk_need_resched(tsk);
 909	set_task_stack_end_magic(tsk);
 910
 911#ifdef CONFIG_STACKPROTECTOR
 912	tsk->stack_canary = get_random_canary();
 913#endif
 914	if (orig->cpus_ptr == &orig->cpus_mask)
 915		tsk->cpus_ptr = &tsk->cpus_mask;
 916
 917	/*
 918	 * One for the user space visible state that goes away when reaped.
 919	 * One for the scheduler.
 920	 */
 921	refcount_set(&tsk->rcu_users, 2);
 922	/* One for the rcu users */
 923	refcount_set(&tsk->usage, 1);
 924#ifdef CONFIG_BLK_DEV_IO_TRACE
 925	tsk->btrace_seq = 0;
 926#endif
 927	tsk->splice_pipe = NULL;
 928	tsk->task_frag.page = NULL;
 929	tsk->wake_q.next = NULL;
 930
 931	account_kernel_stack(tsk, 1);
 932
 933	kcov_task_init(tsk);
 934
 935#ifdef CONFIG_FAULT_INJECTION
 936	tsk->fail_nth = 0;
 937#endif
 938
 939#ifdef CONFIG_BLK_CGROUP
 940	tsk->throttle_queue = NULL;
 941	tsk->use_memdelay = 0;
 942#endif
 943
 944#ifdef CONFIG_MEMCG
 945	tsk->active_memcg = NULL;
 946#endif
 947	return tsk;
 948
 949free_stack:
 950	free_thread_stack(tsk);
 951free_tsk:
 952	free_task_struct(tsk);
 953	return NULL;
 954}
 955
 956__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 957
 958static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 959
 960static int __init coredump_filter_setup(char *s)
 961{
 962	default_dump_filter =
 963		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 964		MMF_DUMP_FILTER_MASK;
 965	return 1;
 966}
 967
 968__setup("coredump_filter=", coredump_filter_setup);
 969
 970#include <linux/init_task.h>
 971
 972static void mm_init_aio(struct mm_struct *mm)
 973{
 974#ifdef CONFIG_AIO
 975	spin_lock_init(&mm->ioctx_lock);
 976	mm->ioctx_table = NULL;
 977#endif
 978}
 979
 980static __always_inline void mm_clear_owner(struct mm_struct *mm,
 981					   struct task_struct *p)
 982{
 983#ifdef CONFIG_MEMCG
 984	if (mm->owner == p)
 985		WRITE_ONCE(mm->owner, NULL);
 986#endif
 987}
 988
 989static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 990{
 991#ifdef CONFIG_MEMCG
 992	mm->owner = p;
 993#endif
 994}
 995
 996static void mm_init_uprobes_state(struct mm_struct *mm)
 997{
 998#ifdef CONFIG_UPROBES
 999	mm->uprobes_state.xol_area = NULL;
1000#endif
1001}
1002
1003static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004	struct user_namespace *user_ns)
1005{
1006	mm->mmap = NULL;
1007	mm->mm_rb = RB_ROOT;
1008	mm->vmacache_seqnum = 0;
1009	atomic_set(&mm->mm_users, 1);
1010	atomic_set(&mm->mm_count, 1);
1011	init_rwsem(&mm->mmap_sem);
1012	INIT_LIST_HEAD(&mm->mmlist);
1013	mm->core_state = NULL;
1014	mm_pgtables_bytes_init(mm);
 
1015	mm->map_count = 0;
1016	mm->locked_vm = 0;
1017	atomic64_set(&mm->pinned_vm, 0);
1018	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019	spin_lock_init(&mm->page_table_lock);
1020	spin_lock_init(&mm->arg_lock);
1021	mm_init_cpumask(mm);
1022	mm_init_aio(mm);
1023	mm_init_owner(mm, p);
1024	RCU_INIT_POINTER(mm->exe_file, NULL);
1025	mmu_notifier_mm_init(mm);
1026	init_tlb_flush_pending(mm);
1027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028	mm->pmd_huge_pte = NULL;
1029#endif
1030	mm_init_uprobes_state(mm);
1031
1032	if (current->mm) {
1033		mm->flags = current->mm->flags & MMF_INIT_MASK;
1034		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035	} else {
1036		mm->flags = default_dump_filter;
1037		mm->def_flags = 0;
1038	}
1039
1040	if (mm_alloc_pgd(mm))
1041		goto fail_nopgd;
1042
1043	if (init_new_context(p, mm))
1044		goto fail_nocontext;
1045
1046	mm->user_ns = get_user_ns(user_ns);
1047	return mm;
1048
1049fail_nocontext:
1050	mm_free_pgd(mm);
1051fail_nopgd:
1052	free_mm(mm);
1053	return NULL;
1054}
1055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056/*
1057 * Allocate and initialize an mm_struct.
1058 */
1059struct mm_struct *mm_alloc(void)
1060{
1061	struct mm_struct *mm;
1062
1063	mm = allocate_mm();
1064	if (!mm)
1065		return NULL;
1066
1067	memset(mm, 0, sizeof(*mm));
1068	return mm_init(mm, current, current_user_ns());
1069}
1070
1071static inline void __mmput(struct mm_struct *mm)
 
 
 
 
 
1072{
1073	VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075	uprobe_clear_state(mm);
1076	exit_aio(mm);
1077	ksm_exit(mm);
1078	khugepaged_exit(mm); /* must run before exit_mmap */
1079	exit_mmap(mm);
1080	mm_put_huge_zero_page(mm);
1081	set_mm_exe_file(mm, NULL);
1082	if (!list_empty(&mm->mmlist)) {
1083		spin_lock(&mmlist_lock);
1084		list_del(&mm->mmlist);
1085		spin_unlock(&mmlist_lock);
1086	}
1087	if (mm->binfmt)
1088		module_put(mm->binfmt->module);
1089	mmdrop(mm);
1090}
 
1091
1092/*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095void mmput(struct mm_struct *mm)
1096{
1097	might_sleep();
1098
1099	if (atomic_dec_and_test(&mm->mm_users))
1100		__mmput(mm);
1101}
1102EXPORT_SYMBOL_GPL(mmput);
1103
1104#ifdef CONFIG_MMU
1105static void mmput_async_fn(struct work_struct *work)
1106{
1107	struct mm_struct *mm = container_of(work, struct mm_struct,
1108					    async_put_work);
1109
1110	__mmput(mm);
1111}
1112
1113void mmput_async(struct mm_struct *mm)
1114{
1115	if (atomic_dec_and_test(&mm->mm_users)) {
1116		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117		schedule_work(&mm->async_put_work);
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
1119}
1120#endif
1121
1122/**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
1133void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134{
1135	struct file *old_exe_file;
1136
1137	/*
1138	 * It is safe to dereference the exe_file without RCU as
1139	 * this function is only called if nobody else can access
1140	 * this mm -- see comment above for justification.
1141	 */
1142	old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144	if (new_exe_file)
1145		get_file(new_exe_file);
1146	rcu_assign_pointer(mm->exe_file, new_exe_file);
1147	if (old_exe_file)
1148		fput(old_exe_file);
1149}
1150
1151/**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
1157struct file *get_mm_exe_file(struct mm_struct *mm)
1158{
1159	struct file *exe_file;
1160
1161	rcu_read_lock();
1162	exe_file = rcu_dereference(mm->exe_file);
1163	if (exe_file && !get_file_rcu(exe_file))
1164		exe_file = NULL;
1165	rcu_read_unlock();
1166	return exe_file;
1167}
1168EXPORT_SYMBOL(get_mm_exe_file);
1169
1170/**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177struct file *get_task_exe_file(struct task_struct *task)
1178{
1179	struct file *exe_file = NULL;
1180	struct mm_struct *mm;
1181
1182	task_lock(task);
1183	mm = task->mm;
1184	if (mm) {
1185		if (!(task->flags & PF_KTHREAD))
1186			exe_file = get_mm_exe_file(mm);
1187	}
1188	task_unlock(task);
1189	return exe_file;
1190}
1191EXPORT_SYMBOL(get_task_exe_file);
1192
1193/**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count.  User must release the mm via mmput()
1200 * after use.  Typically used by /proc and ptrace.
1201 */
1202struct mm_struct *get_task_mm(struct task_struct *task)
1203{
1204	struct mm_struct *mm;
1205
1206	task_lock(task);
1207	mm = task->mm;
1208	if (mm) {
1209		if (task->flags & PF_KTHREAD)
1210			mm = NULL;
1211		else
1212			mmget(mm);
1213	}
1214	task_unlock(task);
1215	return mm;
1216}
1217EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220{
1221	struct mm_struct *mm;
1222	int err;
1223
1224	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1225	if (err)
1226		return ERR_PTR(err);
1227
1228	mm = get_task_mm(task);
1229	if (mm && mm != current->mm &&
1230			!ptrace_may_access(task, mode)) {
1231		mmput(mm);
1232		mm = ERR_PTR(-EACCES);
1233	}
1234	mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236	return mm;
1237}
1238
1239static void complete_vfork_done(struct task_struct *tsk)
1240{
1241	struct completion *vfork;
1242
1243	task_lock(tsk);
1244	vfork = tsk->vfork_done;
1245	if (likely(vfork)) {
1246		tsk->vfork_done = NULL;
1247		complete(vfork);
1248	}
1249	task_unlock(tsk);
1250}
1251
1252static int wait_for_vfork_done(struct task_struct *child,
1253				struct completion *vfork)
1254{
1255	int killed;
1256
1257	freezer_do_not_count();
1258	cgroup_enter_frozen();
1259	killed = wait_for_completion_killable(vfork);
1260	cgroup_leave_frozen(false);
1261	freezer_count();
1262
1263	if (killed) {
1264		task_lock(child);
1265		child->vfork_done = NULL;
1266		task_unlock(child);
1267	}
1268
1269	put_task_struct(child);
1270	return killed;
1271}
1272
1273/* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one.  Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
1286void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287{
1288	/* Get rid of any futexes when releasing the mm */
1289#ifdef CONFIG_FUTEX
1290	if (unlikely(tsk->robust_list)) {
1291		exit_robust_list(tsk);
1292		tsk->robust_list = NULL;
1293	}
1294#ifdef CONFIG_COMPAT
1295	if (unlikely(tsk->compat_robust_list)) {
1296		compat_exit_robust_list(tsk);
1297		tsk->compat_robust_list = NULL;
1298	}
1299#endif
1300	if (unlikely(!list_empty(&tsk->pi_state_list)))
1301		exit_pi_state_list(tsk);
1302#endif
1303
1304	uprobe_free_utask(tsk);
1305
1306	/* Get rid of any cached register state */
1307	deactivate_mm(tsk, mm);
1308
1309	/*
1310	 * Signal userspace if we're not exiting with a core dump
1311	 * because we want to leave the value intact for debugging
1312	 * purposes.
 
 
1313	 */
1314	if (tsk->clear_child_tid) {
1315		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316		    atomic_read(&mm->mm_users) > 1) {
1317			/*
1318			 * We don't check the error code - if userspace has
1319			 * not set up a proper pointer then tough luck.
1320			 */
1321			put_user(0, tsk->clear_child_tid);
1322			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323					1, NULL, NULL, 0, 0);
1324		}
1325		tsk->clear_child_tid = NULL;
1326	}
1327
1328	/*
1329	 * All done, finally we can wake up parent and return this mm to him.
1330	 * Also kthread_stop() uses this completion for synchronization.
1331	 */
1332	if (tsk->vfork_done)
1333		complete_vfork_done(tsk);
1334}
1335
1336/**
1337 * dup_mm() - duplicates an existing mm structure
1338 * @tsk: the task_struct with which the new mm will be associated.
1339 * @oldmm: the mm to duplicate.
1340 *
1341 * Allocates a new mm structure and duplicates the provided @oldmm structure
1342 * content into it.
1343 *
1344 * Return: the duplicated mm or NULL on failure.
1345 */
1346static struct mm_struct *dup_mm(struct task_struct *tsk,
1347				struct mm_struct *oldmm)
1348{
1349	struct mm_struct *mm;
1350	int err;
1351
1352	mm = allocate_mm();
1353	if (!mm)
1354		goto fail_nomem;
1355
1356	memcpy(mm, oldmm, sizeof(*mm));
1357
1358	if (!mm_init(mm, tsk, mm->user_ns))
1359		goto fail_nomem;
1360
1361	err = dup_mmap(mm, oldmm);
1362	if (err)
1363		goto free_pt;
1364
1365	mm->hiwater_rss = get_mm_rss(mm);
1366	mm->hiwater_vm = mm->total_vm;
1367
1368	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369		goto free_pt;
1370
1371	return mm;
1372
1373free_pt:
1374	/* don't put binfmt in mmput, we haven't got module yet */
1375	mm->binfmt = NULL;
1376	mm_init_owner(mm, NULL);
1377	mmput(mm);
1378
1379fail_nomem:
1380	return NULL;
1381}
1382
1383static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384{
1385	struct mm_struct *mm, *oldmm;
1386	int retval;
1387
1388	tsk->min_flt = tsk->maj_flt = 0;
1389	tsk->nvcsw = tsk->nivcsw = 0;
1390#ifdef CONFIG_DETECT_HUNG_TASK
1391	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392	tsk->last_switch_time = 0;
1393#endif
1394
1395	tsk->mm = NULL;
1396	tsk->active_mm = NULL;
1397
1398	/*
1399	 * Are we cloning a kernel thread?
1400	 *
1401	 * We need to steal a active VM for that..
1402	 */
1403	oldmm = current->mm;
1404	if (!oldmm)
1405		return 0;
1406
1407	/* initialize the new vmacache entries */
1408	vmacache_flush(tsk);
1409
1410	if (clone_flags & CLONE_VM) {
1411		mmget(oldmm);
1412		mm = oldmm;
1413		goto good_mm;
1414	}
1415
1416	retval = -ENOMEM;
1417	mm = dup_mm(tsk, current->mm);
1418	if (!mm)
1419		goto fail_nomem;
1420
1421good_mm:
1422	tsk->mm = mm;
1423	tsk->active_mm = mm;
1424	return 0;
1425
1426fail_nomem:
1427	return retval;
1428}
1429
1430static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431{
1432	struct fs_struct *fs = current->fs;
1433	if (clone_flags & CLONE_FS) {
1434		/* tsk->fs is already what we want */
1435		spin_lock(&fs->lock);
1436		if (fs->in_exec) {
1437			spin_unlock(&fs->lock);
1438			return -EAGAIN;
1439		}
1440		fs->users++;
1441		spin_unlock(&fs->lock);
1442		return 0;
1443	}
1444	tsk->fs = copy_fs_struct(fs);
1445	if (!tsk->fs)
1446		return -ENOMEM;
1447	return 0;
1448}
1449
1450static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451{
1452	struct files_struct *oldf, *newf;
1453	int error = 0;
1454
1455	/*
1456	 * A background process may not have any files ...
1457	 */
1458	oldf = current->files;
1459	if (!oldf)
1460		goto out;
1461
1462	if (clone_flags & CLONE_FILES) {
1463		atomic_inc(&oldf->count);
1464		goto out;
1465	}
1466
1467	newf = dup_fd(oldf, &error);
1468	if (!newf)
1469		goto out;
1470
1471	tsk->files = newf;
1472	error = 0;
1473out:
1474	return error;
1475}
1476
1477static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478{
1479#ifdef CONFIG_BLOCK
1480	struct io_context *ioc = current->io_context;
1481	struct io_context *new_ioc;
1482
1483	if (!ioc)
1484		return 0;
1485	/*
1486	 * Share io context with parent, if CLONE_IO is set
1487	 */
1488	if (clone_flags & CLONE_IO) {
1489		ioc_task_link(ioc);
1490		tsk->io_context = ioc;
1491	} else if (ioprio_valid(ioc->ioprio)) {
1492		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493		if (unlikely(!new_ioc))
1494			return -ENOMEM;
1495
1496		new_ioc->ioprio = ioc->ioprio;
1497		put_io_context(new_ioc);
1498	}
1499#endif
1500	return 0;
1501}
1502
1503static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504{
1505	struct sighand_struct *sig;
1506
1507	if (clone_flags & CLONE_SIGHAND) {
1508		refcount_inc(&current->sighand->count);
1509		return 0;
1510	}
1511	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512	rcu_assign_pointer(tsk->sighand, sig);
1513	if (!sig)
1514		return -ENOMEM;
1515
1516	refcount_set(&sig->count, 1);
1517	spin_lock_irq(&current->sighand->siglock);
1518	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519	spin_unlock_irq(&current->sighand->siglock);
1520	return 0;
1521}
1522
1523void __cleanup_sighand(struct sighand_struct *sighand)
1524{
1525	if (refcount_dec_and_test(&sighand->count)) {
1526		signalfd_cleanup(sighand);
1527		/*
1528		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1529		 * without an RCU grace period, see __lock_task_sighand().
1530		 */
1531		kmem_cache_free(sighand_cachep, sighand);
1532	}
1533}
1534
1535/*
1536 * Initialize POSIX timer handling for a thread group.
1537 */
1538static void posix_cpu_timers_init_group(struct signal_struct *sig)
1539{
1540	struct posix_cputimers *pct = &sig->posix_cputimers;
1541	unsigned long cpu_limit;
1542
1543	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1544	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
1545}
1546
1547static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1548{
1549	struct signal_struct *sig;
1550
1551	if (clone_flags & CLONE_THREAD)
1552		return 0;
1553
1554	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1555	tsk->signal = sig;
1556	if (!sig)
1557		return -ENOMEM;
1558
1559	sig->nr_threads = 1;
1560	atomic_set(&sig->live, 1);
1561	refcount_set(&sig->sigcnt, 1);
1562
1563	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1564	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1565	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1566
1567	init_waitqueue_head(&sig->wait_chldexit);
1568	sig->curr_target = tsk;
1569	init_sigpending(&sig->shared_pending);
1570	INIT_HLIST_HEAD(&sig->multiprocess);
1571	seqlock_init(&sig->stats_lock);
1572	prev_cputime_init(&sig->prev_cputime);
1573
1574#ifdef CONFIG_POSIX_TIMERS
1575	INIT_LIST_HEAD(&sig->posix_timers);
1576	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577	sig->real_timer.function = it_real_fn;
1578#endif
1579
1580	task_lock(current->group_leader);
1581	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1582	task_unlock(current->group_leader);
1583
1584	posix_cpu_timers_init_group(sig);
1585
1586	tty_audit_fork(sig);
1587	sched_autogroup_fork(sig);
1588
1589	sig->oom_score_adj = current->signal->oom_score_adj;
1590	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1591
 
 
 
1592	mutex_init(&sig->cred_guard_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
 
 
 
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
 
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678}
1679
1680struct pid *pidfd_pid(const struct file *file)
1681{
1682	if (file->f_op == &pidfd_fops)
1683		return file->private_data;
1684
1685	return ERR_PTR(-EBADF);
1686}
1687
1688static int pidfd_release(struct inode *inode, struct file *file)
1689{
1690	struct pid *pid = file->private_data;
1691
1692	file->private_data = NULL;
1693	put_pid(pid);
1694	return 0;
1695}
1696
1697#ifdef CONFIG_PROC_FS
1698static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699{
1700	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701	struct pid *pid = f->private_data;
1702
1703	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1704	seq_putc(m, '\n');
1705}
1706#endif
1707
1708/*
1709 * Poll support for process exit notification.
1710 */
1711static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1712{
1713	struct task_struct *task;
1714	struct pid *pid = file->private_data;
1715	__poll_t poll_flags = 0;
1716
1717	poll_wait(file, &pid->wait_pidfd, pts);
1718
1719	rcu_read_lock();
1720	task = pid_task(pid, PIDTYPE_PID);
1721	/*
1722	 * Inform pollers only when the whole thread group exits.
1723	 * If the thread group leader exits before all other threads in the
1724	 * group, then poll(2) should block, similar to the wait(2) family.
1725	 */
1726	if (!task || (task->exit_state && thread_group_empty(task)))
1727		poll_flags = EPOLLIN | EPOLLRDNORM;
1728	rcu_read_unlock();
1729
1730	return poll_flags;
1731}
1732
1733const struct file_operations pidfd_fops = {
1734	.release = pidfd_release,
1735	.poll = pidfd_poll,
1736#ifdef CONFIG_PROC_FS
1737	.show_fdinfo = pidfd_show_fdinfo,
1738#endif
1739};
1740
1741static void __delayed_free_task(struct rcu_head *rhp)
1742{
1743	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1744
1745	free_task(tsk);
1746}
1747
1748static __always_inline void delayed_free_task(struct task_struct *tsk)
1749{
1750	if (IS_ENABLED(CONFIG_MEMCG))
1751		call_rcu(&tsk->rcu, __delayed_free_task);
1752	else
1753		free_task(tsk);
1754}
1755
1756/*
1757 * This creates a new process as a copy of the old one,
1758 * but does not actually start it yet.
1759 *
1760 * It copies the registers, and all the appropriate
1761 * parts of the process environment (as per the clone
1762 * flags). The actual kick-off is left to the caller.
1763 */
1764static __latent_entropy struct task_struct *copy_process(
 
 
 
1765					struct pid *pid,
1766					int trace,
1767					int node,
1768					struct kernel_clone_args *args)
1769{
1770	int pidfd = -1, retval;
1771	struct task_struct *p;
1772	struct multiprocess_signals delayed;
1773	struct file *pidfile = NULL;
1774	u64 clone_flags = args->flags;
1775
1776	/*
1777	 * Don't allow sharing the root directory with processes in a different
1778	 * namespace
1779	 */
1780	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1781		return ERR_PTR(-EINVAL);
1782
1783	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1784		return ERR_PTR(-EINVAL);
1785
1786	/*
1787	 * Thread groups must share signals as well, and detached threads
1788	 * can only be started up within the thread group.
1789	 */
1790	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1791		return ERR_PTR(-EINVAL);
1792
1793	/*
1794	 * Shared signal handlers imply shared VM. By way of the above,
1795	 * thread groups also imply shared VM. Blocking this case allows
1796	 * for various simplifications in other code.
1797	 */
1798	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1799		return ERR_PTR(-EINVAL);
1800
1801	/*
1802	 * Siblings of global init remain as zombies on exit since they are
1803	 * not reaped by their parent (swapper). To solve this and to avoid
1804	 * multi-rooted process trees, prevent global and container-inits
1805	 * from creating siblings.
1806	 */
1807	if ((clone_flags & CLONE_PARENT) &&
1808				current->signal->flags & SIGNAL_UNKILLABLE)
1809		return ERR_PTR(-EINVAL);
1810
1811	/*
1812	 * If the new process will be in a different pid or user namespace
1813	 * do not allow it to share a thread group with the forking task.
1814	 */
1815	if (clone_flags & CLONE_THREAD) {
1816		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1817		    (task_active_pid_ns(current) !=
1818				current->nsproxy->pid_ns_for_children))
1819			return ERR_PTR(-EINVAL);
1820	}
1821
1822	if (clone_flags & CLONE_PIDFD) {
1823		/*
1824		 * - CLONE_DETACHED is blocked so that we can potentially
1825		 *   reuse it later for CLONE_PIDFD.
1826		 * - CLONE_THREAD is blocked until someone really needs it.
1827		 */
1828		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1829			return ERR_PTR(-EINVAL);
1830	}
1831
1832	/*
1833	 * Force any signals received before this point to be delivered
1834	 * before the fork happens.  Collect up signals sent to multiple
1835	 * processes that happen during the fork and delay them so that
1836	 * they appear to happen after the fork.
1837	 */
1838	sigemptyset(&delayed.signal);
1839	INIT_HLIST_NODE(&delayed.node);
1840
1841	spin_lock_irq(&current->sighand->siglock);
1842	if (!(clone_flags & CLONE_THREAD))
1843		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1844	recalc_sigpending();
1845	spin_unlock_irq(&current->sighand->siglock);
1846	retval = -ERESTARTNOINTR;
1847	if (signal_pending(current))
1848		goto fork_out;
1849
1850	retval = -ENOMEM;
1851	p = dup_task_struct(current, node);
1852	if (!p)
1853		goto fork_out;
1854
1855	/*
1856	 * This _must_ happen before we call free_task(), i.e. before we jump
1857	 * to any of the bad_fork_* labels. This is to avoid freeing
1858	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1859	 * kernel threads (PF_KTHREAD).
1860	 */
1861	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1862	/*
1863	 * Clear TID on mm_release()?
1864	 */
1865	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1866
1867	ftrace_graph_init_task(p);
1868
1869	rt_mutex_init_task(p);
1870
1871#ifdef CONFIG_PROVE_LOCKING
1872	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1873	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1874#endif
1875	retval = -EAGAIN;
1876	if (atomic_read(&p->real_cred->user->processes) >=
1877			task_rlimit(p, RLIMIT_NPROC)) {
1878		if (p->real_cred->user != INIT_USER &&
1879		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1880			goto bad_fork_free;
1881	}
1882	current->flags &= ~PF_NPROC_EXCEEDED;
1883
1884	retval = copy_creds(p, clone_flags);
1885	if (retval < 0)
1886		goto bad_fork_free;
1887
1888	/*
1889	 * If multiple threads are within copy_process(), then this check
1890	 * triggers too late. This doesn't hurt, the check is only there
1891	 * to stop root fork bombs.
1892	 */
1893	retval = -EAGAIN;
1894	if (nr_threads >= max_threads)
1895		goto bad_fork_cleanup_count;
1896
1897	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1898	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1899	p->flags |= PF_FORKNOEXEC;
1900	INIT_LIST_HEAD(&p->children);
1901	INIT_LIST_HEAD(&p->sibling);
1902	rcu_copy_process(p);
1903	p->vfork_done = NULL;
1904	spin_lock_init(&p->alloc_lock);
1905
1906	init_sigpending(&p->pending);
1907
1908	p->utime = p->stime = p->gtime = 0;
1909#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1910	p->utimescaled = p->stimescaled = 0;
1911#endif
1912	prev_cputime_init(&p->prev_cputime);
1913
1914#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1915	seqcount_init(&p->vtime.seqcount);
1916	p->vtime.starttime = 0;
1917	p->vtime.state = VTIME_INACTIVE;
1918#endif
1919
1920#if defined(SPLIT_RSS_COUNTING)
1921	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1922#endif
1923
1924	p->default_timer_slack_ns = current->timer_slack_ns;
1925
1926#ifdef CONFIG_PSI
1927	p->psi_flags = 0;
1928#endif
1929
1930	task_io_accounting_init(&p->ioac);
1931	acct_clear_integrals(p);
1932
1933	posix_cputimers_init(&p->posix_cputimers);
1934
 
 
1935	p->io_context = NULL;
1936	audit_set_context(p, NULL);
 
1937	cgroup_fork(p);
1938#ifdef CONFIG_NUMA
1939	p->mempolicy = mpol_dup(p->mempolicy);
1940	if (IS_ERR(p->mempolicy)) {
1941		retval = PTR_ERR(p->mempolicy);
1942		p->mempolicy = NULL;
1943		goto bad_fork_cleanup_threadgroup_lock;
1944	}
1945#endif
1946#ifdef CONFIG_CPUSETS
1947	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1948	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1949	seqcount_init(&p->mems_allowed_seq);
1950#endif
1951#ifdef CONFIG_TRACE_IRQFLAGS
1952	p->irq_events = 0;
1953	p->hardirqs_enabled = 0;
1954	p->hardirq_enable_ip = 0;
1955	p->hardirq_enable_event = 0;
1956	p->hardirq_disable_ip = _THIS_IP_;
1957	p->hardirq_disable_event = 0;
1958	p->softirqs_enabled = 1;
1959	p->softirq_enable_ip = _THIS_IP_;
1960	p->softirq_enable_event = 0;
1961	p->softirq_disable_ip = 0;
1962	p->softirq_disable_event = 0;
1963	p->hardirq_context = 0;
1964	p->softirq_context = 0;
1965#endif
1966
1967	p->pagefault_disabled = 0;
1968
1969#ifdef CONFIG_LOCKDEP
1970	lockdep_init_task(p);
 
 
1971#endif
1972
1973#ifdef CONFIG_DEBUG_MUTEXES
1974	p->blocked_on = NULL; /* not blocked yet */
1975#endif
1976#ifdef CONFIG_BCACHE
1977	p->sequential_io	= 0;
1978	p->sequential_io_avg	= 0;
1979#endif
1980
1981	/* Perform scheduler related setup. Assign this task to a CPU. */
1982	retval = sched_fork(clone_flags, p);
1983	if (retval)
1984		goto bad_fork_cleanup_policy;
1985
1986	retval = perf_event_init_task(p);
1987	if (retval)
1988		goto bad_fork_cleanup_policy;
1989	retval = audit_alloc(p);
1990	if (retval)
1991		goto bad_fork_cleanup_perf;
1992	/* copy all the process information */
1993	shm_init_task(p);
1994	retval = security_task_alloc(p, clone_flags);
1995	if (retval)
1996		goto bad_fork_cleanup_audit;
1997	retval = copy_semundo(clone_flags, p);
1998	if (retval)
1999		goto bad_fork_cleanup_security;
2000	retval = copy_files(clone_flags, p);
2001	if (retval)
2002		goto bad_fork_cleanup_semundo;
2003	retval = copy_fs(clone_flags, p);
2004	if (retval)
2005		goto bad_fork_cleanup_files;
2006	retval = copy_sighand(clone_flags, p);
2007	if (retval)
2008		goto bad_fork_cleanup_fs;
2009	retval = copy_signal(clone_flags, p);
2010	if (retval)
2011		goto bad_fork_cleanup_sighand;
2012	retval = copy_mm(clone_flags, p);
2013	if (retval)
2014		goto bad_fork_cleanup_signal;
2015	retval = copy_namespaces(clone_flags, p);
2016	if (retval)
2017		goto bad_fork_cleanup_mm;
2018	retval = copy_io(clone_flags, p);
2019	if (retval)
2020		goto bad_fork_cleanup_namespaces;
2021	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2022				 args->tls);
2023	if (retval)
2024		goto bad_fork_cleanup_io;
2025
2026	stackleak_task_init(p);
2027
2028	if (pid != &init_struct_pid) {
2029		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2030		if (IS_ERR(pid)) {
2031			retval = PTR_ERR(pid);
2032			goto bad_fork_cleanup_thread;
2033		}
2034	}
2035
 
2036	/*
2037	 * This has to happen after we've potentially unshared the file
2038	 * descriptor table (so that the pidfd doesn't leak into the child
2039	 * if the fd table isn't shared).
2040	 */
2041	if (clone_flags & CLONE_PIDFD) {
2042		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2043		if (retval < 0)
2044			goto bad_fork_free_pid;
2045
2046		pidfd = retval;
2047
2048		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2049					      O_RDWR | O_CLOEXEC);
2050		if (IS_ERR(pidfile)) {
2051			put_unused_fd(pidfd);
2052			retval = PTR_ERR(pidfile);
2053			goto bad_fork_free_pid;
2054		}
2055		get_pid(pid);	/* held by pidfile now */
2056
2057		retval = put_user(pidfd, args->pidfd);
2058		if (retval)
2059			goto bad_fork_put_pidfd;
2060	}
2061
2062#ifdef CONFIG_BLOCK
2063	p->plug = NULL;
2064#endif
2065#ifdef CONFIG_FUTEX
2066	p->robust_list = NULL;
2067#ifdef CONFIG_COMPAT
2068	p->compat_robust_list = NULL;
2069#endif
2070	INIT_LIST_HEAD(&p->pi_state_list);
2071	p->pi_state_cache = NULL;
2072#endif
2073	/*
2074	 * sigaltstack should be cleared when sharing the same VM
2075	 */
2076	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2077		sas_ss_reset(p);
2078
2079	/*
2080	 * Syscall tracing and stepping should be turned off in the
2081	 * child regardless of CLONE_PTRACE.
2082	 */
2083	user_disable_single_step(p);
2084	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2085#ifdef TIF_SYSCALL_EMU
2086	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2087#endif
2088	clear_tsk_latency_tracing(p);
2089
2090	/* ok, now we should be set up.. */
2091	p->pid = pid_nr(pid);
2092	if (clone_flags & CLONE_THREAD) {
2093		p->exit_signal = -1;
2094		p->group_leader = current->group_leader;
2095		p->tgid = current->tgid;
2096	} else {
2097		if (clone_flags & CLONE_PARENT)
2098			p->exit_signal = current->group_leader->exit_signal;
2099		else
2100			p->exit_signal = args->exit_signal;
2101		p->group_leader = p;
2102		p->tgid = p->pid;
2103	}
2104
2105	p->nr_dirtied = 0;
2106	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2107	p->dirty_paused_when = 0;
2108
2109	p->pdeath_signal = 0;
2110	INIT_LIST_HEAD(&p->thread_group);
2111	p->task_works = NULL;
2112
2113	cgroup_threadgroup_change_begin(current);
2114	/*
2115	 * Ensure that the cgroup subsystem policies allow the new process to be
2116	 * forked. It should be noted the the new process's css_set can be changed
2117	 * between here and cgroup_post_fork() if an organisation operation is in
2118	 * progress.
2119	 */
2120	retval = cgroup_can_fork(p);
2121	if (retval)
2122		goto bad_fork_cgroup_threadgroup_change_end;
2123
2124	/*
2125	 * From this point on we must avoid any synchronous user-space
2126	 * communication until we take the tasklist-lock. In particular, we do
2127	 * not want user-space to be able to predict the process start-time by
2128	 * stalling fork(2) after we recorded the start_time but before it is
2129	 * visible to the system.
2130	 */
2131
2132	p->start_time = ktime_get_ns();
2133	p->real_start_time = ktime_get_boottime_ns();
2134
2135	/*
2136	 * Make it visible to the rest of the system, but dont wake it up yet.
2137	 * Need tasklist lock for parent etc handling!
2138	 */
2139	write_lock_irq(&tasklist_lock);
2140
2141	/* CLONE_PARENT re-uses the old parent */
2142	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2143		p->real_parent = current->real_parent;
2144		p->parent_exec_id = current->parent_exec_id;
2145	} else {
2146		p->real_parent = current;
2147		p->parent_exec_id = current->self_exec_id;
2148	}
2149
2150	klp_copy_process(p);
2151
2152	spin_lock(&current->sighand->siglock);
2153
2154	/*
2155	 * Copy seccomp details explicitly here, in case they were changed
2156	 * before holding sighand lock.
2157	 */
2158	copy_seccomp(p);
2159
2160	rseq_fork(p, clone_flags);
2161
2162	/* Don't start children in a dying pid namespace */
2163	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2164		retval = -ENOMEM;
 
 
 
 
 
 
 
 
2165		goto bad_fork_cancel_cgroup;
2166	}
2167
2168	/* Let kill terminate clone/fork in the middle */
2169	if (fatal_signal_pending(current)) {
2170		retval = -EINTR;
2171		goto bad_fork_cancel_cgroup;
2172	}
2173
2174	/* past the last point of failure */
2175	if (pidfile)
2176		fd_install(pidfd, pidfile);
2177
2178	init_task_pid_links(p);
2179	if (likely(p->pid)) {
2180		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2181
2182		init_task_pid(p, PIDTYPE_PID, pid);
2183		if (thread_group_leader(p)) {
2184			init_task_pid(p, PIDTYPE_TGID, pid);
2185			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2186			init_task_pid(p, PIDTYPE_SID, task_session(current));
2187
2188			if (is_child_reaper(pid)) {
2189				ns_of_pid(pid)->child_reaper = p;
2190				p->signal->flags |= SIGNAL_UNKILLABLE;
2191			}
2192			p->signal->shared_pending.signal = delayed.signal;
 
2193			p->signal->tty = tty_kref_get(current->signal->tty);
2194			/*
2195			 * Inherit has_child_subreaper flag under the same
2196			 * tasklist_lock with adding child to the process tree
2197			 * for propagate_has_child_subreaper optimization.
2198			 */
2199			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2200							 p->real_parent->signal->is_child_subreaper;
2201			list_add_tail(&p->sibling, &p->real_parent->children);
2202			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2203			attach_pid(p, PIDTYPE_TGID);
2204			attach_pid(p, PIDTYPE_PGID);
2205			attach_pid(p, PIDTYPE_SID);
2206			__this_cpu_inc(process_counts);
2207		} else {
2208			current->signal->nr_threads++;
2209			atomic_inc(&current->signal->live);
2210			refcount_inc(&current->signal->sigcnt);
2211			task_join_group_stop(p);
2212			list_add_tail_rcu(&p->thread_group,
2213					  &p->group_leader->thread_group);
2214			list_add_tail_rcu(&p->thread_node,
2215					  &p->signal->thread_head);
2216		}
2217		attach_pid(p, PIDTYPE_PID);
2218		nr_threads++;
2219	}
 
2220	total_forks++;
2221	hlist_del_init(&delayed.node);
2222	spin_unlock(&current->sighand->siglock);
2223	syscall_tracepoint_update(p);
2224	write_unlock_irq(&tasklist_lock);
2225
2226	proc_fork_connector(p);
2227	cgroup_post_fork(p);
2228	cgroup_threadgroup_change_end(current);
2229	perf_event_fork(p);
2230
2231	trace_task_newtask(p, clone_flags);
2232	uprobe_copy_process(p, clone_flags);
2233
2234	return p;
2235
2236bad_fork_cancel_cgroup:
2237	spin_unlock(&current->sighand->siglock);
2238	write_unlock_irq(&tasklist_lock);
2239	cgroup_cancel_fork(p);
2240bad_fork_cgroup_threadgroup_change_end:
2241	cgroup_threadgroup_change_end(current);
2242bad_fork_put_pidfd:
2243	if (clone_flags & CLONE_PIDFD) {
2244		fput(pidfile);
2245		put_unused_fd(pidfd);
2246	}
2247bad_fork_free_pid:
2248	if (pid != &init_struct_pid)
2249		free_pid(pid);
2250bad_fork_cleanup_thread:
2251	exit_thread(p);
2252bad_fork_cleanup_io:
2253	if (p->io_context)
2254		exit_io_context(p);
2255bad_fork_cleanup_namespaces:
2256	exit_task_namespaces(p);
2257bad_fork_cleanup_mm:
2258	if (p->mm) {
2259		mm_clear_owner(p->mm, p);
2260		mmput(p->mm);
2261	}
2262bad_fork_cleanup_signal:
2263	if (!(clone_flags & CLONE_THREAD))
2264		free_signal_struct(p->signal);
2265bad_fork_cleanup_sighand:
2266	__cleanup_sighand(p->sighand);
2267bad_fork_cleanup_fs:
2268	exit_fs(p); /* blocking */
2269bad_fork_cleanup_files:
2270	exit_files(p); /* blocking */
2271bad_fork_cleanup_semundo:
2272	exit_sem(p);
2273bad_fork_cleanup_security:
2274	security_task_free(p);
2275bad_fork_cleanup_audit:
2276	audit_free(p);
2277bad_fork_cleanup_perf:
2278	perf_event_free_task(p);
2279bad_fork_cleanup_policy:
2280	lockdep_free_task(p);
2281#ifdef CONFIG_NUMA
2282	mpol_put(p->mempolicy);
2283bad_fork_cleanup_threadgroup_lock:
2284#endif
 
2285	delayacct_tsk_free(p);
2286bad_fork_cleanup_count:
2287	atomic_dec(&p->cred->user->processes);
2288	exit_creds(p);
2289bad_fork_free:
2290	p->state = TASK_DEAD;
2291	put_task_stack(p);
2292	delayed_free_task(p);
2293fork_out:
2294	spin_lock_irq(&current->sighand->siglock);
2295	hlist_del_init(&delayed.node);
2296	spin_unlock_irq(&current->sighand->siglock);
2297	return ERR_PTR(retval);
2298}
2299
2300static inline void init_idle_pids(struct task_struct *idle)
2301{
2302	enum pid_type type;
2303
2304	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2305		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2306		init_task_pid(idle, type, &init_struct_pid);
2307	}
2308}
2309
2310struct task_struct *fork_idle(int cpu)
2311{
2312	struct task_struct *task;
2313	struct kernel_clone_args args = {
2314		.flags = CLONE_VM,
2315	};
2316
2317	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2318	if (!IS_ERR(task)) {
2319		init_idle_pids(task);
2320		init_idle(task, cpu);
2321	}
2322
2323	return task;
2324}
2325
2326struct mm_struct *copy_init_mm(void)
2327{
2328	return dup_mm(NULL, &init_mm);
2329}
2330
2331/*
2332 *  Ok, this is the main fork-routine.
2333 *
2334 * It copies the process, and if successful kick-starts
2335 * it and waits for it to finish using the VM if required.
2336 *
2337 * args->exit_signal is expected to be checked for sanity by the caller.
2338 */
2339long _do_fork(struct kernel_clone_args *args)
 
 
 
 
 
2340{
2341	u64 clone_flags = args->flags;
2342	struct completion vfork;
2343	struct pid *pid;
2344	struct task_struct *p;
2345	int trace = 0;
2346	long nr;
2347
2348	/*
2349	 * Determine whether and which event to report to ptracer.  When
2350	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2351	 * requested, no event is reported; otherwise, report if the event
2352	 * for the type of forking is enabled.
2353	 */
2354	if (!(clone_flags & CLONE_UNTRACED)) {
2355		if (clone_flags & CLONE_VFORK)
2356			trace = PTRACE_EVENT_VFORK;
2357		else if (args->exit_signal != SIGCHLD)
2358			trace = PTRACE_EVENT_CLONE;
2359		else
2360			trace = PTRACE_EVENT_FORK;
2361
2362		if (likely(!ptrace_event_enabled(current, trace)))
2363			trace = 0;
2364	}
2365
2366	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2367	add_latent_entropy();
2368
2369	if (IS_ERR(p))
2370		return PTR_ERR(p);
2371
2372	/*
2373	 * Do this prior waking up the new thread - the thread pointer
2374	 * might get invalid after that point, if the thread exits quickly.
2375	 */
2376	trace_sched_process_fork(current, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2377
2378	pid = get_task_pid(p, PIDTYPE_PID);
2379	nr = pid_vnr(pid);
2380
2381	if (clone_flags & CLONE_PARENT_SETTID)
2382		put_user(nr, args->parent_tid);
 
 
 
 
 
 
2383
2384	if (clone_flags & CLONE_VFORK) {
2385		p->vfork_done = &vfork;
2386		init_completion(&vfork);
2387		get_task_struct(p);
2388	}
2389
2390	wake_up_new_task(p);
2391
2392	/* forking complete and child started to run, tell ptracer */
2393	if (unlikely(trace))
2394		ptrace_event_pid(trace, pid);
2395
2396	if (clone_flags & CLONE_VFORK) {
2397		if (!wait_for_vfork_done(p, &vfork))
2398			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2399	}
2400
2401	put_pid(pid);
2402	return nr;
2403}
2404
2405bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2406{
2407	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2408	if ((kargs->flags & CLONE_PIDFD) &&
2409	    (kargs->flags & CLONE_PARENT_SETTID))
2410		return false;
2411
2412	return true;
2413}
2414
2415#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2416/* For compatibility with architectures that call do_fork directly rather than
2417 * using the syscall entry points below. */
2418long do_fork(unsigned long clone_flags,
2419	      unsigned long stack_start,
2420	      unsigned long stack_size,
2421	      int __user *parent_tidptr,
2422	      int __user *child_tidptr)
2423{
2424	struct kernel_clone_args args = {
2425		.flags		= (clone_flags & ~CSIGNAL),
2426		.pidfd		= parent_tidptr,
2427		.child_tid	= child_tidptr,
2428		.parent_tid	= parent_tidptr,
2429		.exit_signal	= (clone_flags & CSIGNAL),
2430		.stack		= stack_start,
2431		.stack_size	= stack_size,
2432	};
2433
2434	if (!legacy_clone_args_valid(&args))
2435		return -EINVAL;
2436
2437	return _do_fork(&args);
2438}
2439#endif
2440
2441/*
2442 * Create a kernel thread.
2443 */
2444pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2445{
2446	struct kernel_clone_args args = {
2447		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2448		.exit_signal	= (flags & CSIGNAL),
2449		.stack		= (unsigned long)fn,
2450		.stack_size	= (unsigned long)arg,
2451	};
2452
2453	return _do_fork(&args);
2454}
2455
2456#ifdef __ARCH_WANT_SYS_FORK
2457SYSCALL_DEFINE0(fork)
2458{
2459#ifdef CONFIG_MMU
2460	struct kernel_clone_args args = {
2461		.exit_signal = SIGCHLD,
2462	};
2463
2464	return _do_fork(&args);
2465#else
2466	/* can not support in nommu mode */
2467	return -EINVAL;
2468#endif
2469}
2470#endif
2471
2472#ifdef __ARCH_WANT_SYS_VFORK
2473SYSCALL_DEFINE0(vfork)
2474{
2475	struct kernel_clone_args args = {
2476		.flags		= CLONE_VFORK | CLONE_VM,
2477		.exit_signal	= SIGCHLD,
2478	};
2479
2480	return _do_fork(&args);
2481}
2482#endif
2483
2484#ifdef __ARCH_WANT_SYS_CLONE
2485#ifdef CONFIG_CLONE_BACKWARDS
2486SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2487		 int __user *, parent_tidptr,
2488		 unsigned long, tls,
2489		 int __user *, child_tidptr)
2490#elif defined(CONFIG_CLONE_BACKWARDS2)
2491SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2492		 int __user *, parent_tidptr,
2493		 int __user *, child_tidptr,
2494		 unsigned long, tls)
2495#elif defined(CONFIG_CLONE_BACKWARDS3)
2496SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2497		int, stack_size,
2498		int __user *, parent_tidptr,
2499		int __user *, child_tidptr,
2500		unsigned long, tls)
2501#else
2502SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2503		 int __user *, parent_tidptr,
2504		 int __user *, child_tidptr,
2505		 unsigned long, tls)
2506#endif
2507{
2508	struct kernel_clone_args args = {
2509		.flags		= (clone_flags & ~CSIGNAL),
2510		.pidfd		= parent_tidptr,
2511		.child_tid	= child_tidptr,
2512		.parent_tid	= parent_tidptr,
2513		.exit_signal	= (clone_flags & CSIGNAL),
2514		.stack		= newsp,
2515		.tls		= tls,
2516	};
2517
2518	if (!legacy_clone_args_valid(&args))
2519		return -EINVAL;
2520
2521	return _do_fork(&args);
2522}
2523#endif
2524
2525#ifdef __ARCH_WANT_SYS_CLONE3
2526noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2527					      struct clone_args __user *uargs,
2528					      size_t usize)
2529{
2530	int err;
2531	struct clone_args args;
2532
2533	if (unlikely(usize > PAGE_SIZE))
2534		return -E2BIG;
2535	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2536		return -EINVAL;
2537
2538	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2539	if (err)
2540		return err;
2541
2542	/*
2543	 * Verify that higher 32bits of exit_signal are unset and that
2544	 * it is a valid signal
2545	 */
2546	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2547		     !valid_signal(args.exit_signal)))
2548		return -EINVAL;
2549
2550	*kargs = (struct kernel_clone_args){
2551		.flags		= args.flags,
2552		.pidfd		= u64_to_user_ptr(args.pidfd),
2553		.child_tid	= u64_to_user_ptr(args.child_tid),
2554		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2555		.exit_signal	= args.exit_signal,
2556		.stack		= args.stack,
2557		.stack_size	= args.stack_size,
2558		.tls		= args.tls,
2559	};
2560
2561	return 0;
2562}
2563
2564/**
2565 * clone3_stack_valid - check and prepare stack
2566 * @kargs: kernel clone args
2567 *
2568 * Verify that the stack arguments userspace gave us are sane.
2569 * In addition, set the stack direction for userspace since it's easy for us to
2570 * determine.
2571 */
2572static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2573{
2574	if (kargs->stack == 0) {
2575		if (kargs->stack_size > 0)
2576			return false;
2577	} else {
2578		if (kargs->stack_size == 0)
2579			return false;
2580
2581		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2582			return false;
2583
2584#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2585		kargs->stack += kargs->stack_size;
2586#endif
2587	}
2588
2589	return true;
2590}
2591
2592static bool clone3_args_valid(struct kernel_clone_args *kargs)
2593{
2594	/*
2595	 * All lower bits of the flag word are taken.
2596	 * Verify that no other unknown flags are passed along.
2597	 */
2598	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2599		return false;
2600
2601	/*
2602	 * - make the CLONE_DETACHED bit reuseable for clone3
2603	 * - make the CSIGNAL bits reuseable for clone3
2604	 */
2605	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2606		return false;
2607
2608	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2609	    kargs->exit_signal)
2610		return false;
2611
2612	if (!clone3_stack_valid(kargs))
2613		return false;
2614
2615	return true;
2616}
2617
2618/**
2619 * clone3 - create a new process with specific properties
2620 * @uargs: argument structure
2621 * @size:  size of @uargs
2622 *
2623 * clone3() is the extensible successor to clone()/clone2().
2624 * It takes a struct as argument that is versioned by its size.
2625 *
2626 * Return: On success, a positive PID for the child process.
2627 *         On error, a negative errno number.
2628 */
2629SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2630{
2631	int err;
2632
2633	struct kernel_clone_args kargs;
2634
2635	err = copy_clone_args_from_user(&kargs, uargs, size);
2636	if (err)
2637		return err;
2638
2639	if (!clone3_args_valid(&kargs))
2640		return -EINVAL;
2641
2642	return _do_fork(&kargs);
2643}
2644#endif
2645
2646void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2647{
2648	struct task_struct *leader, *parent, *child;
2649	int res;
2650
2651	read_lock(&tasklist_lock);
2652	leader = top = top->group_leader;
2653down:
2654	for_each_thread(leader, parent) {
2655		list_for_each_entry(child, &parent->children, sibling) {
2656			res = visitor(child, data);
2657			if (res) {
2658				if (res < 0)
2659					goto out;
2660				leader = child;
2661				goto down;
2662			}
2663up:
2664			;
2665		}
2666	}
2667
2668	if (leader != top) {
2669		child = leader;
2670		parent = child->real_parent;
2671		leader = parent->group_leader;
2672		goto up;
2673	}
2674out:
2675	read_unlock(&tasklist_lock);
2676}
2677
2678#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2679#define ARCH_MIN_MMSTRUCT_ALIGN 0
2680#endif
2681
2682static void sighand_ctor(void *data)
2683{
2684	struct sighand_struct *sighand = data;
2685
2686	spin_lock_init(&sighand->siglock);
2687	init_waitqueue_head(&sighand->signalfd_wqh);
2688}
2689
2690void __init proc_caches_init(void)
2691{
2692	unsigned int mm_size;
2693
2694	sighand_cachep = kmem_cache_create("sighand_cache",
2695			sizeof(struct sighand_struct), 0,
2696			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2697			SLAB_ACCOUNT, sighand_ctor);
2698	signal_cachep = kmem_cache_create("signal_cache",
2699			sizeof(struct signal_struct), 0,
2700			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2701			NULL);
2702	files_cachep = kmem_cache_create("files_cache",
2703			sizeof(struct files_struct), 0,
2704			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2705			NULL);
2706	fs_cachep = kmem_cache_create("fs_cache",
2707			sizeof(struct fs_struct), 0,
2708			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2709			NULL);
2710
2711	/*
2712	 * The mm_cpumask is located at the end of mm_struct, and is
2713	 * dynamically sized based on the maximum CPU number this system
2714	 * can have, taking hotplug into account (nr_cpu_ids).
2715	 */
2716	mm_size = sizeof(struct mm_struct) + cpumask_size();
2717
2718	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2719			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2720			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2721			offsetof(struct mm_struct, saved_auxv),
2722			sizeof_field(struct mm_struct, saved_auxv),
2723			NULL);
2724	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2725	mmap_init();
2726	nsproxy_cache_init();
2727}
2728
2729/*
2730 * Check constraints on flags passed to the unshare system call.
2731 */
2732static int check_unshare_flags(unsigned long unshare_flags)
2733{
2734	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2735				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2736				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2737				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2738		return -EINVAL;
2739	/*
2740	 * Not implemented, but pretend it works if there is nothing
2741	 * to unshare.  Note that unsharing the address space or the
2742	 * signal handlers also need to unshare the signal queues (aka
2743	 * CLONE_THREAD).
2744	 */
2745	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2746		if (!thread_group_empty(current))
2747			return -EINVAL;
2748	}
2749	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2750		if (refcount_read(&current->sighand->count) > 1)
2751			return -EINVAL;
2752	}
2753	if (unshare_flags & CLONE_VM) {
2754		if (!current_is_single_threaded())
2755			return -EINVAL;
2756	}
2757
2758	return 0;
2759}
2760
2761/*
2762 * Unshare the filesystem structure if it is being shared
2763 */
2764static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2765{
2766	struct fs_struct *fs = current->fs;
2767
2768	if (!(unshare_flags & CLONE_FS) || !fs)
2769		return 0;
2770
2771	/* don't need lock here; in the worst case we'll do useless copy */
2772	if (fs->users == 1)
2773		return 0;
2774
2775	*new_fsp = copy_fs_struct(fs);
2776	if (!*new_fsp)
2777		return -ENOMEM;
2778
2779	return 0;
2780}
2781
2782/*
2783 * Unshare file descriptor table if it is being shared
2784 */
2785static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2786{
2787	struct files_struct *fd = current->files;
2788	int error = 0;
2789
2790	if ((unshare_flags & CLONE_FILES) &&
2791	    (fd && atomic_read(&fd->count) > 1)) {
2792		*new_fdp = dup_fd(fd, &error);
2793		if (!*new_fdp)
2794			return error;
2795	}
2796
2797	return 0;
2798}
2799
2800/*
2801 * unshare allows a process to 'unshare' part of the process
2802 * context which was originally shared using clone.  copy_*
2803 * functions used by do_fork() cannot be used here directly
2804 * because they modify an inactive task_struct that is being
2805 * constructed. Here we are modifying the current, active,
2806 * task_struct.
2807 */
2808int ksys_unshare(unsigned long unshare_flags)
2809{
2810	struct fs_struct *fs, *new_fs = NULL;
2811	struct files_struct *fd, *new_fd = NULL;
2812	struct cred *new_cred = NULL;
2813	struct nsproxy *new_nsproxy = NULL;
2814	int do_sysvsem = 0;
2815	int err;
2816
2817	/*
2818	 * If unsharing a user namespace must also unshare the thread group
2819	 * and unshare the filesystem root and working directories.
2820	 */
2821	if (unshare_flags & CLONE_NEWUSER)
2822		unshare_flags |= CLONE_THREAD | CLONE_FS;
2823	/*
2824	 * If unsharing vm, must also unshare signal handlers.
2825	 */
2826	if (unshare_flags & CLONE_VM)
2827		unshare_flags |= CLONE_SIGHAND;
2828	/*
2829	 * If unsharing a signal handlers, must also unshare the signal queues.
2830	 */
2831	if (unshare_flags & CLONE_SIGHAND)
2832		unshare_flags |= CLONE_THREAD;
2833	/*
2834	 * If unsharing namespace, must also unshare filesystem information.
2835	 */
2836	if (unshare_flags & CLONE_NEWNS)
2837		unshare_flags |= CLONE_FS;
2838
2839	err = check_unshare_flags(unshare_flags);
2840	if (err)
2841		goto bad_unshare_out;
2842	/*
2843	 * CLONE_NEWIPC must also detach from the undolist: after switching
2844	 * to a new ipc namespace, the semaphore arrays from the old
2845	 * namespace are unreachable.
2846	 */
2847	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2848		do_sysvsem = 1;
2849	err = unshare_fs(unshare_flags, &new_fs);
2850	if (err)
2851		goto bad_unshare_out;
2852	err = unshare_fd(unshare_flags, &new_fd);
2853	if (err)
2854		goto bad_unshare_cleanup_fs;
2855	err = unshare_userns(unshare_flags, &new_cred);
2856	if (err)
2857		goto bad_unshare_cleanup_fd;
2858	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2859					 new_cred, new_fs);
2860	if (err)
2861		goto bad_unshare_cleanup_cred;
2862
2863	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2864		if (do_sysvsem) {
2865			/*
2866			 * CLONE_SYSVSEM is equivalent to sys_exit().
2867			 */
2868			exit_sem(current);
2869		}
2870		if (unshare_flags & CLONE_NEWIPC) {
2871			/* Orphan segments in old ns (see sem above). */
2872			exit_shm(current);
2873			shm_init_task(current);
2874		}
2875
2876		if (new_nsproxy)
2877			switch_task_namespaces(current, new_nsproxy);
2878
2879		task_lock(current);
2880
2881		if (new_fs) {
2882			fs = current->fs;
2883			spin_lock(&fs->lock);
2884			current->fs = new_fs;
2885			if (--fs->users)
2886				new_fs = NULL;
2887			else
2888				new_fs = fs;
2889			spin_unlock(&fs->lock);
2890		}
2891
2892		if (new_fd) {
2893			fd = current->files;
2894			current->files = new_fd;
2895			new_fd = fd;
2896		}
2897
2898		task_unlock(current);
2899
2900		if (new_cred) {
2901			/* Install the new user namespace */
2902			commit_creds(new_cred);
2903			new_cred = NULL;
2904		}
2905	}
2906
2907	perf_event_namespaces(current);
2908
2909bad_unshare_cleanup_cred:
2910	if (new_cred)
2911		put_cred(new_cred);
2912bad_unshare_cleanup_fd:
2913	if (new_fd)
2914		put_files_struct(new_fd);
2915
2916bad_unshare_cleanup_fs:
2917	if (new_fs)
2918		free_fs_struct(new_fs);
2919
2920bad_unshare_out:
2921	return err;
2922}
2923
2924SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2925{
2926	return ksys_unshare(unshare_flags);
2927}
2928
2929/*
2930 *	Helper to unshare the files of the current task.
2931 *	We don't want to expose copy_files internals to
2932 *	the exec layer of the kernel.
2933 */
2934
2935int unshare_files(struct files_struct **displaced)
2936{
2937	struct task_struct *task = current;
2938	struct files_struct *copy = NULL;
2939	int error;
2940
2941	error = unshare_fd(CLONE_FILES, &copy);
2942	if (error || !copy) {
2943		*displaced = NULL;
2944		return error;
2945	}
2946	*displaced = task->files;
2947	task_lock(task);
2948	task->files = copy;
2949	task_unlock(task);
2950	return 0;
2951}
2952
2953int sysctl_max_threads(struct ctl_table *table, int write,
2954		       void __user *buffer, size_t *lenp, loff_t *ppos)
2955{
2956	struct ctl_table t;
2957	int ret;
2958	int threads = max_threads;
2959	int min = 1;
2960	int max = MAX_THREADS;
2961
2962	t = *table;
2963	t.data = &threads;
2964	t.extra1 = &min;
2965	t.extra2 = &max;
2966
2967	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2968	if (ret || !write)
2969		return ret;
2970
2971	max_threads = threads;
2972
2973	return 0;
2974}