Linux Audio

Check our new training course

Loading...
v4.6
 
  1#ifndef _SCSI_SCSI_HOST_H
  2#define _SCSI_SCSI_HOST_H
  3
  4#include <linux/device.h>
  5#include <linux/list.h>
  6#include <linux/types.h>
  7#include <linux/workqueue.h>
  8#include <linux/mutex.h>
  9#include <linux/seq_file.h>
 10#include <linux/blk-mq.h>
 11#include <scsi/scsi.h>
 12
 13struct request_queue;
 14struct block_device;
 15struct completion;
 16struct module;
 17struct scsi_cmnd;
 18struct scsi_device;
 19struct scsi_host_cmd_pool;
 20struct scsi_target;
 21struct Scsi_Host;
 22struct scsi_host_cmd_pool;
 23struct scsi_transport_template;
 24struct blk_queue_tags;
 25
 26
 27/*
 28 * The various choices mean:
 29 * NONE: Self evident.	Host adapter is not capable of scatter-gather.
 30 * ALL:	 Means that the host adapter module can do scatter-gather,
 31 *	 and that there is no limit to the size of the table to which
 32 *	 we scatter/gather data.  The value we set here is the maximum
 33 *	 single element sglist.  To use chained sglists, the adapter
 34 *	 has to set a value beyond ALL (and correctly use the chain
 35 *	 handling API.
 36 * Anything else:  Indicates the maximum number of chains that can be
 37 *	 used in one scatter-gather request.
 38 */
 39#define SG_NONE 0
 40#define SG_ALL	SCSI_MAX_SG_SEGMENTS
 41
 42#define MODE_UNKNOWN 0x00
 43#define MODE_INITIATOR 0x01
 44#define MODE_TARGET 0x02
 45
 46#define DISABLE_CLUSTERING 0
 47#define ENABLE_CLUSTERING 1
 48
 49struct scsi_host_template {
 50	struct module *module;
 51	const char *name;
 52
 53	/*
 54	 * Used to initialize old-style drivers.  For new-style drivers
 55	 * just perform all work in your module initialization function.
 56	 *
 57	 * Status:  OBSOLETE
 58	 */
 59	int (* detect)(struct scsi_host_template *);
 60
 61	/*
 62	 * Used as unload callback for hosts with old-style drivers.
 63	 *
 64	 * Status: OBSOLETE
 65	 */
 66	int (* release)(struct Scsi_Host *);
 67
 68	/*
 69	 * The info function will return whatever useful information the
 70	 * developer sees fit.  If not provided, then the name field will
 71	 * be used instead.
 72	 *
 73	 * Status: OPTIONAL
 74	 */
 75	const char *(* info)(struct Scsi_Host *);
 76
 77	/*
 78	 * Ioctl interface
 79	 *
 80	 * Status: OPTIONAL
 81	 */
 82	int (* ioctl)(struct scsi_device *dev, int cmd, void __user *arg);
 
 83
 84
 85#ifdef CONFIG_COMPAT
 86	/* 
 87	 * Compat handler. Handle 32bit ABI.
 88	 * When unknown ioctl is passed return -ENOIOCTLCMD.
 89	 *
 90	 * Status: OPTIONAL
 91	 */
 92	int (* compat_ioctl)(struct scsi_device *dev, int cmd, void __user *arg);
 
 93#endif
 94
 95	/*
 96	 * The queuecommand function is used to queue up a scsi
 97	 * command block to the LLDD.  When the driver finished
 98	 * processing the command the done callback is invoked.
 99	 *
100	 * If queuecommand returns 0, then the HBA has accepted the
101	 * command.  The done() function must be called on the command
 
 
102	 * when the driver has finished with it. (you may call done on the
103	 * command before queuecommand returns, but in this case you
104	 * *must* return 0 from queuecommand).
105	 *
106	 * Queuecommand may also reject the command, in which case it may
107	 * not touch the command and must not call done() for it.
108	 *
109	 * There are two possible rejection returns:
110	 *
111	 *   SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but
112	 *   allow commands to other devices serviced by this host.
113	 *
114	 *   SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this
115	 *   host temporarily.
116	 *
117         * For compatibility, any other non-zero return is treated the
118         * same as SCSI_MLQUEUE_HOST_BUSY.
119	 *
120	 * NOTE: "temporarily" means either until the next command for#
121	 * this device/host completes, or a period of time determined by
122	 * I/O pressure in the system if there are no other outstanding
123	 * commands.
124	 *
125	 * STATUS: REQUIRED
126	 */
127	int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *);
128
129	/*
 
 
 
 
 
 
 
 
 
 
130	 * This is an error handling strategy routine.  You don't need to
131	 * define one of these if you don't want to - there is a default
132	 * routine that is present that should work in most cases.  For those
133	 * driver authors that have the inclination and ability to write their
134	 * own strategy routine, this is where it is specified.  Note - the
135	 * strategy routine is *ALWAYS* run in the context of the kernel eh
136	 * thread.  Thus you are guaranteed to *NOT* be in an interrupt
137	 * handler when you execute this, and you are also guaranteed to
138	 * *NOT* have any other commands being queued while you are in the
139	 * strategy routine. When you return from this function, operations
140	 * return to normal.
141	 *
142	 * See scsi_error.c scsi_unjam_host for additional comments about
143	 * what this function should and should not be attempting to do.
144	 *
145	 * Status: REQUIRED	(at least one of them)
146	 */
147	int (* eh_abort_handler)(struct scsi_cmnd *);
148	int (* eh_device_reset_handler)(struct scsi_cmnd *);
149	int (* eh_target_reset_handler)(struct scsi_cmnd *);
150	int (* eh_bus_reset_handler)(struct scsi_cmnd *);
151	int (* eh_host_reset_handler)(struct scsi_cmnd *);
152
153	/*
154	 * Before the mid layer attempts to scan for a new device where none
155	 * currently exists, it will call this entry in your driver.  Should
156	 * your driver need to allocate any structs or perform any other init
157	 * items in order to send commands to a currently unused target/lun
158	 * combo, then this is where you can perform those allocations.  This
159	 * is specifically so that drivers won't have to perform any kind of
160	 * "is this a new device" checks in their queuecommand routine,
161	 * thereby making the hot path a bit quicker.
162	 *
163	 * Return values: 0 on success, non-0 on failure
164	 *
165	 * Deallocation:  If we didn't find any devices at this ID, you will
166	 * get an immediate call to slave_destroy().  If we find something
167	 * here then you will get a call to slave_configure(), then the
168	 * device will be used for however long it is kept around, then when
169	 * the device is removed from the system (or * possibly at reboot
170	 * time), you will then get a call to slave_destroy().  This is
171	 * assuming you implement slave_configure and slave_destroy.
172	 * However, if you allocate memory and hang it off the device struct,
173	 * then you must implement the slave_destroy() routine at a minimum
174	 * in order to avoid leaking memory
175	 * each time a device is tore down.
176	 *
177	 * Status: OPTIONAL
178	 */
179	int (* slave_alloc)(struct scsi_device *);
180
181	/*
182	 * Once the device has responded to an INQUIRY and we know the
183	 * device is online, we call into the low level driver with the
184	 * struct scsi_device *.  If the low level device driver implements
185	 * this function, it *must* perform the task of setting the queue
186	 * depth on the device.  All other tasks are optional and depend
187	 * on what the driver supports and various implementation details.
188	 * 
189	 * Things currently recommended to be handled at this time include:
190	 *
191	 * 1.  Setting the device queue depth.  Proper setting of this is
192	 *     described in the comments for scsi_change_queue_depth.
193	 * 2.  Determining if the device supports the various synchronous
194	 *     negotiation protocols.  The device struct will already have
195	 *     responded to INQUIRY and the results of the standard items
196	 *     will have been shoved into the various device flag bits, eg.
197	 *     device->sdtr will be true if the device supports SDTR messages.
198	 * 3.  Allocating command structs that the device will need.
199	 * 4.  Setting the default timeout on this device (if needed).
200	 * 5.  Anything else the low level driver might want to do on a device
201	 *     specific setup basis...
202	 * 6.  Return 0 on success, non-0 on error.  The device will be marked
203	 *     as offline on error so that no access will occur.  If you return
204	 *     non-0, your slave_destroy routine will never get called for this
205	 *     device, so don't leave any loose memory hanging around, clean
206	 *     up after yourself before returning non-0
207	 *
208	 * Status: OPTIONAL
209	 */
210	int (* slave_configure)(struct scsi_device *);
211
212	/*
213	 * Immediately prior to deallocating the device and after all activity
214	 * has ceased the mid layer calls this point so that the low level
215	 * driver may completely detach itself from the scsi device and vice
216	 * versa.  The low level driver is responsible for freeing any memory
217	 * it allocated in the slave_alloc or slave_configure calls. 
218	 *
219	 * Status: OPTIONAL
220	 */
221	void (* slave_destroy)(struct scsi_device *);
222
223	/*
224	 * Before the mid layer attempts to scan for a new device attached
225	 * to a target where no target currently exists, it will call this
226	 * entry in your driver.  Should your driver need to allocate any
227	 * structs or perform any other init items in order to send commands
228	 * to a currently unused target, then this is where you can perform
229	 * those allocations.
230	 *
231	 * Return values: 0 on success, non-0 on failure
232	 *
233	 * Status: OPTIONAL
234	 */
235	int (* target_alloc)(struct scsi_target *);
236
237	/*
238	 * Immediately prior to deallocating the target structure, and
239	 * after all activity to attached scsi devices has ceased, the
240	 * midlayer calls this point so that the driver may deallocate
241	 * and terminate any references to the target.
242	 *
243	 * Status: OPTIONAL
244	 */
245	void (* target_destroy)(struct scsi_target *);
246
247	/*
248	 * If a host has the ability to discover targets on its own instead
249	 * of scanning the entire bus, it can fill in this function and
250	 * call scsi_scan_host().  This function will be called periodically
251	 * until it returns 1 with the scsi_host and the elapsed time of
252	 * the scan in jiffies.
253	 *
254	 * Status: OPTIONAL
255	 */
256	int (* scan_finished)(struct Scsi_Host *, unsigned long);
257
258	/*
259	 * If the host wants to be called before the scan starts, but
260	 * after the midlayer has set up ready for the scan, it can fill
261	 * in this function.
262	 *
263	 * Status: OPTIONAL
264	 */
265	void (* scan_start)(struct Scsi_Host *);
266
267	/*
268	 * Fill in this function to allow the queue depth of this host
269	 * to be changeable (on a per device basis).  Returns either
270	 * the current queue depth setting (may be different from what
271	 * was passed in) or an error.  An error should only be
272	 * returned if the requested depth is legal but the driver was
273	 * unable to set it.  If the requested depth is illegal, the
274	 * driver should set and return the closest legal queue depth.
275	 *
276	 * Status: OPTIONAL
277	 */
278	int (* change_queue_depth)(struct scsi_device *, int);
279
280	/*
 
 
 
 
 
 
 
 
281	 * This function determines the BIOS parameters for a given
282	 * harddisk.  These tend to be numbers that are made up by
283	 * the host adapter.  Parameters:
284	 * size, device, list (heads, sectors, cylinders)
285	 *
286	 * Status: OPTIONAL
287	 */
288	int (* bios_param)(struct scsi_device *, struct block_device *,
289			sector_t, int []);
290
291	/*
292	 * This function is called when one or more partitions on the
293	 * device reach beyond the end of the device.
294	 *
295	 * Status: OPTIONAL
296	 */
297	void (*unlock_native_capacity)(struct scsi_device *);
298
299	/*
300	 * Can be used to export driver statistics and other infos to the
301	 * world outside the kernel ie. userspace and it also provides an
302	 * interface to feed the driver with information.
303	 *
304	 * Status: OBSOLETE
305	 */
306	int (*show_info)(struct seq_file *, struct Scsi_Host *);
307	int (*write_info)(struct Scsi_Host *, char *, int);
308
309	/*
310	 * This is an optional routine that allows the transport to become
311	 * involved when a scsi io timer fires. The return value tells the
312	 * timer routine how to finish the io timeout handling:
313	 * EH_HANDLED:		I fixed the error, please complete the command
314	 * EH_RESET_TIMER:	I need more time, reset the timer and
315	 *			begin counting again
316	 * EH_NOT_HANDLED	Begin normal error recovery
317	 *
318	 * Status: OPTIONAL
319	 */
320	enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *);
321
322	/* This is an optional routine that allows transport to initiate
323	 * LLD adapter or firmware reset using sysfs attribute.
324	 *
325	 * Return values: 0 on success, -ve value on failure.
326	 *
327	 * Status: OPTIONAL
328	 */
329
330	int (*host_reset)(struct Scsi_Host *shost, int reset_type);
331#define SCSI_ADAPTER_RESET	1
332#define SCSI_FIRMWARE_RESET	2
333
334
335	/*
336	 * Name of proc directory
337	 */
338	const char *proc_name;
339
340	/*
341	 * Used to store the procfs directory if a driver implements the
342	 * show_info method.
343	 */
344	struct proc_dir_entry *proc_dir;
345
346	/*
347	 * This determines if we will use a non-interrupt driven
348	 * or an interrupt driven scheme.  It is set to the maximum number
349	 * of simultaneous commands a given host adapter will accept.
350	 */
351	int can_queue;
352
353	/*
354	 * In many instances, especially where disconnect / reconnect are
355	 * supported, our host also has an ID on the SCSI bus.  If this is
356	 * the case, then it must be reserved.  Please set this_id to -1 if
357	 * your setup is in single initiator mode, and the host lacks an
358	 * ID.
359	 */
360	int this_id;
361
362	/*
363	 * This determines the degree to which the host adapter is capable
364	 * of scatter-gather.
365	 */
366	unsigned short sg_tablesize;
367	unsigned short sg_prot_tablesize;
368
369	/*
370	 * Set this if the host adapter has limitations beside segment count.
371	 */
372	unsigned int max_sectors;
373
374	/*
 
 
 
 
 
375	 * DMA scatter gather segment boundary limit. A segment crossing this
376	 * boundary will be split in two.
377	 */
378	unsigned long dma_boundary;
379
 
 
380	/*
381	 * This specifies "machine infinity" for host templates which don't
382	 * limit the transfer size.  Note this limit represents an absolute
383	 * maximum, and may be over the transfer limits allowed for
384	 * individual devices (e.g. 256 for SCSI-1).
385	 */
386#define SCSI_DEFAULT_MAX_SECTORS	1024
387
388	/*
389	 * True if this host adapter can make good use of linked commands.
390	 * This will allow more than one command to be queued to a given
391	 * unit on a given host.  Set this to the maximum number of command
392	 * blocks to be provided for each device.  Set this to 1 for one
393	 * command block per lun, 2 for two, etc.  Do not set this to 0.
394	 * You should make sure that the host adapter will do the right thing
395	 * before you try setting this above 1.
396	 */
397	short cmd_per_lun;
398
399	/*
400	 * present contains counter indicating how many boards of this
401	 * type were found when we did the scan.
402	 */
403	unsigned char present;
404
405	/* If use block layer to manage tags, this is tag allocation policy */
406	int tag_alloc_policy;
407
408	/*
409	 * Track QUEUE_FULL events and reduce queue depth on demand.
410	 */
411	unsigned track_queue_depth:1;
412
413	/*
414	 * This specifies the mode that a LLD supports.
415	 */
416	unsigned supported_mode:2;
417
418	/*
419	 * True if this host adapter uses unchecked DMA onto an ISA bus.
420	 */
421	unsigned unchecked_isa_dma:1;
422
423	/*
424	 * True if this host adapter can make good use of clustering.
425	 * I originally thought that if the tablesize was large that it
426	 * was a waste of CPU cycles to prepare a cluster list, but
427	 * it works out that the Buslogic is faster if you use a smaller
428	 * number of segments (i.e. use clustering).  I guess it is
429	 * inefficient.
430	 */
431	unsigned use_clustering:1;
432
433	/*
434	 * True for emulated SCSI host adapters (e.g. ATAPI).
435	 */
436	unsigned emulated:1;
437
438	/*
439	 * True if the low-level driver performs its own reset-settle delays.
440	 */
441	unsigned skip_settle_delay:1;
442
443	/* True if the controller does not support WRITE SAME */
444	unsigned no_write_same:1;
445
446	/*
447	 * True if asynchronous aborts are not supported
448	 */
449	unsigned no_async_abort:1;
450
451	/*
452	 * Countdown for host blocking with no commands outstanding.
453	 */
454	unsigned int max_host_blocked;
455
456	/*
457	 * Default value for the blocking.  If the queue is empty,
458	 * host_blocked counts down in the request_fn until it restarts
459	 * host operations as zero is reached.  
460	 *
461	 * FIXME: This should probably be a value in the template
462	 */
463#define SCSI_DEFAULT_HOST_BLOCKED	7
464
465	/*
466	 * Pointer to the sysfs class properties for this host, NULL terminated.
467	 */
468	struct device_attribute **shost_attrs;
469
470	/*
471	 * Pointer to the SCSI device properties for this host, NULL terminated.
472	 */
473	struct device_attribute **sdev_attrs;
474
475	/*
476	 * List of hosts per template.
477	 *
478	 * This is only for use by scsi_module.c for legacy templates.
479	 * For these access to it is synchronized implicitly by
480	 * module_init/module_exit.
481	 */
482	struct list_head legacy_hosts;
483
484	/*
485	 * Vendor Identifier associated with the host
486	 *
487	 * Note: When specifying vendor_id, be sure to read the
488	 *   Vendor Type and ID formatting requirements specified in
489	 *   scsi_netlink.h
490	 */
491	u64 vendor_id;
492
493	/*
494	 * Additional per-command data allocated for the driver.
495	 */
496	unsigned int cmd_size;
497	struct scsi_host_cmd_pool *cmd_pool;
498
499	/* temporary flag to disable blk-mq I/O path */
500	bool disable_blk_mq;
501};
502
503/*
504 * Temporary #define for host lock push down. Can be removed when all
505 * drivers have been updated to take advantage of unlocked
506 * queuecommand.
507 *
508 */
509#define DEF_SCSI_QCMD(func_name) \
510	int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd)	\
511	{								\
512		unsigned long irq_flags;				\
513		int rc;							\
514		spin_lock_irqsave(shost->host_lock, irq_flags);		\
515		scsi_cmd_get_serial(shost, cmd);			\
516		rc = func_name##_lck (cmd, cmd->scsi_done);			\
517		spin_unlock_irqrestore(shost->host_lock, irq_flags);	\
518		return rc;						\
519	}
520
521
522/*
523 * shost state: If you alter this, you also need to alter scsi_sysfs.c
524 * (for the ascii descriptions) and the state model enforcer:
525 * scsi_host_set_state()
526 */
527enum scsi_host_state {
528	SHOST_CREATED = 1,
529	SHOST_RUNNING,
530	SHOST_CANCEL,
531	SHOST_DEL,
532	SHOST_RECOVERY,
533	SHOST_CANCEL_RECOVERY,
534	SHOST_DEL_RECOVERY,
535};
536
537struct Scsi_Host {
538	/*
539	 * __devices is protected by the host_lock, but you should
540	 * usually use scsi_device_lookup / shost_for_each_device
541	 * to access it and don't care about locking yourself.
542	 * In the rare case of being in irq context you can use
543	 * their __ prefixed variants with the lock held. NEVER
544	 * access this list directly from a driver.
545	 */
546	struct list_head	__devices;
547	struct list_head	__targets;
548	
549	struct scsi_host_cmd_pool *cmd_pool;
550	spinlock_t		free_list_lock;
551	struct list_head	free_list; /* backup store of cmd structs */
552	struct list_head	starved_list;
553
554	spinlock_t		default_lock;
555	spinlock_t		*host_lock;
556
557	struct mutex		scan_mutex;/* serialize scanning activity */
558
559	struct list_head	eh_cmd_q;
560	struct task_struct    * ehandler;  /* Error recovery thread. */
561	struct completion     * eh_action; /* Wait for specific actions on the
562					      host. */
563	wait_queue_head_t       host_wait;
564	struct scsi_host_template *hostt;
565	struct scsi_transport_template *transportt;
566
567	/*
568	 * Area to keep a shared tag map (if needed, will be
569	 * NULL if not).
570	 */
571	union {
572		struct blk_queue_tag	*bqt;
573		struct blk_mq_tag_set	tag_set;
574	};
575
576	atomic_t host_busy;		   /* commands actually active on low-level */
577	atomic_t host_blocked;
578
579	unsigned int host_failed;	   /* commands that failed.
580					      protected by host_lock */
581	unsigned int host_eh_scheduled;    /* EH scheduled without command */
582    
583	unsigned int host_no;  /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */
584
585	/* next two fields are used to bound the time spent in error handling */
586	int eh_deadline;
587	unsigned long last_reset;
588
589
590	/*
591	 * These three parameters can be used to allow for wide scsi,
592	 * and for host adapters that support multiple busses
593	 * The last two should be set to 1 more than the actual max id
594	 * or lun (e.g. 8 for SCSI parallel systems).
595	 */
596	unsigned int max_channel;
597	unsigned int max_id;
598	u64 max_lun;
599
600	/*
601	 * This is a unique identifier that must be assigned so that we
602	 * have some way of identifying each detected host adapter properly
603	 * and uniquely.  For hosts that do not support more than one card
604	 * in the system at one time, this does not need to be set.  It is
605	 * initialized to 0 in scsi_register.
606	 */
607	unsigned int unique_id;
608
609	/*
610	 * The maximum length of SCSI commands that this host can accept.
611	 * Probably 12 for most host adapters, but could be 16 for others.
612	 * or 260 if the driver supports variable length cdbs.
613	 * For drivers that don't set this field, a value of 12 is
614	 * assumed.
615	 */
616	unsigned short max_cmd_len;
617
618	int this_id;
619	int can_queue;
620	short cmd_per_lun;
621	short unsigned int sg_tablesize;
622	short unsigned int sg_prot_tablesize;
623	unsigned int max_sectors;
 
624	unsigned long dma_boundary;
 
625	/*
626	 * In scsi-mq mode, the number of hardware queues supported by the LLD.
627	 *
628	 * Note: it is assumed that each hardware queue has a queue depth of
629	 * can_queue. In other words, the total queue depth per host
630	 * is nr_hw_queues * can_queue.
631	 */
632	unsigned nr_hw_queues;
633	/* 
634	 * Used to assign serial numbers to the cmds.
635	 * Protected by the host lock.
636	 */
637	unsigned long cmd_serial_number;
638	
639	unsigned active_mode:2;
640	unsigned unchecked_isa_dma:1;
641	unsigned use_clustering:1;
642
643	/*
644	 * Host has requested that no further requests come through for the
645	 * time being.
646	 */
647	unsigned host_self_blocked:1;
648    
649	/*
650	 * Host uses correct SCSI ordering not PC ordering. The bit is
651	 * set for the minority of drivers whose authors actually read
652	 * the spec ;).
653	 */
654	unsigned reverse_ordering:1;
655
656	/* Task mgmt function in progress */
657	unsigned tmf_in_progress:1;
658
659	/* Asynchronous scan in progress */
660	unsigned async_scan:1;
661
662	/* Don't resume host in EH */
663	unsigned eh_noresume:1;
664
665	/* The controller does not support WRITE SAME */
666	unsigned no_write_same:1;
667
668	unsigned use_blk_mq:1;
669	unsigned use_cmd_list:1;
670
671	/* Host responded with short (<36 bytes) INQUIRY result */
672	unsigned short_inquiry:1;
673
 
 
 
674	/*
675	 * Optional work queue to be utilized by the transport
676	 */
677	char work_q_name[20];
678	struct workqueue_struct *work_q;
679
680	/*
681	 * Task management function work queue
682	 */
683	struct workqueue_struct *tmf_work_q;
684
685	/* The transport requires the LUN bits NOT to be stored in CDB[1] */
686	unsigned no_scsi2_lun_in_cdb:1;
687
688	/*
689	 * Value host_blocked counts down from
690	 */
691	unsigned int max_host_blocked;
692
693	/* Protection Information */
694	unsigned int prot_capabilities;
695	unsigned char prot_guard_type;
696
697	/*
698	 * q used for scsi_tgt msgs, async events or any other requests that
699	 * need to be processed in userspace
700	 */
701	struct request_queue *uspace_req_q;
702
703	/* legacy crap */
704	unsigned long base;
705	unsigned long io_port;
706	unsigned char n_io_port;
707	unsigned char dma_channel;
708	unsigned int  irq;
709	
710
711	enum scsi_host_state shost_state;
712
713	/* ldm bits */
714	struct device		shost_gendev, shost_dev;
715
716	/*
717	 * List of hosts per template.
718	 *
719	 * This is only for use by scsi_module.c for legacy templates.
720	 * For these access to it is synchronized implicitly by
721	 * module_init/module_exit.
722	 */
723	struct list_head sht_legacy_list;
724
725	/*
726	 * Points to the transport data (if any) which is allocated
727	 * separately
728	 */
729	void *shost_data;
730
731	/*
732	 * Points to the physical bus device we'd use to do DMA
733	 * Needed just in case we have virtual hosts.
734	 */
735	struct device *dma_dev;
736
737	/*
738	 * We should ensure that this is aligned, both for better performance
739	 * and also because some compilers (m68k) don't automatically force
740	 * alignment to a long boundary.
741	 */
742	unsigned long hostdata[0]  /* Used for storage of host specific stuff */
743		__attribute__ ((aligned (sizeof(unsigned long))));
744};
745
746#define		class_to_shost(d)	\
747	container_of(d, struct Scsi_Host, shost_dev)
748
749#define shost_printk(prefix, shost, fmt, a...)	\
750	dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a)
751
752static inline void *shost_priv(struct Scsi_Host *shost)
753{
754	return (void *)shost->hostdata;
755}
756
757int scsi_is_host_device(const struct device *);
758
759static inline struct Scsi_Host *dev_to_shost(struct device *dev)
760{
761	while (!scsi_is_host_device(dev)) {
762		if (!dev->parent)
763			return NULL;
764		dev = dev->parent;
765	}
766	return container_of(dev, struct Scsi_Host, shost_gendev);
767}
768
769static inline int scsi_host_in_recovery(struct Scsi_Host *shost)
770{
771	return shost->shost_state == SHOST_RECOVERY ||
772		shost->shost_state == SHOST_CANCEL_RECOVERY ||
773		shost->shost_state == SHOST_DEL_RECOVERY ||
774		shost->tmf_in_progress;
775}
776
777extern bool scsi_use_blk_mq;
778
779static inline bool shost_use_blk_mq(struct Scsi_Host *shost)
780{
781	return shost->use_blk_mq;
782}
783
784extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *);
785extern void scsi_flush_work(struct Scsi_Host *);
786
787extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int);
788extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *,
789					       struct device *,
790					       struct device *);
791extern void scsi_scan_host(struct Scsi_Host *);
792extern void scsi_rescan_device(struct device *);
793extern void scsi_remove_host(struct Scsi_Host *);
794extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *);
 
795extern void scsi_host_put(struct Scsi_Host *t);
796extern struct Scsi_Host *scsi_host_lookup(unsigned short);
797extern const char *scsi_host_state_name(enum scsi_host_state);
798extern void scsi_cmd_get_serial(struct Scsi_Host *, struct scsi_cmnd *);
799
800static inline int __must_check scsi_add_host(struct Scsi_Host *host,
801					     struct device *dev)
802{
803	return scsi_add_host_with_dma(host, dev, dev);
804}
805
806static inline struct device *scsi_get_device(struct Scsi_Host *shost)
807{
808        return shost->shost_gendev.parent;
809}
810
811/**
812 * scsi_host_scan_allowed - Is scanning of this host allowed
813 * @shost:	Pointer to Scsi_Host.
814 **/
815static inline int scsi_host_scan_allowed(struct Scsi_Host *shost)
816{
817	return shost->shost_state == SHOST_RUNNING ||
818	       shost->shost_state == SHOST_RECOVERY;
819}
820
821extern void scsi_unblock_requests(struct Scsi_Host *);
822extern void scsi_block_requests(struct Scsi_Host *);
823
824struct class_container;
825
826extern struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
827						void (*) (struct request_queue *));
828/*
829 * These two functions are used to allocate and free a pseudo device
830 * which will connect to the host adapter itself rather than any
831 * physical device.  You must deallocate when you are done with the
832 * thing.  This physical pseudo-device isn't real and won't be available
833 * from any high-level drivers.
834 */
835extern void scsi_free_host_dev(struct scsi_device *);
836extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *);
837
838/*
839 * DIF defines the exchange of protection information between
840 * initiator and SBC block device.
841 *
842 * DIX defines the exchange of protection information between OS and
843 * initiator.
844 */
845enum scsi_host_prot_capabilities {
846	SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */
847	SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */
848	SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */
849
850	SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */
851	SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */
852	SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */
853	SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */
854};
855
856/*
857 * SCSI hosts which support the Data Integrity Extensions must
858 * indicate their capabilities by setting the prot_capabilities using
859 * this call.
860 */
861static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask)
862{
863	shost->prot_capabilities = mask;
864}
865
866static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost)
867{
868	return shost->prot_capabilities;
869}
870
871static inline int scsi_host_prot_dma(struct Scsi_Host *shost)
872{
873	return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION;
874}
875
876static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type)
877{
878	static unsigned char cap[] = { 0,
879				       SHOST_DIF_TYPE1_PROTECTION,
880				       SHOST_DIF_TYPE2_PROTECTION,
881				       SHOST_DIF_TYPE3_PROTECTION };
882
883	if (target_type >= ARRAY_SIZE(cap))
884		return 0;
885
886	return shost->prot_capabilities & cap[target_type] ? target_type : 0;
887}
888
889static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type)
890{
891#if defined(CONFIG_BLK_DEV_INTEGRITY)
892	static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION,
893				       SHOST_DIX_TYPE1_PROTECTION,
894				       SHOST_DIX_TYPE2_PROTECTION,
895				       SHOST_DIX_TYPE3_PROTECTION };
896
897	if (target_type >= ARRAY_SIZE(cap))
898		return 0;
899
900	return shost->prot_capabilities & cap[target_type];
901#endif
902	return 0;
903}
904
905/*
906 * All DIX-capable initiators must support the T10-mandated CRC
907 * checksum.  Controllers can optionally implement the IP checksum
908 * scheme which has much lower impact on system performance.  Note
909 * that the main rationale for the checksum is to match integrity
910 * metadata with data.  Detecting bit errors are a job for ECC memory
911 * and buses.
912 */
913
914enum scsi_host_guard_type {
915	SHOST_DIX_GUARD_CRC = 1 << 0,
916	SHOST_DIX_GUARD_IP  = 1 << 1,
917};
918
919static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type)
920{
921	shost->prot_guard_type = type;
922}
923
924static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost)
925{
926	return shost->prot_guard_type;
927}
928
929/* legacy interfaces */
930extern struct Scsi_Host *scsi_register(struct scsi_host_template *, int);
931extern void scsi_unregister(struct Scsi_Host *);
932extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state);
933
934#endif /* _SCSI_SCSI_HOST_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _SCSI_SCSI_HOST_H
  3#define _SCSI_SCSI_HOST_H
  4
  5#include <linux/device.h>
  6#include <linux/list.h>
  7#include <linux/types.h>
  8#include <linux/workqueue.h>
  9#include <linux/mutex.h>
 10#include <linux/seq_file.h>
 11#include <linux/blk-mq.h>
 12#include <scsi/scsi.h>
 13
 
 14struct block_device;
 15struct completion;
 16struct module;
 17struct scsi_cmnd;
 18struct scsi_device;
 19struct scsi_host_cmd_pool;
 20struct scsi_target;
 21struct Scsi_Host;
 22struct scsi_host_cmd_pool;
 23struct scsi_transport_template;
 
 24
 25
 26/*
 27 * The various choices mean:
 28 * NONE: Self evident.	Host adapter is not capable of scatter-gather.
 29 * ALL:	 Means that the host adapter module can do scatter-gather,
 30 *	 and that there is no limit to the size of the table to which
 31 *	 we scatter/gather data.  The value we set here is the maximum
 32 *	 single element sglist.  To use chained sglists, the adapter
 33 *	 has to set a value beyond ALL (and correctly use the chain
 34 *	 handling API.
 35 * Anything else:  Indicates the maximum number of chains that can be
 36 *	 used in one scatter-gather request.
 37 */
 38#define SG_NONE 0
 39#define SG_ALL	SG_CHUNK_SIZE
 40
 41#define MODE_UNKNOWN 0x00
 42#define MODE_INITIATOR 0x01
 43#define MODE_TARGET 0x02
 44
 
 
 
 45struct scsi_host_template {
 46	struct module *module;
 47	const char *name;
 48
 49	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50	 * The info function will return whatever useful information the
 51	 * developer sees fit.  If not provided, then the name field will
 52	 * be used instead.
 53	 *
 54	 * Status: OPTIONAL
 55	 */
 56	const char *(* info)(struct Scsi_Host *);
 57
 58	/*
 59	 * Ioctl interface
 60	 *
 61	 * Status: OPTIONAL
 62	 */
 63	int (*ioctl)(struct scsi_device *dev, unsigned int cmd,
 64		     void __user *arg);
 65
 66
 67#ifdef CONFIG_COMPAT
 68	/* 
 69	 * Compat handler. Handle 32bit ABI.
 70	 * When unknown ioctl is passed return -ENOIOCTLCMD.
 71	 *
 72	 * Status: OPTIONAL
 73	 */
 74	int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd,
 75			    void __user *arg);
 76#endif
 77
 78	/*
 79	 * The queuecommand function is used to queue up a scsi
 80	 * command block to the LLDD.  When the driver finished
 81	 * processing the command the done callback is invoked.
 82	 *
 83	 * If queuecommand returns 0, then the driver has accepted the
 84	 * command.  It must also push it to the HBA if the scsi_cmnd
 85	 * flag SCMD_LAST is set, or if the driver does not implement
 86	 * commit_rqs.  The done() function must be called on the command
 87	 * when the driver has finished with it. (you may call done on the
 88	 * command before queuecommand returns, but in this case you
 89	 * *must* return 0 from queuecommand).
 90	 *
 91	 * Queuecommand may also reject the command, in which case it may
 92	 * not touch the command and must not call done() for it.
 93	 *
 94	 * There are two possible rejection returns:
 95	 *
 96	 *   SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but
 97	 *   allow commands to other devices serviced by this host.
 98	 *
 99	 *   SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this
100	 *   host temporarily.
101	 *
102         * For compatibility, any other non-zero return is treated the
103         * same as SCSI_MLQUEUE_HOST_BUSY.
104	 *
105	 * NOTE: "temporarily" means either until the next command for#
106	 * this device/host completes, or a period of time determined by
107	 * I/O pressure in the system if there are no other outstanding
108	 * commands.
109	 *
110	 * STATUS: REQUIRED
111	 */
112	int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *);
113
114	/*
115	 * The commit_rqs function is used to trigger a hardware
116	 * doorbell after some requests have been queued with
117	 * queuecommand, when an error is encountered before sending
118	 * the request with SCMD_LAST set.
119	 *
120	 * STATUS: OPTIONAL
121	 */
122	void (*commit_rqs)(struct Scsi_Host *, u16);
123
124	/*
125	 * This is an error handling strategy routine.  You don't need to
126	 * define one of these if you don't want to - there is a default
127	 * routine that is present that should work in most cases.  For those
128	 * driver authors that have the inclination and ability to write their
129	 * own strategy routine, this is where it is specified.  Note - the
130	 * strategy routine is *ALWAYS* run in the context of the kernel eh
131	 * thread.  Thus you are guaranteed to *NOT* be in an interrupt
132	 * handler when you execute this, and you are also guaranteed to
133	 * *NOT* have any other commands being queued while you are in the
134	 * strategy routine. When you return from this function, operations
135	 * return to normal.
136	 *
137	 * See scsi_error.c scsi_unjam_host for additional comments about
138	 * what this function should and should not be attempting to do.
139	 *
140	 * Status: REQUIRED	(at least one of them)
141	 */
142	int (* eh_abort_handler)(struct scsi_cmnd *);
143	int (* eh_device_reset_handler)(struct scsi_cmnd *);
144	int (* eh_target_reset_handler)(struct scsi_cmnd *);
145	int (* eh_bus_reset_handler)(struct scsi_cmnd *);
146	int (* eh_host_reset_handler)(struct scsi_cmnd *);
147
148	/*
149	 * Before the mid layer attempts to scan for a new device where none
150	 * currently exists, it will call this entry in your driver.  Should
151	 * your driver need to allocate any structs or perform any other init
152	 * items in order to send commands to a currently unused target/lun
153	 * combo, then this is where you can perform those allocations.  This
154	 * is specifically so that drivers won't have to perform any kind of
155	 * "is this a new device" checks in their queuecommand routine,
156	 * thereby making the hot path a bit quicker.
157	 *
158	 * Return values: 0 on success, non-0 on failure
159	 *
160	 * Deallocation:  If we didn't find any devices at this ID, you will
161	 * get an immediate call to slave_destroy().  If we find something
162	 * here then you will get a call to slave_configure(), then the
163	 * device will be used for however long it is kept around, then when
164	 * the device is removed from the system (or * possibly at reboot
165	 * time), you will then get a call to slave_destroy().  This is
166	 * assuming you implement slave_configure and slave_destroy.
167	 * However, if you allocate memory and hang it off the device struct,
168	 * then you must implement the slave_destroy() routine at a minimum
169	 * in order to avoid leaking memory
170	 * each time a device is tore down.
171	 *
172	 * Status: OPTIONAL
173	 */
174	int (* slave_alloc)(struct scsi_device *);
175
176	/*
177	 * Once the device has responded to an INQUIRY and we know the
178	 * device is online, we call into the low level driver with the
179	 * struct scsi_device *.  If the low level device driver implements
180	 * this function, it *must* perform the task of setting the queue
181	 * depth on the device.  All other tasks are optional and depend
182	 * on what the driver supports and various implementation details.
183	 * 
184	 * Things currently recommended to be handled at this time include:
185	 *
186	 * 1.  Setting the device queue depth.  Proper setting of this is
187	 *     described in the comments for scsi_change_queue_depth.
188	 * 2.  Determining if the device supports the various synchronous
189	 *     negotiation protocols.  The device struct will already have
190	 *     responded to INQUIRY and the results of the standard items
191	 *     will have been shoved into the various device flag bits, eg.
192	 *     device->sdtr will be true if the device supports SDTR messages.
193	 * 3.  Allocating command structs that the device will need.
194	 * 4.  Setting the default timeout on this device (if needed).
195	 * 5.  Anything else the low level driver might want to do on a device
196	 *     specific setup basis...
197	 * 6.  Return 0 on success, non-0 on error.  The device will be marked
198	 *     as offline on error so that no access will occur.  If you return
199	 *     non-0, your slave_destroy routine will never get called for this
200	 *     device, so don't leave any loose memory hanging around, clean
201	 *     up after yourself before returning non-0
202	 *
203	 * Status: OPTIONAL
204	 */
205	int (* slave_configure)(struct scsi_device *);
206
207	/*
208	 * Immediately prior to deallocating the device and after all activity
209	 * has ceased the mid layer calls this point so that the low level
210	 * driver may completely detach itself from the scsi device and vice
211	 * versa.  The low level driver is responsible for freeing any memory
212	 * it allocated in the slave_alloc or slave_configure calls. 
213	 *
214	 * Status: OPTIONAL
215	 */
216	void (* slave_destroy)(struct scsi_device *);
217
218	/*
219	 * Before the mid layer attempts to scan for a new device attached
220	 * to a target where no target currently exists, it will call this
221	 * entry in your driver.  Should your driver need to allocate any
222	 * structs or perform any other init items in order to send commands
223	 * to a currently unused target, then this is where you can perform
224	 * those allocations.
225	 *
226	 * Return values: 0 on success, non-0 on failure
227	 *
228	 * Status: OPTIONAL
229	 */
230	int (* target_alloc)(struct scsi_target *);
231
232	/*
233	 * Immediately prior to deallocating the target structure, and
234	 * after all activity to attached scsi devices has ceased, the
235	 * midlayer calls this point so that the driver may deallocate
236	 * and terminate any references to the target.
237	 *
238	 * Status: OPTIONAL
239	 */
240	void (* target_destroy)(struct scsi_target *);
241
242	/*
243	 * If a host has the ability to discover targets on its own instead
244	 * of scanning the entire bus, it can fill in this function and
245	 * call scsi_scan_host().  This function will be called periodically
246	 * until it returns 1 with the scsi_host and the elapsed time of
247	 * the scan in jiffies.
248	 *
249	 * Status: OPTIONAL
250	 */
251	int (* scan_finished)(struct Scsi_Host *, unsigned long);
252
253	/*
254	 * If the host wants to be called before the scan starts, but
255	 * after the midlayer has set up ready for the scan, it can fill
256	 * in this function.
257	 *
258	 * Status: OPTIONAL
259	 */
260	void (* scan_start)(struct Scsi_Host *);
261
262	/*
263	 * Fill in this function to allow the queue depth of this host
264	 * to be changeable (on a per device basis).  Returns either
265	 * the current queue depth setting (may be different from what
266	 * was passed in) or an error.  An error should only be
267	 * returned if the requested depth is legal but the driver was
268	 * unable to set it.  If the requested depth is illegal, the
269	 * driver should set and return the closest legal queue depth.
270	 *
271	 * Status: OPTIONAL
272	 */
273	int (* change_queue_depth)(struct scsi_device *, int);
274
275	/*
276	 * This functions lets the driver expose the queue mapping
277	 * to the block layer.
278	 *
279	 * Status: OPTIONAL
280	 */
281	int (* map_queues)(struct Scsi_Host *shost);
282
283	/*
284	 * This function determines the BIOS parameters for a given
285	 * harddisk.  These tend to be numbers that are made up by
286	 * the host adapter.  Parameters:
287	 * size, device, list (heads, sectors, cylinders)
288	 *
289	 * Status: OPTIONAL
290	 */
291	int (* bios_param)(struct scsi_device *, struct block_device *,
292			sector_t, int []);
293
294	/*
295	 * This function is called when one or more partitions on the
296	 * device reach beyond the end of the device.
297	 *
298	 * Status: OPTIONAL
299	 */
300	void (*unlock_native_capacity)(struct scsi_device *);
301
302	/*
303	 * Can be used to export driver statistics and other infos to the
304	 * world outside the kernel ie. userspace and it also provides an
305	 * interface to feed the driver with information.
306	 *
307	 * Status: OBSOLETE
308	 */
309	int (*show_info)(struct seq_file *, struct Scsi_Host *);
310	int (*write_info)(struct Scsi_Host *, char *, int);
311
312	/*
313	 * This is an optional routine that allows the transport to become
314	 * involved when a scsi io timer fires. The return value tells the
315	 * timer routine how to finish the io timeout handling.
 
 
 
 
316	 *
317	 * Status: OPTIONAL
318	 */
319	enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *);
320
321	/* This is an optional routine that allows transport to initiate
322	 * LLD adapter or firmware reset using sysfs attribute.
323	 *
324	 * Return values: 0 on success, -ve value on failure.
325	 *
326	 * Status: OPTIONAL
327	 */
328
329	int (*host_reset)(struct Scsi_Host *shost, int reset_type);
330#define SCSI_ADAPTER_RESET	1
331#define SCSI_FIRMWARE_RESET	2
332
333
334	/*
335	 * Name of proc directory
336	 */
337	const char *proc_name;
338
339	/*
340	 * Used to store the procfs directory if a driver implements the
341	 * show_info method.
342	 */
343	struct proc_dir_entry *proc_dir;
344
345	/*
346	 * This determines if we will use a non-interrupt driven
347	 * or an interrupt driven scheme.  It is set to the maximum number
348	 * of simultaneous commands a given host adapter will accept.
349	 */
350	int can_queue;
351
352	/*
353	 * In many instances, especially where disconnect / reconnect are
354	 * supported, our host also has an ID on the SCSI bus.  If this is
355	 * the case, then it must be reserved.  Please set this_id to -1 if
356	 * your setup is in single initiator mode, and the host lacks an
357	 * ID.
358	 */
359	int this_id;
360
361	/*
362	 * This determines the degree to which the host adapter is capable
363	 * of scatter-gather.
364	 */
365	unsigned short sg_tablesize;
366	unsigned short sg_prot_tablesize;
367
368	/*
369	 * Set this if the host adapter has limitations beside segment count.
370	 */
371	unsigned int max_sectors;
372
373	/*
374	 * Maximum size in bytes of a single segment.
375	 */
376	unsigned int max_segment_size;
377
378	/*
379	 * DMA scatter gather segment boundary limit. A segment crossing this
380	 * boundary will be split in two.
381	 */
382	unsigned long dma_boundary;
383
384	unsigned long virt_boundary_mask;
385
386	/*
387	 * This specifies "machine infinity" for host templates which don't
388	 * limit the transfer size.  Note this limit represents an absolute
389	 * maximum, and may be over the transfer limits allowed for
390	 * individual devices (e.g. 256 for SCSI-1).
391	 */
392#define SCSI_DEFAULT_MAX_SECTORS	1024
393
394	/*
395	 * True if this host adapter can make good use of linked commands.
396	 * This will allow more than one command to be queued to a given
397	 * unit on a given host.  Set this to the maximum number of command
398	 * blocks to be provided for each device.  Set this to 1 for one
399	 * command block per lun, 2 for two, etc.  Do not set this to 0.
400	 * You should make sure that the host adapter will do the right thing
401	 * before you try setting this above 1.
402	 */
403	short cmd_per_lun;
404
405	/*
406	 * present contains counter indicating how many boards of this
407	 * type were found when we did the scan.
408	 */
409	unsigned char present;
410
411	/* If use block layer to manage tags, this is tag allocation policy */
412	int tag_alloc_policy;
413
414	/*
415	 * Track QUEUE_FULL events and reduce queue depth on demand.
416	 */
417	unsigned track_queue_depth:1;
418
419	/*
420	 * This specifies the mode that a LLD supports.
421	 */
422	unsigned supported_mode:2;
423
424	/*
425	 * True if this host adapter uses unchecked DMA onto an ISA bus.
426	 */
427	unsigned unchecked_isa_dma:1;
428
429	/*
 
 
 
 
 
 
 
 
 
 
430	 * True for emulated SCSI host adapters (e.g. ATAPI).
431	 */
432	unsigned emulated:1;
433
434	/*
435	 * True if the low-level driver performs its own reset-settle delays.
436	 */
437	unsigned skip_settle_delay:1;
438
439	/* True if the controller does not support WRITE SAME */
440	unsigned no_write_same:1;
441
442	/* True if the low-level driver supports blk-mq only */
443	unsigned force_blk_mq:1;
 
 
444
445	/*
446	 * Countdown for host blocking with no commands outstanding.
447	 */
448	unsigned int max_host_blocked;
449
450	/*
451	 * Default value for the blocking.  If the queue is empty,
452	 * host_blocked counts down in the request_fn until it restarts
453	 * host operations as zero is reached.  
454	 *
455	 * FIXME: This should probably be a value in the template
456	 */
457#define SCSI_DEFAULT_HOST_BLOCKED	7
458
459	/*
460	 * Pointer to the sysfs class properties for this host, NULL terminated.
461	 */
462	struct device_attribute **shost_attrs;
463
464	/*
465	 * Pointer to the SCSI device properties for this host, NULL terminated.
466	 */
467	struct device_attribute **sdev_attrs;
468
469	/*
470	 * Pointer to the SCSI device attribute groups for this host,
471	 * NULL terminated.
 
 
 
472	 */
473	const struct attribute_group **sdev_groups;
474
475	/*
476	 * Vendor Identifier associated with the host
477	 *
478	 * Note: When specifying vendor_id, be sure to read the
479	 *   Vendor Type and ID formatting requirements specified in
480	 *   scsi_netlink.h
481	 */
482	u64 vendor_id;
483
484	/*
485	 * Additional per-command data allocated for the driver.
486	 */
487	unsigned int cmd_size;
488	struct scsi_host_cmd_pool *cmd_pool;
 
 
 
489};
490
491/*
492 * Temporary #define for host lock push down. Can be removed when all
493 * drivers have been updated to take advantage of unlocked
494 * queuecommand.
495 *
496 */
497#define DEF_SCSI_QCMD(func_name) \
498	int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd)	\
499	{								\
500		unsigned long irq_flags;				\
501		int rc;							\
502		spin_lock_irqsave(shost->host_lock, irq_flags);		\
 
503		rc = func_name##_lck (cmd, cmd->scsi_done);			\
504		spin_unlock_irqrestore(shost->host_lock, irq_flags);	\
505		return rc;						\
506	}
507
508
509/*
510 * shost state: If you alter this, you also need to alter scsi_sysfs.c
511 * (for the ascii descriptions) and the state model enforcer:
512 * scsi_host_set_state()
513 */
514enum scsi_host_state {
515	SHOST_CREATED = 1,
516	SHOST_RUNNING,
517	SHOST_CANCEL,
518	SHOST_DEL,
519	SHOST_RECOVERY,
520	SHOST_CANCEL_RECOVERY,
521	SHOST_DEL_RECOVERY,
522};
523
524struct Scsi_Host {
525	/*
526	 * __devices is protected by the host_lock, but you should
527	 * usually use scsi_device_lookup / shost_for_each_device
528	 * to access it and don't care about locking yourself.
529	 * In the rare case of being in irq context you can use
530	 * their __ prefixed variants with the lock held. NEVER
531	 * access this list directly from a driver.
532	 */
533	struct list_head	__devices;
534	struct list_head	__targets;
535	
 
 
 
536	struct list_head	starved_list;
537
538	spinlock_t		default_lock;
539	spinlock_t		*host_lock;
540
541	struct mutex		scan_mutex;/* serialize scanning activity */
542
543	struct list_head	eh_cmd_q;
544	struct task_struct    * ehandler;  /* Error recovery thread. */
545	struct completion     * eh_action; /* Wait for specific actions on the
546					      host. */
547	wait_queue_head_t       host_wait;
548	struct scsi_host_template *hostt;
549	struct scsi_transport_template *transportt;
550
551	/* Area to keep a shared tag map */
552	struct blk_mq_tag_set	tag_set;
 
 
 
 
 
 
553
554	atomic_t host_busy;		   /* commands actually active on low-level */
555	atomic_t host_blocked;
556
557	unsigned int host_failed;	   /* commands that failed.
558					      protected by host_lock */
559	unsigned int host_eh_scheduled;    /* EH scheduled without command */
560    
561	unsigned int host_no;  /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */
562
563	/* next two fields are used to bound the time spent in error handling */
564	int eh_deadline;
565	unsigned long last_reset;
566
567
568	/*
569	 * These three parameters can be used to allow for wide scsi,
570	 * and for host adapters that support multiple busses
571	 * The last two should be set to 1 more than the actual max id
572	 * or lun (e.g. 8 for SCSI parallel systems).
573	 */
574	unsigned int max_channel;
575	unsigned int max_id;
576	u64 max_lun;
577
578	/*
579	 * This is a unique identifier that must be assigned so that we
580	 * have some way of identifying each detected host adapter properly
581	 * and uniquely.  For hosts that do not support more than one card
582	 * in the system at one time, this does not need to be set.  It is
583	 * initialized to 0 in scsi_register.
584	 */
585	unsigned int unique_id;
586
587	/*
588	 * The maximum length of SCSI commands that this host can accept.
589	 * Probably 12 for most host adapters, but could be 16 for others.
590	 * or 260 if the driver supports variable length cdbs.
591	 * For drivers that don't set this field, a value of 12 is
592	 * assumed.
593	 */
594	unsigned short max_cmd_len;
595
596	int this_id;
597	int can_queue;
598	short cmd_per_lun;
599	short unsigned int sg_tablesize;
600	short unsigned int sg_prot_tablesize;
601	unsigned int max_sectors;
602	unsigned int max_segment_size;
603	unsigned long dma_boundary;
604	unsigned long virt_boundary_mask;
605	/*
606	 * In scsi-mq mode, the number of hardware queues supported by the LLD.
607	 *
608	 * Note: it is assumed that each hardware queue has a queue depth of
609	 * can_queue. In other words, the total queue depth per host
610	 * is nr_hw_queues * can_queue.
611	 */
612	unsigned nr_hw_queues;
 
 
 
 
 
 
613	unsigned active_mode:2;
614	unsigned unchecked_isa_dma:1;
 
615
616	/*
617	 * Host has requested that no further requests come through for the
618	 * time being.
619	 */
620	unsigned host_self_blocked:1;
621    
622	/*
623	 * Host uses correct SCSI ordering not PC ordering. The bit is
624	 * set for the minority of drivers whose authors actually read
625	 * the spec ;).
626	 */
627	unsigned reverse_ordering:1;
628
629	/* Task mgmt function in progress */
630	unsigned tmf_in_progress:1;
631
632	/* Asynchronous scan in progress */
633	unsigned async_scan:1;
634
635	/* Don't resume host in EH */
636	unsigned eh_noresume:1;
637
638	/* The controller does not support WRITE SAME */
639	unsigned no_write_same:1;
640
 
641	unsigned use_cmd_list:1;
642
643	/* Host responded with short (<36 bytes) INQUIRY result */
644	unsigned short_inquiry:1;
645
646	/* The transport requires the LUN bits NOT to be stored in CDB[1] */
647	unsigned no_scsi2_lun_in_cdb:1;
648
649	/*
650	 * Optional work queue to be utilized by the transport
651	 */
652	char work_q_name[20];
653	struct workqueue_struct *work_q;
654
655	/*
656	 * Task management function work queue
657	 */
658	struct workqueue_struct *tmf_work_q;
659
 
 
 
660	/*
661	 * Value host_blocked counts down from
662	 */
663	unsigned int max_host_blocked;
664
665	/* Protection Information */
666	unsigned int prot_capabilities;
667	unsigned char prot_guard_type;
668
 
 
 
 
 
 
669	/* legacy crap */
670	unsigned long base;
671	unsigned long io_port;
672	unsigned char n_io_port;
673	unsigned char dma_channel;
674	unsigned int  irq;
675	
676
677	enum scsi_host_state shost_state;
678
679	/* ldm bits */
680	struct device		shost_gendev, shost_dev;
681
682	/*
 
 
 
 
 
 
 
 
 
683	 * Points to the transport data (if any) which is allocated
684	 * separately
685	 */
686	void *shost_data;
687
688	/*
689	 * Points to the physical bus device we'd use to do DMA
690	 * Needed just in case we have virtual hosts.
691	 */
692	struct device *dma_dev;
693
694	/*
695	 * We should ensure that this is aligned, both for better performance
696	 * and also because some compilers (m68k) don't automatically force
697	 * alignment to a long boundary.
698	 */
699	unsigned long hostdata[0]  /* Used for storage of host specific stuff */
700		__attribute__ ((aligned (sizeof(unsigned long))));
701};
702
703#define		class_to_shost(d)	\
704	container_of(d, struct Scsi_Host, shost_dev)
705
706#define shost_printk(prefix, shost, fmt, a...)	\
707	dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a)
708
709static inline void *shost_priv(struct Scsi_Host *shost)
710{
711	return (void *)shost->hostdata;
712}
713
714int scsi_is_host_device(const struct device *);
715
716static inline struct Scsi_Host *dev_to_shost(struct device *dev)
717{
718	while (!scsi_is_host_device(dev)) {
719		if (!dev->parent)
720			return NULL;
721		dev = dev->parent;
722	}
723	return container_of(dev, struct Scsi_Host, shost_gendev);
724}
725
726static inline int scsi_host_in_recovery(struct Scsi_Host *shost)
727{
728	return shost->shost_state == SHOST_RECOVERY ||
729		shost->shost_state == SHOST_CANCEL_RECOVERY ||
730		shost->shost_state == SHOST_DEL_RECOVERY ||
731		shost->tmf_in_progress;
732}
733
 
 
 
 
 
 
 
734extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *);
735extern void scsi_flush_work(struct Scsi_Host *);
736
737extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int);
738extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *,
739					       struct device *,
740					       struct device *);
741extern void scsi_scan_host(struct Scsi_Host *);
742extern void scsi_rescan_device(struct device *);
743extern void scsi_remove_host(struct Scsi_Host *);
744extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *);
745extern int scsi_host_busy(struct Scsi_Host *shost);
746extern void scsi_host_put(struct Scsi_Host *t);
747extern struct Scsi_Host *scsi_host_lookup(unsigned short);
748extern const char *scsi_host_state_name(enum scsi_host_state);
 
749
750static inline int __must_check scsi_add_host(struct Scsi_Host *host,
751					     struct device *dev)
752{
753	return scsi_add_host_with_dma(host, dev, dev);
754}
755
756static inline struct device *scsi_get_device(struct Scsi_Host *shost)
757{
758        return shost->shost_gendev.parent;
759}
760
761/**
762 * scsi_host_scan_allowed - Is scanning of this host allowed
763 * @shost:	Pointer to Scsi_Host.
764 **/
765static inline int scsi_host_scan_allowed(struct Scsi_Host *shost)
766{
767	return shost->shost_state == SHOST_RUNNING ||
768	       shost->shost_state == SHOST_RECOVERY;
769}
770
771extern void scsi_unblock_requests(struct Scsi_Host *);
772extern void scsi_block_requests(struct Scsi_Host *);
773
774struct class_container;
775
 
 
776/*
777 * These two functions are used to allocate and free a pseudo device
778 * which will connect to the host adapter itself rather than any
779 * physical device.  You must deallocate when you are done with the
780 * thing.  This physical pseudo-device isn't real and won't be available
781 * from any high-level drivers.
782 */
783extern void scsi_free_host_dev(struct scsi_device *);
784extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *);
785
786/*
787 * DIF defines the exchange of protection information between
788 * initiator and SBC block device.
789 *
790 * DIX defines the exchange of protection information between OS and
791 * initiator.
792 */
793enum scsi_host_prot_capabilities {
794	SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */
795	SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */
796	SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */
797
798	SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */
799	SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */
800	SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */
801	SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */
802};
803
804/*
805 * SCSI hosts which support the Data Integrity Extensions must
806 * indicate their capabilities by setting the prot_capabilities using
807 * this call.
808 */
809static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask)
810{
811	shost->prot_capabilities = mask;
812}
813
814static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost)
815{
816	return shost->prot_capabilities;
817}
818
819static inline int scsi_host_prot_dma(struct Scsi_Host *shost)
820{
821	return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION;
822}
823
824static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type)
825{
826	static unsigned char cap[] = { 0,
827				       SHOST_DIF_TYPE1_PROTECTION,
828				       SHOST_DIF_TYPE2_PROTECTION,
829				       SHOST_DIF_TYPE3_PROTECTION };
830
831	if (target_type >= ARRAY_SIZE(cap))
832		return 0;
833
834	return shost->prot_capabilities & cap[target_type] ? target_type : 0;
835}
836
837static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type)
838{
839#if defined(CONFIG_BLK_DEV_INTEGRITY)
840	static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION,
841				       SHOST_DIX_TYPE1_PROTECTION,
842				       SHOST_DIX_TYPE2_PROTECTION,
843				       SHOST_DIX_TYPE3_PROTECTION };
844
845	if (target_type >= ARRAY_SIZE(cap))
846		return 0;
847
848	return shost->prot_capabilities & cap[target_type];
849#endif
850	return 0;
851}
852
853/*
854 * All DIX-capable initiators must support the T10-mandated CRC
855 * checksum.  Controllers can optionally implement the IP checksum
856 * scheme which has much lower impact on system performance.  Note
857 * that the main rationale for the checksum is to match integrity
858 * metadata with data.  Detecting bit errors are a job for ECC memory
859 * and buses.
860 */
861
862enum scsi_host_guard_type {
863	SHOST_DIX_GUARD_CRC = 1 << 0,
864	SHOST_DIX_GUARD_IP  = 1 << 1,
865};
866
867static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type)
868{
869	shost->prot_guard_type = type;
870}
871
872static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost)
873{
874	return shost->prot_guard_type;
875}
876
 
 
 
877extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state);
878
879#endif /* _SCSI_SCSI_HOST_H */