Loading...
1/*
2 * linux/fs/pnode.c
3 *
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
7 *
8 */
9#include <linux/mnt_namespace.h>
10#include <linux/mount.h>
11#include <linux/fs.h>
12#include <linux/nsproxy.h>
13#include "internal.h"
14#include "pnode.h"
15
16/* return the next shared peer mount of @p */
17static inline struct mount *next_peer(struct mount *p)
18{
19 return list_entry(p->mnt_share.next, struct mount, mnt_share);
20}
21
22static inline struct mount *first_slave(struct mount *p)
23{
24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25}
26
27static inline struct mount *next_slave(struct mount *p)
28{
29 return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
30}
31
32static struct mount *get_peer_under_root(struct mount *mnt,
33 struct mnt_namespace *ns,
34 const struct path *root)
35{
36 struct mount *m = mnt;
37
38 do {
39 /* Check the namespace first for optimization */
40 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
41 return m;
42
43 m = next_peer(m);
44 } while (m != mnt);
45
46 return NULL;
47}
48
49/*
50 * Get ID of closest dominating peer group having a representative
51 * under the given root.
52 *
53 * Caller must hold namespace_sem
54 */
55int get_dominating_id(struct mount *mnt, const struct path *root)
56{
57 struct mount *m;
58
59 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
60 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
61 if (d)
62 return d->mnt_group_id;
63 }
64
65 return 0;
66}
67
68static int do_make_slave(struct mount *mnt)
69{
70 struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
71 struct mount *slave_mnt;
72
73 /*
74 * slave 'mnt' to a peer mount that has the
75 * same root dentry. If none is available then
76 * slave it to anything that is available.
77 */
78 while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
79 peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
80
81 if (peer_mnt == mnt) {
82 peer_mnt = next_peer(mnt);
83 if (peer_mnt == mnt)
84 peer_mnt = NULL;
85 }
86 if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
87 list_empty(&mnt->mnt_share))
88 mnt_release_group_id(mnt);
89
90 list_del_init(&mnt->mnt_share);
91 mnt->mnt_group_id = 0;
92
93 if (peer_mnt)
94 master = peer_mnt;
95
96 if (master) {
97 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
98 slave_mnt->mnt_master = master;
99 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
100 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
101 INIT_LIST_HEAD(&mnt->mnt_slave_list);
102 } else {
103 struct list_head *p = &mnt->mnt_slave_list;
104 while (!list_empty(p)) {
105 slave_mnt = list_first_entry(p,
106 struct mount, mnt_slave);
107 list_del_init(&slave_mnt->mnt_slave);
108 slave_mnt->mnt_master = NULL;
109 }
110 }
111 mnt->mnt_master = master;
112 CLEAR_MNT_SHARED(mnt);
113 return 0;
114}
115
116/*
117 * vfsmount lock must be held for write
118 */
119void change_mnt_propagation(struct mount *mnt, int type)
120{
121 if (type == MS_SHARED) {
122 set_mnt_shared(mnt);
123 return;
124 }
125 do_make_slave(mnt);
126 if (type != MS_SLAVE) {
127 list_del_init(&mnt->mnt_slave);
128 mnt->mnt_master = NULL;
129 if (type == MS_UNBINDABLE)
130 mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
131 else
132 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
133 }
134}
135
136/*
137 * get the next mount in the propagation tree.
138 * @m: the mount seen last
139 * @origin: the original mount from where the tree walk initiated
140 *
141 * Note that peer groups form contiguous segments of slave lists.
142 * We rely on that in get_source() to be able to find out if
143 * vfsmount found while iterating with propagation_next() is
144 * a peer of one we'd found earlier.
145 */
146static struct mount *propagation_next(struct mount *m,
147 struct mount *origin)
148{
149 /* are there any slaves of this mount? */
150 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
151 return first_slave(m);
152
153 while (1) {
154 struct mount *master = m->mnt_master;
155
156 if (master == origin->mnt_master) {
157 struct mount *next = next_peer(m);
158 return (next == origin) ? NULL : next;
159 } else if (m->mnt_slave.next != &master->mnt_slave_list)
160 return next_slave(m);
161
162 /* back at master */
163 m = master;
164 }
165}
166
167static struct mount *next_group(struct mount *m, struct mount *origin)
168{
169 while (1) {
170 while (1) {
171 struct mount *next;
172 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
173 return first_slave(m);
174 next = next_peer(m);
175 if (m->mnt_group_id == origin->mnt_group_id) {
176 if (next == origin)
177 return NULL;
178 } else if (m->mnt_slave.next != &next->mnt_slave)
179 break;
180 m = next;
181 }
182 /* m is the last peer */
183 while (1) {
184 struct mount *master = m->mnt_master;
185 if (m->mnt_slave.next != &master->mnt_slave_list)
186 return next_slave(m);
187 m = next_peer(master);
188 if (master->mnt_group_id == origin->mnt_group_id)
189 break;
190 if (master->mnt_slave.next == &m->mnt_slave)
191 break;
192 m = master;
193 }
194 if (m == origin)
195 return NULL;
196 }
197}
198
199/* all accesses are serialized by namespace_sem */
200static struct user_namespace *user_ns;
201static struct mount *last_dest, *first_source, *last_source, *dest_master;
202static struct mountpoint *mp;
203static struct hlist_head *list;
204
205static inline bool peers(struct mount *m1, struct mount *m2)
206{
207 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
208}
209
210static int propagate_one(struct mount *m)
211{
212 struct mount *child;
213 int type;
214 /* skip ones added by this propagate_mnt() */
215 if (IS_MNT_NEW(m))
216 return 0;
217 /* skip if mountpoint isn't covered by it */
218 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
219 return 0;
220 if (peers(m, last_dest)) {
221 type = CL_MAKE_SHARED;
222 } else {
223 struct mount *n, *p;
224 bool done;
225 for (n = m; ; n = p) {
226 p = n->mnt_master;
227 if (p == dest_master || IS_MNT_MARKED(p))
228 break;
229 }
230 do {
231 struct mount *parent = last_source->mnt_parent;
232 if (last_source == first_source)
233 break;
234 done = parent->mnt_master == p;
235 if (done && peers(n, parent))
236 break;
237 last_source = last_source->mnt_master;
238 } while (!done);
239
240 type = CL_SLAVE;
241 /* beginning of peer group among the slaves? */
242 if (IS_MNT_SHARED(m))
243 type |= CL_MAKE_SHARED;
244 }
245
246 /* Notice when we are propagating across user namespaces */
247 if (m->mnt_ns->user_ns != user_ns)
248 type |= CL_UNPRIVILEGED;
249 child = copy_tree(last_source, last_source->mnt.mnt_root, type);
250 if (IS_ERR(child))
251 return PTR_ERR(child);
252 child->mnt.mnt_flags &= ~MNT_LOCKED;
253 mnt_set_mountpoint(m, mp, child);
254 last_dest = m;
255 last_source = child;
256 if (m->mnt_master != dest_master) {
257 read_seqlock_excl(&mount_lock);
258 SET_MNT_MARK(m->mnt_master);
259 read_sequnlock_excl(&mount_lock);
260 }
261 hlist_add_head(&child->mnt_hash, list);
262 return 0;
263}
264
265/*
266 * mount 'source_mnt' under the destination 'dest_mnt' at
267 * dentry 'dest_dentry'. And propagate that mount to
268 * all the peer and slave mounts of 'dest_mnt'.
269 * Link all the new mounts into a propagation tree headed at
270 * source_mnt. Also link all the new mounts using ->mnt_list
271 * headed at source_mnt's ->mnt_list
272 *
273 * @dest_mnt: destination mount.
274 * @dest_dentry: destination dentry.
275 * @source_mnt: source mount.
276 * @tree_list : list of heads of trees to be attached.
277 */
278int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
279 struct mount *source_mnt, struct hlist_head *tree_list)
280{
281 struct mount *m, *n;
282 int ret = 0;
283
284 /*
285 * we don't want to bother passing tons of arguments to
286 * propagate_one(); everything is serialized by namespace_sem,
287 * so globals will do just fine.
288 */
289 user_ns = current->nsproxy->mnt_ns->user_ns;
290 last_dest = dest_mnt;
291 first_source = source_mnt;
292 last_source = source_mnt;
293 mp = dest_mp;
294 list = tree_list;
295 dest_master = dest_mnt->mnt_master;
296
297 /* all peers of dest_mnt, except dest_mnt itself */
298 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
299 ret = propagate_one(n);
300 if (ret)
301 goto out;
302 }
303
304 /* all slave groups */
305 for (m = next_group(dest_mnt, dest_mnt); m;
306 m = next_group(m, dest_mnt)) {
307 /* everything in that slave group */
308 n = m;
309 do {
310 ret = propagate_one(n);
311 if (ret)
312 goto out;
313 n = next_peer(n);
314 } while (n != m);
315 }
316out:
317 read_seqlock_excl(&mount_lock);
318 hlist_for_each_entry(n, tree_list, mnt_hash) {
319 m = n->mnt_parent;
320 if (m->mnt_master != dest_mnt->mnt_master)
321 CLEAR_MNT_MARK(m->mnt_master);
322 }
323 read_sequnlock_excl(&mount_lock);
324 return ret;
325}
326
327/*
328 * return true if the refcount is greater than count
329 */
330static inline int do_refcount_check(struct mount *mnt, int count)
331{
332 return mnt_get_count(mnt) > count;
333}
334
335/*
336 * check if the mount 'mnt' can be unmounted successfully.
337 * @mnt: the mount to be checked for unmount
338 * NOTE: unmounting 'mnt' would naturally propagate to all
339 * other mounts its parent propagates to.
340 * Check if any of these mounts that **do not have submounts**
341 * have more references than 'refcnt'. If so return busy.
342 *
343 * vfsmount lock must be held for write
344 */
345int propagate_mount_busy(struct mount *mnt, int refcnt)
346{
347 struct mount *m, *child;
348 struct mount *parent = mnt->mnt_parent;
349 int ret = 0;
350
351 if (mnt == parent)
352 return do_refcount_check(mnt, refcnt);
353
354 /*
355 * quickly check if the current mount can be unmounted.
356 * If not, we don't have to go checking for all other
357 * mounts
358 */
359 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
360 return 1;
361
362 for (m = propagation_next(parent, parent); m;
363 m = propagation_next(m, parent)) {
364 child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
365 if (child && list_empty(&child->mnt_mounts) &&
366 (ret = do_refcount_check(child, 1)))
367 break;
368 }
369 return ret;
370}
371
372/*
373 * Clear MNT_LOCKED when it can be shown to be safe.
374 *
375 * mount_lock lock must be held for write
376 */
377void propagate_mount_unlock(struct mount *mnt)
378{
379 struct mount *parent = mnt->mnt_parent;
380 struct mount *m, *child;
381
382 BUG_ON(parent == mnt);
383
384 for (m = propagation_next(parent, parent); m;
385 m = propagation_next(m, parent)) {
386 child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
387 if (child)
388 child->mnt.mnt_flags &= ~MNT_LOCKED;
389 }
390}
391
392/*
393 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
394 */
395static void mark_umount_candidates(struct mount *mnt)
396{
397 struct mount *parent = mnt->mnt_parent;
398 struct mount *m;
399
400 BUG_ON(parent == mnt);
401
402 for (m = propagation_next(parent, parent); m;
403 m = propagation_next(m, parent)) {
404 struct mount *child = __lookup_mnt_last(&m->mnt,
405 mnt->mnt_mountpoint);
406 if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
407 SET_MNT_MARK(child);
408 }
409 }
410}
411
412/*
413 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
414 * parent propagates to.
415 */
416static void __propagate_umount(struct mount *mnt)
417{
418 struct mount *parent = mnt->mnt_parent;
419 struct mount *m;
420
421 BUG_ON(parent == mnt);
422
423 for (m = propagation_next(parent, parent); m;
424 m = propagation_next(m, parent)) {
425
426 struct mount *child = __lookup_mnt_last(&m->mnt,
427 mnt->mnt_mountpoint);
428 /*
429 * umount the child only if the child has no children
430 * and the child is marked safe to unmount.
431 */
432 if (!child || !IS_MNT_MARKED(child))
433 continue;
434 CLEAR_MNT_MARK(child);
435 if (list_empty(&child->mnt_mounts)) {
436 list_del_init(&child->mnt_child);
437 child->mnt.mnt_flags |= MNT_UMOUNT;
438 list_move_tail(&child->mnt_list, &mnt->mnt_list);
439 }
440 }
441}
442
443/*
444 * collect all mounts that receive propagation from the mount in @list,
445 * and return these additional mounts in the same list.
446 * @list: the list of mounts to be unmounted.
447 *
448 * vfsmount lock must be held for write
449 */
450int propagate_umount(struct list_head *list)
451{
452 struct mount *mnt;
453
454 list_for_each_entry_reverse(mnt, list, mnt_list)
455 mark_umount_candidates(mnt);
456
457 list_for_each_entry(mnt, list, mnt_list)
458 __propagate_umount(mnt);
459 return 0;
460}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/pnode.c
4 *
5 * (C) Copyright IBM Corporation 2005.
6 * Author : Ram Pai (linuxram@us.ibm.com)
7 */
8#include <linux/mnt_namespace.h>
9#include <linux/mount.h>
10#include <linux/fs.h>
11#include <linux/nsproxy.h>
12#include <uapi/linux/mount.h>
13#include "internal.h"
14#include "pnode.h"
15
16/* return the next shared peer mount of @p */
17static inline struct mount *next_peer(struct mount *p)
18{
19 return list_entry(p->mnt_share.next, struct mount, mnt_share);
20}
21
22static inline struct mount *first_slave(struct mount *p)
23{
24 return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25}
26
27static inline struct mount *last_slave(struct mount *p)
28{
29 return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30}
31
32static inline struct mount *next_slave(struct mount *p)
33{
34 return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35}
36
37static struct mount *get_peer_under_root(struct mount *mnt,
38 struct mnt_namespace *ns,
39 const struct path *root)
40{
41 struct mount *m = mnt;
42
43 do {
44 /* Check the namespace first for optimization */
45 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 return m;
47
48 m = next_peer(m);
49 } while (m != mnt);
50
51 return NULL;
52}
53
54/*
55 * Get ID of closest dominating peer group having a representative
56 * under the given root.
57 *
58 * Caller must hold namespace_sem
59 */
60int get_dominating_id(struct mount *mnt, const struct path *root)
61{
62 struct mount *m;
63
64 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 if (d)
67 return d->mnt_group_id;
68 }
69
70 return 0;
71}
72
73static int do_make_slave(struct mount *mnt)
74{
75 struct mount *master, *slave_mnt;
76
77 if (list_empty(&mnt->mnt_share)) {
78 if (IS_MNT_SHARED(mnt)) {
79 mnt_release_group_id(mnt);
80 CLEAR_MNT_SHARED(mnt);
81 }
82 master = mnt->mnt_master;
83 if (!master) {
84 struct list_head *p = &mnt->mnt_slave_list;
85 while (!list_empty(p)) {
86 slave_mnt = list_first_entry(p,
87 struct mount, mnt_slave);
88 list_del_init(&slave_mnt->mnt_slave);
89 slave_mnt->mnt_master = NULL;
90 }
91 return 0;
92 }
93 } else {
94 struct mount *m;
95 /*
96 * slave 'mnt' to a peer mount that has the
97 * same root dentry. If none is available then
98 * slave it to anything that is available.
99 */
100 for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 master = m;
103 break;
104 }
105 }
106 list_del_init(&mnt->mnt_share);
107 mnt->mnt_group_id = 0;
108 CLEAR_MNT_SHARED(mnt);
109 }
110 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 slave_mnt->mnt_master = master;
112 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 mnt->mnt_master = master;
116 return 0;
117}
118
119/*
120 * vfsmount lock must be held for write
121 */
122void change_mnt_propagation(struct mount *mnt, int type)
123{
124 if (type == MS_SHARED) {
125 set_mnt_shared(mnt);
126 return;
127 }
128 do_make_slave(mnt);
129 if (type != MS_SLAVE) {
130 list_del_init(&mnt->mnt_slave);
131 mnt->mnt_master = NULL;
132 if (type == MS_UNBINDABLE)
133 mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 else
135 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 }
137}
138
139/*
140 * get the next mount in the propagation tree.
141 * @m: the mount seen last
142 * @origin: the original mount from where the tree walk initiated
143 *
144 * Note that peer groups form contiguous segments of slave lists.
145 * We rely on that in get_source() to be able to find out if
146 * vfsmount found while iterating with propagation_next() is
147 * a peer of one we'd found earlier.
148 */
149static struct mount *propagation_next(struct mount *m,
150 struct mount *origin)
151{
152 /* are there any slaves of this mount? */
153 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 return first_slave(m);
155
156 while (1) {
157 struct mount *master = m->mnt_master;
158
159 if (master == origin->mnt_master) {
160 struct mount *next = next_peer(m);
161 return (next == origin) ? NULL : next;
162 } else if (m->mnt_slave.next != &master->mnt_slave_list)
163 return next_slave(m);
164
165 /* back at master */
166 m = master;
167 }
168}
169
170static struct mount *skip_propagation_subtree(struct mount *m,
171 struct mount *origin)
172{
173 /*
174 * Advance m such that propagation_next will not return
175 * the slaves of m.
176 */
177 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 m = last_slave(m);
179
180 return m;
181}
182
183static struct mount *next_group(struct mount *m, struct mount *origin)
184{
185 while (1) {
186 while (1) {
187 struct mount *next;
188 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 return first_slave(m);
190 next = next_peer(m);
191 if (m->mnt_group_id == origin->mnt_group_id) {
192 if (next == origin)
193 return NULL;
194 } else if (m->mnt_slave.next != &next->mnt_slave)
195 break;
196 m = next;
197 }
198 /* m is the last peer */
199 while (1) {
200 struct mount *master = m->mnt_master;
201 if (m->mnt_slave.next != &master->mnt_slave_list)
202 return next_slave(m);
203 m = next_peer(master);
204 if (master->mnt_group_id == origin->mnt_group_id)
205 break;
206 if (master->mnt_slave.next == &m->mnt_slave)
207 break;
208 m = master;
209 }
210 if (m == origin)
211 return NULL;
212 }
213}
214
215/* all accesses are serialized by namespace_sem */
216static struct mount *last_dest, *first_source, *last_source, *dest_master;
217static struct mountpoint *mp;
218static struct hlist_head *list;
219
220static inline bool peers(struct mount *m1, struct mount *m2)
221{
222 return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
223}
224
225static int propagate_one(struct mount *m)
226{
227 struct mount *child;
228 int type;
229 /* skip ones added by this propagate_mnt() */
230 if (IS_MNT_NEW(m))
231 return 0;
232 /* skip if mountpoint isn't covered by it */
233 if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
234 return 0;
235 if (peers(m, last_dest)) {
236 type = CL_MAKE_SHARED;
237 } else {
238 struct mount *n, *p;
239 bool done;
240 for (n = m; ; n = p) {
241 p = n->mnt_master;
242 if (p == dest_master || IS_MNT_MARKED(p))
243 break;
244 }
245 do {
246 struct mount *parent = last_source->mnt_parent;
247 if (last_source == first_source)
248 break;
249 done = parent->mnt_master == p;
250 if (done && peers(n, parent))
251 break;
252 last_source = last_source->mnt_master;
253 } while (!done);
254
255 type = CL_SLAVE;
256 /* beginning of peer group among the slaves? */
257 if (IS_MNT_SHARED(m))
258 type |= CL_MAKE_SHARED;
259 }
260
261 child = copy_tree(last_source, last_source->mnt.mnt_root, type);
262 if (IS_ERR(child))
263 return PTR_ERR(child);
264 mnt_set_mountpoint(m, mp, child);
265 last_dest = m;
266 last_source = child;
267 if (m->mnt_master != dest_master) {
268 read_seqlock_excl(&mount_lock);
269 SET_MNT_MARK(m->mnt_master);
270 read_sequnlock_excl(&mount_lock);
271 }
272 hlist_add_head(&child->mnt_hash, list);
273 return count_mounts(m->mnt_ns, child);
274}
275
276/*
277 * mount 'source_mnt' under the destination 'dest_mnt' at
278 * dentry 'dest_dentry'. And propagate that mount to
279 * all the peer and slave mounts of 'dest_mnt'.
280 * Link all the new mounts into a propagation tree headed at
281 * source_mnt. Also link all the new mounts using ->mnt_list
282 * headed at source_mnt's ->mnt_list
283 *
284 * @dest_mnt: destination mount.
285 * @dest_dentry: destination dentry.
286 * @source_mnt: source mount.
287 * @tree_list : list of heads of trees to be attached.
288 */
289int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
290 struct mount *source_mnt, struct hlist_head *tree_list)
291{
292 struct mount *m, *n;
293 int ret = 0;
294
295 /*
296 * we don't want to bother passing tons of arguments to
297 * propagate_one(); everything is serialized by namespace_sem,
298 * so globals will do just fine.
299 */
300 last_dest = dest_mnt;
301 first_source = source_mnt;
302 last_source = source_mnt;
303 mp = dest_mp;
304 list = tree_list;
305 dest_master = dest_mnt->mnt_master;
306
307 /* all peers of dest_mnt, except dest_mnt itself */
308 for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
309 ret = propagate_one(n);
310 if (ret)
311 goto out;
312 }
313
314 /* all slave groups */
315 for (m = next_group(dest_mnt, dest_mnt); m;
316 m = next_group(m, dest_mnt)) {
317 /* everything in that slave group */
318 n = m;
319 do {
320 ret = propagate_one(n);
321 if (ret)
322 goto out;
323 n = next_peer(n);
324 } while (n != m);
325 }
326out:
327 read_seqlock_excl(&mount_lock);
328 hlist_for_each_entry(n, tree_list, mnt_hash) {
329 m = n->mnt_parent;
330 if (m->mnt_master != dest_mnt->mnt_master)
331 CLEAR_MNT_MARK(m->mnt_master);
332 }
333 read_sequnlock_excl(&mount_lock);
334 return ret;
335}
336
337static struct mount *find_topper(struct mount *mnt)
338{
339 /* If there is exactly one mount covering mnt completely return it. */
340 struct mount *child;
341
342 if (!list_is_singular(&mnt->mnt_mounts))
343 return NULL;
344
345 child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
346 if (child->mnt_mountpoint != mnt->mnt.mnt_root)
347 return NULL;
348
349 return child;
350}
351
352/*
353 * return true if the refcount is greater than count
354 */
355static inline int do_refcount_check(struct mount *mnt, int count)
356{
357 return mnt_get_count(mnt) > count;
358}
359
360/*
361 * check if the mount 'mnt' can be unmounted successfully.
362 * @mnt: the mount to be checked for unmount
363 * NOTE: unmounting 'mnt' would naturally propagate to all
364 * other mounts its parent propagates to.
365 * Check if any of these mounts that **do not have submounts**
366 * have more references than 'refcnt'. If so return busy.
367 *
368 * vfsmount lock must be held for write
369 */
370int propagate_mount_busy(struct mount *mnt, int refcnt)
371{
372 struct mount *m, *child, *topper;
373 struct mount *parent = mnt->mnt_parent;
374
375 if (mnt == parent)
376 return do_refcount_check(mnt, refcnt);
377
378 /*
379 * quickly check if the current mount can be unmounted.
380 * If not, we don't have to go checking for all other
381 * mounts
382 */
383 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
384 return 1;
385
386 for (m = propagation_next(parent, parent); m;
387 m = propagation_next(m, parent)) {
388 int count = 1;
389 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
390 if (!child)
391 continue;
392
393 /* Is there exactly one mount on the child that covers
394 * it completely whose reference should be ignored?
395 */
396 topper = find_topper(child);
397 if (topper)
398 count += 1;
399 else if (!list_empty(&child->mnt_mounts))
400 continue;
401
402 if (do_refcount_check(child, count))
403 return 1;
404 }
405 return 0;
406}
407
408/*
409 * Clear MNT_LOCKED when it can be shown to be safe.
410 *
411 * mount_lock lock must be held for write
412 */
413void propagate_mount_unlock(struct mount *mnt)
414{
415 struct mount *parent = mnt->mnt_parent;
416 struct mount *m, *child;
417
418 BUG_ON(parent == mnt);
419
420 for (m = propagation_next(parent, parent); m;
421 m = propagation_next(m, parent)) {
422 child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
423 if (child)
424 child->mnt.mnt_flags &= ~MNT_LOCKED;
425 }
426}
427
428static void umount_one(struct mount *mnt, struct list_head *to_umount)
429{
430 CLEAR_MNT_MARK(mnt);
431 mnt->mnt.mnt_flags |= MNT_UMOUNT;
432 list_del_init(&mnt->mnt_child);
433 list_del_init(&mnt->mnt_umounting);
434 list_move_tail(&mnt->mnt_list, to_umount);
435}
436
437/*
438 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
439 * parent propagates to.
440 */
441static bool __propagate_umount(struct mount *mnt,
442 struct list_head *to_umount,
443 struct list_head *to_restore)
444{
445 bool progress = false;
446 struct mount *child;
447
448 /*
449 * The state of the parent won't change if this mount is
450 * already unmounted or marked as without children.
451 */
452 if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
453 goto out;
454
455 /* Verify topper is the only grandchild that has not been
456 * speculatively unmounted.
457 */
458 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
459 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
460 continue;
461 if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
462 continue;
463 /* Found a mounted child */
464 goto children;
465 }
466
467 /* Mark mounts that can be unmounted if not locked */
468 SET_MNT_MARK(mnt);
469 progress = true;
470
471 /* If a mount is without children and not locked umount it. */
472 if (!IS_MNT_LOCKED(mnt)) {
473 umount_one(mnt, to_umount);
474 } else {
475children:
476 list_move_tail(&mnt->mnt_umounting, to_restore);
477 }
478out:
479 return progress;
480}
481
482static void umount_list(struct list_head *to_umount,
483 struct list_head *to_restore)
484{
485 struct mount *mnt, *child, *tmp;
486 list_for_each_entry(mnt, to_umount, mnt_list) {
487 list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
488 /* topper? */
489 if (child->mnt_mountpoint == mnt->mnt.mnt_root)
490 list_move_tail(&child->mnt_umounting, to_restore);
491 else
492 umount_one(child, to_umount);
493 }
494 }
495}
496
497static void restore_mounts(struct list_head *to_restore)
498{
499 /* Restore mounts to a clean working state */
500 while (!list_empty(to_restore)) {
501 struct mount *mnt, *parent;
502 struct mountpoint *mp;
503
504 mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
505 CLEAR_MNT_MARK(mnt);
506 list_del_init(&mnt->mnt_umounting);
507
508 /* Should this mount be reparented? */
509 mp = mnt->mnt_mp;
510 parent = mnt->mnt_parent;
511 while (parent->mnt.mnt_flags & MNT_UMOUNT) {
512 mp = parent->mnt_mp;
513 parent = parent->mnt_parent;
514 }
515 if (parent != mnt->mnt_parent)
516 mnt_change_mountpoint(parent, mp, mnt);
517 }
518}
519
520static void cleanup_umount_visitations(struct list_head *visited)
521{
522 while (!list_empty(visited)) {
523 struct mount *mnt =
524 list_first_entry(visited, struct mount, mnt_umounting);
525 list_del_init(&mnt->mnt_umounting);
526 }
527}
528
529/*
530 * collect all mounts that receive propagation from the mount in @list,
531 * and return these additional mounts in the same list.
532 * @list: the list of mounts to be unmounted.
533 *
534 * vfsmount lock must be held for write
535 */
536int propagate_umount(struct list_head *list)
537{
538 struct mount *mnt;
539 LIST_HEAD(to_restore);
540 LIST_HEAD(to_umount);
541 LIST_HEAD(visited);
542
543 /* Find candidates for unmounting */
544 list_for_each_entry_reverse(mnt, list, mnt_list) {
545 struct mount *parent = mnt->mnt_parent;
546 struct mount *m;
547
548 /*
549 * If this mount has already been visited it is known that it's
550 * entire peer group and all of their slaves in the propagation
551 * tree for the mountpoint has already been visited and there is
552 * no need to visit them again.
553 */
554 if (!list_empty(&mnt->mnt_umounting))
555 continue;
556
557 list_add_tail(&mnt->mnt_umounting, &visited);
558 for (m = propagation_next(parent, parent); m;
559 m = propagation_next(m, parent)) {
560 struct mount *child = __lookup_mnt(&m->mnt,
561 mnt->mnt_mountpoint);
562 if (!child)
563 continue;
564
565 if (!list_empty(&child->mnt_umounting)) {
566 /*
567 * If the child has already been visited it is
568 * know that it's entire peer group and all of
569 * their slaves in the propgation tree for the
570 * mountpoint has already been visited and there
571 * is no need to visit this subtree again.
572 */
573 m = skip_propagation_subtree(m, parent);
574 continue;
575 } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
576 /*
577 * We have come accross an partially unmounted
578 * mount in list that has not been visited yet.
579 * Remember it has been visited and continue
580 * about our merry way.
581 */
582 list_add_tail(&child->mnt_umounting, &visited);
583 continue;
584 }
585
586 /* Check the child and parents while progress is made */
587 while (__propagate_umount(child,
588 &to_umount, &to_restore)) {
589 /* Is the parent a umount candidate? */
590 child = child->mnt_parent;
591 if (list_empty(&child->mnt_umounting))
592 break;
593 }
594 }
595 }
596
597 umount_list(&to_umount, &to_restore);
598 restore_mounts(&to_restore);
599 cleanup_umount_visitations(&visited);
600 list_splice_tail(&to_umount, list);
601
602 return 0;
603}