Loading...
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67#include <linux/scatterlist.h>
68#include <linux/slab.h>
69#include "xhci.h"
70#include "xhci-trace.h"
71#include "xhci-mtk.h"
72
73/*
74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
75 * address of the TRB.
76 */
77dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
78 union xhci_trb *trb)
79{
80 unsigned long segment_offset;
81
82 if (!seg || !trb || trb < seg->trbs)
83 return 0;
84 /* offset in TRBs */
85 segment_offset = trb - seg->trbs;
86 if (segment_offset >= TRBS_PER_SEGMENT)
87 return 0;
88 return seg->dma + (segment_offset * sizeof(*trb));
89}
90
91/* Does this link TRB point to the first segment in a ring,
92 * or was the previous TRB the last TRB on the last segment in the ERST?
93 */
94static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
95 struct xhci_segment *seg, union xhci_trb *trb)
96{
97 if (ring == xhci->event_ring)
98 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
99 (seg->next == xhci->event_ring->first_seg);
100 else
101 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
102}
103
104/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
105 * segment? I.e. would the updated event TRB pointer step off the end of the
106 * event seg?
107 */
108static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
109 struct xhci_segment *seg, union xhci_trb *trb)
110{
111 if (ring == xhci->event_ring)
112 return trb == &seg->trbs[TRBS_PER_SEGMENT];
113 else
114 return TRB_TYPE_LINK_LE32(trb->link.control);
115}
116
117static int enqueue_is_link_trb(struct xhci_ring *ring)
118{
119 struct xhci_link_trb *link = &ring->enqueue->link;
120 return TRB_TYPE_LINK_LE32(link->control);
121}
122
123/* Updates trb to point to the next TRB in the ring, and updates seg if the next
124 * TRB is in a new segment. This does not skip over link TRBs, and it does not
125 * effect the ring dequeue or enqueue pointers.
126 */
127static void next_trb(struct xhci_hcd *xhci,
128 struct xhci_ring *ring,
129 struct xhci_segment **seg,
130 union xhci_trb **trb)
131{
132 if (last_trb(xhci, ring, *seg, *trb)) {
133 *seg = (*seg)->next;
134 *trb = ((*seg)->trbs);
135 } else {
136 (*trb)++;
137 }
138}
139
140/*
141 * See Cycle bit rules. SW is the consumer for the event ring only.
142 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
143 */
144static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
145{
146 ring->deq_updates++;
147
148 /*
149 * If this is not event ring, and the dequeue pointer
150 * is not on a link TRB, there is one more usable TRB
151 */
152 if (ring->type != TYPE_EVENT &&
153 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
154 ring->num_trbs_free++;
155
156 do {
157 /*
158 * Update the dequeue pointer further if that was a link TRB or
159 * we're at the end of an event ring segment (which doesn't have
160 * link TRBS)
161 */
162 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
163 if (ring->type == TYPE_EVENT &&
164 last_trb_on_last_seg(xhci, ring,
165 ring->deq_seg, ring->dequeue)) {
166 ring->cycle_state ^= 1;
167 }
168 ring->deq_seg = ring->deq_seg->next;
169 ring->dequeue = ring->deq_seg->trbs;
170 } else {
171 ring->dequeue++;
172 }
173 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
174}
175
176/*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
186 * set, but other sections talk about dealing with the chain bit set. This was
187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
188 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
189 *
190 * @more_trbs_coming: Will you enqueue more TRBs before calling
191 * prepare_transfer()?
192 */
193static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
194 bool more_trbs_coming)
195{
196 u32 chain;
197 union xhci_trb *next;
198
199 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
200 /* If this is not event ring, there is one less usable TRB */
201 if (ring->type != TYPE_EVENT &&
202 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
203 ring->num_trbs_free--;
204 next = ++(ring->enqueue);
205
206 ring->enq_updates++;
207 /* Update the dequeue pointer further if that was a link TRB or we're at
208 * the end of an event ring segment (which doesn't have link TRBS)
209 */
210 while (last_trb(xhci, ring, ring->enq_seg, next)) {
211 if (ring->type != TYPE_EVENT) {
212 /*
213 * If the caller doesn't plan on enqueueing more
214 * TDs before ringing the doorbell, then we
215 * don't want to give the link TRB to the
216 * hardware just yet. We'll give the link TRB
217 * back in prepare_ring() just before we enqueue
218 * the TD at the top of the ring.
219 */
220 if (!chain && !more_trbs_coming)
221 break;
222
223 /* If we're not dealing with 0.95 hardware or
224 * isoc rings on AMD 0.96 host,
225 * carry over the chain bit of the previous TRB
226 * (which may mean the chain bit is cleared).
227 */
228 if (!(ring->type == TYPE_ISOC &&
229 (xhci->quirks & XHCI_AMD_0x96_HOST))
230 && !xhci_link_trb_quirk(xhci)) {
231 next->link.control &=
232 cpu_to_le32(~TRB_CHAIN);
233 next->link.control |=
234 cpu_to_le32(chain);
235 }
236 /* Give this link TRB to the hardware */
237 wmb();
238 next->link.control ^= cpu_to_le32(TRB_CYCLE);
239
240 /* Toggle the cycle bit after the last ring segment. */
241 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
242 ring->cycle_state ^= 1;
243 }
244 }
245 ring->enq_seg = ring->enq_seg->next;
246 ring->enqueue = ring->enq_seg->trbs;
247 next = ring->enqueue;
248 }
249}
250
251/*
252 * Check to see if there's room to enqueue num_trbs on the ring and make sure
253 * enqueue pointer will not advance into dequeue segment. See rules above.
254 */
255static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 unsigned int num_trbs)
257{
258 int num_trbs_in_deq_seg;
259
260 if (ring->num_trbs_free < num_trbs)
261 return 0;
262
263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 return 0;
267 }
268
269 return 1;
270}
271
272/* Ring the host controller doorbell after placing a command on the ring */
273void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274{
275 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
276 return;
277
278 xhci_dbg(xhci, "// Ding dong!\n");
279 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
280 /* Flush PCI posted writes */
281 readl(&xhci->dba->doorbell[0]);
282}
283
284static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
285{
286 u64 temp_64;
287 int ret;
288
289 xhci_dbg(xhci, "Abort command ring\n");
290
291 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
292 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
293 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
294 &xhci->op_regs->cmd_ring);
295
296 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
297 * time the completion od all xHCI commands, including
298 * the Command Abort operation. If software doesn't see
299 * CRR negated in a timely manner (e.g. longer than 5
300 * seconds), then it should assume that the there are
301 * larger problems with the xHC and assert HCRST.
302 */
303 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
304 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
305 if (ret < 0) {
306 /* we are about to kill xhci, give it one more chance */
307 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
308 &xhci->op_regs->cmd_ring);
309 udelay(1000);
310 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
311 CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
312 if (ret == 0)
313 return 0;
314
315 xhci_err(xhci, "Stopped the command ring failed, "
316 "maybe the host is dead\n");
317 xhci->xhc_state |= XHCI_STATE_DYING;
318 xhci_quiesce(xhci);
319 xhci_halt(xhci);
320 return -ESHUTDOWN;
321 }
322
323 return 0;
324}
325
326void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
327 unsigned int slot_id,
328 unsigned int ep_index,
329 unsigned int stream_id)
330{
331 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
332 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
333 unsigned int ep_state = ep->ep_state;
334
335 /* Don't ring the doorbell for this endpoint if there are pending
336 * cancellations because we don't want to interrupt processing.
337 * We don't want to restart any stream rings if there's a set dequeue
338 * pointer command pending because the device can choose to start any
339 * stream once the endpoint is on the HW schedule.
340 */
341 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
342 (ep_state & EP_HALTED))
343 return;
344 writel(DB_VALUE(ep_index, stream_id), db_addr);
345 /* The CPU has better things to do at this point than wait for a
346 * write-posting flush. It'll get there soon enough.
347 */
348}
349
350/* Ring the doorbell for any rings with pending URBs */
351static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
352 unsigned int slot_id,
353 unsigned int ep_index)
354{
355 unsigned int stream_id;
356 struct xhci_virt_ep *ep;
357
358 ep = &xhci->devs[slot_id]->eps[ep_index];
359
360 /* A ring has pending URBs if its TD list is not empty */
361 if (!(ep->ep_state & EP_HAS_STREAMS)) {
362 if (ep->ring && !(list_empty(&ep->ring->td_list)))
363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
364 return;
365 }
366
367 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
368 stream_id++) {
369 struct xhci_stream_info *stream_info = ep->stream_info;
370 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
371 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
372 stream_id);
373 }
374}
375
376static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
377 unsigned int slot_id, unsigned int ep_index,
378 unsigned int stream_id)
379{
380 struct xhci_virt_ep *ep;
381
382 ep = &xhci->devs[slot_id]->eps[ep_index];
383 /* Common case: no streams */
384 if (!(ep->ep_state & EP_HAS_STREAMS))
385 return ep->ring;
386
387 if (stream_id == 0) {
388 xhci_warn(xhci,
389 "WARN: Slot ID %u, ep index %u has streams, "
390 "but URB has no stream ID.\n",
391 slot_id, ep_index);
392 return NULL;
393 }
394
395 if (stream_id < ep->stream_info->num_streams)
396 return ep->stream_info->stream_rings[stream_id];
397
398 xhci_warn(xhci,
399 "WARN: Slot ID %u, ep index %u has "
400 "stream IDs 1 to %u allocated, "
401 "but stream ID %u is requested.\n",
402 slot_id, ep_index,
403 ep->stream_info->num_streams - 1,
404 stream_id);
405 return NULL;
406}
407
408/* Get the right ring for the given URB.
409 * If the endpoint supports streams, boundary check the URB's stream ID.
410 * If the endpoint doesn't support streams, return the singular endpoint ring.
411 */
412static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
413 struct urb *urb)
414{
415 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
416 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
417}
418
419/*
420 * Move the xHC's endpoint ring dequeue pointer past cur_td.
421 * Record the new state of the xHC's endpoint ring dequeue segment,
422 * dequeue pointer, and new consumer cycle state in state.
423 * Update our internal representation of the ring's dequeue pointer.
424 *
425 * We do this in three jumps:
426 * - First we update our new ring state to be the same as when the xHC stopped.
427 * - Then we traverse the ring to find the segment that contains
428 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
429 * any link TRBs with the toggle cycle bit set.
430 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
431 * if we've moved it past a link TRB with the toggle cycle bit set.
432 *
433 * Some of the uses of xhci_generic_trb are grotty, but if they're done
434 * with correct __le32 accesses they should work fine. Only users of this are
435 * in here.
436 */
437void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
438 unsigned int slot_id, unsigned int ep_index,
439 unsigned int stream_id, struct xhci_td *cur_td,
440 struct xhci_dequeue_state *state)
441{
442 struct xhci_virt_device *dev = xhci->devs[slot_id];
443 struct xhci_virt_ep *ep = &dev->eps[ep_index];
444 struct xhci_ring *ep_ring;
445 struct xhci_segment *new_seg;
446 union xhci_trb *new_deq;
447 dma_addr_t addr;
448 u64 hw_dequeue;
449 bool cycle_found = false;
450 bool td_last_trb_found = false;
451
452 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
453 ep_index, stream_id);
454 if (!ep_ring) {
455 xhci_warn(xhci, "WARN can't find new dequeue state "
456 "for invalid stream ID %u.\n",
457 stream_id);
458 return;
459 }
460
461 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
462 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
463 "Finding endpoint context");
464 /* 4.6.9 the css flag is written to the stream context for streams */
465 if (ep->ep_state & EP_HAS_STREAMS) {
466 struct xhci_stream_ctx *ctx =
467 &ep->stream_info->stream_ctx_array[stream_id];
468 hw_dequeue = le64_to_cpu(ctx->stream_ring);
469 } else {
470 struct xhci_ep_ctx *ep_ctx
471 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
472 hw_dequeue = le64_to_cpu(ep_ctx->deq);
473 }
474
475 new_seg = ep_ring->deq_seg;
476 new_deq = ep_ring->dequeue;
477 state->new_cycle_state = hw_dequeue & 0x1;
478
479 /*
480 * We want to find the pointer, segment and cycle state of the new trb
481 * (the one after current TD's last_trb). We know the cycle state at
482 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
483 * found.
484 */
485 do {
486 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
487 == (dma_addr_t)(hw_dequeue & ~0xf)) {
488 cycle_found = true;
489 if (td_last_trb_found)
490 break;
491 }
492 if (new_deq == cur_td->last_trb)
493 td_last_trb_found = true;
494
495 if (cycle_found &&
496 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
497 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
498 state->new_cycle_state ^= 0x1;
499
500 next_trb(xhci, ep_ring, &new_seg, &new_deq);
501
502 /* Search wrapped around, bail out */
503 if (new_deq == ep->ring->dequeue) {
504 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
505 state->new_deq_seg = NULL;
506 state->new_deq_ptr = NULL;
507 return;
508 }
509
510 } while (!cycle_found || !td_last_trb_found);
511
512 state->new_deq_seg = new_seg;
513 state->new_deq_ptr = new_deq;
514
515 /* Don't update the ring cycle state for the producer (us). */
516 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
517 "Cycle state = 0x%x", state->new_cycle_state);
518
519 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
520 "New dequeue segment = %p (virtual)",
521 state->new_deq_seg);
522 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
523 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
524 "New dequeue pointer = 0x%llx (DMA)",
525 (unsigned long long) addr);
526}
527
528/* flip_cycle means flip the cycle bit of all but the first and last TRB.
529 * (The last TRB actually points to the ring enqueue pointer, which is not part
530 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
531 */
532static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
533 struct xhci_td *cur_td, bool flip_cycle)
534{
535 struct xhci_segment *cur_seg;
536 union xhci_trb *cur_trb;
537
538 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
539 true;
540 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
541 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
542 /* Unchain any chained Link TRBs, but
543 * leave the pointers intact.
544 */
545 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
546 /* Flip the cycle bit (link TRBs can't be the first
547 * or last TRB).
548 */
549 if (flip_cycle)
550 cur_trb->generic.field[3] ^=
551 cpu_to_le32(TRB_CYCLE);
552 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
553 "Cancel (unchain) link TRB");
554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
555 "Address = %p (0x%llx dma); "
556 "in seg %p (0x%llx dma)",
557 cur_trb,
558 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
559 cur_seg,
560 (unsigned long long)cur_seg->dma);
561 } else {
562 cur_trb->generic.field[0] = 0;
563 cur_trb->generic.field[1] = 0;
564 cur_trb->generic.field[2] = 0;
565 /* Preserve only the cycle bit of this TRB */
566 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
567 /* Flip the cycle bit except on the first or last TRB */
568 if (flip_cycle && cur_trb != cur_td->first_trb &&
569 cur_trb != cur_td->last_trb)
570 cur_trb->generic.field[3] ^=
571 cpu_to_le32(TRB_CYCLE);
572 cur_trb->generic.field[3] |= cpu_to_le32(
573 TRB_TYPE(TRB_TR_NOOP));
574 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
575 "TRB to noop at offset 0x%llx",
576 (unsigned long long)
577 xhci_trb_virt_to_dma(cur_seg, cur_trb));
578 }
579 if (cur_trb == cur_td->last_trb)
580 break;
581 }
582}
583
584static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
585 struct xhci_virt_ep *ep)
586{
587 ep->ep_state &= ~EP_HALT_PENDING;
588 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
589 * timer is running on another CPU, we don't decrement stop_cmds_pending
590 * (since we didn't successfully stop the watchdog timer).
591 */
592 if (del_timer(&ep->stop_cmd_timer))
593 ep->stop_cmds_pending--;
594}
595
596/* Must be called with xhci->lock held in interrupt context */
597static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
598 struct xhci_td *cur_td, int status)
599{
600 struct usb_hcd *hcd;
601 struct urb *urb;
602 struct urb_priv *urb_priv;
603
604 urb = cur_td->urb;
605 urb_priv = urb->hcpriv;
606 urb_priv->td_cnt++;
607 hcd = bus_to_hcd(urb->dev->bus);
608
609 /* Only giveback urb when this is the last td in urb */
610 if (urb_priv->td_cnt == urb_priv->length) {
611 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
612 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
613 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
614 if (xhci->quirks & XHCI_AMD_PLL_FIX)
615 usb_amd_quirk_pll_enable();
616 }
617 }
618 usb_hcd_unlink_urb_from_ep(hcd, urb);
619
620 spin_unlock(&xhci->lock);
621 usb_hcd_giveback_urb(hcd, urb, status);
622 xhci_urb_free_priv(urb_priv);
623 spin_lock(&xhci->lock);
624 }
625}
626
627/*
628 * When we get a command completion for a Stop Endpoint Command, we need to
629 * unlink any cancelled TDs from the ring. There are two ways to do that:
630 *
631 * 1. If the HW was in the middle of processing the TD that needs to be
632 * cancelled, then we must move the ring's dequeue pointer past the last TRB
633 * in the TD with a Set Dequeue Pointer Command.
634 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
635 * bit cleared) so that the HW will skip over them.
636 */
637static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
638 union xhci_trb *trb, struct xhci_event_cmd *event)
639{
640 unsigned int ep_index;
641 struct xhci_ring *ep_ring;
642 struct xhci_virt_ep *ep;
643 struct list_head *entry;
644 struct xhci_td *cur_td = NULL;
645 struct xhci_td *last_unlinked_td;
646
647 struct xhci_dequeue_state deq_state;
648
649 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
650 if (!xhci->devs[slot_id])
651 xhci_warn(xhci, "Stop endpoint command "
652 "completion for disabled slot %u\n",
653 slot_id);
654 return;
655 }
656
657 memset(&deq_state, 0, sizeof(deq_state));
658 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
659 ep = &xhci->devs[slot_id]->eps[ep_index];
660
661 if (list_empty(&ep->cancelled_td_list)) {
662 xhci_stop_watchdog_timer_in_irq(xhci, ep);
663 ep->stopped_td = NULL;
664 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
665 return;
666 }
667
668 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
669 * We have the xHCI lock, so nothing can modify this list until we drop
670 * it. We're also in the event handler, so we can't get re-interrupted
671 * if another Stop Endpoint command completes
672 */
673 list_for_each(entry, &ep->cancelled_td_list) {
674 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
675 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
676 "Removing canceled TD starting at 0x%llx (dma).",
677 (unsigned long long)xhci_trb_virt_to_dma(
678 cur_td->start_seg, cur_td->first_trb));
679 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
680 if (!ep_ring) {
681 /* This shouldn't happen unless a driver is mucking
682 * with the stream ID after submission. This will
683 * leave the TD on the hardware ring, and the hardware
684 * will try to execute it, and may access a buffer
685 * that has already been freed. In the best case, the
686 * hardware will execute it, and the event handler will
687 * ignore the completion event for that TD, since it was
688 * removed from the td_list for that endpoint. In
689 * short, don't muck with the stream ID after
690 * submission.
691 */
692 xhci_warn(xhci, "WARN Cancelled URB %p "
693 "has invalid stream ID %u.\n",
694 cur_td->urb,
695 cur_td->urb->stream_id);
696 goto remove_finished_td;
697 }
698 /*
699 * If we stopped on the TD we need to cancel, then we have to
700 * move the xHC endpoint ring dequeue pointer past this TD.
701 */
702 if (cur_td == ep->stopped_td)
703 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
704 cur_td->urb->stream_id,
705 cur_td, &deq_state);
706 else
707 td_to_noop(xhci, ep_ring, cur_td, false);
708remove_finished_td:
709 /*
710 * The event handler won't see a completion for this TD anymore,
711 * so remove it from the endpoint ring's TD list. Keep it in
712 * the cancelled TD list for URB completion later.
713 */
714 list_del_init(&cur_td->td_list);
715 }
716 last_unlinked_td = cur_td;
717 xhci_stop_watchdog_timer_in_irq(xhci, ep);
718
719 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
720 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
721 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
722 ep->stopped_td->urb->stream_id, &deq_state);
723 xhci_ring_cmd_db(xhci);
724 } else {
725 /* Otherwise ring the doorbell(s) to restart queued transfers */
726 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
727 }
728
729 ep->stopped_td = NULL;
730
731 /*
732 * Drop the lock and complete the URBs in the cancelled TD list.
733 * New TDs to be cancelled might be added to the end of the list before
734 * we can complete all the URBs for the TDs we already unlinked.
735 * So stop when we've completed the URB for the last TD we unlinked.
736 */
737 do {
738 cur_td = list_entry(ep->cancelled_td_list.next,
739 struct xhci_td, cancelled_td_list);
740 list_del_init(&cur_td->cancelled_td_list);
741
742 /* Clean up the cancelled URB */
743 /* Doesn't matter what we pass for status, since the core will
744 * just overwrite it (because the URB has been unlinked).
745 */
746 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
747
748 /* Stop processing the cancelled list if the watchdog timer is
749 * running.
750 */
751 if (xhci->xhc_state & XHCI_STATE_DYING)
752 return;
753 } while (cur_td != last_unlinked_td);
754
755 /* Return to the event handler with xhci->lock re-acquired */
756}
757
758static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
759{
760 struct xhci_td *cur_td;
761
762 while (!list_empty(&ring->td_list)) {
763 cur_td = list_first_entry(&ring->td_list,
764 struct xhci_td, td_list);
765 list_del_init(&cur_td->td_list);
766 if (!list_empty(&cur_td->cancelled_td_list))
767 list_del_init(&cur_td->cancelled_td_list);
768 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
769 }
770}
771
772static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
773 int slot_id, int ep_index)
774{
775 struct xhci_td *cur_td;
776 struct xhci_virt_ep *ep;
777 struct xhci_ring *ring;
778
779 ep = &xhci->devs[slot_id]->eps[ep_index];
780 if ((ep->ep_state & EP_HAS_STREAMS) ||
781 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
782 int stream_id;
783
784 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
785 stream_id++) {
786 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
787 "Killing URBs for slot ID %u, ep index %u, stream %u",
788 slot_id, ep_index, stream_id + 1);
789 xhci_kill_ring_urbs(xhci,
790 ep->stream_info->stream_rings[stream_id]);
791 }
792 } else {
793 ring = ep->ring;
794 if (!ring)
795 return;
796 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
797 "Killing URBs for slot ID %u, ep index %u",
798 slot_id, ep_index);
799 xhci_kill_ring_urbs(xhci, ring);
800 }
801 while (!list_empty(&ep->cancelled_td_list)) {
802 cur_td = list_first_entry(&ep->cancelled_td_list,
803 struct xhci_td, cancelled_td_list);
804 list_del_init(&cur_td->cancelled_td_list);
805 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
806 }
807}
808
809/* Watchdog timer function for when a stop endpoint command fails to complete.
810 * In this case, we assume the host controller is broken or dying or dead. The
811 * host may still be completing some other events, so we have to be careful to
812 * let the event ring handler and the URB dequeueing/enqueueing functions know
813 * through xhci->state.
814 *
815 * The timer may also fire if the host takes a very long time to respond to the
816 * command, and the stop endpoint command completion handler cannot delete the
817 * timer before the timer function is called. Another endpoint cancellation may
818 * sneak in before the timer function can grab the lock, and that may queue
819 * another stop endpoint command and add the timer back. So we cannot use a
820 * simple flag to say whether there is a pending stop endpoint command for a
821 * particular endpoint.
822 *
823 * Instead we use a combination of that flag and a counter for the number of
824 * pending stop endpoint commands. If the timer is the tail end of the last
825 * stop endpoint command, and the endpoint's command is still pending, we assume
826 * the host is dying.
827 */
828void xhci_stop_endpoint_command_watchdog(unsigned long arg)
829{
830 struct xhci_hcd *xhci;
831 struct xhci_virt_ep *ep;
832 int ret, i, j;
833 unsigned long flags;
834
835 ep = (struct xhci_virt_ep *) arg;
836 xhci = ep->xhci;
837
838 spin_lock_irqsave(&xhci->lock, flags);
839
840 ep->stop_cmds_pending--;
841 if (xhci->xhc_state & XHCI_STATE_DYING) {
842 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
843 "Stop EP timer ran, but another timer marked "
844 "xHCI as DYING, exiting.");
845 spin_unlock_irqrestore(&xhci->lock, flags);
846 return;
847 }
848 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
849 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
850 "Stop EP timer ran, but no command pending, "
851 "exiting.");
852 spin_unlock_irqrestore(&xhci->lock, flags);
853 return;
854 }
855
856 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
857 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
858 /* Oops, HC is dead or dying or at least not responding to the stop
859 * endpoint command.
860 */
861 xhci->xhc_state |= XHCI_STATE_DYING;
862 /* Disable interrupts from the host controller and start halting it */
863 xhci_quiesce(xhci);
864 spin_unlock_irqrestore(&xhci->lock, flags);
865
866 ret = xhci_halt(xhci);
867
868 spin_lock_irqsave(&xhci->lock, flags);
869 if (ret < 0) {
870 /* This is bad; the host is not responding to commands and it's
871 * not allowing itself to be halted. At least interrupts are
872 * disabled. If we call usb_hc_died(), it will attempt to
873 * disconnect all device drivers under this host. Those
874 * disconnect() methods will wait for all URBs to be unlinked,
875 * so we must complete them.
876 */
877 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
878 xhci_warn(xhci, "Completing active URBs anyway.\n");
879 /* We could turn all TDs on the rings to no-ops. This won't
880 * help if the host has cached part of the ring, and is slow if
881 * we want to preserve the cycle bit. Skip it and hope the host
882 * doesn't touch the memory.
883 */
884 }
885 for (i = 0; i < MAX_HC_SLOTS; i++) {
886 if (!xhci->devs[i])
887 continue;
888 for (j = 0; j < 31; j++)
889 xhci_kill_endpoint_urbs(xhci, i, j);
890 }
891 spin_unlock_irqrestore(&xhci->lock, flags);
892 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
893 "Calling usb_hc_died()");
894 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
895 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
896 "xHCI host controller is dead.");
897}
898
899
900static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
901 struct xhci_virt_device *dev,
902 struct xhci_ring *ep_ring,
903 unsigned int ep_index)
904{
905 union xhci_trb *dequeue_temp;
906 int num_trbs_free_temp;
907 bool revert = false;
908
909 num_trbs_free_temp = ep_ring->num_trbs_free;
910 dequeue_temp = ep_ring->dequeue;
911
912 /* If we get two back-to-back stalls, and the first stalled transfer
913 * ends just before a link TRB, the dequeue pointer will be left on
914 * the link TRB by the code in the while loop. So we have to update
915 * the dequeue pointer one segment further, or we'll jump off
916 * the segment into la-la-land.
917 */
918 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
919 ep_ring->deq_seg = ep_ring->deq_seg->next;
920 ep_ring->dequeue = ep_ring->deq_seg->trbs;
921 }
922
923 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
924 /* We have more usable TRBs */
925 ep_ring->num_trbs_free++;
926 ep_ring->dequeue++;
927 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
928 ep_ring->dequeue)) {
929 if (ep_ring->dequeue ==
930 dev->eps[ep_index].queued_deq_ptr)
931 break;
932 ep_ring->deq_seg = ep_ring->deq_seg->next;
933 ep_ring->dequeue = ep_ring->deq_seg->trbs;
934 }
935 if (ep_ring->dequeue == dequeue_temp) {
936 revert = true;
937 break;
938 }
939 }
940
941 if (revert) {
942 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
943 ep_ring->num_trbs_free = num_trbs_free_temp;
944 }
945}
946
947/*
948 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
949 * we need to clear the set deq pending flag in the endpoint ring state, so that
950 * the TD queueing code can ring the doorbell again. We also need to ring the
951 * endpoint doorbell to restart the ring, but only if there aren't more
952 * cancellations pending.
953 */
954static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
955 union xhci_trb *trb, u32 cmd_comp_code)
956{
957 unsigned int ep_index;
958 unsigned int stream_id;
959 struct xhci_ring *ep_ring;
960 struct xhci_virt_device *dev;
961 struct xhci_virt_ep *ep;
962 struct xhci_ep_ctx *ep_ctx;
963 struct xhci_slot_ctx *slot_ctx;
964
965 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
966 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
967 dev = xhci->devs[slot_id];
968 ep = &dev->eps[ep_index];
969
970 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
971 if (!ep_ring) {
972 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
973 stream_id);
974 /* XXX: Harmless??? */
975 goto cleanup;
976 }
977
978 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
979 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
980
981 if (cmd_comp_code != COMP_SUCCESS) {
982 unsigned int ep_state;
983 unsigned int slot_state;
984
985 switch (cmd_comp_code) {
986 case COMP_TRB_ERR:
987 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
988 break;
989 case COMP_CTX_STATE:
990 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
991 ep_state = le32_to_cpu(ep_ctx->ep_info);
992 ep_state &= EP_STATE_MASK;
993 slot_state = le32_to_cpu(slot_ctx->dev_state);
994 slot_state = GET_SLOT_STATE(slot_state);
995 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
996 "Slot state = %u, EP state = %u",
997 slot_state, ep_state);
998 break;
999 case COMP_EBADSLT:
1000 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1001 slot_id);
1002 break;
1003 default:
1004 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1005 cmd_comp_code);
1006 break;
1007 }
1008 /* OK what do we do now? The endpoint state is hosed, and we
1009 * should never get to this point if the synchronization between
1010 * queueing, and endpoint state are correct. This might happen
1011 * if the device gets disconnected after we've finished
1012 * cancelling URBs, which might not be an error...
1013 */
1014 } else {
1015 u64 deq;
1016 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1017 if (ep->ep_state & EP_HAS_STREAMS) {
1018 struct xhci_stream_ctx *ctx =
1019 &ep->stream_info->stream_ctx_array[stream_id];
1020 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1021 } else {
1022 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1023 }
1024 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1025 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1026 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1027 ep->queued_deq_ptr) == deq) {
1028 /* Update the ring's dequeue segment and dequeue pointer
1029 * to reflect the new position.
1030 */
1031 update_ring_for_set_deq_completion(xhci, dev,
1032 ep_ring, ep_index);
1033 } else {
1034 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1035 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1036 ep->queued_deq_seg, ep->queued_deq_ptr);
1037 }
1038 }
1039
1040cleanup:
1041 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1042 dev->eps[ep_index].queued_deq_seg = NULL;
1043 dev->eps[ep_index].queued_deq_ptr = NULL;
1044 /* Restart any rings with pending URBs */
1045 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1046}
1047
1048static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1049 union xhci_trb *trb, u32 cmd_comp_code)
1050{
1051 unsigned int ep_index;
1052
1053 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1054 /* This command will only fail if the endpoint wasn't halted,
1055 * but we don't care.
1056 */
1057 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1058 "Ignoring reset ep completion code of %u", cmd_comp_code);
1059
1060 /* HW with the reset endpoint quirk needs to have a configure endpoint
1061 * command complete before the endpoint can be used. Queue that here
1062 * because the HW can't handle two commands being queued in a row.
1063 */
1064 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1065 struct xhci_command *command;
1066 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1067 if (!command) {
1068 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1069 return;
1070 }
1071 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1072 "Queueing configure endpoint command");
1073 xhci_queue_configure_endpoint(xhci, command,
1074 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1075 false);
1076 xhci_ring_cmd_db(xhci);
1077 } else {
1078 /* Clear our internal halted state */
1079 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1080 }
1081}
1082
1083static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1084 u32 cmd_comp_code)
1085{
1086 if (cmd_comp_code == COMP_SUCCESS)
1087 xhci->slot_id = slot_id;
1088 else
1089 xhci->slot_id = 0;
1090}
1091
1092static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1093{
1094 struct xhci_virt_device *virt_dev;
1095
1096 virt_dev = xhci->devs[slot_id];
1097 if (!virt_dev)
1098 return;
1099 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1100 /* Delete default control endpoint resources */
1101 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1102 xhci_free_virt_device(xhci, slot_id);
1103}
1104
1105static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1106 struct xhci_event_cmd *event, u32 cmd_comp_code)
1107{
1108 struct xhci_virt_device *virt_dev;
1109 struct xhci_input_control_ctx *ctrl_ctx;
1110 unsigned int ep_index;
1111 unsigned int ep_state;
1112 u32 add_flags, drop_flags;
1113
1114 /*
1115 * Configure endpoint commands can come from the USB core
1116 * configuration or alt setting changes, or because the HW
1117 * needed an extra configure endpoint command after a reset
1118 * endpoint command or streams were being configured.
1119 * If the command was for a halted endpoint, the xHCI driver
1120 * is not waiting on the configure endpoint command.
1121 */
1122 virt_dev = xhci->devs[slot_id];
1123 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1124 if (!ctrl_ctx) {
1125 xhci_warn(xhci, "Could not get input context, bad type.\n");
1126 return;
1127 }
1128
1129 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1130 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1131 /* Input ctx add_flags are the endpoint index plus one */
1132 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1133
1134 /* A usb_set_interface() call directly after clearing a halted
1135 * condition may race on this quirky hardware. Not worth
1136 * worrying about, since this is prototype hardware. Not sure
1137 * if this will work for streams, but streams support was
1138 * untested on this prototype.
1139 */
1140 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1141 ep_index != (unsigned int) -1 &&
1142 add_flags - SLOT_FLAG == drop_flags) {
1143 ep_state = virt_dev->eps[ep_index].ep_state;
1144 if (!(ep_state & EP_HALTED))
1145 return;
1146 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1147 "Completed config ep cmd - "
1148 "last ep index = %d, state = %d",
1149 ep_index, ep_state);
1150 /* Clear internal halted state and restart ring(s) */
1151 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1152 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1153 return;
1154 }
1155 return;
1156}
1157
1158static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1159 struct xhci_event_cmd *event)
1160{
1161 xhci_dbg(xhci, "Completed reset device command.\n");
1162 if (!xhci->devs[slot_id])
1163 xhci_warn(xhci, "Reset device command completion "
1164 "for disabled slot %u\n", slot_id);
1165}
1166
1167static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1168 struct xhci_event_cmd *event)
1169{
1170 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1171 xhci->error_bitmask |= 1 << 6;
1172 return;
1173 }
1174 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1175 "NEC firmware version %2x.%02x",
1176 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1177 NEC_FW_MINOR(le32_to_cpu(event->status)));
1178}
1179
1180static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1181{
1182 list_del(&cmd->cmd_list);
1183
1184 if (cmd->completion) {
1185 cmd->status = status;
1186 complete(cmd->completion);
1187 } else {
1188 kfree(cmd);
1189 }
1190}
1191
1192void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1193{
1194 struct xhci_command *cur_cmd, *tmp_cmd;
1195 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1196 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1197}
1198
1199/*
1200 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1201 * If there are other commands waiting then restart the ring and kick the timer.
1202 * This must be called with command ring stopped and xhci->lock held.
1203 */
1204static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1205 struct xhci_command *cur_cmd)
1206{
1207 struct xhci_command *i_cmd, *tmp_cmd;
1208 u32 cycle_state;
1209
1210 /* Turn all aborted commands in list to no-ops, then restart */
1211 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1212 cmd_list) {
1213
1214 if (i_cmd->status != COMP_CMD_ABORT)
1215 continue;
1216
1217 i_cmd->status = COMP_CMD_STOP;
1218
1219 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1220 i_cmd->command_trb);
1221 /* get cycle state from the original cmd trb */
1222 cycle_state = le32_to_cpu(
1223 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
1224 /* modify the command trb to no-op command */
1225 i_cmd->command_trb->generic.field[0] = 0;
1226 i_cmd->command_trb->generic.field[1] = 0;
1227 i_cmd->command_trb->generic.field[2] = 0;
1228 i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1229 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1230
1231 /*
1232 * caller waiting for completion is called when command
1233 * completion event is received for these no-op commands
1234 */
1235 }
1236
1237 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1238
1239 /* ring command ring doorbell to restart the command ring */
1240 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1241 !(xhci->xhc_state & XHCI_STATE_DYING)) {
1242 xhci->current_cmd = cur_cmd;
1243 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1244 xhci_ring_cmd_db(xhci);
1245 }
1246 return;
1247}
1248
1249
1250void xhci_handle_command_timeout(unsigned long data)
1251{
1252 struct xhci_hcd *xhci;
1253 int ret;
1254 unsigned long flags;
1255 u64 hw_ring_state;
1256 struct xhci_command *cur_cmd = NULL;
1257 xhci = (struct xhci_hcd *) data;
1258
1259 /* mark this command to be cancelled */
1260 spin_lock_irqsave(&xhci->lock, flags);
1261 if (xhci->current_cmd) {
1262 cur_cmd = xhci->current_cmd;
1263 cur_cmd->status = COMP_CMD_ABORT;
1264 }
1265
1266
1267 /* Make sure command ring is running before aborting it */
1268 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1269 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1270 (hw_ring_state & CMD_RING_RUNNING)) {
1271
1272 spin_unlock_irqrestore(&xhci->lock, flags);
1273 xhci_dbg(xhci, "Command timeout\n");
1274 ret = xhci_abort_cmd_ring(xhci);
1275 if (unlikely(ret == -ESHUTDOWN)) {
1276 xhci_err(xhci, "Abort command ring failed\n");
1277 xhci_cleanup_command_queue(xhci);
1278 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1279 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1280 }
1281 return;
1282 }
1283 /* command timeout on stopped ring, ring can't be aborted */
1284 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1285 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1286 spin_unlock_irqrestore(&xhci->lock, flags);
1287 return;
1288}
1289
1290static void handle_cmd_completion(struct xhci_hcd *xhci,
1291 struct xhci_event_cmd *event)
1292{
1293 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1294 u64 cmd_dma;
1295 dma_addr_t cmd_dequeue_dma;
1296 u32 cmd_comp_code;
1297 union xhci_trb *cmd_trb;
1298 struct xhci_command *cmd;
1299 u32 cmd_type;
1300
1301 cmd_dma = le64_to_cpu(event->cmd_trb);
1302 cmd_trb = xhci->cmd_ring->dequeue;
1303 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1304 cmd_trb);
1305 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1306 if (cmd_dequeue_dma == 0) {
1307 xhci->error_bitmask |= 1 << 4;
1308 return;
1309 }
1310 /* Does the DMA address match our internal dequeue pointer address? */
1311 if (cmd_dma != (u64) cmd_dequeue_dma) {
1312 xhci->error_bitmask |= 1 << 5;
1313 return;
1314 }
1315
1316 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1317
1318 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1319 xhci_err(xhci,
1320 "Command completion event does not match command\n");
1321 return;
1322 }
1323
1324 del_timer(&xhci->cmd_timer);
1325
1326 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1327
1328 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1329
1330 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1331 if (cmd_comp_code == COMP_CMD_STOP) {
1332 xhci_handle_stopped_cmd_ring(xhci, cmd);
1333 return;
1334 }
1335 /*
1336 * Host aborted the command ring, check if the current command was
1337 * supposed to be aborted, otherwise continue normally.
1338 * The command ring is stopped now, but the xHC will issue a Command
1339 * Ring Stopped event which will cause us to restart it.
1340 */
1341 if (cmd_comp_code == COMP_CMD_ABORT) {
1342 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1343 if (cmd->status == COMP_CMD_ABORT)
1344 goto event_handled;
1345 }
1346
1347 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1348 switch (cmd_type) {
1349 case TRB_ENABLE_SLOT:
1350 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1351 break;
1352 case TRB_DISABLE_SLOT:
1353 xhci_handle_cmd_disable_slot(xhci, slot_id);
1354 break;
1355 case TRB_CONFIG_EP:
1356 if (!cmd->completion)
1357 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1358 cmd_comp_code);
1359 break;
1360 case TRB_EVAL_CONTEXT:
1361 break;
1362 case TRB_ADDR_DEV:
1363 break;
1364 case TRB_STOP_RING:
1365 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1366 le32_to_cpu(cmd_trb->generic.field[3])));
1367 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1368 break;
1369 case TRB_SET_DEQ:
1370 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1371 le32_to_cpu(cmd_trb->generic.field[3])));
1372 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1373 break;
1374 case TRB_CMD_NOOP:
1375 /* Is this an aborted command turned to NO-OP? */
1376 if (cmd->status == COMP_CMD_STOP)
1377 cmd_comp_code = COMP_CMD_STOP;
1378 break;
1379 case TRB_RESET_EP:
1380 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1381 le32_to_cpu(cmd_trb->generic.field[3])));
1382 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1383 break;
1384 case TRB_RESET_DEV:
1385 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1386 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1387 */
1388 slot_id = TRB_TO_SLOT_ID(
1389 le32_to_cpu(cmd_trb->generic.field[3]));
1390 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1391 break;
1392 case TRB_NEC_GET_FW:
1393 xhci_handle_cmd_nec_get_fw(xhci, event);
1394 break;
1395 default:
1396 /* Skip over unknown commands on the event ring */
1397 xhci->error_bitmask |= 1 << 6;
1398 break;
1399 }
1400
1401 /* restart timer if this wasn't the last command */
1402 if (cmd->cmd_list.next != &xhci->cmd_list) {
1403 xhci->current_cmd = list_entry(cmd->cmd_list.next,
1404 struct xhci_command, cmd_list);
1405 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1406 }
1407
1408event_handled:
1409 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1410
1411 inc_deq(xhci, xhci->cmd_ring);
1412}
1413
1414static void handle_vendor_event(struct xhci_hcd *xhci,
1415 union xhci_trb *event)
1416{
1417 u32 trb_type;
1418
1419 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1420 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1421 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1422 handle_cmd_completion(xhci, &event->event_cmd);
1423}
1424
1425/* @port_id: the one-based port ID from the hardware (indexed from array of all
1426 * port registers -- USB 3.0 and USB 2.0).
1427 *
1428 * Returns a zero-based port number, which is suitable for indexing into each of
1429 * the split roothubs' port arrays and bus state arrays.
1430 * Add one to it in order to call xhci_find_slot_id_by_port.
1431 */
1432static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1433 struct xhci_hcd *xhci, u32 port_id)
1434{
1435 unsigned int i;
1436 unsigned int num_similar_speed_ports = 0;
1437
1438 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1439 * and usb2_ports are 0-based indexes. Count the number of similar
1440 * speed ports, up to 1 port before this port.
1441 */
1442 for (i = 0; i < (port_id - 1); i++) {
1443 u8 port_speed = xhci->port_array[i];
1444
1445 /*
1446 * Skip ports that don't have known speeds, or have duplicate
1447 * Extended Capabilities port speed entries.
1448 */
1449 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1450 continue;
1451
1452 /*
1453 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1454 * 1.1 ports are under the USB 2.0 hub. If the port speed
1455 * matches the device speed, it's a similar speed port.
1456 */
1457 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1458 num_similar_speed_ports++;
1459 }
1460 return num_similar_speed_ports;
1461}
1462
1463static void handle_device_notification(struct xhci_hcd *xhci,
1464 union xhci_trb *event)
1465{
1466 u32 slot_id;
1467 struct usb_device *udev;
1468
1469 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1470 if (!xhci->devs[slot_id]) {
1471 xhci_warn(xhci, "Device Notification event for "
1472 "unused slot %u\n", slot_id);
1473 return;
1474 }
1475
1476 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1477 slot_id);
1478 udev = xhci->devs[slot_id]->udev;
1479 if (udev && udev->parent)
1480 usb_wakeup_notification(udev->parent, udev->portnum);
1481}
1482
1483static void handle_port_status(struct xhci_hcd *xhci,
1484 union xhci_trb *event)
1485{
1486 struct usb_hcd *hcd;
1487 u32 port_id;
1488 u32 temp, temp1;
1489 int max_ports;
1490 int slot_id;
1491 unsigned int faked_port_index;
1492 u8 major_revision;
1493 struct xhci_bus_state *bus_state;
1494 __le32 __iomem **port_array;
1495 bool bogus_port_status = false;
1496
1497 /* Port status change events always have a successful completion code */
1498 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1499 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1500 xhci->error_bitmask |= 1 << 8;
1501 }
1502 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1503 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1504
1505 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1506 if ((port_id <= 0) || (port_id > max_ports)) {
1507 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1508 inc_deq(xhci, xhci->event_ring);
1509 return;
1510 }
1511
1512 /* Figure out which usb_hcd this port is attached to:
1513 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1514 */
1515 major_revision = xhci->port_array[port_id - 1];
1516
1517 /* Find the right roothub. */
1518 hcd = xhci_to_hcd(xhci);
1519 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1520 hcd = xhci->shared_hcd;
1521
1522 if (major_revision == 0) {
1523 xhci_warn(xhci, "Event for port %u not in "
1524 "Extended Capabilities, ignoring.\n",
1525 port_id);
1526 bogus_port_status = true;
1527 goto cleanup;
1528 }
1529 if (major_revision == DUPLICATE_ENTRY) {
1530 xhci_warn(xhci, "Event for port %u duplicated in"
1531 "Extended Capabilities, ignoring.\n",
1532 port_id);
1533 bogus_port_status = true;
1534 goto cleanup;
1535 }
1536
1537 /*
1538 * Hardware port IDs reported by a Port Status Change Event include USB
1539 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1540 * resume event, but we first need to translate the hardware port ID
1541 * into the index into the ports on the correct split roothub, and the
1542 * correct bus_state structure.
1543 */
1544 bus_state = &xhci->bus_state[hcd_index(hcd)];
1545 if (hcd->speed >= HCD_USB3)
1546 port_array = xhci->usb3_ports;
1547 else
1548 port_array = xhci->usb2_ports;
1549 /* Find the faked port hub number */
1550 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1551 port_id);
1552
1553 temp = readl(port_array[faked_port_index]);
1554 if (hcd->state == HC_STATE_SUSPENDED) {
1555 xhci_dbg(xhci, "resume root hub\n");
1556 usb_hcd_resume_root_hub(hcd);
1557 }
1558
1559 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1560 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1561
1562 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1563 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1564
1565 temp1 = readl(&xhci->op_regs->command);
1566 if (!(temp1 & CMD_RUN)) {
1567 xhci_warn(xhci, "xHC is not running.\n");
1568 goto cleanup;
1569 }
1570
1571 if (DEV_SUPERSPEED_ANY(temp)) {
1572 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1573 /* Set a flag to say the port signaled remote wakeup,
1574 * so we can tell the difference between the end of
1575 * device and host initiated resume.
1576 */
1577 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1578 xhci_test_and_clear_bit(xhci, port_array,
1579 faked_port_index, PORT_PLC);
1580 xhci_set_link_state(xhci, port_array, faked_port_index,
1581 XDEV_U0);
1582 /* Need to wait until the next link state change
1583 * indicates the device is actually in U0.
1584 */
1585 bogus_port_status = true;
1586 goto cleanup;
1587 } else if (!test_bit(faked_port_index,
1588 &bus_state->resuming_ports)) {
1589 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1590 bus_state->resume_done[faked_port_index] = jiffies +
1591 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1592 set_bit(faked_port_index, &bus_state->resuming_ports);
1593 mod_timer(&hcd->rh_timer,
1594 bus_state->resume_done[faked_port_index]);
1595 /* Do the rest in GetPortStatus */
1596 }
1597 }
1598
1599 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1600 DEV_SUPERSPEED_ANY(temp)) {
1601 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1602 /* We've just brought the device into U0 through either the
1603 * Resume state after a device remote wakeup, or through the
1604 * U3Exit state after a host-initiated resume. If it's a device
1605 * initiated remote wake, don't pass up the link state change,
1606 * so the roothub behavior is consistent with external
1607 * USB 3.0 hub behavior.
1608 */
1609 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1610 faked_port_index + 1);
1611 if (slot_id && xhci->devs[slot_id])
1612 xhci_ring_device(xhci, slot_id);
1613 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1614 bus_state->port_remote_wakeup &=
1615 ~(1 << faked_port_index);
1616 xhci_test_and_clear_bit(xhci, port_array,
1617 faked_port_index, PORT_PLC);
1618 usb_wakeup_notification(hcd->self.root_hub,
1619 faked_port_index + 1);
1620 bogus_port_status = true;
1621 goto cleanup;
1622 }
1623 }
1624
1625 /*
1626 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1627 * RExit to a disconnect state). If so, let the the driver know it's
1628 * out of the RExit state.
1629 */
1630 if (!DEV_SUPERSPEED_ANY(temp) &&
1631 test_and_clear_bit(faked_port_index,
1632 &bus_state->rexit_ports)) {
1633 complete(&bus_state->rexit_done[faked_port_index]);
1634 bogus_port_status = true;
1635 goto cleanup;
1636 }
1637
1638 if (hcd->speed < HCD_USB3)
1639 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1640 PORT_PLC);
1641
1642cleanup:
1643 /* Update event ring dequeue pointer before dropping the lock */
1644 inc_deq(xhci, xhci->event_ring);
1645
1646 /* Don't make the USB core poll the roothub if we got a bad port status
1647 * change event. Besides, at that point we can't tell which roothub
1648 * (USB 2.0 or USB 3.0) to kick.
1649 */
1650 if (bogus_port_status)
1651 return;
1652
1653 /*
1654 * xHCI port-status-change events occur when the "or" of all the
1655 * status-change bits in the portsc register changes from 0 to 1.
1656 * New status changes won't cause an event if any other change
1657 * bits are still set. When an event occurs, switch over to
1658 * polling to avoid losing status changes.
1659 */
1660 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1661 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1662 spin_unlock(&xhci->lock);
1663 /* Pass this up to the core */
1664 usb_hcd_poll_rh_status(hcd);
1665 spin_lock(&xhci->lock);
1666}
1667
1668/*
1669 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1670 * at end_trb, which may be in another segment. If the suspect DMA address is a
1671 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1672 * returns 0.
1673 */
1674struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1675 struct xhci_segment *start_seg,
1676 union xhci_trb *start_trb,
1677 union xhci_trb *end_trb,
1678 dma_addr_t suspect_dma,
1679 bool debug)
1680{
1681 dma_addr_t start_dma;
1682 dma_addr_t end_seg_dma;
1683 dma_addr_t end_trb_dma;
1684 struct xhci_segment *cur_seg;
1685
1686 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1687 cur_seg = start_seg;
1688
1689 do {
1690 if (start_dma == 0)
1691 return NULL;
1692 /* We may get an event for a Link TRB in the middle of a TD */
1693 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1694 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1695 /* If the end TRB isn't in this segment, this is set to 0 */
1696 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1697
1698 if (debug)
1699 xhci_warn(xhci,
1700 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1701 (unsigned long long)suspect_dma,
1702 (unsigned long long)start_dma,
1703 (unsigned long long)end_trb_dma,
1704 (unsigned long long)cur_seg->dma,
1705 (unsigned long long)end_seg_dma);
1706
1707 if (end_trb_dma > 0) {
1708 /* The end TRB is in this segment, so suspect should be here */
1709 if (start_dma <= end_trb_dma) {
1710 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1711 return cur_seg;
1712 } else {
1713 /* Case for one segment with
1714 * a TD wrapped around to the top
1715 */
1716 if ((suspect_dma >= start_dma &&
1717 suspect_dma <= end_seg_dma) ||
1718 (suspect_dma >= cur_seg->dma &&
1719 suspect_dma <= end_trb_dma))
1720 return cur_seg;
1721 }
1722 return NULL;
1723 } else {
1724 /* Might still be somewhere in this segment */
1725 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1726 return cur_seg;
1727 }
1728 cur_seg = cur_seg->next;
1729 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1730 } while (cur_seg != start_seg);
1731
1732 return NULL;
1733}
1734
1735static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1736 unsigned int slot_id, unsigned int ep_index,
1737 unsigned int stream_id,
1738 struct xhci_td *td, union xhci_trb *event_trb)
1739{
1740 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1741 struct xhci_command *command;
1742 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1743 if (!command)
1744 return;
1745
1746 ep->ep_state |= EP_HALTED;
1747 ep->stopped_stream = stream_id;
1748
1749 xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1750 xhci_cleanup_stalled_ring(xhci, ep_index, td);
1751
1752 ep->stopped_stream = 0;
1753
1754 xhci_ring_cmd_db(xhci);
1755}
1756
1757/* Check if an error has halted the endpoint ring. The class driver will
1758 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1759 * However, a babble and other errors also halt the endpoint ring, and the class
1760 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1761 * Ring Dequeue Pointer command manually.
1762 */
1763static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1764 struct xhci_ep_ctx *ep_ctx,
1765 unsigned int trb_comp_code)
1766{
1767 /* TRB completion codes that may require a manual halt cleanup */
1768 if (trb_comp_code == COMP_TX_ERR ||
1769 trb_comp_code == COMP_BABBLE ||
1770 trb_comp_code == COMP_SPLIT_ERR)
1771 /* The 0.96 spec says a babbling control endpoint
1772 * is not halted. The 0.96 spec says it is. Some HW
1773 * claims to be 0.95 compliant, but it halts the control
1774 * endpoint anyway. Check if a babble halted the
1775 * endpoint.
1776 */
1777 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1778 cpu_to_le32(EP_STATE_HALTED))
1779 return 1;
1780
1781 return 0;
1782}
1783
1784int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1785{
1786 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1787 /* Vendor defined "informational" completion code,
1788 * treat as not-an-error.
1789 */
1790 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1791 trb_comp_code);
1792 xhci_dbg(xhci, "Treating code as success.\n");
1793 return 1;
1794 }
1795 return 0;
1796}
1797
1798/*
1799 * Finish the td processing, remove the td from td list;
1800 * Return 1 if the urb can be given back.
1801 */
1802static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1803 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1804 struct xhci_virt_ep *ep, int *status, bool skip)
1805{
1806 struct xhci_virt_device *xdev;
1807 struct xhci_ring *ep_ring;
1808 unsigned int slot_id;
1809 int ep_index;
1810 struct urb *urb = NULL;
1811 struct xhci_ep_ctx *ep_ctx;
1812 int ret = 0;
1813 struct urb_priv *urb_priv;
1814 u32 trb_comp_code;
1815
1816 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1817 xdev = xhci->devs[slot_id];
1818 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1819 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1820 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1821 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1822
1823 if (skip)
1824 goto td_cleanup;
1825
1826 if (trb_comp_code == COMP_STOP_INVAL ||
1827 trb_comp_code == COMP_STOP ||
1828 trb_comp_code == COMP_STOP_SHORT) {
1829 /* The Endpoint Stop Command completion will take care of any
1830 * stopped TDs. A stopped TD may be restarted, so don't update
1831 * the ring dequeue pointer or take this TD off any lists yet.
1832 */
1833 ep->stopped_td = td;
1834 return 0;
1835 }
1836 if (trb_comp_code == COMP_STALL ||
1837 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1838 trb_comp_code)) {
1839 /* Issue a reset endpoint command to clear the host side
1840 * halt, followed by a set dequeue command to move the
1841 * dequeue pointer past the TD.
1842 * The class driver clears the device side halt later.
1843 */
1844 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1845 ep_ring->stream_id, td, event_trb);
1846 } else {
1847 /* Update ring dequeue pointer */
1848 while (ep_ring->dequeue != td->last_trb)
1849 inc_deq(xhci, ep_ring);
1850 inc_deq(xhci, ep_ring);
1851 }
1852
1853td_cleanup:
1854 /* Clean up the endpoint's TD list */
1855 urb = td->urb;
1856 urb_priv = urb->hcpriv;
1857
1858 /* Do one last check of the actual transfer length.
1859 * If the host controller said we transferred more data than the buffer
1860 * length, urb->actual_length will be a very big number (since it's
1861 * unsigned). Play it safe and say we didn't transfer anything.
1862 */
1863 if (urb->actual_length > urb->transfer_buffer_length) {
1864 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1865 urb->transfer_buffer_length,
1866 urb->actual_length);
1867 urb->actual_length = 0;
1868 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1869 *status = -EREMOTEIO;
1870 else
1871 *status = 0;
1872 }
1873 list_del_init(&td->td_list);
1874 /* Was this TD slated to be cancelled but completed anyway? */
1875 if (!list_empty(&td->cancelled_td_list))
1876 list_del_init(&td->cancelled_td_list);
1877
1878 urb_priv->td_cnt++;
1879 /* Giveback the urb when all the tds are completed */
1880 if (urb_priv->td_cnt == urb_priv->length) {
1881 ret = 1;
1882 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1883 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1884 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1885 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1886 usb_amd_quirk_pll_enable();
1887 }
1888 }
1889 }
1890
1891 return ret;
1892}
1893
1894/*
1895 * Process control tds, update urb status and actual_length.
1896 */
1897static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1898 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1899 struct xhci_virt_ep *ep, int *status)
1900{
1901 struct xhci_virt_device *xdev;
1902 struct xhci_ring *ep_ring;
1903 unsigned int slot_id;
1904 int ep_index;
1905 struct xhci_ep_ctx *ep_ctx;
1906 u32 trb_comp_code;
1907
1908 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1909 xdev = xhci->devs[slot_id];
1910 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1911 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1912 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1913 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1914
1915 switch (trb_comp_code) {
1916 case COMP_SUCCESS:
1917 if (event_trb == ep_ring->dequeue) {
1918 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1919 "without IOC set??\n");
1920 *status = -ESHUTDOWN;
1921 } else if (event_trb != td->last_trb) {
1922 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1923 "without IOC set??\n");
1924 *status = -ESHUTDOWN;
1925 } else {
1926 *status = 0;
1927 }
1928 break;
1929 case COMP_SHORT_TX:
1930 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1931 *status = -EREMOTEIO;
1932 else
1933 *status = 0;
1934 break;
1935 case COMP_STOP_SHORT:
1936 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1937 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1938 else
1939 td->urb->actual_length =
1940 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1941
1942 return finish_td(xhci, td, event_trb, event, ep, status, false);
1943 case COMP_STOP:
1944 /* Did we stop at data stage? */
1945 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1946 td->urb->actual_length =
1947 td->urb->transfer_buffer_length -
1948 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1949 /* fall through */
1950 case COMP_STOP_INVAL:
1951 return finish_td(xhci, td, event_trb, event, ep, status, false);
1952 default:
1953 if (!xhci_requires_manual_halt_cleanup(xhci,
1954 ep_ctx, trb_comp_code))
1955 break;
1956 xhci_dbg(xhci, "TRB error code %u, "
1957 "halted endpoint index = %u\n",
1958 trb_comp_code, ep_index);
1959 /* else fall through */
1960 case COMP_STALL:
1961 /* Did we transfer part of the data (middle) phase? */
1962 if (event_trb != ep_ring->dequeue &&
1963 event_trb != td->last_trb)
1964 td->urb->actual_length =
1965 td->urb->transfer_buffer_length -
1966 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1967 else if (!td->urb_length_set)
1968 td->urb->actual_length = 0;
1969
1970 return finish_td(xhci, td, event_trb, event, ep, status, false);
1971 }
1972 /*
1973 * Did we transfer any data, despite the errors that might have
1974 * happened? I.e. did we get past the setup stage?
1975 */
1976 if (event_trb != ep_ring->dequeue) {
1977 /* The event was for the status stage */
1978 if (event_trb == td->last_trb) {
1979 if (td->urb_length_set) {
1980 /* Don't overwrite a previously set error code
1981 */
1982 if ((*status == -EINPROGRESS || *status == 0) &&
1983 (td->urb->transfer_flags
1984 & URB_SHORT_NOT_OK))
1985 /* Did we already see a short data
1986 * stage? */
1987 *status = -EREMOTEIO;
1988 } else {
1989 td->urb->actual_length =
1990 td->urb->transfer_buffer_length;
1991 }
1992 } else {
1993 /*
1994 * Maybe the event was for the data stage? If so, update
1995 * already the actual_length of the URB and flag it as
1996 * set, so that it is not overwritten in the event for
1997 * the last TRB.
1998 */
1999 td->urb_length_set = true;
2000 td->urb->actual_length =
2001 td->urb->transfer_buffer_length -
2002 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2003 xhci_dbg(xhci, "Waiting for status "
2004 "stage event\n");
2005 return 0;
2006 }
2007 }
2008
2009 return finish_td(xhci, td, event_trb, event, ep, status, false);
2010}
2011
2012/*
2013 * Process isochronous tds, update urb packet status and actual_length.
2014 */
2015static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2016 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2017 struct xhci_virt_ep *ep, int *status)
2018{
2019 struct xhci_ring *ep_ring;
2020 struct urb_priv *urb_priv;
2021 int idx;
2022 int len = 0;
2023 union xhci_trb *cur_trb;
2024 struct xhci_segment *cur_seg;
2025 struct usb_iso_packet_descriptor *frame;
2026 u32 trb_comp_code;
2027 bool skip_td = false;
2028
2029 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2030 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2031 urb_priv = td->urb->hcpriv;
2032 idx = urb_priv->td_cnt;
2033 frame = &td->urb->iso_frame_desc[idx];
2034
2035 /* handle completion code */
2036 switch (trb_comp_code) {
2037 case COMP_SUCCESS:
2038 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2039 frame->status = 0;
2040 break;
2041 }
2042 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2043 trb_comp_code = COMP_SHORT_TX;
2044 /* fallthrough */
2045 case COMP_STOP_SHORT:
2046 case COMP_SHORT_TX:
2047 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2048 -EREMOTEIO : 0;
2049 break;
2050 case COMP_BW_OVER:
2051 frame->status = -ECOMM;
2052 skip_td = true;
2053 break;
2054 case COMP_BUFF_OVER:
2055 case COMP_BABBLE:
2056 frame->status = -EOVERFLOW;
2057 skip_td = true;
2058 break;
2059 case COMP_DEV_ERR:
2060 case COMP_STALL:
2061 frame->status = -EPROTO;
2062 skip_td = true;
2063 break;
2064 case COMP_TX_ERR:
2065 frame->status = -EPROTO;
2066 if (event_trb != td->last_trb)
2067 return 0;
2068 skip_td = true;
2069 break;
2070 case COMP_STOP:
2071 case COMP_STOP_INVAL:
2072 break;
2073 default:
2074 frame->status = -1;
2075 break;
2076 }
2077
2078 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2079 frame->actual_length = frame->length;
2080 td->urb->actual_length += frame->length;
2081 } else if (trb_comp_code == COMP_STOP_SHORT) {
2082 frame->actual_length =
2083 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2084 td->urb->actual_length += frame->actual_length;
2085 } else {
2086 for (cur_trb = ep_ring->dequeue,
2087 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2088 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2089 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2090 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2091 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2092 }
2093 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2094 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2095
2096 if (trb_comp_code != COMP_STOP_INVAL) {
2097 frame->actual_length = len;
2098 td->urb->actual_length += len;
2099 }
2100 }
2101
2102 return finish_td(xhci, td, event_trb, event, ep, status, false);
2103}
2104
2105static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2106 struct xhci_transfer_event *event,
2107 struct xhci_virt_ep *ep, int *status)
2108{
2109 struct xhci_ring *ep_ring;
2110 struct urb_priv *urb_priv;
2111 struct usb_iso_packet_descriptor *frame;
2112 int idx;
2113
2114 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2115 urb_priv = td->urb->hcpriv;
2116 idx = urb_priv->td_cnt;
2117 frame = &td->urb->iso_frame_desc[idx];
2118
2119 /* The transfer is partly done. */
2120 frame->status = -EXDEV;
2121
2122 /* calc actual length */
2123 frame->actual_length = 0;
2124
2125 /* Update ring dequeue pointer */
2126 while (ep_ring->dequeue != td->last_trb)
2127 inc_deq(xhci, ep_ring);
2128 inc_deq(xhci, ep_ring);
2129
2130 return finish_td(xhci, td, NULL, event, ep, status, true);
2131}
2132
2133/*
2134 * Process bulk and interrupt tds, update urb status and actual_length.
2135 */
2136static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2137 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2138 struct xhci_virt_ep *ep, int *status)
2139{
2140 struct xhci_ring *ep_ring;
2141 union xhci_trb *cur_trb;
2142 struct xhci_segment *cur_seg;
2143 u32 trb_comp_code;
2144
2145 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2146 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2147
2148 switch (trb_comp_code) {
2149 case COMP_SUCCESS:
2150 /* Double check that the HW transferred everything. */
2151 if (event_trb != td->last_trb ||
2152 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2153 xhci_warn(xhci, "WARN Successful completion "
2154 "on short TX\n");
2155 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2156 *status = -EREMOTEIO;
2157 else
2158 *status = 0;
2159 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2160 trb_comp_code = COMP_SHORT_TX;
2161 } else {
2162 *status = 0;
2163 }
2164 break;
2165 case COMP_STOP_SHORT:
2166 case COMP_SHORT_TX:
2167 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2168 *status = -EREMOTEIO;
2169 else
2170 *status = 0;
2171 break;
2172 default:
2173 /* Others already handled above */
2174 break;
2175 }
2176 if (trb_comp_code == COMP_SHORT_TX)
2177 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2178 "%d bytes untransferred\n",
2179 td->urb->ep->desc.bEndpointAddress,
2180 td->urb->transfer_buffer_length,
2181 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2182 /* Stopped - short packet completion */
2183 if (trb_comp_code == COMP_STOP_SHORT) {
2184 td->urb->actual_length =
2185 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2186
2187 if (td->urb->transfer_buffer_length <
2188 td->urb->actual_length) {
2189 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2190 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2191 td->urb->actual_length = 0;
2192 /* status will be set by usb core for canceled urbs */
2193 }
2194 /* Fast path - was this the last TRB in the TD for this URB? */
2195 } else if (event_trb == td->last_trb) {
2196 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2197 td->urb->actual_length =
2198 td->urb->transfer_buffer_length -
2199 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2200 if (td->urb->transfer_buffer_length <
2201 td->urb->actual_length) {
2202 xhci_warn(xhci, "HC gave bad length "
2203 "of %d bytes left\n",
2204 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2205 td->urb->actual_length = 0;
2206 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2207 *status = -EREMOTEIO;
2208 else
2209 *status = 0;
2210 }
2211 /* Don't overwrite a previously set error code */
2212 if (*status == -EINPROGRESS) {
2213 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2214 *status = -EREMOTEIO;
2215 else
2216 *status = 0;
2217 }
2218 } else {
2219 td->urb->actual_length =
2220 td->urb->transfer_buffer_length;
2221 /* Ignore a short packet completion if the
2222 * untransferred length was zero.
2223 */
2224 if (*status == -EREMOTEIO)
2225 *status = 0;
2226 }
2227 } else {
2228 /* Slow path - walk the list, starting from the dequeue
2229 * pointer, to get the actual length transferred.
2230 */
2231 td->urb->actual_length = 0;
2232 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2233 cur_trb != event_trb;
2234 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2235 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2236 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2237 td->urb->actual_length +=
2238 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2239 }
2240 /* If the ring didn't stop on a Link or No-op TRB, add
2241 * in the actual bytes transferred from the Normal TRB
2242 */
2243 if (trb_comp_code != COMP_STOP_INVAL)
2244 td->urb->actual_length +=
2245 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2246 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2247 }
2248
2249 return finish_td(xhci, td, event_trb, event, ep, status, false);
2250}
2251
2252/*
2253 * If this function returns an error condition, it means it got a Transfer
2254 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2255 * At this point, the host controller is probably hosed and should be reset.
2256 */
2257static int handle_tx_event(struct xhci_hcd *xhci,
2258 struct xhci_transfer_event *event)
2259 __releases(&xhci->lock)
2260 __acquires(&xhci->lock)
2261{
2262 struct xhci_virt_device *xdev;
2263 struct xhci_virt_ep *ep;
2264 struct xhci_ring *ep_ring;
2265 unsigned int slot_id;
2266 int ep_index;
2267 struct xhci_td *td = NULL;
2268 dma_addr_t event_dma;
2269 struct xhci_segment *event_seg;
2270 union xhci_trb *event_trb;
2271 struct urb *urb = NULL;
2272 int status = -EINPROGRESS;
2273 struct urb_priv *urb_priv;
2274 struct xhci_ep_ctx *ep_ctx;
2275 struct list_head *tmp;
2276 u32 trb_comp_code;
2277 int ret = 0;
2278 int td_num = 0;
2279 bool handling_skipped_tds = false;
2280
2281 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2282 xdev = xhci->devs[slot_id];
2283 if (!xdev) {
2284 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2285 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2286 (unsigned long long) xhci_trb_virt_to_dma(
2287 xhci->event_ring->deq_seg,
2288 xhci->event_ring->dequeue),
2289 lower_32_bits(le64_to_cpu(event->buffer)),
2290 upper_32_bits(le64_to_cpu(event->buffer)),
2291 le32_to_cpu(event->transfer_len),
2292 le32_to_cpu(event->flags));
2293 xhci_dbg(xhci, "Event ring:\n");
2294 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2295 return -ENODEV;
2296 }
2297
2298 /* Endpoint ID is 1 based, our index is zero based */
2299 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2300 ep = &xdev->eps[ep_index];
2301 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2302 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2303 if (!ep_ring ||
2304 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2305 EP_STATE_DISABLED) {
2306 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2307 "or incorrect stream ring\n");
2308 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2309 (unsigned long long) xhci_trb_virt_to_dma(
2310 xhci->event_ring->deq_seg,
2311 xhci->event_ring->dequeue),
2312 lower_32_bits(le64_to_cpu(event->buffer)),
2313 upper_32_bits(le64_to_cpu(event->buffer)),
2314 le32_to_cpu(event->transfer_len),
2315 le32_to_cpu(event->flags));
2316 xhci_dbg(xhci, "Event ring:\n");
2317 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2318 return -ENODEV;
2319 }
2320
2321 /* Count current td numbers if ep->skip is set */
2322 if (ep->skip) {
2323 list_for_each(tmp, &ep_ring->td_list)
2324 td_num++;
2325 }
2326
2327 event_dma = le64_to_cpu(event->buffer);
2328 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2329 /* Look for common error cases */
2330 switch (trb_comp_code) {
2331 /* Skip codes that require special handling depending on
2332 * transfer type
2333 */
2334 case COMP_SUCCESS:
2335 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2336 break;
2337 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2338 trb_comp_code = COMP_SHORT_TX;
2339 else
2340 xhci_warn_ratelimited(xhci,
2341 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2342 case COMP_SHORT_TX:
2343 break;
2344 case COMP_STOP:
2345 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2346 break;
2347 case COMP_STOP_INVAL:
2348 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2349 break;
2350 case COMP_STOP_SHORT:
2351 xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2352 break;
2353 case COMP_STALL:
2354 xhci_dbg(xhci, "Stalled endpoint\n");
2355 ep->ep_state |= EP_HALTED;
2356 status = -EPIPE;
2357 break;
2358 case COMP_TRB_ERR:
2359 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2360 status = -EILSEQ;
2361 break;
2362 case COMP_SPLIT_ERR:
2363 case COMP_TX_ERR:
2364 xhci_dbg(xhci, "Transfer error on endpoint\n");
2365 status = -EPROTO;
2366 break;
2367 case COMP_BABBLE:
2368 xhci_dbg(xhci, "Babble error on endpoint\n");
2369 status = -EOVERFLOW;
2370 break;
2371 case COMP_DB_ERR:
2372 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2373 status = -ENOSR;
2374 break;
2375 case COMP_BW_OVER:
2376 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2377 break;
2378 case COMP_BUFF_OVER:
2379 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2380 break;
2381 case COMP_UNDERRUN:
2382 /*
2383 * When the Isoch ring is empty, the xHC will generate
2384 * a Ring Overrun Event for IN Isoch endpoint or Ring
2385 * Underrun Event for OUT Isoch endpoint.
2386 */
2387 xhci_dbg(xhci, "underrun event on endpoint\n");
2388 if (!list_empty(&ep_ring->td_list))
2389 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2390 "still with TDs queued?\n",
2391 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2392 ep_index);
2393 goto cleanup;
2394 case COMP_OVERRUN:
2395 xhci_dbg(xhci, "overrun event on endpoint\n");
2396 if (!list_empty(&ep_ring->td_list))
2397 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2398 "still with TDs queued?\n",
2399 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2400 ep_index);
2401 goto cleanup;
2402 case COMP_DEV_ERR:
2403 xhci_warn(xhci, "WARN: detect an incompatible device");
2404 status = -EPROTO;
2405 break;
2406 case COMP_MISSED_INT:
2407 /*
2408 * When encounter missed service error, one or more isoc tds
2409 * may be missed by xHC.
2410 * Set skip flag of the ep_ring; Complete the missed tds as
2411 * short transfer when process the ep_ring next time.
2412 */
2413 ep->skip = true;
2414 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2415 goto cleanup;
2416 case COMP_PING_ERR:
2417 ep->skip = true;
2418 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2419 goto cleanup;
2420 default:
2421 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2422 status = 0;
2423 break;
2424 }
2425 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2426 trb_comp_code);
2427 goto cleanup;
2428 }
2429
2430 do {
2431 /* This TRB should be in the TD at the head of this ring's
2432 * TD list.
2433 */
2434 if (list_empty(&ep_ring->td_list)) {
2435 /*
2436 * A stopped endpoint may generate an extra completion
2437 * event if the device was suspended. Don't print
2438 * warnings.
2439 */
2440 if (!(trb_comp_code == COMP_STOP ||
2441 trb_comp_code == COMP_STOP_INVAL)) {
2442 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2443 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2444 ep_index);
2445 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2446 (le32_to_cpu(event->flags) &
2447 TRB_TYPE_BITMASK)>>10);
2448 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2449 }
2450 if (ep->skip) {
2451 ep->skip = false;
2452 xhci_dbg(xhci, "td_list is empty while skip "
2453 "flag set. Clear skip flag.\n");
2454 }
2455 ret = 0;
2456 goto cleanup;
2457 }
2458
2459 /* We've skipped all the TDs on the ep ring when ep->skip set */
2460 if (ep->skip && td_num == 0) {
2461 ep->skip = false;
2462 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2463 "Clear skip flag.\n");
2464 ret = 0;
2465 goto cleanup;
2466 }
2467
2468 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2469 if (ep->skip)
2470 td_num--;
2471
2472 /* Is this a TRB in the currently executing TD? */
2473 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2474 td->last_trb, event_dma, false);
2475
2476 /*
2477 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2478 * is not in the current TD pointed by ep_ring->dequeue because
2479 * that the hardware dequeue pointer still at the previous TRB
2480 * of the current TD. The previous TRB maybe a Link TD or the
2481 * last TRB of the previous TD. The command completion handle
2482 * will take care the rest.
2483 */
2484 if (!event_seg && (trb_comp_code == COMP_STOP ||
2485 trb_comp_code == COMP_STOP_INVAL)) {
2486 ret = 0;
2487 goto cleanup;
2488 }
2489
2490 if (!event_seg) {
2491 if (!ep->skip ||
2492 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2493 /* Some host controllers give a spurious
2494 * successful event after a short transfer.
2495 * Ignore it.
2496 */
2497 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2498 ep_ring->last_td_was_short) {
2499 ep_ring->last_td_was_short = false;
2500 ret = 0;
2501 goto cleanup;
2502 }
2503 /* HC is busted, give up! */
2504 xhci_err(xhci,
2505 "ERROR Transfer event TRB DMA ptr not "
2506 "part of current TD ep_index %d "
2507 "comp_code %u\n", ep_index,
2508 trb_comp_code);
2509 trb_in_td(xhci, ep_ring->deq_seg,
2510 ep_ring->dequeue, td->last_trb,
2511 event_dma, true);
2512 return -ESHUTDOWN;
2513 }
2514
2515 ret = skip_isoc_td(xhci, td, event, ep, &status);
2516 goto cleanup;
2517 }
2518 if (trb_comp_code == COMP_SHORT_TX)
2519 ep_ring->last_td_was_short = true;
2520 else
2521 ep_ring->last_td_was_short = false;
2522
2523 if (ep->skip) {
2524 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2525 ep->skip = false;
2526 }
2527
2528 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2529 sizeof(*event_trb)];
2530 /*
2531 * No-op TRB should not trigger interrupts.
2532 * If event_trb is a no-op TRB, it means the
2533 * corresponding TD has been cancelled. Just ignore
2534 * the TD.
2535 */
2536 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2537 xhci_dbg(xhci,
2538 "event_trb is a no-op TRB. Skip it\n");
2539 goto cleanup;
2540 }
2541
2542 /* Now update the urb's actual_length and give back to
2543 * the core
2544 */
2545 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2546 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2547 &status);
2548 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2549 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2550 &status);
2551 else
2552 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2553 ep, &status);
2554
2555cleanup:
2556
2557
2558 handling_skipped_tds = ep->skip &&
2559 trb_comp_code != COMP_MISSED_INT &&
2560 trb_comp_code != COMP_PING_ERR;
2561
2562 /*
2563 * Do not update event ring dequeue pointer if we're in a loop
2564 * processing missed tds.
2565 */
2566 if (!handling_skipped_tds)
2567 inc_deq(xhci, xhci->event_ring);
2568
2569 if (ret) {
2570 urb = td->urb;
2571 urb_priv = urb->hcpriv;
2572
2573 xhci_urb_free_priv(urb_priv);
2574
2575 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2576 if ((urb->actual_length != urb->transfer_buffer_length &&
2577 (urb->transfer_flags &
2578 URB_SHORT_NOT_OK)) ||
2579 (status != 0 &&
2580 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2581 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2582 "expected = %d, status = %d\n",
2583 urb, urb->actual_length,
2584 urb->transfer_buffer_length,
2585 status);
2586 spin_unlock(&xhci->lock);
2587 /* EHCI, UHCI, and OHCI always unconditionally set the
2588 * urb->status of an isochronous endpoint to 0.
2589 */
2590 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2591 status = 0;
2592 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2593 spin_lock(&xhci->lock);
2594 }
2595
2596 /*
2597 * If ep->skip is set, it means there are missed tds on the
2598 * endpoint ring need to take care of.
2599 * Process them as short transfer until reach the td pointed by
2600 * the event.
2601 */
2602 } while (handling_skipped_tds);
2603
2604 return 0;
2605}
2606
2607/*
2608 * This function handles all OS-owned events on the event ring. It may drop
2609 * xhci->lock between event processing (e.g. to pass up port status changes).
2610 * Returns >0 for "possibly more events to process" (caller should call again),
2611 * otherwise 0 if done. In future, <0 returns should indicate error code.
2612 */
2613static int xhci_handle_event(struct xhci_hcd *xhci)
2614{
2615 union xhci_trb *event;
2616 int update_ptrs = 1;
2617 int ret;
2618
2619 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2620 xhci->error_bitmask |= 1 << 1;
2621 return 0;
2622 }
2623
2624 event = xhci->event_ring->dequeue;
2625 /* Does the HC or OS own the TRB? */
2626 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2627 xhci->event_ring->cycle_state) {
2628 xhci->error_bitmask |= 1 << 2;
2629 return 0;
2630 }
2631
2632 /*
2633 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2634 * speculative reads of the event's flags/data below.
2635 */
2636 rmb();
2637 /* FIXME: Handle more event types. */
2638 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2639 case TRB_TYPE(TRB_COMPLETION):
2640 handle_cmd_completion(xhci, &event->event_cmd);
2641 break;
2642 case TRB_TYPE(TRB_PORT_STATUS):
2643 handle_port_status(xhci, event);
2644 update_ptrs = 0;
2645 break;
2646 case TRB_TYPE(TRB_TRANSFER):
2647 ret = handle_tx_event(xhci, &event->trans_event);
2648 if (ret < 0)
2649 xhci->error_bitmask |= 1 << 9;
2650 else
2651 update_ptrs = 0;
2652 break;
2653 case TRB_TYPE(TRB_DEV_NOTE):
2654 handle_device_notification(xhci, event);
2655 break;
2656 default:
2657 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2658 TRB_TYPE(48))
2659 handle_vendor_event(xhci, event);
2660 else
2661 xhci->error_bitmask |= 1 << 3;
2662 }
2663 /* Any of the above functions may drop and re-acquire the lock, so check
2664 * to make sure a watchdog timer didn't mark the host as non-responsive.
2665 */
2666 if (xhci->xhc_state & XHCI_STATE_DYING) {
2667 xhci_dbg(xhci, "xHCI host dying, returning from "
2668 "event handler.\n");
2669 return 0;
2670 }
2671
2672 if (update_ptrs)
2673 /* Update SW event ring dequeue pointer */
2674 inc_deq(xhci, xhci->event_ring);
2675
2676 /* Are there more items on the event ring? Caller will call us again to
2677 * check.
2678 */
2679 return 1;
2680}
2681
2682/*
2683 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2684 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2685 * indicators of an event TRB error, but we check the status *first* to be safe.
2686 */
2687irqreturn_t xhci_irq(struct usb_hcd *hcd)
2688{
2689 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2690 u32 status;
2691 u64 temp_64;
2692 union xhci_trb *event_ring_deq;
2693 dma_addr_t deq;
2694
2695 spin_lock(&xhci->lock);
2696 /* Check if the xHC generated the interrupt, or the irq is shared */
2697 status = readl(&xhci->op_regs->status);
2698 if (status == 0xffffffff)
2699 goto hw_died;
2700
2701 if (!(status & STS_EINT)) {
2702 spin_unlock(&xhci->lock);
2703 return IRQ_NONE;
2704 }
2705 if (status & STS_FATAL) {
2706 xhci_warn(xhci, "WARNING: Host System Error\n");
2707 xhci_halt(xhci);
2708hw_died:
2709 spin_unlock(&xhci->lock);
2710 return IRQ_HANDLED;
2711 }
2712
2713 /*
2714 * Clear the op reg interrupt status first,
2715 * so we can receive interrupts from other MSI-X interrupters.
2716 * Write 1 to clear the interrupt status.
2717 */
2718 status |= STS_EINT;
2719 writel(status, &xhci->op_regs->status);
2720 /* FIXME when MSI-X is supported and there are multiple vectors */
2721 /* Clear the MSI-X event interrupt status */
2722
2723 if (hcd->irq) {
2724 u32 irq_pending;
2725 /* Acknowledge the PCI interrupt */
2726 irq_pending = readl(&xhci->ir_set->irq_pending);
2727 irq_pending |= IMAN_IP;
2728 writel(irq_pending, &xhci->ir_set->irq_pending);
2729 }
2730
2731 if (xhci->xhc_state & XHCI_STATE_DYING) {
2732 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2733 "Shouldn't IRQs be disabled?\n");
2734 /* Clear the event handler busy flag (RW1C);
2735 * the event ring should be empty.
2736 */
2737 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2738 xhci_write_64(xhci, temp_64 | ERST_EHB,
2739 &xhci->ir_set->erst_dequeue);
2740 spin_unlock(&xhci->lock);
2741
2742 return IRQ_HANDLED;
2743 }
2744
2745 event_ring_deq = xhci->event_ring->dequeue;
2746 /* FIXME this should be a delayed service routine
2747 * that clears the EHB.
2748 */
2749 while (xhci_handle_event(xhci) > 0) {}
2750
2751 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2752 /* If necessary, update the HW's version of the event ring deq ptr. */
2753 if (event_ring_deq != xhci->event_ring->dequeue) {
2754 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2755 xhci->event_ring->dequeue);
2756 if (deq == 0)
2757 xhci_warn(xhci, "WARN something wrong with SW event "
2758 "ring dequeue ptr.\n");
2759 /* Update HC event ring dequeue pointer */
2760 temp_64 &= ERST_PTR_MASK;
2761 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2762 }
2763
2764 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2765 temp_64 |= ERST_EHB;
2766 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2767
2768 spin_unlock(&xhci->lock);
2769
2770 return IRQ_HANDLED;
2771}
2772
2773irqreturn_t xhci_msi_irq(int irq, void *hcd)
2774{
2775 return xhci_irq(hcd);
2776}
2777
2778/**** Endpoint Ring Operations ****/
2779
2780/*
2781 * Generic function for queueing a TRB on a ring.
2782 * The caller must have checked to make sure there's room on the ring.
2783 *
2784 * @more_trbs_coming: Will you enqueue more TRBs before calling
2785 * prepare_transfer()?
2786 */
2787static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2788 bool more_trbs_coming,
2789 u32 field1, u32 field2, u32 field3, u32 field4)
2790{
2791 struct xhci_generic_trb *trb;
2792
2793 trb = &ring->enqueue->generic;
2794 trb->field[0] = cpu_to_le32(field1);
2795 trb->field[1] = cpu_to_le32(field2);
2796 trb->field[2] = cpu_to_le32(field3);
2797 trb->field[3] = cpu_to_le32(field4);
2798 inc_enq(xhci, ring, more_trbs_coming);
2799}
2800
2801/*
2802 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2803 * FIXME allocate segments if the ring is full.
2804 */
2805static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2806 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2807{
2808 unsigned int num_trbs_needed;
2809
2810 /* Make sure the endpoint has been added to xHC schedule */
2811 switch (ep_state) {
2812 case EP_STATE_DISABLED:
2813 /*
2814 * USB core changed config/interfaces without notifying us,
2815 * or hardware is reporting the wrong state.
2816 */
2817 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2818 return -ENOENT;
2819 case EP_STATE_ERROR:
2820 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2821 /* FIXME event handling code for error needs to clear it */
2822 /* XXX not sure if this should be -ENOENT or not */
2823 return -EINVAL;
2824 case EP_STATE_HALTED:
2825 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2826 case EP_STATE_STOPPED:
2827 case EP_STATE_RUNNING:
2828 break;
2829 default:
2830 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2831 /*
2832 * FIXME issue Configure Endpoint command to try to get the HC
2833 * back into a known state.
2834 */
2835 return -EINVAL;
2836 }
2837
2838 while (1) {
2839 if (room_on_ring(xhci, ep_ring, num_trbs))
2840 break;
2841
2842 if (ep_ring == xhci->cmd_ring) {
2843 xhci_err(xhci, "Do not support expand command ring\n");
2844 return -ENOMEM;
2845 }
2846
2847 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2848 "ERROR no room on ep ring, try ring expansion");
2849 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2850 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2851 mem_flags)) {
2852 xhci_err(xhci, "Ring expansion failed\n");
2853 return -ENOMEM;
2854 }
2855 }
2856
2857 if (enqueue_is_link_trb(ep_ring)) {
2858 struct xhci_ring *ring = ep_ring;
2859 union xhci_trb *next;
2860
2861 next = ring->enqueue;
2862
2863 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2864 /* If we're not dealing with 0.95 hardware or isoc rings
2865 * on AMD 0.96 host, clear the chain bit.
2866 */
2867 if (!xhci_link_trb_quirk(xhci) &&
2868 !(ring->type == TYPE_ISOC &&
2869 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2870 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2871 else
2872 next->link.control |= cpu_to_le32(TRB_CHAIN);
2873
2874 wmb();
2875 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2876
2877 /* Toggle the cycle bit after the last ring segment. */
2878 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2879 ring->cycle_state ^= 1;
2880 }
2881 ring->enq_seg = ring->enq_seg->next;
2882 ring->enqueue = ring->enq_seg->trbs;
2883 next = ring->enqueue;
2884 }
2885 }
2886
2887 return 0;
2888}
2889
2890static int prepare_transfer(struct xhci_hcd *xhci,
2891 struct xhci_virt_device *xdev,
2892 unsigned int ep_index,
2893 unsigned int stream_id,
2894 unsigned int num_trbs,
2895 struct urb *urb,
2896 unsigned int td_index,
2897 gfp_t mem_flags)
2898{
2899 int ret;
2900 struct urb_priv *urb_priv;
2901 struct xhci_td *td;
2902 struct xhci_ring *ep_ring;
2903 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2904
2905 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2906 if (!ep_ring) {
2907 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2908 stream_id);
2909 return -EINVAL;
2910 }
2911
2912 ret = prepare_ring(xhci, ep_ring,
2913 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2914 num_trbs, mem_flags);
2915 if (ret)
2916 return ret;
2917
2918 urb_priv = urb->hcpriv;
2919 td = urb_priv->td[td_index];
2920
2921 INIT_LIST_HEAD(&td->td_list);
2922 INIT_LIST_HEAD(&td->cancelled_td_list);
2923
2924 if (td_index == 0) {
2925 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2926 if (unlikely(ret))
2927 return ret;
2928 }
2929
2930 td->urb = urb;
2931 /* Add this TD to the tail of the endpoint ring's TD list */
2932 list_add_tail(&td->td_list, &ep_ring->td_list);
2933 td->start_seg = ep_ring->enq_seg;
2934 td->first_trb = ep_ring->enqueue;
2935
2936 urb_priv->td[td_index] = td;
2937
2938 return 0;
2939}
2940
2941static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2942{
2943 int num_sgs, num_trbs, running_total, temp, i;
2944 struct scatterlist *sg;
2945
2946 sg = NULL;
2947 num_sgs = urb->num_mapped_sgs;
2948 temp = urb->transfer_buffer_length;
2949
2950 num_trbs = 0;
2951 for_each_sg(urb->sg, sg, num_sgs, i) {
2952 unsigned int len = sg_dma_len(sg);
2953
2954 /* Scatter gather list entries may cross 64KB boundaries */
2955 running_total = TRB_MAX_BUFF_SIZE -
2956 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2957 running_total &= TRB_MAX_BUFF_SIZE - 1;
2958 if (running_total != 0)
2959 num_trbs++;
2960
2961 /* How many more 64KB chunks to transfer, how many more TRBs? */
2962 while (running_total < sg_dma_len(sg) && running_total < temp) {
2963 num_trbs++;
2964 running_total += TRB_MAX_BUFF_SIZE;
2965 }
2966 len = min_t(int, len, temp);
2967 temp -= len;
2968 if (temp == 0)
2969 break;
2970 }
2971 return num_trbs;
2972}
2973
2974static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2975{
2976 if (num_trbs != 0)
2977 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2978 "TRBs, %d left\n", __func__,
2979 urb->ep->desc.bEndpointAddress, num_trbs);
2980 if (running_total != urb->transfer_buffer_length)
2981 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2982 "queued %#x (%d), asked for %#x (%d)\n",
2983 __func__,
2984 urb->ep->desc.bEndpointAddress,
2985 running_total, running_total,
2986 urb->transfer_buffer_length,
2987 urb->transfer_buffer_length);
2988}
2989
2990static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2991 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2992 struct xhci_generic_trb *start_trb)
2993{
2994 /*
2995 * Pass all the TRBs to the hardware at once and make sure this write
2996 * isn't reordered.
2997 */
2998 wmb();
2999 if (start_cycle)
3000 start_trb->field[3] |= cpu_to_le32(start_cycle);
3001 else
3002 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3003 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3004}
3005
3006/*
3007 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3008 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3009 * (comprised of sg list entries) can take several service intervals to
3010 * transmit.
3011 */
3012int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3013 struct urb *urb, int slot_id, unsigned int ep_index)
3014{
3015 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3016 xhci->devs[slot_id]->out_ctx, ep_index);
3017 int xhci_interval;
3018 int ep_interval;
3019
3020 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3021 ep_interval = urb->interval;
3022 /* Convert to microframes */
3023 if (urb->dev->speed == USB_SPEED_LOW ||
3024 urb->dev->speed == USB_SPEED_FULL)
3025 ep_interval *= 8;
3026 /* FIXME change this to a warning and a suggestion to use the new API
3027 * to set the polling interval (once the API is added).
3028 */
3029 if (xhci_interval != ep_interval) {
3030 dev_dbg_ratelimited(&urb->dev->dev,
3031 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3032 ep_interval, ep_interval == 1 ? "" : "s",
3033 xhci_interval, xhci_interval == 1 ? "" : "s");
3034 urb->interval = xhci_interval;
3035 /* Convert back to frames for LS/FS devices */
3036 if (urb->dev->speed == USB_SPEED_LOW ||
3037 urb->dev->speed == USB_SPEED_FULL)
3038 urb->interval /= 8;
3039 }
3040 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3041}
3042
3043/*
3044 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3045 * packets remaining in the TD (*not* including this TRB).
3046 *
3047 * Total TD packet count = total_packet_count =
3048 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3049 *
3050 * Packets transferred up to and including this TRB = packets_transferred =
3051 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3052 *
3053 * TD size = total_packet_count - packets_transferred
3054 *
3055 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3056 * including this TRB, right shifted by 10
3057 *
3058 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3059 * This is taken care of in the TRB_TD_SIZE() macro
3060 *
3061 * The last TRB in a TD must have the TD size set to zero.
3062 */
3063static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3064 int trb_buff_len, unsigned int td_total_len,
3065 struct urb *urb, unsigned int num_trbs_left)
3066{
3067 u32 maxp, total_packet_count;
3068
3069 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3070 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3071 return ((td_total_len - transferred) >> 10);
3072
3073 /* One TRB with a zero-length data packet. */
3074 if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) ||
3075 trb_buff_len == td_total_len)
3076 return 0;
3077
3078 /* for MTK xHCI, TD size doesn't include this TRB */
3079 if (xhci->quirks & XHCI_MTK_HOST)
3080 trb_buff_len = 0;
3081
3082 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3083 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3084
3085 /* Queueing functions don't count the current TRB into transferred */
3086 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3087}
3088
3089
3090static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3091 struct urb *urb, int slot_id, unsigned int ep_index)
3092{
3093 struct xhci_ring *ep_ring;
3094 unsigned int num_trbs;
3095 struct urb_priv *urb_priv;
3096 struct xhci_td *td;
3097 struct scatterlist *sg;
3098 int num_sgs;
3099 int trb_buff_len, this_sg_len, running_total, ret;
3100 unsigned int total_packet_count;
3101 bool zero_length_needed;
3102 bool first_trb;
3103 int last_trb_num;
3104 u64 addr;
3105 bool more_trbs_coming;
3106
3107 struct xhci_generic_trb *start_trb;
3108 int start_cycle;
3109
3110 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3111 if (!ep_ring)
3112 return -EINVAL;
3113
3114 num_trbs = count_sg_trbs_needed(xhci, urb);
3115 num_sgs = urb->num_mapped_sgs;
3116 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3117 usb_endpoint_maxp(&urb->ep->desc));
3118
3119 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3120 ep_index, urb->stream_id,
3121 num_trbs, urb, 0, mem_flags);
3122 if (ret < 0)
3123 return ret;
3124
3125 urb_priv = urb->hcpriv;
3126
3127 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3128 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3129 urb_priv->length == 2;
3130 if (zero_length_needed) {
3131 num_trbs++;
3132 xhci_dbg(xhci, "Creating zero length td.\n");
3133 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3134 ep_index, urb->stream_id,
3135 1, urb, 1, mem_flags);
3136 if (ret < 0)
3137 return ret;
3138 }
3139
3140 td = urb_priv->td[0];
3141
3142 /*
3143 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3144 * until we've finished creating all the other TRBs. The ring's cycle
3145 * state may change as we enqueue the other TRBs, so save it too.
3146 */
3147 start_trb = &ep_ring->enqueue->generic;
3148 start_cycle = ep_ring->cycle_state;
3149
3150 running_total = 0;
3151 /*
3152 * How much data is in the first TRB?
3153 *
3154 * There are three forces at work for TRB buffer pointers and lengths:
3155 * 1. We don't want to walk off the end of this sg-list entry buffer.
3156 * 2. The transfer length that the driver requested may be smaller than
3157 * the amount of memory allocated for this scatter-gather list.
3158 * 3. TRBs buffers can't cross 64KB boundaries.
3159 */
3160 sg = urb->sg;
3161 addr = (u64) sg_dma_address(sg);
3162 this_sg_len = sg_dma_len(sg);
3163 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3164 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3165 if (trb_buff_len > urb->transfer_buffer_length)
3166 trb_buff_len = urb->transfer_buffer_length;
3167
3168 first_trb = true;
3169 last_trb_num = zero_length_needed ? 2 : 1;
3170 /* Queue the first TRB, even if it's zero-length */
3171 do {
3172 u32 field = 0;
3173 u32 length_field = 0;
3174 u32 remainder = 0;
3175
3176 /* Don't change the cycle bit of the first TRB until later */
3177 if (first_trb) {
3178 first_trb = false;
3179 if (start_cycle == 0)
3180 field |= 0x1;
3181 } else
3182 field |= ep_ring->cycle_state;
3183
3184 /* Chain all the TRBs together; clear the chain bit in the last
3185 * TRB to indicate it's the last TRB in the chain.
3186 */
3187 if (num_trbs > last_trb_num) {
3188 field |= TRB_CHAIN;
3189 } else if (num_trbs == last_trb_num) {
3190 td->last_trb = ep_ring->enqueue;
3191 field |= TRB_IOC;
3192 } else if (zero_length_needed && num_trbs == 1) {
3193 trb_buff_len = 0;
3194 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3195 field |= TRB_IOC;
3196 }
3197
3198 /* Only set interrupt on short packet for IN endpoints */
3199 if (usb_urb_dir_in(urb))
3200 field |= TRB_ISP;
3201
3202 if (TRB_MAX_BUFF_SIZE -
3203 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3204 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3205 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3206 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3207 (unsigned int) addr + trb_buff_len);
3208 }
3209
3210 /* Set the TRB length, TD size, and interrupter fields. */
3211 remainder = xhci_td_remainder(xhci, running_total, trb_buff_len,
3212 urb->transfer_buffer_length,
3213 urb, num_trbs - 1);
3214
3215 length_field = TRB_LEN(trb_buff_len) |
3216 TRB_TD_SIZE(remainder) |
3217 TRB_INTR_TARGET(0);
3218
3219 if (num_trbs > 1)
3220 more_trbs_coming = true;
3221 else
3222 more_trbs_coming = false;
3223 queue_trb(xhci, ep_ring, more_trbs_coming,
3224 lower_32_bits(addr),
3225 upper_32_bits(addr),
3226 length_field,
3227 field | TRB_TYPE(TRB_NORMAL));
3228 --num_trbs;
3229 running_total += trb_buff_len;
3230
3231 /* Calculate length for next transfer --
3232 * Are we done queueing all the TRBs for this sg entry?
3233 */
3234 this_sg_len -= trb_buff_len;
3235 if (this_sg_len == 0) {
3236 --num_sgs;
3237 if (num_sgs == 0)
3238 break;
3239 sg = sg_next(sg);
3240 addr = (u64) sg_dma_address(sg);
3241 this_sg_len = sg_dma_len(sg);
3242 } else {
3243 addr += trb_buff_len;
3244 }
3245
3246 trb_buff_len = TRB_MAX_BUFF_SIZE -
3247 (addr & (TRB_MAX_BUFF_SIZE - 1));
3248 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3249 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3250 trb_buff_len =
3251 urb->transfer_buffer_length - running_total;
3252 } while (num_trbs > 0);
3253
3254 check_trb_math(urb, num_trbs, running_total);
3255 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3256 start_cycle, start_trb);
3257 return 0;
3258}
3259
3260/* This is very similar to what ehci-q.c qtd_fill() does */
3261int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3262 struct urb *urb, int slot_id, unsigned int ep_index)
3263{
3264 struct xhci_ring *ep_ring;
3265 struct urb_priv *urb_priv;
3266 struct xhci_td *td;
3267 int num_trbs;
3268 struct xhci_generic_trb *start_trb;
3269 bool first_trb;
3270 int last_trb_num;
3271 bool more_trbs_coming;
3272 bool zero_length_needed;
3273 int start_cycle;
3274 u32 field, length_field;
3275
3276 int running_total, trb_buff_len, ret;
3277 unsigned int total_packet_count;
3278 u64 addr;
3279
3280 if (urb->num_sgs)
3281 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3282
3283 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3284 if (!ep_ring)
3285 return -EINVAL;
3286
3287 num_trbs = 0;
3288 /* How much data is (potentially) left before the 64KB boundary? */
3289 running_total = TRB_MAX_BUFF_SIZE -
3290 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3291 running_total &= TRB_MAX_BUFF_SIZE - 1;
3292
3293 /* If there's some data on this 64KB chunk, or we have to send a
3294 * zero-length transfer, we need at least one TRB
3295 */
3296 if (running_total != 0 || urb->transfer_buffer_length == 0)
3297 num_trbs++;
3298 /* How many more 64KB chunks to transfer, how many more TRBs? */
3299 while (running_total < urb->transfer_buffer_length) {
3300 num_trbs++;
3301 running_total += TRB_MAX_BUFF_SIZE;
3302 }
3303
3304 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3305 ep_index, urb->stream_id,
3306 num_trbs, urb, 0, mem_flags);
3307 if (ret < 0)
3308 return ret;
3309
3310 urb_priv = urb->hcpriv;
3311
3312 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3313 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3314 urb_priv->length == 2;
3315 if (zero_length_needed) {
3316 num_trbs++;
3317 xhci_dbg(xhci, "Creating zero length td.\n");
3318 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3319 ep_index, urb->stream_id,
3320 1, urb, 1, mem_flags);
3321 if (ret < 0)
3322 return ret;
3323 }
3324
3325 td = urb_priv->td[0];
3326
3327 /*
3328 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3329 * until we've finished creating all the other TRBs. The ring's cycle
3330 * state may change as we enqueue the other TRBs, so save it too.
3331 */
3332 start_trb = &ep_ring->enqueue->generic;
3333 start_cycle = ep_ring->cycle_state;
3334
3335 running_total = 0;
3336 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3337 usb_endpoint_maxp(&urb->ep->desc));
3338 /* How much data is in the first TRB? */
3339 addr = (u64) urb->transfer_dma;
3340 trb_buff_len = TRB_MAX_BUFF_SIZE -
3341 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3342 if (trb_buff_len > urb->transfer_buffer_length)
3343 trb_buff_len = urb->transfer_buffer_length;
3344
3345 first_trb = true;
3346 last_trb_num = zero_length_needed ? 2 : 1;
3347 /* Queue the first TRB, even if it's zero-length */
3348 do {
3349 u32 remainder = 0;
3350 field = 0;
3351
3352 /* Don't change the cycle bit of the first TRB until later */
3353 if (first_trb) {
3354 first_trb = false;
3355 if (start_cycle == 0)
3356 field |= 0x1;
3357 } else
3358 field |= ep_ring->cycle_state;
3359
3360 /* Chain all the TRBs together; clear the chain bit in the last
3361 * TRB to indicate it's the last TRB in the chain.
3362 */
3363 if (num_trbs > last_trb_num) {
3364 field |= TRB_CHAIN;
3365 } else if (num_trbs == last_trb_num) {
3366 td->last_trb = ep_ring->enqueue;
3367 field |= TRB_IOC;
3368 } else if (zero_length_needed && num_trbs == 1) {
3369 trb_buff_len = 0;
3370 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3371 field |= TRB_IOC;
3372 }
3373
3374 /* Only set interrupt on short packet for IN endpoints */
3375 if (usb_urb_dir_in(urb))
3376 field |= TRB_ISP;
3377
3378 /* Set the TRB length, TD size, and interrupter fields. */
3379 remainder = xhci_td_remainder(xhci, running_total, trb_buff_len,
3380 urb->transfer_buffer_length,
3381 urb, num_trbs - 1);
3382
3383 length_field = TRB_LEN(trb_buff_len) |
3384 TRB_TD_SIZE(remainder) |
3385 TRB_INTR_TARGET(0);
3386
3387 if (num_trbs > 1)
3388 more_trbs_coming = true;
3389 else
3390 more_trbs_coming = false;
3391 queue_trb(xhci, ep_ring, more_trbs_coming,
3392 lower_32_bits(addr),
3393 upper_32_bits(addr),
3394 length_field,
3395 field | TRB_TYPE(TRB_NORMAL));
3396 --num_trbs;
3397 running_total += trb_buff_len;
3398
3399 /* Calculate length for next transfer */
3400 addr += trb_buff_len;
3401 trb_buff_len = urb->transfer_buffer_length - running_total;
3402 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3403 trb_buff_len = TRB_MAX_BUFF_SIZE;
3404 } while (num_trbs > 0);
3405
3406 check_trb_math(urb, num_trbs, running_total);
3407 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3408 start_cycle, start_trb);
3409 return 0;
3410}
3411
3412/* Caller must have locked xhci->lock */
3413int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3414 struct urb *urb, int slot_id, unsigned int ep_index)
3415{
3416 struct xhci_ring *ep_ring;
3417 int num_trbs;
3418 int ret;
3419 struct usb_ctrlrequest *setup;
3420 struct xhci_generic_trb *start_trb;
3421 int start_cycle;
3422 u32 field, length_field, remainder;
3423 struct urb_priv *urb_priv;
3424 struct xhci_td *td;
3425
3426 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3427 if (!ep_ring)
3428 return -EINVAL;
3429
3430 /*
3431 * Need to copy setup packet into setup TRB, so we can't use the setup
3432 * DMA address.
3433 */
3434 if (!urb->setup_packet)
3435 return -EINVAL;
3436
3437 /* 1 TRB for setup, 1 for status */
3438 num_trbs = 2;
3439 /*
3440 * Don't need to check if we need additional event data and normal TRBs,
3441 * since data in control transfers will never get bigger than 16MB
3442 * XXX: can we get a buffer that crosses 64KB boundaries?
3443 */
3444 if (urb->transfer_buffer_length > 0)
3445 num_trbs++;
3446 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3447 ep_index, urb->stream_id,
3448 num_trbs, urb, 0, mem_flags);
3449 if (ret < 0)
3450 return ret;
3451
3452 urb_priv = urb->hcpriv;
3453 td = urb_priv->td[0];
3454
3455 /*
3456 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3457 * until we've finished creating all the other TRBs. The ring's cycle
3458 * state may change as we enqueue the other TRBs, so save it too.
3459 */
3460 start_trb = &ep_ring->enqueue->generic;
3461 start_cycle = ep_ring->cycle_state;
3462
3463 /* Queue setup TRB - see section 6.4.1.2.1 */
3464 /* FIXME better way to translate setup_packet into two u32 fields? */
3465 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3466 field = 0;
3467 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3468 if (start_cycle == 0)
3469 field |= 0x1;
3470
3471 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3472 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3473 if (urb->transfer_buffer_length > 0) {
3474 if (setup->bRequestType & USB_DIR_IN)
3475 field |= TRB_TX_TYPE(TRB_DATA_IN);
3476 else
3477 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3478 }
3479 }
3480
3481 queue_trb(xhci, ep_ring, true,
3482 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3483 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3484 TRB_LEN(8) | TRB_INTR_TARGET(0),
3485 /* Immediate data in pointer */
3486 field);
3487
3488 /* If there's data, queue data TRBs */
3489 /* Only set interrupt on short packet for IN endpoints */
3490 if (usb_urb_dir_in(urb))
3491 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3492 else
3493 field = TRB_TYPE(TRB_DATA);
3494
3495 remainder = xhci_td_remainder(xhci, 0,
3496 urb->transfer_buffer_length,
3497 urb->transfer_buffer_length,
3498 urb, 1);
3499
3500 length_field = TRB_LEN(urb->transfer_buffer_length) |
3501 TRB_TD_SIZE(remainder) |
3502 TRB_INTR_TARGET(0);
3503
3504 if (urb->transfer_buffer_length > 0) {
3505 if (setup->bRequestType & USB_DIR_IN)
3506 field |= TRB_DIR_IN;
3507 queue_trb(xhci, ep_ring, true,
3508 lower_32_bits(urb->transfer_dma),
3509 upper_32_bits(urb->transfer_dma),
3510 length_field,
3511 field | ep_ring->cycle_state);
3512 }
3513
3514 /* Save the DMA address of the last TRB in the TD */
3515 td->last_trb = ep_ring->enqueue;
3516
3517 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3518 /* If the device sent data, the status stage is an OUT transfer */
3519 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3520 field = 0;
3521 else
3522 field = TRB_DIR_IN;
3523 queue_trb(xhci, ep_ring, false,
3524 0,
3525 0,
3526 TRB_INTR_TARGET(0),
3527 /* Event on completion */
3528 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3529
3530 giveback_first_trb(xhci, slot_id, ep_index, 0,
3531 start_cycle, start_trb);
3532 return 0;
3533}
3534
3535static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3536 struct urb *urb, int i)
3537{
3538 int num_trbs = 0;
3539 u64 addr, td_len;
3540
3541 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3542 td_len = urb->iso_frame_desc[i].length;
3543
3544 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3545 TRB_MAX_BUFF_SIZE);
3546 if (num_trbs == 0)
3547 num_trbs++;
3548
3549 return num_trbs;
3550}
3551
3552/*
3553 * The transfer burst count field of the isochronous TRB defines the number of
3554 * bursts that are required to move all packets in this TD. Only SuperSpeed
3555 * devices can burst up to bMaxBurst number of packets per service interval.
3556 * This field is zero based, meaning a value of zero in the field means one
3557 * burst. Basically, for everything but SuperSpeed devices, this field will be
3558 * zero. Only xHCI 1.0 host controllers support this field.
3559 */
3560static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3561 struct urb *urb, unsigned int total_packet_count)
3562{
3563 unsigned int max_burst;
3564
3565 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3566 return 0;
3567
3568 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3569 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3570}
3571
3572/*
3573 * Returns the number of packets in the last "burst" of packets. This field is
3574 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3575 * the last burst packet count is equal to the total number of packets in the
3576 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3577 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3578 * contain 1 to (bMaxBurst + 1) packets.
3579 */
3580static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3581 struct urb *urb, unsigned int total_packet_count)
3582{
3583 unsigned int max_burst;
3584 unsigned int residue;
3585
3586 if (xhci->hci_version < 0x100)
3587 return 0;
3588
3589 if (urb->dev->speed >= USB_SPEED_SUPER) {
3590 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3591 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3592 residue = total_packet_count % (max_burst + 1);
3593 /* If residue is zero, the last burst contains (max_burst + 1)
3594 * number of packets, but the TLBPC field is zero-based.
3595 */
3596 if (residue == 0)
3597 return max_burst;
3598 return residue - 1;
3599 }
3600 if (total_packet_count == 0)
3601 return 0;
3602 return total_packet_count - 1;
3603}
3604
3605/*
3606 * Calculates Frame ID field of the isochronous TRB identifies the
3607 * target frame that the Interval associated with this Isochronous
3608 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3609 *
3610 * Returns actual frame id on success, negative value on error.
3611 */
3612static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3613 struct urb *urb, int index)
3614{
3615 int start_frame, ist, ret = 0;
3616 int start_frame_id, end_frame_id, current_frame_id;
3617
3618 if (urb->dev->speed == USB_SPEED_LOW ||
3619 urb->dev->speed == USB_SPEED_FULL)
3620 start_frame = urb->start_frame + index * urb->interval;
3621 else
3622 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3623
3624 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3625 *
3626 * If bit [3] of IST is cleared to '0', software can add a TRB no
3627 * later than IST[2:0] Microframes before that TRB is scheduled to
3628 * be executed.
3629 * If bit [3] of IST is set to '1', software can add a TRB no later
3630 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3631 */
3632 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3633 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3634 ist <<= 3;
3635
3636 /* Software shall not schedule an Isoch TD with a Frame ID value that
3637 * is less than the Start Frame ID or greater than the End Frame ID,
3638 * where:
3639 *
3640 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3641 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3642 *
3643 * Both the End Frame ID and Start Frame ID values are calculated
3644 * in microframes. When software determines the valid Frame ID value;
3645 * The End Frame ID value should be rounded down to the nearest Frame
3646 * boundary, and the Start Frame ID value should be rounded up to the
3647 * nearest Frame boundary.
3648 */
3649 current_frame_id = readl(&xhci->run_regs->microframe_index);
3650 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3651 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3652
3653 start_frame &= 0x7ff;
3654 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3655 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3656
3657 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3658 __func__, index, readl(&xhci->run_regs->microframe_index),
3659 start_frame_id, end_frame_id, start_frame);
3660
3661 if (start_frame_id < end_frame_id) {
3662 if (start_frame > end_frame_id ||
3663 start_frame < start_frame_id)
3664 ret = -EINVAL;
3665 } else if (start_frame_id > end_frame_id) {
3666 if ((start_frame > end_frame_id &&
3667 start_frame < start_frame_id))
3668 ret = -EINVAL;
3669 } else {
3670 ret = -EINVAL;
3671 }
3672
3673 if (index == 0) {
3674 if (ret == -EINVAL || start_frame == start_frame_id) {
3675 start_frame = start_frame_id + 1;
3676 if (urb->dev->speed == USB_SPEED_LOW ||
3677 urb->dev->speed == USB_SPEED_FULL)
3678 urb->start_frame = start_frame;
3679 else
3680 urb->start_frame = start_frame << 3;
3681 ret = 0;
3682 }
3683 }
3684
3685 if (ret) {
3686 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3687 start_frame, current_frame_id, index,
3688 start_frame_id, end_frame_id);
3689 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3690 return ret;
3691 }
3692
3693 return start_frame;
3694}
3695
3696/* This is for isoc transfer */
3697static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3698 struct urb *urb, int slot_id, unsigned int ep_index)
3699{
3700 struct xhci_ring *ep_ring;
3701 struct urb_priv *urb_priv;
3702 struct xhci_td *td;
3703 int num_tds, trbs_per_td;
3704 struct xhci_generic_trb *start_trb;
3705 bool first_trb;
3706 int start_cycle;
3707 u32 field, length_field;
3708 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3709 u64 start_addr, addr;
3710 int i, j;
3711 bool more_trbs_coming;
3712 struct xhci_virt_ep *xep;
3713 int frame_id;
3714
3715 xep = &xhci->devs[slot_id]->eps[ep_index];
3716 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3717
3718 num_tds = urb->number_of_packets;
3719 if (num_tds < 1) {
3720 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3721 return -EINVAL;
3722 }
3723 start_addr = (u64) urb->transfer_dma;
3724 start_trb = &ep_ring->enqueue->generic;
3725 start_cycle = ep_ring->cycle_state;
3726
3727 urb_priv = urb->hcpriv;
3728 /* Queue the TRBs for each TD, even if they are zero-length */
3729 for (i = 0; i < num_tds; i++) {
3730 unsigned int total_pkt_count, max_pkt;
3731 unsigned int burst_count, last_burst_pkt_count;
3732 u32 sia_frame_id;
3733
3734 first_trb = true;
3735 running_total = 0;
3736 addr = start_addr + urb->iso_frame_desc[i].offset;
3737 td_len = urb->iso_frame_desc[i].length;
3738 td_remain_len = td_len;
3739 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3740 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3741
3742 /* A zero-length transfer still involves at least one packet. */
3743 if (total_pkt_count == 0)
3744 total_pkt_count++;
3745 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3746 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3747 urb, total_pkt_count);
3748
3749 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3750
3751 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3752 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3753 if (ret < 0) {
3754 if (i == 0)
3755 return ret;
3756 goto cleanup;
3757 }
3758 td = urb_priv->td[i];
3759
3760 /* use SIA as default, if frame id is used overwrite it */
3761 sia_frame_id = TRB_SIA;
3762 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3763 HCC_CFC(xhci->hcc_params)) {
3764 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3765 if (frame_id >= 0)
3766 sia_frame_id = TRB_FRAME_ID(frame_id);
3767 }
3768 /*
3769 * Set isoc specific data for the first TRB in a TD.
3770 * Prevent HW from getting the TRBs by keeping the cycle state
3771 * inverted in the first TDs isoc TRB.
3772 */
3773 field = TRB_TYPE(TRB_ISOC) |
3774 TRB_TLBPC(last_burst_pkt_count) |
3775 sia_frame_id |
3776 (i ? ep_ring->cycle_state : !start_cycle);
3777
3778 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3779 if (!xep->use_extended_tbc)
3780 field |= TRB_TBC(burst_count);
3781
3782 /* fill the rest of the TRB fields, and remaining normal TRBs */
3783 for (j = 0; j < trbs_per_td; j++) {
3784 u32 remainder = 0;
3785
3786 /* only first TRB is isoc, overwrite otherwise */
3787 if (!first_trb)
3788 field = TRB_TYPE(TRB_NORMAL) |
3789 ep_ring->cycle_state;
3790
3791 /* Only set interrupt on short packet for IN EPs */
3792 if (usb_urb_dir_in(urb))
3793 field |= TRB_ISP;
3794
3795 /* Set the chain bit for all except the last TRB */
3796 if (j < trbs_per_td - 1) {
3797 more_trbs_coming = true;
3798 field |= TRB_CHAIN;
3799 } else {
3800 more_trbs_coming = false;
3801 td->last_trb = ep_ring->enqueue;
3802 field |= TRB_IOC;
3803 /* set BEI, except for the last TD */
3804 if (xhci->hci_version >= 0x100 &&
3805 !(xhci->quirks & XHCI_AVOID_BEI) &&
3806 i < num_tds - 1)
3807 field |= TRB_BEI;
3808 }
3809 /* Calculate TRB length */
3810 trb_buff_len = TRB_MAX_BUFF_SIZE -
3811 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3812 if (trb_buff_len > td_remain_len)
3813 trb_buff_len = td_remain_len;
3814
3815 /* Set the TRB length, TD size, & interrupter fields. */
3816 remainder = xhci_td_remainder(xhci, running_total,
3817 trb_buff_len, td_len,
3818 urb, trbs_per_td - j - 1);
3819
3820 length_field = TRB_LEN(trb_buff_len) |
3821 TRB_INTR_TARGET(0);
3822
3823 /* xhci 1.1 with ETE uses TD Size field for TBC */
3824 if (first_trb && xep->use_extended_tbc)
3825 length_field |= TRB_TD_SIZE_TBC(burst_count);
3826 else
3827 length_field |= TRB_TD_SIZE(remainder);
3828 first_trb = false;
3829
3830 queue_trb(xhci, ep_ring, more_trbs_coming,
3831 lower_32_bits(addr),
3832 upper_32_bits(addr),
3833 length_field,
3834 field);
3835 running_total += trb_buff_len;
3836
3837 addr += trb_buff_len;
3838 td_remain_len -= trb_buff_len;
3839 }
3840
3841 /* Check TD length */
3842 if (running_total != td_len) {
3843 xhci_err(xhci, "ISOC TD length unmatch\n");
3844 ret = -EINVAL;
3845 goto cleanup;
3846 }
3847 }
3848
3849 /* store the next frame id */
3850 if (HCC_CFC(xhci->hcc_params))
3851 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3852
3853 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3854 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3855 usb_amd_quirk_pll_disable();
3856 }
3857 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3858
3859 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3860 start_cycle, start_trb);
3861 return 0;
3862cleanup:
3863 /* Clean up a partially enqueued isoc transfer. */
3864
3865 for (i--; i >= 0; i--)
3866 list_del_init(&urb_priv->td[i]->td_list);
3867
3868 /* Use the first TD as a temporary variable to turn the TDs we've queued
3869 * into No-ops with a software-owned cycle bit. That way the hardware
3870 * won't accidentally start executing bogus TDs when we partially
3871 * overwrite them. td->first_trb and td->start_seg are already set.
3872 */
3873 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3874 /* Every TRB except the first & last will have its cycle bit flipped. */
3875 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3876
3877 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3878 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3879 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3880 ep_ring->cycle_state = start_cycle;
3881 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3882 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3883 return ret;
3884}
3885
3886/*
3887 * Check transfer ring to guarantee there is enough room for the urb.
3888 * Update ISO URB start_frame and interval.
3889 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3890 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3891 * Contiguous Frame ID is not supported by HC.
3892 */
3893int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3894 struct urb *urb, int slot_id, unsigned int ep_index)
3895{
3896 struct xhci_virt_device *xdev;
3897 struct xhci_ring *ep_ring;
3898 struct xhci_ep_ctx *ep_ctx;
3899 int start_frame;
3900 int xhci_interval;
3901 int ep_interval;
3902 int num_tds, num_trbs, i;
3903 int ret;
3904 struct xhci_virt_ep *xep;
3905 int ist;
3906
3907 xdev = xhci->devs[slot_id];
3908 xep = &xhci->devs[slot_id]->eps[ep_index];
3909 ep_ring = xdev->eps[ep_index].ring;
3910 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3911
3912 num_trbs = 0;
3913 num_tds = urb->number_of_packets;
3914 for (i = 0; i < num_tds; i++)
3915 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3916
3917 /* Check the ring to guarantee there is enough room for the whole urb.
3918 * Do not insert any td of the urb to the ring if the check failed.
3919 */
3920 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3921 num_trbs, mem_flags);
3922 if (ret)
3923 return ret;
3924
3925 /*
3926 * Check interval value. This should be done before we start to
3927 * calculate the start frame value.
3928 */
3929 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3930 ep_interval = urb->interval;
3931 /* Convert to microframes */
3932 if (urb->dev->speed == USB_SPEED_LOW ||
3933 urb->dev->speed == USB_SPEED_FULL)
3934 ep_interval *= 8;
3935 /* FIXME change this to a warning and a suggestion to use the new API
3936 * to set the polling interval (once the API is added).
3937 */
3938 if (xhci_interval != ep_interval) {
3939 dev_dbg_ratelimited(&urb->dev->dev,
3940 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3941 ep_interval, ep_interval == 1 ? "" : "s",
3942 xhci_interval, xhci_interval == 1 ? "" : "s");
3943 urb->interval = xhci_interval;
3944 /* Convert back to frames for LS/FS devices */
3945 if (urb->dev->speed == USB_SPEED_LOW ||
3946 urb->dev->speed == USB_SPEED_FULL)
3947 urb->interval /= 8;
3948 }
3949
3950 /* Calculate the start frame and put it in urb->start_frame. */
3951 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3952 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3953 EP_STATE_RUNNING) {
3954 urb->start_frame = xep->next_frame_id;
3955 goto skip_start_over;
3956 }
3957 }
3958
3959 start_frame = readl(&xhci->run_regs->microframe_index);
3960 start_frame &= 0x3fff;
3961 /*
3962 * Round up to the next frame and consider the time before trb really
3963 * gets scheduled by hardare.
3964 */
3965 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3966 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3967 ist <<= 3;
3968 start_frame += ist + XHCI_CFC_DELAY;
3969 start_frame = roundup(start_frame, 8);
3970
3971 /*
3972 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3973 * is greate than 8 microframes.
3974 */
3975 if (urb->dev->speed == USB_SPEED_LOW ||
3976 urb->dev->speed == USB_SPEED_FULL) {
3977 start_frame = roundup(start_frame, urb->interval << 3);
3978 urb->start_frame = start_frame >> 3;
3979 } else {
3980 start_frame = roundup(start_frame, urb->interval);
3981 urb->start_frame = start_frame;
3982 }
3983
3984skip_start_over:
3985 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3986
3987 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3988}
3989
3990/**** Command Ring Operations ****/
3991
3992/* Generic function for queueing a command TRB on the command ring.
3993 * Check to make sure there's room on the command ring for one command TRB.
3994 * Also check that there's room reserved for commands that must not fail.
3995 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3996 * then only check for the number of reserved spots.
3997 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3998 * because the command event handler may want to resubmit a failed command.
3999 */
4000static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4001 u32 field1, u32 field2,
4002 u32 field3, u32 field4, bool command_must_succeed)
4003{
4004 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4005 int ret;
4006
4007 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4008 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4009 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4010 return -ESHUTDOWN;
4011 }
4012
4013 if (!command_must_succeed)
4014 reserved_trbs++;
4015
4016 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4017 reserved_trbs, GFP_ATOMIC);
4018 if (ret < 0) {
4019 xhci_err(xhci, "ERR: No room for command on command ring\n");
4020 if (command_must_succeed)
4021 xhci_err(xhci, "ERR: Reserved TRB counting for "
4022 "unfailable commands failed.\n");
4023 return ret;
4024 }
4025
4026 cmd->command_trb = xhci->cmd_ring->enqueue;
4027 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4028
4029 /* if there are no other commands queued we start the timeout timer */
4030 if (xhci->cmd_list.next == &cmd->cmd_list &&
4031 !timer_pending(&xhci->cmd_timer)) {
4032 xhci->current_cmd = cmd;
4033 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
4034 }
4035
4036 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4037 field4 | xhci->cmd_ring->cycle_state);
4038 return 0;
4039}
4040
4041/* Queue a slot enable or disable request on the command ring */
4042int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4043 u32 trb_type, u32 slot_id)
4044{
4045 return queue_command(xhci, cmd, 0, 0, 0,
4046 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4047}
4048
4049/* Queue an address device command TRB */
4050int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4051 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4052{
4053 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4054 upper_32_bits(in_ctx_ptr), 0,
4055 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4056 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4057}
4058
4059int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4060 u32 field1, u32 field2, u32 field3, u32 field4)
4061{
4062 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4063}
4064
4065/* Queue a reset device command TRB */
4066int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4067 u32 slot_id)
4068{
4069 return queue_command(xhci, cmd, 0, 0, 0,
4070 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4071 false);
4072}
4073
4074/* Queue a configure endpoint command TRB */
4075int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4076 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4077 u32 slot_id, bool command_must_succeed)
4078{
4079 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4080 upper_32_bits(in_ctx_ptr), 0,
4081 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4082 command_must_succeed);
4083}
4084
4085/* Queue an evaluate context command TRB */
4086int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4087 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4088{
4089 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4090 upper_32_bits(in_ctx_ptr), 0,
4091 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4092 command_must_succeed);
4093}
4094
4095/*
4096 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4097 * activity on an endpoint that is about to be suspended.
4098 */
4099int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4100 int slot_id, unsigned int ep_index, int suspend)
4101{
4102 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4103 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4104 u32 type = TRB_TYPE(TRB_STOP_RING);
4105 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4106
4107 return queue_command(xhci, cmd, 0, 0, 0,
4108 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4109}
4110
4111/* Set Transfer Ring Dequeue Pointer command */
4112void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4113 unsigned int slot_id, unsigned int ep_index,
4114 unsigned int stream_id,
4115 struct xhci_dequeue_state *deq_state)
4116{
4117 dma_addr_t addr;
4118 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4119 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4120 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4121 u32 trb_sct = 0;
4122 u32 type = TRB_TYPE(TRB_SET_DEQ);
4123 struct xhci_virt_ep *ep;
4124 struct xhci_command *cmd;
4125 int ret;
4126
4127 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4128 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4129 deq_state->new_deq_seg,
4130 (unsigned long long)deq_state->new_deq_seg->dma,
4131 deq_state->new_deq_ptr,
4132 (unsigned long long)xhci_trb_virt_to_dma(
4133 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4134 deq_state->new_cycle_state);
4135
4136 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4137 deq_state->new_deq_ptr);
4138 if (addr == 0) {
4139 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4140 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4141 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4142 return;
4143 }
4144 ep = &xhci->devs[slot_id]->eps[ep_index];
4145 if ((ep->ep_state & SET_DEQ_PENDING)) {
4146 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4147 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4148 return;
4149 }
4150
4151 /* This function gets called from contexts where it cannot sleep */
4152 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4153 if (!cmd) {
4154 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
4155 return;
4156 }
4157
4158 ep->queued_deq_seg = deq_state->new_deq_seg;
4159 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4160 if (stream_id)
4161 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4162 ret = queue_command(xhci, cmd,
4163 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4164 upper_32_bits(addr), trb_stream_id,
4165 trb_slot_id | trb_ep_index | type, false);
4166 if (ret < 0) {
4167 xhci_free_command(xhci, cmd);
4168 return;
4169 }
4170
4171 /* Stop the TD queueing code from ringing the doorbell until
4172 * this command completes. The HC won't set the dequeue pointer
4173 * if the ring is running, and ringing the doorbell starts the
4174 * ring running.
4175 */
4176 ep->ep_state |= SET_DEQ_PENDING;
4177}
4178
4179int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4180 int slot_id, unsigned int ep_index)
4181{
4182 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4183 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4184 u32 type = TRB_TYPE(TRB_RESET_EP);
4185
4186 return queue_command(xhci, cmd, 0, 0, 0,
4187 trb_slot_id | trb_ep_index | type, false);
4188}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11/*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55#include <linux/scatterlist.h>
56#include <linux/slab.h>
57#include <linux/dma-mapping.h>
58#include "xhci.h"
59#include "xhci-trace.h"
60#include "xhci-mtk.h"
61
62/*
63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
64 * address of the TRB.
65 */
66dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
67 union xhci_trb *trb)
68{
69 unsigned long segment_offset;
70
71 if (!seg || !trb || trb < seg->trbs)
72 return 0;
73 /* offset in TRBs */
74 segment_offset = trb - seg->trbs;
75 if (segment_offset >= TRBS_PER_SEGMENT)
76 return 0;
77 return seg->dma + (segment_offset * sizeof(*trb));
78}
79
80static bool trb_is_noop(union xhci_trb *trb)
81{
82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
83}
84
85static bool trb_is_link(union xhci_trb *trb)
86{
87 return TRB_TYPE_LINK_LE32(trb->link.control);
88}
89
90static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
91{
92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
93}
94
95static bool last_trb_on_ring(struct xhci_ring *ring,
96 struct xhci_segment *seg, union xhci_trb *trb)
97{
98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
99}
100
101static bool link_trb_toggles_cycle(union xhci_trb *trb)
102{
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104}
105
106static bool last_td_in_urb(struct xhci_td *td)
107{
108 struct urb_priv *urb_priv = td->urb->hcpriv;
109
110 return urb_priv->num_tds_done == urb_priv->num_tds;
111}
112
113static void inc_td_cnt(struct urb *urb)
114{
115 struct urb_priv *urb_priv = urb->hcpriv;
116
117 urb_priv->num_tds_done++;
118}
119
120static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
121{
122 if (trb_is_link(trb)) {
123 /* unchain chained link TRBs */
124 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
125 } else {
126 trb->generic.field[0] = 0;
127 trb->generic.field[1] = 0;
128 trb->generic.field[2] = 0;
129 /* Preserve only the cycle bit of this TRB */
130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
132 }
133}
134
135/* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
139static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143{
144 if (trb_is_link(*trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150}
151
152/*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
156void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157{
158 /* event ring doesn't have link trbs, check for last trb */
159 if (ring->type == TYPE_EVENT) {
160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
161 ring->dequeue++;
162 goto out;
163 }
164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
165 ring->cycle_state ^= 1;
166 ring->deq_seg = ring->deq_seg->next;
167 ring->dequeue = ring->deq_seg->trbs;
168 goto out;
169 }
170
171 /* All other rings have link trbs */
172 if (!trb_is_link(ring->dequeue)) {
173 ring->dequeue++;
174 ring->num_trbs_free++;
175 }
176 while (trb_is_link(ring->dequeue)) {
177 ring->deq_seg = ring->deq_seg->next;
178 ring->dequeue = ring->deq_seg->trbs;
179 }
180
181out:
182 trace_xhci_inc_deq(ring);
183
184 return;
185}
186
187/*
188 * See Cycle bit rules. SW is the consumer for the event ring only.
189 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
190 *
191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
192 * chain bit is set), then set the chain bit in all the following link TRBs.
193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
194 * have their chain bit cleared (so that each Link TRB is a separate TD).
195 *
196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
197 * set, but other sections talk about dealing with the chain bit set. This was
198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
199 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
200 *
201 * @more_trbs_coming: Will you enqueue more TRBs before calling
202 * prepare_transfer()?
203 */
204static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
205 bool more_trbs_coming)
206{
207 u32 chain;
208 union xhci_trb *next;
209
210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
211 /* If this is not event ring, there is one less usable TRB */
212 if (!trb_is_link(ring->enqueue))
213 ring->num_trbs_free--;
214 next = ++(ring->enqueue);
215
216 /* Update the dequeue pointer further if that was a link TRB */
217 while (trb_is_link(next)) {
218
219 /*
220 * If the caller doesn't plan on enqueueing more TDs before
221 * ringing the doorbell, then we don't want to give the link TRB
222 * to the hardware just yet. We'll give the link TRB back in
223 * prepare_ring() just before we enqueue the TD at the top of
224 * the ring.
225 */
226 if (!chain && !more_trbs_coming)
227 break;
228
229 /* If we're not dealing with 0.95 hardware or isoc rings on
230 * AMD 0.96 host, carry over the chain bit of the previous TRB
231 * (which may mean the chain bit is cleared).
232 */
233 if (!(ring->type == TYPE_ISOC &&
234 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
235 !xhci_link_trb_quirk(xhci)) {
236 next->link.control &= cpu_to_le32(~TRB_CHAIN);
237 next->link.control |= cpu_to_le32(chain);
238 }
239 /* Give this link TRB to the hardware */
240 wmb();
241 next->link.control ^= cpu_to_le32(TRB_CYCLE);
242
243 /* Toggle the cycle bit after the last ring segment. */
244 if (link_trb_toggles_cycle(next))
245 ring->cycle_state ^= 1;
246
247 ring->enq_seg = ring->enq_seg->next;
248 ring->enqueue = ring->enq_seg->trbs;
249 next = ring->enqueue;
250 }
251
252 trace_xhci_inc_enq(ring);
253}
254
255/*
256 * Check to see if there's room to enqueue num_trbs on the ring and make sure
257 * enqueue pointer will not advance into dequeue segment. See rules above.
258 */
259static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
260 unsigned int num_trbs)
261{
262 int num_trbs_in_deq_seg;
263
264 if (ring->num_trbs_free < num_trbs)
265 return 0;
266
267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
270 return 0;
271 }
272
273 return 1;
274}
275
276/* Ring the host controller doorbell after placing a command on the ring */
277void xhci_ring_cmd_db(struct xhci_hcd *xhci)
278{
279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
280 return;
281
282 xhci_dbg(xhci, "// Ding dong!\n");
283 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
284 /* Flush PCI posted writes */
285 readl(&xhci->dba->doorbell[0]);
286}
287
288static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
289{
290 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
291}
292
293static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
294{
295 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
296 cmd_list);
297}
298
299/*
300 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
301 * If there are other commands waiting then restart the ring and kick the timer.
302 * This must be called with command ring stopped and xhci->lock held.
303 */
304static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
305 struct xhci_command *cur_cmd)
306{
307 struct xhci_command *i_cmd;
308
309 /* Turn all aborted commands in list to no-ops, then restart */
310 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
311
312 if (i_cmd->status != COMP_COMMAND_ABORTED)
313 continue;
314
315 i_cmd->status = COMP_COMMAND_RING_STOPPED;
316
317 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
318 i_cmd->command_trb);
319
320 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
321
322 /*
323 * caller waiting for completion is called when command
324 * completion event is received for these no-op commands
325 */
326 }
327
328 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
329
330 /* ring command ring doorbell to restart the command ring */
331 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
332 !(xhci->xhc_state & XHCI_STATE_DYING)) {
333 xhci->current_cmd = cur_cmd;
334 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
335 xhci_ring_cmd_db(xhci);
336 }
337}
338
339/* Must be called with xhci->lock held, releases and aquires lock back */
340static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
341{
342 u64 temp_64;
343 int ret;
344
345 xhci_dbg(xhci, "Abort command ring\n");
346
347 reinit_completion(&xhci->cmd_ring_stop_completion);
348
349 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
350 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
351 &xhci->op_regs->cmd_ring);
352
353 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
354 * completion of the Command Abort operation. If CRR is not negated in 5
355 * seconds then driver handles it as if host died (-ENODEV).
356 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
357 * and try to recover a -ETIMEDOUT with a host controller reset.
358 */
359 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
360 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
361 if (ret < 0) {
362 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
363 xhci_halt(xhci);
364 xhci_hc_died(xhci);
365 return ret;
366 }
367 /*
368 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
369 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
370 * but the completion event in never sent. Wait 2 secs (arbitrary
371 * number) to handle those cases after negation of CMD_RING_RUNNING.
372 */
373 spin_unlock_irqrestore(&xhci->lock, flags);
374 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
375 msecs_to_jiffies(2000));
376 spin_lock_irqsave(&xhci->lock, flags);
377 if (!ret) {
378 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
379 xhci_cleanup_command_queue(xhci);
380 } else {
381 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
382 }
383 return 0;
384}
385
386void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
387 unsigned int slot_id,
388 unsigned int ep_index,
389 unsigned int stream_id)
390{
391 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
392 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
393 unsigned int ep_state = ep->ep_state;
394
395 /* Don't ring the doorbell for this endpoint if there are pending
396 * cancellations because we don't want to interrupt processing.
397 * We don't want to restart any stream rings if there's a set dequeue
398 * pointer command pending because the device can choose to start any
399 * stream once the endpoint is on the HW schedule.
400 */
401 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
402 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
403 return;
404 writel(DB_VALUE(ep_index, stream_id), db_addr);
405 /* The CPU has better things to do at this point than wait for a
406 * write-posting flush. It'll get there soon enough.
407 */
408}
409
410/* Ring the doorbell for any rings with pending URBs */
411static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index)
414{
415 unsigned int stream_id;
416 struct xhci_virt_ep *ep;
417
418 ep = &xhci->devs[slot_id]->eps[ep_index];
419
420 /* A ring has pending URBs if its TD list is not empty */
421 if (!(ep->ep_state & EP_HAS_STREAMS)) {
422 if (ep->ring && !(list_empty(&ep->ring->td_list)))
423 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
424 return;
425 }
426
427 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
428 stream_id++) {
429 struct xhci_stream_info *stream_info = ep->stream_info;
430 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
431 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
432 stream_id);
433 }
434}
435
436void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
437 unsigned int slot_id,
438 unsigned int ep_index)
439{
440 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
441}
442
443/* Get the right ring for the given slot_id, ep_index and stream_id.
444 * If the endpoint supports streams, boundary check the URB's stream ID.
445 * If the endpoint doesn't support streams, return the singular endpoint ring.
446 */
447struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
448 unsigned int slot_id, unsigned int ep_index,
449 unsigned int stream_id)
450{
451 struct xhci_virt_ep *ep;
452
453 ep = &xhci->devs[slot_id]->eps[ep_index];
454 /* Common case: no streams */
455 if (!(ep->ep_state & EP_HAS_STREAMS))
456 return ep->ring;
457
458 if (stream_id == 0) {
459 xhci_warn(xhci,
460 "WARN: Slot ID %u, ep index %u has streams, "
461 "but URB has no stream ID.\n",
462 slot_id, ep_index);
463 return NULL;
464 }
465
466 if (stream_id < ep->stream_info->num_streams)
467 return ep->stream_info->stream_rings[stream_id];
468
469 xhci_warn(xhci,
470 "WARN: Slot ID %u, ep index %u has "
471 "stream IDs 1 to %u allocated, "
472 "but stream ID %u is requested.\n",
473 slot_id, ep_index,
474 ep->stream_info->num_streams - 1,
475 stream_id);
476 return NULL;
477}
478
479
480/*
481 * Get the hw dequeue pointer xHC stopped on, either directly from the
482 * endpoint context, or if streams are in use from the stream context.
483 * The returned hw_dequeue contains the lowest four bits with cycle state
484 * and possbile stream context type.
485 */
486static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
487 unsigned int ep_index, unsigned int stream_id)
488{
489 struct xhci_ep_ctx *ep_ctx;
490 struct xhci_stream_ctx *st_ctx;
491 struct xhci_virt_ep *ep;
492
493 ep = &vdev->eps[ep_index];
494
495 if (ep->ep_state & EP_HAS_STREAMS) {
496 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
497 return le64_to_cpu(st_ctx->stream_ring);
498 }
499 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
500 return le64_to_cpu(ep_ctx->deq);
501}
502
503/*
504 * Move the xHC's endpoint ring dequeue pointer past cur_td.
505 * Record the new state of the xHC's endpoint ring dequeue segment,
506 * dequeue pointer, stream id, and new consumer cycle state in state.
507 * Update our internal representation of the ring's dequeue pointer.
508 *
509 * We do this in three jumps:
510 * - First we update our new ring state to be the same as when the xHC stopped.
511 * - Then we traverse the ring to find the segment that contains
512 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
513 * any link TRBs with the toggle cycle bit set.
514 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
515 * if we've moved it past a link TRB with the toggle cycle bit set.
516 *
517 * Some of the uses of xhci_generic_trb are grotty, but if they're done
518 * with correct __le32 accesses they should work fine. Only users of this are
519 * in here.
520 */
521void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
522 unsigned int slot_id, unsigned int ep_index,
523 unsigned int stream_id, struct xhci_td *cur_td,
524 struct xhci_dequeue_state *state)
525{
526 struct xhci_virt_device *dev = xhci->devs[slot_id];
527 struct xhci_virt_ep *ep = &dev->eps[ep_index];
528 struct xhci_ring *ep_ring;
529 struct xhci_segment *new_seg;
530 union xhci_trb *new_deq;
531 dma_addr_t addr;
532 u64 hw_dequeue;
533 bool cycle_found = false;
534 bool td_last_trb_found = false;
535
536 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
537 ep_index, stream_id);
538 if (!ep_ring) {
539 xhci_warn(xhci, "WARN can't find new dequeue state "
540 "for invalid stream ID %u.\n",
541 stream_id);
542 return;
543 }
544 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
546 "Finding endpoint context");
547
548 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
549 new_seg = ep_ring->deq_seg;
550 new_deq = ep_ring->dequeue;
551 state->new_cycle_state = hw_dequeue & 0x1;
552 state->stream_id = stream_id;
553
554 /*
555 * We want to find the pointer, segment and cycle state of the new trb
556 * (the one after current TD's last_trb). We know the cycle state at
557 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
558 * found.
559 */
560 do {
561 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
562 == (dma_addr_t)(hw_dequeue & ~0xf)) {
563 cycle_found = true;
564 if (td_last_trb_found)
565 break;
566 }
567 if (new_deq == cur_td->last_trb)
568 td_last_trb_found = true;
569
570 if (cycle_found && trb_is_link(new_deq) &&
571 link_trb_toggles_cycle(new_deq))
572 state->new_cycle_state ^= 0x1;
573
574 next_trb(xhci, ep_ring, &new_seg, &new_deq);
575
576 /* Search wrapped around, bail out */
577 if (new_deq == ep->ring->dequeue) {
578 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
579 state->new_deq_seg = NULL;
580 state->new_deq_ptr = NULL;
581 return;
582 }
583
584 } while (!cycle_found || !td_last_trb_found);
585
586 state->new_deq_seg = new_seg;
587 state->new_deq_ptr = new_deq;
588
589 /* Don't update the ring cycle state for the producer (us). */
590 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
591 "Cycle state = 0x%x", state->new_cycle_state);
592
593 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
594 "New dequeue segment = %p (virtual)",
595 state->new_deq_seg);
596 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue pointer = 0x%llx (DMA)",
599 (unsigned long long) addr);
600}
601
602/* flip_cycle means flip the cycle bit of all but the first and last TRB.
603 * (The last TRB actually points to the ring enqueue pointer, which is not part
604 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
605 */
606static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
607 struct xhci_td *td, bool flip_cycle)
608{
609 struct xhci_segment *seg = td->start_seg;
610 union xhci_trb *trb = td->first_trb;
611
612 while (1) {
613 trb_to_noop(trb, TRB_TR_NOOP);
614
615 /* flip cycle if asked to */
616 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
617 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
618
619 if (trb == td->last_trb)
620 break;
621
622 next_trb(xhci, ep_ring, &seg, &trb);
623 }
624}
625
626static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
627 struct xhci_virt_ep *ep)
628{
629 ep->ep_state &= ~EP_STOP_CMD_PENDING;
630 /* Can't del_timer_sync in interrupt */
631 del_timer(&ep->stop_cmd_timer);
632}
633
634/*
635 * Must be called with xhci->lock held in interrupt context,
636 * releases and re-acquires xhci->lock
637 */
638static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
639 struct xhci_td *cur_td, int status)
640{
641 struct urb *urb = cur_td->urb;
642 struct urb_priv *urb_priv = urb->hcpriv;
643 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
644
645 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
646 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
647 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
648 if (xhci->quirks & XHCI_AMD_PLL_FIX)
649 usb_amd_quirk_pll_enable();
650 }
651 }
652 xhci_urb_free_priv(urb_priv);
653 usb_hcd_unlink_urb_from_ep(hcd, urb);
654 spin_unlock(&xhci->lock);
655 trace_xhci_urb_giveback(urb);
656 usb_hcd_giveback_urb(hcd, urb, status);
657 spin_lock(&xhci->lock);
658}
659
660static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
661 struct xhci_ring *ring, struct xhci_td *td)
662{
663 struct device *dev = xhci_to_hcd(xhci)->self.controller;
664 struct xhci_segment *seg = td->bounce_seg;
665 struct urb *urb = td->urb;
666 size_t len;
667
668 if (!ring || !seg || !urb)
669 return;
670
671 if (usb_urb_dir_out(urb)) {
672 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
673 DMA_TO_DEVICE);
674 return;
675 }
676
677 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
678 DMA_FROM_DEVICE);
679 /* for in tranfers we need to copy the data from bounce to sg */
680 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
681 seg->bounce_len, seg->bounce_offs);
682 if (len != seg->bounce_len)
683 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
684 len, seg->bounce_len);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687}
688
689/*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
699static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701{
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833}
834
835static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836{
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852}
853
854static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856{
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 ring = ep->stream_info->stream_rings[stream_id];
870 if (!ring)
871 continue;
872
873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
874 "Killing URBs for slot ID %u, ep index %u, stream %u",
875 slot_id, ep_index, stream_id);
876 xhci_kill_ring_urbs(xhci, ring);
877 }
878 } else {
879 ring = ep->ring;
880 if (!ring)
881 return;
882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
883 "Killing URBs for slot ID %u, ep index %u",
884 slot_id, ep_index);
885 xhci_kill_ring_urbs(xhci, ring);
886 }
887
888 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
889 cancelled_td_list) {
890 list_del_init(&cur_td->cancelled_td_list);
891 inc_td_cnt(cur_td->urb);
892
893 if (last_td_in_urb(cur_td))
894 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
895 }
896}
897
898/*
899 * host controller died, register read returns 0xffffffff
900 * Complete pending commands, mark them ABORTED.
901 * URBs need to be given back as usb core might be waiting with device locks
902 * held for the URBs to finish during device disconnect, blocking host remove.
903 *
904 * Call with xhci->lock held.
905 * lock is relased and re-acquired while giving back urb.
906 */
907void xhci_hc_died(struct xhci_hcd *xhci)
908{
909 int i, j;
910
911 if (xhci->xhc_state & XHCI_STATE_DYING)
912 return;
913
914 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
915 xhci->xhc_state |= XHCI_STATE_DYING;
916
917 xhci_cleanup_command_queue(xhci);
918
919 /* return any pending urbs, remove may be waiting for them */
920 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
921 if (!xhci->devs[i])
922 continue;
923 for (j = 0; j < 31; j++)
924 xhci_kill_endpoint_urbs(xhci, i, j);
925 }
926
927 /* inform usb core hc died if PCI remove isn't already handling it */
928 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
929 usb_hc_died(xhci_to_hcd(xhci));
930}
931
932/* Watchdog timer function for when a stop endpoint command fails to complete.
933 * In this case, we assume the host controller is broken or dying or dead. The
934 * host may still be completing some other events, so we have to be careful to
935 * let the event ring handler and the URB dequeueing/enqueueing functions know
936 * through xhci->state.
937 *
938 * The timer may also fire if the host takes a very long time to respond to the
939 * command, and the stop endpoint command completion handler cannot delete the
940 * timer before the timer function is called. Another endpoint cancellation may
941 * sneak in before the timer function can grab the lock, and that may queue
942 * another stop endpoint command and add the timer back. So we cannot use a
943 * simple flag to say whether there is a pending stop endpoint command for a
944 * particular endpoint.
945 *
946 * Instead we use a combination of that flag and checking if a new timer is
947 * pending.
948 */
949void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
950{
951 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
952 struct xhci_hcd *xhci = ep->xhci;
953 unsigned long flags;
954
955 spin_lock_irqsave(&xhci->lock, flags);
956
957 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
958 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
959 timer_pending(&ep->stop_cmd_timer)) {
960 spin_unlock_irqrestore(&xhci->lock, flags);
961 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
962 return;
963 }
964
965 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
966 ep->ep_state &= ~EP_STOP_CMD_PENDING;
967
968 xhci_halt(xhci);
969
970 /*
971 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
972 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
973 * and try to recover a -ETIMEDOUT with a host controller reset
974 */
975 xhci_hc_died(xhci);
976
977 spin_unlock_irqrestore(&xhci->lock, flags);
978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
979 "xHCI host controller is dead.");
980}
981
982static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
983 struct xhci_virt_device *dev,
984 struct xhci_ring *ep_ring,
985 unsigned int ep_index)
986{
987 union xhci_trb *dequeue_temp;
988 int num_trbs_free_temp;
989 bool revert = false;
990
991 num_trbs_free_temp = ep_ring->num_trbs_free;
992 dequeue_temp = ep_ring->dequeue;
993
994 /* If we get two back-to-back stalls, and the first stalled transfer
995 * ends just before a link TRB, the dequeue pointer will be left on
996 * the link TRB by the code in the while loop. So we have to update
997 * the dequeue pointer one segment further, or we'll jump off
998 * the segment into la-la-land.
999 */
1000 if (trb_is_link(ep_ring->dequeue)) {
1001 ep_ring->deq_seg = ep_ring->deq_seg->next;
1002 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1003 }
1004
1005 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1006 /* We have more usable TRBs */
1007 ep_ring->num_trbs_free++;
1008 ep_ring->dequeue++;
1009 if (trb_is_link(ep_ring->dequeue)) {
1010 if (ep_ring->dequeue ==
1011 dev->eps[ep_index].queued_deq_ptr)
1012 break;
1013 ep_ring->deq_seg = ep_ring->deq_seg->next;
1014 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1015 }
1016 if (ep_ring->dequeue == dequeue_temp) {
1017 revert = true;
1018 break;
1019 }
1020 }
1021
1022 if (revert) {
1023 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1024 ep_ring->num_trbs_free = num_trbs_free_temp;
1025 }
1026}
1027
1028/*
1029 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1030 * we need to clear the set deq pending flag in the endpoint ring state, so that
1031 * the TD queueing code can ring the doorbell again. We also need to ring the
1032 * endpoint doorbell to restart the ring, but only if there aren't more
1033 * cancellations pending.
1034 */
1035static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1036 union xhci_trb *trb, u32 cmd_comp_code)
1037{
1038 unsigned int ep_index;
1039 unsigned int stream_id;
1040 struct xhci_ring *ep_ring;
1041 struct xhci_virt_device *dev;
1042 struct xhci_virt_ep *ep;
1043 struct xhci_ep_ctx *ep_ctx;
1044 struct xhci_slot_ctx *slot_ctx;
1045
1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1047 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1048 dev = xhci->devs[slot_id];
1049 ep = &dev->eps[ep_index];
1050
1051 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1052 if (!ep_ring) {
1053 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1054 stream_id);
1055 /* XXX: Harmless??? */
1056 goto cleanup;
1057 }
1058
1059 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1060 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1061 trace_xhci_handle_cmd_set_deq(slot_ctx);
1062 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1063
1064 if (cmd_comp_code != COMP_SUCCESS) {
1065 unsigned int ep_state;
1066 unsigned int slot_state;
1067
1068 switch (cmd_comp_code) {
1069 case COMP_TRB_ERROR:
1070 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1071 break;
1072 case COMP_CONTEXT_STATE_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1074 ep_state = GET_EP_CTX_STATE(ep_ctx);
1075 slot_state = le32_to_cpu(slot_ctx->dev_state);
1076 slot_state = GET_SLOT_STATE(slot_state);
1077 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1078 "Slot state = %u, EP state = %u",
1079 slot_state, ep_state);
1080 break;
1081 case COMP_SLOT_NOT_ENABLED_ERROR:
1082 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1083 slot_id);
1084 break;
1085 default:
1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1087 cmd_comp_code);
1088 break;
1089 }
1090 /* OK what do we do now? The endpoint state is hosed, and we
1091 * should never get to this point if the synchronization between
1092 * queueing, and endpoint state are correct. This might happen
1093 * if the device gets disconnected after we've finished
1094 * cancelling URBs, which might not be an error...
1095 */
1096 } else {
1097 u64 deq;
1098 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1099 if (ep->ep_state & EP_HAS_STREAMS) {
1100 struct xhci_stream_ctx *ctx =
1101 &ep->stream_info->stream_ctx_array[stream_id];
1102 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1103 } else {
1104 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1105 }
1106 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1107 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1108 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1109 ep->queued_deq_ptr) == deq) {
1110 /* Update the ring's dequeue segment and dequeue pointer
1111 * to reflect the new position.
1112 */
1113 update_ring_for_set_deq_completion(xhci, dev,
1114 ep_ring, ep_index);
1115 } else {
1116 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1117 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1118 ep->queued_deq_seg, ep->queued_deq_ptr);
1119 }
1120 }
1121
1122cleanup:
1123 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1124 dev->eps[ep_index].queued_deq_seg = NULL;
1125 dev->eps[ep_index].queued_deq_ptr = NULL;
1126 /* Restart any rings with pending URBs */
1127 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1128}
1129
1130static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1131 union xhci_trb *trb, u32 cmd_comp_code)
1132{
1133 struct xhci_virt_device *vdev;
1134 struct xhci_ep_ctx *ep_ctx;
1135 unsigned int ep_index;
1136
1137 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1138 vdev = xhci->devs[slot_id];
1139 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1140 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1141
1142 /* This command will only fail if the endpoint wasn't halted,
1143 * but we don't care.
1144 */
1145 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1146 "Ignoring reset ep completion code of %u", cmd_comp_code);
1147
1148 /* HW with the reset endpoint quirk needs to have a configure endpoint
1149 * command complete before the endpoint can be used. Queue that here
1150 * because the HW can't handle two commands being queued in a row.
1151 */
1152 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1153 struct xhci_command *command;
1154
1155 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1156 if (!command)
1157 return;
1158
1159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1160 "Queueing configure endpoint command");
1161 xhci_queue_configure_endpoint(xhci, command,
1162 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1163 false);
1164 xhci_ring_cmd_db(xhci);
1165 } else {
1166 /* Clear our internal halted state */
1167 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1168 }
1169
1170 /* if this was a soft reset, then restart */
1171 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1172 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1173}
1174
1175static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1176 struct xhci_command *command, u32 cmd_comp_code)
1177{
1178 if (cmd_comp_code == COMP_SUCCESS)
1179 command->slot_id = slot_id;
1180 else
1181 command->slot_id = 0;
1182}
1183
1184static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1185{
1186 struct xhci_virt_device *virt_dev;
1187 struct xhci_slot_ctx *slot_ctx;
1188
1189 virt_dev = xhci->devs[slot_id];
1190 if (!virt_dev)
1191 return;
1192
1193 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1194 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1195
1196 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1197 /* Delete default control endpoint resources */
1198 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1199 xhci_free_virt_device(xhci, slot_id);
1200}
1201
1202static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1203 struct xhci_event_cmd *event, u32 cmd_comp_code)
1204{
1205 struct xhci_virt_device *virt_dev;
1206 struct xhci_input_control_ctx *ctrl_ctx;
1207 struct xhci_ep_ctx *ep_ctx;
1208 unsigned int ep_index;
1209 unsigned int ep_state;
1210 u32 add_flags, drop_flags;
1211
1212 /*
1213 * Configure endpoint commands can come from the USB core
1214 * configuration or alt setting changes, or because the HW
1215 * needed an extra configure endpoint command after a reset
1216 * endpoint command or streams were being configured.
1217 * If the command was for a halted endpoint, the xHCI driver
1218 * is not waiting on the configure endpoint command.
1219 */
1220 virt_dev = xhci->devs[slot_id];
1221 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1222 if (!ctrl_ctx) {
1223 xhci_warn(xhci, "Could not get input context, bad type.\n");
1224 return;
1225 }
1226
1227 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1228 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1229 /* Input ctx add_flags are the endpoint index plus one */
1230 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1231
1232 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1233 trace_xhci_handle_cmd_config_ep(ep_ctx);
1234
1235 /* A usb_set_interface() call directly after clearing a halted
1236 * condition may race on this quirky hardware. Not worth
1237 * worrying about, since this is prototype hardware. Not sure
1238 * if this will work for streams, but streams support was
1239 * untested on this prototype.
1240 */
1241 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1242 ep_index != (unsigned int) -1 &&
1243 add_flags - SLOT_FLAG == drop_flags) {
1244 ep_state = virt_dev->eps[ep_index].ep_state;
1245 if (!(ep_state & EP_HALTED))
1246 return;
1247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1248 "Completed config ep cmd - "
1249 "last ep index = %d, state = %d",
1250 ep_index, ep_state);
1251 /* Clear internal halted state and restart ring(s) */
1252 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1253 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1254 return;
1255 }
1256 return;
1257}
1258
1259static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1260{
1261 struct xhci_virt_device *vdev;
1262 struct xhci_slot_ctx *slot_ctx;
1263
1264 vdev = xhci->devs[slot_id];
1265 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1266 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1267}
1268
1269static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1270 struct xhci_event_cmd *event)
1271{
1272 struct xhci_virt_device *vdev;
1273 struct xhci_slot_ctx *slot_ctx;
1274
1275 vdev = xhci->devs[slot_id];
1276 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1277 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1278
1279 xhci_dbg(xhci, "Completed reset device command.\n");
1280 if (!xhci->devs[slot_id])
1281 xhci_warn(xhci, "Reset device command completion "
1282 "for disabled slot %u\n", slot_id);
1283}
1284
1285static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1286 struct xhci_event_cmd *event)
1287{
1288 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1289 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1290 return;
1291 }
1292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1293 "NEC firmware version %2x.%02x",
1294 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1295 NEC_FW_MINOR(le32_to_cpu(event->status)));
1296}
1297
1298static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1299{
1300 list_del(&cmd->cmd_list);
1301
1302 if (cmd->completion) {
1303 cmd->status = status;
1304 complete(cmd->completion);
1305 } else {
1306 kfree(cmd);
1307 }
1308}
1309
1310void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1311{
1312 struct xhci_command *cur_cmd, *tmp_cmd;
1313 xhci->current_cmd = NULL;
1314 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1315 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1316}
1317
1318void xhci_handle_command_timeout(struct work_struct *work)
1319{
1320 struct xhci_hcd *xhci;
1321 unsigned long flags;
1322 u64 hw_ring_state;
1323
1324 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1325
1326 spin_lock_irqsave(&xhci->lock, flags);
1327
1328 /*
1329 * If timeout work is pending, or current_cmd is NULL, it means we
1330 * raced with command completion. Command is handled so just return.
1331 */
1332 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1333 spin_unlock_irqrestore(&xhci->lock, flags);
1334 return;
1335 }
1336 /* mark this command to be cancelled */
1337 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1338
1339 /* Make sure command ring is running before aborting it */
1340 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1341 if (hw_ring_state == ~(u64)0) {
1342 xhci_hc_died(xhci);
1343 goto time_out_completed;
1344 }
1345
1346 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1347 (hw_ring_state & CMD_RING_RUNNING)) {
1348 /* Prevent new doorbell, and start command abort */
1349 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1350 xhci_dbg(xhci, "Command timeout\n");
1351 xhci_abort_cmd_ring(xhci, flags);
1352 goto time_out_completed;
1353 }
1354
1355 /* host removed. Bail out */
1356 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1357 xhci_dbg(xhci, "host removed, ring start fail?\n");
1358 xhci_cleanup_command_queue(xhci);
1359
1360 goto time_out_completed;
1361 }
1362
1363 /* command timeout on stopped ring, ring can't be aborted */
1364 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1365 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1366
1367time_out_completed:
1368 spin_unlock_irqrestore(&xhci->lock, flags);
1369 return;
1370}
1371
1372static void handle_cmd_completion(struct xhci_hcd *xhci,
1373 struct xhci_event_cmd *event)
1374{
1375 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1376 u64 cmd_dma;
1377 dma_addr_t cmd_dequeue_dma;
1378 u32 cmd_comp_code;
1379 union xhci_trb *cmd_trb;
1380 struct xhci_command *cmd;
1381 u32 cmd_type;
1382
1383 cmd_dma = le64_to_cpu(event->cmd_trb);
1384 cmd_trb = xhci->cmd_ring->dequeue;
1385
1386 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1387
1388 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1389 cmd_trb);
1390 /*
1391 * Check whether the completion event is for our internal kept
1392 * command.
1393 */
1394 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1395 xhci_warn(xhci,
1396 "ERROR mismatched command completion event\n");
1397 return;
1398 }
1399
1400 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1401
1402 cancel_delayed_work(&xhci->cmd_timer);
1403
1404 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1405
1406 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1407 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1408 complete_all(&xhci->cmd_ring_stop_completion);
1409 return;
1410 }
1411
1412 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1413 xhci_err(xhci,
1414 "Command completion event does not match command\n");
1415 return;
1416 }
1417
1418 /*
1419 * Host aborted the command ring, check if the current command was
1420 * supposed to be aborted, otherwise continue normally.
1421 * The command ring is stopped now, but the xHC will issue a Command
1422 * Ring Stopped event which will cause us to restart it.
1423 */
1424 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1425 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1426 if (cmd->status == COMP_COMMAND_ABORTED) {
1427 if (xhci->current_cmd == cmd)
1428 xhci->current_cmd = NULL;
1429 goto event_handled;
1430 }
1431 }
1432
1433 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1434 switch (cmd_type) {
1435 case TRB_ENABLE_SLOT:
1436 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1437 break;
1438 case TRB_DISABLE_SLOT:
1439 xhci_handle_cmd_disable_slot(xhci, slot_id);
1440 break;
1441 case TRB_CONFIG_EP:
1442 if (!cmd->completion)
1443 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1444 cmd_comp_code);
1445 break;
1446 case TRB_EVAL_CONTEXT:
1447 break;
1448 case TRB_ADDR_DEV:
1449 xhci_handle_cmd_addr_dev(xhci, slot_id);
1450 break;
1451 case TRB_STOP_RING:
1452 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1453 le32_to_cpu(cmd_trb->generic.field[3])));
1454 if (!cmd->completion)
1455 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1456 break;
1457 case TRB_SET_DEQ:
1458 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1459 le32_to_cpu(cmd_trb->generic.field[3])));
1460 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1461 break;
1462 case TRB_CMD_NOOP:
1463 /* Is this an aborted command turned to NO-OP? */
1464 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1465 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1466 break;
1467 case TRB_RESET_EP:
1468 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1469 le32_to_cpu(cmd_trb->generic.field[3])));
1470 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1471 break;
1472 case TRB_RESET_DEV:
1473 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1474 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1475 */
1476 slot_id = TRB_TO_SLOT_ID(
1477 le32_to_cpu(cmd_trb->generic.field[3]));
1478 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1479 break;
1480 case TRB_NEC_GET_FW:
1481 xhci_handle_cmd_nec_get_fw(xhci, event);
1482 break;
1483 default:
1484 /* Skip over unknown commands on the event ring */
1485 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1486 break;
1487 }
1488
1489 /* restart timer if this wasn't the last command */
1490 if (!list_is_singular(&xhci->cmd_list)) {
1491 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1492 struct xhci_command, cmd_list);
1493 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1494 } else if (xhci->current_cmd == cmd) {
1495 xhci->current_cmd = NULL;
1496 }
1497
1498event_handled:
1499 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1500
1501 inc_deq(xhci, xhci->cmd_ring);
1502}
1503
1504static void handle_vendor_event(struct xhci_hcd *xhci,
1505 union xhci_trb *event)
1506{
1507 u32 trb_type;
1508
1509 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1510 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1511 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1512 handle_cmd_completion(xhci, &event->event_cmd);
1513}
1514
1515static void handle_device_notification(struct xhci_hcd *xhci,
1516 union xhci_trb *event)
1517{
1518 u32 slot_id;
1519 struct usb_device *udev;
1520
1521 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1522 if (!xhci->devs[slot_id]) {
1523 xhci_warn(xhci, "Device Notification event for "
1524 "unused slot %u\n", slot_id);
1525 return;
1526 }
1527
1528 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1529 slot_id);
1530 udev = xhci->devs[slot_id]->udev;
1531 if (udev && udev->parent)
1532 usb_wakeup_notification(udev->parent, udev->portnum);
1533}
1534
1535/*
1536 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1537 * Controller.
1538 * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1539 * If a connection to a USB 1 device is followed by another connection
1540 * to a USB 2 device.
1541 *
1542 * Reset the PHY after the USB device is disconnected if device speed
1543 * is less than HCD_USB3.
1544 * Retry the reset sequence max of 4 times checking the PLL lock status.
1545 *
1546 */
1547static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1548{
1549 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1550 u32 pll_lock_check;
1551 u32 retry_count = 4;
1552
1553 do {
1554 /* Assert PHY reset */
1555 writel(0x6F, hcd->regs + 0x1048);
1556 udelay(10);
1557 /* De-assert the PHY reset */
1558 writel(0x7F, hcd->regs + 0x1048);
1559 udelay(200);
1560 pll_lock_check = readl(hcd->regs + 0x1070);
1561 } while (!(pll_lock_check & 0x1) && --retry_count);
1562}
1563
1564static void handle_port_status(struct xhci_hcd *xhci,
1565 union xhci_trb *event)
1566{
1567 struct usb_hcd *hcd;
1568 u32 port_id;
1569 u32 portsc, cmd_reg;
1570 int max_ports;
1571 int slot_id;
1572 unsigned int hcd_portnum;
1573 struct xhci_bus_state *bus_state;
1574 bool bogus_port_status = false;
1575 struct xhci_port *port;
1576
1577 /* Port status change events always have a successful completion code */
1578 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1579 xhci_warn(xhci,
1580 "WARN: xHC returned failed port status event\n");
1581
1582 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1583 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1584
1585 if ((port_id <= 0) || (port_id > max_ports)) {
1586 xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1587 port_id);
1588 inc_deq(xhci, xhci->event_ring);
1589 return;
1590 }
1591
1592 port = &xhci->hw_ports[port_id - 1];
1593 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1594 xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1595 port_id);
1596 bogus_port_status = true;
1597 goto cleanup;
1598 }
1599
1600 /* We might get interrupts after shared_hcd is removed */
1601 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1602 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1603 bogus_port_status = true;
1604 goto cleanup;
1605 }
1606
1607 hcd = port->rhub->hcd;
1608 bus_state = &port->rhub->bus_state;
1609 hcd_portnum = port->hcd_portnum;
1610 portsc = readl(port->addr);
1611
1612 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1613 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1614
1615 trace_xhci_handle_port_status(hcd_portnum, portsc);
1616
1617 if (hcd->state == HC_STATE_SUSPENDED) {
1618 xhci_dbg(xhci, "resume root hub\n");
1619 usb_hcd_resume_root_hub(hcd);
1620 }
1621
1622 if (hcd->speed >= HCD_USB3 &&
1623 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1624 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1625 if (slot_id && xhci->devs[slot_id])
1626 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR;
1627 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1628 }
1629
1630 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1631 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1632
1633 cmd_reg = readl(&xhci->op_regs->command);
1634 if (!(cmd_reg & CMD_RUN)) {
1635 xhci_warn(xhci, "xHC is not running.\n");
1636 goto cleanup;
1637 }
1638
1639 if (DEV_SUPERSPEED_ANY(portsc)) {
1640 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1641 /* Set a flag to say the port signaled remote wakeup,
1642 * so we can tell the difference between the end of
1643 * device and host initiated resume.
1644 */
1645 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1646 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1647 xhci_set_link_state(xhci, port, XDEV_U0);
1648 /* Need to wait until the next link state change
1649 * indicates the device is actually in U0.
1650 */
1651 bogus_port_status = true;
1652 goto cleanup;
1653 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1654 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1655 bus_state->resume_done[hcd_portnum] = jiffies +
1656 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1657 set_bit(hcd_portnum, &bus_state->resuming_ports);
1658 /* Do the rest in GetPortStatus after resume time delay.
1659 * Avoid polling roothub status before that so that a
1660 * usb device auto-resume latency around ~40ms.
1661 */
1662 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1663 mod_timer(&hcd->rh_timer,
1664 bus_state->resume_done[hcd_portnum]);
1665 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1666 bogus_port_status = true;
1667 }
1668 }
1669
1670 if ((portsc & PORT_PLC) &&
1671 DEV_SUPERSPEED_ANY(portsc) &&
1672 ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1673 (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1674 (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1675 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1676 /* We've just brought the device into U0/1/2 through either the
1677 * Resume state after a device remote wakeup, or through the
1678 * U3Exit state after a host-initiated resume. If it's a device
1679 * initiated remote wake, don't pass up the link state change,
1680 * so the roothub behavior is consistent with external
1681 * USB 3.0 hub behavior.
1682 */
1683 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1684 if (slot_id && xhci->devs[slot_id])
1685 xhci_ring_device(xhci, slot_id);
1686 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1687 bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
1688 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1689 usb_wakeup_notification(hcd->self.root_hub,
1690 hcd_portnum + 1);
1691 bogus_port_status = true;
1692 goto cleanup;
1693 }
1694 }
1695
1696 /*
1697 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1698 * RExit to a disconnect state). If so, let the the driver know it's
1699 * out of the RExit state.
1700 */
1701 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 &&
1702 test_and_clear_bit(hcd_portnum,
1703 &bus_state->rexit_ports)) {
1704 complete(&bus_state->rexit_done[hcd_portnum]);
1705 bogus_port_status = true;
1706 goto cleanup;
1707 }
1708
1709 if (hcd->speed < HCD_USB3) {
1710 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1711 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
1712 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
1713 xhci_cavium_reset_phy_quirk(xhci);
1714 }
1715
1716cleanup:
1717 /* Update event ring dequeue pointer before dropping the lock */
1718 inc_deq(xhci, xhci->event_ring);
1719
1720 /* Don't make the USB core poll the roothub if we got a bad port status
1721 * change event. Besides, at that point we can't tell which roothub
1722 * (USB 2.0 or USB 3.0) to kick.
1723 */
1724 if (bogus_port_status)
1725 return;
1726
1727 /*
1728 * xHCI port-status-change events occur when the "or" of all the
1729 * status-change bits in the portsc register changes from 0 to 1.
1730 * New status changes won't cause an event if any other change
1731 * bits are still set. When an event occurs, switch over to
1732 * polling to avoid losing status changes.
1733 */
1734 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1735 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1736 spin_unlock(&xhci->lock);
1737 /* Pass this up to the core */
1738 usb_hcd_poll_rh_status(hcd);
1739 spin_lock(&xhci->lock);
1740}
1741
1742/*
1743 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1744 * at end_trb, which may be in another segment. If the suspect DMA address is a
1745 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1746 * returns 0.
1747 */
1748struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1749 struct xhci_segment *start_seg,
1750 union xhci_trb *start_trb,
1751 union xhci_trb *end_trb,
1752 dma_addr_t suspect_dma,
1753 bool debug)
1754{
1755 dma_addr_t start_dma;
1756 dma_addr_t end_seg_dma;
1757 dma_addr_t end_trb_dma;
1758 struct xhci_segment *cur_seg;
1759
1760 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1761 cur_seg = start_seg;
1762
1763 do {
1764 if (start_dma == 0)
1765 return NULL;
1766 /* We may get an event for a Link TRB in the middle of a TD */
1767 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1768 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1769 /* If the end TRB isn't in this segment, this is set to 0 */
1770 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1771
1772 if (debug)
1773 xhci_warn(xhci,
1774 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1775 (unsigned long long)suspect_dma,
1776 (unsigned long long)start_dma,
1777 (unsigned long long)end_trb_dma,
1778 (unsigned long long)cur_seg->dma,
1779 (unsigned long long)end_seg_dma);
1780
1781 if (end_trb_dma > 0) {
1782 /* The end TRB is in this segment, so suspect should be here */
1783 if (start_dma <= end_trb_dma) {
1784 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1785 return cur_seg;
1786 } else {
1787 /* Case for one segment with
1788 * a TD wrapped around to the top
1789 */
1790 if ((suspect_dma >= start_dma &&
1791 suspect_dma <= end_seg_dma) ||
1792 (suspect_dma >= cur_seg->dma &&
1793 suspect_dma <= end_trb_dma))
1794 return cur_seg;
1795 }
1796 return NULL;
1797 } else {
1798 /* Might still be somewhere in this segment */
1799 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1800 return cur_seg;
1801 }
1802 cur_seg = cur_seg->next;
1803 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1804 } while (cur_seg != start_seg);
1805
1806 return NULL;
1807}
1808
1809static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
1810 struct xhci_virt_ep *ep)
1811{
1812 /*
1813 * As part of low/full-speed endpoint-halt processing
1814 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
1815 */
1816 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
1817 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
1818 !(ep->ep_state & EP_CLEARING_TT)) {
1819 ep->ep_state |= EP_CLEARING_TT;
1820 td->urb->ep->hcpriv = td->urb->dev;
1821 if (usb_hub_clear_tt_buffer(td->urb))
1822 ep->ep_state &= ~EP_CLEARING_TT;
1823 }
1824}
1825
1826static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1827 unsigned int slot_id, unsigned int ep_index,
1828 unsigned int stream_id, struct xhci_td *td,
1829 enum xhci_ep_reset_type reset_type)
1830{
1831 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1832 struct xhci_command *command;
1833
1834 /*
1835 * Avoid resetting endpoint if link is inactive. Can cause host hang.
1836 * Device will be reset soon to recover the link so don't do anything
1837 */
1838 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR)
1839 return;
1840
1841 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1842 if (!command)
1843 return;
1844
1845 ep->ep_state |= EP_HALTED;
1846
1847 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1848
1849 if (reset_type == EP_HARD_RESET) {
1850 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
1851 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1852 xhci_clear_hub_tt_buffer(xhci, td, ep);
1853 }
1854 xhci_ring_cmd_db(xhci);
1855}
1856
1857/* Check if an error has halted the endpoint ring. The class driver will
1858 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1859 * However, a babble and other errors also halt the endpoint ring, and the class
1860 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1861 * Ring Dequeue Pointer command manually.
1862 */
1863static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1864 struct xhci_ep_ctx *ep_ctx,
1865 unsigned int trb_comp_code)
1866{
1867 /* TRB completion codes that may require a manual halt cleanup */
1868 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1869 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1870 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1871 /* The 0.95 spec says a babbling control endpoint
1872 * is not halted. The 0.96 spec says it is. Some HW
1873 * claims to be 0.95 compliant, but it halts the control
1874 * endpoint anyway. Check if a babble halted the
1875 * endpoint.
1876 */
1877 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1878 return 1;
1879
1880 return 0;
1881}
1882
1883int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1884{
1885 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1886 /* Vendor defined "informational" completion code,
1887 * treat as not-an-error.
1888 */
1889 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1890 trb_comp_code);
1891 xhci_dbg(xhci, "Treating code as success.\n");
1892 return 1;
1893 }
1894 return 0;
1895}
1896
1897static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1898 struct xhci_ring *ep_ring, int *status)
1899{
1900 struct urb *urb = NULL;
1901
1902 /* Clean up the endpoint's TD list */
1903 urb = td->urb;
1904
1905 /* if a bounce buffer was used to align this td then unmap it */
1906 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1907
1908 /* Do one last check of the actual transfer length.
1909 * If the host controller said we transferred more data than the buffer
1910 * length, urb->actual_length will be a very big number (since it's
1911 * unsigned). Play it safe and say we didn't transfer anything.
1912 */
1913 if (urb->actual_length > urb->transfer_buffer_length) {
1914 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1915 urb->transfer_buffer_length, urb->actual_length);
1916 urb->actual_length = 0;
1917 *status = 0;
1918 }
1919 list_del_init(&td->td_list);
1920 /* Was this TD slated to be cancelled but completed anyway? */
1921 if (!list_empty(&td->cancelled_td_list))
1922 list_del_init(&td->cancelled_td_list);
1923
1924 inc_td_cnt(urb);
1925 /* Giveback the urb when all the tds are completed */
1926 if (last_td_in_urb(td)) {
1927 if ((urb->actual_length != urb->transfer_buffer_length &&
1928 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1929 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1930 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1931 urb, urb->actual_length,
1932 urb->transfer_buffer_length, *status);
1933
1934 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1935 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1936 *status = 0;
1937 xhci_giveback_urb_in_irq(xhci, td, *status);
1938 }
1939
1940 return 0;
1941}
1942
1943static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1944 struct xhci_transfer_event *event,
1945 struct xhci_virt_ep *ep, int *status)
1946{
1947 struct xhci_virt_device *xdev;
1948 struct xhci_ep_ctx *ep_ctx;
1949 struct xhci_ring *ep_ring;
1950 unsigned int slot_id;
1951 u32 trb_comp_code;
1952 int ep_index;
1953
1954 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1955 xdev = xhci->devs[slot_id];
1956 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1957 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1958 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1959 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1960
1961 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1962 trb_comp_code == COMP_STOPPED ||
1963 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1964 /* The Endpoint Stop Command completion will take care of any
1965 * stopped TDs. A stopped TD may be restarted, so don't update
1966 * the ring dequeue pointer or take this TD off any lists yet.
1967 */
1968 return 0;
1969 }
1970 if (trb_comp_code == COMP_STALL_ERROR ||
1971 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1972 trb_comp_code)) {
1973 /* Issue a reset endpoint command to clear the host side
1974 * halt, followed by a set dequeue command to move the
1975 * dequeue pointer past the TD.
1976 * The class driver clears the device side halt later.
1977 */
1978 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1979 ep_ring->stream_id, td, EP_HARD_RESET);
1980 } else {
1981 /* Update ring dequeue pointer */
1982 while (ep_ring->dequeue != td->last_trb)
1983 inc_deq(xhci, ep_ring);
1984 inc_deq(xhci, ep_ring);
1985 }
1986
1987 return xhci_td_cleanup(xhci, td, ep_ring, status);
1988}
1989
1990/* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1991static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1992 union xhci_trb *stop_trb)
1993{
1994 u32 sum;
1995 union xhci_trb *trb = ring->dequeue;
1996 struct xhci_segment *seg = ring->deq_seg;
1997
1998 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1999 if (!trb_is_noop(trb) && !trb_is_link(trb))
2000 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2001 }
2002 return sum;
2003}
2004
2005/*
2006 * Process control tds, update urb status and actual_length.
2007 */
2008static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2009 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2010 struct xhci_virt_ep *ep, int *status)
2011{
2012 struct xhci_virt_device *xdev;
2013 unsigned int slot_id;
2014 int ep_index;
2015 struct xhci_ep_ctx *ep_ctx;
2016 u32 trb_comp_code;
2017 u32 remaining, requested;
2018 u32 trb_type;
2019
2020 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2021 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2022 xdev = xhci->devs[slot_id];
2023 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2024 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2025 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2026 requested = td->urb->transfer_buffer_length;
2027 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2028
2029 switch (trb_comp_code) {
2030 case COMP_SUCCESS:
2031 if (trb_type != TRB_STATUS) {
2032 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2033 (trb_type == TRB_DATA) ? "data" : "setup");
2034 *status = -ESHUTDOWN;
2035 break;
2036 }
2037 *status = 0;
2038 break;
2039 case COMP_SHORT_PACKET:
2040 *status = 0;
2041 break;
2042 case COMP_STOPPED_SHORT_PACKET:
2043 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2044 td->urb->actual_length = remaining;
2045 else
2046 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2047 goto finish_td;
2048 case COMP_STOPPED:
2049 switch (trb_type) {
2050 case TRB_SETUP:
2051 td->urb->actual_length = 0;
2052 goto finish_td;
2053 case TRB_DATA:
2054 case TRB_NORMAL:
2055 td->urb->actual_length = requested - remaining;
2056 goto finish_td;
2057 case TRB_STATUS:
2058 td->urb->actual_length = requested;
2059 goto finish_td;
2060 default:
2061 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2062 trb_type);
2063 goto finish_td;
2064 }
2065 case COMP_STOPPED_LENGTH_INVALID:
2066 goto finish_td;
2067 default:
2068 if (!xhci_requires_manual_halt_cleanup(xhci,
2069 ep_ctx, trb_comp_code))
2070 break;
2071 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2072 trb_comp_code, ep_index);
2073 /* else fall through */
2074 case COMP_STALL_ERROR:
2075 /* Did we transfer part of the data (middle) phase? */
2076 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2077 td->urb->actual_length = requested - remaining;
2078 else if (!td->urb_length_set)
2079 td->urb->actual_length = 0;
2080 goto finish_td;
2081 }
2082
2083 /* stopped at setup stage, no data transferred */
2084 if (trb_type == TRB_SETUP)
2085 goto finish_td;
2086
2087 /*
2088 * if on data stage then update the actual_length of the URB and flag it
2089 * as set, so it won't be overwritten in the event for the last TRB.
2090 */
2091 if (trb_type == TRB_DATA ||
2092 trb_type == TRB_NORMAL) {
2093 td->urb_length_set = true;
2094 td->urb->actual_length = requested - remaining;
2095 xhci_dbg(xhci, "Waiting for status stage event\n");
2096 return 0;
2097 }
2098
2099 /* at status stage */
2100 if (!td->urb_length_set)
2101 td->urb->actual_length = requested;
2102
2103finish_td:
2104 return finish_td(xhci, td, event, ep, status);
2105}
2106
2107/*
2108 * Process isochronous tds, update urb packet status and actual_length.
2109 */
2110static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2111 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2112 struct xhci_virt_ep *ep, int *status)
2113{
2114 struct xhci_ring *ep_ring;
2115 struct urb_priv *urb_priv;
2116 int idx;
2117 struct usb_iso_packet_descriptor *frame;
2118 u32 trb_comp_code;
2119 bool sum_trbs_for_length = false;
2120 u32 remaining, requested, ep_trb_len;
2121 int short_framestatus;
2122
2123 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2124 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2125 urb_priv = td->urb->hcpriv;
2126 idx = urb_priv->num_tds_done;
2127 frame = &td->urb->iso_frame_desc[idx];
2128 requested = frame->length;
2129 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2130 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2131 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2132 -EREMOTEIO : 0;
2133
2134 /* handle completion code */
2135 switch (trb_comp_code) {
2136 case COMP_SUCCESS:
2137 if (remaining) {
2138 frame->status = short_framestatus;
2139 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2140 sum_trbs_for_length = true;
2141 break;
2142 }
2143 frame->status = 0;
2144 break;
2145 case COMP_SHORT_PACKET:
2146 frame->status = short_framestatus;
2147 sum_trbs_for_length = true;
2148 break;
2149 case COMP_BANDWIDTH_OVERRUN_ERROR:
2150 frame->status = -ECOMM;
2151 break;
2152 case COMP_ISOCH_BUFFER_OVERRUN:
2153 case COMP_BABBLE_DETECTED_ERROR:
2154 frame->status = -EOVERFLOW;
2155 break;
2156 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2157 case COMP_STALL_ERROR:
2158 frame->status = -EPROTO;
2159 break;
2160 case COMP_USB_TRANSACTION_ERROR:
2161 frame->status = -EPROTO;
2162 if (ep_trb != td->last_trb)
2163 return 0;
2164 break;
2165 case COMP_STOPPED:
2166 sum_trbs_for_length = true;
2167 break;
2168 case COMP_STOPPED_SHORT_PACKET:
2169 /* field normally containing residue now contains tranferred */
2170 frame->status = short_framestatus;
2171 requested = remaining;
2172 break;
2173 case COMP_STOPPED_LENGTH_INVALID:
2174 requested = 0;
2175 remaining = 0;
2176 break;
2177 default:
2178 sum_trbs_for_length = true;
2179 frame->status = -1;
2180 break;
2181 }
2182
2183 if (sum_trbs_for_length)
2184 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2185 ep_trb_len - remaining;
2186 else
2187 frame->actual_length = requested;
2188
2189 td->urb->actual_length += frame->actual_length;
2190
2191 return finish_td(xhci, td, event, ep, status);
2192}
2193
2194static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2195 struct xhci_transfer_event *event,
2196 struct xhci_virt_ep *ep, int *status)
2197{
2198 struct xhci_ring *ep_ring;
2199 struct urb_priv *urb_priv;
2200 struct usb_iso_packet_descriptor *frame;
2201 int idx;
2202
2203 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2204 urb_priv = td->urb->hcpriv;
2205 idx = urb_priv->num_tds_done;
2206 frame = &td->urb->iso_frame_desc[idx];
2207
2208 /* The transfer is partly done. */
2209 frame->status = -EXDEV;
2210
2211 /* calc actual length */
2212 frame->actual_length = 0;
2213
2214 /* Update ring dequeue pointer */
2215 while (ep_ring->dequeue != td->last_trb)
2216 inc_deq(xhci, ep_ring);
2217 inc_deq(xhci, ep_ring);
2218
2219 return xhci_td_cleanup(xhci, td, ep_ring, status);
2220}
2221
2222/*
2223 * Process bulk and interrupt tds, update urb status and actual_length.
2224 */
2225static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2226 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2227 struct xhci_virt_ep *ep, int *status)
2228{
2229 struct xhci_slot_ctx *slot_ctx;
2230 struct xhci_ring *ep_ring;
2231 u32 trb_comp_code;
2232 u32 remaining, requested, ep_trb_len;
2233 unsigned int slot_id;
2234 int ep_index;
2235
2236 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2237 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx);
2238 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2239 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2240 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2241 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2242 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2243 requested = td->urb->transfer_buffer_length;
2244
2245 switch (trb_comp_code) {
2246 case COMP_SUCCESS:
2247 ep_ring->err_count = 0;
2248 /* handle success with untransferred data as short packet */
2249 if (ep_trb != td->last_trb || remaining) {
2250 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2251 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2252 td->urb->ep->desc.bEndpointAddress,
2253 requested, remaining);
2254 }
2255 *status = 0;
2256 break;
2257 case COMP_SHORT_PACKET:
2258 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2259 td->urb->ep->desc.bEndpointAddress,
2260 requested, remaining);
2261 *status = 0;
2262 break;
2263 case COMP_STOPPED_SHORT_PACKET:
2264 td->urb->actual_length = remaining;
2265 goto finish_td;
2266 case COMP_STOPPED_LENGTH_INVALID:
2267 /* stopped on ep trb with invalid length, exclude it */
2268 ep_trb_len = 0;
2269 remaining = 0;
2270 break;
2271 case COMP_USB_TRANSACTION_ERROR:
2272 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) ||
2273 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2274 break;
2275 *status = 0;
2276 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
2277 ep_ring->stream_id, td, EP_SOFT_RESET);
2278 return 0;
2279 default:
2280 /* do nothing */
2281 break;
2282 }
2283
2284 if (ep_trb == td->last_trb)
2285 td->urb->actual_length = requested - remaining;
2286 else
2287 td->urb->actual_length =
2288 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2289 ep_trb_len - remaining;
2290finish_td:
2291 if (remaining > requested) {
2292 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2293 remaining);
2294 td->urb->actual_length = 0;
2295 }
2296 return finish_td(xhci, td, event, ep, status);
2297}
2298
2299/*
2300 * If this function returns an error condition, it means it got a Transfer
2301 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2302 * At this point, the host controller is probably hosed and should be reset.
2303 */
2304static int handle_tx_event(struct xhci_hcd *xhci,
2305 struct xhci_transfer_event *event)
2306{
2307 struct xhci_virt_device *xdev;
2308 struct xhci_virt_ep *ep;
2309 struct xhci_ring *ep_ring;
2310 unsigned int slot_id;
2311 int ep_index;
2312 struct xhci_td *td = NULL;
2313 dma_addr_t ep_trb_dma;
2314 struct xhci_segment *ep_seg;
2315 union xhci_trb *ep_trb;
2316 int status = -EINPROGRESS;
2317 struct xhci_ep_ctx *ep_ctx;
2318 struct list_head *tmp;
2319 u32 trb_comp_code;
2320 int td_num = 0;
2321 bool handling_skipped_tds = false;
2322
2323 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2324 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2325 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2326 ep_trb_dma = le64_to_cpu(event->buffer);
2327
2328 xdev = xhci->devs[slot_id];
2329 if (!xdev) {
2330 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2331 slot_id);
2332 goto err_out;
2333 }
2334
2335 ep = &xdev->eps[ep_index];
2336 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2337 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2338
2339 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2340 xhci_err(xhci,
2341 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2342 slot_id, ep_index);
2343 goto err_out;
2344 }
2345
2346 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2347 if (!ep_ring) {
2348 switch (trb_comp_code) {
2349 case COMP_STALL_ERROR:
2350 case COMP_USB_TRANSACTION_ERROR:
2351 case COMP_INVALID_STREAM_TYPE_ERROR:
2352 case COMP_INVALID_STREAM_ID_ERROR:
2353 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2354 NULL, EP_SOFT_RESET);
2355 goto cleanup;
2356 case COMP_RING_UNDERRUN:
2357 case COMP_RING_OVERRUN:
2358 case COMP_STOPPED_LENGTH_INVALID:
2359 goto cleanup;
2360 default:
2361 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2362 slot_id, ep_index);
2363 goto err_out;
2364 }
2365 }
2366
2367 /* Count current td numbers if ep->skip is set */
2368 if (ep->skip) {
2369 list_for_each(tmp, &ep_ring->td_list)
2370 td_num++;
2371 }
2372
2373 /* Look for common error cases */
2374 switch (trb_comp_code) {
2375 /* Skip codes that require special handling depending on
2376 * transfer type
2377 */
2378 case COMP_SUCCESS:
2379 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2380 break;
2381 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2382 trb_comp_code = COMP_SHORT_PACKET;
2383 else
2384 xhci_warn_ratelimited(xhci,
2385 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2386 slot_id, ep_index);
2387 case COMP_SHORT_PACKET:
2388 break;
2389 /* Completion codes for endpoint stopped state */
2390 case COMP_STOPPED:
2391 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2392 slot_id, ep_index);
2393 break;
2394 case COMP_STOPPED_LENGTH_INVALID:
2395 xhci_dbg(xhci,
2396 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2397 slot_id, ep_index);
2398 break;
2399 case COMP_STOPPED_SHORT_PACKET:
2400 xhci_dbg(xhci,
2401 "Stopped with short packet transfer detected for slot %u ep %u\n",
2402 slot_id, ep_index);
2403 break;
2404 /* Completion codes for endpoint halted state */
2405 case COMP_STALL_ERROR:
2406 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2407 ep_index);
2408 ep->ep_state |= EP_HALTED;
2409 status = -EPIPE;
2410 break;
2411 case COMP_SPLIT_TRANSACTION_ERROR:
2412 case COMP_USB_TRANSACTION_ERROR:
2413 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2414 slot_id, ep_index);
2415 status = -EPROTO;
2416 break;
2417 case COMP_BABBLE_DETECTED_ERROR:
2418 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2419 slot_id, ep_index);
2420 status = -EOVERFLOW;
2421 break;
2422 /* Completion codes for endpoint error state */
2423 case COMP_TRB_ERROR:
2424 xhci_warn(xhci,
2425 "WARN: TRB error for slot %u ep %u on endpoint\n",
2426 slot_id, ep_index);
2427 status = -EILSEQ;
2428 break;
2429 /* completion codes not indicating endpoint state change */
2430 case COMP_DATA_BUFFER_ERROR:
2431 xhci_warn(xhci,
2432 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2433 slot_id, ep_index);
2434 status = -ENOSR;
2435 break;
2436 case COMP_BANDWIDTH_OVERRUN_ERROR:
2437 xhci_warn(xhci,
2438 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2439 slot_id, ep_index);
2440 break;
2441 case COMP_ISOCH_BUFFER_OVERRUN:
2442 xhci_warn(xhci,
2443 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2444 slot_id, ep_index);
2445 break;
2446 case COMP_RING_UNDERRUN:
2447 /*
2448 * When the Isoch ring is empty, the xHC will generate
2449 * a Ring Overrun Event for IN Isoch endpoint or Ring
2450 * Underrun Event for OUT Isoch endpoint.
2451 */
2452 xhci_dbg(xhci, "underrun event on endpoint\n");
2453 if (!list_empty(&ep_ring->td_list))
2454 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2455 "still with TDs queued?\n",
2456 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2457 ep_index);
2458 goto cleanup;
2459 case COMP_RING_OVERRUN:
2460 xhci_dbg(xhci, "overrun event on endpoint\n");
2461 if (!list_empty(&ep_ring->td_list))
2462 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2463 "still with TDs queued?\n",
2464 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2465 ep_index);
2466 goto cleanup;
2467 case COMP_MISSED_SERVICE_ERROR:
2468 /*
2469 * When encounter missed service error, one or more isoc tds
2470 * may be missed by xHC.
2471 * Set skip flag of the ep_ring; Complete the missed tds as
2472 * short transfer when process the ep_ring next time.
2473 */
2474 ep->skip = true;
2475 xhci_dbg(xhci,
2476 "Miss service interval error for slot %u ep %u, set skip flag\n",
2477 slot_id, ep_index);
2478 goto cleanup;
2479 case COMP_NO_PING_RESPONSE_ERROR:
2480 ep->skip = true;
2481 xhci_dbg(xhci,
2482 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2483 slot_id, ep_index);
2484 goto cleanup;
2485
2486 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2487 /* needs disable slot command to recover */
2488 xhci_warn(xhci,
2489 "WARN: detect an incompatible device for slot %u ep %u",
2490 slot_id, ep_index);
2491 status = -EPROTO;
2492 break;
2493 default:
2494 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2495 status = 0;
2496 break;
2497 }
2498 xhci_warn(xhci,
2499 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2500 trb_comp_code, slot_id, ep_index);
2501 goto cleanup;
2502 }
2503
2504 do {
2505 /* This TRB should be in the TD at the head of this ring's
2506 * TD list.
2507 */
2508 if (list_empty(&ep_ring->td_list)) {
2509 /*
2510 * Don't print wanings if it's due to a stopped endpoint
2511 * generating an extra completion event if the device
2512 * was suspended. Or, a event for the last TRB of a
2513 * short TD we already got a short event for.
2514 * The short TD is already removed from the TD list.
2515 */
2516
2517 if (!(trb_comp_code == COMP_STOPPED ||
2518 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2519 ep_ring->last_td_was_short)) {
2520 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2521 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2522 ep_index);
2523 }
2524 if (ep->skip) {
2525 ep->skip = false;
2526 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2527 slot_id, ep_index);
2528 }
2529 goto cleanup;
2530 }
2531
2532 /* We've skipped all the TDs on the ep ring when ep->skip set */
2533 if (ep->skip && td_num == 0) {
2534 ep->skip = false;
2535 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2536 slot_id, ep_index);
2537 goto cleanup;
2538 }
2539
2540 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2541 td_list);
2542 if (ep->skip)
2543 td_num--;
2544
2545 /* Is this a TRB in the currently executing TD? */
2546 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2547 td->last_trb, ep_trb_dma, false);
2548
2549 /*
2550 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2551 * is not in the current TD pointed by ep_ring->dequeue because
2552 * that the hardware dequeue pointer still at the previous TRB
2553 * of the current TD. The previous TRB maybe a Link TD or the
2554 * last TRB of the previous TD. The command completion handle
2555 * will take care the rest.
2556 */
2557 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2558 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2559 goto cleanup;
2560 }
2561
2562 if (!ep_seg) {
2563 if (!ep->skip ||
2564 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2565 /* Some host controllers give a spurious
2566 * successful event after a short transfer.
2567 * Ignore it.
2568 */
2569 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2570 ep_ring->last_td_was_short) {
2571 ep_ring->last_td_was_short = false;
2572 goto cleanup;
2573 }
2574 /* HC is busted, give up! */
2575 xhci_err(xhci,
2576 "ERROR Transfer event TRB DMA ptr not "
2577 "part of current TD ep_index %d "
2578 "comp_code %u\n", ep_index,
2579 trb_comp_code);
2580 trb_in_td(xhci, ep_ring->deq_seg,
2581 ep_ring->dequeue, td->last_trb,
2582 ep_trb_dma, true);
2583 return -ESHUTDOWN;
2584 }
2585
2586 skip_isoc_td(xhci, td, event, ep, &status);
2587 goto cleanup;
2588 }
2589 if (trb_comp_code == COMP_SHORT_PACKET)
2590 ep_ring->last_td_was_short = true;
2591 else
2592 ep_ring->last_td_was_short = false;
2593
2594 if (ep->skip) {
2595 xhci_dbg(xhci,
2596 "Found td. Clear skip flag for slot %u ep %u.\n",
2597 slot_id, ep_index);
2598 ep->skip = false;
2599 }
2600
2601 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2602 sizeof(*ep_trb)];
2603
2604 trace_xhci_handle_transfer(ep_ring,
2605 (struct xhci_generic_trb *) ep_trb);
2606
2607 /*
2608 * No-op TRB could trigger interrupts in a case where
2609 * a URB was killed and a STALL_ERROR happens right
2610 * after the endpoint ring stopped. Reset the halted
2611 * endpoint. Otherwise, the endpoint remains stalled
2612 * indefinitely.
2613 */
2614 if (trb_is_noop(ep_trb)) {
2615 if (trb_comp_code == COMP_STALL_ERROR ||
2616 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2617 trb_comp_code))
2618 xhci_cleanup_halted_endpoint(xhci, slot_id,
2619 ep_index,
2620 ep_ring->stream_id,
2621 td, EP_HARD_RESET);
2622 goto cleanup;
2623 }
2624
2625 /* update the urb's actual_length and give back to the core */
2626 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2627 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2628 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2629 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2630 else
2631 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2632 &status);
2633cleanup:
2634 handling_skipped_tds = ep->skip &&
2635 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2636 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2637
2638 /*
2639 * Do not update event ring dequeue pointer if we're in a loop
2640 * processing missed tds.
2641 */
2642 if (!handling_skipped_tds)
2643 inc_deq(xhci, xhci->event_ring);
2644
2645 /*
2646 * If ep->skip is set, it means there are missed tds on the
2647 * endpoint ring need to take care of.
2648 * Process them as short transfer until reach the td pointed by
2649 * the event.
2650 */
2651 } while (handling_skipped_tds);
2652
2653 return 0;
2654
2655err_out:
2656 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2657 (unsigned long long) xhci_trb_virt_to_dma(
2658 xhci->event_ring->deq_seg,
2659 xhci->event_ring->dequeue),
2660 lower_32_bits(le64_to_cpu(event->buffer)),
2661 upper_32_bits(le64_to_cpu(event->buffer)),
2662 le32_to_cpu(event->transfer_len),
2663 le32_to_cpu(event->flags));
2664 return -ENODEV;
2665}
2666
2667/*
2668 * This function handles all OS-owned events on the event ring. It may drop
2669 * xhci->lock between event processing (e.g. to pass up port status changes).
2670 * Returns >0 for "possibly more events to process" (caller should call again),
2671 * otherwise 0 if done. In future, <0 returns should indicate error code.
2672 */
2673static int xhci_handle_event(struct xhci_hcd *xhci)
2674{
2675 union xhci_trb *event;
2676 int update_ptrs = 1;
2677 int ret;
2678
2679 /* Event ring hasn't been allocated yet. */
2680 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2681 xhci_err(xhci, "ERROR event ring not ready\n");
2682 return -ENOMEM;
2683 }
2684
2685 event = xhci->event_ring->dequeue;
2686 /* Does the HC or OS own the TRB? */
2687 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2688 xhci->event_ring->cycle_state)
2689 return 0;
2690
2691 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2692
2693 /*
2694 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2695 * speculative reads of the event's flags/data below.
2696 */
2697 rmb();
2698 /* FIXME: Handle more event types. */
2699 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2700 case TRB_TYPE(TRB_COMPLETION):
2701 handle_cmd_completion(xhci, &event->event_cmd);
2702 break;
2703 case TRB_TYPE(TRB_PORT_STATUS):
2704 handle_port_status(xhci, event);
2705 update_ptrs = 0;
2706 break;
2707 case TRB_TYPE(TRB_TRANSFER):
2708 ret = handle_tx_event(xhci, &event->trans_event);
2709 if (ret >= 0)
2710 update_ptrs = 0;
2711 break;
2712 case TRB_TYPE(TRB_DEV_NOTE):
2713 handle_device_notification(xhci, event);
2714 break;
2715 default:
2716 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2717 TRB_TYPE(48))
2718 handle_vendor_event(xhci, event);
2719 else
2720 xhci_warn(xhci, "ERROR unknown event type %d\n",
2721 TRB_FIELD_TO_TYPE(
2722 le32_to_cpu(event->event_cmd.flags)));
2723 }
2724 /* Any of the above functions may drop and re-acquire the lock, so check
2725 * to make sure a watchdog timer didn't mark the host as non-responsive.
2726 */
2727 if (xhci->xhc_state & XHCI_STATE_DYING) {
2728 xhci_dbg(xhci, "xHCI host dying, returning from "
2729 "event handler.\n");
2730 return 0;
2731 }
2732
2733 if (update_ptrs)
2734 /* Update SW event ring dequeue pointer */
2735 inc_deq(xhci, xhci->event_ring);
2736
2737 /* Are there more items on the event ring? Caller will call us again to
2738 * check.
2739 */
2740 return 1;
2741}
2742
2743/*
2744 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2745 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2746 * indicators of an event TRB error, but we check the status *first* to be safe.
2747 */
2748irqreturn_t xhci_irq(struct usb_hcd *hcd)
2749{
2750 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2751 union xhci_trb *event_ring_deq;
2752 irqreturn_t ret = IRQ_NONE;
2753 unsigned long flags;
2754 dma_addr_t deq;
2755 u64 temp_64;
2756 u32 status;
2757
2758 spin_lock_irqsave(&xhci->lock, flags);
2759 /* Check if the xHC generated the interrupt, or the irq is shared */
2760 status = readl(&xhci->op_regs->status);
2761 if (status == ~(u32)0) {
2762 xhci_hc_died(xhci);
2763 ret = IRQ_HANDLED;
2764 goto out;
2765 }
2766
2767 if (!(status & STS_EINT))
2768 goto out;
2769
2770 if (status & STS_FATAL) {
2771 xhci_warn(xhci, "WARNING: Host System Error\n");
2772 xhci_halt(xhci);
2773 ret = IRQ_HANDLED;
2774 goto out;
2775 }
2776
2777 /*
2778 * Clear the op reg interrupt status first,
2779 * so we can receive interrupts from other MSI-X interrupters.
2780 * Write 1 to clear the interrupt status.
2781 */
2782 status |= STS_EINT;
2783 writel(status, &xhci->op_regs->status);
2784
2785 if (!hcd->msi_enabled) {
2786 u32 irq_pending;
2787 irq_pending = readl(&xhci->ir_set->irq_pending);
2788 irq_pending |= IMAN_IP;
2789 writel(irq_pending, &xhci->ir_set->irq_pending);
2790 }
2791
2792 if (xhci->xhc_state & XHCI_STATE_DYING ||
2793 xhci->xhc_state & XHCI_STATE_HALTED) {
2794 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2795 "Shouldn't IRQs be disabled?\n");
2796 /* Clear the event handler busy flag (RW1C);
2797 * the event ring should be empty.
2798 */
2799 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2800 xhci_write_64(xhci, temp_64 | ERST_EHB,
2801 &xhci->ir_set->erst_dequeue);
2802 ret = IRQ_HANDLED;
2803 goto out;
2804 }
2805
2806 event_ring_deq = xhci->event_ring->dequeue;
2807 /* FIXME this should be a delayed service routine
2808 * that clears the EHB.
2809 */
2810 while (xhci_handle_event(xhci) > 0) {}
2811
2812 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2813 /* If necessary, update the HW's version of the event ring deq ptr. */
2814 if (event_ring_deq != xhci->event_ring->dequeue) {
2815 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2816 xhci->event_ring->dequeue);
2817 if (deq == 0)
2818 xhci_warn(xhci, "WARN something wrong with SW event "
2819 "ring dequeue ptr.\n");
2820 /* Update HC event ring dequeue pointer */
2821 temp_64 &= ERST_PTR_MASK;
2822 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2823 }
2824
2825 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2826 temp_64 |= ERST_EHB;
2827 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2828 ret = IRQ_HANDLED;
2829
2830out:
2831 spin_unlock_irqrestore(&xhci->lock, flags);
2832
2833 return ret;
2834}
2835
2836irqreturn_t xhci_msi_irq(int irq, void *hcd)
2837{
2838 return xhci_irq(hcd);
2839}
2840
2841/**** Endpoint Ring Operations ****/
2842
2843/*
2844 * Generic function for queueing a TRB on a ring.
2845 * The caller must have checked to make sure there's room on the ring.
2846 *
2847 * @more_trbs_coming: Will you enqueue more TRBs before calling
2848 * prepare_transfer()?
2849 */
2850static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2851 bool more_trbs_coming,
2852 u32 field1, u32 field2, u32 field3, u32 field4)
2853{
2854 struct xhci_generic_trb *trb;
2855
2856 trb = &ring->enqueue->generic;
2857 trb->field[0] = cpu_to_le32(field1);
2858 trb->field[1] = cpu_to_le32(field2);
2859 trb->field[2] = cpu_to_le32(field3);
2860 trb->field[3] = cpu_to_le32(field4);
2861
2862 trace_xhci_queue_trb(ring, trb);
2863
2864 inc_enq(xhci, ring, more_trbs_coming);
2865}
2866
2867/*
2868 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2869 * FIXME allocate segments if the ring is full.
2870 */
2871static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2872 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2873{
2874 unsigned int num_trbs_needed;
2875
2876 /* Make sure the endpoint has been added to xHC schedule */
2877 switch (ep_state) {
2878 case EP_STATE_DISABLED:
2879 /*
2880 * USB core changed config/interfaces without notifying us,
2881 * or hardware is reporting the wrong state.
2882 */
2883 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2884 return -ENOENT;
2885 case EP_STATE_ERROR:
2886 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2887 /* FIXME event handling code for error needs to clear it */
2888 /* XXX not sure if this should be -ENOENT or not */
2889 return -EINVAL;
2890 case EP_STATE_HALTED:
2891 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2892 case EP_STATE_STOPPED:
2893 case EP_STATE_RUNNING:
2894 break;
2895 default:
2896 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2897 /*
2898 * FIXME issue Configure Endpoint command to try to get the HC
2899 * back into a known state.
2900 */
2901 return -EINVAL;
2902 }
2903
2904 while (1) {
2905 if (room_on_ring(xhci, ep_ring, num_trbs))
2906 break;
2907
2908 if (ep_ring == xhci->cmd_ring) {
2909 xhci_err(xhci, "Do not support expand command ring\n");
2910 return -ENOMEM;
2911 }
2912
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2914 "ERROR no room on ep ring, try ring expansion");
2915 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2916 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2917 mem_flags)) {
2918 xhci_err(xhci, "Ring expansion failed\n");
2919 return -ENOMEM;
2920 }
2921 }
2922
2923 while (trb_is_link(ep_ring->enqueue)) {
2924 /* If we're not dealing with 0.95 hardware or isoc rings
2925 * on AMD 0.96 host, clear the chain bit.
2926 */
2927 if (!xhci_link_trb_quirk(xhci) &&
2928 !(ep_ring->type == TYPE_ISOC &&
2929 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2930 ep_ring->enqueue->link.control &=
2931 cpu_to_le32(~TRB_CHAIN);
2932 else
2933 ep_ring->enqueue->link.control |=
2934 cpu_to_le32(TRB_CHAIN);
2935
2936 wmb();
2937 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2938
2939 /* Toggle the cycle bit after the last ring segment. */
2940 if (link_trb_toggles_cycle(ep_ring->enqueue))
2941 ep_ring->cycle_state ^= 1;
2942
2943 ep_ring->enq_seg = ep_ring->enq_seg->next;
2944 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2945 }
2946 return 0;
2947}
2948
2949static int prepare_transfer(struct xhci_hcd *xhci,
2950 struct xhci_virt_device *xdev,
2951 unsigned int ep_index,
2952 unsigned int stream_id,
2953 unsigned int num_trbs,
2954 struct urb *urb,
2955 unsigned int td_index,
2956 gfp_t mem_flags)
2957{
2958 int ret;
2959 struct urb_priv *urb_priv;
2960 struct xhci_td *td;
2961 struct xhci_ring *ep_ring;
2962 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2963
2964 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2965 if (!ep_ring) {
2966 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2967 stream_id);
2968 return -EINVAL;
2969 }
2970
2971 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2972 num_trbs, mem_flags);
2973 if (ret)
2974 return ret;
2975
2976 urb_priv = urb->hcpriv;
2977 td = &urb_priv->td[td_index];
2978
2979 INIT_LIST_HEAD(&td->td_list);
2980 INIT_LIST_HEAD(&td->cancelled_td_list);
2981
2982 if (td_index == 0) {
2983 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2984 if (unlikely(ret))
2985 return ret;
2986 }
2987
2988 td->urb = urb;
2989 /* Add this TD to the tail of the endpoint ring's TD list */
2990 list_add_tail(&td->td_list, &ep_ring->td_list);
2991 td->start_seg = ep_ring->enq_seg;
2992 td->first_trb = ep_ring->enqueue;
2993
2994 return 0;
2995}
2996
2997unsigned int count_trbs(u64 addr, u64 len)
2998{
2999 unsigned int num_trbs;
3000
3001 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3002 TRB_MAX_BUFF_SIZE);
3003 if (num_trbs == 0)
3004 num_trbs++;
3005
3006 return num_trbs;
3007}
3008
3009static inline unsigned int count_trbs_needed(struct urb *urb)
3010{
3011 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3012}
3013
3014static unsigned int count_sg_trbs_needed(struct urb *urb)
3015{
3016 struct scatterlist *sg;
3017 unsigned int i, len, full_len, num_trbs = 0;
3018
3019 full_len = urb->transfer_buffer_length;
3020
3021 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3022 len = sg_dma_len(sg);
3023 num_trbs += count_trbs(sg_dma_address(sg), len);
3024 len = min_t(unsigned int, len, full_len);
3025 full_len -= len;
3026 if (full_len == 0)
3027 break;
3028 }
3029
3030 return num_trbs;
3031}
3032
3033static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3034{
3035 u64 addr, len;
3036
3037 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3038 len = urb->iso_frame_desc[i].length;
3039
3040 return count_trbs(addr, len);
3041}
3042
3043static void check_trb_math(struct urb *urb, int running_total)
3044{
3045 if (unlikely(running_total != urb->transfer_buffer_length))
3046 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3047 "queued %#x (%d), asked for %#x (%d)\n",
3048 __func__,
3049 urb->ep->desc.bEndpointAddress,
3050 running_total, running_total,
3051 urb->transfer_buffer_length,
3052 urb->transfer_buffer_length);
3053}
3054
3055static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3056 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3057 struct xhci_generic_trb *start_trb)
3058{
3059 /*
3060 * Pass all the TRBs to the hardware at once and make sure this write
3061 * isn't reordered.
3062 */
3063 wmb();
3064 if (start_cycle)
3065 start_trb->field[3] |= cpu_to_le32(start_cycle);
3066 else
3067 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3068 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3069}
3070
3071static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3072 struct xhci_ep_ctx *ep_ctx)
3073{
3074 int xhci_interval;
3075 int ep_interval;
3076
3077 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3078 ep_interval = urb->interval;
3079
3080 /* Convert to microframes */
3081 if (urb->dev->speed == USB_SPEED_LOW ||
3082 urb->dev->speed == USB_SPEED_FULL)
3083 ep_interval *= 8;
3084
3085 /* FIXME change this to a warning and a suggestion to use the new API
3086 * to set the polling interval (once the API is added).
3087 */
3088 if (xhci_interval != ep_interval) {
3089 dev_dbg_ratelimited(&urb->dev->dev,
3090 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3091 ep_interval, ep_interval == 1 ? "" : "s",
3092 xhci_interval, xhci_interval == 1 ? "" : "s");
3093 urb->interval = xhci_interval;
3094 /* Convert back to frames for LS/FS devices */
3095 if (urb->dev->speed == USB_SPEED_LOW ||
3096 urb->dev->speed == USB_SPEED_FULL)
3097 urb->interval /= 8;
3098 }
3099}
3100
3101/*
3102 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3103 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3104 * (comprised of sg list entries) can take several service intervals to
3105 * transmit.
3106 */
3107int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3108 struct urb *urb, int slot_id, unsigned int ep_index)
3109{
3110 struct xhci_ep_ctx *ep_ctx;
3111
3112 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3113 check_interval(xhci, urb, ep_ctx);
3114
3115 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3116}
3117
3118/*
3119 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3120 * packets remaining in the TD (*not* including this TRB).
3121 *
3122 * Total TD packet count = total_packet_count =
3123 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3124 *
3125 * Packets transferred up to and including this TRB = packets_transferred =
3126 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3127 *
3128 * TD size = total_packet_count - packets_transferred
3129 *
3130 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3131 * including this TRB, right shifted by 10
3132 *
3133 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3134 * This is taken care of in the TRB_TD_SIZE() macro
3135 *
3136 * The last TRB in a TD must have the TD size set to zero.
3137 */
3138static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3139 int trb_buff_len, unsigned int td_total_len,
3140 struct urb *urb, bool more_trbs_coming)
3141{
3142 u32 maxp, total_packet_count;
3143
3144 /* MTK xHCI 0.96 contains some features from 1.0 */
3145 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3146 return ((td_total_len - transferred) >> 10);
3147
3148 /* One TRB with a zero-length data packet. */
3149 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3150 trb_buff_len == td_total_len)
3151 return 0;
3152
3153 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3154 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3155 trb_buff_len = 0;
3156
3157 maxp = usb_endpoint_maxp(&urb->ep->desc);
3158 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3159
3160 /* Queueing functions don't count the current TRB into transferred */
3161 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3162}
3163
3164
3165static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3166 u32 *trb_buff_len, struct xhci_segment *seg)
3167{
3168 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3169 unsigned int unalign;
3170 unsigned int max_pkt;
3171 u32 new_buff_len;
3172 size_t len;
3173
3174 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3175 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3176
3177 /* we got lucky, last normal TRB data on segment is packet aligned */
3178 if (unalign == 0)
3179 return 0;
3180
3181 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3182 unalign, *trb_buff_len);
3183
3184 /* is the last nornal TRB alignable by splitting it */
3185 if (*trb_buff_len > unalign) {
3186 *trb_buff_len -= unalign;
3187 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3188 return 0;
3189 }
3190
3191 /*
3192 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3193 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3194 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3195 */
3196 new_buff_len = max_pkt - (enqd_len % max_pkt);
3197
3198 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3199 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3200
3201 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3202 if (usb_urb_dir_out(urb)) {
3203 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3204 seg->bounce_buf, new_buff_len, enqd_len);
3205 if (len != new_buff_len)
3206 xhci_warn(xhci,
3207 "WARN Wrong bounce buffer write length: %zu != %d\n",
3208 len, new_buff_len);
3209 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3210 max_pkt, DMA_TO_DEVICE);
3211 } else {
3212 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3213 max_pkt, DMA_FROM_DEVICE);
3214 }
3215
3216 if (dma_mapping_error(dev, seg->bounce_dma)) {
3217 /* try without aligning. Some host controllers survive */
3218 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3219 return 0;
3220 }
3221 *trb_buff_len = new_buff_len;
3222 seg->bounce_len = new_buff_len;
3223 seg->bounce_offs = enqd_len;
3224
3225 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3226
3227 return 1;
3228}
3229
3230/* This is very similar to what ehci-q.c qtd_fill() does */
3231int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3232 struct urb *urb, int slot_id, unsigned int ep_index)
3233{
3234 struct xhci_ring *ring;
3235 struct urb_priv *urb_priv;
3236 struct xhci_td *td;
3237 struct xhci_generic_trb *start_trb;
3238 struct scatterlist *sg = NULL;
3239 bool more_trbs_coming = true;
3240 bool need_zero_pkt = false;
3241 bool first_trb = true;
3242 unsigned int num_trbs;
3243 unsigned int start_cycle, num_sgs = 0;
3244 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3245 int sent_len, ret;
3246 u32 field, length_field, remainder;
3247 u64 addr, send_addr;
3248
3249 ring = xhci_urb_to_transfer_ring(xhci, urb);
3250 if (!ring)
3251 return -EINVAL;
3252
3253 full_len = urb->transfer_buffer_length;
3254 /* If we have scatter/gather list, we use it. */
3255 if (urb->num_sgs) {
3256 num_sgs = urb->num_mapped_sgs;
3257 sg = urb->sg;
3258 addr = (u64) sg_dma_address(sg);
3259 block_len = sg_dma_len(sg);
3260 num_trbs = count_sg_trbs_needed(urb);
3261 } else {
3262 num_trbs = count_trbs_needed(urb);
3263 addr = (u64) urb->transfer_dma;
3264 block_len = full_len;
3265 }
3266 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3267 ep_index, urb->stream_id,
3268 num_trbs, urb, 0, mem_flags);
3269 if (unlikely(ret < 0))
3270 return ret;
3271
3272 urb_priv = urb->hcpriv;
3273
3274 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3275 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3276 need_zero_pkt = true;
3277
3278 td = &urb_priv->td[0];
3279
3280 /*
3281 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3282 * until we've finished creating all the other TRBs. The ring's cycle
3283 * state may change as we enqueue the other TRBs, so save it too.
3284 */
3285 start_trb = &ring->enqueue->generic;
3286 start_cycle = ring->cycle_state;
3287 send_addr = addr;
3288
3289 /* Queue the TRBs, even if they are zero-length */
3290 for (enqd_len = 0; first_trb || enqd_len < full_len;
3291 enqd_len += trb_buff_len) {
3292 field = TRB_TYPE(TRB_NORMAL);
3293
3294 /* TRB buffer should not cross 64KB boundaries */
3295 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3296 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3297
3298 if (enqd_len + trb_buff_len > full_len)
3299 trb_buff_len = full_len - enqd_len;
3300
3301 /* Don't change the cycle bit of the first TRB until later */
3302 if (first_trb) {
3303 first_trb = false;
3304 if (start_cycle == 0)
3305 field |= TRB_CYCLE;
3306 } else
3307 field |= ring->cycle_state;
3308
3309 /* Chain all the TRBs together; clear the chain bit in the last
3310 * TRB to indicate it's the last TRB in the chain.
3311 */
3312 if (enqd_len + trb_buff_len < full_len) {
3313 field |= TRB_CHAIN;
3314 if (trb_is_link(ring->enqueue + 1)) {
3315 if (xhci_align_td(xhci, urb, enqd_len,
3316 &trb_buff_len,
3317 ring->enq_seg)) {
3318 send_addr = ring->enq_seg->bounce_dma;
3319 /* assuming TD won't span 2 segs */
3320 td->bounce_seg = ring->enq_seg;
3321 }
3322 }
3323 }
3324 if (enqd_len + trb_buff_len >= full_len) {
3325 field &= ~TRB_CHAIN;
3326 field |= TRB_IOC;
3327 more_trbs_coming = false;
3328 td->last_trb = ring->enqueue;
3329
3330 if (xhci_urb_suitable_for_idt(urb)) {
3331 memcpy(&send_addr, urb->transfer_buffer,
3332 trb_buff_len);
3333 le64_to_cpus(&send_addr);
3334 field |= TRB_IDT;
3335 }
3336 }
3337
3338 /* Only set interrupt on short packet for IN endpoints */
3339 if (usb_urb_dir_in(urb))
3340 field |= TRB_ISP;
3341
3342 /* Set the TRB length, TD size, and interrupter fields. */
3343 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3344 full_len, urb, more_trbs_coming);
3345
3346 length_field = TRB_LEN(trb_buff_len) |
3347 TRB_TD_SIZE(remainder) |
3348 TRB_INTR_TARGET(0);
3349
3350 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3351 lower_32_bits(send_addr),
3352 upper_32_bits(send_addr),
3353 length_field,
3354 field);
3355
3356 addr += trb_buff_len;
3357 sent_len = trb_buff_len;
3358
3359 while (sg && sent_len >= block_len) {
3360 /* New sg entry */
3361 --num_sgs;
3362 sent_len -= block_len;
3363 if (num_sgs != 0) {
3364 sg = sg_next(sg);
3365 block_len = sg_dma_len(sg);
3366 addr = (u64) sg_dma_address(sg);
3367 addr += sent_len;
3368 }
3369 }
3370 block_len -= sent_len;
3371 send_addr = addr;
3372 }
3373
3374 if (need_zero_pkt) {
3375 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3376 ep_index, urb->stream_id,
3377 1, urb, 1, mem_flags);
3378 urb_priv->td[1].last_trb = ring->enqueue;
3379 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3380 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3381 }
3382
3383 check_trb_math(urb, enqd_len);
3384 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3385 start_cycle, start_trb);
3386 return 0;
3387}
3388
3389/* Caller must have locked xhci->lock */
3390int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3391 struct urb *urb, int slot_id, unsigned int ep_index)
3392{
3393 struct xhci_ring *ep_ring;
3394 int num_trbs;
3395 int ret;
3396 struct usb_ctrlrequest *setup;
3397 struct xhci_generic_trb *start_trb;
3398 int start_cycle;
3399 u32 field;
3400 struct urb_priv *urb_priv;
3401 struct xhci_td *td;
3402
3403 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3404 if (!ep_ring)
3405 return -EINVAL;
3406
3407 /*
3408 * Need to copy setup packet into setup TRB, so we can't use the setup
3409 * DMA address.
3410 */
3411 if (!urb->setup_packet)
3412 return -EINVAL;
3413
3414 /* 1 TRB for setup, 1 for status */
3415 num_trbs = 2;
3416 /*
3417 * Don't need to check if we need additional event data and normal TRBs,
3418 * since data in control transfers will never get bigger than 16MB
3419 * XXX: can we get a buffer that crosses 64KB boundaries?
3420 */
3421 if (urb->transfer_buffer_length > 0)
3422 num_trbs++;
3423 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3424 ep_index, urb->stream_id,
3425 num_trbs, urb, 0, mem_flags);
3426 if (ret < 0)
3427 return ret;
3428
3429 urb_priv = urb->hcpriv;
3430 td = &urb_priv->td[0];
3431
3432 /*
3433 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3434 * until we've finished creating all the other TRBs. The ring's cycle
3435 * state may change as we enqueue the other TRBs, so save it too.
3436 */
3437 start_trb = &ep_ring->enqueue->generic;
3438 start_cycle = ep_ring->cycle_state;
3439
3440 /* Queue setup TRB - see section 6.4.1.2.1 */
3441 /* FIXME better way to translate setup_packet into two u32 fields? */
3442 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3443 field = 0;
3444 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3445 if (start_cycle == 0)
3446 field |= 0x1;
3447
3448 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3449 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3450 if (urb->transfer_buffer_length > 0) {
3451 if (setup->bRequestType & USB_DIR_IN)
3452 field |= TRB_TX_TYPE(TRB_DATA_IN);
3453 else
3454 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3455 }
3456 }
3457
3458 queue_trb(xhci, ep_ring, true,
3459 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3460 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3461 TRB_LEN(8) | TRB_INTR_TARGET(0),
3462 /* Immediate data in pointer */
3463 field);
3464
3465 /* If there's data, queue data TRBs */
3466 /* Only set interrupt on short packet for IN endpoints */
3467 if (usb_urb_dir_in(urb))
3468 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3469 else
3470 field = TRB_TYPE(TRB_DATA);
3471
3472 if (urb->transfer_buffer_length > 0) {
3473 u32 length_field, remainder;
3474 u64 addr;
3475
3476 if (xhci_urb_suitable_for_idt(urb)) {
3477 memcpy(&addr, urb->transfer_buffer,
3478 urb->transfer_buffer_length);
3479 le64_to_cpus(&addr);
3480 field |= TRB_IDT;
3481 } else {
3482 addr = (u64) urb->transfer_dma;
3483 }
3484
3485 remainder = xhci_td_remainder(xhci, 0,
3486 urb->transfer_buffer_length,
3487 urb->transfer_buffer_length,
3488 urb, 1);
3489 length_field = TRB_LEN(urb->transfer_buffer_length) |
3490 TRB_TD_SIZE(remainder) |
3491 TRB_INTR_TARGET(0);
3492 if (setup->bRequestType & USB_DIR_IN)
3493 field |= TRB_DIR_IN;
3494 queue_trb(xhci, ep_ring, true,
3495 lower_32_bits(addr),
3496 upper_32_bits(addr),
3497 length_field,
3498 field | ep_ring->cycle_state);
3499 }
3500
3501 /* Save the DMA address of the last TRB in the TD */
3502 td->last_trb = ep_ring->enqueue;
3503
3504 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3505 /* If the device sent data, the status stage is an OUT transfer */
3506 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3507 field = 0;
3508 else
3509 field = TRB_DIR_IN;
3510 queue_trb(xhci, ep_ring, false,
3511 0,
3512 0,
3513 TRB_INTR_TARGET(0),
3514 /* Event on completion */
3515 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3516
3517 giveback_first_trb(xhci, slot_id, ep_index, 0,
3518 start_cycle, start_trb);
3519 return 0;
3520}
3521
3522/*
3523 * The transfer burst count field of the isochronous TRB defines the number of
3524 * bursts that are required to move all packets in this TD. Only SuperSpeed
3525 * devices can burst up to bMaxBurst number of packets per service interval.
3526 * This field is zero based, meaning a value of zero in the field means one
3527 * burst. Basically, for everything but SuperSpeed devices, this field will be
3528 * zero. Only xHCI 1.0 host controllers support this field.
3529 */
3530static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3531 struct urb *urb, unsigned int total_packet_count)
3532{
3533 unsigned int max_burst;
3534
3535 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3536 return 0;
3537
3538 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3539 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3540}
3541
3542/*
3543 * Returns the number of packets in the last "burst" of packets. This field is
3544 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3545 * the last burst packet count is equal to the total number of packets in the
3546 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3547 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3548 * contain 1 to (bMaxBurst + 1) packets.
3549 */
3550static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3551 struct urb *urb, unsigned int total_packet_count)
3552{
3553 unsigned int max_burst;
3554 unsigned int residue;
3555
3556 if (xhci->hci_version < 0x100)
3557 return 0;
3558
3559 if (urb->dev->speed >= USB_SPEED_SUPER) {
3560 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3561 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3562 residue = total_packet_count % (max_burst + 1);
3563 /* If residue is zero, the last burst contains (max_burst + 1)
3564 * number of packets, but the TLBPC field is zero-based.
3565 */
3566 if (residue == 0)
3567 return max_burst;
3568 return residue - 1;
3569 }
3570 if (total_packet_count == 0)
3571 return 0;
3572 return total_packet_count - 1;
3573}
3574
3575/*
3576 * Calculates Frame ID field of the isochronous TRB identifies the
3577 * target frame that the Interval associated with this Isochronous
3578 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3579 *
3580 * Returns actual frame id on success, negative value on error.
3581 */
3582static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3583 struct urb *urb, int index)
3584{
3585 int start_frame, ist, ret = 0;
3586 int start_frame_id, end_frame_id, current_frame_id;
3587
3588 if (urb->dev->speed == USB_SPEED_LOW ||
3589 urb->dev->speed == USB_SPEED_FULL)
3590 start_frame = urb->start_frame + index * urb->interval;
3591 else
3592 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3593
3594 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3595 *
3596 * If bit [3] of IST is cleared to '0', software can add a TRB no
3597 * later than IST[2:0] Microframes before that TRB is scheduled to
3598 * be executed.
3599 * If bit [3] of IST is set to '1', software can add a TRB no later
3600 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3601 */
3602 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3603 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3604 ist <<= 3;
3605
3606 /* Software shall not schedule an Isoch TD with a Frame ID value that
3607 * is less than the Start Frame ID or greater than the End Frame ID,
3608 * where:
3609 *
3610 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3611 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3612 *
3613 * Both the End Frame ID and Start Frame ID values are calculated
3614 * in microframes. When software determines the valid Frame ID value;
3615 * The End Frame ID value should be rounded down to the nearest Frame
3616 * boundary, and the Start Frame ID value should be rounded up to the
3617 * nearest Frame boundary.
3618 */
3619 current_frame_id = readl(&xhci->run_regs->microframe_index);
3620 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3621 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3622
3623 start_frame &= 0x7ff;
3624 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3625 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3626
3627 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3628 __func__, index, readl(&xhci->run_regs->microframe_index),
3629 start_frame_id, end_frame_id, start_frame);
3630
3631 if (start_frame_id < end_frame_id) {
3632 if (start_frame > end_frame_id ||
3633 start_frame < start_frame_id)
3634 ret = -EINVAL;
3635 } else if (start_frame_id > end_frame_id) {
3636 if ((start_frame > end_frame_id &&
3637 start_frame < start_frame_id))
3638 ret = -EINVAL;
3639 } else {
3640 ret = -EINVAL;
3641 }
3642
3643 if (index == 0) {
3644 if (ret == -EINVAL || start_frame == start_frame_id) {
3645 start_frame = start_frame_id + 1;
3646 if (urb->dev->speed == USB_SPEED_LOW ||
3647 urb->dev->speed == USB_SPEED_FULL)
3648 urb->start_frame = start_frame;
3649 else
3650 urb->start_frame = start_frame << 3;
3651 ret = 0;
3652 }
3653 }
3654
3655 if (ret) {
3656 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3657 start_frame, current_frame_id, index,
3658 start_frame_id, end_frame_id);
3659 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3660 return ret;
3661 }
3662
3663 return start_frame;
3664}
3665
3666/* This is for isoc transfer */
3667static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3668 struct urb *urb, int slot_id, unsigned int ep_index)
3669{
3670 struct xhci_ring *ep_ring;
3671 struct urb_priv *urb_priv;
3672 struct xhci_td *td;
3673 int num_tds, trbs_per_td;
3674 struct xhci_generic_trb *start_trb;
3675 bool first_trb;
3676 int start_cycle;
3677 u32 field, length_field;
3678 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3679 u64 start_addr, addr;
3680 int i, j;
3681 bool more_trbs_coming;
3682 struct xhci_virt_ep *xep;
3683 int frame_id;
3684
3685 xep = &xhci->devs[slot_id]->eps[ep_index];
3686 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3687
3688 num_tds = urb->number_of_packets;
3689 if (num_tds < 1) {
3690 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3691 return -EINVAL;
3692 }
3693 start_addr = (u64) urb->transfer_dma;
3694 start_trb = &ep_ring->enqueue->generic;
3695 start_cycle = ep_ring->cycle_state;
3696
3697 urb_priv = urb->hcpriv;
3698 /* Queue the TRBs for each TD, even if they are zero-length */
3699 for (i = 0; i < num_tds; i++) {
3700 unsigned int total_pkt_count, max_pkt;
3701 unsigned int burst_count, last_burst_pkt_count;
3702 u32 sia_frame_id;
3703
3704 first_trb = true;
3705 running_total = 0;
3706 addr = start_addr + urb->iso_frame_desc[i].offset;
3707 td_len = urb->iso_frame_desc[i].length;
3708 td_remain_len = td_len;
3709 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3710 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3711
3712 /* A zero-length transfer still involves at least one packet. */
3713 if (total_pkt_count == 0)
3714 total_pkt_count++;
3715 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3716 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3717 urb, total_pkt_count);
3718
3719 trbs_per_td = count_isoc_trbs_needed(urb, i);
3720
3721 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3722 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3723 if (ret < 0) {
3724 if (i == 0)
3725 return ret;
3726 goto cleanup;
3727 }
3728 td = &urb_priv->td[i];
3729
3730 /* use SIA as default, if frame id is used overwrite it */
3731 sia_frame_id = TRB_SIA;
3732 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3733 HCC_CFC(xhci->hcc_params)) {
3734 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3735 if (frame_id >= 0)
3736 sia_frame_id = TRB_FRAME_ID(frame_id);
3737 }
3738 /*
3739 * Set isoc specific data for the first TRB in a TD.
3740 * Prevent HW from getting the TRBs by keeping the cycle state
3741 * inverted in the first TDs isoc TRB.
3742 */
3743 field = TRB_TYPE(TRB_ISOC) |
3744 TRB_TLBPC(last_burst_pkt_count) |
3745 sia_frame_id |
3746 (i ? ep_ring->cycle_state : !start_cycle);
3747
3748 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3749 if (!xep->use_extended_tbc)
3750 field |= TRB_TBC(burst_count);
3751
3752 /* fill the rest of the TRB fields, and remaining normal TRBs */
3753 for (j = 0; j < trbs_per_td; j++) {
3754 u32 remainder = 0;
3755
3756 /* only first TRB is isoc, overwrite otherwise */
3757 if (!first_trb)
3758 field = TRB_TYPE(TRB_NORMAL) |
3759 ep_ring->cycle_state;
3760
3761 /* Only set interrupt on short packet for IN EPs */
3762 if (usb_urb_dir_in(urb))
3763 field |= TRB_ISP;
3764
3765 /* Set the chain bit for all except the last TRB */
3766 if (j < trbs_per_td - 1) {
3767 more_trbs_coming = true;
3768 field |= TRB_CHAIN;
3769 } else {
3770 more_trbs_coming = false;
3771 td->last_trb = ep_ring->enqueue;
3772 field |= TRB_IOC;
3773 /* set BEI, except for the last TD */
3774 if (xhci->hci_version >= 0x100 &&
3775 !(xhci->quirks & XHCI_AVOID_BEI) &&
3776 i < num_tds - 1)
3777 field |= TRB_BEI;
3778 }
3779 /* Calculate TRB length */
3780 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3781 if (trb_buff_len > td_remain_len)
3782 trb_buff_len = td_remain_len;
3783
3784 /* Set the TRB length, TD size, & interrupter fields. */
3785 remainder = xhci_td_remainder(xhci, running_total,
3786 trb_buff_len, td_len,
3787 urb, more_trbs_coming);
3788
3789 length_field = TRB_LEN(trb_buff_len) |
3790 TRB_INTR_TARGET(0);
3791
3792 /* xhci 1.1 with ETE uses TD Size field for TBC */
3793 if (first_trb && xep->use_extended_tbc)
3794 length_field |= TRB_TD_SIZE_TBC(burst_count);
3795 else
3796 length_field |= TRB_TD_SIZE(remainder);
3797 first_trb = false;
3798
3799 queue_trb(xhci, ep_ring, more_trbs_coming,
3800 lower_32_bits(addr),
3801 upper_32_bits(addr),
3802 length_field,
3803 field);
3804 running_total += trb_buff_len;
3805
3806 addr += trb_buff_len;
3807 td_remain_len -= trb_buff_len;
3808 }
3809
3810 /* Check TD length */
3811 if (running_total != td_len) {
3812 xhci_err(xhci, "ISOC TD length unmatch\n");
3813 ret = -EINVAL;
3814 goto cleanup;
3815 }
3816 }
3817
3818 /* store the next frame id */
3819 if (HCC_CFC(xhci->hcc_params))
3820 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3821
3822 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3823 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3824 usb_amd_quirk_pll_disable();
3825 }
3826 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3827
3828 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3829 start_cycle, start_trb);
3830 return 0;
3831cleanup:
3832 /* Clean up a partially enqueued isoc transfer. */
3833
3834 for (i--; i >= 0; i--)
3835 list_del_init(&urb_priv->td[i].td_list);
3836
3837 /* Use the first TD as a temporary variable to turn the TDs we've queued
3838 * into No-ops with a software-owned cycle bit. That way the hardware
3839 * won't accidentally start executing bogus TDs when we partially
3840 * overwrite them. td->first_trb and td->start_seg are already set.
3841 */
3842 urb_priv->td[0].last_trb = ep_ring->enqueue;
3843 /* Every TRB except the first & last will have its cycle bit flipped. */
3844 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3845
3846 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3847 ep_ring->enqueue = urb_priv->td[0].first_trb;
3848 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3849 ep_ring->cycle_state = start_cycle;
3850 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3851 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3852 return ret;
3853}
3854
3855/*
3856 * Check transfer ring to guarantee there is enough room for the urb.
3857 * Update ISO URB start_frame and interval.
3858 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3859 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3860 * Contiguous Frame ID is not supported by HC.
3861 */
3862int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3863 struct urb *urb, int slot_id, unsigned int ep_index)
3864{
3865 struct xhci_virt_device *xdev;
3866 struct xhci_ring *ep_ring;
3867 struct xhci_ep_ctx *ep_ctx;
3868 int start_frame;
3869 int num_tds, num_trbs, i;
3870 int ret;
3871 struct xhci_virt_ep *xep;
3872 int ist;
3873
3874 xdev = xhci->devs[slot_id];
3875 xep = &xhci->devs[slot_id]->eps[ep_index];
3876 ep_ring = xdev->eps[ep_index].ring;
3877 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3878
3879 num_trbs = 0;
3880 num_tds = urb->number_of_packets;
3881 for (i = 0; i < num_tds; i++)
3882 num_trbs += count_isoc_trbs_needed(urb, i);
3883
3884 /* Check the ring to guarantee there is enough room for the whole urb.
3885 * Do not insert any td of the urb to the ring if the check failed.
3886 */
3887 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3888 num_trbs, mem_flags);
3889 if (ret)
3890 return ret;
3891
3892 /*
3893 * Check interval value. This should be done before we start to
3894 * calculate the start frame value.
3895 */
3896 check_interval(xhci, urb, ep_ctx);
3897
3898 /* Calculate the start frame and put it in urb->start_frame. */
3899 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3900 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3901 urb->start_frame = xep->next_frame_id;
3902 goto skip_start_over;
3903 }
3904 }
3905
3906 start_frame = readl(&xhci->run_regs->microframe_index);
3907 start_frame &= 0x3fff;
3908 /*
3909 * Round up to the next frame and consider the time before trb really
3910 * gets scheduled by hardare.
3911 */
3912 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3913 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3914 ist <<= 3;
3915 start_frame += ist + XHCI_CFC_DELAY;
3916 start_frame = roundup(start_frame, 8);
3917
3918 /*
3919 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3920 * is greate than 8 microframes.
3921 */
3922 if (urb->dev->speed == USB_SPEED_LOW ||
3923 urb->dev->speed == USB_SPEED_FULL) {
3924 start_frame = roundup(start_frame, urb->interval << 3);
3925 urb->start_frame = start_frame >> 3;
3926 } else {
3927 start_frame = roundup(start_frame, urb->interval);
3928 urb->start_frame = start_frame;
3929 }
3930
3931skip_start_over:
3932 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3933
3934 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3935}
3936
3937/**** Command Ring Operations ****/
3938
3939/* Generic function for queueing a command TRB on the command ring.
3940 * Check to make sure there's room on the command ring for one command TRB.
3941 * Also check that there's room reserved for commands that must not fail.
3942 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3943 * then only check for the number of reserved spots.
3944 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3945 * because the command event handler may want to resubmit a failed command.
3946 */
3947static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3948 u32 field1, u32 field2,
3949 u32 field3, u32 field4, bool command_must_succeed)
3950{
3951 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3952 int ret;
3953
3954 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3955 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3956 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3957 return -ESHUTDOWN;
3958 }
3959
3960 if (!command_must_succeed)
3961 reserved_trbs++;
3962
3963 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3964 reserved_trbs, GFP_ATOMIC);
3965 if (ret < 0) {
3966 xhci_err(xhci, "ERR: No room for command on command ring\n");
3967 if (command_must_succeed)
3968 xhci_err(xhci, "ERR: Reserved TRB counting for "
3969 "unfailable commands failed.\n");
3970 return ret;
3971 }
3972
3973 cmd->command_trb = xhci->cmd_ring->enqueue;
3974
3975 /* if there are no other commands queued we start the timeout timer */
3976 if (list_empty(&xhci->cmd_list)) {
3977 xhci->current_cmd = cmd;
3978 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3979 }
3980
3981 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3982
3983 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3984 field4 | xhci->cmd_ring->cycle_state);
3985 return 0;
3986}
3987
3988/* Queue a slot enable or disable request on the command ring */
3989int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3990 u32 trb_type, u32 slot_id)
3991{
3992 return queue_command(xhci, cmd, 0, 0, 0,
3993 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3994}
3995
3996/* Queue an address device command TRB */
3997int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3998 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3999{
4000 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4001 upper_32_bits(in_ctx_ptr), 0,
4002 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4003 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4004}
4005
4006int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4007 u32 field1, u32 field2, u32 field3, u32 field4)
4008{
4009 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4010}
4011
4012/* Queue a reset device command TRB */
4013int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4014 u32 slot_id)
4015{
4016 return queue_command(xhci, cmd, 0, 0, 0,
4017 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4018 false);
4019}
4020
4021/* Queue a configure endpoint command TRB */
4022int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4023 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4024 u32 slot_id, bool command_must_succeed)
4025{
4026 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4027 upper_32_bits(in_ctx_ptr), 0,
4028 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4029 command_must_succeed);
4030}
4031
4032/* Queue an evaluate context command TRB */
4033int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4034 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4035{
4036 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4037 upper_32_bits(in_ctx_ptr), 0,
4038 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4039 command_must_succeed);
4040}
4041
4042/*
4043 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4044 * activity on an endpoint that is about to be suspended.
4045 */
4046int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4047 int slot_id, unsigned int ep_index, int suspend)
4048{
4049 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4050 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4051 u32 type = TRB_TYPE(TRB_STOP_RING);
4052 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4053
4054 return queue_command(xhci, cmd, 0, 0, 0,
4055 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4056}
4057
4058/* Set Transfer Ring Dequeue Pointer command */
4059void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4060 unsigned int slot_id, unsigned int ep_index,
4061 struct xhci_dequeue_state *deq_state)
4062{
4063 dma_addr_t addr;
4064 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4065 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4066 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4067 u32 trb_sct = 0;
4068 u32 type = TRB_TYPE(TRB_SET_DEQ);
4069 struct xhci_virt_ep *ep;
4070 struct xhci_command *cmd;
4071 int ret;
4072
4073 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4074 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4075 deq_state->new_deq_seg,
4076 (unsigned long long)deq_state->new_deq_seg->dma,
4077 deq_state->new_deq_ptr,
4078 (unsigned long long)xhci_trb_virt_to_dma(
4079 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4080 deq_state->new_cycle_state);
4081
4082 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4083 deq_state->new_deq_ptr);
4084 if (addr == 0) {
4085 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4086 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4087 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4088 return;
4089 }
4090 ep = &xhci->devs[slot_id]->eps[ep_index];
4091 if ((ep->ep_state & SET_DEQ_PENDING)) {
4092 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4093 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4094 return;
4095 }
4096
4097 /* This function gets called from contexts where it cannot sleep */
4098 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
4099 if (!cmd)
4100 return;
4101
4102 ep->queued_deq_seg = deq_state->new_deq_seg;
4103 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4104 if (deq_state->stream_id)
4105 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4106 ret = queue_command(xhci, cmd,
4107 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4108 upper_32_bits(addr), trb_stream_id,
4109 trb_slot_id | trb_ep_index | type, false);
4110 if (ret < 0) {
4111 xhci_free_command(xhci, cmd);
4112 return;
4113 }
4114
4115 /* Stop the TD queueing code from ringing the doorbell until
4116 * this command completes. The HC won't set the dequeue pointer
4117 * if the ring is running, and ringing the doorbell starts the
4118 * ring running.
4119 */
4120 ep->ep_state |= SET_DEQ_PENDING;
4121}
4122
4123int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4124 int slot_id, unsigned int ep_index,
4125 enum xhci_ep_reset_type reset_type)
4126{
4127 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4128 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4129 u32 type = TRB_TYPE(TRB_RESET_EP);
4130
4131 if (reset_type == EP_SOFT_RESET)
4132 type |= TRB_TSP;
4133
4134 return queue_command(xhci, cmd, 0, 0, 0,
4135 trb_slot_id | trb_ep_index | type, false);
4136}