Loading...
1/*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20/* this file is part of ehci-hcd.c */
21
22/*-------------------------------------------------------------------------*/
23
24/*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37static int ehci_get_frame(struct usb_hcd *hcd);
38
39/*
40 * periodic_next_shadow - return "next" pointer on shadow list
41 * @periodic: host pointer to qh/itd/sitd
42 * @tag: hardware tag for type of this record
43 */
44static union ehci_shadow *
45periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 __hc32 tag)
47{
48 switch (hc32_to_cpu(ehci, tag)) {
49 case Q_TYPE_QH:
50 return &periodic->qh->qh_next;
51 case Q_TYPE_FSTN:
52 return &periodic->fstn->fstn_next;
53 case Q_TYPE_ITD:
54 return &periodic->itd->itd_next;
55 /* case Q_TYPE_SITD: */
56 default:
57 return &periodic->sitd->sitd_next;
58 }
59}
60
61static __hc32 *
62shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 __hc32 tag)
64{
65 switch (hc32_to_cpu(ehci, tag)) {
66 /* our ehci_shadow.qh is actually software part */
67 case Q_TYPE_QH:
68 return &periodic->qh->hw->hw_next;
69 /* others are hw parts */
70 default:
71 return periodic->hw_next;
72 }
73}
74
75/* caller must hold ehci->lock */
76static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
77{
78 union ehci_shadow *prev_p = &ehci->pshadow[frame];
79 __hc32 *hw_p = &ehci->periodic[frame];
80 union ehci_shadow here = *prev_p;
81
82 /* find predecessor of "ptr"; hw and shadow lists are in sync */
83 while (here.ptr && here.ptr != ptr) {
84 prev_p = periodic_next_shadow(ehci, prev_p,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 hw_p = shadow_next_periodic(ehci, &here,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 here = *prev_p;
89 }
90 /* an interrupt entry (at list end) could have been shared */
91 if (!here.ptr)
92 return;
93
94 /* update shadow and hardware lists ... the old "next" pointers
95 * from ptr may still be in use, the caller updates them.
96 */
97 *prev_p = *periodic_next_shadow(ehci, &here,
98 Q_NEXT_TYPE(ehci, *hw_p));
99
100 if (!ehci->use_dummy_qh ||
101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 != EHCI_LIST_END(ehci))
103 *hw_p = *shadow_next_periodic(ehci, &here,
104 Q_NEXT_TYPE(ehci, *hw_p));
105 else
106 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
107}
108
109/*-------------------------------------------------------------------------*/
110
111/* Bandwidth and TT management */
112
113/* Find the TT data structure for this device; create it if necessary */
114static struct ehci_tt *find_tt(struct usb_device *udev)
115{
116 struct usb_tt *utt = udev->tt;
117 struct ehci_tt *tt, **tt_index, **ptt;
118 unsigned port;
119 bool allocated_index = false;
120
121 if (!utt)
122 return NULL; /* Not below a TT */
123
124 /*
125 * Find/create our data structure.
126 * For hubs with a single TT, we get it directly.
127 * For hubs with multiple TTs, there's an extra level of pointers.
128 */
129 tt_index = NULL;
130 if (utt->multi) {
131 tt_index = utt->hcpriv;
132 if (!tt_index) { /* Create the index array */
133 tt_index = kzalloc(utt->hub->maxchild *
134 sizeof(*tt_index), GFP_ATOMIC);
135 if (!tt_index)
136 return ERR_PTR(-ENOMEM);
137 utt->hcpriv = tt_index;
138 allocated_index = true;
139 }
140 port = udev->ttport - 1;
141 ptt = &tt_index[port];
142 } else {
143 port = 0;
144 ptt = (struct ehci_tt **) &utt->hcpriv;
145 }
146
147 tt = *ptt;
148 if (!tt) { /* Create the ehci_tt */
149 struct ehci_hcd *ehci =
150 hcd_to_ehci(bus_to_hcd(udev->bus));
151
152 tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
153 if (!tt) {
154 if (allocated_index) {
155 utt->hcpriv = NULL;
156 kfree(tt_index);
157 }
158 return ERR_PTR(-ENOMEM);
159 }
160 list_add_tail(&tt->tt_list, &ehci->tt_list);
161 INIT_LIST_HEAD(&tt->ps_list);
162 tt->usb_tt = utt;
163 tt->tt_port = port;
164 *ptt = tt;
165 }
166
167 return tt;
168}
169
170/* Release the TT above udev, if it's not in use */
171static void drop_tt(struct usb_device *udev)
172{
173 struct usb_tt *utt = udev->tt;
174 struct ehci_tt *tt, **tt_index, **ptt;
175 int cnt, i;
176
177 if (!utt || !utt->hcpriv)
178 return; /* Not below a TT, or never allocated */
179
180 cnt = 0;
181 if (utt->multi) {
182 tt_index = utt->hcpriv;
183 ptt = &tt_index[udev->ttport - 1];
184
185 /* How many entries are left in tt_index? */
186 for (i = 0; i < utt->hub->maxchild; ++i)
187 cnt += !!tt_index[i];
188 } else {
189 tt_index = NULL;
190 ptt = (struct ehci_tt **) &utt->hcpriv;
191 }
192
193 tt = *ptt;
194 if (!tt || !list_empty(&tt->ps_list))
195 return; /* never allocated, or still in use */
196
197 list_del(&tt->tt_list);
198 *ptt = NULL;
199 kfree(tt);
200 if (cnt == 1) {
201 utt->hcpriv = NULL;
202 kfree(tt_index);
203 }
204}
205
206static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
207 struct ehci_per_sched *ps)
208{
209 dev_dbg(&ps->udev->dev,
210 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
211 ps->ep->desc.bEndpointAddress,
212 (sign >= 0 ? "reserve" : "release"), type,
213 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
214 ps->phase, ps->phase_uf, ps->period,
215 ps->usecs, ps->c_usecs, ps->cs_mask);
216}
217
218static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
219 struct ehci_qh *qh, int sign)
220{
221 unsigned start_uf;
222 unsigned i, j, m;
223 int usecs = qh->ps.usecs;
224 int c_usecs = qh->ps.c_usecs;
225 int tt_usecs = qh->ps.tt_usecs;
226 struct ehci_tt *tt;
227
228 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
229 return;
230 start_uf = qh->ps.bw_phase << 3;
231
232 bandwidth_dbg(ehci, sign, "intr", &qh->ps);
233
234 if (sign < 0) { /* Release bandwidth */
235 usecs = -usecs;
236 c_usecs = -c_usecs;
237 tt_usecs = -tt_usecs;
238 }
239
240 /* Entire transaction (high speed) or start-split (full/low speed) */
241 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
242 i += qh->ps.bw_uperiod)
243 ehci->bandwidth[i] += usecs;
244
245 /* Complete-split (full/low speed) */
246 if (qh->ps.c_usecs) {
247 /* NOTE: adjustments needed for FSTN */
248 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
249 i += qh->ps.bw_uperiod) {
250 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
251 if (qh->ps.cs_mask & m)
252 ehci->bandwidth[i+j] += c_usecs;
253 }
254 }
255 }
256
257 /* FS/LS bus bandwidth */
258 if (tt_usecs) {
259 tt = find_tt(qh->ps.udev);
260 if (sign > 0)
261 list_add_tail(&qh->ps.ps_list, &tt->ps_list);
262 else
263 list_del(&qh->ps.ps_list);
264
265 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
266 i += qh->ps.bw_period)
267 tt->bandwidth[i] += tt_usecs;
268 }
269}
270
271/*-------------------------------------------------------------------------*/
272
273static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
274 struct ehci_tt *tt)
275{
276 struct ehci_per_sched *ps;
277 unsigned uframe, uf, x;
278 u8 *budget_line;
279
280 if (!tt)
281 return;
282 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
283
284 /* Add up the contributions from all the endpoints using this TT */
285 list_for_each_entry(ps, &tt->ps_list, ps_list) {
286 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
287 uframe += ps->bw_uperiod) {
288 budget_line = &budget_table[uframe];
289 x = ps->tt_usecs;
290
291 /* propagate the time forward */
292 for (uf = ps->phase_uf; uf < 8; ++uf) {
293 x += budget_line[uf];
294
295 /* Each microframe lasts 125 us */
296 if (x <= 125) {
297 budget_line[uf] = x;
298 break;
299 }
300 budget_line[uf] = 125;
301 x -= 125;
302 }
303 }
304 }
305}
306
307static int __maybe_unused same_tt(struct usb_device *dev1,
308 struct usb_device *dev2)
309{
310 if (!dev1->tt || !dev2->tt)
311 return 0;
312 if (dev1->tt != dev2->tt)
313 return 0;
314 if (dev1->tt->multi)
315 return dev1->ttport == dev2->ttport;
316 else
317 return 1;
318}
319
320#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
321
322/* Which uframe does the low/fullspeed transfer start in?
323 *
324 * The parameter is the mask of ssplits in "H-frame" terms
325 * and this returns the transfer start uframe in "B-frame" terms,
326 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
327 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
328 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
329 */
330static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
331{
332 unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
333
334 if (!smask) {
335 ehci_err(ehci, "invalid empty smask!\n");
336 /* uframe 7 can't have bw so this will indicate failure */
337 return 7;
338 }
339 return ffs(smask) - 1;
340}
341
342static const unsigned char
343max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
344
345/* carryover low/fullspeed bandwidth that crosses uframe boundries */
346static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
347{
348 int i;
349
350 for (i = 0; i < 7; i++) {
351 if (max_tt_usecs[i] < tt_usecs[i]) {
352 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
353 tt_usecs[i] = max_tt_usecs[i];
354 }
355 }
356}
357
358/*
359 * Return true if the device's tt's downstream bus is available for a
360 * periodic transfer of the specified length (usecs), starting at the
361 * specified frame/uframe. Note that (as summarized in section 11.19
362 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
363 * uframe.
364 *
365 * The uframe parameter is when the fullspeed/lowspeed transfer
366 * should be executed in "B-frame" terms, which is the same as the
367 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
368 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
369 * See the EHCI spec sec 4.5 and fig 4.7.
370 *
371 * This checks if the full/lowspeed bus, at the specified starting uframe,
372 * has the specified bandwidth available, according to rules listed
373 * in USB 2.0 spec section 11.18.1 fig 11-60.
374 *
375 * This does not check if the transfer would exceed the max ssplit
376 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
377 * since proper scheduling limits ssplits to less than 16 per uframe.
378 */
379static int tt_available(
380 struct ehci_hcd *ehci,
381 struct ehci_per_sched *ps,
382 struct ehci_tt *tt,
383 unsigned frame,
384 unsigned uframe
385)
386{
387 unsigned period = ps->bw_period;
388 unsigned usecs = ps->tt_usecs;
389
390 if ((period == 0) || (uframe >= 7)) /* error */
391 return 0;
392
393 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
394 frame += period) {
395 unsigned i, uf;
396 unsigned short tt_usecs[8];
397
398 if (tt->bandwidth[frame] + usecs > 900)
399 return 0;
400
401 uf = frame << 3;
402 for (i = 0; i < 8; (++i, ++uf))
403 tt_usecs[i] = ehci->tt_budget[uf];
404
405 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
406 return 0;
407
408 /* special case for isoc transfers larger than 125us:
409 * the first and each subsequent fully used uframe
410 * must be empty, so as to not illegally delay
411 * already scheduled transactions
412 */
413 if (usecs > 125) {
414 int ufs = (usecs / 125);
415
416 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
417 if (tt_usecs[i] > 0)
418 return 0;
419 }
420
421 tt_usecs[uframe] += usecs;
422
423 carryover_tt_bandwidth(tt_usecs);
424
425 /* fail if the carryover pushed bw past the last uframe's limit */
426 if (max_tt_usecs[7] < tt_usecs[7])
427 return 0;
428 }
429
430 return 1;
431}
432
433#else
434
435/* return true iff the device's transaction translator is available
436 * for a periodic transfer starting at the specified frame, using
437 * all the uframes in the mask.
438 */
439static int tt_no_collision(
440 struct ehci_hcd *ehci,
441 unsigned period,
442 struct usb_device *dev,
443 unsigned frame,
444 u32 uf_mask
445)
446{
447 if (period == 0) /* error */
448 return 0;
449
450 /* note bandwidth wastage: split never follows csplit
451 * (different dev or endpoint) until the next uframe.
452 * calling convention doesn't make that distinction.
453 */
454 for (; frame < ehci->periodic_size; frame += period) {
455 union ehci_shadow here;
456 __hc32 type;
457 struct ehci_qh_hw *hw;
458
459 here = ehci->pshadow[frame];
460 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
461 while (here.ptr) {
462 switch (hc32_to_cpu(ehci, type)) {
463 case Q_TYPE_ITD:
464 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
465 here = here.itd->itd_next;
466 continue;
467 case Q_TYPE_QH:
468 hw = here.qh->hw;
469 if (same_tt(dev, here.qh->ps.udev)) {
470 u32 mask;
471
472 mask = hc32_to_cpu(ehci,
473 hw->hw_info2);
474 /* "knows" no gap is needed */
475 mask |= mask >> 8;
476 if (mask & uf_mask)
477 break;
478 }
479 type = Q_NEXT_TYPE(ehci, hw->hw_next);
480 here = here.qh->qh_next;
481 continue;
482 case Q_TYPE_SITD:
483 if (same_tt(dev, here.sitd->urb->dev)) {
484 u16 mask;
485
486 mask = hc32_to_cpu(ehci, here.sitd
487 ->hw_uframe);
488 /* FIXME assumes no gap for IN! */
489 mask |= mask >> 8;
490 if (mask & uf_mask)
491 break;
492 }
493 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
494 here = here.sitd->sitd_next;
495 continue;
496 /* case Q_TYPE_FSTN: */
497 default:
498 ehci_dbg(ehci,
499 "periodic frame %d bogus type %d\n",
500 frame, type);
501 }
502
503 /* collision or error */
504 return 0;
505 }
506 }
507
508 /* no collision */
509 return 1;
510}
511
512#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
513
514/*-------------------------------------------------------------------------*/
515
516static void enable_periodic(struct ehci_hcd *ehci)
517{
518 if (ehci->periodic_count++)
519 return;
520
521 /* Stop waiting to turn off the periodic schedule */
522 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
523
524 /* Don't start the schedule until PSS is 0 */
525 ehci_poll_PSS(ehci);
526 turn_on_io_watchdog(ehci);
527}
528
529static void disable_periodic(struct ehci_hcd *ehci)
530{
531 if (--ehci->periodic_count)
532 return;
533
534 /* Don't turn off the schedule until PSS is 1 */
535 ehci_poll_PSS(ehci);
536}
537
538/*-------------------------------------------------------------------------*/
539
540/* periodic schedule slots have iso tds (normal or split) first, then a
541 * sparse tree for active interrupt transfers.
542 *
543 * this just links in a qh; caller guarantees uframe masks are set right.
544 * no FSTN support (yet; ehci 0.96+)
545 */
546static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
547{
548 unsigned i;
549 unsigned period = qh->ps.period;
550
551 dev_dbg(&qh->ps.udev->dev,
552 "link qh%d-%04x/%p start %d [%d/%d us]\n",
553 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
554 & (QH_CMASK | QH_SMASK),
555 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
556
557 /* high bandwidth, or otherwise every microframe */
558 if (period == 0)
559 period = 1;
560
561 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
562 union ehci_shadow *prev = &ehci->pshadow[i];
563 __hc32 *hw_p = &ehci->periodic[i];
564 union ehci_shadow here = *prev;
565 __hc32 type = 0;
566
567 /* skip the iso nodes at list head */
568 while (here.ptr) {
569 type = Q_NEXT_TYPE(ehci, *hw_p);
570 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
571 break;
572 prev = periodic_next_shadow(ehci, prev, type);
573 hw_p = shadow_next_periodic(ehci, &here, type);
574 here = *prev;
575 }
576
577 /* sorting each branch by period (slow-->fast)
578 * enables sharing interior tree nodes
579 */
580 while (here.ptr && qh != here.qh) {
581 if (qh->ps.period > here.qh->ps.period)
582 break;
583 prev = &here.qh->qh_next;
584 hw_p = &here.qh->hw->hw_next;
585 here = *prev;
586 }
587 /* link in this qh, unless some earlier pass did that */
588 if (qh != here.qh) {
589 qh->qh_next = here;
590 if (here.qh)
591 qh->hw->hw_next = *hw_p;
592 wmb();
593 prev->qh = qh;
594 *hw_p = QH_NEXT(ehci, qh->qh_dma);
595 }
596 }
597 qh->qh_state = QH_STATE_LINKED;
598 qh->xacterrs = 0;
599 qh->unlink_reason = 0;
600
601 /* update per-qh bandwidth for debugfs */
602 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
603 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
604 : (qh->ps.usecs * 8);
605
606 list_add(&qh->intr_node, &ehci->intr_qh_list);
607
608 /* maybe enable periodic schedule processing */
609 ++ehci->intr_count;
610 enable_periodic(ehci);
611}
612
613static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
614{
615 unsigned i;
616 unsigned period;
617
618 /*
619 * If qh is for a low/full-speed device, simply unlinking it
620 * could interfere with an ongoing split transaction. To unlink
621 * it safely would require setting the QH_INACTIVATE bit and
622 * waiting at least one frame, as described in EHCI 4.12.2.5.
623 *
624 * We won't bother with any of this. Instead, we assume that the
625 * only reason for unlinking an interrupt QH while the current URB
626 * is still active is to dequeue all the URBs (flush the whole
627 * endpoint queue).
628 *
629 * If rebalancing the periodic schedule is ever implemented, this
630 * approach will no longer be valid.
631 */
632
633 /* high bandwidth, or otherwise part of every microframe */
634 period = qh->ps.period ? : 1;
635
636 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
637 periodic_unlink(ehci, i, qh);
638
639 /* update per-qh bandwidth for debugfs */
640 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
641 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
642 : (qh->ps.usecs * 8);
643
644 dev_dbg(&qh->ps.udev->dev,
645 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
646 qh->ps.period,
647 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
648 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
649
650 /* qh->qh_next still "live" to HC */
651 qh->qh_state = QH_STATE_UNLINK;
652 qh->qh_next.ptr = NULL;
653
654 if (ehci->qh_scan_next == qh)
655 ehci->qh_scan_next = list_entry(qh->intr_node.next,
656 struct ehci_qh, intr_node);
657 list_del(&qh->intr_node);
658}
659
660static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
661{
662 if (qh->qh_state != QH_STATE_LINKED ||
663 list_empty(&qh->unlink_node))
664 return;
665
666 list_del_init(&qh->unlink_node);
667
668 /*
669 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
670 * avoiding unnecessary CPU wakeup
671 */
672}
673
674static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
675{
676 /* If the QH isn't linked then there's nothing we can do. */
677 if (qh->qh_state != QH_STATE_LINKED)
678 return;
679
680 /* if the qh is waiting for unlink, cancel it now */
681 cancel_unlink_wait_intr(ehci, qh);
682
683 qh_unlink_periodic(ehci, qh);
684
685 /* Make sure the unlinks are visible before starting the timer */
686 wmb();
687
688 /*
689 * The EHCI spec doesn't say how long it takes the controller to
690 * stop accessing an unlinked interrupt QH. The timer delay is
691 * 9 uframes; presumably that will be long enough.
692 */
693 qh->unlink_cycle = ehci->intr_unlink_cycle;
694
695 /* New entries go at the end of the intr_unlink list */
696 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
697
698 if (ehci->intr_unlinking)
699 ; /* Avoid recursive calls */
700 else if (ehci->rh_state < EHCI_RH_RUNNING)
701 ehci_handle_intr_unlinks(ehci);
702 else if (ehci->intr_unlink.next == &qh->unlink_node) {
703 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
704 ++ehci->intr_unlink_cycle;
705 }
706}
707
708/*
709 * It is common only one intr URB is scheduled on one qh, and
710 * given complete() is run in tasklet context, introduce a bit
711 * delay to avoid unlink qh too early.
712 */
713static void start_unlink_intr_wait(struct ehci_hcd *ehci,
714 struct ehci_qh *qh)
715{
716 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
717
718 /* New entries go at the end of the intr_unlink_wait list */
719 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
720
721 if (ehci->rh_state < EHCI_RH_RUNNING)
722 ehci_handle_start_intr_unlinks(ehci);
723 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
724 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
725 ++ehci->intr_unlink_wait_cycle;
726 }
727}
728
729static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
730{
731 struct ehci_qh_hw *hw = qh->hw;
732 int rc;
733
734 qh->qh_state = QH_STATE_IDLE;
735 hw->hw_next = EHCI_LIST_END(ehci);
736
737 if (!list_empty(&qh->qtd_list))
738 qh_completions(ehci, qh);
739
740 /* reschedule QH iff another request is queued */
741 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
742 rc = qh_schedule(ehci, qh);
743 if (rc == 0) {
744 qh_refresh(ehci, qh);
745 qh_link_periodic(ehci, qh);
746 }
747
748 /* An error here likely indicates handshake failure
749 * or no space left in the schedule. Neither fault
750 * should happen often ...
751 *
752 * FIXME kill the now-dysfunctional queued urbs
753 */
754 else {
755 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
756 qh, rc);
757 }
758 }
759
760 /* maybe turn off periodic schedule */
761 --ehci->intr_count;
762 disable_periodic(ehci);
763}
764
765/*-------------------------------------------------------------------------*/
766
767static int check_period(
768 struct ehci_hcd *ehci,
769 unsigned frame,
770 unsigned uframe,
771 unsigned uperiod,
772 unsigned usecs
773) {
774 /* complete split running into next frame?
775 * given FSTN support, we could sometimes check...
776 */
777 if (uframe >= 8)
778 return 0;
779
780 /* convert "usecs we need" to "max already claimed" */
781 usecs = ehci->uframe_periodic_max - usecs;
782
783 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
784 uframe += uperiod) {
785 if (ehci->bandwidth[uframe] > usecs)
786 return 0;
787 }
788
789 /* success! */
790 return 1;
791}
792
793static int check_intr_schedule(
794 struct ehci_hcd *ehci,
795 unsigned frame,
796 unsigned uframe,
797 struct ehci_qh *qh,
798 unsigned *c_maskp,
799 struct ehci_tt *tt
800)
801{
802 int retval = -ENOSPC;
803 u8 mask = 0;
804
805 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
806 goto done;
807
808 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
809 goto done;
810 if (!qh->ps.c_usecs) {
811 retval = 0;
812 *c_maskp = 0;
813 goto done;
814 }
815
816#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
817 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
818 unsigned i;
819
820 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
821 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
822 if (!check_period(ehci, frame, i,
823 qh->ps.bw_uperiod, qh->ps.c_usecs))
824 goto done;
825 else
826 mask |= 1 << i;
827
828 retval = 0;
829
830 *c_maskp = mask;
831 }
832#else
833 /* Make sure this tt's buffer is also available for CSPLITs.
834 * We pessimize a bit; probably the typical full speed case
835 * doesn't need the second CSPLIT.
836 *
837 * NOTE: both SPLIT and CSPLIT could be checked in just
838 * one smart pass...
839 */
840 mask = 0x03 << (uframe + qh->gap_uf);
841 *c_maskp = mask;
842
843 mask |= 1 << uframe;
844 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
845 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
846 qh->ps.bw_uperiod, qh->ps.c_usecs))
847 goto done;
848 if (!check_period(ehci, frame, uframe + qh->gap_uf,
849 qh->ps.bw_uperiod, qh->ps.c_usecs))
850 goto done;
851 retval = 0;
852 }
853#endif
854done:
855 return retval;
856}
857
858/* "first fit" scheduling policy used the first time through,
859 * or when the previous schedule slot can't be re-used.
860 */
861static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
862{
863 int status = 0;
864 unsigned uframe;
865 unsigned c_mask;
866 struct ehci_qh_hw *hw = qh->hw;
867 struct ehci_tt *tt;
868
869 hw->hw_next = EHCI_LIST_END(ehci);
870
871 /* reuse the previous schedule slots, if we can */
872 if (qh->ps.phase != NO_FRAME) {
873 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
874 return 0;
875 }
876
877 uframe = 0;
878 c_mask = 0;
879 tt = find_tt(qh->ps.udev);
880 if (IS_ERR(tt)) {
881 status = PTR_ERR(tt);
882 goto done;
883 }
884 compute_tt_budget(ehci->tt_budget, tt);
885
886 /* else scan the schedule to find a group of slots such that all
887 * uframes have enough periodic bandwidth available.
888 */
889 /* "normal" case, uframing flexible except with splits */
890 if (qh->ps.bw_period) {
891 int i;
892 unsigned frame;
893
894 for (i = qh->ps.bw_period; i > 0; --i) {
895 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
896 for (uframe = 0; uframe < 8; uframe++) {
897 status = check_intr_schedule(ehci,
898 frame, uframe, qh, &c_mask, tt);
899 if (status == 0)
900 goto got_it;
901 }
902 }
903
904 /* qh->ps.bw_period == 0 means every uframe */
905 } else {
906 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
907 }
908 if (status)
909 goto done;
910
911 got_it:
912 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
913 (qh->ps.period - 1) : 0);
914 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
915 qh->ps.phase_uf = uframe;
916 qh->ps.cs_mask = qh->ps.period ?
917 (c_mask << 8) | (1 << uframe) :
918 QH_SMASK;
919
920 /* reset S-frame and (maybe) C-frame masks */
921 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
922 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
923 reserve_release_intr_bandwidth(ehci, qh, 1);
924
925done:
926 return status;
927}
928
929static int intr_submit(
930 struct ehci_hcd *ehci,
931 struct urb *urb,
932 struct list_head *qtd_list,
933 gfp_t mem_flags
934) {
935 unsigned epnum;
936 unsigned long flags;
937 struct ehci_qh *qh;
938 int status;
939 struct list_head empty;
940
941 /* get endpoint and transfer/schedule data */
942 epnum = urb->ep->desc.bEndpointAddress;
943
944 spin_lock_irqsave(&ehci->lock, flags);
945
946 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
947 status = -ESHUTDOWN;
948 goto done_not_linked;
949 }
950 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
951 if (unlikely(status))
952 goto done_not_linked;
953
954 /* get qh and force any scheduling errors */
955 INIT_LIST_HEAD(&empty);
956 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
957 if (qh == NULL) {
958 status = -ENOMEM;
959 goto done;
960 }
961 if (qh->qh_state == QH_STATE_IDLE) {
962 status = qh_schedule(ehci, qh);
963 if (status)
964 goto done;
965 }
966
967 /* then queue the urb's tds to the qh */
968 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
969 BUG_ON(qh == NULL);
970
971 /* stuff into the periodic schedule */
972 if (qh->qh_state == QH_STATE_IDLE) {
973 qh_refresh(ehci, qh);
974 qh_link_periodic(ehci, qh);
975 } else {
976 /* cancel unlink wait for the qh */
977 cancel_unlink_wait_intr(ehci, qh);
978 }
979
980 /* ... update usbfs periodic stats */
981 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
982
983done:
984 if (unlikely(status))
985 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
986done_not_linked:
987 spin_unlock_irqrestore(&ehci->lock, flags);
988 if (status)
989 qtd_list_free(ehci, urb, qtd_list);
990
991 return status;
992}
993
994static void scan_intr(struct ehci_hcd *ehci)
995{
996 struct ehci_qh *qh;
997
998 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
999 intr_node) {
1000
1001 /* clean any finished work for this qh */
1002 if (!list_empty(&qh->qtd_list)) {
1003 int temp;
1004
1005 /*
1006 * Unlinks could happen here; completion reporting
1007 * drops the lock. That's why ehci->qh_scan_next
1008 * always holds the next qh to scan; if the next qh
1009 * gets unlinked then ehci->qh_scan_next is adjusted
1010 * in qh_unlink_periodic().
1011 */
1012 temp = qh_completions(ehci, qh);
1013 if (unlikely(temp))
1014 start_unlink_intr(ehci, qh);
1015 else if (unlikely(list_empty(&qh->qtd_list) &&
1016 qh->qh_state == QH_STATE_LINKED))
1017 start_unlink_intr_wait(ehci, qh);
1018 }
1019 }
1020}
1021
1022/*-------------------------------------------------------------------------*/
1023
1024/* ehci_iso_stream ops work with both ITD and SITD */
1025
1026static struct ehci_iso_stream *
1027iso_stream_alloc(gfp_t mem_flags)
1028{
1029 struct ehci_iso_stream *stream;
1030
1031 stream = kzalloc(sizeof(*stream), mem_flags);
1032 if (likely(stream != NULL)) {
1033 INIT_LIST_HEAD(&stream->td_list);
1034 INIT_LIST_HEAD(&stream->free_list);
1035 stream->next_uframe = NO_FRAME;
1036 stream->ps.phase = NO_FRAME;
1037 }
1038 return stream;
1039}
1040
1041static void
1042iso_stream_init(
1043 struct ehci_hcd *ehci,
1044 struct ehci_iso_stream *stream,
1045 struct urb *urb
1046)
1047{
1048 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1049
1050 struct usb_device *dev = urb->dev;
1051 u32 buf1;
1052 unsigned epnum, maxp;
1053 int is_input;
1054 unsigned tmp;
1055
1056 /*
1057 * this might be a "high bandwidth" highspeed endpoint,
1058 * as encoded in the ep descriptor's wMaxPacket field
1059 */
1060 epnum = usb_pipeendpoint(urb->pipe);
1061 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1062 maxp = usb_endpoint_maxp(&urb->ep->desc);
1063 buf1 = is_input ? 1 << 11 : 0;
1064
1065 /* knows about ITD vs SITD */
1066 if (dev->speed == USB_SPEED_HIGH) {
1067 unsigned multi = hb_mult(maxp);
1068
1069 stream->highspeed = 1;
1070
1071 maxp = max_packet(maxp);
1072 buf1 |= maxp;
1073 maxp *= multi;
1074
1075 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1076 stream->buf1 = cpu_to_hc32(ehci, buf1);
1077 stream->buf2 = cpu_to_hc32(ehci, multi);
1078
1079 /* usbfs wants to report the average usecs per frame tied up
1080 * when transfers on this endpoint are scheduled ...
1081 */
1082 stream->ps.usecs = HS_USECS_ISO(maxp);
1083
1084 /* period for bandwidth allocation */
1085 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1086 1 << (urb->ep->desc.bInterval - 1));
1087
1088 /* Allow urb->interval to override */
1089 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1090
1091 stream->uperiod = urb->interval;
1092 stream->ps.period = urb->interval >> 3;
1093 stream->bandwidth = stream->ps.usecs * 8 /
1094 stream->ps.bw_uperiod;
1095
1096 } else {
1097 u32 addr;
1098 int think_time;
1099 int hs_transfers;
1100
1101 addr = dev->ttport << 24;
1102 if (!ehci_is_TDI(ehci)
1103 || (dev->tt->hub !=
1104 ehci_to_hcd(ehci)->self.root_hub))
1105 addr |= dev->tt->hub->devnum << 16;
1106 addr |= epnum << 8;
1107 addr |= dev->devnum;
1108 stream->ps.usecs = HS_USECS_ISO(maxp);
1109 think_time = dev->tt ? dev->tt->think_time : 0;
1110 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1111 dev->speed, is_input, 1, maxp));
1112 hs_transfers = max(1u, (maxp + 187) / 188);
1113 if (is_input) {
1114 u32 tmp;
1115
1116 addr |= 1 << 31;
1117 stream->ps.c_usecs = stream->ps.usecs;
1118 stream->ps.usecs = HS_USECS_ISO(1);
1119 stream->ps.cs_mask = 1;
1120
1121 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1122 tmp = (1 << (hs_transfers + 2)) - 1;
1123 stream->ps.cs_mask |= tmp << (8 + 2);
1124 } else
1125 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1126
1127 /* period for bandwidth allocation */
1128 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1129 1 << (urb->ep->desc.bInterval - 1));
1130
1131 /* Allow urb->interval to override */
1132 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1133 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1134
1135 stream->ps.period = urb->interval;
1136 stream->uperiod = urb->interval << 3;
1137 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1138 stream->ps.bw_period;
1139
1140 /* stream->splits gets created from cs_mask later */
1141 stream->address = cpu_to_hc32(ehci, addr);
1142 }
1143
1144 stream->ps.udev = dev;
1145 stream->ps.ep = urb->ep;
1146
1147 stream->bEndpointAddress = is_input | epnum;
1148 stream->maxp = maxp;
1149}
1150
1151static struct ehci_iso_stream *
1152iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1153{
1154 unsigned epnum;
1155 struct ehci_iso_stream *stream;
1156 struct usb_host_endpoint *ep;
1157 unsigned long flags;
1158
1159 epnum = usb_pipeendpoint (urb->pipe);
1160 if (usb_pipein(urb->pipe))
1161 ep = urb->dev->ep_in[epnum];
1162 else
1163 ep = urb->dev->ep_out[epnum];
1164
1165 spin_lock_irqsave(&ehci->lock, flags);
1166 stream = ep->hcpriv;
1167
1168 if (unlikely(stream == NULL)) {
1169 stream = iso_stream_alloc(GFP_ATOMIC);
1170 if (likely(stream != NULL)) {
1171 ep->hcpriv = stream;
1172 iso_stream_init(ehci, stream, urb);
1173 }
1174
1175 /* if dev->ep [epnum] is a QH, hw is set */
1176 } else if (unlikely(stream->hw != NULL)) {
1177 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1178 urb->dev->devpath, epnum,
1179 usb_pipein(urb->pipe) ? "in" : "out");
1180 stream = NULL;
1181 }
1182
1183 spin_unlock_irqrestore(&ehci->lock, flags);
1184 return stream;
1185}
1186
1187/*-------------------------------------------------------------------------*/
1188
1189/* ehci_iso_sched ops can be ITD-only or SITD-only */
1190
1191static struct ehci_iso_sched *
1192iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1193{
1194 struct ehci_iso_sched *iso_sched;
1195 int size = sizeof(*iso_sched);
1196
1197 size += packets * sizeof(struct ehci_iso_packet);
1198 iso_sched = kzalloc(size, mem_flags);
1199 if (likely(iso_sched != NULL))
1200 INIT_LIST_HEAD(&iso_sched->td_list);
1201
1202 return iso_sched;
1203}
1204
1205static inline void
1206itd_sched_init(
1207 struct ehci_hcd *ehci,
1208 struct ehci_iso_sched *iso_sched,
1209 struct ehci_iso_stream *stream,
1210 struct urb *urb
1211)
1212{
1213 unsigned i;
1214 dma_addr_t dma = urb->transfer_dma;
1215
1216 /* how many uframes are needed for these transfers */
1217 iso_sched->span = urb->number_of_packets * stream->uperiod;
1218
1219 /* figure out per-uframe itd fields that we'll need later
1220 * when we fit new itds into the schedule.
1221 */
1222 for (i = 0; i < urb->number_of_packets; i++) {
1223 struct ehci_iso_packet *uframe = &iso_sched->packet[i];
1224 unsigned length;
1225 dma_addr_t buf;
1226 u32 trans;
1227
1228 length = urb->iso_frame_desc[i].length;
1229 buf = dma + urb->iso_frame_desc[i].offset;
1230
1231 trans = EHCI_ISOC_ACTIVE;
1232 trans |= buf & 0x0fff;
1233 if (unlikely(((i + 1) == urb->number_of_packets))
1234 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1235 trans |= EHCI_ITD_IOC;
1236 trans |= length << 16;
1237 uframe->transaction = cpu_to_hc32(ehci, trans);
1238
1239 /* might need to cross a buffer page within a uframe */
1240 uframe->bufp = (buf & ~(u64)0x0fff);
1241 buf += length;
1242 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1243 uframe->cross = 1;
1244 }
1245}
1246
1247static void
1248iso_sched_free(
1249 struct ehci_iso_stream *stream,
1250 struct ehci_iso_sched *iso_sched
1251)
1252{
1253 if (!iso_sched)
1254 return;
1255 /* caller must hold ehci->lock! */
1256 list_splice(&iso_sched->td_list, &stream->free_list);
1257 kfree(iso_sched);
1258}
1259
1260static int
1261itd_urb_transaction(
1262 struct ehci_iso_stream *stream,
1263 struct ehci_hcd *ehci,
1264 struct urb *urb,
1265 gfp_t mem_flags
1266)
1267{
1268 struct ehci_itd *itd;
1269 dma_addr_t itd_dma;
1270 int i;
1271 unsigned num_itds;
1272 struct ehci_iso_sched *sched;
1273 unsigned long flags;
1274
1275 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1276 if (unlikely(sched == NULL))
1277 return -ENOMEM;
1278
1279 itd_sched_init(ehci, sched, stream, urb);
1280
1281 if (urb->interval < 8)
1282 num_itds = 1 + (sched->span + 7) / 8;
1283 else
1284 num_itds = urb->number_of_packets;
1285
1286 /* allocate/init ITDs */
1287 spin_lock_irqsave(&ehci->lock, flags);
1288 for (i = 0; i < num_itds; i++) {
1289
1290 /*
1291 * Use iTDs from the free list, but not iTDs that may
1292 * still be in use by the hardware.
1293 */
1294 if (likely(!list_empty(&stream->free_list))) {
1295 itd = list_first_entry(&stream->free_list,
1296 struct ehci_itd, itd_list);
1297 if (itd->frame == ehci->now_frame)
1298 goto alloc_itd;
1299 list_del(&itd->itd_list);
1300 itd_dma = itd->itd_dma;
1301 } else {
1302 alloc_itd:
1303 spin_unlock_irqrestore(&ehci->lock, flags);
1304 itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1305 &itd_dma);
1306 spin_lock_irqsave(&ehci->lock, flags);
1307 if (!itd) {
1308 iso_sched_free(stream, sched);
1309 spin_unlock_irqrestore(&ehci->lock, flags);
1310 return -ENOMEM;
1311 }
1312 }
1313
1314 memset(itd, 0, sizeof(*itd));
1315 itd->itd_dma = itd_dma;
1316 itd->frame = NO_FRAME;
1317 list_add(&itd->itd_list, &sched->td_list);
1318 }
1319 spin_unlock_irqrestore(&ehci->lock, flags);
1320
1321 /* temporarily store schedule info in hcpriv */
1322 urb->hcpriv = sched;
1323 urb->error_count = 0;
1324 return 0;
1325}
1326
1327/*-------------------------------------------------------------------------*/
1328
1329static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1330 struct ehci_iso_stream *stream, int sign)
1331{
1332 unsigned uframe;
1333 unsigned i, j;
1334 unsigned s_mask, c_mask, m;
1335 int usecs = stream->ps.usecs;
1336 int c_usecs = stream->ps.c_usecs;
1337 int tt_usecs = stream->ps.tt_usecs;
1338 struct ehci_tt *tt;
1339
1340 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1341 return;
1342 uframe = stream->ps.bw_phase << 3;
1343
1344 bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1345
1346 if (sign < 0) { /* Release bandwidth */
1347 usecs = -usecs;
1348 c_usecs = -c_usecs;
1349 tt_usecs = -tt_usecs;
1350 }
1351
1352 if (!stream->splits) { /* High speed */
1353 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1354 i += stream->ps.bw_uperiod)
1355 ehci->bandwidth[i] += usecs;
1356
1357 } else { /* Full speed */
1358 s_mask = stream->ps.cs_mask;
1359 c_mask = s_mask >> 8;
1360
1361 /* NOTE: adjustment needed for frame overflow */
1362 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1363 i += stream->ps.bw_uperiod) {
1364 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1365 (++j, m <<= 1)) {
1366 if (s_mask & m)
1367 ehci->bandwidth[i+j] += usecs;
1368 else if (c_mask & m)
1369 ehci->bandwidth[i+j] += c_usecs;
1370 }
1371 }
1372
1373 tt = find_tt(stream->ps.udev);
1374 if (sign > 0)
1375 list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1376 else
1377 list_del(&stream->ps.ps_list);
1378
1379 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1380 i += stream->ps.bw_period)
1381 tt->bandwidth[i] += tt_usecs;
1382 }
1383}
1384
1385static inline int
1386itd_slot_ok(
1387 struct ehci_hcd *ehci,
1388 struct ehci_iso_stream *stream,
1389 unsigned uframe
1390)
1391{
1392 unsigned usecs;
1393
1394 /* convert "usecs we need" to "max already claimed" */
1395 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1396
1397 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1398 uframe += stream->ps.bw_uperiod) {
1399 if (ehci->bandwidth[uframe] > usecs)
1400 return 0;
1401 }
1402 return 1;
1403}
1404
1405static inline int
1406sitd_slot_ok(
1407 struct ehci_hcd *ehci,
1408 struct ehci_iso_stream *stream,
1409 unsigned uframe,
1410 struct ehci_iso_sched *sched,
1411 struct ehci_tt *tt
1412)
1413{
1414 unsigned mask, tmp;
1415 unsigned frame, uf;
1416
1417 mask = stream->ps.cs_mask << (uframe & 7);
1418
1419 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1420 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1421 return 0;
1422
1423 /* for IN, don't wrap CSPLIT into the next frame */
1424 if (mask & ~0xffff)
1425 return 0;
1426
1427 /* check bandwidth */
1428 uframe &= stream->ps.bw_uperiod - 1;
1429 frame = uframe >> 3;
1430
1431#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1432 /* The tt's fullspeed bus bandwidth must be available.
1433 * tt_available scheduling guarantees 10+% for control/bulk.
1434 */
1435 uf = uframe & 7;
1436 if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1437 return 0;
1438#else
1439 /* tt must be idle for start(s), any gap, and csplit.
1440 * assume scheduling slop leaves 10+% for control/bulk.
1441 */
1442 if (!tt_no_collision(ehci, stream->ps.bw_period,
1443 stream->ps.udev, frame, mask))
1444 return 0;
1445#endif
1446
1447 do {
1448 unsigned max_used;
1449 unsigned i;
1450
1451 /* check starts (OUT uses more than one) */
1452 uf = uframe;
1453 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1454 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1455 if (ehci->bandwidth[uf] > max_used)
1456 return 0;
1457 }
1458
1459 /* for IN, check CSPLIT */
1460 if (stream->ps.c_usecs) {
1461 max_used = ehci->uframe_periodic_max -
1462 stream->ps.c_usecs;
1463 uf = uframe & ~7;
1464 tmp = 1 << (2+8);
1465 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1466 if ((stream->ps.cs_mask & tmp) == 0)
1467 continue;
1468 if (ehci->bandwidth[uf+i] > max_used)
1469 return 0;
1470 }
1471 }
1472
1473 uframe += stream->ps.bw_uperiod;
1474 } while (uframe < EHCI_BANDWIDTH_SIZE);
1475
1476 stream->ps.cs_mask <<= uframe & 7;
1477 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1478 return 1;
1479}
1480
1481/*
1482 * This scheduler plans almost as far into the future as it has actual
1483 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1484 * "as small as possible" to be cache-friendlier.) That limits the size
1485 * transfers you can stream reliably; avoid more than 64 msec per urb.
1486 * Also avoid queue depths of less than ehci's worst irq latency (affected
1487 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1488 * and other factors); or more than about 230 msec total (for portability,
1489 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1490 */
1491
1492static int
1493iso_stream_schedule(
1494 struct ehci_hcd *ehci,
1495 struct urb *urb,
1496 struct ehci_iso_stream *stream
1497)
1498{
1499 u32 now, base, next, start, period, span, now2;
1500 u32 wrap = 0, skip = 0;
1501 int status = 0;
1502 unsigned mod = ehci->periodic_size << 3;
1503 struct ehci_iso_sched *sched = urb->hcpriv;
1504 bool empty = list_empty(&stream->td_list);
1505 bool new_stream = false;
1506
1507 period = stream->uperiod;
1508 span = sched->span;
1509 if (!stream->highspeed)
1510 span <<= 3;
1511
1512 /* Start a new isochronous stream? */
1513 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1514 ehci_to_hcd(ehci), urb->ep))) {
1515
1516 /* Schedule the endpoint */
1517 if (stream->ps.phase == NO_FRAME) {
1518 int done = 0;
1519 struct ehci_tt *tt = find_tt(stream->ps.udev);
1520
1521 if (IS_ERR(tt)) {
1522 status = PTR_ERR(tt);
1523 goto fail;
1524 }
1525 compute_tt_budget(ehci->tt_budget, tt);
1526
1527 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1528
1529 /* find a uframe slot with enough bandwidth.
1530 * Early uframes are more precious because full-speed
1531 * iso IN transfers can't use late uframes,
1532 * and therefore they should be allocated last.
1533 */
1534 next = start;
1535 start += period;
1536 do {
1537 start--;
1538 /* check schedule: enough space? */
1539 if (stream->highspeed) {
1540 if (itd_slot_ok(ehci, stream, start))
1541 done = 1;
1542 } else {
1543 if ((start % 8) >= 6)
1544 continue;
1545 if (sitd_slot_ok(ehci, stream, start,
1546 sched, tt))
1547 done = 1;
1548 }
1549 } while (start > next && !done);
1550
1551 /* no room in the schedule */
1552 if (!done) {
1553 ehci_dbg(ehci, "iso sched full %p", urb);
1554 status = -ENOSPC;
1555 goto fail;
1556 }
1557 stream->ps.phase = (start >> 3) &
1558 (stream->ps.period - 1);
1559 stream->ps.bw_phase = stream->ps.phase &
1560 (stream->ps.bw_period - 1);
1561 stream->ps.phase_uf = start & 7;
1562 reserve_release_iso_bandwidth(ehci, stream, 1);
1563 }
1564
1565 /* New stream is already scheduled; use the upcoming slot */
1566 else {
1567 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1568 }
1569
1570 stream->next_uframe = start;
1571 new_stream = true;
1572 }
1573
1574 now = ehci_read_frame_index(ehci) & (mod - 1);
1575
1576 /* Take the isochronous scheduling threshold into account */
1577 if (ehci->i_thresh)
1578 next = now + ehci->i_thresh; /* uframe cache */
1579 else
1580 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1581
1582 /* If needed, initialize last_iso_frame so that this URB will be seen */
1583 if (ehci->isoc_count == 0)
1584 ehci->last_iso_frame = now >> 3;
1585
1586 /*
1587 * Use ehci->last_iso_frame as the base. There can't be any
1588 * TDs scheduled for earlier than that.
1589 */
1590 base = ehci->last_iso_frame << 3;
1591 next = (next - base) & (mod - 1);
1592 start = (stream->next_uframe - base) & (mod - 1);
1593
1594 if (unlikely(new_stream))
1595 goto do_ASAP;
1596
1597 /*
1598 * Typical case: reuse current schedule, stream may still be active.
1599 * Hopefully there are no gaps from the host falling behind
1600 * (irq delays etc). If there are, the behavior depends on
1601 * whether URB_ISO_ASAP is set.
1602 */
1603 now2 = (now - base) & (mod - 1);
1604
1605 /* Is the schedule about to wrap around? */
1606 if (unlikely(!empty && start < period)) {
1607 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1608 urb, stream->next_uframe, base, period, mod);
1609 status = -EFBIG;
1610 goto fail;
1611 }
1612
1613 /* Is the next packet scheduled after the base time? */
1614 if (likely(!empty || start <= now2 + period)) {
1615
1616 /* URB_ISO_ASAP: make sure that start >= next */
1617 if (unlikely(start < next &&
1618 (urb->transfer_flags & URB_ISO_ASAP)))
1619 goto do_ASAP;
1620
1621 /* Otherwise use start, if it's not in the past */
1622 if (likely(start >= now2))
1623 goto use_start;
1624
1625 /* Otherwise we got an underrun while the queue was empty */
1626 } else {
1627 if (urb->transfer_flags & URB_ISO_ASAP)
1628 goto do_ASAP;
1629 wrap = mod;
1630 now2 += mod;
1631 }
1632
1633 /* How many uframes and packets do we need to skip? */
1634 skip = (now2 - start + period - 1) & -period;
1635 if (skip >= span) { /* Entirely in the past? */
1636 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1637 urb, start + base, span - period, now2 + base,
1638 base);
1639
1640 /* Try to keep the last TD intact for scanning later */
1641 skip = span - period;
1642
1643 /* Will it come before the current scan position? */
1644 if (empty) {
1645 skip = span; /* Skip the entire URB */
1646 status = 1; /* and give it back immediately */
1647 iso_sched_free(stream, sched);
1648 sched = NULL;
1649 }
1650 }
1651 urb->error_count = skip / period;
1652 if (sched)
1653 sched->first_packet = urb->error_count;
1654 goto use_start;
1655
1656 do_ASAP:
1657 /* Use the first slot after "next" */
1658 start = next + ((start - next) & (period - 1));
1659
1660 use_start:
1661 /* Tried to schedule too far into the future? */
1662 if (unlikely(start + span - period >= mod + wrap)) {
1663 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1664 urb, start, span - period, mod + wrap);
1665 status = -EFBIG;
1666 goto fail;
1667 }
1668
1669 start += base;
1670 stream->next_uframe = (start + skip) & (mod - 1);
1671
1672 /* report high speed start in uframes; full speed, in frames */
1673 urb->start_frame = start & (mod - 1);
1674 if (!stream->highspeed)
1675 urb->start_frame >>= 3;
1676 return status;
1677
1678 fail:
1679 iso_sched_free(stream, sched);
1680 urb->hcpriv = NULL;
1681 return status;
1682}
1683
1684/*-------------------------------------------------------------------------*/
1685
1686static inline void
1687itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1688 struct ehci_itd *itd)
1689{
1690 int i;
1691
1692 /* it's been recently zeroed */
1693 itd->hw_next = EHCI_LIST_END(ehci);
1694 itd->hw_bufp[0] = stream->buf0;
1695 itd->hw_bufp[1] = stream->buf1;
1696 itd->hw_bufp[2] = stream->buf2;
1697
1698 for (i = 0; i < 8; i++)
1699 itd->index[i] = -1;
1700
1701 /* All other fields are filled when scheduling */
1702}
1703
1704static inline void
1705itd_patch(
1706 struct ehci_hcd *ehci,
1707 struct ehci_itd *itd,
1708 struct ehci_iso_sched *iso_sched,
1709 unsigned index,
1710 u16 uframe
1711)
1712{
1713 struct ehci_iso_packet *uf = &iso_sched->packet[index];
1714 unsigned pg = itd->pg;
1715
1716 /* BUG_ON(pg == 6 && uf->cross); */
1717
1718 uframe &= 0x07;
1719 itd->index[uframe] = index;
1720
1721 itd->hw_transaction[uframe] = uf->transaction;
1722 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1723 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1724 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1725
1726 /* iso_frame_desc[].offset must be strictly increasing */
1727 if (unlikely(uf->cross)) {
1728 u64 bufp = uf->bufp + 4096;
1729
1730 itd->pg = ++pg;
1731 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1732 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1733 }
1734}
1735
1736static inline void
1737itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1738{
1739 union ehci_shadow *prev = &ehci->pshadow[frame];
1740 __hc32 *hw_p = &ehci->periodic[frame];
1741 union ehci_shadow here = *prev;
1742 __hc32 type = 0;
1743
1744 /* skip any iso nodes which might belong to previous microframes */
1745 while (here.ptr) {
1746 type = Q_NEXT_TYPE(ehci, *hw_p);
1747 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1748 break;
1749 prev = periodic_next_shadow(ehci, prev, type);
1750 hw_p = shadow_next_periodic(ehci, &here, type);
1751 here = *prev;
1752 }
1753
1754 itd->itd_next = here;
1755 itd->hw_next = *hw_p;
1756 prev->itd = itd;
1757 itd->frame = frame;
1758 wmb();
1759 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1760}
1761
1762/* fit urb's itds into the selected schedule slot; activate as needed */
1763static void itd_link_urb(
1764 struct ehci_hcd *ehci,
1765 struct urb *urb,
1766 unsigned mod,
1767 struct ehci_iso_stream *stream
1768)
1769{
1770 int packet;
1771 unsigned next_uframe, uframe, frame;
1772 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1773 struct ehci_itd *itd;
1774
1775 next_uframe = stream->next_uframe & (mod - 1);
1776
1777 if (unlikely(list_empty(&stream->td_list)))
1778 ehci_to_hcd(ehci)->self.bandwidth_allocated
1779 += stream->bandwidth;
1780
1781 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1782 if (ehci->amd_pll_fix == 1)
1783 usb_amd_quirk_pll_disable();
1784 }
1785
1786 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1787
1788 /* fill iTDs uframe by uframe */
1789 for (packet = iso_sched->first_packet, itd = NULL;
1790 packet < urb->number_of_packets;) {
1791 if (itd == NULL) {
1792 /* ASSERT: we have all necessary itds */
1793 /* BUG_ON(list_empty(&iso_sched->td_list)); */
1794
1795 /* ASSERT: no itds for this endpoint in this uframe */
1796
1797 itd = list_entry(iso_sched->td_list.next,
1798 struct ehci_itd, itd_list);
1799 list_move_tail(&itd->itd_list, &stream->td_list);
1800 itd->stream = stream;
1801 itd->urb = urb;
1802 itd_init(ehci, stream, itd);
1803 }
1804
1805 uframe = next_uframe & 0x07;
1806 frame = next_uframe >> 3;
1807
1808 itd_patch(ehci, itd, iso_sched, packet, uframe);
1809
1810 next_uframe += stream->uperiod;
1811 next_uframe &= mod - 1;
1812 packet++;
1813
1814 /* link completed itds into the schedule */
1815 if (((next_uframe >> 3) != frame)
1816 || packet == urb->number_of_packets) {
1817 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1818 itd = NULL;
1819 }
1820 }
1821 stream->next_uframe = next_uframe;
1822
1823 /* don't need that schedule data any more */
1824 iso_sched_free(stream, iso_sched);
1825 urb->hcpriv = stream;
1826
1827 ++ehci->isoc_count;
1828 enable_periodic(ehci);
1829}
1830
1831#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1832
1833/* Process and recycle a completed ITD. Return true iff its urb completed,
1834 * and hence its completion callback probably added things to the hardware
1835 * schedule.
1836 *
1837 * Note that we carefully avoid recycling this descriptor until after any
1838 * completion callback runs, so that it won't be reused quickly. That is,
1839 * assuming (a) no more than two urbs per frame on this endpoint, and also
1840 * (b) only this endpoint's completions submit URBs. It seems some silicon
1841 * corrupts things if you reuse completed descriptors very quickly...
1842 */
1843static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1844{
1845 struct urb *urb = itd->urb;
1846 struct usb_iso_packet_descriptor *desc;
1847 u32 t;
1848 unsigned uframe;
1849 int urb_index = -1;
1850 struct ehci_iso_stream *stream = itd->stream;
1851 struct usb_device *dev;
1852 bool retval = false;
1853
1854 /* for each uframe with a packet */
1855 for (uframe = 0; uframe < 8; uframe++) {
1856 if (likely(itd->index[uframe] == -1))
1857 continue;
1858 urb_index = itd->index[uframe];
1859 desc = &urb->iso_frame_desc[urb_index];
1860
1861 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1862 itd->hw_transaction[uframe] = 0;
1863
1864 /* report transfer status */
1865 if (unlikely(t & ISO_ERRS)) {
1866 urb->error_count++;
1867 if (t & EHCI_ISOC_BUF_ERR)
1868 desc->status = usb_pipein(urb->pipe)
1869 ? -ENOSR /* hc couldn't read */
1870 : -ECOMM; /* hc couldn't write */
1871 else if (t & EHCI_ISOC_BABBLE)
1872 desc->status = -EOVERFLOW;
1873 else /* (t & EHCI_ISOC_XACTERR) */
1874 desc->status = -EPROTO;
1875
1876 /* HC need not update length with this error */
1877 if (!(t & EHCI_ISOC_BABBLE)) {
1878 desc->actual_length = EHCI_ITD_LENGTH(t);
1879 urb->actual_length += desc->actual_length;
1880 }
1881 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1882 desc->status = 0;
1883 desc->actual_length = EHCI_ITD_LENGTH(t);
1884 urb->actual_length += desc->actual_length;
1885 } else {
1886 /* URB was too late */
1887 urb->error_count++;
1888 }
1889 }
1890
1891 /* handle completion now? */
1892 if (likely((urb_index + 1) != urb->number_of_packets))
1893 goto done;
1894
1895 /*
1896 * ASSERT: it's really the last itd for this urb
1897 * list_for_each_entry (itd, &stream->td_list, itd_list)
1898 * BUG_ON(itd->urb == urb);
1899 */
1900
1901 /* give urb back to the driver; completion often (re)submits */
1902 dev = urb->dev;
1903 ehci_urb_done(ehci, urb, 0);
1904 retval = true;
1905 urb = NULL;
1906
1907 --ehci->isoc_count;
1908 disable_periodic(ehci);
1909
1910 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1911 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1912 if (ehci->amd_pll_fix == 1)
1913 usb_amd_quirk_pll_enable();
1914 }
1915
1916 if (unlikely(list_is_singular(&stream->td_list)))
1917 ehci_to_hcd(ehci)->self.bandwidth_allocated
1918 -= stream->bandwidth;
1919
1920done:
1921 itd->urb = NULL;
1922
1923 /* Add to the end of the free list for later reuse */
1924 list_move_tail(&itd->itd_list, &stream->free_list);
1925
1926 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1927 if (list_empty(&stream->td_list)) {
1928 list_splice_tail_init(&stream->free_list,
1929 &ehci->cached_itd_list);
1930 start_free_itds(ehci);
1931 }
1932
1933 return retval;
1934}
1935
1936/*-------------------------------------------------------------------------*/
1937
1938static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1939 gfp_t mem_flags)
1940{
1941 int status = -EINVAL;
1942 unsigned long flags;
1943 struct ehci_iso_stream *stream;
1944
1945 /* Get iso_stream head */
1946 stream = iso_stream_find(ehci, urb);
1947 if (unlikely(stream == NULL)) {
1948 ehci_dbg(ehci, "can't get iso stream\n");
1949 return -ENOMEM;
1950 }
1951 if (unlikely(urb->interval != stream->uperiod)) {
1952 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1953 stream->uperiod, urb->interval);
1954 goto done;
1955 }
1956
1957#ifdef EHCI_URB_TRACE
1958 ehci_dbg(ehci,
1959 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1960 __func__, urb->dev->devpath, urb,
1961 usb_pipeendpoint(urb->pipe),
1962 usb_pipein(urb->pipe) ? "in" : "out",
1963 urb->transfer_buffer_length,
1964 urb->number_of_packets, urb->interval,
1965 stream);
1966#endif
1967
1968 /* allocate ITDs w/o locking anything */
1969 status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1970 if (unlikely(status < 0)) {
1971 ehci_dbg(ehci, "can't init itds\n");
1972 goto done;
1973 }
1974
1975 /* schedule ... need to lock */
1976 spin_lock_irqsave(&ehci->lock, flags);
1977 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1978 status = -ESHUTDOWN;
1979 goto done_not_linked;
1980 }
1981 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1982 if (unlikely(status))
1983 goto done_not_linked;
1984 status = iso_stream_schedule(ehci, urb, stream);
1985 if (likely(status == 0)) {
1986 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1987 } else if (status > 0) {
1988 status = 0;
1989 ehci_urb_done(ehci, urb, 0);
1990 } else {
1991 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1992 }
1993 done_not_linked:
1994 spin_unlock_irqrestore(&ehci->lock, flags);
1995 done:
1996 return status;
1997}
1998
1999/*-------------------------------------------------------------------------*/
2000
2001/*
2002 * "Split ISO TDs" ... used for USB 1.1 devices going through the
2003 * TTs in USB 2.0 hubs. These need microframe scheduling.
2004 */
2005
2006static inline void
2007sitd_sched_init(
2008 struct ehci_hcd *ehci,
2009 struct ehci_iso_sched *iso_sched,
2010 struct ehci_iso_stream *stream,
2011 struct urb *urb
2012)
2013{
2014 unsigned i;
2015 dma_addr_t dma = urb->transfer_dma;
2016
2017 /* how many frames are needed for these transfers */
2018 iso_sched->span = urb->number_of_packets * stream->ps.period;
2019
2020 /* figure out per-frame sitd fields that we'll need later
2021 * when we fit new sitds into the schedule.
2022 */
2023 for (i = 0; i < urb->number_of_packets; i++) {
2024 struct ehci_iso_packet *packet = &iso_sched->packet[i];
2025 unsigned length;
2026 dma_addr_t buf;
2027 u32 trans;
2028
2029 length = urb->iso_frame_desc[i].length & 0x03ff;
2030 buf = dma + urb->iso_frame_desc[i].offset;
2031
2032 trans = SITD_STS_ACTIVE;
2033 if (((i + 1) == urb->number_of_packets)
2034 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2035 trans |= SITD_IOC;
2036 trans |= length << 16;
2037 packet->transaction = cpu_to_hc32(ehci, trans);
2038
2039 /* might need to cross a buffer page within a td */
2040 packet->bufp = buf;
2041 packet->buf1 = (buf + length) & ~0x0fff;
2042 if (packet->buf1 != (buf & ~(u64)0x0fff))
2043 packet->cross = 1;
2044
2045 /* OUT uses multiple start-splits */
2046 if (stream->bEndpointAddress & USB_DIR_IN)
2047 continue;
2048 length = (length + 187) / 188;
2049 if (length > 1) /* BEGIN vs ALL */
2050 length |= 1 << 3;
2051 packet->buf1 |= length;
2052 }
2053}
2054
2055static int
2056sitd_urb_transaction(
2057 struct ehci_iso_stream *stream,
2058 struct ehci_hcd *ehci,
2059 struct urb *urb,
2060 gfp_t mem_flags
2061)
2062{
2063 struct ehci_sitd *sitd;
2064 dma_addr_t sitd_dma;
2065 int i;
2066 struct ehci_iso_sched *iso_sched;
2067 unsigned long flags;
2068
2069 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2070 if (iso_sched == NULL)
2071 return -ENOMEM;
2072
2073 sitd_sched_init(ehci, iso_sched, stream, urb);
2074
2075 /* allocate/init sITDs */
2076 spin_lock_irqsave(&ehci->lock, flags);
2077 for (i = 0; i < urb->number_of_packets; i++) {
2078
2079 /* NOTE: for now, we don't try to handle wraparound cases
2080 * for IN (using sitd->hw_backpointer, like a FSTN), which
2081 * means we never need two sitds for full speed packets.
2082 */
2083
2084 /*
2085 * Use siTDs from the free list, but not siTDs that may
2086 * still be in use by the hardware.
2087 */
2088 if (likely(!list_empty(&stream->free_list))) {
2089 sitd = list_first_entry(&stream->free_list,
2090 struct ehci_sitd, sitd_list);
2091 if (sitd->frame == ehci->now_frame)
2092 goto alloc_sitd;
2093 list_del(&sitd->sitd_list);
2094 sitd_dma = sitd->sitd_dma;
2095 } else {
2096 alloc_sitd:
2097 spin_unlock_irqrestore(&ehci->lock, flags);
2098 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2099 &sitd_dma);
2100 spin_lock_irqsave(&ehci->lock, flags);
2101 if (!sitd) {
2102 iso_sched_free(stream, iso_sched);
2103 spin_unlock_irqrestore(&ehci->lock, flags);
2104 return -ENOMEM;
2105 }
2106 }
2107
2108 memset(sitd, 0, sizeof(*sitd));
2109 sitd->sitd_dma = sitd_dma;
2110 sitd->frame = NO_FRAME;
2111 list_add(&sitd->sitd_list, &iso_sched->td_list);
2112 }
2113
2114 /* temporarily store schedule info in hcpriv */
2115 urb->hcpriv = iso_sched;
2116 urb->error_count = 0;
2117
2118 spin_unlock_irqrestore(&ehci->lock, flags);
2119 return 0;
2120}
2121
2122/*-------------------------------------------------------------------------*/
2123
2124static inline void
2125sitd_patch(
2126 struct ehci_hcd *ehci,
2127 struct ehci_iso_stream *stream,
2128 struct ehci_sitd *sitd,
2129 struct ehci_iso_sched *iso_sched,
2130 unsigned index
2131)
2132{
2133 struct ehci_iso_packet *uf = &iso_sched->packet[index];
2134 u64 bufp;
2135
2136 sitd->hw_next = EHCI_LIST_END(ehci);
2137 sitd->hw_fullspeed_ep = stream->address;
2138 sitd->hw_uframe = stream->splits;
2139 sitd->hw_results = uf->transaction;
2140 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2141
2142 bufp = uf->bufp;
2143 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2144 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2145
2146 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2147 if (uf->cross)
2148 bufp += 4096;
2149 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2150 sitd->index = index;
2151}
2152
2153static inline void
2154sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2155{
2156 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2157 sitd->sitd_next = ehci->pshadow[frame];
2158 sitd->hw_next = ehci->periodic[frame];
2159 ehci->pshadow[frame].sitd = sitd;
2160 sitd->frame = frame;
2161 wmb();
2162 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2163}
2164
2165/* fit urb's sitds into the selected schedule slot; activate as needed */
2166static void sitd_link_urb(
2167 struct ehci_hcd *ehci,
2168 struct urb *urb,
2169 unsigned mod,
2170 struct ehci_iso_stream *stream
2171)
2172{
2173 int packet;
2174 unsigned next_uframe;
2175 struct ehci_iso_sched *sched = urb->hcpriv;
2176 struct ehci_sitd *sitd;
2177
2178 next_uframe = stream->next_uframe;
2179
2180 if (list_empty(&stream->td_list))
2181 /* usbfs ignores TT bandwidth */
2182 ehci_to_hcd(ehci)->self.bandwidth_allocated
2183 += stream->bandwidth;
2184
2185 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2186 if (ehci->amd_pll_fix == 1)
2187 usb_amd_quirk_pll_disable();
2188 }
2189
2190 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2191
2192 /* fill sITDs frame by frame */
2193 for (packet = sched->first_packet, sitd = NULL;
2194 packet < urb->number_of_packets;
2195 packet++) {
2196
2197 /* ASSERT: we have all necessary sitds */
2198 BUG_ON(list_empty(&sched->td_list));
2199
2200 /* ASSERT: no itds for this endpoint in this frame */
2201
2202 sitd = list_entry(sched->td_list.next,
2203 struct ehci_sitd, sitd_list);
2204 list_move_tail(&sitd->sitd_list, &stream->td_list);
2205 sitd->stream = stream;
2206 sitd->urb = urb;
2207
2208 sitd_patch(ehci, stream, sitd, sched, packet);
2209 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2210 sitd);
2211
2212 next_uframe += stream->uperiod;
2213 }
2214 stream->next_uframe = next_uframe & (mod - 1);
2215
2216 /* don't need that schedule data any more */
2217 iso_sched_free(stream, sched);
2218 urb->hcpriv = stream;
2219
2220 ++ehci->isoc_count;
2221 enable_periodic(ehci);
2222}
2223
2224/*-------------------------------------------------------------------------*/
2225
2226#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2227 | SITD_STS_XACT | SITD_STS_MMF)
2228
2229/* Process and recycle a completed SITD. Return true iff its urb completed,
2230 * and hence its completion callback probably added things to the hardware
2231 * schedule.
2232 *
2233 * Note that we carefully avoid recycling this descriptor until after any
2234 * completion callback runs, so that it won't be reused quickly. That is,
2235 * assuming (a) no more than two urbs per frame on this endpoint, and also
2236 * (b) only this endpoint's completions submit URBs. It seems some silicon
2237 * corrupts things if you reuse completed descriptors very quickly...
2238 */
2239static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2240{
2241 struct urb *urb = sitd->urb;
2242 struct usb_iso_packet_descriptor *desc;
2243 u32 t;
2244 int urb_index;
2245 struct ehci_iso_stream *stream = sitd->stream;
2246 struct usb_device *dev;
2247 bool retval = false;
2248
2249 urb_index = sitd->index;
2250 desc = &urb->iso_frame_desc[urb_index];
2251 t = hc32_to_cpup(ehci, &sitd->hw_results);
2252
2253 /* report transfer status */
2254 if (unlikely(t & SITD_ERRS)) {
2255 urb->error_count++;
2256 if (t & SITD_STS_DBE)
2257 desc->status = usb_pipein(urb->pipe)
2258 ? -ENOSR /* hc couldn't read */
2259 : -ECOMM; /* hc couldn't write */
2260 else if (t & SITD_STS_BABBLE)
2261 desc->status = -EOVERFLOW;
2262 else /* XACT, MMF, etc */
2263 desc->status = -EPROTO;
2264 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2265 /* URB was too late */
2266 urb->error_count++;
2267 } else {
2268 desc->status = 0;
2269 desc->actual_length = desc->length - SITD_LENGTH(t);
2270 urb->actual_length += desc->actual_length;
2271 }
2272
2273 /* handle completion now? */
2274 if ((urb_index + 1) != urb->number_of_packets)
2275 goto done;
2276
2277 /*
2278 * ASSERT: it's really the last sitd for this urb
2279 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2280 * BUG_ON(sitd->urb == urb);
2281 */
2282
2283 /* give urb back to the driver; completion often (re)submits */
2284 dev = urb->dev;
2285 ehci_urb_done(ehci, urb, 0);
2286 retval = true;
2287 urb = NULL;
2288
2289 --ehci->isoc_count;
2290 disable_periodic(ehci);
2291
2292 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2293 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2294 if (ehci->amd_pll_fix == 1)
2295 usb_amd_quirk_pll_enable();
2296 }
2297
2298 if (list_is_singular(&stream->td_list))
2299 ehci_to_hcd(ehci)->self.bandwidth_allocated
2300 -= stream->bandwidth;
2301
2302done:
2303 sitd->urb = NULL;
2304
2305 /* Add to the end of the free list for later reuse */
2306 list_move_tail(&sitd->sitd_list, &stream->free_list);
2307
2308 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2309 if (list_empty(&stream->td_list)) {
2310 list_splice_tail_init(&stream->free_list,
2311 &ehci->cached_sitd_list);
2312 start_free_itds(ehci);
2313 }
2314
2315 return retval;
2316}
2317
2318
2319static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2320 gfp_t mem_flags)
2321{
2322 int status = -EINVAL;
2323 unsigned long flags;
2324 struct ehci_iso_stream *stream;
2325
2326 /* Get iso_stream head */
2327 stream = iso_stream_find(ehci, urb);
2328 if (stream == NULL) {
2329 ehci_dbg(ehci, "can't get iso stream\n");
2330 return -ENOMEM;
2331 }
2332 if (urb->interval != stream->ps.period) {
2333 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2334 stream->ps.period, urb->interval);
2335 goto done;
2336 }
2337
2338#ifdef EHCI_URB_TRACE
2339 ehci_dbg(ehci,
2340 "submit %p dev%s ep%d%s-iso len %d\n",
2341 urb, urb->dev->devpath,
2342 usb_pipeendpoint(urb->pipe),
2343 usb_pipein(urb->pipe) ? "in" : "out",
2344 urb->transfer_buffer_length);
2345#endif
2346
2347 /* allocate SITDs */
2348 status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2349 if (status < 0) {
2350 ehci_dbg(ehci, "can't init sitds\n");
2351 goto done;
2352 }
2353
2354 /* schedule ... need to lock */
2355 spin_lock_irqsave(&ehci->lock, flags);
2356 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2357 status = -ESHUTDOWN;
2358 goto done_not_linked;
2359 }
2360 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2361 if (unlikely(status))
2362 goto done_not_linked;
2363 status = iso_stream_schedule(ehci, urb, stream);
2364 if (likely(status == 0)) {
2365 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2366 } else if (status > 0) {
2367 status = 0;
2368 ehci_urb_done(ehci, urb, 0);
2369 } else {
2370 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2371 }
2372 done_not_linked:
2373 spin_unlock_irqrestore(&ehci->lock, flags);
2374 done:
2375 return status;
2376}
2377
2378/*-------------------------------------------------------------------------*/
2379
2380static void scan_isoc(struct ehci_hcd *ehci)
2381{
2382 unsigned uf, now_frame, frame;
2383 unsigned fmask = ehci->periodic_size - 1;
2384 bool modified, live;
2385 union ehci_shadow q, *q_p;
2386 __hc32 type, *hw_p;
2387
2388 /*
2389 * When running, scan from last scan point up to "now"
2390 * else clean up by scanning everything that's left.
2391 * Touches as few pages as possible: cache-friendly.
2392 */
2393 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2394 uf = ehci_read_frame_index(ehci);
2395 now_frame = (uf >> 3) & fmask;
2396 live = true;
2397 } else {
2398 now_frame = (ehci->last_iso_frame - 1) & fmask;
2399 live = false;
2400 }
2401 ehci->now_frame = now_frame;
2402
2403 frame = ehci->last_iso_frame;
2404
2405restart:
2406 /* Scan each element in frame's queue for completions */
2407 q_p = &ehci->pshadow[frame];
2408 hw_p = &ehci->periodic[frame];
2409 q.ptr = q_p->ptr;
2410 type = Q_NEXT_TYPE(ehci, *hw_p);
2411 modified = false;
2412
2413 while (q.ptr != NULL) {
2414 switch (hc32_to_cpu(ehci, type)) {
2415 case Q_TYPE_ITD:
2416 /*
2417 * If this ITD is still active, leave it for
2418 * later processing ... check the next entry.
2419 * No need to check for activity unless the
2420 * frame is current.
2421 */
2422 if (frame == now_frame && live) {
2423 rmb();
2424 for (uf = 0; uf < 8; uf++) {
2425 if (q.itd->hw_transaction[uf] &
2426 ITD_ACTIVE(ehci))
2427 break;
2428 }
2429 if (uf < 8) {
2430 q_p = &q.itd->itd_next;
2431 hw_p = &q.itd->hw_next;
2432 type = Q_NEXT_TYPE(ehci,
2433 q.itd->hw_next);
2434 q = *q_p;
2435 break;
2436 }
2437 }
2438
2439 /*
2440 * Take finished ITDs out of the schedule
2441 * and process them: recycle, maybe report
2442 * URB completion. HC won't cache the
2443 * pointer for much longer, if at all.
2444 */
2445 *q_p = q.itd->itd_next;
2446 if (!ehci->use_dummy_qh ||
2447 q.itd->hw_next != EHCI_LIST_END(ehci))
2448 *hw_p = q.itd->hw_next;
2449 else
2450 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2451 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2452 wmb();
2453 modified = itd_complete(ehci, q.itd);
2454 q = *q_p;
2455 break;
2456 case Q_TYPE_SITD:
2457 /*
2458 * If this SITD is still active, leave it for
2459 * later processing ... check the next entry.
2460 * No need to check for activity unless the
2461 * frame is current.
2462 */
2463 if (((frame == now_frame) ||
2464 (((frame + 1) & fmask) == now_frame))
2465 && live
2466 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2467
2468 q_p = &q.sitd->sitd_next;
2469 hw_p = &q.sitd->hw_next;
2470 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2471 q = *q_p;
2472 break;
2473 }
2474
2475 /*
2476 * Take finished SITDs out of the schedule
2477 * and process them: recycle, maybe report
2478 * URB completion.
2479 */
2480 *q_p = q.sitd->sitd_next;
2481 if (!ehci->use_dummy_qh ||
2482 q.sitd->hw_next != EHCI_LIST_END(ehci))
2483 *hw_p = q.sitd->hw_next;
2484 else
2485 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2486 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2487 wmb();
2488 modified = sitd_complete(ehci, q.sitd);
2489 q = *q_p;
2490 break;
2491 default:
2492 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2493 type, frame, q.ptr);
2494 /* BUG(); */
2495 /* FALL THROUGH */
2496 case Q_TYPE_QH:
2497 case Q_TYPE_FSTN:
2498 /* End of the iTDs and siTDs */
2499 q.ptr = NULL;
2500 break;
2501 }
2502
2503 /* Assume completion callbacks modify the queue */
2504 if (unlikely(modified && ehci->isoc_count > 0))
2505 goto restart;
2506 }
2507
2508 /* Stop when we have reached the current frame */
2509 if (frame == now_frame)
2510 return;
2511
2512 /* The last frame may still have active siTDs */
2513 ehci->last_iso_frame = frame;
2514 frame = (frame + 1) & fmask;
2515
2516 goto restart;
2517}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2001-2004 by David Brownell
4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 */
6
7/* this file is part of ehci-hcd.c */
8
9/*-------------------------------------------------------------------------*/
10
11/*
12 * EHCI scheduled transaction support: interrupt, iso, split iso
13 * These are called "periodic" transactions in the EHCI spec.
14 *
15 * Note that for interrupt transfers, the QH/QTD manipulation is shared
16 * with the "asynchronous" transaction support (control/bulk transfers).
17 * The only real difference is in how interrupt transfers are scheduled.
18 *
19 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20 * It keeps track of every ITD (or SITD) that's linked, and holds enough
21 * pre-calculated schedule data to make appending to the queue be quick.
22 */
23
24static int ehci_get_frame(struct usb_hcd *hcd);
25
26/*
27 * periodic_next_shadow - return "next" pointer on shadow list
28 * @periodic: host pointer to qh/itd/sitd
29 * @tag: hardware tag for type of this record
30 */
31static union ehci_shadow *
32periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 __hc32 tag)
34{
35 switch (hc32_to_cpu(ehci, tag)) {
36 case Q_TYPE_QH:
37 return &periodic->qh->qh_next;
38 case Q_TYPE_FSTN:
39 return &periodic->fstn->fstn_next;
40 case Q_TYPE_ITD:
41 return &periodic->itd->itd_next;
42 /* case Q_TYPE_SITD: */
43 default:
44 return &periodic->sitd->sitd_next;
45 }
46}
47
48static __hc32 *
49shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 __hc32 tag)
51{
52 switch (hc32_to_cpu(ehci, tag)) {
53 /* our ehci_shadow.qh is actually software part */
54 case Q_TYPE_QH:
55 return &periodic->qh->hw->hw_next;
56 /* others are hw parts */
57 default:
58 return periodic->hw_next;
59 }
60}
61
62/* caller must hold ehci->lock */
63static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64{
65 union ehci_shadow *prev_p = &ehci->pshadow[frame];
66 __hc32 *hw_p = &ehci->periodic[frame];
67 union ehci_shadow here = *prev_p;
68
69 /* find predecessor of "ptr"; hw and shadow lists are in sync */
70 while (here.ptr && here.ptr != ptr) {
71 prev_p = periodic_next_shadow(ehci, prev_p,
72 Q_NEXT_TYPE(ehci, *hw_p));
73 hw_p = shadow_next_periodic(ehci, &here,
74 Q_NEXT_TYPE(ehci, *hw_p));
75 here = *prev_p;
76 }
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
80
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
83 */
84 *prev_p = *periodic_next_shadow(ehci, &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
86
87 if (!ehci->use_dummy_qh ||
88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 != EHCI_LIST_END(ehci))
90 *hw_p = *shadow_next_periodic(ehci, &here,
91 Q_NEXT_TYPE(ehci, *hw_p));
92 else
93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94}
95
96/*-------------------------------------------------------------------------*/
97
98/* Bandwidth and TT management */
99
100/* Find the TT data structure for this device; create it if necessary */
101static struct ehci_tt *find_tt(struct usb_device *udev)
102{
103 struct usb_tt *utt = udev->tt;
104 struct ehci_tt *tt, **tt_index, **ptt;
105 unsigned port;
106 bool allocated_index = false;
107
108 if (!utt)
109 return NULL; /* Not below a TT */
110
111 /*
112 * Find/create our data structure.
113 * For hubs with a single TT, we get it directly.
114 * For hubs with multiple TTs, there's an extra level of pointers.
115 */
116 tt_index = NULL;
117 if (utt->multi) {
118 tt_index = utt->hcpriv;
119 if (!tt_index) { /* Create the index array */
120 tt_index = kcalloc(utt->hub->maxchild,
121 sizeof(*tt_index),
122 GFP_ATOMIC);
123 if (!tt_index)
124 return ERR_PTR(-ENOMEM);
125 utt->hcpriv = tt_index;
126 allocated_index = true;
127 }
128 port = udev->ttport - 1;
129 ptt = &tt_index[port];
130 } else {
131 port = 0;
132 ptt = (struct ehci_tt **) &utt->hcpriv;
133 }
134
135 tt = *ptt;
136 if (!tt) { /* Create the ehci_tt */
137 struct ehci_hcd *ehci =
138 hcd_to_ehci(bus_to_hcd(udev->bus));
139
140 tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
141 if (!tt) {
142 if (allocated_index) {
143 utt->hcpriv = NULL;
144 kfree(tt_index);
145 }
146 return ERR_PTR(-ENOMEM);
147 }
148 list_add_tail(&tt->tt_list, &ehci->tt_list);
149 INIT_LIST_HEAD(&tt->ps_list);
150 tt->usb_tt = utt;
151 tt->tt_port = port;
152 *ptt = tt;
153 }
154
155 return tt;
156}
157
158/* Release the TT above udev, if it's not in use */
159static void drop_tt(struct usb_device *udev)
160{
161 struct usb_tt *utt = udev->tt;
162 struct ehci_tt *tt, **tt_index, **ptt;
163 int cnt, i;
164
165 if (!utt || !utt->hcpriv)
166 return; /* Not below a TT, or never allocated */
167
168 cnt = 0;
169 if (utt->multi) {
170 tt_index = utt->hcpriv;
171 ptt = &tt_index[udev->ttport - 1];
172
173 /* How many entries are left in tt_index? */
174 for (i = 0; i < utt->hub->maxchild; ++i)
175 cnt += !!tt_index[i];
176 } else {
177 tt_index = NULL;
178 ptt = (struct ehci_tt **) &utt->hcpriv;
179 }
180
181 tt = *ptt;
182 if (!tt || !list_empty(&tt->ps_list))
183 return; /* never allocated, or still in use */
184
185 list_del(&tt->tt_list);
186 *ptt = NULL;
187 kfree(tt);
188 if (cnt == 1) {
189 utt->hcpriv = NULL;
190 kfree(tt_index);
191 }
192}
193
194static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 struct ehci_per_sched *ps)
196{
197 dev_dbg(&ps->udev->dev,
198 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 ps->ep->desc.bEndpointAddress,
200 (sign >= 0 ? "reserve" : "release"), type,
201 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 ps->phase, ps->phase_uf, ps->period,
203 ps->usecs, ps->c_usecs, ps->cs_mask);
204}
205
206static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 struct ehci_qh *qh, int sign)
208{
209 unsigned start_uf;
210 unsigned i, j, m;
211 int usecs = qh->ps.usecs;
212 int c_usecs = qh->ps.c_usecs;
213 int tt_usecs = qh->ps.tt_usecs;
214 struct ehci_tt *tt;
215
216 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
217 return;
218 start_uf = qh->ps.bw_phase << 3;
219
220 bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221
222 if (sign < 0) { /* Release bandwidth */
223 usecs = -usecs;
224 c_usecs = -c_usecs;
225 tt_usecs = -tt_usecs;
226 }
227
228 /* Entire transaction (high speed) or start-split (full/low speed) */
229 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 i += qh->ps.bw_uperiod)
231 ehci->bandwidth[i] += usecs;
232
233 /* Complete-split (full/low speed) */
234 if (qh->ps.c_usecs) {
235 /* NOTE: adjustments needed for FSTN */
236 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 i += qh->ps.bw_uperiod) {
238 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 if (qh->ps.cs_mask & m)
240 ehci->bandwidth[i+j] += c_usecs;
241 }
242 }
243 }
244
245 /* FS/LS bus bandwidth */
246 if (tt_usecs) {
247 tt = find_tt(qh->ps.udev);
248 if (sign > 0)
249 list_add_tail(&qh->ps.ps_list, &tt->ps_list);
250 else
251 list_del(&qh->ps.ps_list);
252
253 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
254 i += qh->ps.bw_period)
255 tt->bandwidth[i] += tt_usecs;
256 }
257}
258
259/*-------------------------------------------------------------------------*/
260
261static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
262 struct ehci_tt *tt)
263{
264 struct ehci_per_sched *ps;
265 unsigned uframe, uf, x;
266 u8 *budget_line;
267
268 if (!tt)
269 return;
270 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
271
272 /* Add up the contributions from all the endpoints using this TT */
273 list_for_each_entry(ps, &tt->ps_list, ps_list) {
274 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
275 uframe += ps->bw_uperiod) {
276 budget_line = &budget_table[uframe];
277 x = ps->tt_usecs;
278
279 /* propagate the time forward */
280 for (uf = ps->phase_uf; uf < 8; ++uf) {
281 x += budget_line[uf];
282
283 /* Each microframe lasts 125 us */
284 if (x <= 125) {
285 budget_line[uf] = x;
286 break;
287 }
288 budget_line[uf] = 125;
289 x -= 125;
290 }
291 }
292 }
293}
294
295static int __maybe_unused same_tt(struct usb_device *dev1,
296 struct usb_device *dev2)
297{
298 if (!dev1->tt || !dev2->tt)
299 return 0;
300 if (dev1->tt != dev2->tt)
301 return 0;
302 if (dev1->tt->multi)
303 return dev1->ttport == dev2->ttport;
304 else
305 return 1;
306}
307
308#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
309
310/* Which uframe does the low/fullspeed transfer start in?
311 *
312 * The parameter is the mask of ssplits in "H-frame" terms
313 * and this returns the transfer start uframe in "B-frame" terms,
314 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
315 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
316 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
317 */
318static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
319{
320 unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
321
322 if (!smask) {
323 ehci_err(ehci, "invalid empty smask!\n");
324 /* uframe 7 can't have bw so this will indicate failure */
325 return 7;
326 }
327 return ffs(smask) - 1;
328}
329
330static const unsigned char
331max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
332
333/* carryover low/fullspeed bandwidth that crosses uframe boundries */
334static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
335{
336 int i;
337
338 for (i = 0; i < 7; i++) {
339 if (max_tt_usecs[i] < tt_usecs[i]) {
340 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
341 tt_usecs[i] = max_tt_usecs[i];
342 }
343 }
344}
345
346/*
347 * Return true if the device's tt's downstream bus is available for a
348 * periodic transfer of the specified length (usecs), starting at the
349 * specified frame/uframe. Note that (as summarized in section 11.19
350 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
351 * uframe.
352 *
353 * The uframe parameter is when the fullspeed/lowspeed transfer
354 * should be executed in "B-frame" terms, which is the same as the
355 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
356 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
357 * See the EHCI spec sec 4.5 and fig 4.7.
358 *
359 * This checks if the full/lowspeed bus, at the specified starting uframe,
360 * has the specified bandwidth available, according to rules listed
361 * in USB 2.0 spec section 11.18.1 fig 11-60.
362 *
363 * This does not check if the transfer would exceed the max ssplit
364 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
365 * since proper scheduling limits ssplits to less than 16 per uframe.
366 */
367static int tt_available(
368 struct ehci_hcd *ehci,
369 struct ehci_per_sched *ps,
370 struct ehci_tt *tt,
371 unsigned frame,
372 unsigned uframe
373)
374{
375 unsigned period = ps->bw_period;
376 unsigned usecs = ps->tt_usecs;
377
378 if ((period == 0) || (uframe >= 7)) /* error */
379 return 0;
380
381 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
382 frame += period) {
383 unsigned i, uf;
384 unsigned short tt_usecs[8];
385
386 if (tt->bandwidth[frame] + usecs > 900)
387 return 0;
388
389 uf = frame << 3;
390 for (i = 0; i < 8; (++i, ++uf))
391 tt_usecs[i] = ehci->tt_budget[uf];
392
393 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
394 return 0;
395
396 /* special case for isoc transfers larger than 125us:
397 * the first and each subsequent fully used uframe
398 * must be empty, so as to not illegally delay
399 * already scheduled transactions
400 */
401 if (usecs > 125) {
402 int ufs = (usecs / 125);
403
404 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
405 if (tt_usecs[i] > 0)
406 return 0;
407 }
408
409 tt_usecs[uframe] += usecs;
410
411 carryover_tt_bandwidth(tt_usecs);
412
413 /* fail if the carryover pushed bw past the last uframe's limit */
414 if (max_tt_usecs[7] < tt_usecs[7])
415 return 0;
416 }
417
418 return 1;
419}
420
421#else
422
423/* return true iff the device's transaction translator is available
424 * for a periodic transfer starting at the specified frame, using
425 * all the uframes in the mask.
426 */
427static int tt_no_collision(
428 struct ehci_hcd *ehci,
429 unsigned period,
430 struct usb_device *dev,
431 unsigned frame,
432 u32 uf_mask
433)
434{
435 if (period == 0) /* error */
436 return 0;
437
438 /* note bandwidth wastage: split never follows csplit
439 * (different dev or endpoint) until the next uframe.
440 * calling convention doesn't make that distinction.
441 */
442 for (; frame < ehci->periodic_size; frame += period) {
443 union ehci_shadow here;
444 __hc32 type;
445 struct ehci_qh_hw *hw;
446
447 here = ehci->pshadow[frame];
448 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
449 while (here.ptr) {
450 switch (hc32_to_cpu(ehci, type)) {
451 case Q_TYPE_ITD:
452 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
453 here = here.itd->itd_next;
454 continue;
455 case Q_TYPE_QH:
456 hw = here.qh->hw;
457 if (same_tt(dev, here.qh->ps.udev)) {
458 u32 mask;
459
460 mask = hc32_to_cpu(ehci,
461 hw->hw_info2);
462 /* "knows" no gap is needed */
463 mask |= mask >> 8;
464 if (mask & uf_mask)
465 break;
466 }
467 type = Q_NEXT_TYPE(ehci, hw->hw_next);
468 here = here.qh->qh_next;
469 continue;
470 case Q_TYPE_SITD:
471 if (same_tt(dev, here.sitd->urb->dev)) {
472 u16 mask;
473
474 mask = hc32_to_cpu(ehci, here.sitd
475 ->hw_uframe);
476 /* FIXME assumes no gap for IN! */
477 mask |= mask >> 8;
478 if (mask & uf_mask)
479 break;
480 }
481 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
482 here = here.sitd->sitd_next;
483 continue;
484 /* case Q_TYPE_FSTN: */
485 default:
486 ehci_dbg(ehci,
487 "periodic frame %d bogus type %d\n",
488 frame, type);
489 }
490
491 /* collision or error */
492 return 0;
493 }
494 }
495
496 /* no collision */
497 return 1;
498}
499
500#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
501
502/*-------------------------------------------------------------------------*/
503
504static void enable_periodic(struct ehci_hcd *ehci)
505{
506 if (ehci->periodic_count++)
507 return;
508
509 /* Stop waiting to turn off the periodic schedule */
510 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
511
512 /* Don't start the schedule until PSS is 0 */
513 ehci_poll_PSS(ehci);
514 turn_on_io_watchdog(ehci);
515}
516
517static void disable_periodic(struct ehci_hcd *ehci)
518{
519 if (--ehci->periodic_count)
520 return;
521
522 /* Don't turn off the schedule until PSS is 1 */
523 ehci_poll_PSS(ehci);
524}
525
526/*-------------------------------------------------------------------------*/
527
528/* periodic schedule slots have iso tds (normal or split) first, then a
529 * sparse tree for active interrupt transfers.
530 *
531 * this just links in a qh; caller guarantees uframe masks are set right.
532 * no FSTN support (yet; ehci 0.96+)
533 */
534static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
535{
536 unsigned i;
537 unsigned period = qh->ps.period;
538
539 dev_dbg(&qh->ps.udev->dev,
540 "link qh%d-%04x/%p start %d [%d/%d us]\n",
541 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
542 & (QH_CMASK | QH_SMASK),
543 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
544
545 /* high bandwidth, or otherwise every microframe */
546 if (period == 0)
547 period = 1;
548
549 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
550 union ehci_shadow *prev = &ehci->pshadow[i];
551 __hc32 *hw_p = &ehci->periodic[i];
552 union ehci_shadow here = *prev;
553 __hc32 type = 0;
554
555 /* skip the iso nodes at list head */
556 while (here.ptr) {
557 type = Q_NEXT_TYPE(ehci, *hw_p);
558 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
559 break;
560 prev = periodic_next_shadow(ehci, prev, type);
561 hw_p = shadow_next_periodic(ehci, &here, type);
562 here = *prev;
563 }
564
565 /* sorting each branch by period (slow-->fast)
566 * enables sharing interior tree nodes
567 */
568 while (here.ptr && qh != here.qh) {
569 if (qh->ps.period > here.qh->ps.period)
570 break;
571 prev = &here.qh->qh_next;
572 hw_p = &here.qh->hw->hw_next;
573 here = *prev;
574 }
575 /* link in this qh, unless some earlier pass did that */
576 if (qh != here.qh) {
577 qh->qh_next = here;
578 if (here.qh)
579 qh->hw->hw_next = *hw_p;
580 wmb();
581 prev->qh = qh;
582 *hw_p = QH_NEXT(ehci, qh->qh_dma);
583 }
584 }
585 qh->qh_state = QH_STATE_LINKED;
586 qh->xacterrs = 0;
587 qh->unlink_reason = 0;
588
589 /* update per-qh bandwidth for debugfs */
590 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
591 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
592 : (qh->ps.usecs * 8);
593
594 list_add(&qh->intr_node, &ehci->intr_qh_list);
595
596 /* maybe enable periodic schedule processing */
597 ++ehci->intr_count;
598 enable_periodic(ehci);
599}
600
601static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
602{
603 unsigned i;
604 unsigned period;
605
606 /*
607 * If qh is for a low/full-speed device, simply unlinking it
608 * could interfere with an ongoing split transaction. To unlink
609 * it safely would require setting the QH_INACTIVATE bit and
610 * waiting at least one frame, as described in EHCI 4.12.2.5.
611 *
612 * We won't bother with any of this. Instead, we assume that the
613 * only reason for unlinking an interrupt QH while the current URB
614 * is still active is to dequeue all the URBs (flush the whole
615 * endpoint queue).
616 *
617 * If rebalancing the periodic schedule is ever implemented, this
618 * approach will no longer be valid.
619 */
620
621 /* high bandwidth, or otherwise part of every microframe */
622 period = qh->ps.period ? : 1;
623
624 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
625 periodic_unlink(ehci, i, qh);
626
627 /* update per-qh bandwidth for debugfs */
628 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
629 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
630 : (qh->ps.usecs * 8);
631
632 dev_dbg(&qh->ps.udev->dev,
633 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
634 qh->ps.period,
635 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
636 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
637
638 /* qh->qh_next still "live" to HC */
639 qh->qh_state = QH_STATE_UNLINK;
640 qh->qh_next.ptr = NULL;
641
642 if (ehci->qh_scan_next == qh)
643 ehci->qh_scan_next = list_entry(qh->intr_node.next,
644 struct ehci_qh, intr_node);
645 list_del(&qh->intr_node);
646}
647
648static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
649{
650 if (qh->qh_state != QH_STATE_LINKED ||
651 list_empty(&qh->unlink_node))
652 return;
653
654 list_del_init(&qh->unlink_node);
655
656 /*
657 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
658 * avoiding unnecessary CPU wakeup
659 */
660}
661
662static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
663{
664 /* If the QH isn't linked then there's nothing we can do. */
665 if (qh->qh_state != QH_STATE_LINKED)
666 return;
667
668 /* if the qh is waiting for unlink, cancel it now */
669 cancel_unlink_wait_intr(ehci, qh);
670
671 qh_unlink_periodic(ehci, qh);
672
673 /* Make sure the unlinks are visible before starting the timer */
674 wmb();
675
676 /*
677 * The EHCI spec doesn't say how long it takes the controller to
678 * stop accessing an unlinked interrupt QH. The timer delay is
679 * 9 uframes; presumably that will be long enough.
680 */
681 qh->unlink_cycle = ehci->intr_unlink_cycle;
682
683 /* New entries go at the end of the intr_unlink list */
684 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
685
686 if (ehci->intr_unlinking)
687 ; /* Avoid recursive calls */
688 else if (ehci->rh_state < EHCI_RH_RUNNING)
689 ehci_handle_intr_unlinks(ehci);
690 else if (ehci->intr_unlink.next == &qh->unlink_node) {
691 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
692 ++ehci->intr_unlink_cycle;
693 }
694}
695
696/*
697 * It is common only one intr URB is scheduled on one qh, and
698 * given complete() is run in tasklet context, introduce a bit
699 * delay to avoid unlink qh too early.
700 */
701static void start_unlink_intr_wait(struct ehci_hcd *ehci,
702 struct ehci_qh *qh)
703{
704 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
705
706 /* New entries go at the end of the intr_unlink_wait list */
707 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
708
709 if (ehci->rh_state < EHCI_RH_RUNNING)
710 ehci_handle_start_intr_unlinks(ehci);
711 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
712 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
713 ++ehci->intr_unlink_wait_cycle;
714 }
715}
716
717static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
718{
719 struct ehci_qh_hw *hw = qh->hw;
720 int rc;
721
722 qh->qh_state = QH_STATE_IDLE;
723 hw->hw_next = EHCI_LIST_END(ehci);
724
725 if (!list_empty(&qh->qtd_list))
726 qh_completions(ehci, qh);
727
728 /* reschedule QH iff another request is queued */
729 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
730 rc = qh_schedule(ehci, qh);
731 if (rc == 0) {
732 qh_refresh(ehci, qh);
733 qh_link_periodic(ehci, qh);
734 }
735
736 /* An error here likely indicates handshake failure
737 * or no space left in the schedule. Neither fault
738 * should happen often ...
739 *
740 * FIXME kill the now-dysfunctional queued urbs
741 */
742 else {
743 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
744 qh, rc);
745 }
746 }
747
748 /* maybe turn off periodic schedule */
749 --ehci->intr_count;
750 disable_periodic(ehci);
751}
752
753/*-------------------------------------------------------------------------*/
754
755static int check_period(
756 struct ehci_hcd *ehci,
757 unsigned frame,
758 unsigned uframe,
759 unsigned uperiod,
760 unsigned usecs
761) {
762 /* complete split running into next frame?
763 * given FSTN support, we could sometimes check...
764 */
765 if (uframe >= 8)
766 return 0;
767
768 /* convert "usecs we need" to "max already claimed" */
769 usecs = ehci->uframe_periodic_max - usecs;
770
771 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
772 uframe += uperiod) {
773 if (ehci->bandwidth[uframe] > usecs)
774 return 0;
775 }
776
777 /* success! */
778 return 1;
779}
780
781static int check_intr_schedule(
782 struct ehci_hcd *ehci,
783 unsigned frame,
784 unsigned uframe,
785 struct ehci_qh *qh,
786 unsigned *c_maskp,
787 struct ehci_tt *tt
788)
789{
790 int retval = -ENOSPC;
791 u8 mask = 0;
792
793 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
794 goto done;
795
796 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
797 goto done;
798 if (!qh->ps.c_usecs) {
799 retval = 0;
800 *c_maskp = 0;
801 goto done;
802 }
803
804#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
805 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
806 unsigned i;
807
808 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
809 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
810 if (!check_period(ehci, frame, i,
811 qh->ps.bw_uperiod, qh->ps.c_usecs))
812 goto done;
813 else
814 mask |= 1 << i;
815
816 retval = 0;
817
818 *c_maskp = mask;
819 }
820#else
821 /* Make sure this tt's buffer is also available for CSPLITs.
822 * We pessimize a bit; probably the typical full speed case
823 * doesn't need the second CSPLIT.
824 *
825 * NOTE: both SPLIT and CSPLIT could be checked in just
826 * one smart pass...
827 */
828 mask = 0x03 << (uframe + qh->gap_uf);
829 *c_maskp = mask;
830
831 mask |= 1 << uframe;
832 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
833 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
834 qh->ps.bw_uperiod, qh->ps.c_usecs))
835 goto done;
836 if (!check_period(ehci, frame, uframe + qh->gap_uf,
837 qh->ps.bw_uperiod, qh->ps.c_usecs))
838 goto done;
839 retval = 0;
840 }
841#endif
842done:
843 return retval;
844}
845
846/* "first fit" scheduling policy used the first time through,
847 * or when the previous schedule slot can't be re-used.
848 */
849static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
850{
851 int status = 0;
852 unsigned uframe;
853 unsigned c_mask;
854 struct ehci_qh_hw *hw = qh->hw;
855 struct ehci_tt *tt;
856
857 hw->hw_next = EHCI_LIST_END(ehci);
858
859 /* reuse the previous schedule slots, if we can */
860 if (qh->ps.phase != NO_FRAME) {
861 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
862 return 0;
863 }
864
865 uframe = 0;
866 c_mask = 0;
867 tt = find_tt(qh->ps.udev);
868 if (IS_ERR(tt)) {
869 status = PTR_ERR(tt);
870 goto done;
871 }
872 compute_tt_budget(ehci->tt_budget, tt);
873
874 /* else scan the schedule to find a group of slots such that all
875 * uframes have enough periodic bandwidth available.
876 */
877 /* "normal" case, uframing flexible except with splits */
878 if (qh->ps.bw_period) {
879 int i;
880 unsigned frame;
881
882 for (i = qh->ps.bw_period; i > 0; --i) {
883 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
884 for (uframe = 0; uframe < 8; uframe++) {
885 status = check_intr_schedule(ehci,
886 frame, uframe, qh, &c_mask, tt);
887 if (status == 0)
888 goto got_it;
889 }
890 }
891
892 /* qh->ps.bw_period == 0 means every uframe */
893 } else {
894 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
895 }
896 if (status)
897 goto done;
898
899 got_it:
900 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
901 (qh->ps.period - 1) : 0);
902 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
903 qh->ps.phase_uf = uframe;
904 qh->ps.cs_mask = qh->ps.period ?
905 (c_mask << 8) | (1 << uframe) :
906 QH_SMASK;
907
908 /* reset S-frame and (maybe) C-frame masks */
909 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
910 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
911 reserve_release_intr_bandwidth(ehci, qh, 1);
912
913done:
914 return status;
915}
916
917static int intr_submit(
918 struct ehci_hcd *ehci,
919 struct urb *urb,
920 struct list_head *qtd_list,
921 gfp_t mem_flags
922) {
923 unsigned epnum;
924 unsigned long flags;
925 struct ehci_qh *qh;
926 int status;
927 struct list_head empty;
928
929 /* get endpoint and transfer/schedule data */
930 epnum = urb->ep->desc.bEndpointAddress;
931
932 spin_lock_irqsave(&ehci->lock, flags);
933
934 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
935 status = -ESHUTDOWN;
936 goto done_not_linked;
937 }
938 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
939 if (unlikely(status))
940 goto done_not_linked;
941
942 /* get qh and force any scheduling errors */
943 INIT_LIST_HEAD(&empty);
944 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
945 if (qh == NULL) {
946 status = -ENOMEM;
947 goto done;
948 }
949 if (qh->qh_state == QH_STATE_IDLE) {
950 status = qh_schedule(ehci, qh);
951 if (status)
952 goto done;
953 }
954
955 /* then queue the urb's tds to the qh */
956 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
957 BUG_ON(qh == NULL);
958
959 /* stuff into the periodic schedule */
960 if (qh->qh_state == QH_STATE_IDLE) {
961 qh_refresh(ehci, qh);
962 qh_link_periodic(ehci, qh);
963 } else {
964 /* cancel unlink wait for the qh */
965 cancel_unlink_wait_intr(ehci, qh);
966 }
967
968 /* ... update usbfs periodic stats */
969 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
970
971done:
972 if (unlikely(status))
973 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
974done_not_linked:
975 spin_unlock_irqrestore(&ehci->lock, flags);
976 if (status)
977 qtd_list_free(ehci, urb, qtd_list);
978
979 return status;
980}
981
982static void scan_intr(struct ehci_hcd *ehci)
983{
984 struct ehci_qh *qh;
985
986 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
987 intr_node) {
988
989 /* clean any finished work for this qh */
990 if (!list_empty(&qh->qtd_list)) {
991 int temp;
992
993 /*
994 * Unlinks could happen here; completion reporting
995 * drops the lock. That's why ehci->qh_scan_next
996 * always holds the next qh to scan; if the next qh
997 * gets unlinked then ehci->qh_scan_next is adjusted
998 * in qh_unlink_periodic().
999 */
1000 temp = qh_completions(ehci, qh);
1001 if (unlikely(temp))
1002 start_unlink_intr(ehci, qh);
1003 else if (unlikely(list_empty(&qh->qtd_list) &&
1004 qh->qh_state == QH_STATE_LINKED))
1005 start_unlink_intr_wait(ehci, qh);
1006 }
1007 }
1008}
1009
1010/*-------------------------------------------------------------------------*/
1011
1012/* ehci_iso_stream ops work with both ITD and SITD */
1013
1014static struct ehci_iso_stream *
1015iso_stream_alloc(gfp_t mem_flags)
1016{
1017 struct ehci_iso_stream *stream;
1018
1019 stream = kzalloc(sizeof(*stream), mem_flags);
1020 if (likely(stream != NULL)) {
1021 INIT_LIST_HEAD(&stream->td_list);
1022 INIT_LIST_HEAD(&stream->free_list);
1023 stream->next_uframe = NO_FRAME;
1024 stream->ps.phase = NO_FRAME;
1025 }
1026 return stream;
1027}
1028
1029static void
1030iso_stream_init(
1031 struct ehci_hcd *ehci,
1032 struct ehci_iso_stream *stream,
1033 struct urb *urb
1034)
1035{
1036 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1037
1038 struct usb_device *dev = urb->dev;
1039 u32 buf1;
1040 unsigned epnum, maxp;
1041 int is_input;
1042 unsigned tmp;
1043
1044 /*
1045 * this might be a "high bandwidth" highspeed endpoint,
1046 * as encoded in the ep descriptor's wMaxPacket field
1047 */
1048 epnum = usb_pipeendpoint(urb->pipe);
1049 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1050 maxp = usb_endpoint_maxp(&urb->ep->desc);
1051 buf1 = is_input ? 1 << 11 : 0;
1052
1053 /* knows about ITD vs SITD */
1054 if (dev->speed == USB_SPEED_HIGH) {
1055 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1056
1057 stream->highspeed = 1;
1058
1059 buf1 |= maxp;
1060 maxp *= multi;
1061
1062 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1063 stream->buf1 = cpu_to_hc32(ehci, buf1);
1064 stream->buf2 = cpu_to_hc32(ehci, multi);
1065
1066 /* usbfs wants to report the average usecs per frame tied up
1067 * when transfers on this endpoint are scheduled ...
1068 */
1069 stream->ps.usecs = HS_USECS_ISO(maxp);
1070
1071 /* period for bandwidth allocation */
1072 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1073 1 << (urb->ep->desc.bInterval - 1));
1074
1075 /* Allow urb->interval to override */
1076 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1077
1078 stream->uperiod = urb->interval;
1079 stream->ps.period = urb->interval >> 3;
1080 stream->bandwidth = stream->ps.usecs * 8 /
1081 stream->ps.bw_uperiod;
1082
1083 } else {
1084 u32 addr;
1085 int think_time;
1086 int hs_transfers;
1087
1088 addr = dev->ttport << 24;
1089 if (!ehci_is_TDI(ehci)
1090 || (dev->tt->hub !=
1091 ehci_to_hcd(ehci)->self.root_hub))
1092 addr |= dev->tt->hub->devnum << 16;
1093 addr |= epnum << 8;
1094 addr |= dev->devnum;
1095 stream->ps.usecs = HS_USECS_ISO(maxp);
1096 think_time = dev->tt->think_time;
1097 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1098 dev->speed, is_input, 1, maxp));
1099 hs_transfers = max(1u, (maxp + 187) / 188);
1100 if (is_input) {
1101 u32 tmp;
1102
1103 addr |= 1 << 31;
1104 stream->ps.c_usecs = stream->ps.usecs;
1105 stream->ps.usecs = HS_USECS_ISO(1);
1106 stream->ps.cs_mask = 1;
1107
1108 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1109 tmp = (1 << (hs_transfers + 2)) - 1;
1110 stream->ps.cs_mask |= tmp << (8 + 2);
1111 } else
1112 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1113
1114 /* period for bandwidth allocation */
1115 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1116 1 << (urb->ep->desc.bInterval - 1));
1117
1118 /* Allow urb->interval to override */
1119 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1120 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1121
1122 stream->ps.period = urb->interval;
1123 stream->uperiod = urb->interval << 3;
1124 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1125 stream->ps.bw_period;
1126
1127 /* stream->splits gets created from cs_mask later */
1128 stream->address = cpu_to_hc32(ehci, addr);
1129 }
1130
1131 stream->ps.udev = dev;
1132 stream->ps.ep = urb->ep;
1133
1134 stream->bEndpointAddress = is_input | epnum;
1135 stream->maxp = maxp;
1136}
1137
1138static struct ehci_iso_stream *
1139iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1140{
1141 unsigned epnum;
1142 struct ehci_iso_stream *stream;
1143 struct usb_host_endpoint *ep;
1144 unsigned long flags;
1145
1146 epnum = usb_pipeendpoint (urb->pipe);
1147 if (usb_pipein(urb->pipe))
1148 ep = urb->dev->ep_in[epnum];
1149 else
1150 ep = urb->dev->ep_out[epnum];
1151
1152 spin_lock_irqsave(&ehci->lock, flags);
1153 stream = ep->hcpriv;
1154
1155 if (unlikely(stream == NULL)) {
1156 stream = iso_stream_alloc(GFP_ATOMIC);
1157 if (likely(stream != NULL)) {
1158 ep->hcpriv = stream;
1159 iso_stream_init(ehci, stream, urb);
1160 }
1161
1162 /* if dev->ep [epnum] is a QH, hw is set */
1163 } else if (unlikely(stream->hw != NULL)) {
1164 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1165 urb->dev->devpath, epnum,
1166 usb_pipein(urb->pipe) ? "in" : "out");
1167 stream = NULL;
1168 }
1169
1170 spin_unlock_irqrestore(&ehci->lock, flags);
1171 return stream;
1172}
1173
1174/*-------------------------------------------------------------------------*/
1175
1176/* ehci_iso_sched ops can be ITD-only or SITD-only */
1177
1178static struct ehci_iso_sched *
1179iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1180{
1181 struct ehci_iso_sched *iso_sched;
1182 int size = sizeof(*iso_sched);
1183
1184 size += packets * sizeof(struct ehci_iso_packet);
1185 iso_sched = kzalloc(size, mem_flags);
1186 if (likely(iso_sched != NULL))
1187 INIT_LIST_HEAD(&iso_sched->td_list);
1188
1189 return iso_sched;
1190}
1191
1192static inline void
1193itd_sched_init(
1194 struct ehci_hcd *ehci,
1195 struct ehci_iso_sched *iso_sched,
1196 struct ehci_iso_stream *stream,
1197 struct urb *urb
1198)
1199{
1200 unsigned i;
1201 dma_addr_t dma = urb->transfer_dma;
1202
1203 /* how many uframes are needed for these transfers */
1204 iso_sched->span = urb->number_of_packets * stream->uperiod;
1205
1206 /* figure out per-uframe itd fields that we'll need later
1207 * when we fit new itds into the schedule.
1208 */
1209 for (i = 0; i < urb->number_of_packets; i++) {
1210 struct ehci_iso_packet *uframe = &iso_sched->packet[i];
1211 unsigned length;
1212 dma_addr_t buf;
1213 u32 trans;
1214
1215 length = urb->iso_frame_desc[i].length;
1216 buf = dma + urb->iso_frame_desc[i].offset;
1217
1218 trans = EHCI_ISOC_ACTIVE;
1219 trans |= buf & 0x0fff;
1220 if (unlikely(((i + 1) == urb->number_of_packets))
1221 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1222 trans |= EHCI_ITD_IOC;
1223 trans |= length << 16;
1224 uframe->transaction = cpu_to_hc32(ehci, trans);
1225
1226 /* might need to cross a buffer page within a uframe */
1227 uframe->bufp = (buf & ~(u64)0x0fff);
1228 buf += length;
1229 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1230 uframe->cross = 1;
1231 }
1232}
1233
1234static void
1235iso_sched_free(
1236 struct ehci_iso_stream *stream,
1237 struct ehci_iso_sched *iso_sched
1238)
1239{
1240 if (!iso_sched)
1241 return;
1242 /* caller must hold ehci->lock! */
1243 list_splice(&iso_sched->td_list, &stream->free_list);
1244 kfree(iso_sched);
1245}
1246
1247static int
1248itd_urb_transaction(
1249 struct ehci_iso_stream *stream,
1250 struct ehci_hcd *ehci,
1251 struct urb *urb,
1252 gfp_t mem_flags
1253)
1254{
1255 struct ehci_itd *itd;
1256 dma_addr_t itd_dma;
1257 int i;
1258 unsigned num_itds;
1259 struct ehci_iso_sched *sched;
1260 unsigned long flags;
1261
1262 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1263 if (unlikely(sched == NULL))
1264 return -ENOMEM;
1265
1266 itd_sched_init(ehci, sched, stream, urb);
1267
1268 if (urb->interval < 8)
1269 num_itds = 1 + (sched->span + 7) / 8;
1270 else
1271 num_itds = urb->number_of_packets;
1272
1273 /* allocate/init ITDs */
1274 spin_lock_irqsave(&ehci->lock, flags);
1275 for (i = 0; i < num_itds; i++) {
1276
1277 /*
1278 * Use iTDs from the free list, but not iTDs that may
1279 * still be in use by the hardware.
1280 */
1281 if (likely(!list_empty(&stream->free_list))) {
1282 itd = list_first_entry(&stream->free_list,
1283 struct ehci_itd, itd_list);
1284 if (itd->frame == ehci->now_frame)
1285 goto alloc_itd;
1286 list_del(&itd->itd_list);
1287 itd_dma = itd->itd_dma;
1288 } else {
1289 alloc_itd:
1290 spin_unlock_irqrestore(&ehci->lock, flags);
1291 itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1292 &itd_dma);
1293 spin_lock_irqsave(&ehci->lock, flags);
1294 if (!itd) {
1295 iso_sched_free(stream, sched);
1296 spin_unlock_irqrestore(&ehci->lock, flags);
1297 return -ENOMEM;
1298 }
1299 }
1300
1301 memset(itd, 0, sizeof(*itd));
1302 itd->itd_dma = itd_dma;
1303 itd->frame = NO_FRAME;
1304 list_add(&itd->itd_list, &sched->td_list);
1305 }
1306 spin_unlock_irqrestore(&ehci->lock, flags);
1307
1308 /* temporarily store schedule info in hcpriv */
1309 urb->hcpriv = sched;
1310 urb->error_count = 0;
1311 return 0;
1312}
1313
1314/*-------------------------------------------------------------------------*/
1315
1316static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1317 struct ehci_iso_stream *stream, int sign)
1318{
1319 unsigned uframe;
1320 unsigned i, j;
1321 unsigned s_mask, c_mask, m;
1322 int usecs = stream->ps.usecs;
1323 int c_usecs = stream->ps.c_usecs;
1324 int tt_usecs = stream->ps.tt_usecs;
1325 struct ehci_tt *tt;
1326
1327 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1328 return;
1329 uframe = stream->ps.bw_phase << 3;
1330
1331 bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1332
1333 if (sign < 0) { /* Release bandwidth */
1334 usecs = -usecs;
1335 c_usecs = -c_usecs;
1336 tt_usecs = -tt_usecs;
1337 }
1338
1339 if (!stream->splits) { /* High speed */
1340 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1341 i += stream->ps.bw_uperiod)
1342 ehci->bandwidth[i] += usecs;
1343
1344 } else { /* Full speed */
1345 s_mask = stream->ps.cs_mask;
1346 c_mask = s_mask >> 8;
1347
1348 /* NOTE: adjustment needed for frame overflow */
1349 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1350 i += stream->ps.bw_uperiod) {
1351 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1352 (++j, m <<= 1)) {
1353 if (s_mask & m)
1354 ehci->bandwidth[i+j] += usecs;
1355 else if (c_mask & m)
1356 ehci->bandwidth[i+j] += c_usecs;
1357 }
1358 }
1359
1360 tt = find_tt(stream->ps.udev);
1361 if (sign > 0)
1362 list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1363 else
1364 list_del(&stream->ps.ps_list);
1365
1366 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1367 i += stream->ps.bw_period)
1368 tt->bandwidth[i] += tt_usecs;
1369 }
1370}
1371
1372static inline int
1373itd_slot_ok(
1374 struct ehci_hcd *ehci,
1375 struct ehci_iso_stream *stream,
1376 unsigned uframe
1377)
1378{
1379 unsigned usecs;
1380
1381 /* convert "usecs we need" to "max already claimed" */
1382 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1383
1384 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1385 uframe += stream->ps.bw_uperiod) {
1386 if (ehci->bandwidth[uframe] > usecs)
1387 return 0;
1388 }
1389 return 1;
1390}
1391
1392static inline int
1393sitd_slot_ok(
1394 struct ehci_hcd *ehci,
1395 struct ehci_iso_stream *stream,
1396 unsigned uframe,
1397 struct ehci_iso_sched *sched,
1398 struct ehci_tt *tt
1399)
1400{
1401 unsigned mask, tmp;
1402 unsigned frame, uf;
1403
1404 mask = stream->ps.cs_mask << (uframe & 7);
1405
1406 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1407 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1408 return 0;
1409
1410 /* for IN, don't wrap CSPLIT into the next frame */
1411 if (mask & ~0xffff)
1412 return 0;
1413
1414 /* check bandwidth */
1415 uframe &= stream->ps.bw_uperiod - 1;
1416 frame = uframe >> 3;
1417
1418#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1419 /* The tt's fullspeed bus bandwidth must be available.
1420 * tt_available scheduling guarantees 10+% for control/bulk.
1421 */
1422 uf = uframe & 7;
1423 if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1424 return 0;
1425#else
1426 /* tt must be idle for start(s), any gap, and csplit.
1427 * assume scheduling slop leaves 10+% for control/bulk.
1428 */
1429 if (!tt_no_collision(ehci, stream->ps.bw_period,
1430 stream->ps.udev, frame, mask))
1431 return 0;
1432#endif
1433
1434 do {
1435 unsigned max_used;
1436 unsigned i;
1437
1438 /* check starts (OUT uses more than one) */
1439 uf = uframe;
1440 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1441 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1442 if (ehci->bandwidth[uf] > max_used)
1443 return 0;
1444 }
1445
1446 /* for IN, check CSPLIT */
1447 if (stream->ps.c_usecs) {
1448 max_used = ehci->uframe_periodic_max -
1449 stream->ps.c_usecs;
1450 uf = uframe & ~7;
1451 tmp = 1 << (2+8);
1452 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1453 if ((stream->ps.cs_mask & tmp) == 0)
1454 continue;
1455 if (ehci->bandwidth[uf+i] > max_used)
1456 return 0;
1457 }
1458 }
1459
1460 uframe += stream->ps.bw_uperiod;
1461 } while (uframe < EHCI_BANDWIDTH_SIZE);
1462
1463 stream->ps.cs_mask <<= uframe & 7;
1464 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1465 return 1;
1466}
1467
1468/*
1469 * This scheduler plans almost as far into the future as it has actual
1470 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1471 * "as small as possible" to be cache-friendlier.) That limits the size
1472 * transfers you can stream reliably; avoid more than 64 msec per urb.
1473 * Also avoid queue depths of less than ehci's worst irq latency (affected
1474 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1475 * and other factors); or more than about 230 msec total (for portability,
1476 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1477 */
1478
1479static int
1480iso_stream_schedule(
1481 struct ehci_hcd *ehci,
1482 struct urb *urb,
1483 struct ehci_iso_stream *stream
1484)
1485{
1486 u32 now, base, next, start, period, span, now2;
1487 u32 wrap = 0, skip = 0;
1488 int status = 0;
1489 unsigned mod = ehci->periodic_size << 3;
1490 struct ehci_iso_sched *sched = urb->hcpriv;
1491 bool empty = list_empty(&stream->td_list);
1492 bool new_stream = false;
1493
1494 period = stream->uperiod;
1495 span = sched->span;
1496 if (!stream->highspeed)
1497 span <<= 3;
1498
1499 /* Start a new isochronous stream? */
1500 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1501 ehci_to_hcd(ehci), urb->ep))) {
1502
1503 /* Schedule the endpoint */
1504 if (stream->ps.phase == NO_FRAME) {
1505 int done = 0;
1506 struct ehci_tt *tt = find_tt(stream->ps.udev);
1507
1508 if (IS_ERR(tt)) {
1509 status = PTR_ERR(tt);
1510 goto fail;
1511 }
1512 compute_tt_budget(ehci->tt_budget, tt);
1513
1514 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1515
1516 /* find a uframe slot with enough bandwidth.
1517 * Early uframes are more precious because full-speed
1518 * iso IN transfers can't use late uframes,
1519 * and therefore they should be allocated last.
1520 */
1521 next = start;
1522 start += period;
1523 do {
1524 start--;
1525 /* check schedule: enough space? */
1526 if (stream->highspeed) {
1527 if (itd_slot_ok(ehci, stream, start))
1528 done = 1;
1529 } else {
1530 if ((start % 8) >= 6)
1531 continue;
1532 if (sitd_slot_ok(ehci, stream, start,
1533 sched, tt))
1534 done = 1;
1535 }
1536 } while (start > next && !done);
1537
1538 /* no room in the schedule */
1539 if (!done) {
1540 ehci_dbg(ehci, "iso sched full %p", urb);
1541 status = -ENOSPC;
1542 goto fail;
1543 }
1544 stream->ps.phase = (start >> 3) &
1545 (stream->ps.period - 1);
1546 stream->ps.bw_phase = stream->ps.phase &
1547 (stream->ps.bw_period - 1);
1548 stream->ps.phase_uf = start & 7;
1549 reserve_release_iso_bandwidth(ehci, stream, 1);
1550 }
1551
1552 /* New stream is already scheduled; use the upcoming slot */
1553 else {
1554 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1555 }
1556
1557 stream->next_uframe = start;
1558 new_stream = true;
1559 }
1560
1561 now = ehci_read_frame_index(ehci) & (mod - 1);
1562
1563 /* Take the isochronous scheduling threshold into account */
1564 if (ehci->i_thresh)
1565 next = now + ehci->i_thresh; /* uframe cache */
1566 else
1567 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1568
1569 /* If needed, initialize last_iso_frame so that this URB will be seen */
1570 if (ehci->isoc_count == 0)
1571 ehci->last_iso_frame = now >> 3;
1572
1573 /*
1574 * Use ehci->last_iso_frame as the base. There can't be any
1575 * TDs scheduled for earlier than that.
1576 */
1577 base = ehci->last_iso_frame << 3;
1578 next = (next - base) & (mod - 1);
1579 start = (stream->next_uframe - base) & (mod - 1);
1580
1581 if (unlikely(new_stream))
1582 goto do_ASAP;
1583
1584 /*
1585 * Typical case: reuse current schedule, stream may still be active.
1586 * Hopefully there are no gaps from the host falling behind
1587 * (irq delays etc). If there are, the behavior depends on
1588 * whether URB_ISO_ASAP is set.
1589 */
1590 now2 = (now - base) & (mod - 1);
1591
1592 /* Is the schedule about to wrap around? */
1593 if (unlikely(!empty && start < period)) {
1594 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1595 urb, stream->next_uframe, base, period, mod);
1596 status = -EFBIG;
1597 goto fail;
1598 }
1599
1600 /* Is the next packet scheduled after the base time? */
1601 if (likely(!empty || start <= now2 + period)) {
1602
1603 /* URB_ISO_ASAP: make sure that start >= next */
1604 if (unlikely(start < next &&
1605 (urb->transfer_flags & URB_ISO_ASAP)))
1606 goto do_ASAP;
1607
1608 /* Otherwise use start, if it's not in the past */
1609 if (likely(start >= now2))
1610 goto use_start;
1611
1612 /* Otherwise we got an underrun while the queue was empty */
1613 } else {
1614 if (urb->transfer_flags & URB_ISO_ASAP)
1615 goto do_ASAP;
1616 wrap = mod;
1617 now2 += mod;
1618 }
1619
1620 /* How many uframes and packets do we need to skip? */
1621 skip = (now2 - start + period - 1) & -period;
1622 if (skip >= span) { /* Entirely in the past? */
1623 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1624 urb, start + base, span - period, now2 + base,
1625 base);
1626
1627 /* Try to keep the last TD intact for scanning later */
1628 skip = span - period;
1629
1630 /* Will it come before the current scan position? */
1631 if (empty) {
1632 skip = span; /* Skip the entire URB */
1633 status = 1; /* and give it back immediately */
1634 iso_sched_free(stream, sched);
1635 sched = NULL;
1636 }
1637 }
1638 urb->error_count = skip / period;
1639 if (sched)
1640 sched->first_packet = urb->error_count;
1641 goto use_start;
1642
1643 do_ASAP:
1644 /* Use the first slot after "next" */
1645 start = next + ((start - next) & (period - 1));
1646
1647 use_start:
1648 /* Tried to schedule too far into the future? */
1649 if (unlikely(start + span - period >= mod + wrap)) {
1650 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1651 urb, start, span - period, mod + wrap);
1652 status = -EFBIG;
1653 goto fail;
1654 }
1655
1656 start += base;
1657 stream->next_uframe = (start + skip) & (mod - 1);
1658
1659 /* report high speed start in uframes; full speed, in frames */
1660 urb->start_frame = start & (mod - 1);
1661 if (!stream->highspeed)
1662 urb->start_frame >>= 3;
1663 return status;
1664
1665 fail:
1666 iso_sched_free(stream, sched);
1667 urb->hcpriv = NULL;
1668 return status;
1669}
1670
1671/*-------------------------------------------------------------------------*/
1672
1673static inline void
1674itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1675 struct ehci_itd *itd)
1676{
1677 int i;
1678
1679 /* it's been recently zeroed */
1680 itd->hw_next = EHCI_LIST_END(ehci);
1681 itd->hw_bufp[0] = stream->buf0;
1682 itd->hw_bufp[1] = stream->buf1;
1683 itd->hw_bufp[2] = stream->buf2;
1684
1685 for (i = 0; i < 8; i++)
1686 itd->index[i] = -1;
1687
1688 /* All other fields are filled when scheduling */
1689}
1690
1691static inline void
1692itd_patch(
1693 struct ehci_hcd *ehci,
1694 struct ehci_itd *itd,
1695 struct ehci_iso_sched *iso_sched,
1696 unsigned index,
1697 u16 uframe
1698)
1699{
1700 struct ehci_iso_packet *uf = &iso_sched->packet[index];
1701 unsigned pg = itd->pg;
1702
1703 /* BUG_ON(pg == 6 && uf->cross); */
1704
1705 uframe &= 0x07;
1706 itd->index[uframe] = index;
1707
1708 itd->hw_transaction[uframe] = uf->transaction;
1709 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1710 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1711 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1712
1713 /* iso_frame_desc[].offset must be strictly increasing */
1714 if (unlikely(uf->cross)) {
1715 u64 bufp = uf->bufp + 4096;
1716
1717 itd->pg = ++pg;
1718 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1719 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1720 }
1721}
1722
1723static inline void
1724itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1725{
1726 union ehci_shadow *prev = &ehci->pshadow[frame];
1727 __hc32 *hw_p = &ehci->periodic[frame];
1728 union ehci_shadow here = *prev;
1729 __hc32 type = 0;
1730
1731 /* skip any iso nodes which might belong to previous microframes */
1732 while (here.ptr) {
1733 type = Q_NEXT_TYPE(ehci, *hw_p);
1734 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1735 break;
1736 prev = periodic_next_shadow(ehci, prev, type);
1737 hw_p = shadow_next_periodic(ehci, &here, type);
1738 here = *prev;
1739 }
1740
1741 itd->itd_next = here;
1742 itd->hw_next = *hw_p;
1743 prev->itd = itd;
1744 itd->frame = frame;
1745 wmb();
1746 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1747}
1748
1749/* fit urb's itds into the selected schedule slot; activate as needed */
1750static void itd_link_urb(
1751 struct ehci_hcd *ehci,
1752 struct urb *urb,
1753 unsigned mod,
1754 struct ehci_iso_stream *stream
1755)
1756{
1757 int packet;
1758 unsigned next_uframe, uframe, frame;
1759 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1760 struct ehci_itd *itd;
1761
1762 next_uframe = stream->next_uframe & (mod - 1);
1763
1764 if (unlikely(list_empty(&stream->td_list)))
1765 ehci_to_hcd(ehci)->self.bandwidth_allocated
1766 += stream->bandwidth;
1767
1768 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1769 if (ehci->amd_pll_fix == 1)
1770 usb_amd_quirk_pll_disable();
1771 }
1772
1773 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1774
1775 /* fill iTDs uframe by uframe */
1776 for (packet = iso_sched->first_packet, itd = NULL;
1777 packet < urb->number_of_packets;) {
1778 if (itd == NULL) {
1779 /* ASSERT: we have all necessary itds */
1780 /* BUG_ON(list_empty(&iso_sched->td_list)); */
1781
1782 /* ASSERT: no itds for this endpoint in this uframe */
1783
1784 itd = list_entry(iso_sched->td_list.next,
1785 struct ehci_itd, itd_list);
1786 list_move_tail(&itd->itd_list, &stream->td_list);
1787 itd->stream = stream;
1788 itd->urb = urb;
1789 itd_init(ehci, stream, itd);
1790 }
1791
1792 uframe = next_uframe & 0x07;
1793 frame = next_uframe >> 3;
1794
1795 itd_patch(ehci, itd, iso_sched, packet, uframe);
1796
1797 next_uframe += stream->uperiod;
1798 next_uframe &= mod - 1;
1799 packet++;
1800
1801 /* link completed itds into the schedule */
1802 if (((next_uframe >> 3) != frame)
1803 || packet == urb->number_of_packets) {
1804 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1805 itd = NULL;
1806 }
1807 }
1808 stream->next_uframe = next_uframe;
1809
1810 /* don't need that schedule data any more */
1811 iso_sched_free(stream, iso_sched);
1812 urb->hcpriv = stream;
1813
1814 ++ehci->isoc_count;
1815 enable_periodic(ehci);
1816}
1817
1818#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1819
1820/* Process and recycle a completed ITD. Return true iff its urb completed,
1821 * and hence its completion callback probably added things to the hardware
1822 * schedule.
1823 *
1824 * Note that we carefully avoid recycling this descriptor until after any
1825 * completion callback runs, so that it won't be reused quickly. That is,
1826 * assuming (a) no more than two urbs per frame on this endpoint, and also
1827 * (b) only this endpoint's completions submit URBs. It seems some silicon
1828 * corrupts things if you reuse completed descriptors very quickly...
1829 */
1830static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1831{
1832 struct urb *urb = itd->urb;
1833 struct usb_iso_packet_descriptor *desc;
1834 u32 t;
1835 unsigned uframe;
1836 int urb_index = -1;
1837 struct ehci_iso_stream *stream = itd->stream;
1838 bool retval = false;
1839
1840 /* for each uframe with a packet */
1841 for (uframe = 0; uframe < 8; uframe++) {
1842 if (likely(itd->index[uframe] == -1))
1843 continue;
1844 urb_index = itd->index[uframe];
1845 desc = &urb->iso_frame_desc[urb_index];
1846
1847 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1848 itd->hw_transaction[uframe] = 0;
1849
1850 /* report transfer status */
1851 if (unlikely(t & ISO_ERRS)) {
1852 urb->error_count++;
1853 if (t & EHCI_ISOC_BUF_ERR)
1854 desc->status = usb_pipein(urb->pipe)
1855 ? -ENOSR /* hc couldn't read */
1856 : -ECOMM; /* hc couldn't write */
1857 else if (t & EHCI_ISOC_BABBLE)
1858 desc->status = -EOVERFLOW;
1859 else /* (t & EHCI_ISOC_XACTERR) */
1860 desc->status = -EPROTO;
1861
1862 /* HC need not update length with this error */
1863 if (!(t & EHCI_ISOC_BABBLE)) {
1864 desc->actual_length = EHCI_ITD_LENGTH(t);
1865 urb->actual_length += desc->actual_length;
1866 }
1867 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1868 desc->status = 0;
1869 desc->actual_length = EHCI_ITD_LENGTH(t);
1870 urb->actual_length += desc->actual_length;
1871 } else {
1872 /* URB was too late */
1873 urb->error_count++;
1874 }
1875 }
1876
1877 /* handle completion now? */
1878 if (likely((urb_index + 1) != urb->number_of_packets))
1879 goto done;
1880
1881 /*
1882 * ASSERT: it's really the last itd for this urb
1883 * list_for_each_entry (itd, &stream->td_list, itd_list)
1884 * BUG_ON(itd->urb == urb);
1885 */
1886
1887 /* give urb back to the driver; completion often (re)submits */
1888 ehci_urb_done(ehci, urb, 0);
1889 retval = true;
1890 urb = NULL;
1891
1892 --ehci->isoc_count;
1893 disable_periodic(ehci);
1894
1895 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1896 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1897 if (ehci->amd_pll_fix == 1)
1898 usb_amd_quirk_pll_enable();
1899 }
1900
1901 if (unlikely(list_is_singular(&stream->td_list)))
1902 ehci_to_hcd(ehci)->self.bandwidth_allocated
1903 -= stream->bandwidth;
1904
1905done:
1906 itd->urb = NULL;
1907
1908 /* Add to the end of the free list for later reuse */
1909 list_move_tail(&itd->itd_list, &stream->free_list);
1910
1911 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1912 if (list_empty(&stream->td_list)) {
1913 list_splice_tail_init(&stream->free_list,
1914 &ehci->cached_itd_list);
1915 start_free_itds(ehci);
1916 }
1917
1918 return retval;
1919}
1920
1921/*-------------------------------------------------------------------------*/
1922
1923static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1924 gfp_t mem_flags)
1925{
1926 int status = -EINVAL;
1927 unsigned long flags;
1928 struct ehci_iso_stream *stream;
1929
1930 /* Get iso_stream head */
1931 stream = iso_stream_find(ehci, urb);
1932 if (unlikely(stream == NULL)) {
1933 ehci_dbg(ehci, "can't get iso stream\n");
1934 return -ENOMEM;
1935 }
1936 if (unlikely(urb->interval != stream->uperiod)) {
1937 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1938 stream->uperiod, urb->interval);
1939 goto done;
1940 }
1941
1942#ifdef EHCI_URB_TRACE
1943 ehci_dbg(ehci,
1944 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1945 __func__, urb->dev->devpath, urb,
1946 usb_pipeendpoint(urb->pipe),
1947 usb_pipein(urb->pipe) ? "in" : "out",
1948 urb->transfer_buffer_length,
1949 urb->number_of_packets, urb->interval,
1950 stream);
1951#endif
1952
1953 /* allocate ITDs w/o locking anything */
1954 status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1955 if (unlikely(status < 0)) {
1956 ehci_dbg(ehci, "can't init itds\n");
1957 goto done;
1958 }
1959
1960 /* schedule ... need to lock */
1961 spin_lock_irqsave(&ehci->lock, flags);
1962 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1963 status = -ESHUTDOWN;
1964 goto done_not_linked;
1965 }
1966 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1967 if (unlikely(status))
1968 goto done_not_linked;
1969 status = iso_stream_schedule(ehci, urb, stream);
1970 if (likely(status == 0)) {
1971 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1972 } else if (status > 0) {
1973 status = 0;
1974 ehci_urb_done(ehci, urb, 0);
1975 } else {
1976 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1977 }
1978 done_not_linked:
1979 spin_unlock_irqrestore(&ehci->lock, flags);
1980 done:
1981 return status;
1982}
1983
1984/*-------------------------------------------------------------------------*/
1985
1986/*
1987 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1988 * TTs in USB 2.0 hubs. These need microframe scheduling.
1989 */
1990
1991static inline void
1992sitd_sched_init(
1993 struct ehci_hcd *ehci,
1994 struct ehci_iso_sched *iso_sched,
1995 struct ehci_iso_stream *stream,
1996 struct urb *urb
1997)
1998{
1999 unsigned i;
2000 dma_addr_t dma = urb->transfer_dma;
2001
2002 /* how many frames are needed for these transfers */
2003 iso_sched->span = urb->number_of_packets * stream->ps.period;
2004
2005 /* figure out per-frame sitd fields that we'll need later
2006 * when we fit new sitds into the schedule.
2007 */
2008 for (i = 0; i < urb->number_of_packets; i++) {
2009 struct ehci_iso_packet *packet = &iso_sched->packet[i];
2010 unsigned length;
2011 dma_addr_t buf;
2012 u32 trans;
2013
2014 length = urb->iso_frame_desc[i].length & 0x03ff;
2015 buf = dma + urb->iso_frame_desc[i].offset;
2016
2017 trans = SITD_STS_ACTIVE;
2018 if (((i + 1) == urb->number_of_packets)
2019 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2020 trans |= SITD_IOC;
2021 trans |= length << 16;
2022 packet->transaction = cpu_to_hc32(ehci, trans);
2023
2024 /* might need to cross a buffer page within a td */
2025 packet->bufp = buf;
2026 packet->buf1 = (buf + length) & ~0x0fff;
2027 if (packet->buf1 != (buf & ~(u64)0x0fff))
2028 packet->cross = 1;
2029
2030 /* OUT uses multiple start-splits */
2031 if (stream->bEndpointAddress & USB_DIR_IN)
2032 continue;
2033 length = (length + 187) / 188;
2034 if (length > 1) /* BEGIN vs ALL */
2035 length |= 1 << 3;
2036 packet->buf1 |= length;
2037 }
2038}
2039
2040static int
2041sitd_urb_transaction(
2042 struct ehci_iso_stream *stream,
2043 struct ehci_hcd *ehci,
2044 struct urb *urb,
2045 gfp_t mem_flags
2046)
2047{
2048 struct ehci_sitd *sitd;
2049 dma_addr_t sitd_dma;
2050 int i;
2051 struct ehci_iso_sched *iso_sched;
2052 unsigned long flags;
2053
2054 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2055 if (iso_sched == NULL)
2056 return -ENOMEM;
2057
2058 sitd_sched_init(ehci, iso_sched, stream, urb);
2059
2060 /* allocate/init sITDs */
2061 spin_lock_irqsave(&ehci->lock, flags);
2062 for (i = 0; i < urb->number_of_packets; i++) {
2063
2064 /* NOTE: for now, we don't try to handle wraparound cases
2065 * for IN (using sitd->hw_backpointer, like a FSTN), which
2066 * means we never need two sitds for full speed packets.
2067 */
2068
2069 /*
2070 * Use siTDs from the free list, but not siTDs that may
2071 * still be in use by the hardware.
2072 */
2073 if (likely(!list_empty(&stream->free_list))) {
2074 sitd = list_first_entry(&stream->free_list,
2075 struct ehci_sitd, sitd_list);
2076 if (sitd->frame == ehci->now_frame)
2077 goto alloc_sitd;
2078 list_del(&sitd->sitd_list);
2079 sitd_dma = sitd->sitd_dma;
2080 } else {
2081 alloc_sitd:
2082 spin_unlock_irqrestore(&ehci->lock, flags);
2083 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2084 &sitd_dma);
2085 spin_lock_irqsave(&ehci->lock, flags);
2086 if (!sitd) {
2087 iso_sched_free(stream, iso_sched);
2088 spin_unlock_irqrestore(&ehci->lock, flags);
2089 return -ENOMEM;
2090 }
2091 }
2092
2093 memset(sitd, 0, sizeof(*sitd));
2094 sitd->sitd_dma = sitd_dma;
2095 sitd->frame = NO_FRAME;
2096 list_add(&sitd->sitd_list, &iso_sched->td_list);
2097 }
2098
2099 /* temporarily store schedule info in hcpriv */
2100 urb->hcpriv = iso_sched;
2101 urb->error_count = 0;
2102
2103 spin_unlock_irqrestore(&ehci->lock, flags);
2104 return 0;
2105}
2106
2107/*-------------------------------------------------------------------------*/
2108
2109static inline void
2110sitd_patch(
2111 struct ehci_hcd *ehci,
2112 struct ehci_iso_stream *stream,
2113 struct ehci_sitd *sitd,
2114 struct ehci_iso_sched *iso_sched,
2115 unsigned index
2116)
2117{
2118 struct ehci_iso_packet *uf = &iso_sched->packet[index];
2119 u64 bufp;
2120
2121 sitd->hw_next = EHCI_LIST_END(ehci);
2122 sitd->hw_fullspeed_ep = stream->address;
2123 sitd->hw_uframe = stream->splits;
2124 sitd->hw_results = uf->transaction;
2125 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2126
2127 bufp = uf->bufp;
2128 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2129 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2130
2131 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2132 if (uf->cross)
2133 bufp += 4096;
2134 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2135 sitd->index = index;
2136}
2137
2138static inline void
2139sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2140{
2141 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2142 sitd->sitd_next = ehci->pshadow[frame];
2143 sitd->hw_next = ehci->periodic[frame];
2144 ehci->pshadow[frame].sitd = sitd;
2145 sitd->frame = frame;
2146 wmb();
2147 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2148}
2149
2150/* fit urb's sitds into the selected schedule slot; activate as needed */
2151static void sitd_link_urb(
2152 struct ehci_hcd *ehci,
2153 struct urb *urb,
2154 unsigned mod,
2155 struct ehci_iso_stream *stream
2156)
2157{
2158 int packet;
2159 unsigned next_uframe;
2160 struct ehci_iso_sched *sched = urb->hcpriv;
2161 struct ehci_sitd *sitd;
2162
2163 next_uframe = stream->next_uframe;
2164
2165 if (list_empty(&stream->td_list))
2166 /* usbfs ignores TT bandwidth */
2167 ehci_to_hcd(ehci)->self.bandwidth_allocated
2168 += stream->bandwidth;
2169
2170 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2171 if (ehci->amd_pll_fix == 1)
2172 usb_amd_quirk_pll_disable();
2173 }
2174
2175 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2176
2177 /* fill sITDs frame by frame */
2178 for (packet = sched->first_packet, sitd = NULL;
2179 packet < urb->number_of_packets;
2180 packet++) {
2181
2182 /* ASSERT: we have all necessary sitds */
2183 BUG_ON(list_empty(&sched->td_list));
2184
2185 /* ASSERT: no itds for this endpoint in this frame */
2186
2187 sitd = list_entry(sched->td_list.next,
2188 struct ehci_sitd, sitd_list);
2189 list_move_tail(&sitd->sitd_list, &stream->td_list);
2190 sitd->stream = stream;
2191 sitd->urb = urb;
2192
2193 sitd_patch(ehci, stream, sitd, sched, packet);
2194 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2195 sitd);
2196
2197 next_uframe += stream->uperiod;
2198 }
2199 stream->next_uframe = next_uframe & (mod - 1);
2200
2201 /* don't need that schedule data any more */
2202 iso_sched_free(stream, sched);
2203 urb->hcpriv = stream;
2204
2205 ++ehci->isoc_count;
2206 enable_periodic(ehci);
2207}
2208
2209/*-------------------------------------------------------------------------*/
2210
2211#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2212 | SITD_STS_XACT | SITD_STS_MMF)
2213
2214/* Process and recycle a completed SITD. Return true iff its urb completed,
2215 * and hence its completion callback probably added things to the hardware
2216 * schedule.
2217 *
2218 * Note that we carefully avoid recycling this descriptor until after any
2219 * completion callback runs, so that it won't be reused quickly. That is,
2220 * assuming (a) no more than two urbs per frame on this endpoint, and also
2221 * (b) only this endpoint's completions submit URBs. It seems some silicon
2222 * corrupts things if you reuse completed descriptors very quickly...
2223 */
2224static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2225{
2226 struct urb *urb = sitd->urb;
2227 struct usb_iso_packet_descriptor *desc;
2228 u32 t;
2229 int urb_index;
2230 struct ehci_iso_stream *stream = sitd->stream;
2231 bool retval = false;
2232
2233 urb_index = sitd->index;
2234 desc = &urb->iso_frame_desc[urb_index];
2235 t = hc32_to_cpup(ehci, &sitd->hw_results);
2236
2237 /* report transfer status */
2238 if (unlikely(t & SITD_ERRS)) {
2239 urb->error_count++;
2240 if (t & SITD_STS_DBE)
2241 desc->status = usb_pipein(urb->pipe)
2242 ? -ENOSR /* hc couldn't read */
2243 : -ECOMM; /* hc couldn't write */
2244 else if (t & SITD_STS_BABBLE)
2245 desc->status = -EOVERFLOW;
2246 else /* XACT, MMF, etc */
2247 desc->status = -EPROTO;
2248 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2249 /* URB was too late */
2250 urb->error_count++;
2251 } else {
2252 desc->status = 0;
2253 desc->actual_length = desc->length - SITD_LENGTH(t);
2254 urb->actual_length += desc->actual_length;
2255 }
2256
2257 /* handle completion now? */
2258 if ((urb_index + 1) != urb->number_of_packets)
2259 goto done;
2260
2261 /*
2262 * ASSERT: it's really the last sitd for this urb
2263 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2264 * BUG_ON(sitd->urb == urb);
2265 */
2266
2267 /* give urb back to the driver; completion often (re)submits */
2268 ehci_urb_done(ehci, urb, 0);
2269 retval = true;
2270 urb = NULL;
2271
2272 --ehci->isoc_count;
2273 disable_periodic(ehci);
2274
2275 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2276 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2277 if (ehci->amd_pll_fix == 1)
2278 usb_amd_quirk_pll_enable();
2279 }
2280
2281 if (list_is_singular(&stream->td_list))
2282 ehci_to_hcd(ehci)->self.bandwidth_allocated
2283 -= stream->bandwidth;
2284
2285done:
2286 sitd->urb = NULL;
2287
2288 /* Add to the end of the free list for later reuse */
2289 list_move_tail(&sitd->sitd_list, &stream->free_list);
2290
2291 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2292 if (list_empty(&stream->td_list)) {
2293 list_splice_tail_init(&stream->free_list,
2294 &ehci->cached_sitd_list);
2295 start_free_itds(ehci);
2296 }
2297
2298 return retval;
2299}
2300
2301
2302static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2303 gfp_t mem_flags)
2304{
2305 int status = -EINVAL;
2306 unsigned long flags;
2307 struct ehci_iso_stream *stream;
2308
2309 /* Get iso_stream head */
2310 stream = iso_stream_find(ehci, urb);
2311 if (stream == NULL) {
2312 ehci_dbg(ehci, "can't get iso stream\n");
2313 return -ENOMEM;
2314 }
2315 if (urb->interval != stream->ps.period) {
2316 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2317 stream->ps.period, urb->interval);
2318 goto done;
2319 }
2320
2321#ifdef EHCI_URB_TRACE
2322 ehci_dbg(ehci,
2323 "submit %p dev%s ep%d%s-iso len %d\n",
2324 urb, urb->dev->devpath,
2325 usb_pipeendpoint(urb->pipe),
2326 usb_pipein(urb->pipe) ? "in" : "out",
2327 urb->transfer_buffer_length);
2328#endif
2329
2330 /* allocate SITDs */
2331 status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2332 if (status < 0) {
2333 ehci_dbg(ehci, "can't init sitds\n");
2334 goto done;
2335 }
2336
2337 /* schedule ... need to lock */
2338 spin_lock_irqsave(&ehci->lock, flags);
2339 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2340 status = -ESHUTDOWN;
2341 goto done_not_linked;
2342 }
2343 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2344 if (unlikely(status))
2345 goto done_not_linked;
2346 status = iso_stream_schedule(ehci, urb, stream);
2347 if (likely(status == 0)) {
2348 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2349 } else if (status > 0) {
2350 status = 0;
2351 ehci_urb_done(ehci, urb, 0);
2352 } else {
2353 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2354 }
2355 done_not_linked:
2356 spin_unlock_irqrestore(&ehci->lock, flags);
2357 done:
2358 return status;
2359}
2360
2361/*-------------------------------------------------------------------------*/
2362
2363static void scan_isoc(struct ehci_hcd *ehci)
2364{
2365 unsigned uf, now_frame, frame;
2366 unsigned fmask = ehci->periodic_size - 1;
2367 bool modified, live;
2368 union ehci_shadow q, *q_p;
2369 __hc32 type, *hw_p;
2370
2371 /*
2372 * When running, scan from last scan point up to "now"
2373 * else clean up by scanning everything that's left.
2374 * Touches as few pages as possible: cache-friendly.
2375 */
2376 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2377 uf = ehci_read_frame_index(ehci);
2378 now_frame = (uf >> 3) & fmask;
2379 live = true;
2380 } else {
2381 now_frame = (ehci->last_iso_frame - 1) & fmask;
2382 live = false;
2383 }
2384 ehci->now_frame = now_frame;
2385
2386 frame = ehci->last_iso_frame;
2387
2388restart:
2389 /* Scan each element in frame's queue for completions */
2390 q_p = &ehci->pshadow[frame];
2391 hw_p = &ehci->periodic[frame];
2392 q.ptr = q_p->ptr;
2393 type = Q_NEXT_TYPE(ehci, *hw_p);
2394 modified = false;
2395
2396 while (q.ptr != NULL) {
2397 switch (hc32_to_cpu(ehci, type)) {
2398 case Q_TYPE_ITD:
2399 /*
2400 * If this ITD is still active, leave it for
2401 * later processing ... check the next entry.
2402 * No need to check for activity unless the
2403 * frame is current.
2404 */
2405 if (frame == now_frame && live) {
2406 rmb();
2407 for (uf = 0; uf < 8; uf++) {
2408 if (q.itd->hw_transaction[uf] &
2409 ITD_ACTIVE(ehci))
2410 break;
2411 }
2412 if (uf < 8) {
2413 q_p = &q.itd->itd_next;
2414 hw_p = &q.itd->hw_next;
2415 type = Q_NEXT_TYPE(ehci,
2416 q.itd->hw_next);
2417 q = *q_p;
2418 break;
2419 }
2420 }
2421
2422 /*
2423 * Take finished ITDs out of the schedule
2424 * and process them: recycle, maybe report
2425 * URB completion. HC won't cache the
2426 * pointer for much longer, if at all.
2427 */
2428 *q_p = q.itd->itd_next;
2429 if (!ehci->use_dummy_qh ||
2430 q.itd->hw_next != EHCI_LIST_END(ehci))
2431 *hw_p = q.itd->hw_next;
2432 else
2433 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2434 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2435 wmb();
2436 modified = itd_complete(ehci, q.itd);
2437 q = *q_p;
2438 break;
2439 case Q_TYPE_SITD:
2440 /*
2441 * If this SITD is still active, leave it for
2442 * later processing ... check the next entry.
2443 * No need to check for activity unless the
2444 * frame is current.
2445 */
2446 if (((frame == now_frame) ||
2447 (((frame + 1) & fmask) == now_frame))
2448 && live
2449 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2450
2451 q_p = &q.sitd->sitd_next;
2452 hw_p = &q.sitd->hw_next;
2453 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2454 q = *q_p;
2455 break;
2456 }
2457
2458 /*
2459 * Take finished SITDs out of the schedule
2460 * and process them: recycle, maybe report
2461 * URB completion.
2462 */
2463 *q_p = q.sitd->sitd_next;
2464 if (!ehci->use_dummy_qh ||
2465 q.sitd->hw_next != EHCI_LIST_END(ehci))
2466 *hw_p = q.sitd->hw_next;
2467 else
2468 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2469 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2470 wmb();
2471 modified = sitd_complete(ehci, q.sitd);
2472 q = *q_p;
2473 break;
2474 default:
2475 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2476 type, frame, q.ptr);
2477 /* BUG(); */
2478 /* FALL THROUGH */
2479 case Q_TYPE_QH:
2480 case Q_TYPE_FSTN:
2481 /* End of the iTDs and siTDs */
2482 q.ptr = NULL;
2483 break;
2484 }
2485
2486 /* Assume completion callbacks modify the queue */
2487 if (unlikely(modified && ehci->isoc_count > 0))
2488 goto restart;
2489 }
2490
2491 /* Stop when we have reached the current frame */
2492 if (frame == now_frame)
2493 return;
2494
2495 /* The last frame may still have active siTDs */
2496 ehci->last_iso_frame = frame;
2497 frame = (frame + 1) & fmask;
2498
2499 goto restart;
2500}