Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  3 *
  4 * the driver does not rely on the native chipselects at all
  5 * but only uses the gpio type chipselects
  6 *
  7 * Based on: spi-bcm2835.c
  8 *
  9 * Copyright (C) 2015 Martin Sperl
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License as published by
 13 * the Free Software Foundation; either version 2 of the License, or
 14 * (at your option) any later version.
 15 *
 16 * This program is distributed in the hope that it will be useful,
 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 * GNU General Public License for more details.
 20 */
 21
 22#include <linux/clk.h>
 23#include <linux/completion.h>
 
 24#include <linux/delay.h>
 25#include <linux/err.h>
 26#include <linux/interrupt.h>
 27#include <linux/io.h>
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/of.h>
 31#include <linux/of_address.h>
 32#include <linux/of_device.h>
 33#include <linux/of_gpio.h>
 34#include <linux/of_irq.h>
 35#include <linux/regmap.h>
 36#include <linux/spi/spi.h>
 37#include <linux/spinlock.h>
 38
 
 
 
 
 
 
 39/*
 40 * spi register defines
 41 *
 42 * note there is garbage in the "official" documentation,
 43 * so some data is taken from the file:
 44 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 45 * inside of:
 46 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 47 */
 48
 49/* SPI register offsets */
 50#define BCM2835_AUX_SPI_CNTL0	0x00
 51#define BCM2835_AUX_SPI_CNTL1	0x04
 52#define BCM2835_AUX_SPI_STAT	0x08
 53#define BCM2835_AUX_SPI_PEEK	0x0C
 54#define BCM2835_AUX_SPI_IO	0x20
 55#define BCM2835_AUX_SPI_TXHOLD	0x30
 56
 57/* Bitfields in CNTL0 */
 58#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 59#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 60#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 61#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 62#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 63#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 64#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 65#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 66#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 67#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 68#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 69#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 70#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 71#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 72#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 73
 74/* Bitfields in CNTL1 */
 75#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 76#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 77#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 78#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 79#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 80
 81/* Bitfields in STAT */
 82#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 83#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 84#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 85#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 86#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 87#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 88#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 89#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 90
 91/* timeout values */
 92#define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
 93#define BCM2835_AUX_SPI_POLLING_JIFFIES		2
 94
 95struct bcm2835aux_spi {
 96	void __iomem *regs;
 97	struct clk *clk;
 98	int irq;
 99	u32 cntl[2];
100	const u8 *tx_buf;
101	u8 *rx_buf;
102	int tx_len;
103	int rx_len;
104	int pending;
 
 
 
 
 
 
105};
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108{
109	return readl(bs->regs + reg);
110}
111
112static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113				 u32 val)
114{
115	writel(val, bs->regs + reg);
116}
117
118static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119{
120	u32 data;
121	int count = min(bs->rx_len, 3);
122
123	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124	if (bs->rx_buf) {
125		switch (count) {
126		case 4:
127			*bs->rx_buf++ = (data >> 24) & 0xff;
128			/* fallthrough */
129		case 3:
130			*bs->rx_buf++ = (data >> 16) & 0xff;
131			/* fallthrough */
132		case 2:
133			*bs->rx_buf++ = (data >> 8) & 0xff;
134			/* fallthrough */
135		case 1:
136			*bs->rx_buf++ = (data >> 0) & 0xff;
137			/* fallthrough - no default */
138		}
139	}
140	bs->rx_len -= count;
141	bs->pending -= count;
142}
143
144static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
145{
146	u32 data;
147	u8 byte;
148	int count;
149	int i;
150
151	/* gather up to 3 bytes to write to the FIFO */
152	count = min(bs->tx_len, 3);
153	data = 0;
154	for (i = 0; i < count; i++) {
155		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156		data |= byte << (8 * (2 - i));
157	}
158
159	/* and set the variable bit-length */
160	data |= (count * 8) << 24;
161
162	/* and decrement length */
163	bs->tx_len -= count;
164	bs->pending += count;
165
166	/* write to the correct TX-register */
167	if (bs->tx_len)
168		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169	else
170		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
171}
172
173static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
174{
175	/* disable spi clearing fifo and interrupts */
176	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
179}
180
181static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
182{
183	struct spi_master *master = dev_id;
184	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
185	irqreturn_t ret = IRQ_NONE;
186
187	/* check if we have data to read */
188	while (bs->rx_len &&
189	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
190		  BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
191		bcm2835aux_rd_fifo(bs);
192		ret = IRQ_HANDLED;
193	}
194
195	/* check if we have data to write */
196	while (bs->tx_len &&
197	       (bs->pending < 12) &&
198	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
199		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
200		bcm2835aux_wr_fifo(bs);
201		ret = IRQ_HANDLED;
202	}
 
203
204	/* and check if we have reached "done" */
205	while (bs->rx_len &&
206	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
207		  BCM2835_AUX_SPI_STAT_BUSY))) {
208		bcm2835aux_rd_fifo(bs);
209		ret = IRQ_HANDLED;
210	}
 
 
 
 
 
211
212	if (!bs->tx_len) {
213		/* disable tx fifo empty interrupt */
214		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
215			BCM2835_AUX_SPI_CNTL1_IDLE);
216	}
217
218	/* and if rx_len is 0 then disable interrupts and wake up completion */
219	if (!bs->rx_len) {
220		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
221		complete(&master->xfer_completion);
222	}
223
224	/* and return */
225	return ret;
226}
227
228static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
229					     struct spi_device *spi,
230					     struct spi_transfer *tfr)
231{
232	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
233
234	/* enable interrupts */
235	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
236		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
237		BCM2835_AUX_SPI_CNTL1_IDLE);
238
239	/* and wait for finish... */
240	return 1;
241}
242
243static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
244					   struct spi_device *spi,
245					   struct spi_transfer *tfr)
246{
247	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
248
 
 
 
249	/* fill in registers and fifos before enabling interrupts */
250	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
251	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
252
253	/* fill in tx fifo with data before enabling interrupts */
254	while ((bs->tx_len) &&
255	       (bs->pending < 12) &&
256	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
257		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
258		bcm2835aux_wr_fifo(bs);
259	}
260
261	/* now run the interrupt mode */
262	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
263}
264
265static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
266					    struct spi_device *spi,
267					struct spi_transfer *tfr)
268{
269	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
270	unsigned long timeout;
271	u32 stat;
 
 
272
273	/* configure spi */
274	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
275	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
276
277	/* set the timeout */
278	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
279
280	/* loop until finished the transfer */
281	while (bs->rx_len) {
282		/* read status */
283		stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
284
285		/* fill in tx fifo with remaining data */
286		if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
287			bcm2835aux_wr_fifo(bs);
288			continue;
289		}
290
291		/* read data from fifo for both cases */
292		if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
293			bcm2835aux_rd_fifo(bs);
294			continue;
295		}
296		if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
297			bcm2835aux_rd_fifo(bs);
298			continue;
299		}
300
301		/* there is still data pending to read check the timeout */
302		if (bs->rx_len && time_after(jiffies, timeout)) {
303			dev_dbg_ratelimited(&spi->dev,
304					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
305					    jiffies - timeout,
306					    bs->tx_len, bs->rx_len);
307			/* forward to interrupt handler */
 
308			return __bcm2835aux_spi_transfer_one_irq(master,
309							       spi, tfr);
310		}
311	}
312
313	/* and return without waiting for completion */
314	return 0;
315}
316
317static int bcm2835aux_spi_transfer_one(struct spi_master *master,
318				       struct spi_device *spi,
319				       struct spi_transfer *tfr)
320{
321	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
322	unsigned long spi_hz, clk_hz, speed;
323	unsigned long spi_used_hz;
324	unsigned long long xfer_time_us;
325
326	/* calculate the registers to handle
327	 *
328	 * note that we use the variable data mode, which
329	 * is not optimal for longer transfers as we waste registers
330	 * resulting (potentially) in more interrupts when transferring
331	 * more than 12 bytes
332	 */
333
334	/* set clock */
335	spi_hz = tfr->speed_hz;
336	clk_hz = clk_get_rate(bs->clk);
337
338	if (spi_hz >= clk_hz / 2) {
339		speed = 0;
340	} else if (spi_hz) {
341		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
342		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
343			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
344	} else { /* the slowest we can go */
345		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
346	}
347	/* mask out old speed from previous spi_transfer */
348	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
349	/* set the new speed */
350	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
351
352	spi_used_hz = clk_hz / (2 * (speed + 1));
353
354	/* set transmit buffers and length */
355	bs->tx_buf = tfr->tx_buf;
356	bs->rx_buf = tfr->rx_buf;
357	bs->tx_len = tfr->len;
358	bs->rx_len = tfr->len;
359	bs->pending = 0;
360
361	/* calculate the estimated time in us the transfer runs
362	 * note that there are are 2 idle clocks after each
363	 * chunk getting transferred - in our case the chunk size
364	 * is 3 bytes, so we approximate this by 9 bits/byte
 
 
365	 */
366	xfer_time_us = tfr->len * 9 * 1000000;
367	do_div(xfer_time_us, spi_used_hz);
368
369	/* run in polling mode for short transfers */
370	if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
371		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
372
373	/* run in interrupt mode for all others */
374	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
375}
376
377static int bcm2835aux_spi_prepare_message(struct spi_master *master,
378					  struct spi_message *msg)
379{
380	struct spi_device *spi = msg->spi;
381	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
382
383	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
384		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
385		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
386	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
387
388	/* handle all the modes */
389	if (spi->mode & SPI_CPOL) {
390		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
391		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
392	} else {
393		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
394	}
395	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
396	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
397
398	return 0;
399}
400
401static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
402					    struct spi_message *msg)
403{
404	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
405
406	bcm2835aux_spi_reset_hw(bs);
407
408	return 0;
409}
410
411static void bcm2835aux_spi_handle_err(struct spi_master *master,
412				      struct spi_message *msg)
413{
414	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
415
416	bcm2835aux_spi_reset_hw(bs);
417}
418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419static int bcm2835aux_spi_probe(struct platform_device *pdev)
420{
421	struct spi_master *master;
422	struct bcm2835aux_spi *bs;
423	struct resource *res;
424	unsigned long clk_hz;
425	int err;
426
427	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
428	if (!master) {
429		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
430		return -ENOMEM;
431	}
432
433	platform_set_drvdata(pdev, master);
434	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
435	master->bits_per_word_mask = SPI_BPW_MASK(8);
436	master->num_chipselect = -1;
 
 
 
 
 
 
 
 
 
 
 
 
437	master->transfer_one = bcm2835aux_spi_transfer_one;
438	master->handle_err = bcm2835aux_spi_handle_err;
439	master->prepare_message = bcm2835aux_spi_prepare_message;
440	master->unprepare_message = bcm2835aux_spi_unprepare_message;
441	master->dev.of_node = pdev->dev.of_node;
442
443	bs = spi_master_get_devdata(master);
444
445	/* the main area */
446	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
447	bs->regs = devm_ioremap_resource(&pdev->dev, res);
448	if (IS_ERR(bs->regs)) {
449		err = PTR_ERR(bs->regs);
450		goto out_master_put;
451	}
452
453	bs->clk = devm_clk_get(&pdev->dev, NULL);
454	if ((!bs->clk) || (IS_ERR(bs->clk))) {
455		err = PTR_ERR(bs->clk);
456		dev_err(&pdev->dev, "could not get clk: %d\n", err);
457		goto out_master_put;
458	}
459
460	bs->irq = platform_get_irq(pdev, 0);
461	if (bs->irq <= 0) {
462		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
463		err = bs->irq ? bs->irq : -ENODEV;
464		goto out_master_put;
465	}
466
467	/* this also enables the HW block */
468	err = clk_prepare_enable(bs->clk);
469	if (err) {
470		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
471		goto out_master_put;
472	}
473
474	/* just checking if the clock returns a sane value */
475	clk_hz = clk_get_rate(bs->clk);
476	if (!clk_hz) {
477		dev_err(&pdev->dev, "clock returns 0 Hz\n");
478		err = -ENODEV;
479		goto out_clk_disable;
480	}
481
482	/* reset SPI-HW block */
483	bcm2835aux_spi_reset_hw(bs);
484
485	err = devm_request_irq(&pdev->dev, bs->irq,
486			       bcm2835aux_spi_interrupt,
487			       IRQF_SHARED,
488			       dev_name(&pdev->dev), master);
489	if (err) {
490		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
491		goto out_clk_disable;
492	}
493
494	err = devm_spi_register_master(&pdev->dev, master);
495	if (err) {
496		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
497		goto out_clk_disable;
498	}
499
 
 
500	return 0;
501
502out_clk_disable:
503	clk_disable_unprepare(bs->clk);
504out_master_put:
505	spi_master_put(master);
506	return err;
507}
508
509static int bcm2835aux_spi_remove(struct platform_device *pdev)
510{
511	struct spi_master *master = platform_get_drvdata(pdev);
512	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
513
 
 
514	bcm2835aux_spi_reset_hw(bs);
515
516	/* disable the HW block by releasing the clock */
517	clk_disable_unprepare(bs->clk);
518
519	return 0;
520}
521
522static const struct of_device_id bcm2835aux_spi_match[] = {
523	{ .compatible = "brcm,bcm2835-aux-spi", },
524	{}
525};
526MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
527
528static struct platform_driver bcm2835aux_spi_driver = {
529	.driver		= {
530		.name		= "spi-bcm2835aux",
531		.of_match_table	= bcm2835aux_spi_match,
532	},
533	.probe		= bcm2835aux_spi_probe,
534	.remove		= bcm2835aux_spi_remove,
535};
536module_platform_driver(bcm2835aux_spi_driver);
537
538MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
539MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
540MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  4 *
  5 * the driver does not rely on the native chipselects at all
  6 * but only uses the gpio type chipselects
  7 *
  8 * Based on: spi-bcm2835.c
  9 *
 10 * Copyright (C) 2015 Martin Sperl
 
 
 
 
 
 
 
 
 
 
 11 */
 12
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/debugfs.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/of_device.h>
 25#include <linux/of_gpio.h>
 26#include <linux/of_irq.h>
 27#include <linux/regmap.h>
 28#include <linux/spi/spi.h>
 29#include <linux/spinlock.h>
 30
 31/* define polling limits */
 32static unsigned int polling_limit_us = 30;
 33module_param(polling_limit_us, uint, 0664);
 34MODULE_PARM_DESC(polling_limit_us,
 35		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
 36
 37/*
 38 * spi register defines
 39 *
 40 * note there is garbage in the "official" documentation,
 41 * so some data is taken from the file:
 42 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 43 * inside of:
 44 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 45 */
 46
 47/* SPI register offsets */
 48#define BCM2835_AUX_SPI_CNTL0	0x00
 49#define BCM2835_AUX_SPI_CNTL1	0x04
 50#define BCM2835_AUX_SPI_STAT	0x08
 51#define BCM2835_AUX_SPI_PEEK	0x0C
 52#define BCM2835_AUX_SPI_IO	0x20
 53#define BCM2835_AUX_SPI_TXHOLD	0x30
 54
 55/* Bitfields in CNTL0 */
 56#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 57#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 58#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 59#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 60#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 61#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 62#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 63#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 64#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 65#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 66#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 67#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 68#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 69#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 70#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 71
 72/* Bitfields in CNTL1 */
 73#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 74#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 75#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 76#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 77#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 78
 79/* Bitfields in STAT */
 80#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 81#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 82#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 83#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 84#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 85#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 86#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 87#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 88
 
 
 
 
 89struct bcm2835aux_spi {
 90	void __iomem *regs;
 91	struct clk *clk;
 92	int irq;
 93	u32 cntl[2];
 94	const u8 *tx_buf;
 95	u8 *rx_buf;
 96	int tx_len;
 97	int rx_len;
 98	int pending;
 99
100	u64 count_transfer_polling;
101	u64 count_transfer_irq;
102	u64 count_transfer_irq_after_poll;
103
104	struct dentry *debugfs_dir;
105};
106
107#if defined(CONFIG_DEBUG_FS)
108static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
109				      const char *dname)
110{
111	char name[64];
112	struct dentry *dir;
113
114	/* get full name */
115	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
116
117	/* the base directory */
118	dir = debugfs_create_dir(name, NULL);
119	bs->debugfs_dir = dir;
120
121	/* the counters */
122	debugfs_create_u64("count_transfer_polling", 0444, dir,
123			   &bs->count_transfer_polling);
124	debugfs_create_u64("count_transfer_irq", 0444, dir,
125			   &bs->count_transfer_irq);
126	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
127			   &bs->count_transfer_irq_after_poll);
128}
129
130static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
131{
132	debugfs_remove_recursive(bs->debugfs_dir);
133	bs->debugfs_dir = NULL;
134}
135#else
136static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
137				      const char *dname)
138{
139}
140
141static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
142{
143}
144#endif /* CONFIG_DEBUG_FS */
145
146static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
147{
148	return readl(bs->regs + reg);
149}
150
151static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
152				 u32 val)
153{
154	writel(val, bs->regs + reg);
155}
156
157static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
158{
159	u32 data;
160	int count = min(bs->rx_len, 3);
161
162	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
163	if (bs->rx_buf) {
164		switch (count) {
 
 
 
165		case 3:
166			*bs->rx_buf++ = (data >> 16) & 0xff;
167			/* fallthrough */
168		case 2:
169			*bs->rx_buf++ = (data >> 8) & 0xff;
170			/* fallthrough */
171		case 1:
172			*bs->rx_buf++ = (data >> 0) & 0xff;
173			/* fallthrough - no default */
174		}
175	}
176	bs->rx_len -= count;
177	bs->pending -= count;
178}
179
180static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
181{
182	u32 data;
183	u8 byte;
184	int count;
185	int i;
186
187	/* gather up to 3 bytes to write to the FIFO */
188	count = min(bs->tx_len, 3);
189	data = 0;
190	for (i = 0; i < count; i++) {
191		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
192		data |= byte << (8 * (2 - i));
193	}
194
195	/* and set the variable bit-length */
196	data |= (count * 8) << 24;
197
198	/* and decrement length */
199	bs->tx_len -= count;
200	bs->pending += count;
201
202	/* write to the correct TX-register */
203	if (bs->tx_len)
204		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
205	else
206		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
207}
208
209static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
210{
211	/* disable spi clearing fifo and interrupts */
212	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
213	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
214		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
215}
216
217static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
218{
219	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
 
 
220
221	/* check if we have data to read */
222	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
223	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
 
224		bcm2835aux_rd_fifo(bs);
 
 
225
226	/* check if we have data to write */
227	while (bs->tx_len &&
228	       (bs->pending < 12) &&
229	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
230		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
231		bcm2835aux_wr_fifo(bs);
 
232	}
233}
234
235static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
236{
237	struct spi_master *master = dev_id;
238	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
239
240	/* IRQ may be shared, so return if our interrupts are disabled */
241	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
242	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
243		return IRQ_NONE;
244
245	/* do common fifo handling */
246	bcm2835aux_spi_transfer_helper(bs);
247
248	if (!bs->tx_len) {
249		/* disable tx fifo empty interrupt */
250		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
251			BCM2835_AUX_SPI_CNTL1_IDLE);
252	}
253
254	/* and if rx_len is 0 then disable interrupts and wake up completion */
255	if (!bs->rx_len) {
256		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
257		complete(&master->xfer_completion);
258	}
259
260	return IRQ_HANDLED;
 
261}
262
263static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
264					     struct spi_device *spi,
265					     struct spi_transfer *tfr)
266{
267	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
268
269	/* enable interrupts */
270	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
271		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
272		BCM2835_AUX_SPI_CNTL1_IDLE);
273
274	/* and wait for finish... */
275	return 1;
276}
277
278static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
279					   struct spi_device *spi,
280					   struct spi_transfer *tfr)
281{
282	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
283
284	/* update statistics */
285	bs->count_transfer_irq++;
286
287	/* fill in registers and fifos before enabling interrupts */
288	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
289	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
290
291	/* fill in tx fifo with data before enabling interrupts */
292	while ((bs->tx_len) &&
293	       (bs->pending < 12) &&
294	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
295		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
296		bcm2835aux_wr_fifo(bs);
297	}
298
299	/* now run the interrupt mode */
300	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
301}
302
303static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
304					    struct spi_device *spi,
305					struct spi_transfer *tfr)
306{
307	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
308	unsigned long timeout;
309
310	/* update statistics */
311	bs->count_transfer_polling++;
312
313	/* configure spi */
314	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
315	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
316
317	/* set the timeout to at least 2 jiffies */
318	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
319
320	/* loop until finished the transfer */
321	while (bs->rx_len) {
 
 
322
323		/* do common fifo handling */
324		bcm2835aux_spi_transfer_helper(bs);
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326		/* there is still data pending to read check the timeout */
327		if (bs->rx_len && time_after(jiffies, timeout)) {
328			dev_dbg_ratelimited(&spi->dev,
329					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
330					    jiffies - timeout,
331					    bs->tx_len, bs->rx_len);
332			/* forward to interrupt handler */
333			bs->count_transfer_irq_after_poll++;
334			return __bcm2835aux_spi_transfer_one_irq(master,
335							       spi, tfr);
336		}
337	}
338
339	/* and return without waiting for completion */
340	return 0;
341}
342
343static int bcm2835aux_spi_transfer_one(struct spi_master *master,
344				       struct spi_device *spi,
345				       struct spi_transfer *tfr)
346{
347	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
348	unsigned long spi_hz, clk_hz, speed, spi_used_hz;
349	unsigned long hz_per_byte, byte_limit;
 
350
351	/* calculate the registers to handle
352	 *
353	 * note that we use the variable data mode, which
354	 * is not optimal for longer transfers as we waste registers
355	 * resulting (potentially) in more interrupts when transferring
356	 * more than 12 bytes
357	 */
358
359	/* set clock */
360	spi_hz = tfr->speed_hz;
361	clk_hz = clk_get_rate(bs->clk);
362
363	if (spi_hz >= clk_hz / 2) {
364		speed = 0;
365	} else if (spi_hz) {
366		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
367		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
368			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
369	} else { /* the slowest we can go */
370		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
371	}
372	/* mask out old speed from previous spi_transfer */
373	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
374	/* set the new speed */
375	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
376
377	spi_used_hz = clk_hz / (2 * (speed + 1));
378
379	/* set transmit buffers and length */
380	bs->tx_buf = tfr->tx_buf;
381	bs->rx_buf = tfr->rx_buf;
382	bs->tx_len = tfr->len;
383	bs->rx_len = tfr->len;
384	bs->pending = 0;
385
386	/* Calculate the estimated time in us the transfer runs.  Note that
387	 * there are are 2 idle clocks cycles after each chunk getting
388	 * transferred - in our case the chunk size is 3 bytes, so we
389	 * approximate this by 9 cycles/byte.  This is used to find the number
390	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
391	 * 30 µs per 300,000 Hz of bus clock.
392	 */
393	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
394	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
395
396	/* run in polling mode for short transfers */
397	if (tfr->len < byte_limit)
398		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
399
400	/* run in interrupt mode for all others */
401	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
402}
403
404static int bcm2835aux_spi_prepare_message(struct spi_master *master,
405					  struct spi_message *msg)
406{
407	struct spi_device *spi = msg->spi;
408	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
409
410	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
411		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
412		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
413	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
414
415	/* handle all the modes */
416	if (spi->mode & SPI_CPOL) {
417		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
418		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
419	} else {
420		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
421	}
422	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
423	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
424
425	return 0;
426}
427
428static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
429					    struct spi_message *msg)
430{
431	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
432
433	bcm2835aux_spi_reset_hw(bs);
434
435	return 0;
436}
437
438static void bcm2835aux_spi_handle_err(struct spi_master *master,
439				      struct spi_message *msg)
440{
441	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
442
443	bcm2835aux_spi_reset_hw(bs);
444}
445
446static int bcm2835aux_spi_setup(struct spi_device *spi)
447{
448	int ret;
449
450	/* sanity check for native cs */
451	if (spi->mode & SPI_NO_CS)
452		return 0;
453	if (gpio_is_valid(spi->cs_gpio)) {
454		/* with gpio-cs set the GPIO to the correct level
455		 * and as output (in case the dt has the gpio not configured
456		 * as output but native cs)
457		 */
458		ret = gpio_direction_output(spi->cs_gpio,
459					    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
460		if (ret)
461			dev_err(&spi->dev,
462				"could not set gpio %i as output: %i\n",
463				spi->cs_gpio, ret);
464
465		return ret;
466	}
467
468	/* for dt-backwards compatibility: only support native on CS0
469	 * known things not supported with broken native CS:
470	 * * multiple chip-selects: cs0-cs2 are all
471	 *     simultaniously asserted whenever there is a transfer
472	 *     this even includes SPI_NO_CS
473	 * * SPI_CS_HIGH: cs are always asserted low
474	 * * cs_change: cs is deasserted after each spi_transfer
475	 * * cs_delay_usec: cs is always deasserted one SCK cycle
476	 *     after the last transfer
477	 * probably more...
478	 */
479	dev_warn(&spi->dev,
480		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
481
482	if (spi->chip_select == 0)
483		return 0;
484
485	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
486
487	return -EINVAL;
488}
489
490static int bcm2835aux_spi_probe(struct platform_device *pdev)
491{
492	struct spi_master *master;
493	struct bcm2835aux_spi *bs;
 
494	unsigned long clk_hz;
495	int err;
496
497	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
498	if (!master)
 
499		return -ENOMEM;
 
500
501	platform_set_drvdata(pdev, master);
502	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
503	master->bits_per_word_mask = SPI_BPW_MASK(8);
504	/* even though the driver never officially supported native CS
505	 * allow a single native CS for legacy DT support purposes when
506	 * no cs-gpio is configured.
507	 * Known limitations for native cs are:
508	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
509	 *     whenever there is a transfer -  this even includes SPI_NO_CS
510	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
511	 * * cs_change: cs is deasserted after each spi_transfer
512	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
513	 *     a spi_transfer
514	 */
515	master->num_chipselect = 1;
516	master->setup = bcm2835aux_spi_setup;
517	master->transfer_one = bcm2835aux_spi_transfer_one;
518	master->handle_err = bcm2835aux_spi_handle_err;
519	master->prepare_message = bcm2835aux_spi_prepare_message;
520	master->unprepare_message = bcm2835aux_spi_unprepare_message;
521	master->dev.of_node = pdev->dev.of_node;
522
523	bs = spi_master_get_devdata(master);
524
525	/* the main area */
526	bs->regs = devm_platform_ioremap_resource(pdev, 0);
 
527	if (IS_ERR(bs->regs)) {
528		err = PTR_ERR(bs->regs);
529		goto out_master_put;
530	}
531
532	bs->clk = devm_clk_get(&pdev->dev, NULL);
533	if (IS_ERR(bs->clk)) {
534		err = PTR_ERR(bs->clk);
535		dev_err(&pdev->dev, "could not get clk: %d\n", err);
536		goto out_master_put;
537	}
538
539	bs->irq = platform_get_irq(pdev, 0);
540	if (bs->irq <= 0) {
 
541		err = bs->irq ? bs->irq : -ENODEV;
542		goto out_master_put;
543	}
544
545	/* this also enables the HW block */
546	err = clk_prepare_enable(bs->clk);
547	if (err) {
548		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
549		goto out_master_put;
550	}
551
552	/* just checking if the clock returns a sane value */
553	clk_hz = clk_get_rate(bs->clk);
554	if (!clk_hz) {
555		dev_err(&pdev->dev, "clock returns 0 Hz\n");
556		err = -ENODEV;
557		goto out_clk_disable;
558	}
559
560	/* reset SPI-HW block */
561	bcm2835aux_spi_reset_hw(bs);
562
563	err = devm_request_irq(&pdev->dev, bs->irq,
564			       bcm2835aux_spi_interrupt,
565			       IRQF_SHARED,
566			       dev_name(&pdev->dev), master);
567	if (err) {
568		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
569		goto out_clk_disable;
570	}
571
572	err = devm_spi_register_master(&pdev->dev, master);
573	if (err) {
574		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
575		goto out_clk_disable;
576	}
577
578	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
579
580	return 0;
581
582out_clk_disable:
583	clk_disable_unprepare(bs->clk);
584out_master_put:
585	spi_master_put(master);
586	return err;
587}
588
589static int bcm2835aux_spi_remove(struct platform_device *pdev)
590{
591	struct spi_master *master = platform_get_drvdata(pdev);
592	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
593
594	bcm2835aux_debugfs_remove(bs);
595
596	bcm2835aux_spi_reset_hw(bs);
597
598	/* disable the HW block by releasing the clock */
599	clk_disable_unprepare(bs->clk);
600
601	return 0;
602}
603
604static const struct of_device_id bcm2835aux_spi_match[] = {
605	{ .compatible = "brcm,bcm2835-aux-spi", },
606	{}
607};
608MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
609
610static struct platform_driver bcm2835aux_spi_driver = {
611	.driver		= {
612		.name		= "spi-bcm2835aux",
613		.of_match_table	= bcm2835aux_spi_match,
614	},
615	.probe		= bcm2835aux_spi_probe,
616	.remove		= bcm2835aux_spi_remove,
617};
618module_platform_driver(bcm2835aux_spi_driver);
619
620MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
621MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
622MODULE_LICENSE("GPL");