Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include "ice.h"
   9#include "ice_dcb_lib.h"
  10
  11#define ICE_RX_HDR_SIZE		256
  12
  13/**
  14 * ice_unmap_and_free_tx_buf - Release a Tx buffer
  15 * @ring: the ring that owns the buffer
  16 * @tx_buf: the buffer to free
  17 */
  18static void
  19ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
  20{
  21	if (tx_buf->skb) {
  22		dev_kfree_skb_any(tx_buf->skb);
  23		if (dma_unmap_len(tx_buf, len))
  24			dma_unmap_single(ring->dev,
  25					 dma_unmap_addr(tx_buf, dma),
  26					 dma_unmap_len(tx_buf, len),
  27					 DMA_TO_DEVICE);
  28	} else if (dma_unmap_len(tx_buf, len)) {
  29		dma_unmap_page(ring->dev,
  30			       dma_unmap_addr(tx_buf, dma),
  31			       dma_unmap_len(tx_buf, len),
  32			       DMA_TO_DEVICE);
  33	}
  34
  35	tx_buf->next_to_watch = NULL;
  36	tx_buf->skb = NULL;
  37	dma_unmap_len_set(tx_buf, len, 0);
  38	/* tx_buf must be completely set up in the transmit path */
  39}
  40
  41static struct netdev_queue *txring_txq(const struct ice_ring *ring)
  42{
  43	return netdev_get_tx_queue(ring->netdev, ring->q_index);
  44}
  45
  46/**
  47 * ice_clean_tx_ring - Free any empty Tx buffers
  48 * @tx_ring: ring to be cleaned
  49 */
  50void ice_clean_tx_ring(struct ice_ring *tx_ring)
  51{
  52	u16 i;
  53
  54	/* ring already cleared, nothing to do */
  55	if (!tx_ring->tx_buf)
  56		return;
  57
  58	/* Free all the Tx ring sk_buffs */
  59	for (i = 0; i < tx_ring->count; i++)
  60		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
  61
  62	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
  63
  64	/* Zero out the descriptor ring */
  65	memset(tx_ring->desc, 0, tx_ring->size);
  66
  67	tx_ring->next_to_use = 0;
  68	tx_ring->next_to_clean = 0;
  69
  70	if (!tx_ring->netdev)
  71		return;
  72
  73	/* cleanup Tx queue statistics */
  74	netdev_tx_reset_queue(txring_txq(tx_ring));
  75}
  76
  77/**
  78 * ice_free_tx_ring - Free Tx resources per queue
  79 * @tx_ring: Tx descriptor ring for a specific queue
  80 *
  81 * Free all transmit software resources
  82 */
  83void ice_free_tx_ring(struct ice_ring *tx_ring)
  84{
  85	ice_clean_tx_ring(tx_ring);
  86	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
  87	tx_ring->tx_buf = NULL;
  88
  89	if (tx_ring->desc) {
  90		dmam_free_coherent(tx_ring->dev, tx_ring->size,
  91				   tx_ring->desc, tx_ring->dma);
  92		tx_ring->desc = NULL;
  93	}
  94}
  95
  96/**
  97 * ice_clean_tx_irq - Reclaim resources after transmit completes
  98 * @tx_ring: Tx ring to clean
  99 * @napi_budget: Used to determine if we are in netpoll
 100 *
 101 * Returns true if there's any budget left (e.g. the clean is finished)
 102 */
 103static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 104{
 105	unsigned int total_bytes = 0, total_pkts = 0;
 106	unsigned int budget = ICE_DFLT_IRQ_WORK;
 107	struct ice_vsi *vsi = tx_ring->vsi;
 108	s16 i = tx_ring->next_to_clean;
 109	struct ice_tx_desc *tx_desc;
 110	struct ice_tx_buf *tx_buf;
 111
 112	tx_buf = &tx_ring->tx_buf[i];
 113	tx_desc = ICE_TX_DESC(tx_ring, i);
 114	i -= tx_ring->count;
 115
 116	prefetch(&vsi->state);
 117
 118	do {
 119		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 120
 121		/* if next_to_watch is not set then there is no work pending */
 122		if (!eop_desc)
 123			break;
 124
 125		smp_rmb();	/* prevent any other reads prior to eop_desc */
 126
 127		/* if the descriptor isn't done, no work yet to do */
 128		if (!(eop_desc->cmd_type_offset_bsz &
 129		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 130			break;
 131
 132		/* clear next_to_watch to prevent false hangs */
 133		tx_buf->next_to_watch = NULL;
 134
 135		/* update the statistics for this packet */
 136		total_bytes += tx_buf->bytecount;
 137		total_pkts += tx_buf->gso_segs;
 138
 139		/* free the skb */
 140		napi_consume_skb(tx_buf->skb, napi_budget);
 141
 142		/* unmap skb header data */
 143		dma_unmap_single(tx_ring->dev,
 144				 dma_unmap_addr(tx_buf, dma),
 145				 dma_unmap_len(tx_buf, len),
 146				 DMA_TO_DEVICE);
 147
 148		/* clear tx_buf data */
 149		tx_buf->skb = NULL;
 150		dma_unmap_len_set(tx_buf, len, 0);
 151
 152		/* unmap remaining buffers */
 153		while (tx_desc != eop_desc) {
 154			tx_buf++;
 155			tx_desc++;
 156			i++;
 157			if (unlikely(!i)) {
 158				i -= tx_ring->count;
 159				tx_buf = tx_ring->tx_buf;
 160				tx_desc = ICE_TX_DESC(tx_ring, 0);
 161			}
 162
 163			/* unmap any remaining paged data */
 164			if (dma_unmap_len(tx_buf, len)) {
 165				dma_unmap_page(tx_ring->dev,
 166					       dma_unmap_addr(tx_buf, dma),
 167					       dma_unmap_len(tx_buf, len),
 168					       DMA_TO_DEVICE);
 169				dma_unmap_len_set(tx_buf, len, 0);
 170			}
 171		}
 172
 173		/* move us one more past the eop_desc for start of next pkt */
 174		tx_buf++;
 175		tx_desc++;
 176		i++;
 177		if (unlikely(!i)) {
 178			i -= tx_ring->count;
 179			tx_buf = tx_ring->tx_buf;
 180			tx_desc = ICE_TX_DESC(tx_ring, 0);
 181		}
 182
 183		prefetch(tx_desc);
 184
 185		/* update budget accounting */
 186		budget--;
 187	} while (likely(budget));
 188
 189	i += tx_ring->count;
 190	tx_ring->next_to_clean = i;
 191	u64_stats_update_begin(&tx_ring->syncp);
 192	tx_ring->stats.bytes += total_bytes;
 193	tx_ring->stats.pkts += total_pkts;
 194	u64_stats_update_end(&tx_ring->syncp);
 195	tx_ring->q_vector->tx.total_bytes += total_bytes;
 196	tx_ring->q_vector->tx.total_pkts += total_pkts;
 197
 198	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 199				  total_bytes);
 200
 201#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 202	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 203		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 204		/* Make sure that anybody stopping the queue after this
 205		 * sees the new next_to_clean.
 206		 */
 207		smp_mb();
 208		if (__netif_subqueue_stopped(tx_ring->netdev,
 209					     tx_ring->q_index) &&
 210		    !test_bit(__ICE_DOWN, vsi->state)) {
 211			netif_wake_subqueue(tx_ring->netdev,
 212					    tx_ring->q_index);
 213			++tx_ring->tx_stats.restart_q;
 214		}
 215	}
 216
 217	return !!budget;
 218}
 219
 220/**
 221 * ice_setup_tx_ring - Allocate the Tx descriptors
 222 * @tx_ring: the Tx ring to set up
 223 *
 224 * Return 0 on success, negative on error
 225 */
 226int ice_setup_tx_ring(struct ice_ring *tx_ring)
 227{
 228	struct device *dev = tx_ring->dev;
 229
 230	if (!dev)
 231		return -ENOMEM;
 232
 233	/* warn if we are about to overwrite the pointer */
 234	WARN_ON(tx_ring->tx_buf);
 235	tx_ring->tx_buf =
 236		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 237			     GFP_KERNEL);
 238	if (!tx_ring->tx_buf)
 239		return -ENOMEM;
 240
 241	/* round up to nearest page */
 242	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 243			      PAGE_SIZE);
 244	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 245					    GFP_KERNEL);
 246	if (!tx_ring->desc) {
 247		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 248			tx_ring->size);
 249		goto err;
 250	}
 251
 252	tx_ring->next_to_use = 0;
 253	tx_ring->next_to_clean = 0;
 254	tx_ring->tx_stats.prev_pkt = -1;
 255	return 0;
 256
 257err:
 258	devm_kfree(dev, tx_ring->tx_buf);
 259	tx_ring->tx_buf = NULL;
 260	return -ENOMEM;
 261}
 262
 263/**
 264 * ice_clean_rx_ring - Free Rx buffers
 265 * @rx_ring: ring to be cleaned
 266 */
 267void ice_clean_rx_ring(struct ice_ring *rx_ring)
 268{
 269	struct device *dev = rx_ring->dev;
 270	u16 i;
 271
 272	/* ring already cleared, nothing to do */
 273	if (!rx_ring->rx_buf)
 274		return;
 275
 276	/* Free all the Rx ring sk_buffs */
 277	for (i = 0; i < rx_ring->count; i++) {
 278		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 279
 280		if (rx_buf->skb) {
 281			dev_kfree_skb(rx_buf->skb);
 282			rx_buf->skb = NULL;
 283		}
 284		if (!rx_buf->page)
 285			continue;
 286
 287		/* Invalidate cache lines that may have been written to by
 288		 * device so that we avoid corrupting memory.
 289		 */
 290		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 291					      rx_buf->page_offset,
 292					      ICE_RXBUF_2048, DMA_FROM_DEVICE);
 293
 294		/* free resources associated with mapping */
 295		dma_unmap_page_attrs(dev, rx_buf->dma, PAGE_SIZE,
 296				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 297		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 298
 299		rx_buf->page = NULL;
 300		rx_buf->page_offset = 0;
 301	}
 302
 303	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 304
 305	/* Zero out the descriptor ring */
 306	memset(rx_ring->desc, 0, rx_ring->size);
 307
 308	rx_ring->next_to_alloc = 0;
 309	rx_ring->next_to_clean = 0;
 310	rx_ring->next_to_use = 0;
 311}
 312
 313/**
 314 * ice_free_rx_ring - Free Rx resources
 315 * @rx_ring: ring to clean the resources from
 316 *
 317 * Free all receive software resources
 318 */
 319void ice_free_rx_ring(struct ice_ring *rx_ring)
 320{
 321	ice_clean_rx_ring(rx_ring);
 322	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 323	rx_ring->rx_buf = NULL;
 324
 325	if (rx_ring->desc) {
 326		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 327				   rx_ring->desc, rx_ring->dma);
 328		rx_ring->desc = NULL;
 329	}
 330}
 331
 332/**
 333 * ice_setup_rx_ring - Allocate the Rx descriptors
 334 * @rx_ring: the Rx ring to set up
 335 *
 336 * Return 0 on success, negative on error
 337 */
 338int ice_setup_rx_ring(struct ice_ring *rx_ring)
 339{
 340	struct device *dev = rx_ring->dev;
 341
 342	if (!dev)
 343		return -ENOMEM;
 344
 345	/* warn if we are about to overwrite the pointer */
 346	WARN_ON(rx_ring->rx_buf);
 347	rx_ring->rx_buf =
 348		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 349			     GFP_KERNEL);
 350	if (!rx_ring->rx_buf)
 351		return -ENOMEM;
 352
 353	/* round up to nearest page */
 354	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 355			      PAGE_SIZE);
 356	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 357					    GFP_KERNEL);
 358	if (!rx_ring->desc) {
 359		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 360			rx_ring->size);
 361		goto err;
 362	}
 363
 364	rx_ring->next_to_use = 0;
 365	rx_ring->next_to_clean = 0;
 366	return 0;
 367
 368err:
 369	devm_kfree(dev, rx_ring->rx_buf);
 370	rx_ring->rx_buf = NULL;
 371	return -ENOMEM;
 372}
 373
 374/**
 375 * ice_release_rx_desc - Store the new tail and head values
 376 * @rx_ring: ring to bump
 377 * @val: new head index
 378 */
 379static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
 380{
 381	u16 prev_ntu = rx_ring->next_to_use;
 382
 383	rx_ring->next_to_use = val;
 384
 385	/* update next to alloc since we have filled the ring */
 386	rx_ring->next_to_alloc = val;
 387
 388	/* QRX_TAIL will be updated with any tail value, but hardware ignores
 389	 * the lower 3 bits. This makes it so we only bump tail on meaningful
 390	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
 391	 * the budget depending on the current traffic load.
 392	 */
 393	val &= ~0x7;
 394	if (prev_ntu != val) {
 395		/* Force memory writes to complete before letting h/w
 396		 * know there are new descriptors to fetch. (Only
 397		 * applicable for weak-ordered memory model archs,
 398		 * such as IA-64).
 399		 */
 400		wmb();
 401		writel(val, rx_ring->tail);
 402	}
 403}
 404
 405/**
 406 * ice_alloc_mapped_page - recycle or make a new page
 407 * @rx_ring: ring to use
 408 * @bi: rx_buf struct to modify
 409 *
 410 * Returns true if the page was successfully allocated or
 411 * reused.
 412 */
 413static bool
 414ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 415{
 416	struct page *page = bi->page;
 417	dma_addr_t dma;
 418
 419	/* since we are recycling buffers we should seldom need to alloc */
 420	if (likely(page)) {
 421		rx_ring->rx_stats.page_reuse_count++;
 422		return true;
 423	}
 424
 425	/* alloc new page for storage */
 426	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
 427	if (unlikely(!page)) {
 428		rx_ring->rx_stats.alloc_page_failed++;
 429		return false;
 430	}
 431
 432	/* map page for use */
 433	dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
 434				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 435
 436	/* if mapping failed free memory back to system since
 437	 * there isn't much point in holding memory we can't use
 438	 */
 439	if (dma_mapping_error(rx_ring->dev, dma)) {
 440		__free_pages(page, 0);
 441		rx_ring->rx_stats.alloc_page_failed++;
 442		return false;
 443	}
 444
 445	bi->dma = dma;
 446	bi->page = page;
 447	bi->page_offset = 0;
 448	page_ref_add(page, USHRT_MAX - 1);
 449	bi->pagecnt_bias = USHRT_MAX;
 450
 451	return true;
 452}
 453
 454/**
 455 * ice_alloc_rx_bufs - Replace used receive buffers
 456 * @rx_ring: ring to place buffers on
 457 * @cleaned_count: number of buffers to replace
 458 *
 459 * Returns false if all allocations were successful, true if any fail. Returning
 460 * true signals to the caller that we didn't replace cleaned_count buffers and
 461 * there is more work to do.
 462 *
 463 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 464 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 465 * multiple tail writes per call.
 466 */
 467bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 468{
 469	union ice_32b_rx_flex_desc *rx_desc;
 470	u16 ntu = rx_ring->next_to_use;
 471	struct ice_rx_buf *bi;
 472
 473	/* do nothing if no valid netdev defined */
 474	if (!rx_ring->netdev || !cleaned_count)
 475		return false;
 476
 477	/* get the Rx descriptor and buffer based on next_to_use */
 478	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 479	bi = &rx_ring->rx_buf[ntu];
 480
 481	do {
 482		/* if we fail here, we have work remaining */
 483		if (!ice_alloc_mapped_page(rx_ring, bi))
 484			break;
 485
 486		/* sync the buffer for use by the device */
 487		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 488						 bi->page_offset,
 489						 ICE_RXBUF_2048,
 490						 DMA_FROM_DEVICE);
 491
 492		/* Refresh the desc even if buffer_addrs didn't change
 493		 * because each write-back erases this info.
 494		 */
 495		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 496
 497		rx_desc++;
 498		bi++;
 499		ntu++;
 500		if (unlikely(ntu == rx_ring->count)) {
 501			rx_desc = ICE_RX_DESC(rx_ring, 0);
 502			bi = rx_ring->rx_buf;
 503			ntu = 0;
 504		}
 505
 506		/* clear the status bits for the next_to_use descriptor */
 507		rx_desc->wb.status_error0 = 0;
 508
 509		cleaned_count--;
 510	} while (cleaned_count);
 511
 512	if (rx_ring->next_to_use != ntu)
 513		ice_release_rx_desc(rx_ring, ntu);
 514
 515	return !!cleaned_count;
 516}
 517
 518/**
 519 * ice_page_is_reserved - check if reuse is possible
 520 * @page: page struct to check
 521 */
 522static bool ice_page_is_reserved(struct page *page)
 523{
 524	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 525}
 526
 527/**
 528 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 529 * @rx_buf: Rx buffer to adjust
 530 * @size: Size of adjustment
 531 *
 532 * Update the offset within page so that Rx buf will be ready to be reused.
 533 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 534 * so the second half of page assigned to Rx buffer will be used, otherwise
 535 * the offset is moved by the @size bytes
 536 */
 537static void
 538ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 539{
 540#if (PAGE_SIZE < 8192)
 541	/* flip page offset to other buffer */
 542	rx_buf->page_offset ^= size;
 543#else
 544	/* move offset up to the next cache line */
 545	rx_buf->page_offset += size;
 546#endif
 547}
 548
 549/**
 550 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 551 * @rx_buf: buffer containing the page
 552 *
 553 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 554 * which will assign the current buffer to the buffer that next_to_alloc is
 555 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 556 * page freed
 557 */
 558static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 559{
 560#if (PAGE_SIZE >= 8192)
 561	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
 562#endif
 563	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 564	struct page *page = rx_buf->page;
 565
 566	/* avoid re-using remote pages */
 567	if (unlikely(ice_page_is_reserved(page)))
 568		return false;
 569
 570#if (PAGE_SIZE < 8192)
 571	/* if we are only owner of page we can reuse it */
 572	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 573		return false;
 574#else
 575	if (rx_buf->page_offset > last_offset)
 576		return false;
 577#endif /* PAGE_SIZE < 8192) */
 578
 579	/* If we have drained the page fragment pool we need to update
 580	 * the pagecnt_bias and page count so that we fully restock the
 581	 * number of references the driver holds.
 582	 */
 583	if (unlikely(pagecnt_bias == 1)) {
 584		page_ref_add(page, USHRT_MAX - 1);
 585		rx_buf->pagecnt_bias = USHRT_MAX;
 586	}
 587
 588	return true;
 589}
 590
 591/**
 592 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 593 * @rx_buf: buffer containing page to add
 594 * @skb: sk_buff to place the data into
 595 * @size: packet length from rx_desc
 596 *
 597 * This function will add the data contained in rx_buf->page to the skb.
 598 * It will just attach the page as a frag to the skb.
 599 * The function will then update the page offset.
 600 */
 601static void
 602ice_add_rx_frag(struct ice_rx_buf *rx_buf, struct sk_buff *skb,
 603		unsigned int size)
 604{
 605#if (PAGE_SIZE >= 8192)
 606	unsigned int truesize = SKB_DATA_ALIGN(size);
 607#else
 608	unsigned int truesize = ICE_RXBUF_2048;
 609#endif
 610
 611	if (!size)
 612		return;
 613	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 614			rx_buf->page_offset, size, truesize);
 615
 616	/* page is being used so we must update the page offset */
 617	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 618}
 619
 620/**
 621 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 622 * @rx_ring: Rx descriptor ring to store buffers on
 623 * @old_buf: donor buffer to have page reused
 624 *
 625 * Synchronizes page for reuse by the adapter
 626 */
 627static void
 628ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 629{
 630	u16 nta = rx_ring->next_to_alloc;
 631	struct ice_rx_buf *new_buf;
 632
 633	new_buf = &rx_ring->rx_buf[nta];
 634
 635	/* update, and store next to alloc */
 636	nta++;
 637	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 638
 639	/* Transfer page from old buffer to new buffer.
 640	 * Move each member individually to avoid possible store
 641	 * forwarding stalls and unnecessary copy of skb.
 642	 */
 643	new_buf->dma = old_buf->dma;
 644	new_buf->page = old_buf->page;
 645	new_buf->page_offset = old_buf->page_offset;
 646	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 647}
 648
 649/**
 650 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 651 * @rx_ring: Rx descriptor ring to transact packets on
 652 * @skb: skb to be used
 653 * @size: size of buffer to add to skb
 654 *
 655 * This function will pull an Rx buffer from the ring and synchronize it
 656 * for use by the CPU.
 657 */
 658static struct ice_rx_buf *
 659ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 660	       const unsigned int size)
 661{
 662	struct ice_rx_buf *rx_buf;
 663
 664	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 665	prefetchw(rx_buf->page);
 666	*skb = rx_buf->skb;
 667
 668	if (!size)
 669		return rx_buf;
 670	/* we are reusing so sync this buffer for CPU use */
 671	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 672				      rx_buf->page_offset, size,
 673				      DMA_FROM_DEVICE);
 674
 675	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 676	rx_buf->pagecnt_bias--;
 677
 678	return rx_buf;
 679}
 680
 681/**
 682 * ice_construct_skb - Allocate skb and populate it
 683 * @rx_ring: Rx descriptor ring to transact packets on
 684 * @rx_buf: Rx buffer to pull data from
 685 * @size: the length of the packet
 686 *
 687 * This function allocates an skb. It then populates it with the page
 688 * data from the current receive descriptor, taking care to set up the
 689 * skb correctly.
 690 */
 691static struct sk_buff *
 692ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 693		  unsigned int size)
 694{
 695	void *va = page_address(rx_buf->page) + rx_buf->page_offset;
 696	unsigned int headlen;
 697	struct sk_buff *skb;
 698
 699	/* prefetch first cache line of first page */
 700	prefetch(va);
 701#if L1_CACHE_BYTES < 128
 702	prefetch((u8 *)va + L1_CACHE_BYTES);
 703#endif /* L1_CACHE_BYTES */
 704
 705	/* allocate a skb to store the frags */
 706	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 707			       GFP_ATOMIC | __GFP_NOWARN);
 708	if (unlikely(!skb))
 709		return NULL;
 710
 711	skb_record_rx_queue(skb, rx_ring->q_index);
 712	/* Determine available headroom for copy */
 713	headlen = size;
 714	if (headlen > ICE_RX_HDR_SIZE)
 715		headlen = eth_get_headlen(skb->dev, va, ICE_RX_HDR_SIZE);
 716
 717	/* align pull length to size of long to optimize memcpy performance */
 718	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
 719
 720	/* if we exhaust the linear part then add what is left as a frag */
 721	size -= headlen;
 722	if (size) {
 723#if (PAGE_SIZE >= 8192)
 724		unsigned int truesize = SKB_DATA_ALIGN(size);
 725#else
 726		unsigned int truesize = ICE_RXBUF_2048;
 727#endif
 728		skb_add_rx_frag(skb, 0, rx_buf->page,
 729				rx_buf->page_offset + headlen, size, truesize);
 730		/* buffer is used by skb, update page_offset */
 731		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 732	} else {
 733		/* buffer is unused, reset bias back to rx_buf; data was copied
 734		 * onto skb's linear part so there's no need for adjusting
 735		 * page offset and we can reuse this buffer as-is
 736		 */
 737		rx_buf->pagecnt_bias++;
 738	}
 739
 740	return skb;
 741}
 742
 743/**
 744 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 745 * @rx_ring: Rx descriptor ring to transact packets on
 746 * @rx_buf: Rx buffer to pull data from
 747 *
 748 * This function will  clean up the contents of the rx_buf. It will
 749 * either recycle the buffer or unmap it and free the associated resources.
 750 */
 751static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
 752{
 753	if (!rx_buf)
 754		return;
 755
 756	if (ice_can_reuse_rx_page(rx_buf)) {
 757		/* hand second half of page back to the ring */
 758		ice_reuse_rx_page(rx_ring, rx_buf);
 759		rx_ring->rx_stats.page_reuse_count++;
 760	} else {
 761		/* we are not reusing the buffer so unmap it */
 762		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
 763				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 764		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 765	}
 766
 767	/* clear contents of buffer_info */
 768	rx_buf->page = NULL;
 769	rx_buf->skb = NULL;
 770}
 771
 772/**
 773 * ice_cleanup_headers - Correct empty headers
 774 * @skb: pointer to current skb being fixed
 775 *
 776 * Also address the case where we are pulling data in on pages only
 777 * and as such no data is present in the skb header.
 778 *
 779 * In addition if skb is not at least 60 bytes we need to pad it so that
 780 * it is large enough to qualify as a valid Ethernet frame.
 781 *
 782 * Returns true if an error was encountered and skb was freed.
 783 */
 784static bool ice_cleanup_headers(struct sk_buff *skb)
 785{
 786	/* if eth_skb_pad returns an error the skb was freed */
 787	if (eth_skb_pad(skb))
 788		return true;
 789
 790	return false;
 791}
 792
 793/**
 794 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 795 * @rx_desc: pointer to receive descriptor (in le64 format)
 796 * @stat_err_bits: value to mask
 797 *
 798 * This function does some fast chicanery in order to return the
 799 * value of the mask which is really only used for boolean tests.
 800 * The status_error_len doesn't need to be shifted because it begins
 801 * at offset zero.
 802 */
 803static bool
 804ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, const u16 stat_err_bits)
 805{
 806	return !!(rx_desc->wb.status_error0 &
 807		  cpu_to_le16(stat_err_bits));
 808}
 809
 810/**
 811 * ice_is_non_eop - process handling of non-EOP buffers
 812 * @rx_ring: Rx ring being processed
 813 * @rx_desc: Rx descriptor for current buffer
 814 * @skb: Current socket buffer containing buffer in progress
 815 *
 816 * This function updates next to clean. If the buffer is an EOP buffer
 817 * this function exits returning false, otherwise it will place the
 818 * sk_buff in the next buffer to be chained and return true indicating
 819 * that this is in fact a non-EOP buffer.
 820 */
 821static bool
 822ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 823	       struct sk_buff *skb)
 824{
 825	u32 ntc = rx_ring->next_to_clean + 1;
 826
 827	/* fetch, update, and store next to clean */
 828	ntc = (ntc < rx_ring->count) ? ntc : 0;
 829	rx_ring->next_to_clean = ntc;
 830
 831	prefetch(ICE_RX_DESC(rx_ring, ntc));
 832
 833	/* if we are the last buffer then there is nothing else to do */
 834#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
 835	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
 836		return false;
 837
 838	/* place skb in next buffer to be received */
 839	rx_ring->rx_buf[ntc].skb = skb;
 840	rx_ring->rx_stats.non_eop_descs++;
 841
 842	return true;
 843}
 844
 845/**
 846 * ice_ptype_to_htype - get a hash type
 847 * @ptype: the ptype value from the descriptor
 848 *
 849 * Returns a hash type to be used by skb_set_hash
 850 */
 851static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
 852{
 853	return PKT_HASH_TYPE_NONE;
 854}
 855
 856/**
 857 * ice_rx_hash - set the hash value in the skb
 858 * @rx_ring: descriptor ring
 859 * @rx_desc: specific descriptor
 860 * @skb: pointer to current skb
 861 * @rx_ptype: the ptype value from the descriptor
 862 */
 863static void
 864ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 865	    struct sk_buff *skb, u8 rx_ptype)
 866{
 867	struct ice_32b_rx_flex_desc_nic *nic_mdid;
 868	u32 hash;
 869
 870	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
 871		return;
 872
 873	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
 874		return;
 875
 876	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
 877	hash = le32_to_cpu(nic_mdid->rss_hash);
 878	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
 879}
 880
 881/**
 882 * ice_rx_csum - Indicate in skb if checksum is good
 883 * @ring: the ring we care about
 884 * @skb: skb currently being received and modified
 885 * @rx_desc: the receive descriptor
 886 * @ptype: the packet type decoded by hardware
 887 *
 888 * skb->protocol must be set before this function is called
 889 */
 890static void
 891ice_rx_csum(struct ice_ring *ring, struct sk_buff *skb,
 892	    union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
 893{
 894	struct ice_rx_ptype_decoded decoded;
 895	u32 rx_error, rx_status;
 896	bool ipv4, ipv6;
 897
 898	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
 899	rx_error = rx_status;
 900
 901	decoded = ice_decode_rx_desc_ptype(ptype);
 902
 903	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
 904	skb->ip_summed = CHECKSUM_NONE;
 905	skb_checksum_none_assert(skb);
 906
 907	/* check if Rx checksum is enabled */
 908	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 909		return;
 910
 911	/* check if HW has decoded the packet and checksum */
 912	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
 913		return;
 914
 915	if (!(decoded.known && decoded.outer_ip))
 916		return;
 917
 918	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 919	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
 920	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 921	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
 922
 923	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
 924				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
 925		goto checksum_fail;
 926	else if (ipv6 && (rx_status &
 927		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
 928		goto checksum_fail;
 929
 930	/* check for L4 errors and handle packets that were not able to be
 931	 * checksummed due to arrival speed
 932	 */
 933	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
 934		goto checksum_fail;
 935
 936	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
 937	switch (decoded.inner_prot) {
 938	case ICE_RX_PTYPE_INNER_PROT_TCP:
 939	case ICE_RX_PTYPE_INNER_PROT_UDP:
 940	case ICE_RX_PTYPE_INNER_PROT_SCTP:
 941		skb->ip_summed = CHECKSUM_UNNECESSARY;
 942	default:
 943		break;
 944	}
 945	return;
 946
 947checksum_fail:
 948	ring->vsi->back->hw_csum_rx_error++;
 949}
 950
 951/**
 952 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
 953 * @rx_ring: Rx descriptor ring packet is being transacted on
 954 * @rx_desc: pointer to the EOP Rx descriptor
 955 * @skb: pointer to current skb being populated
 956 * @ptype: the packet type decoded by hardware
 957 *
 958 * This function checks the ring, descriptor, and packet information in
 959 * order to populate the hash, checksum, VLAN, protocol, and
 960 * other fields within the skb.
 961 */
 962static void
 963ice_process_skb_fields(struct ice_ring *rx_ring,
 964		       union ice_32b_rx_flex_desc *rx_desc,
 965		       struct sk_buff *skb, u8 ptype)
 966{
 967	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
 968
 969	/* modifies the skb - consumes the enet header */
 970	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 971
 972	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
 973}
 974
 975/**
 976 * ice_receive_skb - Send a completed packet up the stack
 977 * @rx_ring: Rx ring in play
 978 * @skb: packet to send up
 979 * @vlan_tag: VLAN tag for packet
 980 *
 981 * This function sends the completed packet (via. skb) up the stack using
 982 * gro receive functions (with/without VLAN tag)
 983 */
 984static void
 985ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
 986{
 987	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 988	    (vlan_tag & VLAN_VID_MASK))
 989		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 990	napi_gro_receive(&rx_ring->q_vector->napi, skb);
 991}
 992
 993/**
 994 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 995 * @rx_ring: Rx descriptor ring to transact packets on
 996 * @budget: Total limit on number of packets to process
 997 *
 998 * This function provides a "bounce buffer" approach to Rx interrupt
 999 * processing. The advantage to this is that on systems that have
1000 * expensive overhead for IOMMU access this provides a means of avoiding
1001 * it by maintaining the mapping of the page to the system.
1002 *
1003 * Returns amount of work completed
1004 */
1005static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1006{
1007	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1008	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1009	bool failure;
1010
1011	/* start the loop to process Rx packets bounded by 'budget' */
1012	while (likely(total_rx_pkts < (unsigned int)budget)) {
1013		union ice_32b_rx_flex_desc *rx_desc;
1014		struct ice_rx_buf *rx_buf;
1015		struct sk_buff *skb;
1016		unsigned int size;
1017		u16 stat_err_bits;
1018		u16 vlan_tag = 0;
1019		u8 rx_ptype;
1020
1021		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1022		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1023
1024		/* status_error_len will always be zero for unused descriptors
1025		 * because it's cleared in cleanup, and overlaps with hdr_addr
1026		 * which is always zero because packet split isn't used, if the
1027		 * hardware wrote DD then it will be non-zero
1028		 */
1029		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1030		if (!ice_test_staterr(rx_desc, stat_err_bits))
1031			break;
1032
1033		/* This memory barrier is needed to keep us from reading
1034		 * any other fields out of the rx_desc until we know the
1035		 * DD bit is set.
1036		 */
1037		dma_rmb();
1038
1039		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1040			ICE_RX_FLX_DESC_PKT_LEN_M;
1041
1042		/* retrieve a buffer from the ring */
1043		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1044
1045		if (skb)
1046			ice_add_rx_frag(rx_buf, skb, size);
1047		else
1048			skb = ice_construct_skb(rx_ring, rx_buf, size);
1049
1050		/* exit if we failed to retrieve a buffer */
1051		if (!skb) {
1052			rx_ring->rx_stats.alloc_buf_failed++;
1053			if (rx_buf)
1054				rx_buf->pagecnt_bias++;
1055			break;
1056		}
1057
1058		ice_put_rx_buf(rx_ring, rx_buf);
1059		cleaned_count++;
1060
1061		/* skip if it is NOP desc */
1062		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1063			continue;
1064
1065		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1066		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1067			dev_kfree_skb_any(skb);
1068			continue;
1069		}
1070
1071		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1072		if (ice_test_staterr(rx_desc, stat_err_bits))
1073			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1074
1075		/* correct empty headers and pad skb if needed (to make valid
1076		 * ethernet frame
1077		 */
1078		if (ice_cleanup_headers(skb)) {
1079			skb = NULL;
1080			continue;
1081		}
1082
1083		/* probably a little skewed due to removing CRC */
1084		total_rx_bytes += skb->len;
1085
1086		/* populate checksum, VLAN, and protocol */
1087		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1088			ICE_RX_FLEX_DESC_PTYPE_M;
1089
1090		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1091
1092		/* send completed skb up the stack */
1093		ice_receive_skb(rx_ring, skb, vlan_tag);
1094
1095		/* update budget accounting */
1096		total_rx_pkts++;
1097	}
1098
1099	/* return up to cleaned_count buffers to hardware */
1100	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1101
1102	/* update queue and vector specific stats */
1103	u64_stats_update_begin(&rx_ring->syncp);
1104	rx_ring->stats.pkts += total_rx_pkts;
1105	rx_ring->stats.bytes += total_rx_bytes;
1106	u64_stats_update_end(&rx_ring->syncp);
1107	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1108	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1109
1110	/* guarantee a trip back through this routine if there was a failure */
1111	return failure ? budget : (int)total_rx_pkts;
1112}
1113
1114/**
1115 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1116 * @port_info: port_info structure containing the current link speed
1117 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1118 * @itr: ITR value to update
1119 *
1120 * Calculate how big of an increment should be applied to the ITR value passed
1121 * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1122 * link speed.
1123 *
1124 * The following is a calculation derived from:
1125 *  wmem_default / (size + overhead) = desired_pkts_per_int
1126 *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1127 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1128 *
1129 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1130 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1131 * formula down to:
1132 *
1133 *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1134 * ITR = -------------------------------------------- * --------------
1135 *			     rate			pkt_size + 640
1136 */
1137static unsigned int
1138ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1139				 unsigned int avg_pkt_size,
1140				 unsigned int itr)
1141{
1142	switch (port_info->phy.link_info.link_speed) {
1143	case ICE_AQ_LINK_SPEED_100GB:
1144		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1145				    avg_pkt_size + 640);
1146		break;
1147	case ICE_AQ_LINK_SPEED_50GB:
1148		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1149				    avg_pkt_size + 640);
1150		break;
1151	case ICE_AQ_LINK_SPEED_40GB:
1152		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1153				    avg_pkt_size + 640);
1154		break;
1155	case ICE_AQ_LINK_SPEED_25GB:
1156		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1157				    avg_pkt_size + 640);
1158		break;
1159	case ICE_AQ_LINK_SPEED_20GB:
1160		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1161				    avg_pkt_size + 640);
1162		break;
1163	case ICE_AQ_LINK_SPEED_10GB:
1164		/* fall through */
1165	default:
1166		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1167				    avg_pkt_size + 640);
1168		break;
1169	}
1170
1171	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1172		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1173		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1174	}
1175
1176	return itr;
1177}
1178
1179/**
1180 * ice_update_itr - update the adaptive ITR value based on statistics
1181 * @q_vector: structure containing interrupt and ring information
1182 * @rc: structure containing ring performance data
1183 *
1184 * Stores a new ITR value based on packets and byte
1185 * counts during the last interrupt.  The advantage of per interrupt
1186 * computation is faster updates and more accurate ITR for the current
1187 * traffic pattern.  Constants in this function were computed
1188 * based on theoretical maximum wire speed and thresholds were set based
1189 * on testing data as well as attempting to minimize response time
1190 * while increasing bulk throughput.
1191 */
1192static void
1193ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1194{
1195	unsigned long next_update = jiffies;
1196	unsigned int packets, bytes, itr;
1197	bool container_is_rx;
1198
1199	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1200		return;
1201
1202	/* If itr_countdown is set it means we programmed an ITR within
1203	 * the last 4 interrupt cycles. This has a side effect of us
1204	 * potentially firing an early interrupt. In order to work around
1205	 * this we need to throw out any data received for a few
1206	 * interrupts following the update.
1207	 */
1208	if (q_vector->itr_countdown) {
1209		itr = rc->target_itr;
1210		goto clear_counts;
1211	}
1212
1213	container_is_rx = (&q_vector->rx == rc);
1214	/* For Rx we want to push the delay up and default to low latency.
1215	 * for Tx we want to pull the delay down and default to high latency.
1216	 */
1217	itr = container_is_rx ?
1218		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1219		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1220
1221	/* If we didn't update within up to 1 - 2 jiffies we can assume
1222	 * that either packets are coming in so slow there hasn't been
1223	 * any work, or that there is so much work that NAPI is dealing
1224	 * with interrupt moderation and we don't need to do anything.
1225	 */
1226	if (time_after(next_update, rc->next_update))
1227		goto clear_counts;
1228
1229	prefetch(q_vector->vsi->port_info);
1230
1231	packets = rc->total_pkts;
1232	bytes = rc->total_bytes;
1233
1234	if (container_is_rx) {
1235		/* If Rx there are 1 to 4 packets and bytes are less than
1236		 * 9000 assume insufficient data to use bulk rate limiting
1237		 * approach unless Tx is already in bulk rate limiting. We
1238		 * are likely latency driven.
1239		 */
1240		if (packets && packets < 4 && bytes < 9000 &&
1241		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1242			itr = ICE_ITR_ADAPTIVE_LATENCY;
1243			goto adjust_by_size_and_speed;
1244		}
1245	} else if (packets < 4) {
1246		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1247		 * bulk mode and we are receiving 4 or fewer packets just
1248		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1249		 * that the Rx can relax.
1250		 */
1251		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1252		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1253		    ICE_ITR_ADAPTIVE_MAX_USECS)
1254			goto clear_counts;
1255	} else if (packets > 32) {
1256		/* If we have processed over 32 packets in a single interrupt
1257		 * for Tx assume we need to switch over to "bulk" mode.
1258		 */
1259		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1260	}
1261
1262	/* We have no packets to actually measure against. This means
1263	 * either one of the other queues on this vector is active or
1264	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1265	 *
1266	 * Between 4 and 56 we can assume that our current interrupt delay
1267	 * is only slightly too low. As such we should increase it by a small
1268	 * fixed amount.
1269	 */
1270	if (packets < 56) {
1271		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1272		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1273			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1274			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1275		}
1276		goto clear_counts;
1277	}
1278
1279	if (packets <= 256) {
1280		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1281		itr &= ICE_ITR_MASK;
1282
1283		/* Between 56 and 112 is our "goldilocks" zone where we are
1284		 * working out "just right". Just report that our current
1285		 * ITR is good for us.
1286		 */
1287		if (packets <= 112)
1288			goto clear_counts;
1289
1290		/* If packet count is 128 or greater we are likely looking
1291		 * at a slight overrun of the delay we want. Try halving
1292		 * our delay to see if that will cut the number of packets
1293		 * in half per interrupt.
1294		 */
1295		itr >>= 1;
1296		itr &= ICE_ITR_MASK;
1297		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1298			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1299
1300		goto clear_counts;
1301	}
1302
1303	/* The paths below assume we are dealing with a bulk ITR since
1304	 * number of packets is greater than 256. We are just going to have
1305	 * to compute a value and try to bring the count under control,
1306	 * though for smaller packet sizes there isn't much we can do as
1307	 * NAPI polling will likely be kicking in sooner rather than later.
1308	 */
1309	itr = ICE_ITR_ADAPTIVE_BULK;
1310
1311adjust_by_size_and_speed:
1312
1313	/* based on checks above packets cannot be 0 so division is safe */
1314	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1315					       bytes / packets, itr);
1316
1317clear_counts:
1318	/* write back value */
1319	rc->target_itr = itr;
1320
1321	/* next update should occur within next jiffy */
1322	rc->next_update = next_update + 1;
1323
1324	rc->total_bytes = 0;
1325	rc->total_pkts = 0;
1326}
1327
1328/**
1329 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1330 * @itr_idx: interrupt throttling index
1331 * @itr: interrupt throttling value in usecs
1332 */
1333static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1334{
1335	/* The ITR value is reported in microseconds, and the register value is
1336	 * recorded in 2 microsecond units. For this reason we only need to
1337	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1338	 * granularity as a shift instead of division. The mask makes sure the
1339	 * ITR value is never odd so we don't accidentally write into the field
1340	 * prior to the ITR field.
1341	 */
1342	itr &= ICE_ITR_MASK;
1343
1344	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1345		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1346		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1347}
1348
1349/* The act of updating the ITR will cause it to immediately trigger. In order
1350 * to prevent this from throwing off adaptive update statistics we defer the
1351 * update so that it can only happen so often. So after either Tx or Rx are
1352 * updated we make the adaptive scheme wait until either the ITR completely
1353 * expires via the next_update expiration or we have been through at least
1354 * 3 interrupts.
1355 */
1356#define ITR_COUNTDOWN_START 3
1357
1358/**
1359 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1360 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1361 */
1362static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1363{
1364	struct ice_ring_container *tx = &q_vector->tx;
1365	struct ice_ring_container *rx = &q_vector->rx;
1366	struct ice_vsi *vsi = q_vector->vsi;
1367	u32 itr_val;
1368
1369	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1370	 * interrupts to expire right away in case we have more work ready to go
1371	 * already
1372	 */
1373	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1374		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1375		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1376		/* set target back to last user set value */
1377		rx->target_itr = rx->itr_setting;
1378		/* set current to what we just wrote and dynamic if needed */
1379		rx->current_itr = ICE_WB_ON_ITR_USECS |
1380			(rx->itr_setting & ICE_ITR_DYNAMIC);
1381		/* allow normal interrupt flow to start */
1382		q_vector->itr_countdown = 0;
1383		return;
1384	}
1385
1386	/* This will do nothing if dynamic updates are not enabled */
1387	ice_update_itr(q_vector, tx);
1388	ice_update_itr(q_vector, rx);
1389
1390	/* This block of logic allows us to get away with only updating
1391	 * one ITR value with each interrupt. The idea is to perform a
1392	 * pseudo-lazy update with the following criteria.
1393	 *
1394	 * 1. Rx is given higher priority than Tx if both are in same state
1395	 * 2. If we must reduce an ITR that is given highest priority.
1396	 * 3. We then give priority to increasing ITR based on amount.
1397	 */
1398	if (rx->target_itr < rx->current_itr) {
1399		/* Rx ITR needs to be reduced, this is highest priority */
1400		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1401		rx->current_itr = rx->target_itr;
1402		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1403	} else if ((tx->target_itr < tx->current_itr) ||
1404		   ((rx->target_itr - rx->current_itr) <
1405		    (tx->target_itr - tx->current_itr))) {
1406		/* Tx ITR needs to be reduced, this is second priority
1407		 * Tx ITR needs to be increased more than Rx, fourth priority
1408		 */
1409		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1410		tx->current_itr = tx->target_itr;
1411		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1412	} else if (rx->current_itr != rx->target_itr) {
1413		/* Rx ITR needs to be increased, third priority */
1414		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1415		rx->current_itr = rx->target_itr;
1416		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1417	} else {
1418		/* Still have to re-enable the interrupts */
1419		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1420		if (q_vector->itr_countdown)
1421			q_vector->itr_countdown--;
1422	}
1423
1424	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1425		wr32(&q_vector->vsi->back->hw,
1426		     GLINT_DYN_CTL(q_vector->reg_idx),
1427		     itr_val);
1428}
1429
1430/**
1431 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1432 * @q_vector: q_vector to set WB_ON_ITR on
1433 *
1434 * We need to tell hardware to write-back completed descriptors even when
1435 * interrupts are disabled. Descriptors will be written back on cache line
1436 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1437 * descriptors may not be written back if they don't fill a cache line until the
1438 * next interrupt.
1439 *
1440 * This sets the write-back frequency to 2 microseconds as that is the minimum
1441 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1442 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1443 */
1444static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1445{
1446	struct ice_vsi *vsi = q_vector->vsi;
1447
1448	/* already in WB_ON_ITR mode no need to change it */
1449	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1450		return;
1451
1452	if (q_vector->num_ring_rx)
1453		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1454		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1455						 ICE_RX_ITR));
1456
1457	if (q_vector->num_ring_tx)
1458		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1459		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1460						 ICE_TX_ITR));
1461
1462	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1463}
1464
1465/**
1466 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1467 * @napi: napi struct with our devices info in it
1468 * @budget: amount of work driver is allowed to do this pass, in packets
1469 *
1470 * This function will clean all queues associated with a q_vector.
1471 *
1472 * Returns the amount of work done
1473 */
1474int ice_napi_poll(struct napi_struct *napi, int budget)
1475{
1476	struct ice_q_vector *q_vector =
1477				container_of(napi, struct ice_q_vector, napi);
1478	bool clean_complete = true;
1479	struct ice_ring *ring;
1480	int budget_per_ring;
1481	int work_done = 0;
1482
1483	/* Since the actual Tx work is minimal, we can give the Tx a larger
1484	 * budget and be more aggressive about cleaning up the Tx descriptors.
1485	 */
1486	ice_for_each_ring(ring, q_vector->tx)
1487		if (!ice_clean_tx_irq(ring, budget))
1488			clean_complete = false;
1489
1490	/* Handle case where we are called by netpoll with a budget of 0 */
1491	if (unlikely(budget <= 0))
1492		return budget;
1493
1494	/* normally we have 1 Rx ring per q_vector */
1495	if (unlikely(q_vector->num_ring_rx > 1))
1496		/* We attempt to distribute budget to each Rx queue fairly, but
1497		 * don't allow the budget to go below 1 because that would exit
1498		 * polling early.
1499		 */
1500		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1501	else
1502		/* Max of 1 Rx ring in this q_vector so give it the budget */
1503		budget_per_ring = budget;
1504
1505	ice_for_each_ring(ring, q_vector->rx) {
1506		int cleaned;
1507
1508		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1509		work_done += cleaned;
1510		/* if we clean as many as budgeted, we must not be done */
1511		if (cleaned >= budget_per_ring)
1512			clean_complete = false;
1513	}
1514
1515	/* If work not completed, return budget and polling will return */
1516	if (!clean_complete)
1517		return budget;
1518
1519	/* Exit the polling mode, but don't re-enable interrupts if stack might
1520	 * poll us due to busy-polling
1521	 */
1522	if (likely(napi_complete_done(napi, work_done)))
1523		ice_update_ena_itr(q_vector);
1524	else
1525		ice_set_wb_on_itr(q_vector);
1526
1527	return min_t(int, work_done, budget - 1);
1528}
1529
1530/* helper function for building cmd/type/offset */
1531static __le64
1532build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1533{
1534	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1535			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1536			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1537			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1538			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1539}
1540
1541/**
1542 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1543 * @tx_ring: the ring to be checked
1544 * @size: the size buffer we want to assure is available
1545 *
1546 * Returns -EBUSY if a stop is needed, else 0
1547 */
1548static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1549{
1550	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1551	/* Memory barrier before checking head and tail */
1552	smp_mb();
1553
1554	/* Check again in a case another CPU has just made room available. */
1555	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1556		return -EBUSY;
1557
1558	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1559	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1560	++tx_ring->tx_stats.restart_q;
1561	return 0;
1562}
1563
1564/**
1565 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1566 * @tx_ring: the ring to be checked
1567 * @size:    the size buffer we want to assure is available
1568 *
1569 * Returns 0 if stop is not needed
1570 */
1571static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1572{
1573	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1574		return 0;
1575
1576	return __ice_maybe_stop_tx(tx_ring, size);
1577}
1578
1579/**
1580 * ice_tx_map - Build the Tx descriptor
1581 * @tx_ring: ring to send buffer on
1582 * @first: first buffer info buffer to use
1583 * @off: pointer to struct that holds offload parameters
1584 *
1585 * This function loops over the skb data pointed to by *first
1586 * and gets a physical address for each memory location and programs
1587 * it and the length into the transmit descriptor.
1588 */
1589static void
1590ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1591	   struct ice_tx_offload_params *off)
1592{
1593	u64 td_offset, td_tag, td_cmd;
1594	u16 i = tx_ring->next_to_use;
1595	skb_frag_t *frag;
1596	unsigned int data_len, size;
1597	struct ice_tx_desc *tx_desc;
1598	struct ice_tx_buf *tx_buf;
1599	struct sk_buff *skb;
1600	dma_addr_t dma;
1601
1602	td_tag = off->td_l2tag1;
1603	td_cmd = off->td_cmd;
1604	td_offset = off->td_offset;
1605	skb = first->skb;
1606
1607	data_len = skb->data_len;
1608	size = skb_headlen(skb);
1609
1610	tx_desc = ICE_TX_DESC(tx_ring, i);
1611
1612	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1613		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1614		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1615			  ICE_TX_FLAGS_VLAN_S;
1616	}
1617
1618	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1619
1620	tx_buf = first;
1621
1622	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1623		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1624
1625		if (dma_mapping_error(tx_ring->dev, dma))
1626			goto dma_error;
1627
1628		/* record length, and DMA address */
1629		dma_unmap_len_set(tx_buf, len, size);
1630		dma_unmap_addr_set(tx_buf, dma, dma);
1631
1632		/* align size to end of page */
1633		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1634		tx_desc->buf_addr = cpu_to_le64(dma);
1635
1636		/* account for data chunks larger than the hardware
1637		 * can handle
1638		 */
1639		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1640			tx_desc->cmd_type_offset_bsz =
1641				build_ctob(td_cmd, td_offset, max_data, td_tag);
1642
1643			tx_desc++;
1644			i++;
1645
1646			if (i == tx_ring->count) {
1647				tx_desc = ICE_TX_DESC(tx_ring, 0);
1648				i = 0;
1649			}
1650
1651			dma += max_data;
1652			size -= max_data;
1653
1654			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1655			tx_desc->buf_addr = cpu_to_le64(dma);
1656		}
1657
1658		if (likely(!data_len))
1659			break;
1660
1661		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1662							  size, td_tag);
1663
1664		tx_desc++;
1665		i++;
1666
1667		if (i == tx_ring->count) {
1668			tx_desc = ICE_TX_DESC(tx_ring, 0);
1669			i = 0;
1670		}
1671
1672		size = skb_frag_size(frag);
1673		data_len -= size;
1674
1675		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1676				       DMA_TO_DEVICE);
1677
1678		tx_buf = &tx_ring->tx_buf[i];
1679	}
1680
1681	/* record bytecount for BQL */
1682	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1683
1684	/* record SW timestamp if HW timestamp is not available */
1685	skb_tx_timestamp(first->skb);
1686
1687	i++;
1688	if (i == tx_ring->count)
1689		i = 0;
1690
1691	/* write last descriptor with RS and EOP bits */
1692	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1693	tx_desc->cmd_type_offset_bsz =
1694			build_ctob(td_cmd, td_offset, size, td_tag);
1695
1696	/* Force memory writes to complete before letting h/w know there
1697	 * are new descriptors to fetch.
1698	 *
1699	 * We also use this memory barrier to make certain all of the
1700	 * status bits have been updated before next_to_watch is written.
1701	 */
1702	wmb();
1703
1704	/* set next_to_watch value indicating a packet is present */
1705	first->next_to_watch = tx_desc;
1706
1707	tx_ring->next_to_use = i;
1708
1709	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1710
1711	/* notify HW of packet */
1712	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1713		writel(i, tx_ring->tail);
1714	}
1715
1716	return;
1717
1718dma_error:
1719	/* clear DMA mappings for failed tx_buf map */
1720	for (;;) {
1721		tx_buf = &tx_ring->tx_buf[i];
1722		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1723		if (tx_buf == first)
1724			break;
1725		if (i == 0)
1726			i = tx_ring->count;
1727		i--;
1728	}
1729
1730	tx_ring->next_to_use = i;
1731}
1732
1733/**
1734 * ice_tx_csum - Enable Tx checksum offloads
1735 * @first: pointer to the first descriptor
1736 * @off: pointer to struct that holds offload parameters
1737 *
1738 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1739 */
1740static
1741int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1742{
1743	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1744	struct sk_buff *skb = first->skb;
1745	union {
1746		struct iphdr *v4;
1747		struct ipv6hdr *v6;
1748		unsigned char *hdr;
1749	} ip;
1750	union {
1751		struct tcphdr *tcp;
1752		unsigned char *hdr;
1753	} l4;
1754	__be16 frag_off, protocol;
1755	unsigned char *exthdr;
1756	u32 offset, cmd = 0;
1757	u8 l4_proto = 0;
1758
1759	if (skb->ip_summed != CHECKSUM_PARTIAL)
1760		return 0;
1761
1762	ip.hdr = skb_network_header(skb);
1763	l4.hdr = skb_transport_header(skb);
1764
1765	/* compute outer L2 header size */
1766	l2_len = ip.hdr - skb->data;
1767	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1768
1769	if (skb->encapsulation)
1770		return -1;
1771
1772	/* Enable IP checksum offloads */
1773	protocol = vlan_get_protocol(skb);
1774	if (protocol == htons(ETH_P_IP)) {
1775		l4_proto = ip.v4->protocol;
1776		/* the stack computes the IP header already, the only time we
1777		 * need the hardware to recompute it is in the case of TSO.
1778		 */
1779		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1780			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1781		else
1782			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1783
1784	} else if (protocol == htons(ETH_P_IPV6)) {
1785		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1786		exthdr = ip.hdr + sizeof(*ip.v6);
1787		l4_proto = ip.v6->nexthdr;
1788		if (l4.hdr != exthdr)
1789			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1790					 &frag_off);
1791	} else {
1792		return -1;
1793	}
1794
1795	/* compute inner L3 header size */
1796	l3_len = l4.hdr - ip.hdr;
1797	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1798
1799	/* Enable L4 checksum offloads */
1800	switch (l4_proto) {
1801	case IPPROTO_TCP:
1802		/* enable checksum offloads */
1803		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1804		l4_len = l4.tcp->doff;
1805		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1806		break;
1807	case IPPROTO_UDP:
1808		/* enable UDP checksum offload */
1809		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1810		l4_len = (sizeof(struct udphdr) >> 2);
1811		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1812		break;
1813	case IPPROTO_SCTP:
1814		/* enable SCTP checksum offload */
1815		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1816		l4_len = sizeof(struct sctphdr) >> 2;
1817		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1818		break;
1819
1820	default:
1821		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1822			return -1;
1823		skb_checksum_help(skb);
1824		return 0;
1825	}
1826
1827	off->td_cmd |= cmd;
1828	off->td_offset |= offset;
1829	return 1;
1830}
1831
1832/**
1833 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1834 * @tx_ring: ring to send buffer on
1835 * @first: pointer to struct ice_tx_buf
1836 *
1837 * Checks the skb and set up correspondingly several generic transmit flags
1838 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1839 *
1840 * Returns error code indicate the frame should be dropped upon error and the
1841 * otherwise returns 0 to indicate the flags has been set properly.
1842 */
1843static int
1844ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1845{
1846	struct sk_buff *skb = first->skb;
1847	__be16 protocol = skb->protocol;
1848
1849	if (protocol == htons(ETH_P_8021Q) &&
1850	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1851		/* when HW VLAN acceleration is turned off by the user the
1852		 * stack sets the protocol to 8021q so that the driver
1853		 * can take any steps required to support the SW only
1854		 * VLAN handling. In our case the driver doesn't need
1855		 * to take any further steps so just set the protocol
1856		 * to the encapsulated ethertype.
1857		 */
1858		skb->protocol = vlan_get_protocol(skb);
1859		return 0;
1860	}
1861
1862	/* if we have a HW VLAN tag being added, default to the HW one */
1863	if (skb_vlan_tag_present(skb)) {
1864		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1865		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1866	} else if (protocol == htons(ETH_P_8021Q)) {
1867		struct vlan_hdr *vhdr, _vhdr;
1868
1869		/* for SW VLAN, check the next protocol and store the tag */
1870		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1871							     sizeof(_vhdr),
1872							     &_vhdr);
1873		if (!vhdr)
1874			return -EINVAL;
1875
1876		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1877				   ICE_TX_FLAGS_VLAN_S;
1878		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1879	}
1880
1881	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1882}
1883
1884/**
1885 * ice_tso - computes mss and TSO length to prepare for TSO
1886 * @first: pointer to struct ice_tx_buf
1887 * @off: pointer to struct that holds offload parameters
1888 *
1889 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1890 */
1891static
1892int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1893{
1894	struct sk_buff *skb = first->skb;
1895	union {
1896		struct iphdr *v4;
1897		struct ipv6hdr *v6;
1898		unsigned char *hdr;
1899	} ip;
1900	union {
1901		struct tcphdr *tcp;
1902		unsigned char *hdr;
1903	} l4;
1904	u64 cd_mss, cd_tso_len;
1905	u32 paylen, l4_start;
1906	int err;
1907
1908	if (skb->ip_summed != CHECKSUM_PARTIAL)
1909		return 0;
1910
1911	if (!skb_is_gso(skb))
1912		return 0;
1913
1914	err = skb_cow_head(skb, 0);
1915	if (err < 0)
1916		return err;
1917
1918	/* cppcheck-suppress unreadVariable */
1919	ip.hdr = skb_network_header(skb);
1920	l4.hdr = skb_transport_header(skb);
1921
1922	/* initialize outer IP header fields */
1923	if (ip.v4->version == 4) {
1924		ip.v4->tot_len = 0;
1925		ip.v4->check = 0;
1926	} else {
1927		ip.v6->payload_len = 0;
1928	}
1929
1930	/* determine offset of transport header */
1931	l4_start = l4.hdr - skb->data;
1932
1933	/* remove payload length from checksum */
1934	paylen = skb->len - l4_start;
1935	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1936
1937	/* compute length of segmentation header */
1938	off->header_len = (l4.tcp->doff * 4) + l4_start;
1939
1940	/* update gso_segs and bytecount */
1941	first->gso_segs = skb_shinfo(skb)->gso_segs;
1942	first->bytecount += (first->gso_segs - 1) * off->header_len;
1943
1944	cd_tso_len = skb->len - off->header_len;
1945	cd_mss = skb_shinfo(skb)->gso_size;
1946
1947	/* record cdesc_qw1 with TSO parameters */
1948	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1949			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1950			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1951			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1952	first->tx_flags |= ICE_TX_FLAGS_TSO;
1953	return 1;
1954}
1955
1956/**
1957 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1958 * @size: transmit request size in bytes
1959 *
1960 * Due to hardware alignment restrictions (4K alignment), we need to
1961 * assume that we can have no more than 12K of data per descriptor, even
1962 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1963 * Thus, we need to divide by 12K. But division is slow! Instead,
1964 * we decompose the operation into shifts and one relatively cheap
1965 * multiply operation.
1966 *
1967 * To divide by 12K, we first divide by 4K, then divide by 3:
1968 *     To divide by 4K, shift right by 12 bits
1969 *     To divide by 3, multiply by 85, then divide by 256
1970 *     (Divide by 256 is done by shifting right by 8 bits)
1971 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1972 * 3, we'll underestimate near each multiple of 12K. This is actually more
1973 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1974 * segment. For our purposes this is accurate out to 1M which is orders of
1975 * magnitude greater than our largest possible GSO size.
1976 *
1977 * This would then be implemented as:
1978 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1979 *
1980 * Since multiplication and division are commutative, we can reorder
1981 * operations into:
1982 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1983 */
1984static unsigned int ice_txd_use_count(unsigned int size)
1985{
1986	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1987}
1988
1989/**
1990 * ice_xmit_desc_count - calculate number of Tx descriptors needed
1991 * @skb: send buffer
1992 *
1993 * Returns number of data descriptors needed for this skb.
1994 */
1995static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1996{
1997	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
1998	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1999	unsigned int count = 0, size = skb_headlen(skb);
2000
2001	for (;;) {
2002		count += ice_txd_use_count(size);
2003
2004		if (!nr_frags--)
2005			break;
2006
2007		size = skb_frag_size(frag++);
2008	}
2009
2010	return count;
2011}
2012
2013/**
2014 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2015 * @skb: send buffer
2016 *
2017 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2018 * and so we need to figure out the cases where we need to linearize the skb.
2019 *
2020 * For TSO we need to count the TSO header and segment payload separately.
2021 * As such we need to check cases where we have 7 fragments or more as we
2022 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2023 * the segment payload in the first descriptor, and another 7 for the
2024 * fragments.
2025 */
2026static bool __ice_chk_linearize(struct sk_buff *skb)
2027{
2028	const skb_frag_t *frag, *stale;
2029	int nr_frags, sum;
2030
2031	/* no need to check if number of frags is less than 7 */
2032	nr_frags = skb_shinfo(skb)->nr_frags;
2033	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2034		return false;
2035
2036	/* We need to walk through the list and validate that each group
2037	 * of 6 fragments totals at least gso_size.
2038	 */
2039	nr_frags -= ICE_MAX_BUF_TXD - 2;
2040	frag = &skb_shinfo(skb)->frags[0];
2041
2042	/* Initialize size to the negative value of gso_size minus 1. We
2043	 * use this as the worst case scenerio in which the frag ahead
2044	 * of us only provides one byte which is why we are limited to 6
2045	 * descriptors for a single transmit as the header and previous
2046	 * fragment are already consuming 2 descriptors.
2047	 */
2048	sum = 1 - skb_shinfo(skb)->gso_size;
2049
2050	/* Add size of frags 0 through 4 to create our initial sum */
2051	sum += skb_frag_size(frag++);
2052	sum += skb_frag_size(frag++);
2053	sum += skb_frag_size(frag++);
2054	sum += skb_frag_size(frag++);
2055	sum += skb_frag_size(frag++);
2056
2057	/* Walk through fragments adding latest fragment, testing it, and
2058	 * then removing stale fragments from the sum.
2059	 */
2060	stale = &skb_shinfo(skb)->frags[0];
2061	for (;;) {
2062		sum += skb_frag_size(frag++);
2063
2064		/* if sum is negative we failed to make sufficient progress */
2065		if (sum < 0)
2066			return true;
2067
2068		if (!nr_frags--)
2069			break;
2070
2071		sum -= skb_frag_size(stale++);
2072	}
2073
2074	return false;
2075}
2076
2077/**
2078 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2079 * @skb:      send buffer
2080 * @count:    number of buffers used
2081 *
2082 * Note: Our HW can't scatter-gather more than 8 fragments to build
2083 * a packet on the wire and so we need to figure out the cases where we
2084 * need to linearize the skb.
2085 */
2086static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2087{
2088	/* Both TSO and single send will work if count is less than 8 */
2089	if (likely(count < ICE_MAX_BUF_TXD))
2090		return false;
2091
2092	if (skb_is_gso(skb))
2093		return __ice_chk_linearize(skb);
2094
2095	/* we can support up to 8 data buffers for a single send */
2096	return count != ICE_MAX_BUF_TXD;
2097}
2098
2099/**
2100 * ice_xmit_frame_ring - Sends buffer on Tx ring
2101 * @skb: send buffer
2102 * @tx_ring: ring to send buffer on
2103 *
2104 * Returns NETDEV_TX_OK if sent, else an error code
2105 */
2106static netdev_tx_t
2107ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2108{
2109	struct ice_tx_offload_params offload = { 0 };
2110	struct ice_vsi *vsi = tx_ring->vsi;
2111	struct ice_tx_buf *first;
2112	unsigned int count;
2113	int tso, csum;
2114
2115	count = ice_xmit_desc_count(skb);
2116	if (ice_chk_linearize(skb, count)) {
2117		if (__skb_linearize(skb))
2118			goto out_drop;
2119		count = ice_txd_use_count(skb->len);
2120		tx_ring->tx_stats.tx_linearize++;
2121	}
2122
2123	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2124	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2125	 *       + 4 desc gap to avoid the cache line where head is,
2126	 *       + 1 desc for context descriptor,
2127	 * otherwise try next time
2128	 */
2129	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2130			      ICE_DESCS_FOR_CTX_DESC)) {
2131		tx_ring->tx_stats.tx_busy++;
2132		return NETDEV_TX_BUSY;
2133	}
2134
2135	offload.tx_ring = tx_ring;
2136
2137	/* record the location of the first descriptor for this packet */
2138	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2139	first->skb = skb;
2140	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2141	first->gso_segs = 1;
2142	first->tx_flags = 0;
2143
2144	/* prepare the VLAN tagging flags for Tx */
2145	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2146		goto out_drop;
2147
2148	/* set up TSO offload */
2149	tso = ice_tso(first, &offload);
2150	if (tso < 0)
2151		goto out_drop;
2152
2153	/* always set up Tx checksum offload */
2154	csum = ice_tx_csum(first, &offload);
2155	if (csum < 0)
2156		goto out_drop;
2157
2158	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2159	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2160		     vsi->type == ICE_VSI_PF &&
2161		     vsi->port_info->is_sw_lldp))
2162		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2163					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2164					ICE_TXD_CTX_QW1_CMD_S);
2165
2166	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2167		struct ice_tx_ctx_desc *cdesc;
2168		int i = tx_ring->next_to_use;
2169
2170		/* grab the next descriptor */
2171		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2172		i++;
2173		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2174
2175		/* setup context descriptor */
2176		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2177		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2178		cdesc->rsvd = cpu_to_le16(0);
2179		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2180	}
2181
2182	ice_tx_map(tx_ring, first, &offload);
2183	return NETDEV_TX_OK;
2184
2185out_drop:
2186	dev_kfree_skb_any(skb);
2187	return NETDEV_TX_OK;
2188}
2189
2190/**
2191 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2192 * @skb: send buffer
2193 * @netdev: network interface device structure
2194 *
2195 * Returns NETDEV_TX_OK if sent, else an error code
2196 */
2197netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2198{
2199	struct ice_netdev_priv *np = netdev_priv(netdev);
2200	struct ice_vsi *vsi = np->vsi;
2201	struct ice_ring *tx_ring;
2202
2203	tx_ring = vsi->tx_rings[skb->queue_mapping];
2204
2205	/* hardware can't handle really short frames, hardware padding works
2206	 * beyond this point
2207	 */
2208	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2209		return NETDEV_TX_OK;
2210
2211	return ice_xmit_frame_ring(skb, tx_ring);
2212}