Loading...
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include "i40e_prototype.h"
28
29/**
30 * i40e_init_nvm_ops - Initialize NVM function pointers
31 * @hw: pointer to the HW structure
32 *
33 * Setup the function pointers and the NVM info structure. Should be called
34 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35 * Please notice that the NVM term is used here (& in all methods covered
36 * in this file) as an equivalent of the FLASH part mapped into the SR.
37 * We are accessing FLASH always thru the Shadow RAM.
38 **/
39i40e_status i40e_init_nvm(struct i40e_hw *hw)
40{
41 struct i40e_nvm_info *nvm = &hw->nvm;
42 i40e_status ret_code = 0;
43 u32 fla, gens;
44 u8 sr_size;
45
46 /* The SR size is stored regardless of the nvm programming mode
47 * as the blank mode may be used in the factory line.
48 */
49 gens = rd32(hw, I40E_GLNVM_GENS);
50 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 /* Switching to words (sr_size contains power of 2KB) */
53 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54
55 /* Check if we are in the normal or blank NVM programming mode */
56 fla = rd32(hw, I40E_GLNVM_FLA);
57 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 /* Max NVM timeout */
59 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 nvm->blank_nvm_mode = false;
61 } else { /* Blank programming mode */
62 nvm->blank_nvm_mode = true;
63 ret_code = I40E_ERR_NVM_BLANK_MODE;
64 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 }
66
67 return ret_code;
68}
69
70/**
71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72 * @hw: pointer to the HW structure
73 * @access: NVM access type (read or write)
74 *
75 * This function will request NVM ownership for reading
76 * via the proper Admin Command.
77 **/
78i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 enum i40e_aq_resource_access_type access)
80{
81 i40e_status ret_code = 0;
82 u64 gtime, timeout;
83 u64 time_left = 0;
84
85 if (hw->nvm.blank_nvm_mode)
86 goto i40e_i40e_acquire_nvm_exit;
87
88 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 0, &time_left, NULL);
90 /* Reading the Global Device Timer */
91 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92
93 /* Store the timeout */
94 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95
96 if (ret_code)
97 i40e_debug(hw, I40E_DEBUG_NVM,
98 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 access, time_left, ret_code, hw->aq.asq_last_status);
100
101 if (ret_code && time_left) {
102 /* Poll until the current NVM owner timeouts */
103 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 while ((gtime < timeout) && time_left) {
105 usleep_range(10000, 20000);
106 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 ret_code = i40e_aq_request_resource(hw,
108 I40E_NVM_RESOURCE_ID,
109 access, 0, &time_left,
110 NULL);
111 if (!ret_code) {
112 hw->nvm.hw_semaphore_timeout =
113 I40E_MS_TO_GTIME(time_left) + gtime;
114 break;
115 }
116 }
117 if (ret_code) {
118 hw->nvm.hw_semaphore_timeout = 0;
119 i40e_debug(hw, I40E_DEBUG_NVM,
120 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 time_left, ret_code, hw->aq.asq_last_status);
122 }
123 }
124
125i40e_i40e_acquire_nvm_exit:
126 return ret_code;
127}
128
129/**
130 * i40e_release_nvm - Generic request for releasing the NVM ownership
131 * @hw: pointer to the HW structure
132 *
133 * This function will release NVM resource via the proper Admin Command.
134 **/
135void i40e_release_nvm(struct i40e_hw *hw)
136{
137 if (!hw->nvm.blank_nvm_mode)
138 i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
139}
140
141/**
142 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
143 * @hw: pointer to the HW structure
144 *
145 * Polls the SRCTL Shadow RAM register done bit.
146 **/
147static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
148{
149 i40e_status ret_code = I40E_ERR_TIMEOUT;
150 u32 srctl, wait_cnt;
151
152 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
153 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
154 srctl = rd32(hw, I40E_GLNVM_SRCTL);
155 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
156 ret_code = 0;
157 break;
158 }
159 udelay(5);
160 }
161 if (ret_code == I40E_ERR_TIMEOUT)
162 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
163 return ret_code;
164}
165
166/**
167 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
168 * @hw: pointer to the HW structure
169 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
170 * @data: word read from the Shadow RAM
171 *
172 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
173 **/
174static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
175 u16 *data)
176{
177 i40e_status ret_code = I40E_ERR_TIMEOUT;
178 u32 sr_reg;
179
180 if (offset >= hw->nvm.sr_size) {
181 i40e_debug(hw, I40E_DEBUG_NVM,
182 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
183 offset, hw->nvm.sr_size);
184 ret_code = I40E_ERR_PARAM;
185 goto read_nvm_exit;
186 }
187
188 /* Poll the done bit first */
189 ret_code = i40e_poll_sr_srctl_done_bit(hw);
190 if (!ret_code) {
191 /* Write the address and start reading */
192 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
193 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
194 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
195
196 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
197 ret_code = i40e_poll_sr_srctl_done_bit(hw);
198 if (!ret_code) {
199 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
200 *data = (u16)((sr_reg &
201 I40E_GLNVM_SRDATA_RDDATA_MASK)
202 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
203 }
204 }
205 if (ret_code)
206 i40e_debug(hw, I40E_DEBUG_NVM,
207 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
208 offset);
209
210read_nvm_exit:
211 return ret_code;
212}
213
214/**
215 * i40e_read_nvm_aq - Read Shadow RAM.
216 * @hw: pointer to the HW structure.
217 * @module_pointer: module pointer location in words from the NVM beginning
218 * @offset: offset in words from module start
219 * @words: number of words to write
220 * @data: buffer with words to write to the Shadow RAM
221 * @last_command: tells the AdminQ that this is the last command
222 *
223 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
224 **/
225static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
226 u32 offset, u16 words, void *data,
227 bool last_command)
228{
229 i40e_status ret_code = I40E_ERR_NVM;
230 struct i40e_asq_cmd_details cmd_details;
231
232 memset(&cmd_details, 0, sizeof(cmd_details));
233
234 /* Here we are checking the SR limit only for the flat memory model.
235 * We cannot do it for the module-based model, as we did not acquire
236 * the NVM resource yet (we cannot get the module pointer value).
237 * Firmware will check the module-based model.
238 */
239 if ((offset + words) > hw->nvm.sr_size)
240 i40e_debug(hw, I40E_DEBUG_NVM,
241 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
242 (offset + words), hw->nvm.sr_size);
243 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
244 /* We can write only up to 4KB (one sector), in one AQ write */
245 i40e_debug(hw, I40E_DEBUG_NVM,
246 "NVM write fail error: tried to write %d words, limit is %d.\n",
247 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
248 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
249 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
250 /* A single write cannot spread over two sectors */
251 i40e_debug(hw, I40E_DEBUG_NVM,
252 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
253 offset, words);
254 else
255 ret_code = i40e_aq_read_nvm(hw, module_pointer,
256 2 * offset, /*bytes*/
257 2 * words, /*bytes*/
258 data, last_command, &cmd_details);
259
260 return ret_code;
261}
262
263/**
264 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
265 * @hw: pointer to the HW structure
266 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
267 * @data: word read from the Shadow RAM
268 *
269 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
270 **/
271static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
272 u16 *data)
273{
274 i40e_status ret_code = I40E_ERR_TIMEOUT;
275
276 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
277 *data = le16_to_cpu(*(__le16 *)data);
278
279 return ret_code;
280}
281
282/**
283 * i40e_read_nvm_word - Reads Shadow RAM
284 * @hw: pointer to the HW structure
285 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286 * @data: word read from the Shadow RAM
287 *
288 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
289 **/
290i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
291 u16 *data)
292{
293 enum i40e_status_code ret_code = 0;
294
295 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
296 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
297 if (!ret_code) {
298 ret_code = i40e_read_nvm_word_aq(hw, offset, data);
299 i40e_release_nvm(hw);
300 }
301 } else {
302 ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
303 }
304 return ret_code;
305}
306
307/**
308 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
309 * @hw: pointer to the HW structure
310 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
311 * @words: (in) number of words to read; (out) number of words actually read
312 * @data: words read from the Shadow RAM
313 *
314 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
315 * method. The buffer read is preceded by the NVM ownership take
316 * and followed by the release.
317 **/
318static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
319 u16 *words, u16 *data)
320{
321 i40e_status ret_code = 0;
322 u16 index, word;
323
324 /* Loop thru the selected region */
325 for (word = 0; word < *words; word++) {
326 index = offset + word;
327 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
328 if (ret_code)
329 break;
330 }
331
332 /* Update the number of words read from the Shadow RAM */
333 *words = word;
334
335 return ret_code;
336}
337
338/**
339 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
340 * @hw: pointer to the HW structure
341 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
342 * @words: (in) number of words to read; (out) number of words actually read
343 * @data: words read from the Shadow RAM
344 *
345 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
346 * method. The buffer read is preceded by the NVM ownership take
347 * and followed by the release.
348 **/
349static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
350 u16 *words, u16 *data)
351{
352 i40e_status ret_code;
353 u16 read_size = *words;
354 bool last_cmd = false;
355 u16 words_read = 0;
356 u16 i = 0;
357
358 do {
359 /* Calculate number of bytes we should read in this step.
360 * FVL AQ do not allow to read more than one page at a time or
361 * to cross page boundaries.
362 */
363 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
364 read_size = min(*words,
365 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
366 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
367 else
368 read_size = min((*words - words_read),
369 I40E_SR_SECTOR_SIZE_IN_WORDS);
370
371 /* Check if this is last command, if so set proper flag */
372 if ((words_read + read_size) >= *words)
373 last_cmd = true;
374
375 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
376 data + words_read, last_cmd);
377 if (ret_code)
378 goto read_nvm_buffer_aq_exit;
379
380 /* Increment counter for words already read and move offset to
381 * new read location
382 */
383 words_read += read_size;
384 offset += read_size;
385 } while (words_read < *words);
386
387 for (i = 0; i < *words; i++)
388 data[i] = le16_to_cpu(((__le16 *)data)[i]);
389
390read_nvm_buffer_aq_exit:
391 *words = words_read;
392 return ret_code;
393}
394
395/**
396 * i40e_read_nvm_buffer - Reads Shadow RAM buffer
397 * @hw: pointer to the HW structure
398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
399 * @words: (in) number of words to read; (out) number of words actually read
400 * @data: words read from the Shadow RAM
401 *
402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
403 * method. The buffer read is preceded by the NVM ownership take
404 * and followed by the release.
405 **/
406i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
407 u16 *words, u16 *data)
408{
409 enum i40e_status_code ret_code = 0;
410
411 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
412 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
413 if (!ret_code) {
414 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
415 data);
416 i40e_release_nvm(hw);
417 }
418 } else {
419 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
420 }
421 return ret_code;
422}
423
424/**
425 * i40e_write_nvm_aq - Writes Shadow RAM.
426 * @hw: pointer to the HW structure.
427 * @module_pointer: module pointer location in words from the NVM beginning
428 * @offset: offset in words from module start
429 * @words: number of words to write
430 * @data: buffer with words to write to the Shadow RAM
431 * @last_command: tells the AdminQ that this is the last command
432 *
433 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
434 **/
435static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
436 u32 offset, u16 words, void *data,
437 bool last_command)
438{
439 i40e_status ret_code = I40E_ERR_NVM;
440 struct i40e_asq_cmd_details cmd_details;
441
442 memset(&cmd_details, 0, sizeof(cmd_details));
443 cmd_details.wb_desc = &hw->nvm_wb_desc;
444
445 /* Here we are checking the SR limit only for the flat memory model.
446 * We cannot do it for the module-based model, as we did not acquire
447 * the NVM resource yet (we cannot get the module pointer value).
448 * Firmware will check the module-based model.
449 */
450 if ((offset + words) > hw->nvm.sr_size)
451 i40e_debug(hw, I40E_DEBUG_NVM,
452 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
453 (offset + words), hw->nvm.sr_size);
454 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
455 /* We can write only up to 4KB (one sector), in one AQ write */
456 i40e_debug(hw, I40E_DEBUG_NVM,
457 "NVM write fail error: tried to write %d words, limit is %d.\n",
458 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
459 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
460 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
461 /* A single write cannot spread over two sectors */
462 i40e_debug(hw, I40E_DEBUG_NVM,
463 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
464 offset, words);
465 else
466 ret_code = i40e_aq_update_nvm(hw, module_pointer,
467 2 * offset, /*bytes*/
468 2 * words, /*bytes*/
469 data, last_command, &cmd_details);
470
471 return ret_code;
472}
473
474/**
475 * i40e_calc_nvm_checksum - Calculates and returns the checksum
476 * @hw: pointer to hardware structure
477 * @checksum: pointer to the checksum
478 *
479 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
480 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
481 * is customer specific and unknown. Therefore, this function skips all maximum
482 * possible size of VPD (1kB).
483 **/
484static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
485 u16 *checksum)
486{
487 i40e_status ret_code;
488 struct i40e_virt_mem vmem;
489 u16 pcie_alt_module = 0;
490 u16 checksum_local = 0;
491 u16 vpd_module = 0;
492 u16 *data;
493 u16 i = 0;
494
495 ret_code = i40e_allocate_virt_mem(hw, &vmem,
496 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
497 if (ret_code)
498 goto i40e_calc_nvm_checksum_exit;
499 data = (u16 *)vmem.va;
500
501 /* read pointer to VPD area */
502 ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
503 if (ret_code) {
504 ret_code = I40E_ERR_NVM_CHECKSUM;
505 goto i40e_calc_nvm_checksum_exit;
506 }
507
508 /* read pointer to PCIe Alt Auto-load module */
509 ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
510 &pcie_alt_module);
511 if (ret_code) {
512 ret_code = I40E_ERR_NVM_CHECKSUM;
513 goto i40e_calc_nvm_checksum_exit;
514 }
515
516 /* Calculate SW checksum that covers the whole 64kB shadow RAM
517 * except the VPD and PCIe ALT Auto-load modules
518 */
519 for (i = 0; i < hw->nvm.sr_size; i++) {
520 /* Read SR page */
521 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
522 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
523
524 ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
525 if (ret_code) {
526 ret_code = I40E_ERR_NVM_CHECKSUM;
527 goto i40e_calc_nvm_checksum_exit;
528 }
529 }
530
531 /* Skip Checksum word */
532 if (i == I40E_SR_SW_CHECKSUM_WORD)
533 continue;
534 /* Skip VPD module (convert byte size to word count) */
535 if ((i >= (u32)vpd_module) &&
536 (i < ((u32)vpd_module +
537 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
538 continue;
539 }
540 /* Skip PCIe ALT module (convert byte size to word count) */
541 if ((i >= (u32)pcie_alt_module) &&
542 (i < ((u32)pcie_alt_module +
543 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
544 continue;
545 }
546
547 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
548 }
549
550 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
551
552i40e_calc_nvm_checksum_exit:
553 i40e_free_virt_mem(hw, &vmem);
554 return ret_code;
555}
556
557/**
558 * i40e_update_nvm_checksum - Updates the NVM checksum
559 * @hw: pointer to hardware structure
560 *
561 * NVM ownership must be acquired before calling this function and released
562 * on ARQ completion event reception by caller.
563 * This function will commit SR to NVM.
564 **/
565i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
566{
567 i40e_status ret_code;
568 u16 checksum;
569 __le16 le_sum;
570
571 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
572 if (!ret_code) {
573 le_sum = cpu_to_le16(checksum);
574 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
575 1, &le_sum, true);
576 }
577
578 return ret_code;
579}
580
581/**
582 * i40e_validate_nvm_checksum - Validate EEPROM checksum
583 * @hw: pointer to hardware structure
584 * @checksum: calculated checksum
585 *
586 * Performs checksum calculation and validates the NVM SW checksum. If the
587 * caller does not need checksum, the value can be NULL.
588 **/
589i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
590 u16 *checksum)
591{
592 i40e_status ret_code = 0;
593 u16 checksum_sr = 0;
594 u16 checksum_local = 0;
595
596 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
597 if (ret_code)
598 goto i40e_validate_nvm_checksum_exit;
599
600 /* Do not use i40e_read_nvm_word() because we do not want to take
601 * the synchronization semaphores twice here.
602 */
603 i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
604
605 /* Verify read checksum from EEPROM is the same as
606 * calculated checksum
607 */
608 if (checksum_local != checksum_sr)
609 ret_code = I40E_ERR_NVM_CHECKSUM;
610
611 /* If the user cares, return the calculated checksum */
612 if (checksum)
613 *checksum = checksum_local;
614
615i40e_validate_nvm_checksum_exit:
616 return ret_code;
617}
618
619static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
620 struct i40e_nvm_access *cmd,
621 u8 *bytes, int *perrno);
622static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
623 struct i40e_nvm_access *cmd,
624 u8 *bytes, int *perrno);
625static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
626 struct i40e_nvm_access *cmd,
627 u8 *bytes, int *errno);
628static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
629 struct i40e_nvm_access *cmd,
630 int *perrno);
631static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
632 struct i40e_nvm_access *cmd,
633 int *perrno);
634static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
635 struct i40e_nvm_access *cmd,
636 u8 *bytes, int *perrno);
637static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
638 struct i40e_nvm_access *cmd,
639 u8 *bytes, int *perrno);
640static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
641 struct i40e_nvm_access *cmd,
642 u8 *bytes, int *perrno);
643static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
644 struct i40e_nvm_access *cmd,
645 u8 *bytes, int *perrno);
646static inline u8 i40e_nvmupd_get_module(u32 val)
647{
648 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
649}
650static inline u8 i40e_nvmupd_get_transaction(u32 val)
651{
652 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
653}
654
655static const char * const i40e_nvm_update_state_str[] = {
656 "I40E_NVMUPD_INVALID",
657 "I40E_NVMUPD_READ_CON",
658 "I40E_NVMUPD_READ_SNT",
659 "I40E_NVMUPD_READ_LCB",
660 "I40E_NVMUPD_READ_SA",
661 "I40E_NVMUPD_WRITE_ERA",
662 "I40E_NVMUPD_WRITE_CON",
663 "I40E_NVMUPD_WRITE_SNT",
664 "I40E_NVMUPD_WRITE_LCB",
665 "I40E_NVMUPD_WRITE_SA",
666 "I40E_NVMUPD_CSUM_CON",
667 "I40E_NVMUPD_CSUM_SA",
668 "I40E_NVMUPD_CSUM_LCB",
669 "I40E_NVMUPD_STATUS",
670 "I40E_NVMUPD_EXEC_AQ",
671 "I40E_NVMUPD_GET_AQ_RESULT",
672};
673
674/**
675 * i40e_nvmupd_command - Process an NVM update command
676 * @hw: pointer to hardware structure
677 * @cmd: pointer to nvm update command
678 * @bytes: pointer to the data buffer
679 * @perrno: pointer to return error code
680 *
681 * Dispatches command depending on what update state is current
682 **/
683i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
684 struct i40e_nvm_access *cmd,
685 u8 *bytes, int *perrno)
686{
687 i40e_status status;
688 enum i40e_nvmupd_cmd upd_cmd;
689
690 /* assume success */
691 *perrno = 0;
692
693 /* early check for status command and debug msgs */
694 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
695
696 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
697 i40e_nvm_update_state_str[upd_cmd],
698 hw->nvmupd_state,
699 hw->aq.nvm_release_on_done,
700 cmd->command, cmd->config, cmd->offset, cmd->data_size);
701
702 if (upd_cmd == I40E_NVMUPD_INVALID) {
703 *perrno = -EFAULT;
704 i40e_debug(hw, I40E_DEBUG_NVM,
705 "i40e_nvmupd_validate_command returns %d errno %d\n",
706 upd_cmd, *perrno);
707 }
708
709 /* a status request returns immediately rather than
710 * going into the state machine
711 */
712 if (upd_cmd == I40E_NVMUPD_STATUS) {
713 bytes[0] = hw->nvmupd_state;
714 return 0;
715 }
716
717 switch (hw->nvmupd_state) {
718 case I40E_NVMUPD_STATE_INIT:
719 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
720 break;
721
722 case I40E_NVMUPD_STATE_READING:
723 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
724 break;
725
726 case I40E_NVMUPD_STATE_WRITING:
727 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
728 break;
729
730 case I40E_NVMUPD_STATE_INIT_WAIT:
731 case I40E_NVMUPD_STATE_WRITE_WAIT:
732 status = I40E_ERR_NOT_READY;
733 *perrno = -EBUSY;
734 break;
735
736 default:
737 /* invalid state, should never happen */
738 i40e_debug(hw, I40E_DEBUG_NVM,
739 "NVMUPD: no such state %d\n", hw->nvmupd_state);
740 status = I40E_NOT_SUPPORTED;
741 *perrno = -ESRCH;
742 break;
743 }
744 return status;
745}
746
747/**
748 * i40e_nvmupd_state_init - Handle NVM update state Init
749 * @hw: pointer to hardware structure
750 * @cmd: pointer to nvm update command buffer
751 * @bytes: pointer to the data buffer
752 * @perrno: pointer to return error code
753 *
754 * Process legitimate commands of the Init state and conditionally set next
755 * state. Reject all other commands.
756 **/
757static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
758 struct i40e_nvm_access *cmd,
759 u8 *bytes, int *perrno)
760{
761 i40e_status status = 0;
762 enum i40e_nvmupd_cmd upd_cmd;
763
764 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
765
766 switch (upd_cmd) {
767 case I40E_NVMUPD_READ_SA:
768 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
769 if (status) {
770 *perrno = i40e_aq_rc_to_posix(status,
771 hw->aq.asq_last_status);
772 } else {
773 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
774 i40e_release_nvm(hw);
775 }
776 break;
777
778 case I40E_NVMUPD_READ_SNT:
779 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
780 if (status) {
781 *perrno = i40e_aq_rc_to_posix(status,
782 hw->aq.asq_last_status);
783 } else {
784 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
785 if (status)
786 i40e_release_nvm(hw);
787 else
788 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
789 }
790 break;
791
792 case I40E_NVMUPD_WRITE_ERA:
793 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
794 if (status) {
795 *perrno = i40e_aq_rc_to_posix(status,
796 hw->aq.asq_last_status);
797 } else {
798 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
799 if (status) {
800 i40e_release_nvm(hw);
801 } else {
802 hw->aq.nvm_release_on_done = true;
803 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
804 }
805 }
806 break;
807
808 case I40E_NVMUPD_WRITE_SA:
809 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
810 if (status) {
811 *perrno = i40e_aq_rc_to_posix(status,
812 hw->aq.asq_last_status);
813 } else {
814 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
815 if (status) {
816 i40e_release_nvm(hw);
817 } else {
818 hw->aq.nvm_release_on_done = true;
819 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
820 }
821 }
822 break;
823
824 case I40E_NVMUPD_WRITE_SNT:
825 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
826 if (status) {
827 *perrno = i40e_aq_rc_to_posix(status,
828 hw->aq.asq_last_status);
829 } else {
830 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
831 if (status)
832 i40e_release_nvm(hw);
833 else
834 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
835 }
836 break;
837
838 case I40E_NVMUPD_CSUM_SA:
839 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
840 if (status) {
841 *perrno = i40e_aq_rc_to_posix(status,
842 hw->aq.asq_last_status);
843 } else {
844 status = i40e_update_nvm_checksum(hw);
845 if (status) {
846 *perrno = hw->aq.asq_last_status ?
847 i40e_aq_rc_to_posix(status,
848 hw->aq.asq_last_status) :
849 -EIO;
850 i40e_release_nvm(hw);
851 } else {
852 hw->aq.nvm_release_on_done = true;
853 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
854 }
855 }
856 break;
857
858 case I40E_NVMUPD_EXEC_AQ:
859 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
860 break;
861
862 case I40E_NVMUPD_GET_AQ_RESULT:
863 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
864 break;
865
866 default:
867 i40e_debug(hw, I40E_DEBUG_NVM,
868 "NVMUPD: bad cmd %s in init state\n",
869 i40e_nvm_update_state_str[upd_cmd]);
870 status = I40E_ERR_NVM;
871 *perrno = -ESRCH;
872 break;
873 }
874 return status;
875}
876
877/**
878 * i40e_nvmupd_state_reading - Handle NVM update state Reading
879 * @hw: pointer to hardware structure
880 * @cmd: pointer to nvm update command buffer
881 * @bytes: pointer to the data buffer
882 * @perrno: pointer to return error code
883 *
884 * NVM ownership is already held. Process legitimate commands and set any
885 * change in state; reject all other commands.
886 **/
887static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
888 struct i40e_nvm_access *cmd,
889 u8 *bytes, int *perrno)
890{
891 i40e_status status = 0;
892 enum i40e_nvmupd_cmd upd_cmd;
893
894 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
895
896 switch (upd_cmd) {
897 case I40E_NVMUPD_READ_SA:
898 case I40E_NVMUPD_READ_CON:
899 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
900 break;
901
902 case I40E_NVMUPD_READ_LCB:
903 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
904 i40e_release_nvm(hw);
905 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
906 break;
907
908 default:
909 i40e_debug(hw, I40E_DEBUG_NVM,
910 "NVMUPD: bad cmd %s in reading state.\n",
911 i40e_nvm_update_state_str[upd_cmd]);
912 status = I40E_NOT_SUPPORTED;
913 *perrno = -ESRCH;
914 break;
915 }
916 return status;
917}
918
919/**
920 * i40e_nvmupd_state_writing - Handle NVM update state Writing
921 * @hw: pointer to hardware structure
922 * @cmd: pointer to nvm update command buffer
923 * @bytes: pointer to the data buffer
924 * @perrno: pointer to return error code
925 *
926 * NVM ownership is already held. Process legitimate commands and set any
927 * change in state; reject all other commands
928 **/
929static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
930 struct i40e_nvm_access *cmd,
931 u8 *bytes, int *perrno)
932{
933 i40e_status status = 0;
934 enum i40e_nvmupd_cmd upd_cmd;
935 bool retry_attempt = false;
936
937 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
938
939retry:
940 switch (upd_cmd) {
941 case I40E_NVMUPD_WRITE_CON:
942 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
943 if (!status)
944 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
945 break;
946
947 case I40E_NVMUPD_WRITE_LCB:
948 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
949 if (status) {
950 *perrno = hw->aq.asq_last_status ?
951 i40e_aq_rc_to_posix(status,
952 hw->aq.asq_last_status) :
953 -EIO;
954 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
955 } else {
956 hw->aq.nvm_release_on_done = true;
957 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
958 }
959 break;
960
961 case I40E_NVMUPD_CSUM_CON:
962 status = i40e_update_nvm_checksum(hw);
963 if (status) {
964 *perrno = hw->aq.asq_last_status ?
965 i40e_aq_rc_to_posix(status,
966 hw->aq.asq_last_status) :
967 -EIO;
968 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
969 } else {
970 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
971 }
972 break;
973
974 case I40E_NVMUPD_CSUM_LCB:
975 status = i40e_update_nvm_checksum(hw);
976 if (status) {
977 *perrno = hw->aq.asq_last_status ?
978 i40e_aq_rc_to_posix(status,
979 hw->aq.asq_last_status) :
980 -EIO;
981 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
982 } else {
983 hw->aq.nvm_release_on_done = true;
984 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
985 }
986 break;
987
988 default:
989 i40e_debug(hw, I40E_DEBUG_NVM,
990 "NVMUPD: bad cmd %s in writing state.\n",
991 i40e_nvm_update_state_str[upd_cmd]);
992 status = I40E_NOT_SUPPORTED;
993 *perrno = -ESRCH;
994 break;
995 }
996
997 /* In some circumstances, a multi-write transaction takes longer
998 * than the default 3 minute timeout on the write semaphore. If
999 * the write failed with an EBUSY status, this is likely the problem,
1000 * so here we try to reacquire the semaphore then retry the write.
1001 * We only do one retry, then give up.
1002 */
1003 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1004 !retry_attempt) {
1005 i40e_status old_status = status;
1006 u32 old_asq_status = hw->aq.asq_last_status;
1007 u32 gtime;
1008
1009 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1010 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1011 i40e_debug(hw, I40E_DEBUG_ALL,
1012 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1013 gtime, hw->nvm.hw_semaphore_timeout);
1014 i40e_release_nvm(hw);
1015 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1016 if (status) {
1017 i40e_debug(hw, I40E_DEBUG_ALL,
1018 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1019 hw->aq.asq_last_status);
1020 status = old_status;
1021 hw->aq.asq_last_status = old_asq_status;
1022 } else {
1023 retry_attempt = true;
1024 goto retry;
1025 }
1026 }
1027 }
1028
1029 return status;
1030}
1031
1032/**
1033 * i40e_nvmupd_validate_command - Validate given command
1034 * @hw: pointer to hardware structure
1035 * @cmd: pointer to nvm update command buffer
1036 * @perrno: pointer to return error code
1037 *
1038 * Return one of the valid command types or I40E_NVMUPD_INVALID
1039 **/
1040static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1041 struct i40e_nvm_access *cmd,
1042 int *perrno)
1043{
1044 enum i40e_nvmupd_cmd upd_cmd;
1045 u8 module, transaction;
1046
1047 /* anything that doesn't match a recognized case is an error */
1048 upd_cmd = I40E_NVMUPD_INVALID;
1049
1050 transaction = i40e_nvmupd_get_transaction(cmd->config);
1051 module = i40e_nvmupd_get_module(cmd->config);
1052
1053 /* limits on data size */
1054 if ((cmd->data_size < 1) ||
1055 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1056 i40e_debug(hw, I40E_DEBUG_NVM,
1057 "i40e_nvmupd_validate_command data_size %d\n",
1058 cmd->data_size);
1059 *perrno = -EFAULT;
1060 return I40E_NVMUPD_INVALID;
1061 }
1062
1063 switch (cmd->command) {
1064 case I40E_NVM_READ:
1065 switch (transaction) {
1066 case I40E_NVM_CON:
1067 upd_cmd = I40E_NVMUPD_READ_CON;
1068 break;
1069 case I40E_NVM_SNT:
1070 upd_cmd = I40E_NVMUPD_READ_SNT;
1071 break;
1072 case I40E_NVM_LCB:
1073 upd_cmd = I40E_NVMUPD_READ_LCB;
1074 break;
1075 case I40E_NVM_SA:
1076 upd_cmd = I40E_NVMUPD_READ_SA;
1077 break;
1078 case I40E_NVM_EXEC:
1079 if (module == 0xf)
1080 upd_cmd = I40E_NVMUPD_STATUS;
1081 else if (module == 0)
1082 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1083 break;
1084 }
1085 break;
1086
1087 case I40E_NVM_WRITE:
1088 switch (transaction) {
1089 case I40E_NVM_CON:
1090 upd_cmd = I40E_NVMUPD_WRITE_CON;
1091 break;
1092 case I40E_NVM_SNT:
1093 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1094 break;
1095 case I40E_NVM_LCB:
1096 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1097 break;
1098 case I40E_NVM_SA:
1099 upd_cmd = I40E_NVMUPD_WRITE_SA;
1100 break;
1101 case I40E_NVM_ERA:
1102 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1103 break;
1104 case I40E_NVM_CSUM:
1105 upd_cmd = I40E_NVMUPD_CSUM_CON;
1106 break;
1107 case (I40E_NVM_CSUM|I40E_NVM_SA):
1108 upd_cmd = I40E_NVMUPD_CSUM_SA;
1109 break;
1110 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1111 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1112 break;
1113 case I40E_NVM_EXEC:
1114 if (module == 0)
1115 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1116 break;
1117 }
1118 break;
1119 }
1120
1121 return upd_cmd;
1122}
1123
1124/**
1125 * i40e_nvmupd_exec_aq - Run an AQ command
1126 * @hw: pointer to hardware structure
1127 * @cmd: pointer to nvm update command buffer
1128 * @bytes: pointer to the data buffer
1129 * @perrno: pointer to return error code
1130 *
1131 * cmd structure contains identifiers and data buffer
1132 **/
1133static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1134 struct i40e_nvm_access *cmd,
1135 u8 *bytes, int *perrno)
1136{
1137 struct i40e_asq_cmd_details cmd_details;
1138 i40e_status status;
1139 struct i40e_aq_desc *aq_desc;
1140 u32 buff_size = 0;
1141 u8 *buff = NULL;
1142 u32 aq_desc_len;
1143 u32 aq_data_len;
1144
1145 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1146 memset(&cmd_details, 0, sizeof(cmd_details));
1147 cmd_details.wb_desc = &hw->nvm_wb_desc;
1148
1149 aq_desc_len = sizeof(struct i40e_aq_desc);
1150 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1151
1152 /* get the aq descriptor */
1153 if (cmd->data_size < aq_desc_len) {
1154 i40e_debug(hw, I40E_DEBUG_NVM,
1155 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1156 cmd->data_size, aq_desc_len);
1157 *perrno = -EINVAL;
1158 return I40E_ERR_PARAM;
1159 }
1160 aq_desc = (struct i40e_aq_desc *)bytes;
1161
1162 /* if data buffer needed, make sure it's ready */
1163 aq_data_len = cmd->data_size - aq_desc_len;
1164 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1165 if (buff_size) {
1166 if (!hw->nvm_buff.va) {
1167 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1168 hw->aq.asq_buf_size);
1169 if (status)
1170 i40e_debug(hw, I40E_DEBUG_NVM,
1171 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1172 status);
1173 }
1174
1175 if (hw->nvm_buff.va) {
1176 buff = hw->nvm_buff.va;
1177 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1178 }
1179 }
1180
1181 /* and away we go! */
1182 status = i40e_asq_send_command(hw, aq_desc, buff,
1183 buff_size, &cmd_details);
1184 if (status) {
1185 i40e_debug(hw, I40E_DEBUG_NVM,
1186 "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1187 i40e_stat_str(hw, status),
1188 i40e_aq_str(hw, hw->aq.asq_last_status));
1189 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1190 }
1191
1192 return status;
1193}
1194
1195/**
1196 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1197 * @hw: pointer to hardware structure
1198 * @cmd: pointer to nvm update command buffer
1199 * @bytes: pointer to the data buffer
1200 * @perrno: pointer to return error code
1201 *
1202 * cmd structure contains identifiers and data buffer
1203 **/
1204static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1205 struct i40e_nvm_access *cmd,
1206 u8 *bytes, int *perrno)
1207{
1208 u32 aq_total_len;
1209 u32 aq_desc_len;
1210 int remainder;
1211 u8 *buff;
1212
1213 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1214
1215 aq_desc_len = sizeof(struct i40e_aq_desc);
1216 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1217
1218 /* check offset range */
1219 if (cmd->offset > aq_total_len) {
1220 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1221 __func__, cmd->offset, aq_total_len);
1222 *perrno = -EINVAL;
1223 return I40E_ERR_PARAM;
1224 }
1225
1226 /* check copylength range */
1227 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1228 int new_len = aq_total_len - cmd->offset;
1229
1230 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1231 __func__, cmd->data_size, new_len);
1232 cmd->data_size = new_len;
1233 }
1234
1235 remainder = cmd->data_size;
1236 if (cmd->offset < aq_desc_len) {
1237 u32 len = aq_desc_len - cmd->offset;
1238
1239 len = min(len, cmd->data_size);
1240 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1241 __func__, cmd->offset, cmd->offset + len);
1242
1243 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1244 memcpy(bytes, buff, len);
1245
1246 bytes += len;
1247 remainder -= len;
1248 buff = hw->nvm_buff.va;
1249 } else {
1250 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1251 }
1252
1253 if (remainder > 0) {
1254 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1255
1256 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1257 __func__, start_byte, start_byte + remainder);
1258 memcpy(bytes, buff, remainder);
1259 }
1260
1261 return 0;
1262}
1263
1264/**
1265 * i40e_nvmupd_nvm_read - Read NVM
1266 * @hw: pointer to hardware structure
1267 * @cmd: pointer to nvm update command buffer
1268 * @bytes: pointer to the data buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * cmd structure contains identifiers and data buffer
1272 **/
1273static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1274 struct i40e_nvm_access *cmd,
1275 u8 *bytes, int *perrno)
1276{
1277 struct i40e_asq_cmd_details cmd_details;
1278 i40e_status status;
1279 u8 module, transaction;
1280 bool last;
1281
1282 transaction = i40e_nvmupd_get_transaction(cmd->config);
1283 module = i40e_nvmupd_get_module(cmd->config);
1284 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1285
1286 memset(&cmd_details, 0, sizeof(cmd_details));
1287 cmd_details.wb_desc = &hw->nvm_wb_desc;
1288
1289 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1290 bytes, last, &cmd_details);
1291 if (status) {
1292 i40e_debug(hw, I40E_DEBUG_NVM,
1293 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1294 module, cmd->offset, cmd->data_size);
1295 i40e_debug(hw, I40E_DEBUG_NVM,
1296 "i40e_nvmupd_nvm_read status %d aq %d\n",
1297 status, hw->aq.asq_last_status);
1298 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1299 }
1300
1301 return status;
1302}
1303
1304/**
1305 * i40e_nvmupd_nvm_erase - Erase an NVM module
1306 * @hw: pointer to hardware structure
1307 * @cmd: pointer to nvm update command buffer
1308 * @perrno: pointer to return error code
1309 *
1310 * module, offset, data_size and data are in cmd structure
1311 **/
1312static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1313 struct i40e_nvm_access *cmd,
1314 int *perrno)
1315{
1316 i40e_status status = 0;
1317 struct i40e_asq_cmd_details cmd_details;
1318 u8 module, transaction;
1319 bool last;
1320
1321 transaction = i40e_nvmupd_get_transaction(cmd->config);
1322 module = i40e_nvmupd_get_module(cmd->config);
1323 last = (transaction & I40E_NVM_LCB);
1324
1325 memset(&cmd_details, 0, sizeof(cmd_details));
1326 cmd_details.wb_desc = &hw->nvm_wb_desc;
1327
1328 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1329 last, &cmd_details);
1330 if (status) {
1331 i40e_debug(hw, I40E_DEBUG_NVM,
1332 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1333 module, cmd->offset, cmd->data_size);
1334 i40e_debug(hw, I40E_DEBUG_NVM,
1335 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1336 status, hw->aq.asq_last_status);
1337 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1338 }
1339
1340 return status;
1341}
1342
1343/**
1344 * i40e_nvmupd_nvm_write - Write NVM
1345 * @hw: pointer to hardware structure
1346 * @cmd: pointer to nvm update command buffer
1347 * @bytes: pointer to the data buffer
1348 * @perrno: pointer to return error code
1349 *
1350 * module, offset, data_size and data are in cmd structure
1351 **/
1352static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1353 struct i40e_nvm_access *cmd,
1354 u8 *bytes, int *perrno)
1355{
1356 i40e_status status = 0;
1357 struct i40e_asq_cmd_details cmd_details;
1358 u8 module, transaction;
1359 bool last;
1360
1361 transaction = i40e_nvmupd_get_transaction(cmd->config);
1362 module = i40e_nvmupd_get_module(cmd->config);
1363 last = (transaction & I40E_NVM_LCB);
1364
1365 memset(&cmd_details, 0, sizeof(cmd_details));
1366 cmd_details.wb_desc = &hw->nvm_wb_desc;
1367
1368 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1369 (u16)cmd->data_size, bytes, last,
1370 &cmd_details);
1371 if (status) {
1372 i40e_debug(hw, I40E_DEBUG_NVM,
1373 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1374 module, cmd->offset, cmd->data_size);
1375 i40e_debug(hw, I40E_DEBUG_NVM,
1376 "i40e_nvmupd_nvm_write status %d aq %d\n",
1377 status, hw->aq.asq_last_status);
1378 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1379 }
1380
1381 return status;
1382}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "i40e_prototype.h"
5
6/**
7 * i40e_init_nvm_ops - Initialize NVM function pointers
8 * @hw: pointer to the HW structure
9 *
10 * Setup the function pointers and the NVM info structure. Should be called
11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
12 * Please notice that the NVM term is used here (& in all methods covered
13 * in this file) as an equivalent of the FLASH part mapped into the SR.
14 * We are accessing FLASH always thru the Shadow RAM.
15 **/
16i40e_status i40e_init_nvm(struct i40e_hw *hw)
17{
18 struct i40e_nvm_info *nvm = &hw->nvm;
19 i40e_status ret_code = 0;
20 u32 fla, gens;
21 u8 sr_size;
22
23 /* The SR size is stored regardless of the nvm programming mode
24 * as the blank mode may be used in the factory line.
25 */
26 gens = rd32(hw, I40E_GLNVM_GENS);
27 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
28 I40E_GLNVM_GENS_SR_SIZE_SHIFT);
29 /* Switching to words (sr_size contains power of 2KB) */
30 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
31
32 /* Check if we are in the normal or blank NVM programming mode */
33 fla = rd32(hw, I40E_GLNVM_FLA);
34 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
35 /* Max NVM timeout */
36 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
37 nvm->blank_nvm_mode = false;
38 } else { /* Blank programming mode */
39 nvm->blank_nvm_mode = true;
40 ret_code = I40E_ERR_NVM_BLANK_MODE;
41 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
42 }
43
44 return ret_code;
45}
46
47/**
48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
49 * @hw: pointer to the HW structure
50 * @access: NVM access type (read or write)
51 *
52 * This function will request NVM ownership for reading
53 * via the proper Admin Command.
54 **/
55i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
56 enum i40e_aq_resource_access_type access)
57{
58 i40e_status ret_code = 0;
59 u64 gtime, timeout;
60 u64 time_left = 0;
61
62 if (hw->nvm.blank_nvm_mode)
63 goto i40e_i40e_acquire_nvm_exit;
64
65 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
66 0, &time_left, NULL);
67 /* Reading the Global Device Timer */
68 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
69
70 /* Store the timeout */
71 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
72
73 if (ret_code)
74 i40e_debug(hw, I40E_DEBUG_NVM,
75 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
76 access, time_left, ret_code, hw->aq.asq_last_status);
77
78 if (ret_code && time_left) {
79 /* Poll until the current NVM owner timeouts */
80 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
81 while ((gtime < timeout) && time_left) {
82 usleep_range(10000, 20000);
83 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
84 ret_code = i40e_aq_request_resource(hw,
85 I40E_NVM_RESOURCE_ID,
86 access, 0, &time_left,
87 NULL);
88 if (!ret_code) {
89 hw->nvm.hw_semaphore_timeout =
90 I40E_MS_TO_GTIME(time_left) + gtime;
91 break;
92 }
93 }
94 if (ret_code) {
95 hw->nvm.hw_semaphore_timeout = 0;
96 i40e_debug(hw, I40E_DEBUG_NVM,
97 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
98 time_left, ret_code, hw->aq.asq_last_status);
99 }
100 }
101
102i40e_i40e_acquire_nvm_exit:
103 return ret_code;
104}
105
106/**
107 * i40e_release_nvm - Generic request for releasing the NVM ownership
108 * @hw: pointer to the HW structure
109 *
110 * This function will release NVM resource via the proper Admin Command.
111 **/
112void i40e_release_nvm(struct i40e_hw *hw)
113{
114 i40e_status ret_code = I40E_SUCCESS;
115 u32 total_delay = 0;
116
117 if (hw->nvm.blank_nvm_mode)
118 return;
119
120 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
121
122 /* there are some rare cases when trying to release the resource
123 * results in an admin Q timeout, so handle them correctly
124 */
125 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
126 (total_delay < hw->aq.asq_cmd_timeout)) {
127 usleep_range(1000, 2000);
128 ret_code = i40e_aq_release_resource(hw,
129 I40E_NVM_RESOURCE_ID,
130 0, NULL);
131 total_delay++;
132 }
133}
134
135/**
136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
137 * @hw: pointer to the HW structure
138 *
139 * Polls the SRCTL Shadow RAM register done bit.
140 **/
141static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
142{
143 i40e_status ret_code = I40E_ERR_TIMEOUT;
144 u32 srctl, wait_cnt;
145
146 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
147 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
148 srctl = rd32(hw, I40E_GLNVM_SRCTL);
149 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
150 ret_code = 0;
151 break;
152 }
153 udelay(5);
154 }
155 if (ret_code == I40E_ERR_TIMEOUT)
156 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
157 return ret_code;
158}
159
160/**
161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
162 * @hw: pointer to the HW structure
163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
164 * @data: word read from the Shadow RAM
165 *
166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
167 **/
168static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
169 u16 *data)
170{
171 i40e_status ret_code = I40E_ERR_TIMEOUT;
172 u32 sr_reg;
173
174 if (offset >= hw->nvm.sr_size) {
175 i40e_debug(hw, I40E_DEBUG_NVM,
176 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
177 offset, hw->nvm.sr_size);
178 ret_code = I40E_ERR_PARAM;
179 goto read_nvm_exit;
180 }
181
182 /* Poll the done bit first */
183 ret_code = i40e_poll_sr_srctl_done_bit(hw);
184 if (!ret_code) {
185 /* Write the address and start reading */
186 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
187 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
188 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
189
190 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
191 ret_code = i40e_poll_sr_srctl_done_bit(hw);
192 if (!ret_code) {
193 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
194 *data = (u16)((sr_reg &
195 I40E_GLNVM_SRDATA_RDDATA_MASK)
196 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
197 }
198 }
199 if (ret_code)
200 i40e_debug(hw, I40E_DEBUG_NVM,
201 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
202 offset);
203
204read_nvm_exit:
205 return ret_code;
206}
207
208/**
209 * i40e_read_nvm_aq - Read Shadow RAM.
210 * @hw: pointer to the HW structure.
211 * @module_pointer: module pointer location in words from the NVM beginning
212 * @offset: offset in words from module start
213 * @words: number of words to write
214 * @data: buffer with words to write to the Shadow RAM
215 * @last_command: tells the AdminQ that this is the last command
216 *
217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
218 **/
219static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
220 u8 module_pointer, u32 offset,
221 u16 words, void *data,
222 bool last_command)
223{
224 i40e_status ret_code = I40E_ERR_NVM;
225 struct i40e_asq_cmd_details cmd_details;
226
227 memset(&cmd_details, 0, sizeof(cmd_details));
228 cmd_details.wb_desc = &hw->nvm_wb_desc;
229
230 /* Here we are checking the SR limit only for the flat memory model.
231 * We cannot do it for the module-based model, as we did not acquire
232 * the NVM resource yet (we cannot get the module pointer value).
233 * Firmware will check the module-based model.
234 */
235 if ((offset + words) > hw->nvm.sr_size)
236 i40e_debug(hw, I40E_DEBUG_NVM,
237 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
238 (offset + words), hw->nvm.sr_size);
239 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
240 /* We can write only up to 4KB (one sector), in one AQ write */
241 i40e_debug(hw, I40E_DEBUG_NVM,
242 "NVM write fail error: tried to write %d words, limit is %d.\n",
243 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
244 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
245 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
246 /* A single write cannot spread over two sectors */
247 i40e_debug(hw, I40E_DEBUG_NVM,
248 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
249 offset, words);
250 else
251 ret_code = i40e_aq_read_nvm(hw, module_pointer,
252 2 * offset, /*bytes*/
253 2 * words, /*bytes*/
254 data, last_command, &cmd_details);
255
256 return ret_code;
257}
258
259/**
260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
261 * @hw: pointer to the HW structure
262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
263 * @data: word read from the Shadow RAM
264 *
265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
266 **/
267static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
268 u16 *data)
269{
270 i40e_status ret_code = I40E_ERR_TIMEOUT;
271
272 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
273 *data = le16_to_cpu(*(__le16 *)data);
274
275 return ret_code;
276}
277
278/**
279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
280 * @hw: pointer to the HW structure
281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
282 * @data: word read from the Shadow RAM
283 *
284 * Reads one 16 bit word from the Shadow RAM.
285 *
286 * Do not use this function except in cases where the nvm lock is already
287 * taken via i40e_acquire_nvm().
288 **/
289static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
290 u16 offset, u16 *data)
291{
292 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
293 return i40e_read_nvm_word_aq(hw, offset, data);
294
295 return i40e_read_nvm_word_srctl(hw, offset, data);
296}
297
298/**
299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
300 * @hw: pointer to the HW structure
301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
302 * @data: word read from the Shadow RAM
303 *
304 * Reads one 16 bit word from the Shadow RAM.
305 **/
306i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
307 u16 *data)
308{
309 i40e_status ret_code = 0;
310
311 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
312 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
313 if (ret_code)
314 return ret_code;
315
316 ret_code = __i40e_read_nvm_word(hw, offset, data);
317
318 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
319 i40e_release_nvm(hw);
320
321 return ret_code;
322}
323
324/**
325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
326 * @hw: pointer to the HW structure
327 * @module_ptr: Pointer to module in words with respect to NVM beginning
328 * @offset: offset in words from module start
329 * @words_data_size: Words to read from NVM
330 * @data_ptr: Pointer to memory location where resulting buffer will be stored
331 **/
332i40e_status i40e_read_nvm_module_data(struct i40e_hw *hw,
333 u8 module_ptr, u16 offset,
334 u16 words_data_size,
335 u16 *data_ptr)
336{
337 i40e_status status;
338 u16 ptr_value = 0;
339 u32 flat_offset;
340
341 if (module_ptr != 0) {
342 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
343 if (status) {
344 i40e_debug(hw, I40E_DEBUG_ALL,
345 "Reading nvm word failed.Error code: %d.\n",
346 status);
347 return I40E_ERR_NVM;
348 }
349 }
350#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
351#define I40E_NVM_INVALID_VAL 0xFFFF
352
353 /* Pointer not initialized */
354 if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
355 ptr_value == I40E_NVM_INVALID_VAL)
356 return I40E_ERR_BAD_PTR;
357
358 /* Check whether the module is in SR mapped area or outside */
359 if (ptr_value & I40E_PTR_TYPE) {
360 /* Pointer points outside of the Shared RAM mapped area */
361 ptr_value &= ~I40E_PTR_TYPE;
362
363 /* PtrValue in 4kB units, need to convert to words */
364 ptr_value /= 2;
365 flat_offset = ((u32)ptr_value * 0x1000) + (u32)offset;
366 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
367 if (!status) {
368 status = i40e_aq_read_nvm(hw, 0, 2 * flat_offset,
369 2 * words_data_size,
370 data_ptr, true, NULL);
371 i40e_release_nvm(hw);
372 if (status) {
373 i40e_debug(hw, I40E_DEBUG_ALL,
374 "Reading nvm aq failed.Error code: %d.\n",
375 status);
376 return I40E_ERR_NVM;
377 }
378 } else {
379 return I40E_ERR_NVM;
380 }
381 } else {
382 /* Read from the Shadow RAM */
383 status = i40e_read_nvm_buffer(hw, ptr_value + offset,
384 &words_data_size, data_ptr);
385 if (status) {
386 i40e_debug(hw, I40E_DEBUG_ALL,
387 "Reading nvm buffer failed.Error code: %d.\n",
388 status);
389 }
390 }
391
392 return status;
393}
394
395/**
396 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
397 * @hw: pointer to the HW structure
398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
399 * @words: (in) number of words to read; (out) number of words actually read
400 * @data: words read from the Shadow RAM
401 *
402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
403 * method. The buffer read is preceded by the NVM ownership take
404 * and followed by the release.
405 **/
406static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
407 u16 *words, u16 *data)
408{
409 i40e_status ret_code = 0;
410 u16 index, word;
411
412 /* Loop thru the selected region */
413 for (word = 0; word < *words; word++) {
414 index = offset + word;
415 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
416 if (ret_code)
417 break;
418 }
419
420 /* Update the number of words read from the Shadow RAM */
421 *words = word;
422
423 return ret_code;
424}
425
426/**
427 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
428 * @hw: pointer to the HW structure
429 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
430 * @words: (in) number of words to read; (out) number of words actually read
431 * @data: words read from the Shadow RAM
432 *
433 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
434 * method. The buffer read is preceded by the NVM ownership take
435 * and followed by the release.
436 **/
437static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
438 u16 *words, u16 *data)
439{
440 i40e_status ret_code;
441 u16 read_size;
442 bool last_cmd = false;
443 u16 words_read = 0;
444 u16 i = 0;
445
446 do {
447 /* Calculate number of bytes we should read in this step.
448 * FVL AQ do not allow to read more than one page at a time or
449 * to cross page boundaries.
450 */
451 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
452 read_size = min(*words,
453 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
454 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
455 else
456 read_size = min((*words - words_read),
457 I40E_SR_SECTOR_SIZE_IN_WORDS);
458
459 /* Check if this is last command, if so set proper flag */
460 if ((words_read + read_size) >= *words)
461 last_cmd = true;
462
463 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
464 data + words_read, last_cmd);
465 if (ret_code)
466 goto read_nvm_buffer_aq_exit;
467
468 /* Increment counter for words already read and move offset to
469 * new read location
470 */
471 words_read += read_size;
472 offset += read_size;
473 } while (words_read < *words);
474
475 for (i = 0; i < *words; i++)
476 data[i] = le16_to_cpu(((__le16 *)data)[i]);
477
478read_nvm_buffer_aq_exit:
479 *words = words_read;
480 return ret_code;
481}
482
483/**
484 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
485 * @hw: pointer to the HW structure
486 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
487 * @words: (in) number of words to read; (out) number of words actually read
488 * @data: words read from the Shadow RAM
489 *
490 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
491 * method.
492 **/
493static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
494 u16 offset, u16 *words,
495 u16 *data)
496{
497 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
498 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
499
500 return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
501}
502
503/**
504 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
505 * @hw: pointer to the HW structure
506 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
507 * @words: (in) number of words to read; (out) number of words actually read
508 * @data: words read from the Shadow RAM
509 *
510 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
511 * method. The buffer read is preceded by the NVM ownership take
512 * and followed by the release.
513 **/
514i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
515 u16 *words, u16 *data)
516{
517 i40e_status ret_code = 0;
518
519 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
520 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
521 if (!ret_code) {
522 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
523 data);
524 i40e_release_nvm(hw);
525 }
526 } else {
527 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
528 }
529
530 return ret_code;
531}
532
533/**
534 * i40e_write_nvm_aq - Writes Shadow RAM.
535 * @hw: pointer to the HW structure.
536 * @module_pointer: module pointer location in words from the NVM beginning
537 * @offset: offset in words from module start
538 * @words: number of words to write
539 * @data: buffer with words to write to the Shadow RAM
540 * @last_command: tells the AdminQ that this is the last command
541 *
542 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
543 **/
544static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
545 u32 offset, u16 words, void *data,
546 bool last_command)
547{
548 i40e_status ret_code = I40E_ERR_NVM;
549 struct i40e_asq_cmd_details cmd_details;
550
551 memset(&cmd_details, 0, sizeof(cmd_details));
552 cmd_details.wb_desc = &hw->nvm_wb_desc;
553
554 /* Here we are checking the SR limit only for the flat memory model.
555 * We cannot do it for the module-based model, as we did not acquire
556 * the NVM resource yet (we cannot get the module pointer value).
557 * Firmware will check the module-based model.
558 */
559 if ((offset + words) > hw->nvm.sr_size)
560 i40e_debug(hw, I40E_DEBUG_NVM,
561 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
562 (offset + words), hw->nvm.sr_size);
563 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
564 /* We can write only up to 4KB (one sector), in one AQ write */
565 i40e_debug(hw, I40E_DEBUG_NVM,
566 "NVM write fail error: tried to write %d words, limit is %d.\n",
567 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
568 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
569 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
570 /* A single write cannot spread over two sectors */
571 i40e_debug(hw, I40E_DEBUG_NVM,
572 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
573 offset, words);
574 else
575 ret_code = i40e_aq_update_nvm(hw, module_pointer,
576 2 * offset, /*bytes*/
577 2 * words, /*bytes*/
578 data, last_command, 0,
579 &cmd_details);
580
581 return ret_code;
582}
583
584/**
585 * i40e_calc_nvm_checksum - Calculates and returns the checksum
586 * @hw: pointer to hardware structure
587 * @checksum: pointer to the checksum
588 *
589 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
590 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
591 * is customer specific and unknown. Therefore, this function skips all maximum
592 * possible size of VPD (1kB).
593 **/
594static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
595 u16 *checksum)
596{
597 i40e_status ret_code;
598 struct i40e_virt_mem vmem;
599 u16 pcie_alt_module = 0;
600 u16 checksum_local = 0;
601 u16 vpd_module = 0;
602 u16 *data;
603 u16 i = 0;
604
605 ret_code = i40e_allocate_virt_mem(hw, &vmem,
606 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
607 if (ret_code)
608 goto i40e_calc_nvm_checksum_exit;
609 data = (u16 *)vmem.va;
610
611 /* read pointer to VPD area */
612 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
613 if (ret_code) {
614 ret_code = I40E_ERR_NVM_CHECKSUM;
615 goto i40e_calc_nvm_checksum_exit;
616 }
617
618 /* read pointer to PCIe Alt Auto-load module */
619 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
620 &pcie_alt_module);
621 if (ret_code) {
622 ret_code = I40E_ERR_NVM_CHECKSUM;
623 goto i40e_calc_nvm_checksum_exit;
624 }
625
626 /* Calculate SW checksum that covers the whole 64kB shadow RAM
627 * except the VPD and PCIe ALT Auto-load modules
628 */
629 for (i = 0; i < hw->nvm.sr_size; i++) {
630 /* Read SR page */
631 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
632 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
633
634 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
635 if (ret_code) {
636 ret_code = I40E_ERR_NVM_CHECKSUM;
637 goto i40e_calc_nvm_checksum_exit;
638 }
639 }
640
641 /* Skip Checksum word */
642 if (i == I40E_SR_SW_CHECKSUM_WORD)
643 continue;
644 /* Skip VPD module (convert byte size to word count) */
645 if ((i >= (u32)vpd_module) &&
646 (i < ((u32)vpd_module +
647 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
648 continue;
649 }
650 /* Skip PCIe ALT module (convert byte size to word count) */
651 if ((i >= (u32)pcie_alt_module) &&
652 (i < ((u32)pcie_alt_module +
653 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
654 continue;
655 }
656
657 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
658 }
659
660 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
661
662i40e_calc_nvm_checksum_exit:
663 i40e_free_virt_mem(hw, &vmem);
664 return ret_code;
665}
666
667/**
668 * i40e_update_nvm_checksum - Updates the NVM checksum
669 * @hw: pointer to hardware structure
670 *
671 * NVM ownership must be acquired before calling this function and released
672 * on ARQ completion event reception by caller.
673 * This function will commit SR to NVM.
674 **/
675i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
676{
677 i40e_status ret_code;
678 u16 checksum;
679 __le16 le_sum;
680
681 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
682 le_sum = cpu_to_le16(checksum);
683 if (!ret_code)
684 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
685 1, &le_sum, true);
686
687 return ret_code;
688}
689
690/**
691 * i40e_validate_nvm_checksum - Validate EEPROM checksum
692 * @hw: pointer to hardware structure
693 * @checksum: calculated checksum
694 *
695 * Performs checksum calculation and validates the NVM SW checksum. If the
696 * caller does not need checksum, the value can be NULL.
697 **/
698i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
699 u16 *checksum)
700{
701 i40e_status ret_code = 0;
702 u16 checksum_sr = 0;
703 u16 checksum_local = 0;
704
705 /* We must acquire the NVM lock in order to correctly synchronize the
706 * NVM accesses across multiple PFs. Without doing so it is possible
707 * for one of the PFs to read invalid data potentially indicating that
708 * the checksum is invalid.
709 */
710 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
711 if (ret_code)
712 return ret_code;
713 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
714 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
715 i40e_release_nvm(hw);
716 if (ret_code)
717 return ret_code;
718
719 /* Verify read checksum from EEPROM is the same as
720 * calculated checksum
721 */
722 if (checksum_local != checksum_sr)
723 ret_code = I40E_ERR_NVM_CHECKSUM;
724
725 /* If the user cares, return the calculated checksum */
726 if (checksum)
727 *checksum = checksum_local;
728
729 return ret_code;
730}
731
732static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
733 struct i40e_nvm_access *cmd,
734 u8 *bytes, int *perrno);
735static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
736 struct i40e_nvm_access *cmd,
737 u8 *bytes, int *perrno);
738static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
739 struct i40e_nvm_access *cmd,
740 u8 *bytes, int *errno);
741static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
742 struct i40e_nvm_access *cmd,
743 int *perrno);
744static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
745 struct i40e_nvm_access *cmd,
746 int *perrno);
747static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
748 struct i40e_nvm_access *cmd,
749 u8 *bytes, int *perrno);
750static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
751 struct i40e_nvm_access *cmd,
752 u8 *bytes, int *perrno);
753static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
754 struct i40e_nvm_access *cmd,
755 u8 *bytes, int *perrno);
756static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
757 struct i40e_nvm_access *cmd,
758 u8 *bytes, int *perrno);
759static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
760 struct i40e_nvm_access *cmd,
761 u8 *bytes, int *perrno);
762static inline u8 i40e_nvmupd_get_module(u32 val)
763{
764 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
765}
766static inline u8 i40e_nvmupd_get_transaction(u32 val)
767{
768 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
769}
770
771static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
772{
773 return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
774 I40E_NVM_PRESERVATION_FLAGS_SHIFT);
775}
776
777static const char * const i40e_nvm_update_state_str[] = {
778 "I40E_NVMUPD_INVALID",
779 "I40E_NVMUPD_READ_CON",
780 "I40E_NVMUPD_READ_SNT",
781 "I40E_NVMUPD_READ_LCB",
782 "I40E_NVMUPD_READ_SA",
783 "I40E_NVMUPD_WRITE_ERA",
784 "I40E_NVMUPD_WRITE_CON",
785 "I40E_NVMUPD_WRITE_SNT",
786 "I40E_NVMUPD_WRITE_LCB",
787 "I40E_NVMUPD_WRITE_SA",
788 "I40E_NVMUPD_CSUM_CON",
789 "I40E_NVMUPD_CSUM_SA",
790 "I40E_NVMUPD_CSUM_LCB",
791 "I40E_NVMUPD_STATUS",
792 "I40E_NVMUPD_EXEC_AQ",
793 "I40E_NVMUPD_GET_AQ_RESULT",
794 "I40E_NVMUPD_GET_AQ_EVENT",
795};
796
797/**
798 * i40e_nvmupd_command - Process an NVM update command
799 * @hw: pointer to hardware structure
800 * @cmd: pointer to nvm update command
801 * @bytes: pointer to the data buffer
802 * @perrno: pointer to return error code
803 *
804 * Dispatches command depending on what update state is current
805 **/
806i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
807 struct i40e_nvm_access *cmd,
808 u8 *bytes, int *perrno)
809{
810 i40e_status status;
811 enum i40e_nvmupd_cmd upd_cmd;
812
813 /* assume success */
814 *perrno = 0;
815
816 /* early check for status command and debug msgs */
817 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
818
819 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
820 i40e_nvm_update_state_str[upd_cmd],
821 hw->nvmupd_state,
822 hw->nvm_release_on_done, hw->nvm_wait_opcode,
823 cmd->command, cmd->config, cmd->offset, cmd->data_size);
824
825 if (upd_cmd == I40E_NVMUPD_INVALID) {
826 *perrno = -EFAULT;
827 i40e_debug(hw, I40E_DEBUG_NVM,
828 "i40e_nvmupd_validate_command returns %d errno %d\n",
829 upd_cmd, *perrno);
830 }
831
832 /* a status request returns immediately rather than
833 * going into the state machine
834 */
835 if (upd_cmd == I40E_NVMUPD_STATUS) {
836 if (!cmd->data_size) {
837 *perrno = -EFAULT;
838 return I40E_ERR_BUF_TOO_SHORT;
839 }
840
841 bytes[0] = hw->nvmupd_state;
842
843 if (cmd->data_size >= 4) {
844 bytes[1] = 0;
845 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
846 }
847
848 /* Clear error status on read */
849 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
850 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
851
852 return 0;
853 }
854
855 /* Clear status even it is not read and log */
856 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
857 i40e_debug(hw, I40E_DEBUG_NVM,
858 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
859 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
860 }
861
862 /* Acquire lock to prevent race condition where adminq_task
863 * can execute after i40e_nvmupd_nvm_read/write but before state
864 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
865 *
866 * During NVMUpdate, it is observed that lock could be held for
867 * ~5ms for most commands. However lock is held for ~60ms for
868 * NVMUPD_CSUM_LCB command.
869 */
870 mutex_lock(&hw->aq.arq_mutex);
871 switch (hw->nvmupd_state) {
872 case I40E_NVMUPD_STATE_INIT:
873 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
874 break;
875
876 case I40E_NVMUPD_STATE_READING:
877 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
878 break;
879
880 case I40E_NVMUPD_STATE_WRITING:
881 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
882 break;
883
884 case I40E_NVMUPD_STATE_INIT_WAIT:
885 case I40E_NVMUPD_STATE_WRITE_WAIT:
886 /* if we need to stop waiting for an event, clear
887 * the wait info and return before doing anything else
888 */
889 if (cmd->offset == 0xffff) {
890 i40e_nvmupd_clear_wait_state(hw);
891 status = 0;
892 break;
893 }
894
895 status = I40E_ERR_NOT_READY;
896 *perrno = -EBUSY;
897 break;
898
899 default:
900 /* invalid state, should never happen */
901 i40e_debug(hw, I40E_DEBUG_NVM,
902 "NVMUPD: no such state %d\n", hw->nvmupd_state);
903 status = I40E_NOT_SUPPORTED;
904 *perrno = -ESRCH;
905 break;
906 }
907
908 mutex_unlock(&hw->aq.arq_mutex);
909 return status;
910}
911
912/**
913 * i40e_nvmupd_state_init - Handle NVM update state Init
914 * @hw: pointer to hardware structure
915 * @cmd: pointer to nvm update command buffer
916 * @bytes: pointer to the data buffer
917 * @perrno: pointer to return error code
918 *
919 * Process legitimate commands of the Init state and conditionally set next
920 * state. Reject all other commands.
921 **/
922static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
923 struct i40e_nvm_access *cmd,
924 u8 *bytes, int *perrno)
925{
926 i40e_status status = 0;
927 enum i40e_nvmupd_cmd upd_cmd;
928
929 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
930
931 switch (upd_cmd) {
932 case I40E_NVMUPD_READ_SA:
933 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
934 if (status) {
935 *perrno = i40e_aq_rc_to_posix(status,
936 hw->aq.asq_last_status);
937 } else {
938 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
939 i40e_release_nvm(hw);
940 }
941 break;
942
943 case I40E_NVMUPD_READ_SNT:
944 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
945 if (status) {
946 *perrno = i40e_aq_rc_to_posix(status,
947 hw->aq.asq_last_status);
948 } else {
949 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
950 if (status)
951 i40e_release_nvm(hw);
952 else
953 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
954 }
955 break;
956
957 case I40E_NVMUPD_WRITE_ERA:
958 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
959 if (status) {
960 *perrno = i40e_aq_rc_to_posix(status,
961 hw->aq.asq_last_status);
962 } else {
963 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
964 if (status) {
965 i40e_release_nvm(hw);
966 } else {
967 hw->nvm_release_on_done = true;
968 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
969 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
970 }
971 }
972 break;
973
974 case I40E_NVMUPD_WRITE_SA:
975 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
976 if (status) {
977 *perrno = i40e_aq_rc_to_posix(status,
978 hw->aq.asq_last_status);
979 } else {
980 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
981 if (status) {
982 i40e_release_nvm(hw);
983 } else {
984 hw->nvm_release_on_done = true;
985 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
986 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
987 }
988 }
989 break;
990
991 case I40E_NVMUPD_WRITE_SNT:
992 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
993 if (status) {
994 *perrno = i40e_aq_rc_to_posix(status,
995 hw->aq.asq_last_status);
996 } else {
997 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
998 if (status) {
999 i40e_release_nvm(hw);
1000 } else {
1001 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1002 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1003 }
1004 }
1005 break;
1006
1007 case I40E_NVMUPD_CSUM_SA:
1008 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1009 if (status) {
1010 *perrno = i40e_aq_rc_to_posix(status,
1011 hw->aq.asq_last_status);
1012 } else {
1013 status = i40e_update_nvm_checksum(hw);
1014 if (status) {
1015 *perrno = hw->aq.asq_last_status ?
1016 i40e_aq_rc_to_posix(status,
1017 hw->aq.asq_last_status) :
1018 -EIO;
1019 i40e_release_nvm(hw);
1020 } else {
1021 hw->nvm_release_on_done = true;
1022 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1023 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1024 }
1025 }
1026 break;
1027
1028 case I40E_NVMUPD_EXEC_AQ:
1029 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1030 break;
1031
1032 case I40E_NVMUPD_GET_AQ_RESULT:
1033 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1034 break;
1035
1036 case I40E_NVMUPD_GET_AQ_EVENT:
1037 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1038 break;
1039
1040 default:
1041 i40e_debug(hw, I40E_DEBUG_NVM,
1042 "NVMUPD: bad cmd %s in init state\n",
1043 i40e_nvm_update_state_str[upd_cmd]);
1044 status = I40E_ERR_NVM;
1045 *perrno = -ESRCH;
1046 break;
1047 }
1048 return status;
1049}
1050
1051/**
1052 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1053 * @hw: pointer to hardware structure
1054 * @cmd: pointer to nvm update command buffer
1055 * @bytes: pointer to the data buffer
1056 * @perrno: pointer to return error code
1057 *
1058 * NVM ownership is already held. Process legitimate commands and set any
1059 * change in state; reject all other commands.
1060 **/
1061static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
1062 struct i40e_nvm_access *cmd,
1063 u8 *bytes, int *perrno)
1064{
1065 i40e_status status = 0;
1066 enum i40e_nvmupd_cmd upd_cmd;
1067
1068 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1069
1070 switch (upd_cmd) {
1071 case I40E_NVMUPD_READ_SA:
1072 case I40E_NVMUPD_READ_CON:
1073 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1074 break;
1075
1076 case I40E_NVMUPD_READ_LCB:
1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078 i40e_release_nvm(hw);
1079 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1080 break;
1081
1082 default:
1083 i40e_debug(hw, I40E_DEBUG_NVM,
1084 "NVMUPD: bad cmd %s in reading state.\n",
1085 i40e_nvm_update_state_str[upd_cmd]);
1086 status = I40E_NOT_SUPPORTED;
1087 *perrno = -ESRCH;
1088 break;
1089 }
1090 return status;
1091}
1092
1093/**
1094 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1095 * @hw: pointer to hardware structure
1096 * @cmd: pointer to nvm update command buffer
1097 * @bytes: pointer to the data buffer
1098 * @perrno: pointer to return error code
1099 *
1100 * NVM ownership is already held. Process legitimate commands and set any
1101 * change in state; reject all other commands
1102 **/
1103static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1104 struct i40e_nvm_access *cmd,
1105 u8 *bytes, int *perrno)
1106{
1107 i40e_status status = 0;
1108 enum i40e_nvmupd_cmd upd_cmd;
1109 bool retry_attempt = false;
1110
1111 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1112
1113retry:
1114 switch (upd_cmd) {
1115 case I40E_NVMUPD_WRITE_CON:
1116 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1117 if (!status) {
1118 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1119 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1120 }
1121 break;
1122
1123 case I40E_NVMUPD_WRITE_LCB:
1124 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1125 if (status) {
1126 *perrno = hw->aq.asq_last_status ?
1127 i40e_aq_rc_to_posix(status,
1128 hw->aq.asq_last_status) :
1129 -EIO;
1130 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1131 } else {
1132 hw->nvm_release_on_done = true;
1133 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1135 }
1136 break;
1137
1138 case I40E_NVMUPD_CSUM_CON:
1139 /* Assumes the caller has acquired the nvm */
1140 status = i40e_update_nvm_checksum(hw);
1141 if (status) {
1142 *perrno = hw->aq.asq_last_status ?
1143 i40e_aq_rc_to_posix(status,
1144 hw->aq.asq_last_status) :
1145 -EIO;
1146 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1147 } else {
1148 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1149 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1150 }
1151 break;
1152
1153 case I40E_NVMUPD_CSUM_LCB:
1154 /* Assumes the caller has acquired the nvm */
1155 status = i40e_update_nvm_checksum(hw);
1156 if (status) {
1157 *perrno = hw->aq.asq_last_status ?
1158 i40e_aq_rc_to_posix(status,
1159 hw->aq.asq_last_status) :
1160 -EIO;
1161 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1162 } else {
1163 hw->nvm_release_on_done = true;
1164 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1166 }
1167 break;
1168
1169 default:
1170 i40e_debug(hw, I40E_DEBUG_NVM,
1171 "NVMUPD: bad cmd %s in writing state.\n",
1172 i40e_nvm_update_state_str[upd_cmd]);
1173 status = I40E_NOT_SUPPORTED;
1174 *perrno = -ESRCH;
1175 break;
1176 }
1177
1178 /* In some circumstances, a multi-write transaction takes longer
1179 * than the default 3 minute timeout on the write semaphore. If
1180 * the write failed with an EBUSY status, this is likely the problem,
1181 * so here we try to reacquire the semaphore then retry the write.
1182 * We only do one retry, then give up.
1183 */
1184 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1185 !retry_attempt) {
1186 i40e_status old_status = status;
1187 u32 old_asq_status = hw->aq.asq_last_status;
1188 u32 gtime;
1189
1190 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1191 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1192 i40e_debug(hw, I40E_DEBUG_ALL,
1193 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1194 gtime, hw->nvm.hw_semaphore_timeout);
1195 i40e_release_nvm(hw);
1196 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1197 if (status) {
1198 i40e_debug(hw, I40E_DEBUG_ALL,
1199 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1200 hw->aq.asq_last_status);
1201 status = old_status;
1202 hw->aq.asq_last_status = old_asq_status;
1203 } else {
1204 retry_attempt = true;
1205 goto retry;
1206 }
1207 }
1208 }
1209
1210 return status;
1211}
1212
1213/**
1214 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1215 * @hw: pointer to the hardware structure
1216 **/
1217void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1218{
1219 i40e_debug(hw, I40E_DEBUG_NVM,
1220 "NVMUPD: clearing wait on opcode 0x%04x\n",
1221 hw->nvm_wait_opcode);
1222
1223 if (hw->nvm_release_on_done) {
1224 i40e_release_nvm(hw);
1225 hw->nvm_release_on_done = false;
1226 }
1227 hw->nvm_wait_opcode = 0;
1228
1229 if (hw->aq.arq_last_status) {
1230 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1231 return;
1232 }
1233
1234 switch (hw->nvmupd_state) {
1235 case I40E_NVMUPD_STATE_INIT_WAIT:
1236 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1237 break;
1238
1239 case I40E_NVMUPD_STATE_WRITE_WAIT:
1240 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1241 break;
1242
1243 default:
1244 break;
1245 }
1246}
1247
1248/**
1249 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1250 * @hw: pointer to the hardware structure
1251 * @opcode: the event that just happened
1252 * @desc: AdminQ descriptor
1253 **/
1254void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1255 struct i40e_aq_desc *desc)
1256{
1257 u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1258
1259 if (opcode == hw->nvm_wait_opcode) {
1260 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1261 i40e_nvmupd_clear_wait_state(hw);
1262 }
1263}
1264
1265/**
1266 * i40e_nvmupd_validate_command - Validate given command
1267 * @hw: pointer to hardware structure
1268 * @cmd: pointer to nvm update command buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * Return one of the valid command types or I40E_NVMUPD_INVALID
1272 **/
1273static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1274 struct i40e_nvm_access *cmd,
1275 int *perrno)
1276{
1277 enum i40e_nvmupd_cmd upd_cmd;
1278 u8 module, transaction;
1279
1280 /* anything that doesn't match a recognized case is an error */
1281 upd_cmd = I40E_NVMUPD_INVALID;
1282
1283 transaction = i40e_nvmupd_get_transaction(cmd->config);
1284 module = i40e_nvmupd_get_module(cmd->config);
1285
1286 /* limits on data size */
1287 if ((cmd->data_size < 1) ||
1288 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1289 i40e_debug(hw, I40E_DEBUG_NVM,
1290 "i40e_nvmupd_validate_command data_size %d\n",
1291 cmd->data_size);
1292 *perrno = -EFAULT;
1293 return I40E_NVMUPD_INVALID;
1294 }
1295
1296 switch (cmd->command) {
1297 case I40E_NVM_READ:
1298 switch (transaction) {
1299 case I40E_NVM_CON:
1300 upd_cmd = I40E_NVMUPD_READ_CON;
1301 break;
1302 case I40E_NVM_SNT:
1303 upd_cmd = I40E_NVMUPD_READ_SNT;
1304 break;
1305 case I40E_NVM_LCB:
1306 upd_cmd = I40E_NVMUPD_READ_LCB;
1307 break;
1308 case I40E_NVM_SA:
1309 upd_cmd = I40E_NVMUPD_READ_SA;
1310 break;
1311 case I40E_NVM_EXEC:
1312 if (module == 0xf)
1313 upd_cmd = I40E_NVMUPD_STATUS;
1314 else if (module == 0)
1315 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1316 break;
1317 case I40E_NVM_AQE:
1318 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1319 break;
1320 }
1321 break;
1322
1323 case I40E_NVM_WRITE:
1324 switch (transaction) {
1325 case I40E_NVM_CON:
1326 upd_cmd = I40E_NVMUPD_WRITE_CON;
1327 break;
1328 case I40E_NVM_SNT:
1329 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1330 break;
1331 case I40E_NVM_LCB:
1332 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1333 break;
1334 case I40E_NVM_SA:
1335 upd_cmd = I40E_NVMUPD_WRITE_SA;
1336 break;
1337 case I40E_NVM_ERA:
1338 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1339 break;
1340 case I40E_NVM_CSUM:
1341 upd_cmd = I40E_NVMUPD_CSUM_CON;
1342 break;
1343 case (I40E_NVM_CSUM|I40E_NVM_SA):
1344 upd_cmd = I40E_NVMUPD_CSUM_SA;
1345 break;
1346 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1347 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1348 break;
1349 case I40E_NVM_EXEC:
1350 if (module == 0)
1351 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1352 break;
1353 }
1354 break;
1355 }
1356
1357 return upd_cmd;
1358}
1359
1360/**
1361 * i40e_nvmupd_exec_aq - Run an AQ command
1362 * @hw: pointer to hardware structure
1363 * @cmd: pointer to nvm update command buffer
1364 * @bytes: pointer to the data buffer
1365 * @perrno: pointer to return error code
1366 *
1367 * cmd structure contains identifiers and data buffer
1368 **/
1369static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1370 struct i40e_nvm_access *cmd,
1371 u8 *bytes, int *perrno)
1372{
1373 struct i40e_asq_cmd_details cmd_details;
1374 i40e_status status;
1375 struct i40e_aq_desc *aq_desc;
1376 u32 buff_size = 0;
1377 u8 *buff = NULL;
1378 u32 aq_desc_len;
1379 u32 aq_data_len;
1380
1381 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1382 if (cmd->offset == 0xffff)
1383 return 0;
1384
1385 memset(&cmd_details, 0, sizeof(cmd_details));
1386 cmd_details.wb_desc = &hw->nvm_wb_desc;
1387
1388 aq_desc_len = sizeof(struct i40e_aq_desc);
1389 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1390
1391 /* get the aq descriptor */
1392 if (cmd->data_size < aq_desc_len) {
1393 i40e_debug(hw, I40E_DEBUG_NVM,
1394 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1395 cmd->data_size, aq_desc_len);
1396 *perrno = -EINVAL;
1397 return I40E_ERR_PARAM;
1398 }
1399 aq_desc = (struct i40e_aq_desc *)bytes;
1400
1401 /* if data buffer needed, make sure it's ready */
1402 aq_data_len = cmd->data_size - aq_desc_len;
1403 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1404 if (buff_size) {
1405 if (!hw->nvm_buff.va) {
1406 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1407 hw->aq.asq_buf_size);
1408 if (status)
1409 i40e_debug(hw, I40E_DEBUG_NVM,
1410 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1411 status);
1412 }
1413
1414 if (hw->nvm_buff.va) {
1415 buff = hw->nvm_buff.va;
1416 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1417 }
1418 }
1419
1420 if (cmd->offset)
1421 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1422
1423 /* and away we go! */
1424 status = i40e_asq_send_command(hw, aq_desc, buff,
1425 buff_size, &cmd_details);
1426 if (status) {
1427 i40e_debug(hw, I40E_DEBUG_NVM,
1428 "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1429 i40e_stat_str(hw, status),
1430 i40e_aq_str(hw, hw->aq.asq_last_status));
1431 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1432 return status;
1433 }
1434
1435 /* should we wait for a followup event? */
1436 if (cmd->offset) {
1437 hw->nvm_wait_opcode = cmd->offset;
1438 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1439 }
1440
1441 return status;
1442}
1443
1444/**
1445 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1446 * @hw: pointer to hardware structure
1447 * @cmd: pointer to nvm update command buffer
1448 * @bytes: pointer to the data buffer
1449 * @perrno: pointer to return error code
1450 *
1451 * cmd structure contains identifiers and data buffer
1452 **/
1453static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1454 struct i40e_nvm_access *cmd,
1455 u8 *bytes, int *perrno)
1456{
1457 u32 aq_total_len;
1458 u32 aq_desc_len;
1459 int remainder;
1460 u8 *buff;
1461
1462 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1463
1464 aq_desc_len = sizeof(struct i40e_aq_desc);
1465 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1466
1467 /* check offset range */
1468 if (cmd->offset > aq_total_len) {
1469 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1470 __func__, cmd->offset, aq_total_len);
1471 *perrno = -EINVAL;
1472 return I40E_ERR_PARAM;
1473 }
1474
1475 /* check copylength range */
1476 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1477 int new_len = aq_total_len - cmd->offset;
1478
1479 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1480 __func__, cmd->data_size, new_len);
1481 cmd->data_size = new_len;
1482 }
1483
1484 remainder = cmd->data_size;
1485 if (cmd->offset < aq_desc_len) {
1486 u32 len = aq_desc_len - cmd->offset;
1487
1488 len = min(len, cmd->data_size);
1489 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1490 __func__, cmd->offset, cmd->offset + len);
1491
1492 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1493 memcpy(bytes, buff, len);
1494
1495 bytes += len;
1496 remainder -= len;
1497 buff = hw->nvm_buff.va;
1498 } else {
1499 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1500 }
1501
1502 if (remainder > 0) {
1503 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1504
1505 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1506 __func__, start_byte, start_byte + remainder);
1507 memcpy(bytes, buff, remainder);
1508 }
1509
1510 return 0;
1511}
1512
1513/**
1514 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1515 * @hw: pointer to hardware structure
1516 * @cmd: pointer to nvm update command buffer
1517 * @bytes: pointer to the data buffer
1518 * @perrno: pointer to return error code
1519 *
1520 * cmd structure contains identifiers and data buffer
1521 **/
1522static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1523 struct i40e_nvm_access *cmd,
1524 u8 *bytes, int *perrno)
1525{
1526 u32 aq_total_len;
1527 u32 aq_desc_len;
1528
1529 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1530
1531 aq_desc_len = sizeof(struct i40e_aq_desc);
1532 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1533
1534 /* check copylength range */
1535 if (cmd->data_size > aq_total_len) {
1536 i40e_debug(hw, I40E_DEBUG_NVM,
1537 "%s: copy length %d too big, trimming to %d\n",
1538 __func__, cmd->data_size, aq_total_len);
1539 cmd->data_size = aq_total_len;
1540 }
1541
1542 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1543
1544 return 0;
1545}
1546
1547/**
1548 * i40e_nvmupd_nvm_read - Read NVM
1549 * @hw: pointer to hardware structure
1550 * @cmd: pointer to nvm update command buffer
1551 * @bytes: pointer to the data buffer
1552 * @perrno: pointer to return error code
1553 *
1554 * cmd structure contains identifiers and data buffer
1555 **/
1556static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1557 struct i40e_nvm_access *cmd,
1558 u8 *bytes, int *perrno)
1559{
1560 struct i40e_asq_cmd_details cmd_details;
1561 i40e_status status;
1562 u8 module, transaction;
1563 bool last;
1564
1565 transaction = i40e_nvmupd_get_transaction(cmd->config);
1566 module = i40e_nvmupd_get_module(cmd->config);
1567 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1568
1569 memset(&cmd_details, 0, sizeof(cmd_details));
1570 cmd_details.wb_desc = &hw->nvm_wb_desc;
1571
1572 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1573 bytes, last, &cmd_details);
1574 if (status) {
1575 i40e_debug(hw, I40E_DEBUG_NVM,
1576 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1577 module, cmd->offset, cmd->data_size);
1578 i40e_debug(hw, I40E_DEBUG_NVM,
1579 "i40e_nvmupd_nvm_read status %d aq %d\n",
1580 status, hw->aq.asq_last_status);
1581 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1582 }
1583
1584 return status;
1585}
1586
1587/**
1588 * i40e_nvmupd_nvm_erase - Erase an NVM module
1589 * @hw: pointer to hardware structure
1590 * @cmd: pointer to nvm update command buffer
1591 * @perrno: pointer to return error code
1592 *
1593 * module, offset, data_size and data are in cmd structure
1594 **/
1595static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1596 struct i40e_nvm_access *cmd,
1597 int *perrno)
1598{
1599 i40e_status status = 0;
1600 struct i40e_asq_cmd_details cmd_details;
1601 u8 module, transaction;
1602 bool last;
1603
1604 transaction = i40e_nvmupd_get_transaction(cmd->config);
1605 module = i40e_nvmupd_get_module(cmd->config);
1606 last = (transaction & I40E_NVM_LCB);
1607
1608 memset(&cmd_details, 0, sizeof(cmd_details));
1609 cmd_details.wb_desc = &hw->nvm_wb_desc;
1610
1611 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1612 last, &cmd_details);
1613 if (status) {
1614 i40e_debug(hw, I40E_DEBUG_NVM,
1615 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1616 module, cmd->offset, cmd->data_size);
1617 i40e_debug(hw, I40E_DEBUG_NVM,
1618 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1619 status, hw->aq.asq_last_status);
1620 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1621 }
1622
1623 return status;
1624}
1625
1626/**
1627 * i40e_nvmupd_nvm_write - Write NVM
1628 * @hw: pointer to hardware structure
1629 * @cmd: pointer to nvm update command buffer
1630 * @bytes: pointer to the data buffer
1631 * @perrno: pointer to return error code
1632 *
1633 * module, offset, data_size and data are in cmd structure
1634 **/
1635static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1636 struct i40e_nvm_access *cmd,
1637 u8 *bytes, int *perrno)
1638{
1639 i40e_status status = 0;
1640 struct i40e_asq_cmd_details cmd_details;
1641 u8 module, transaction;
1642 u8 preservation_flags;
1643 bool last;
1644
1645 transaction = i40e_nvmupd_get_transaction(cmd->config);
1646 module = i40e_nvmupd_get_module(cmd->config);
1647 last = (transaction & I40E_NVM_LCB);
1648 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1649
1650 memset(&cmd_details, 0, sizeof(cmd_details));
1651 cmd_details.wb_desc = &hw->nvm_wb_desc;
1652
1653 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1654 (u16)cmd->data_size, bytes, last,
1655 preservation_flags, &cmd_details);
1656 if (status) {
1657 i40e_debug(hw, I40E_DEBUG_NVM,
1658 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1659 module, cmd->offset, cmd->data_size);
1660 i40e_debug(hw, I40E_DEBUG_NVM,
1661 "i40e_nvmupd_nvm_write status %d aq %d\n",
1662 status, hw->aq.asq_last_status);
1663 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1664 }
1665
1666 return status;
1667}