Linux Audio

Check our new training course

Loading...
v4.6
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2014 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include "i40e_prototype.h"
  28
  29/**
  30 * i40e_init_nvm_ops - Initialize NVM function pointers
  31 * @hw: pointer to the HW structure
  32 *
  33 * Setup the function pointers and the NVM info structure. Should be called
  34 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  35 * Please notice that the NVM term is used here (& in all methods covered
  36 * in this file) as an equivalent of the FLASH part mapped into the SR.
  37 * We are accessing FLASH always thru the Shadow RAM.
  38 **/
  39i40e_status i40e_init_nvm(struct i40e_hw *hw)
  40{
  41	struct i40e_nvm_info *nvm = &hw->nvm;
  42	i40e_status ret_code = 0;
  43	u32 fla, gens;
  44	u8 sr_size;
  45
  46	/* The SR size is stored regardless of the nvm programming mode
  47	 * as the blank mode may be used in the factory line.
  48	 */
  49	gens = rd32(hw, I40E_GLNVM_GENS);
  50	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
  51			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
  52	/* Switching to words (sr_size contains power of 2KB) */
  53	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  54
  55	/* Check if we are in the normal or blank NVM programming mode */
  56	fla = rd32(hw, I40E_GLNVM_FLA);
  57	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  58		/* Max NVM timeout */
  59		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  60		nvm->blank_nvm_mode = false;
  61	} else { /* Blank programming mode */
  62		nvm->blank_nvm_mode = true;
  63		ret_code = I40E_ERR_NVM_BLANK_MODE;
  64		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  65	}
  66
  67	return ret_code;
  68}
  69
  70/**
  71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  72 * @hw: pointer to the HW structure
  73 * @access: NVM access type (read or write)
  74 *
  75 * This function will request NVM ownership for reading
  76 * via the proper Admin Command.
  77 **/
  78i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
  79				       enum i40e_aq_resource_access_type access)
  80{
  81	i40e_status ret_code = 0;
  82	u64 gtime, timeout;
  83	u64 time_left = 0;
  84
  85	if (hw->nvm.blank_nvm_mode)
  86		goto i40e_i40e_acquire_nvm_exit;
  87
  88	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  89					    0, &time_left, NULL);
  90	/* Reading the Global Device Timer */
  91	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  92
  93	/* Store the timeout */
  94	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  95
  96	if (ret_code)
  97		i40e_debug(hw, I40E_DEBUG_NVM,
  98			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  99			   access, time_left, ret_code, hw->aq.asq_last_status);
 100
 101	if (ret_code && time_left) {
 102		/* Poll until the current NVM owner timeouts */
 103		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
 104		while ((gtime < timeout) && time_left) {
 105			usleep_range(10000, 20000);
 106			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
 107			ret_code = i40e_aq_request_resource(hw,
 108							I40E_NVM_RESOURCE_ID,
 109							access, 0, &time_left,
 110							NULL);
 111			if (!ret_code) {
 112				hw->nvm.hw_semaphore_timeout =
 113					    I40E_MS_TO_GTIME(time_left) + gtime;
 114				break;
 115			}
 116		}
 117		if (ret_code) {
 118			hw->nvm.hw_semaphore_timeout = 0;
 119			i40e_debug(hw, I40E_DEBUG_NVM,
 120				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 121				   time_left, ret_code, hw->aq.asq_last_status);
 122		}
 123	}
 124
 125i40e_i40e_acquire_nvm_exit:
 126	return ret_code;
 127}
 128
 129/**
 130 * i40e_release_nvm - Generic request for releasing the NVM ownership
 131 * @hw: pointer to the HW structure
 132 *
 133 * This function will release NVM resource via the proper Admin Command.
 134 **/
 135void i40e_release_nvm(struct i40e_hw *hw)
 136{
 137	if (!hw->nvm.blank_nvm_mode)
 138		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139}
 140
 141/**
 142 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 143 * @hw: pointer to the HW structure
 144 *
 145 * Polls the SRCTL Shadow RAM register done bit.
 146 **/
 147static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 148{
 149	i40e_status ret_code = I40E_ERR_TIMEOUT;
 150	u32 srctl, wait_cnt;
 151
 152	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 153	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 154		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 155		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 156			ret_code = 0;
 157			break;
 158		}
 159		udelay(5);
 160	}
 161	if (ret_code == I40E_ERR_TIMEOUT)
 162		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 163	return ret_code;
 164}
 165
 166/**
 167 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 168 * @hw: pointer to the HW structure
 169 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 170 * @data: word read from the Shadow RAM
 171 *
 172 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 173 **/
 174static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 175					    u16 *data)
 176{
 177	i40e_status ret_code = I40E_ERR_TIMEOUT;
 178	u32 sr_reg;
 179
 180	if (offset >= hw->nvm.sr_size) {
 181		i40e_debug(hw, I40E_DEBUG_NVM,
 182			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 183			   offset, hw->nvm.sr_size);
 184		ret_code = I40E_ERR_PARAM;
 185		goto read_nvm_exit;
 186	}
 187
 188	/* Poll the done bit first */
 189	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 190	if (!ret_code) {
 191		/* Write the address and start reading */
 192		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 193			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 194		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 195
 196		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 197		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 198		if (!ret_code) {
 199			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 200			*data = (u16)((sr_reg &
 201				       I40E_GLNVM_SRDATA_RDDATA_MASK)
 202				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
 203		}
 204	}
 205	if (ret_code)
 206		i40e_debug(hw, I40E_DEBUG_NVM,
 207			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 208			   offset);
 209
 210read_nvm_exit:
 211	return ret_code;
 212}
 213
 214/**
 215 * i40e_read_nvm_aq - Read Shadow RAM.
 216 * @hw: pointer to the HW structure.
 217 * @module_pointer: module pointer location in words from the NVM beginning
 218 * @offset: offset in words from module start
 219 * @words: number of words to write
 220 * @data: buffer with words to write to the Shadow RAM
 221 * @last_command: tells the AdminQ that this is the last command
 222 *
 223 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 224 **/
 225static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 226				    u32 offset, u16 words, void *data,
 
 227				    bool last_command)
 228{
 229	i40e_status ret_code = I40E_ERR_NVM;
 230	struct i40e_asq_cmd_details cmd_details;
 231
 232	memset(&cmd_details, 0, sizeof(cmd_details));
 
 233
 234	/* Here we are checking the SR limit only for the flat memory model.
 235	 * We cannot do it for the module-based model, as we did not acquire
 236	 * the NVM resource yet (we cannot get the module pointer value).
 237	 * Firmware will check the module-based model.
 238	 */
 239	if ((offset + words) > hw->nvm.sr_size)
 240		i40e_debug(hw, I40E_DEBUG_NVM,
 241			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 242			   (offset + words), hw->nvm.sr_size);
 243	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 244		/* We can write only up to 4KB (one sector), in one AQ write */
 245		i40e_debug(hw, I40E_DEBUG_NVM,
 246			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 247			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 248	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 249		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 250		/* A single write cannot spread over two sectors */
 251		i40e_debug(hw, I40E_DEBUG_NVM,
 252			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 253			   offset, words);
 254	else
 255		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 256					    2 * offset,  /*bytes*/
 257					    2 * words,   /*bytes*/
 258					    data, last_command, &cmd_details);
 259
 260	return ret_code;
 261}
 262
 263/**
 264 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 265 * @hw: pointer to the HW structure
 266 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 267 * @data: word read from the Shadow RAM
 268 *
 269 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 270 **/
 271static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 272					 u16 *data)
 273{
 274	i40e_status ret_code = I40E_ERR_TIMEOUT;
 275
 276	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 277	*data = le16_to_cpu(*(__le16 *)data);
 278
 279	return ret_code;
 280}
 281
 282/**
 283 * i40e_read_nvm_word - Reads Shadow RAM
 284 * @hw: pointer to the HW structure
 285 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 286 * @data: word read from the Shadow RAM
 287 *
 288 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289 **/
 290i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 291			       u16 *data)
 292{
 293	enum i40e_status_code ret_code = 0;
 294
 295	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
 296		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 297		if (!ret_code) {
 298			ret_code = i40e_read_nvm_word_aq(hw, offset, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299			i40e_release_nvm(hw);
 
 
 
 
 
 
 
 
 300		}
 301	} else {
 302		ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
 
 
 
 
 
 
 
 303	}
 304	return ret_code;
 
 305}
 306
 307/**
 308 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 309 * @hw: pointer to the HW structure
 310 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 311 * @words: (in) number of words to read; (out) number of words actually read
 312 * @data: words read from the Shadow RAM
 313 *
 314 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 315 * method. The buffer read is preceded by the NVM ownership take
 316 * and followed by the release.
 317 **/
 318static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 319					      u16 *words, u16 *data)
 320{
 321	i40e_status ret_code = 0;
 322	u16 index, word;
 323
 324	/* Loop thru the selected region */
 325	for (word = 0; word < *words; word++) {
 326		index = offset + word;
 327		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 328		if (ret_code)
 329			break;
 330	}
 331
 332	/* Update the number of words read from the Shadow RAM */
 333	*words = word;
 334
 335	return ret_code;
 336}
 337
 338/**
 339 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 340 * @hw: pointer to the HW structure
 341 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 342 * @words: (in) number of words to read; (out) number of words actually read
 343 * @data: words read from the Shadow RAM
 344 *
 345 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 346 * method. The buffer read is preceded by the NVM ownership take
 347 * and followed by the release.
 348 **/
 349static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 350					   u16 *words, u16 *data)
 351{
 352	i40e_status ret_code;
 353	u16 read_size = *words;
 354	bool last_cmd = false;
 355	u16 words_read = 0;
 356	u16 i = 0;
 357
 358	do {
 359		/* Calculate number of bytes we should read in this step.
 360		 * FVL AQ do not allow to read more than one page at a time or
 361		 * to cross page boundaries.
 362		 */
 363		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 364			read_size = min(*words,
 365					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 366				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 367		else
 368			read_size = min((*words - words_read),
 369					I40E_SR_SECTOR_SIZE_IN_WORDS);
 370
 371		/* Check if this is last command, if so set proper flag */
 372		if ((words_read + read_size) >= *words)
 373			last_cmd = true;
 374
 375		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 376					    data + words_read, last_cmd);
 377		if (ret_code)
 378			goto read_nvm_buffer_aq_exit;
 379
 380		/* Increment counter for words already read and move offset to
 381		 * new read location
 382		 */
 383		words_read += read_size;
 384		offset += read_size;
 385	} while (words_read < *words);
 386
 387	for (i = 0; i < *words; i++)
 388		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 389
 390read_nvm_buffer_aq_exit:
 391	*words = words_read;
 392	return ret_code;
 393}
 394
 395/**
 396 * i40e_read_nvm_buffer - Reads Shadow RAM buffer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397 * @hw: pointer to the HW structure
 398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 399 * @words: (in) number of words to read; (out) number of words actually read
 400 * @data: words read from the Shadow RAM
 401 *
 402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 403 * method. The buffer read is preceded by the NVM ownership take
 404 * and followed by the release.
 405 **/
 406i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 407				 u16 *words, u16 *data)
 408{
 409	enum i40e_status_code ret_code = 0;
 410
 411	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
 412		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 413		if (!ret_code) {
 414			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 415							   data);
 416			i40e_release_nvm(hw);
 417		}
 418	} else {
 419		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 420	}
 
 421	return ret_code;
 422}
 423
 424/**
 425 * i40e_write_nvm_aq - Writes Shadow RAM.
 426 * @hw: pointer to the HW structure.
 427 * @module_pointer: module pointer location in words from the NVM beginning
 428 * @offset: offset in words from module start
 429 * @words: number of words to write
 430 * @data: buffer with words to write to the Shadow RAM
 431 * @last_command: tells the AdminQ that this is the last command
 432 *
 433 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 434 **/
 435static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 436				     u32 offset, u16 words, void *data,
 437				     bool last_command)
 438{
 439	i40e_status ret_code = I40E_ERR_NVM;
 440	struct i40e_asq_cmd_details cmd_details;
 441
 442	memset(&cmd_details, 0, sizeof(cmd_details));
 443	cmd_details.wb_desc = &hw->nvm_wb_desc;
 444
 445	/* Here we are checking the SR limit only for the flat memory model.
 446	 * We cannot do it for the module-based model, as we did not acquire
 447	 * the NVM resource yet (we cannot get the module pointer value).
 448	 * Firmware will check the module-based model.
 449	 */
 450	if ((offset + words) > hw->nvm.sr_size)
 451		i40e_debug(hw, I40E_DEBUG_NVM,
 452			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 453			   (offset + words), hw->nvm.sr_size);
 454	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 455		/* We can write only up to 4KB (one sector), in one AQ write */
 456		i40e_debug(hw, I40E_DEBUG_NVM,
 457			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 458			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 459	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 460		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 461		/* A single write cannot spread over two sectors */
 462		i40e_debug(hw, I40E_DEBUG_NVM,
 463			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 464			   offset, words);
 465	else
 466		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 467					      2 * offset,  /*bytes*/
 468					      2 * words,   /*bytes*/
 469					      data, last_command, &cmd_details);
 
 470
 471	return ret_code;
 472}
 473
 474/**
 475 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 476 * @hw: pointer to hardware structure
 477 * @checksum: pointer to the checksum
 478 *
 479 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 480 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 481 * is customer specific and unknown. Therefore, this function skips all maximum
 482 * possible size of VPD (1kB).
 483 **/
 484static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
 485						    u16 *checksum)
 486{
 487	i40e_status ret_code;
 488	struct i40e_virt_mem vmem;
 489	u16 pcie_alt_module = 0;
 490	u16 checksum_local = 0;
 491	u16 vpd_module = 0;
 492	u16 *data;
 493	u16 i = 0;
 494
 495	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 496				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 497	if (ret_code)
 498		goto i40e_calc_nvm_checksum_exit;
 499	data = (u16 *)vmem.va;
 500
 501	/* read pointer to VPD area */
 502	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 503	if (ret_code) {
 504		ret_code = I40E_ERR_NVM_CHECKSUM;
 505		goto i40e_calc_nvm_checksum_exit;
 506	}
 507
 508	/* read pointer to PCIe Alt Auto-load module */
 509	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 510				      &pcie_alt_module);
 511	if (ret_code) {
 512		ret_code = I40E_ERR_NVM_CHECKSUM;
 513		goto i40e_calc_nvm_checksum_exit;
 514	}
 515
 516	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 517	 * except the VPD and PCIe ALT Auto-load modules
 518	 */
 519	for (i = 0; i < hw->nvm.sr_size; i++) {
 520		/* Read SR page */
 521		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 522			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 523
 524			ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
 525			if (ret_code) {
 526				ret_code = I40E_ERR_NVM_CHECKSUM;
 527				goto i40e_calc_nvm_checksum_exit;
 528			}
 529		}
 530
 531		/* Skip Checksum word */
 532		if (i == I40E_SR_SW_CHECKSUM_WORD)
 533			continue;
 534		/* Skip VPD module (convert byte size to word count) */
 535		if ((i >= (u32)vpd_module) &&
 536		    (i < ((u32)vpd_module +
 537		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 538			continue;
 539		}
 540		/* Skip PCIe ALT module (convert byte size to word count) */
 541		if ((i >= (u32)pcie_alt_module) &&
 542		    (i < ((u32)pcie_alt_module +
 543		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 544			continue;
 545		}
 546
 547		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 548	}
 549
 550	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 551
 552i40e_calc_nvm_checksum_exit:
 553	i40e_free_virt_mem(hw, &vmem);
 554	return ret_code;
 555}
 556
 557/**
 558 * i40e_update_nvm_checksum - Updates the NVM checksum
 559 * @hw: pointer to hardware structure
 560 *
 561 * NVM ownership must be acquired before calling this function and released
 562 * on ARQ completion event reception by caller.
 563 * This function will commit SR to NVM.
 564 **/
 565i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
 566{
 567	i40e_status ret_code;
 568	u16 checksum;
 569	__le16 le_sum;
 570
 571	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 572	if (!ret_code) {
 573		le_sum = cpu_to_le16(checksum);
 574		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 575					     1, &le_sum, true);
 576	}
 577
 578	return ret_code;
 579}
 580
 581/**
 582 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 583 * @hw: pointer to hardware structure
 584 * @checksum: calculated checksum
 585 *
 586 * Performs checksum calculation and validates the NVM SW checksum. If the
 587 * caller does not need checksum, the value can be NULL.
 588 **/
 589i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
 590						 u16 *checksum)
 591{
 592	i40e_status ret_code = 0;
 593	u16 checksum_sr = 0;
 594	u16 checksum_local = 0;
 595
 
 
 
 
 
 
 
 
 596	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 
 
 597	if (ret_code)
 598		goto i40e_validate_nvm_checksum_exit;
 599
 600	/* Do not use i40e_read_nvm_word() because we do not want to take
 601	 * the synchronization semaphores twice here.
 602	 */
 603	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 604
 605	/* Verify read checksum from EEPROM is the same as
 606	 * calculated checksum
 607	 */
 608	if (checksum_local != checksum_sr)
 609		ret_code = I40E_ERR_NVM_CHECKSUM;
 610
 611	/* If the user cares, return the calculated checksum */
 612	if (checksum)
 613		*checksum = checksum_local;
 614
 615i40e_validate_nvm_checksum_exit:
 616	return ret_code;
 617}
 618
 619static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 620					  struct i40e_nvm_access *cmd,
 621					  u8 *bytes, int *perrno);
 622static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 623					     struct i40e_nvm_access *cmd,
 624					     u8 *bytes, int *perrno);
 625static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 626					     struct i40e_nvm_access *cmd,
 627					     u8 *bytes, int *errno);
 628static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 629						struct i40e_nvm_access *cmd,
 630						int *perrno);
 631static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 632					 struct i40e_nvm_access *cmd,
 633					 int *perrno);
 634static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 635					 struct i40e_nvm_access *cmd,
 636					 u8 *bytes, int *perrno);
 637static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 638					struct i40e_nvm_access *cmd,
 639					u8 *bytes, int *perrno);
 640static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 641				       struct i40e_nvm_access *cmd,
 642				       u8 *bytes, int *perrno);
 643static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 644					     struct i40e_nvm_access *cmd,
 645					     u8 *bytes, int *perrno);
 
 
 
 646static inline u8 i40e_nvmupd_get_module(u32 val)
 647{
 648	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 649}
 650static inline u8 i40e_nvmupd_get_transaction(u32 val)
 651{
 652	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
 653}
 654
 
 
 
 
 
 
 655static const char * const i40e_nvm_update_state_str[] = {
 656	"I40E_NVMUPD_INVALID",
 657	"I40E_NVMUPD_READ_CON",
 658	"I40E_NVMUPD_READ_SNT",
 659	"I40E_NVMUPD_READ_LCB",
 660	"I40E_NVMUPD_READ_SA",
 661	"I40E_NVMUPD_WRITE_ERA",
 662	"I40E_NVMUPD_WRITE_CON",
 663	"I40E_NVMUPD_WRITE_SNT",
 664	"I40E_NVMUPD_WRITE_LCB",
 665	"I40E_NVMUPD_WRITE_SA",
 666	"I40E_NVMUPD_CSUM_CON",
 667	"I40E_NVMUPD_CSUM_SA",
 668	"I40E_NVMUPD_CSUM_LCB",
 669	"I40E_NVMUPD_STATUS",
 670	"I40E_NVMUPD_EXEC_AQ",
 671	"I40E_NVMUPD_GET_AQ_RESULT",
 
 672};
 673
 674/**
 675 * i40e_nvmupd_command - Process an NVM update command
 676 * @hw: pointer to hardware structure
 677 * @cmd: pointer to nvm update command
 678 * @bytes: pointer to the data buffer
 679 * @perrno: pointer to return error code
 680 *
 681 * Dispatches command depending on what update state is current
 682 **/
 683i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
 684				struct i40e_nvm_access *cmd,
 685				u8 *bytes, int *perrno)
 686{
 687	i40e_status status;
 688	enum i40e_nvmupd_cmd upd_cmd;
 689
 690	/* assume success */
 691	*perrno = 0;
 692
 693	/* early check for status command and debug msgs */
 694	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 695
 696	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 697		   i40e_nvm_update_state_str[upd_cmd],
 698		   hw->nvmupd_state,
 699		   hw->aq.nvm_release_on_done,
 700		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 701
 702	if (upd_cmd == I40E_NVMUPD_INVALID) {
 703		*perrno = -EFAULT;
 704		i40e_debug(hw, I40E_DEBUG_NVM,
 705			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 706			   upd_cmd, *perrno);
 707	}
 708
 709	/* a status request returns immediately rather than
 710	 * going into the state machine
 711	 */
 712	if (upd_cmd == I40E_NVMUPD_STATUS) {
 
 
 
 
 
 713		bytes[0] = hw->nvmupd_state;
 
 
 
 
 
 
 
 
 
 
 714		return 0;
 715	}
 716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717	switch (hw->nvmupd_state) {
 718	case I40E_NVMUPD_STATE_INIT:
 719		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 720		break;
 721
 722	case I40E_NVMUPD_STATE_READING:
 723		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 724		break;
 725
 726	case I40E_NVMUPD_STATE_WRITING:
 727		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 728		break;
 729
 730	case I40E_NVMUPD_STATE_INIT_WAIT:
 731	case I40E_NVMUPD_STATE_WRITE_WAIT:
 
 
 
 
 
 
 
 
 
 732		status = I40E_ERR_NOT_READY;
 733		*perrno = -EBUSY;
 734		break;
 735
 736	default:
 737		/* invalid state, should never happen */
 738		i40e_debug(hw, I40E_DEBUG_NVM,
 739			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 740		status = I40E_NOT_SUPPORTED;
 741		*perrno = -ESRCH;
 742		break;
 743	}
 
 
 744	return status;
 745}
 746
 747/**
 748 * i40e_nvmupd_state_init - Handle NVM update state Init
 749 * @hw: pointer to hardware structure
 750 * @cmd: pointer to nvm update command buffer
 751 * @bytes: pointer to the data buffer
 752 * @perrno: pointer to return error code
 753 *
 754 * Process legitimate commands of the Init state and conditionally set next
 755 * state. Reject all other commands.
 756 **/
 757static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 758					  struct i40e_nvm_access *cmd,
 759					  u8 *bytes, int *perrno)
 760{
 761	i40e_status status = 0;
 762	enum i40e_nvmupd_cmd upd_cmd;
 763
 764	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 765
 766	switch (upd_cmd) {
 767	case I40E_NVMUPD_READ_SA:
 768		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 769		if (status) {
 770			*perrno = i40e_aq_rc_to_posix(status,
 771						     hw->aq.asq_last_status);
 772		} else {
 773			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 774			i40e_release_nvm(hw);
 775		}
 776		break;
 777
 778	case I40E_NVMUPD_READ_SNT:
 779		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 780		if (status) {
 781			*perrno = i40e_aq_rc_to_posix(status,
 782						     hw->aq.asq_last_status);
 783		} else {
 784			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 785			if (status)
 786				i40e_release_nvm(hw);
 787			else
 788				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 789		}
 790		break;
 791
 792	case I40E_NVMUPD_WRITE_ERA:
 793		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 794		if (status) {
 795			*perrno = i40e_aq_rc_to_posix(status,
 796						     hw->aq.asq_last_status);
 797		} else {
 798			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 799			if (status) {
 800				i40e_release_nvm(hw);
 801			} else {
 802				hw->aq.nvm_release_on_done = true;
 
 803				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 804			}
 805		}
 806		break;
 807
 808	case I40E_NVMUPD_WRITE_SA:
 809		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 810		if (status) {
 811			*perrno = i40e_aq_rc_to_posix(status,
 812						     hw->aq.asq_last_status);
 813		} else {
 814			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 815			if (status) {
 816				i40e_release_nvm(hw);
 817			} else {
 818				hw->aq.nvm_release_on_done = true;
 
 819				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 820			}
 821		}
 822		break;
 823
 824	case I40E_NVMUPD_WRITE_SNT:
 825		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 826		if (status) {
 827			*perrno = i40e_aq_rc_to_posix(status,
 828						     hw->aq.asq_last_status);
 829		} else {
 830			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 831			if (status)
 832				i40e_release_nvm(hw);
 833			else
 
 834				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
 
 835		}
 836		break;
 837
 838	case I40E_NVMUPD_CSUM_SA:
 839		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 840		if (status) {
 841			*perrno = i40e_aq_rc_to_posix(status,
 842						     hw->aq.asq_last_status);
 843		} else {
 844			status = i40e_update_nvm_checksum(hw);
 845			if (status) {
 846				*perrno = hw->aq.asq_last_status ?
 847				   i40e_aq_rc_to_posix(status,
 848						       hw->aq.asq_last_status) :
 849				   -EIO;
 850				i40e_release_nvm(hw);
 851			} else {
 852				hw->aq.nvm_release_on_done = true;
 
 853				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 854			}
 855		}
 856		break;
 857
 858	case I40E_NVMUPD_EXEC_AQ:
 859		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
 860		break;
 861
 862	case I40E_NVMUPD_GET_AQ_RESULT:
 863		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
 864		break;
 865
 
 
 
 
 866	default:
 867		i40e_debug(hw, I40E_DEBUG_NVM,
 868			   "NVMUPD: bad cmd %s in init state\n",
 869			   i40e_nvm_update_state_str[upd_cmd]);
 870		status = I40E_ERR_NVM;
 871		*perrno = -ESRCH;
 872		break;
 873	}
 874	return status;
 875}
 876
 877/**
 878 * i40e_nvmupd_state_reading - Handle NVM update state Reading
 879 * @hw: pointer to hardware structure
 880 * @cmd: pointer to nvm update command buffer
 881 * @bytes: pointer to the data buffer
 882 * @perrno: pointer to return error code
 883 *
 884 * NVM ownership is already held.  Process legitimate commands and set any
 885 * change in state; reject all other commands.
 886 **/
 887static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 888					     struct i40e_nvm_access *cmd,
 889					     u8 *bytes, int *perrno)
 890{
 891	i40e_status status = 0;
 892	enum i40e_nvmupd_cmd upd_cmd;
 893
 894	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 895
 896	switch (upd_cmd) {
 897	case I40E_NVMUPD_READ_SA:
 898	case I40E_NVMUPD_READ_CON:
 899		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 900		break;
 901
 902	case I40E_NVMUPD_READ_LCB:
 903		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 904		i40e_release_nvm(hw);
 905		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 906		break;
 907
 908	default:
 909		i40e_debug(hw, I40E_DEBUG_NVM,
 910			   "NVMUPD: bad cmd %s in reading state.\n",
 911			   i40e_nvm_update_state_str[upd_cmd]);
 912		status = I40E_NOT_SUPPORTED;
 913		*perrno = -ESRCH;
 914		break;
 915	}
 916	return status;
 917}
 918
 919/**
 920 * i40e_nvmupd_state_writing - Handle NVM update state Writing
 921 * @hw: pointer to hardware structure
 922 * @cmd: pointer to nvm update command buffer
 923 * @bytes: pointer to the data buffer
 924 * @perrno: pointer to return error code
 925 *
 926 * NVM ownership is already held.  Process legitimate commands and set any
 927 * change in state; reject all other commands
 928 **/
 929static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 930					     struct i40e_nvm_access *cmd,
 931					     u8 *bytes, int *perrno)
 932{
 933	i40e_status status = 0;
 934	enum i40e_nvmupd_cmd upd_cmd;
 935	bool retry_attempt = false;
 936
 937	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 938
 939retry:
 940	switch (upd_cmd) {
 941	case I40E_NVMUPD_WRITE_CON:
 942		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 943		if (!status)
 
 944			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
 
 945		break;
 946
 947	case I40E_NVMUPD_WRITE_LCB:
 948		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 949		if (status) {
 950			*perrno = hw->aq.asq_last_status ?
 951				   i40e_aq_rc_to_posix(status,
 952						       hw->aq.asq_last_status) :
 953				   -EIO;
 954			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 955		} else {
 956			hw->aq.nvm_release_on_done = true;
 
 957			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 958		}
 959		break;
 960
 961	case I40E_NVMUPD_CSUM_CON:
 
 962		status = i40e_update_nvm_checksum(hw);
 963		if (status) {
 964			*perrno = hw->aq.asq_last_status ?
 965				   i40e_aq_rc_to_posix(status,
 966						       hw->aq.asq_last_status) :
 967				   -EIO;
 968			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 969		} else {
 
 970			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
 971		}
 972		break;
 973
 974	case I40E_NVMUPD_CSUM_LCB:
 
 975		status = i40e_update_nvm_checksum(hw);
 976		if (status) {
 977			*perrno = hw->aq.asq_last_status ?
 978				   i40e_aq_rc_to_posix(status,
 979						       hw->aq.asq_last_status) :
 980				   -EIO;
 981			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 982		} else {
 983			hw->aq.nvm_release_on_done = true;
 
 984			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 985		}
 986		break;
 987
 988	default:
 989		i40e_debug(hw, I40E_DEBUG_NVM,
 990			   "NVMUPD: bad cmd %s in writing state.\n",
 991			   i40e_nvm_update_state_str[upd_cmd]);
 992		status = I40E_NOT_SUPPORTED;
 993		*perrno = -ESRCH;
 994		break;
 995	}
 996
 997	/* In some circumstances, a multi-write transaction takes longer
 998	 * than the default 3 minute timeout on the write semaphore.  If
 999	 * the write failed with an EBUSY status, this is likely the problem,
1000	 * so here we try to reacquire the semaphore then retry the write.
1001	 * We only do one retry, then give up.
1002	 */
1003	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1004	    !retry_attempt) {
1005		i40e_status old_status = status;
1006		u32 old_asq_status = hw->aq.asq_last_status;
1007		u32 gtime;
1008
1009		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1010		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1011			i40e_debug(hw, I40E_DEBUG_ALL,
1012				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1013				   gtime, hw->nvm.hw_semaphore_timeout);
1014			i40e_release_nvm(hw);
1015			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1016			if (status) {
1017				i40e_debug(hw, I40E_DEBUG_ALL,
1018					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1019					   hw->aq.asq_last_status);
1020				status = old_status;
1021				hw->aq.asq_last_status = old_asq_status;
1022			} else {
1023				retry_attempt = true;
1024				goto retry;
1025			}
1026		}
1027	}
1028
1029	return status;
1030}
1031
1032/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033 * i40e_nvmupd_validate_command - Validate given command
1034 * @hw: pointer to hardware structure
1035 * @cmd: pointer to nvm update command buffer
1036 * @perrno: pointer to return error code
1037 *
1038 * Return one of the valid command types or I40E_NVMUPD_INVALID
1039 **/
1040static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1041						 struct i40e_nvm_access *cmd,
1042						 int *perrno)
1043{
1044	enum i40e_nvmupd_cmd upd_cmd;
1045	u8 module, transaction;
1046
1047	/* anything that doesn't match a recognized case is an error */
1048	upd_cmd = I40E_NVMUPD_INVALID;
1049
1050	transaction = i40e_nvmupd_get_transaction(cmd->config);
1051	module = i40e_nvmupd_get_module(cmd->config);
1052
1053	/* limits on data size */
1054	if ((cmd->data_size < 1) ||
1055	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1056		i40e_debug(hw, I40E_DEBUG_NVM,
1057			   "i40e_nvmupd_validate_command data_size %d\n",
1058			   cmd->data_size);
1059		*perrno = -EFAULT;
1060		return I40E_NVMUPD_INVALID;
1061	}
1062
1063	switch (cmd->command) {
1064	case I40E_NVM_READ:
1065		switch (transaction) {
1066		case I40E_NVM_CON:
1067			upd_cmd = I40E_NVMUPD_READ_CON;
1068			break;
1069		case I40E_NVM_SNT:
1070			upd_cmd = I40E_NVMUPD_READ_SNT;
1071			break;
1072		case I40E_NVM_LCB:
1073			upd_cmd = I40E_NVMUPD_READ_LCB;
1074			break;
1075		case I40E_NVM_SA:
1076			upd_cmd = I40E_NVMUPD_READ_SA;
1077			break;
1078		case I40E_NVM_EXEC:
1079			if (module == 0xf)
1080				upd_cmd = I40E_NVMUPD_STATUS;
1081			else if (module == 0)
1082				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1083			break;
 
 
 
1084		}
1085		break;
1086
1087	case I40E_NVM_WRITE:
1088		switch (transaction) {
1089		case I40E_NVM_CON:
1090			upd_cmd = I40E_NVMUPD_WRITE_CON;
1091			break;
1092		case I40E_NVM_SNT:
1093			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1094			break;
1095		case I40E_NVM_LCB:
1096			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1097			break;
1098		case I40E_NVM_SA:
1099			upd_cmd = I40E_NVMUPD_WRITE_SA;
1100			break;
1101		case I40E_NVM_ERA:
1102			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1103			break;
1104		case I40E_NVM_CSUM:
1105			upd_cmd = I40E_NVMUPD_CSUM_CON;
1106			break;
1107		case (I40E_NVM_CSUM|I40E_NVM_SA):
1108			upd_cmd = I40E_NVMUPD_CSUM_SA;
1109			break;
1110		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1111			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1112			break;
1113		case I40E_NVM_EXEC:
1114			if (module == 0)
1115				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1116			break;
1117		}
1118		break;
1119	}
1120
1121	return upd_cmd;
1122}
1123
1124/**
1125 * i40e_nvmupd_exec_aq - Run an AQ command
1126 * @hw: pointer to hardware structure
1127 * @cmd: pointer to nvm update command buffer
1128 * @bytes: pointer to the data buffer
1129 * @perrno: pointer to return error code
1130 *
1131 * cmd structure contains identifiers and data buffer
1132 **/
1133static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1134				       struct i40e_nvm_access *cmd,
1135				       u8 *bytes, int *perrno)
1136{
1137	struct i40e_asq_cmd_details cmd_details;
1138	i40e_status status;
1139	struct i40e_aq_desc *aq_desc;
1140	u32 buff_size = 0;
1141	u8 *buff = NULL;
1142	u32 aq_desc_len;
1143	u32 aq_data_len;
1144
1145	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
 
 
 
1146	memset(&cmd_details, 0, sizeof(cmd_details));
1147	cmd_details.wb_desc = &hw->nvm_wb_desc;
1148
1149	aq_desc_len = sizeof(struct i40e_aq_desc);
1150	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1151
1152	/* get the aq descriptor */
1153	if (cmd->data_size < aq_desc_len) {
1154		i40e_debug(hw, I40E_DEBUG_NVM,
1155			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1156			   cmd->data_size, aq_desc_len);
1157		*perrno = -EINVAL;
1158		return I40E_ERR_PARAM;
1159	}
1160	aq_desc = (struct i40e_aq_desc *)bytes;
1161
1162	/* if data buffer needed, make sure it's ready */
1163	aq_data_len = cmd->data_size - aq_desc_len;
1164	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1165	if (buff_size) {
1166		if (!hw->nvm_buff.va) {
1167			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1168							hw->aq.asq_buf_size);
1169			if (status)
1170				i40e_debug(hw, I40E_DEBUG_NVM,
1171					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1172					   status);
1173		}
1174
1175		if (hw->nvm_buff.va) {
1176			buff = hw->nvm_buff.va;
1177			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1178		}
1179	}
1180
 
 
 
1181	/* and away we go! */
1182	status = i40e_asq_send_command(hw, aq_desc, buff,
1183				       buff_size, &cmd_details);
1184	if (status) {
1185		i40e_debug(hw, I40E_DEBUG_NVM,
1186			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1187			   i40e_stat_str(hw, status),
1188			   i40e_aq_str(hw, hw->aq.asq_last_status));
1189		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 
 
 
 
 
 
 
1190	}
1191
1192	return status;
1193}
1194
1195/**
1196 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1197 * @hw: pointer to hardware structure
1198 * @cmd: pointer to nvm update command buffer
1199 * @bytes: pointer to the data buffer
1200 * @perrno: pointer to return error code
1201 *
1202 * cmd structure contains identifiers and data buffer
1203 **/
1204static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1205					     struct i40e_nvm_access *cmd,
1206					     u8 *bytes, int *perrno)
1207{
1208	u32 aq_total_len;
1209	u32 aq_desc_len;
1210	int remainder;
1211	u8 *buff;
1212
1213	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1214
1215	aq_desc_len = sizeof(struct i40e_aq_desc);
1216	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1217
1218	/* check offset range */
1219	if (cmd->offset > aq_total_len) {
1220		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1221			   __func__, cmd->offset, aq_total_len);
1222		*perrno = -EINVAL;
1223		return I40E_ERR_PARAM;
1224	}
1225
1226	/* check copylength range */
1227	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1228		int new_len = aq_total_len - cmd->offset;
1229
1230		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1231			   __func__, cmd->data_size, new_len);
1232		cmd->data_size = new_len;
1233	}
1234
1235	remainder = cmd->data_size;
1236	if (cmd->offset < aq_desc_len) {
1237		u32 len = aq_desc_len - cmd->offset;
1238
1239		len = min(len, cmd->data_size);
1240		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1241			   __func__, cmd->offset, cmd->offset + len);
1242
1243		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1244		memcpy(bytes, buff, len);
1245
1246		bytes += len;
1247		remainder -= len;
1248		buff = hw->nvm_buff.va;
1249	} else {
1250		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1251	}
1252
1253	if (remainder > 0) {
1254		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1255
1256		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1257			   __func__, start_byte, start_byte + remainder);
1258		memcpy(bytes, buff, remainder);
1259	}
1260
1261	return 0;
1262}
1263
1264/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265 * i40e_nvmupd_nvm_read - Read NVM
1266 * @hw: pointer to hardware structure
1267 * @cmd: pointer to nvm update command buffer
1268 * @bytes: pointer to the data buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * cmd structure contains identifiers and data buffer
1272 **/
1273static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1274					struct i40e_nvm_access *cmd,
1275					u8 *bytes, int *perrno)
1276{
1277	struct i40e_asq_cmd_details cmd_details;
1278	i40e_status status;
1279	u8 module, transaction;
1280	bool last;
1281
1282	transaction = i40e_nvmupd_get_transaction(cmd->config);
1283	module = i40e_nvmupd_get_module(cmd->config);
1284	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1285
1286	memset(&cmd_details, 0, sizeof(cmd_details));
1287	cmd_details.wb_desc = &hw->nvm_wb_desc;
1288
1289	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1290				  bytes, last, &cmd_details);
1291	if (status) {
1292		i40e_debug(hw, I40E_DEBUG_NVM,
1293			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1294			   module, cmd->offset, cmd->data_size);
1295		i40e_debug(hw, I40E_DEBUG_NVM,
1296			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1297			   status, hw->aq.asq_last_status);
1298		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1299	}
1300
1301	return status;
1302}
1303
1304/**
1305 * i40e_nvmupd_nvm_erase - Erase an NVM module
1306 * @hw: pointer to hardware structure
1307 * @cmd: pointer to nvm update command buffer
1308 * @perrno: pointer to return error code
1309 *
1310 * module, offset, data_size and data are in cmd structure
1311 **/
1312static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1313					 struct i40e_nvm_access *cmd,
1314					 int *perrno)
1315{
1316	i40e_status status = 0;
1317	struct i40e_asq_cmd_details cmd_details;
1318	u8 module, transaction;
1319	bool last;
1320
1321	transaction = i40e_nvmupd_get_transaction(cmd->config);
1322	module = i40e_nvmupd_get_module(cmd->config);
1323	last = (transaction & I40E_NVM_LCB);
1324
1325	memset(&cmd_details, 0, sizeof(cmd_details));
1326	cmd_details.wb_desc = &hw->nvm_wb_desc;
1327
1328	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1329				   last, &cmd_details);
1330	if (status) {
1331		i40e_debug(hw, I40E_DEBUG_NVM,
1332			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1333			   module, cmd->offset, cmd->data_size);
1334		i40e_debug(hw, I40E_DEBUG_NVM,
1335			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1336			   status, hw->aq.asq_last_status);
1337		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1338	}
1339
1340	return status;
1341}
1342
1343/**
1344 * i40e_nvmupd_nvm_write - Write NVM
1345 * @hw: pointer to hardware structure
1346 * @cmd: pointer to nvm update command buffer
1347 * @bytes: pointer to the data buffer
1348 * @perrno: pointer to return error code
1349 *
1350 * module, offset, data_size and data are in cmd structure
1351 **/
1352static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1353					 struct i40e_nvm_access *cmd,
1354					 u8 *bytes, int *perrno)
1355{
1356	i40e_status status = 0;
1357	struct i40e_asq_cmd_details cmd_details;
1358	u8 module, transaction;
 
1359	bool last;
1360
1361	transaction = i40e_nvmupd_get_transaction(cmd->config);
1362	module = i40e_nvmupd_get_module(cmd->config);
1363	last = (transaction & I40E_NVM_LCB);
 
1364
1365	memset(&cmd_details, 0, sizeof(cmd_details));
1366	cmd_details.wb_desc = &hw->nvm_wb_desc;
1367
1368	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1369				    (u16)cmd->data_size, bytes, last,
1370				    &cmd_details);
1371	if (status) {
1372		i40e_debug(hw, I40E_DEBUG_NVM,
1373			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1374			   module, cmd->offset, cmd->data_size);
1375		i40e_debug(hw, I40E_DEBUG_NVM,
1376			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1377			   status, hw->aq.asq_last_status);
1378		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1379	}
1380
1381	return status;
1382}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "i40e_prototype.h"
   5
   6/**
   7 * i40e_init_nvm_ops - Initialize NVM function pointers
   8 * @hw: pointer to the HW structure
   9 *
  10 * Setup the function pointers and the NVM info structure. Should be called
  11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  12 * Please notice that the NVM term is used here (& in all methods covered
  13 * in this file) as an equivalent of the FLASH part mapped into the SR.
  14 * We are accessing FLASH always thru the Shadow RAM.
  15 **/
  16i40e_status i40e_init_nvm(struct i40e_hw *hw)
  17{
  18	struct i40e_nvm_info *nvm = &hw->nvm;
  19	i40e_status ret_code = 0;
  20	u32 fla, gens;
  21	u8 sr_size;
  22
  23	/* The SR size is stored regardless of the nvm programming mode
  24	 * as the blank mode may be used in the factory line.
  25	 */
  26	gens = rd32(hw, I40E_GLNVM_GENS);
  27	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
  28			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
  29	/* Switching to words (sr_size contains power of 2KB) */
  30	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  31
  32	/* Check if we are in the normal or blank NVM programming mode */
  33	fla = rd32(hw, I40E_GLNVM_FLA);
  34	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  35		/* Max NVM timeout */
  36		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  37		nvm->blank_nvm_mode = false;
  38	} else { /* Blank programming mode */
  39		nvm->blank_nvm_mode = true;
  40		ret_code = I40E_ERR_NVM_BLANK_MODE;
  41		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  42	}
  43
  44	return ret_code;
  45}
  46
  47/**
  48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  49 * @hw: pointer to the HW structure
  50 * @access: NVM access type (read or write)
  51 *
  52 * This function will request NVM ownership for reading
  53 * via the proper Admin Command.
  54 **/
  55i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
  56				       enum i40e_aq_resource_access_type access)
  57{
  58	i40e_status ret_code = 0;
  59	u64 gtime, timeout;
  60	u64 time_left = 0;
  61
  62	if (hw->nvm.blank_nvm_mode)
  63		goto i40e_i40e_acquire_nvm_exit;
  64
  65	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  66					    0, &time_left, NULL);
  67	/* Reading the Global Device Timer */
  68	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  69
  70	/* Store the timeout */
  71	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  72
  73	if (ret_code)
  74		i40e_debug(hw, I40E_DEBUG_NVM,
  75			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  76			   access, time_left, ret_code, hw->aq.asq_last_status);
  77
  78	if (ret_code && time_left) {
  79		/* Poll until the current NVM owner timeouts */
  80		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  81		while ((gtime < timeout) && time_left) {
  82			usleep_range(10000, 20000);
  83			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  84			ret_code = i40e_aq_request_resource(hw,
  85							I40E_NVM_RESOURCE_ID,
  86							access, 0, &time_left,
  87							NULL);
  88			if (!ret_code) {
  89				hw->nvm.hw_semaphore_timeout =
  90					    I40E_MS_TO_GTIME(time_left) + gtime;
  91				break;
  92			}
  93		}
  94		if (ret_code) {
  95			hw->nvm.hw_semaphore_timeout = 0;
  96			i40e_debug(hw, I40E_DEBUG_NVM,
  97				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
  98				   time_left, ret_code, hw->aq.asq_last_status);
  99		}
 100	}
 101
 102i40e_i40e_acquire_nvm_exit:
 103	return ret_code;
 104}
 105
 106/**
 107 * i40e_release_nvm - Generic request for releasing the NVM ownership
 108 * @hw: pointer to the HW structure
 109 *
 110 * This function will release NVM resource via the proper Admin Command.
 111 **/
 112void i40e_release_nvm(struct i40e_hw *hw)
 113{
 114	i40e_status ret_code = I40E_SUCCESS;
 115	u32 total_delay = 0;
 116
 117	if (hw->nvm.blank_nvm_mode)
 118		return;
 119
 120	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 121
 122	/* there are some rare cases when trying to release the resource
 123	 * results in an admin Q timeout, so handle them correctly
 124	 */
 125	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
 126	       (total_delay < hw->aq.asq_cmd_timeout)) {
 127		usleep_range(1000, 2000);
 128		ret_code = i40e_aq_release_resource(hw,
 129						    I40E_NVM_RESOURCE_ID,
 130						    0, NULL);
 131		total_delay++;
 132	}
 133}
 134
 135/**
 136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 137 * @hw: pointer to the HW structure
 138 *
 139 * Polls the SRCTL Shadow RAM register done bit.
 140 **/
 141static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 142{
 143	i40e_status ret_code = I40E_ERR_TIMEOUT;
 144	u32 srctl, wait_cnt;
 145
 146	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 147	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 148		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 149		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 150			ret_code = 0;
 151			break;
 152		}
 153		udelay(5);
 154	}
 155	if (ret_code == I40E_ERR_TIMEOUT)
 156		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 157	return ret_code;
 158}
 159
 160/**
 161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 162 * @hw: pointer to the HW structure
 163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 164 * @data: word read from the Shadow RAM
 165 *
 166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 167 **/
 168static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 169					    u16 *data)
 170{
 171	i40e_status ret_code = I40E_ERR_TIMEOUT;
 172	u32 sr_reg;
 173
 174	if (offset >= hw->nvm.sr_size) {
 175		i40e_debug(hw, I40E_DEBUG_NVM,
 176			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 177			   offset, hw->nvm.sr_size);
 178		ret_code = I40E_ERR_PARAM;
 179		goto read_nvm_exit;
 180	}
 181
 182	/* Poll the done bit first */
 183	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 184	if (!ret_code) {
 185		/* Write the address and start reading */
 186		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 187			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 188		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 189
 190		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 191		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 192		if (!ret_code) {
 193			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 194			*data = (u16)((sr_reg &
 195				       I40E_GLNVM_SRDATA_RDDATA_MASK)
 196				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
 197		}
 198	}
 199	if (ret_code)
 200		i40e_debug(hw, I40E_DEBUG_NVM,
 201			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 202			   offset);
 203
 204read_nvm_exit:
 205	return ret_code;
 206}
 207
 208/**
 209 * i40e_read_nvm_aq - Read Shadow RAM.
 210 * @hw: pointer to the HW structure.
 211 * @module_pointer: module pointer location in words from the NVM beginning
 212 * @offset: offset in words from module start
 213 * @words: number of words to write
 214 * @data: buffer with words to write to the Shadow RAM
 215 * @last_command: tells the AdminQ that this is the last command
 216 *
 217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 218 **/
 219static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
 220				    u8 module_pointer, u32 offset,
 221				    u16 words, void *data,
 222				    bool last_command)
 223{
 224	i40e_status ret_code = I40E_ERR_NVM;
 225	struct i40e_asq_cmd_details cmd_details;
 226
 227	memset(&cmd_details, 0, sizeof(cmd_details));
 228	cmd_details.wb_desc = &hw->nvm_wb_desc;
 229
 230	/* Here we are checking the SR limit only for the flat memory model.
 231	 * We cannot do it for the module-based model, as we did not acquire
 232	 * the NVM resource yet (we cannot get the module pointer value).
 233	 * Firmware will check the module-based model.
 234	 */
 235	if ((offset + words) > hw->nvm.sr_size)
 236		i40e_debug(hw, I40E_DEBUG_NVM,
 237			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 238			   (offset + words), hw->nvm.sr_size);
 239	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 240		/* We can write only up to 4KB (one sector), in one AQ write */
 241		i40e_debug(hw, I40E_DEBUG_NVM,
 242			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 243			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 244	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 245		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 246		/* A single write cannot spread over two sectors */
 247		i40e_debug(hw, I40E_DEBUG_NVM,
 248			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 249			   offset, words);
 250	else
 251		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 252					    2 * offset,  /*bytes*/
 253					    2 * words,   /*bytes*/
 254					    data, last_command, &cmd_details);
 255
 256	return ret_code;
 257}
 258
 259/**
 260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 261 * @hw: pointer to the HW structure
 262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 263 * @data: word read from the Shadow RAM
 264 *
 265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 266 **/
 267static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 268					 u16 *data)
 269{
 270	i40e_status ret_code = I40E_ERR_TIMEOUT;
 271
 272	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 273	*data = le16_to_cpu(*(__le16 *)data);
 274
 275	return ret_code;
 276}
 277
 278/**
 279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 280 * @hw: pointer to the HW structure
 281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 282 * @data: word read from the Shadow RAM
 283 *
 284 * Reads one 16 bit word from the Shadow RAM.
 285 *
 286 * Do not use this function except in cases where the nvm lock is already
 287 * taken via i40e_acquire_nvm().
 288 **/
 289static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
 290					u16 offset, u16 *data)
 291{
 292	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 293		return i40e_read_nvm_word_aq(hw, offset, data);
 294
 295	return i40e_read_nvm_word_srctl(hw, offset, data);
 296}
 297
 298/**
 299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 300 * @hw: pointer to the HW structure
 301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 302 * @data: word read from the Shadow RAM
 303 *
 304 * Reads one 16 bit word from the Shadow RAM.
 305 **/
 306i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 307			       u16 *data)
 308{
 309	i40e_status ret_code = 0;
 310
 311	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 312		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 313	if (ret_code)
 314		return ret_code;
 315
 316	ret_code = __i40e_read_nvm_word(hw, offset, data);
 317
 318	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 319		i40e_release_nvm(hw);
 320
 321	return ret_code;
 322}
 323
 324/**
 325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 326 * @hw: pointer to the HW structure
 327 * @module_ptr: Pointer to module in words with respect to NVM beginning
 328 * @offset: offset in words from module start
 329 * @words_data_size: Words to read from NVM
 330 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 331 **/
 332i40e_status i40e_read_nvm_module_data(struct i40e_hw *hw,
 333				      u8 module_ptr, u16 offset,
 334				      u16 words_data_size,
 335				      u16 *data_ptr)
 336{
 337	i40e_status status;
 338	u16 ptr_value = 0;
 339	u32 flat_offset;
 340
 341	if (module_ptr != 0) {
 342		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 343		if (status) {
 344			i40e_debug(hw, I40E_DEBUG_ALL,
 345				   "Reading nvm word failed.Error code: %d.\n",
 346				   status);
 347			return I40E_ERR_NVM;
 348		}
 349	}
 350#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 351#define I40E_NVM_INVALID_VAL 0xFFFF
 352
 353	/* Pointer not initialized */
 354	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 355	    ptr_value == I40E_NVM_INVALID_VAL)
 356		return I40E_ERR_BAD_PTR;
 357
 358	/* Check whether the module is in SR mapped area or outside */
 359	if (ptr_value & I40E_PTR_TYPE) {
 360		/* Pointer points outside of the Shared RAM mapped area */
 361		ptr_value &= ~I40E_PTR_TYPE;
 362
 363		/* PtrValue in 4kB units, need to convert to words */
 364		ptr_value /= 2;
 365		flat_offset = ((u32)ptr_value * 0x1000) + (u32)offset;
 366		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 367		if (!status) {
 368			status = i40e_aq_read_nvm(hw, 0, 2 * flat_offset,
 369						  2 * words_data_size,
 370						  data_ptr, true, NULL);
 371			i40e_release_nvm(hw);
 372			if (status) {
 373				i40e_debug(hw, I40E_DEBUG_ALL,
 374					   "Reading nvm aq failed.Error code: %d.\n",
 375					   status);
 376				return I40E_ERR_NVM;
 377			}
 378		} else {
 379			return I40E_ERR_NVM;
 380		}
 381	} else {
 382		/* Read from the Shadow RAM */
 383		status = i40e_read_nvm_buffer(hw, ptr_value + offset,
 384					      &words_data_size, data_ptr);
 385		if (status) {
 386			i40e_debug(hw, I40E_DEBUG_ALL,
 387				   "Reading nvm buffer failed.Error code: %d.\n",
 388				   status);
 389		}
 390	}
 391
 392	return status;
 393}
 394
 395/**
 396 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 397 * @hw: pointer to the HW structure
 398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 399 * @words: (in) number of words to read; (out) number of words actually read
 400 * @data: words read from the Shadow RAM
 401 *
 402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 403 * method. The buffer read is preceded by the NVM ownership take
 404 * and followed by the release.
 405 **/
 406static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 407					      u16 *words, u16 *data)
 408{
 409	i40e_status ret_code = 0;
 410	u16 index, word;
 411
 412	/* Loop thru the selected region */
 413	for (word = 0; word < *words; word++) {
 414		index = offset + word;
 415		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 416		if (ret_code)
 417			break;
 418	}
 419
 420	/* Update the number of words read from the Shadow RAM */
 421	*words = word;
 422
 423	return ret_code;
 424}
 425
 426/**
 427 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 428 * @hw: pointer to the HW structure
 429 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 430 * @words: (in) number of words to read; (out) number of words actually read
 431 * @data: words read from the Shadow RAM
 432 *
 433 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 434 * method. The buffer read is preceded by the NVM ownership take
 435 * and followed by the release.
 436 **/
 437static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 438					   u16 *words, u16 *data)
 439{
 440	i40e_status ret_code;
 441	u16 read_size;
 442	bool last_cmd = false;
 443	u16 words_read = 0;
 444	u16 i = 0;
 445
 446	do {
 447		/* Calculate number of bytes we should read in this step.
 448		 * FVL AQ do not allow to read more than one page at a time or
 449		 * to cross page boundaries.
 450		 */
 451		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 452			read_size = min(*words,
 453					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 454				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 455		else
 456			read_size = min((*words - words_read),
 457					I40E_SR_SECTOR_SIZE_IN_WORDS);
 458
 459		/* Check if this is last command, if so set proper flag */
 460		if ((words_read + read_size) >= *words)
 461			last_cmd = true;
 462
 463		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 464					    data + words_read, last_cmd);
 465		if (ret_code)
 466			goto read_nvm_buffer_aq_exit;
 467
 468		/* Increment counter for words already read and move offset to
 469		 * new read location
 470		 */
 471		words_read += read_size;
 472		offset += read_size;
 473	} while (words_read < *words);
 474
 475	for (i = 0; i < *words; i++)
 476		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 477
 478read_nvm_buffer_aq_exit:
 479	*words = words_read;
 480	return ret_code;
 481}
 482
 483/**
 484 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 485 * @hw: pointer to the HW structure
 486 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 487 * @words: (in) number of words to read; (out) number of words actually read
 488 * @data: words read from the Shadow RAM
 489 *
 490 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 491 * method.
 492 **/
 493static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
 494					  u16 offset, u16 *words,
 495					  u16 *data)
 496{
 497	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 498		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 499
 500	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 501}
 502
 503/**
 504 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 505 * @hw: pointer to the HW structure
 506 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 507 * @words: (in) number of words to read; (out) number of words actually read
 508 * @data: words read from the Shadow RAM
 509 *
 510 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 511 * method. The buffer read is preceded by the NVM ownership take
 512 * and followed by the release.
 513 **/
 514i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 515				 u16 *words, u16 *data)
 516{
 517	i40e_status ret_code = 0;
 518
 519	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
 520		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 521		if (!ret_code) {
 522			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 523							   data);
 524			i40e_release_nvm(hw);
 525		}
 526	} else {
 527		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 528	}
 529
 530	return ret_code;
 531}
 532
 533/**
 534 * i40e_write_nvm_aq - Writes Shadow RAM.
 535 * @hw: pointer to the HW structure.
 536 * @module_pointer: module pointer location in words from the NVM beginning
 537 * @offset: offset in words from module start
 538 * @words: number of words to write
 539 * @data: buffer with words to write to the Shadow RAM
 540 * @last_command: tells the AdminQ that this is the last command
 541 *
 542 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 543 **/
 544static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 545				     u32 offset, u16 words, void *data,
 546				     bool last_command)
 547{
 548	i40e_status ret_code = I40E_ERR_NVM;
 549	struct i40e_asq_cmd_details cmd_details;
 550
 551	memset(&cmd_details, 0, sizeof(cmd_details));
 552	cmd_details.wb_desc = &hw->nvm_wb_desc;
 553
 554	/* Here we are checking the SR limit only for the flat memory model.
 555	 * We cannot do it for the module-based model, as we did not acquire
 556	 * the NVM resource yet (we cannot get the module pointer value).
 557	 * Firmware will check the module-based model.
 558	 */
 559	if ((offset + words) > hw->nvm.sr_size)
 560		i40e_debug(hw, I40E_DEBUG_NVM,
 561			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 562			   (offset + words), hw->nvm.sr_size);
 563	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 564		/* We can write only up to 4KB (one sector), in one AQ write */
 565		i40e_debug(hw, I40E_DEBUG_NVM,
 566			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 567			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 568	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 569		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 570		/* A single write cannot spread over two sectors */
 571		i40e_debug(hw, I40E_DEBUG_NVM,
 572			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 573			   offset, words);
 574	else
 575		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 576					      2 * offset,  /*bytes*/
 577					      2 * words,   /*bytes*/
 578					      data, last_command, 0,
 579					      &cmd_details);
 580
 581	return ret_code;
 582}
 583
 584/**
 585 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 586 * @hw: pointer to hardware structure
 587 * @checksum: pointer to the checksum
 588 *
 589 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 590 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 591 * is customer specific and unknown. Therefore, this function skips all maximum
 592 * possible size of VPD (1kB).
 593 **/
 594static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
 595						    u16 *checksum)
 596{
 597	i40e_status ret_code;
 598	struct i40e_virt_mem vmem;
 599	u16 pcie_alt_module = 0;
 600	u16 checksum_local = 0;
 601	u16 vpd_module = 0;
 602	u16 *data;
 603	u16 i = 0;
 604
 605	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 606				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 607	if (ret_code)
 608		goto i40e_calc_nvm_checksum_exit;
 609	data = (u16 *)vmem.va;
 610
 611	/* read pointer to VPD area */
 612	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 613	if (ret_code) {
 614		ret_code = I40E_ERR_NVM_CHECKSUM;
 615		goto i40e_calc_nvm_checksum_exit;
 616	}
 617
 618	/* read pointer to PCIe Alt Auto-load module */
 619	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 620					&pcie_alt_module);
 621	if (ret_code) {
 622		ret_code = I40E_ERR_NVM_CHECKSUM;
 623		goto i40e_calc_nvm_checksum_exit;
 624	}
 625
 626	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 627	 * except the VPD and PCIe ALT Auto-load modules
 628	 */
 629	for (i = 0; i < hw->nvm.sr_size; i++) {
 630		/* Read SR page */
 631		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 632			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 633
 634			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 635			if (ret_code) {
 636				ret_code = I40E_ERR_NVM_CHECKSUM;
 637				goto i40e_calc_nvm_checksum_exit;
 638			}
 639		}
 640
 641		/* Skip Checksum word */
 642		if (i == I40E_SR_SW_CHECKSUM_WORD)
 643			continue;
 644		/* Skip VPD module (convert byte size to word count) */
 645		if ((i >= (u32)vpd_module) &&
 646		    (i < ((u32)vpd_module +
 647		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 648			continue;
 649		}
 650		/* Skip PCIe ALT module (convert byte size to word count) */
 651		if ((i >= (u32)pcie_alt_module) &&
 652		    (i < ((u32)pcie_alt_module +
 653		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 654			continue;
 655		}
 656
 657		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 658	}
 659
 660	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 661
 662i40e_calc_nvm_checksum_exit:
 663	i40e_free_virt_mem(hw, &vmem);
 664	return ret_code;
 665}
 666
 667/**
 668 * i40e_update_nvm_checksum - Updates the NVM checksum
 669 * @hw: pointer to hardware structure
 670 *
 671 * NVM ownership must be acquired before calling this function and released
 672 * on ARQ completion event reception by caller.
 673 * This function will commit SR to NVM.
 674 **/
 675i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
 676{
 677	i40e_status ret_code;
 678	u16 checksum;
 679	__le16 le_sum;
 680
 681	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 682	le_sum = cpu_to_le16(checksum);
 683	if (!ret_code)
 684		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 685					     1, &le_sum, true);
 
 686
 687	return ret_code;
 688}
 689
 690/**
 691 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 692 * @hw: pointer to hardware structure
 693 * @checksum: calculated checksum
 694 *
 695 * Performs checksum calculation and validates the NVM SW checksum. If the
 696 * caller does not need checksum, the value can be NULL.
 697 **/
 698i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
 699						 u16 *checksum)
 700{
 701	i40e_status ret_code = 0;
 702	u16 checksum_sr = 0;
 703	u16 checksum_local = 0;
 704
 705	/* We must acquire the NVM lock in order to correctly synchronize the
 706	 * NVM accesses across multiple PFs. Without doing so it is possible
 707	 * for one of the PFs to read invalid data potentially indicating that
 708	 * the checksum is invalid.
 709	 */
 710	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 711	if (ret_code)
 712		return ret_code;
 713	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 714	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 715	i40e_release_nvm(hw);
 716	if (ret_code)
 717		return ret_code;
 
 
 
 
 
 718
 719	/* Verify read checksum from EEPROM is the same as
 720	 * calculated checksum
 721	 */
 722	if (checksum_local != checksum_sr)
 723		ret_code = I40E_ERR_NVM_CHECKSUM;
 724
 725	/* If the user cares, return the calculated checksum */
 726	if (checksum)
 727		*checksum = checksum_local;
 728
 
 729	return ret_code;
 730}
 731
 732static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 733					  struct i40e_nvm_access *cmd,
 734					  u8 *bytes, int *perrno);
 735static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 736					     struct i40e_nvm_access *cmd,
 737					     u8 *bytes, int *perrno);
 738static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 739					     struct i40e_nvm_access *cmd,
 740					     u8 *bytes, int *errno);
 741static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 742						struct i40e_nvm_access *cmd,
 743						int *perrno);
 744static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 745					 struct i40e_nvm_access *cmd,
 746					 int *perrno);
 747static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 748					 struct i40e_nvm_access *cmd,
 749					 u8 *bytes, int *perrno);
 750static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 751					struct i40e_nvm_access *cmd,
 752					u8 *bytes, int *perrno);
 753static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 754				       struct i40e_nvm_access *cmd,
 755				       u8 *bytes, int *perrno);
 756static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 757					     struct i40e_nvm_access *cmd,
 758					     u8 *bytes, int *perrno);
 759static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 760					    struct i40e_nvm_access *cmd,
 761					    u8 *bytes, int *perrno);
 762static inline u8 i40e_nvmupd_get_module(u32 val)
 763{
 764	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 765}
 766static inline u8 i40e_nvmupd_get_transaction(u32 val)
 767{
 768	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
 769}
 770
 771static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 772{
 773	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
 774		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
 775}
 776
 777static const char * const i40e_nvm_update_state_str[] = {
 778	"I40E_NVMUPD_INVALID",
 779	"I40E_NVMUPD_READ_CON",
 780	"I40E_NVMUPD_READ_SNT",
 781	"I40E_NVMUPD_READ_LCB",
 782	"I40E_NVMUPD_READ_SA",
 783	"I40E_NVMUPD_WRITE_ERA",
 784	"I40E_NVMUPD_WRITE_CON",
 785	"I40E_NVMUPD_WRITE_SNT",
 786	"I40E_NVMUPD_WRITE_LCB",
 787	"I40E_NVMUPD_WRITE_SA",
 788	"I40E_NVMUPD_CSUM_CON",
 789	"I40E_NVMUPD_CSUM_SA",
 790	"I40E_NVMUPD_CSUM_LCB",
 791	"I40E_NVMUPD_STATUS",
 792	"I40E_NVMUPD_EXEC_AQ",
 793	"I40E_NVMUPD_GET_AQ_RESULT",
 794	"I40E_NVMUPD_GET_AQ_EVENT",
 795};
 796
 797/**
 798 * i40e_nvmupd_command - Process an NVM update command
 799 * @hw: pointer to hardware structure
 800 * @cmd: pointer to nvm update command
 801 * @bytes: pointer to the data buffer
 802 * @perrno: pointer to return error code
 803 *
 804 * Dispatches command depending on what update state is current
 805 **/
 806i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
 807				struct i40e_nvm_access *cmd,
 808				u8 *bytes, int *perrno)
 809{
 810	i40e_status status;
 811	enum i40e_nvmupd_cmd upd_cmd;
 812
 813	/* assume success */
 814	*perrno = 0;
 815
 816	/* early check for status command and debug msgs */
 817	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 818
 819	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 820		   i40e_nvm_update_state_str[upd_cmd],
 821		   hw->nvmupd_state,
 822		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 823		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 824
 825	if (upd_cmd == I40E_NVMUPD_INVALID) {
 826		*perrno = -EFAULT;
 827		i40e_debug(hw, I40E_DEBUG_NVM,
 828			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 829			   upd_cmd, *perrno);
 830	}
 831
 832	/* a status request returns immediately rather than
 833	 * going into the state machine
 834	 */
 835	if (upd_cmd == I40E_NVMUPD_STATUS) {
 836		if (!cmd->data_size) {
 837			*perrno = -EFAULT;
 838			return I40E_ERR_BUF_TOO_SHORT;
 839		}
 840
 841		bytes[0] = hw->nvmupd_state;
 842
 843		if (cmd->data_size >= 4) {
 844			bytes[1] = 0;
 845			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 846		}
 847
 848		/* Clear error status on read */
 849		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 850			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 851
 852		return 0;
 853	}
 854
 855	/* Clear status even it is not read and log */
 856	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 857		i40e_debug(hw, I40E_DEBUG_NVM,
 858			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 859		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 860	}
 861
 862	/* Acquire lock to prevent race condition where adminq_task
 863	 * can execute after i40e_nvmupd_nvm_read/write but before state
 864	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 865	 *
 866	 * During NVMUpdate, it is observed that lock could be held for
 867	 * ~5ms for most commands. However lock is held for ~60ms for
 868	 * NVMUPD_CSUM_LCB command.
 869	 */
 870	mutex_lock(&hw->aq.arq_mutex);
 871	switch (hw->nvmupd_state) {
 872	case I40E_NVMUPD_STATE_INIT:
 873		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 874		break;
 875
 876	case I40E_NVMUPD_STATE_READING:
 877		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 878		break;
 879
 880	case I40E_NVMUPD_STATE_WRITING:
 881		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 882		break;
 883
 884	case I40E_NVMUPD_STATE_INIT_WAIT:
 885	case I40E_NVMUPD_STATE_WRITE_WAIT:
 886		/* if we need to stop waiting for an event, clear
 887		 * the wait info and return before doing anything else
 888		 */
 889		if (cmd->offset == 0xffff) {
 890			i40e_nvmupd_clear_wait_state(hw);
 891			status = 0;
 892			break;
 893		}
 894
 895		status = I40E_ERR_NOT_READY;
 896		*perrno = -EBUSY;
 897		break;
 898
 899	default:
 900		/* invalid state, should never happen */
 901		i40e_debug(hw, I40E_DEBUG_NVM,
 902			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 903		status = I40E_NOT_SUPPORTED;
 904		*perrno = -ESRCH;
 905		break;
 906	}
 907
 908	mutex_unlock(&hw->aq.arq_mutex);
 909	return status;
 910}
 911
 912/**
 913 * i40e_nvmupd_state_init - Handle NVM update state Init
 914 * @hw: pointer to hardware structure
 915 * @cmd: pointer to nvm update command buffer
 916 * @bytes: pointer to the data buffer
 917 * @perrno: pointer to return error code
 918 *
 919 * Process legitimate commands of the Init state and conditionally set next
 920 * state. Reject all other commands.
 921 **/
 922static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 923					  struct i40e_nvm_access *cmd,
 924					  u8 *bytes, int *perrno)
 925{
 926	i40e_status status = 0;
 927	enum i40e_nvmupd_cmd upd_cmd;
 928
 929	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 930
 931	switch (upd_cmd) {
 932	case I40E_NVMUPD_READ_SA:
 933		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 934		if (status) {
 935			*perrno = i40e_aq_rc_to_posix(status,
 936						     hw->aq.asq_last_status);
 937		} else {
 938			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 939			i40e_release_nvm(hw);
 940		}
 941		break;
 942
 943	case I40E_NVMUPD_READ_SNT:
 944		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 945		if (status) {
 946			*perrno = i40e_aq_rc_to_posix(status,
 947						     hw->aq.asq_last_status);
 948		} else {
 949			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 950			if (status)
 951				i40e_release_nvm(hw);
 952			else
 953				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 954		}
 955		break;
 956
 957	case I40E_NVMUPD_WRITE_ERA:
 958		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 959		if (status) {
 960			*perrno = i40e_aq_rc_to_posix(status,
 961						     hw->aq.asq_last_status);
 962		} else {
 963			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 964			if (status) {
 965				i40e_release_nvm(hw);
 966			} else {
 967				hw->nvm_release_on_done = true;
 968				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 969				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 970			}
 971		}
 972		break;
 973
 974	case I40E_NVMUPD_WRITE_SA:
 975		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 976		if (status) {
 977			*perrno = i40e_aq_rc_to_posix(status,
 978						     hw->aq.asq_last_status);
 979		} else {
 980			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 981			if (status) {
 982				i40e_release_nvm(hw);
 983			} else {
 984				hw->nvm_release_on_done = true;
 985				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 986				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 987			}
 988		}
 989		break;
 990
 991	case I40E_NVMUPD_WRITE_SNT:
 992		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 993		if (status) {
 994			*perrno = i40e_aq_rc_to_posix(status,
 995						     hw->aq.asq_last_status);
 996		} else {
 997			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 998			if (status) {
 999				i40e_release_nvm(hw);
1000			} else {
1001				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1002				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1003			}
1004		}
1005		break;
1006
1007	case I40E_NVMUPD_CSUM_SA:
1008		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1009		if (status) {
1010			*perrno = i40e_aq_rc_to_posix(status,
1011						     hw->aq.asq_last_status);
1012		} else {
1013			status = i40e_update_nvm_checksum(hw);
1014			if (status) {
1015				*perrno = hw->aq.asq_last_status ?
1016				   i40e_aq_rc_to_posix(status,
1017						       hw->aq.asq_last_status) :
1018				   -EIO;
1019				i40e_release_nvm(hw);
1020			} else {
1021				hw->nvm_release_on_done = true;
1022				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1023				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1024			}
1025		}
1026		break;
1027
1028	case I40E_NVMUPD_EXEC_AQ:
1029		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1030		break;
1031
1032	case I40E_NVMUPD_GET_AQ_RESULT:
1033		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_EVENT:
1037		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1038		break;
1039
1040	default:
1041		i40e_debug(hw, I40E_DEBUG_NVM,
1042			   "NVMUPD: bad cmd %s in init state\n",
1043			   i40e_nvm_update_state_str[upd_cmd]);
1044		status = I40E_ERR_NVM;
1045		*perrno = -ESRCH;
1046		break;
1047	}
1048	return status;
1049}
1050
1051/**
1052 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1053 * @hw: pointer to hardware structure
1054 * @cmd: pointer to nvm update command buffer
1055 * @bytes: pointer to the data buffer
1056 * @perrno: pointer to return error code
1057 *
1058 * NVM ownership is already held.  Process legitimate commands and set any
1059 * change in state; reject all other commands.
1060 **/
1061static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
1062					     struct i40e_nvm_access *cmd,
1063					     u8 *bytes, int *perrno)
1064{
1065	i40e_status status = 0;
1066	enum i40e_nvmupd_cmd upd_cmd;
1067
1068	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1069
1070	switch (upd_cmd) {
1071	case I40E_NVMUPD_READ_SA:
1072	case I40E_NVMUPD_READ_CON:
1073		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1074		break;
1075
1076	case I40E_NVMUPD_READ_LCB:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		i40e_release_nvm(hw);
1079		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1080		break;
1081
1082	default:
1083		i40e_debug(hw, I40E_DEBUG_NVM,
1084			   "NVMUPD: bad cmd %s in reading state.\n",
1085			   i40e_nvm_update_state_str[upd_cmd]);
1086		status = I40E_NOT_SUPPORTED;
1087		*perrno = -ESRCH;
1088		break;
1089	}
1090	return status;
1091}
1092
1093/**
1094 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1095 * @hw: pointer to hardware structure
1096 * @cmd: pointer to nvm update command buffer
1097 * @bytes: pointer to the data buffer
1098 * @perrno: pointer to return error code
1099 *
1100 * NVM ownership is already held.  Process legitimate commands and set any
1101 * change in state; reject all other commands
1102 **/
1103static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1104					     struct i40e_nvm_access *cmd,
1105					     u8 *bytes, int *perrno)
1106{
1107	i40e_status status = 0;
1108	enum i40e_nvmupd_cmd upd_cmd;
1109	bool retry_attempt = false;
1110
1111	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1112
1113retry:
1114	switch (upd_cmd) {
1115	case I40E_NVMUPD_WRITE_CON:
1116		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1117		if (!status) {
1118			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1119			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1120		}
1121		break;
1122
1123	case I40E_NVMUPD_WRITE_LCB:
1124		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1125		if (status) {
1126			*perrno = hw->aq.asq_last_status ?
1127				   i40e_aq_rc_to_posix(status,
1128						       hw->aq.asq_last_status) :
1129				   -EIO;
1130			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1131		} else {
1132			hw->nvm_release_on_done = true;
1133			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1135		}
1136		break;
1137
1138	case I40E_NVMUPD_CSUM_CON:
1139		/* Assumes the caller has acquired the nvm */
1140		status = i40e_update_nvm_checksum(hw);
1141		if (status) {
1142			*perrno = hw->aq.asq_last_status ?
1143				   i40e_aq_rc_to_posix(status,
1144						       hw->aq.asq_last_status) :
1145				   -EIO;
1146			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1147		} else {
1148			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1149			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1150		}
1151		break;
1152
1153	case I40E_NVMUPD_CSUM_LCB:
1154		/* Assumes the caller has acquired the nvm */
1155		status = i40e_update_nvm_checksum(hw);
1156		if (status) {
1157			*perrno = hw->aq.asq_last_status ?
1158				   i40e_aq_rc_to_posix(status,
1159						       hw->aq.asq_last_status) :
1160				   -EIO;
1161			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1162		} else {
1163			hw->nvm_release_on_done = true;
1164			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1166		}
1167		break;
1168
1169	default:
1170		i40e_debug(hw, I40E_DEBUG_NVM,
1171			   "NVMUPD: bad cmd %s in writing state.\n",
1172			   i40e_nvm_update_state_str[upd_cmd]);
1173		status = I40E_NOT_SUPPORTED;
1174		*perrno = -ESRCH;
1175		break;
1176	}
1177
1178	/* In some circumstances, a multi-write transaction takes longer
1179	 * than the default 3 minute timeout on the write semaphore.  If
1180	 * the write failed with an EBUSY status, this is likely the problem,
1181	 * so here we try to reacquire the semaphore then retry the write.
1182	 * We only do one retry, then give up.
1183	 */
1184	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1185	    !retry_attempt) {
1186		i40e_status old_status = status;
1187		u32 old_asq_status = hw->aq.asq_last_status;
1188		u32 gtime;
1189
1190		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1191		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1192			i40e_debug(hw, I40E_DEBUG_ALL,
1193				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1194				   gtime, hw->nvm.hw_semaphore_timeout);
1195			i40e_release_nvm(hw);
1196			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1197			if (status) {
1198				i40e_debug(hw, I40E_DEBUG_ALL,
1199					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1200					   hw->aq.asq_last_status);
1201				status = old_status;
1202				hw->aq.asq_last_status = old_asq_status;
1203			} else {
1204				retry_attempt = true;
1205				goto retry;
1206			}
1207		}
1208	}
1209
1210	return status;
1211}
1212
1213/**
1214 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1215 * @hw: pointer to the hardware structure
1216 **/
1217void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1218{
1219	i40e_debug(hw, I40E_DEBUG_NVM,
1220		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1221		   hw->nvm_wait_opcode);
1222
1223	if (hw->nvm_release_on_done) {
1224		i40e_release_nvm(hw);
1225		hw->nvm_release_on_done = false;
1226	}
1227	hw->nvm_wait_opcode = 0;
1228
1229	if (hw->aq.arq_last_status) {
1230		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1231		return;
1232	}
1233
1234	switch (hw->nvmupd_state) {
1235	case I40E_NVMUPD_STATE_INIT_WAIT:
1236		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1237		break;
1238
1239	case I40E_NVMUPD_STATE_WRITE_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1241		break;
1242
1243	default:
1244		break;
1245	}
1246}
1247
1248/**
1249 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1250 * @hw: pointer to the hardware structure
1251 * @opcode: the event that just happened
1252 * @desc: AdminQ descriptor
1253 **/
1254void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1255				  struct i40e_aq_desc *desc)
1256{
1257	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1258
1259	if (opcode == hw->nvm_wait_opcode) {
1260		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1261		i40e_nvmupd_clear_wait_state(hw);
1262	}
1263}
1264
1265/**
1266 * i40e_nvmupd_validate_command - Validate given command
1267 * @hw: pointer to hardware structure
1268 * @cmd: pointer to nvm update command buffer
1269 * @perrno: pointer to return error code
1270 *
1271 * Return one of the valid command types or I40E_NVMUPD_INVALID
1272 **/
1273static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1274						 struct i40e_nvm_access *cmd,
1275						 int *perrno)
1276{
1277	enum i40e_nvmupd_cmd upd_cmd;
1278	u8 module, transaction;
1279
1280	/* anything that doesn't match a recognized case is an error */
1281	upd_cmd = I40E_NVMUPD_INVALID;
1282
1283	transaction = i40e_nvmupd_get_transaction(cmd->config);
1284	module = i40e_nvmupd_get_module(cmd->config);
1285
1286	/* limits on data size */
1287	if ((cmd->data_size < 1) ||
1288	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1289		i40e_debug(hw, I40E_DEBUG_NVM,
1290			   "i40e_nvmupd_validate_command data_size %d\n",
1291			   cmd->data_size);
1292		*perrno = -EFAULT;
1293		return I40E_NVMUPD_INVALID;
1294	}
1295
1296	switch (cmd->command) {
1297	case I40E_NVM_READ:
1298		switch (transaction) {
1299		case I40E_NVM_CON:
1300			upd_cmd = I40E_NVMUPD_READ_CON;
1301			break;
1302		case I40E_NVM_SNT:
1303			upd_cmd = I40E_NVMUPD_READ_SNT;
1304			break;
1305		case I40E_NVM_LCB:
1306			upd_cmd = I40E_NVMUPD_READ_LCB;
1307			break;
1308		case I40E_NVM_SA:
1309			upd_cmd = I40E_NVMUPD_READ_SA;
1310			break;
1311		case I40E_NVM_EXEC:
1312			if (module == 0xf)
1313				upd_cmd = I40E_NVMUPD_STATUS;
1314			else if (module == 0)
1315				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1316			break;
1317		case I40E_NVM_AQE:
1318			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1319			break;
1320		}
1321		break;
1322
1323	case I40E_NVM_WRITE:
1324		switch (transaction) {
1325		case I40E_NVM_CON:
1326			upd_cmd = I40E_NVMUPD_WRITE_CON;
1327			break;
1328		case I40E_NVM_SNT:
1329			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1330			break;
1331		case I40E_NVM_LCB:
1332			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1333			break;
1334		case I40E_NVM_SA:
1335			upd_cmd = I40E_NVMUPD_WRITE_SA;
1336			break;
1337		case I40E_NVM_ERA:
1338			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1339			break;
1340		case I40E_NVM_CSUM:
1341			upd_cmd = I40E_NVMUPD_CSUM_CON;
1342			break;
1343		case (I40E_NVM_CSUM|I40E_NVM_SA):
1344			upd_cmd = I40E_NVMUPD_CSUM_SA;
1345			break;
1346		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1347			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1348			break;
1349		case I40E_NVM_EXEC:
1350			if (module == 0)
1351				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1352			break;
1353		}
1354		break;
1355	}
1356
1357	return upd_cmd;
1358}
1359
1360/**
1361 * i40e_nvmupd_exec_aq - Run an AQ command
1362 * @hw: pointer to hardware structure
1363 * @cmd: pointer to nvm update command buffer
1364 * @bytes: pointer to the data buffer
1365 * @perrno: pointer to return error code
1366 *
1367 * cmd structure contains identifiers and data buffer
1368 **/
1369static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1370				       struct i40e_nvm_access *cmd,
1371				       u8 *bytes, int *perrno)
1372{
1373	struct i40e_asq_cmd_details cmd_details;
1374	i40e_status status;
1375	struct i40e_aq_desc *aq_desc;
1376	u32 buff_size = 0;
1377	u8 *buff = NULL;
1378	u32 aq_desc_len;
1379	u32 aq_data_len;
1380
1381	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1382	if (cmd->offset == 0xffff)
1383		return 0;
1384
1385	memset(&cmd_details, 0, sizeof(cmd_details));
1386	cmd_details.wb_desc = &hw->nvm_wb_desc;
1387
1388	aq_desc_len = sizeof(struct i40e_aq_desc);
1389	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1390
1391	/* get the aq descriptor */
1392	if (cmd->data_size < aq_desc_len) {
1393		i40e_debug(hw, I40E_DEBUG_NVM,
1394			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1395			   cmd->data_size, aq_desc_len);
1396		*perrno = -EINVAL;
1397		return I40E_ERR_PARAM;
1398	}
1399	aq_desc = (struct i40e_aq_desc *)bytes;
1400
1401	/* if data buffer needed, make sure it's ready */
1402	aq_data_len = cmd->data_size - aq_desc_len;
1403	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1404	if (buff_size) {
1405		if (!hw->nvm_buff.va) {
1406			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1407							hw->aq.asq_buf_size);
1408			if (status)
1409				i40e_debug(hw, I40E_DEBUG_NVM,
1410					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1411					   status);
1412		}
1413
1414		if (hw->nvm_buff.va) {
1415			buff = hw->nvm_buff.va;
1416			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1417		}
1418	}
1419
1420	if (cmd->offset)
1421		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1422
1423	/* and away we go! */
1424	status = i40e_asq_send_command(hw, aq_desc, buff,
1425				       buff_size, &cmd_details);
1426	if (status) {
1427		i40e_debug(hw, I40E_DEBUG_NVM,
1428			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1429			   i40e_stat_str(hw, status),
1430			   i40e_aq_str(hw, hw->aq.asq_last_status));
1431		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1432		return status;
1433	}
1434
1435	/* should we wait for a followup event? */
1436	if (cmd->offset) {
1437		hw->nvm_wait_opcode = cmd->offset;
1438		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1439	}
1440
1441	return status;
1442}
1443
1444/**
1445 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1446 * @hw: pointer to hardware structure
1447 * @cmd: pointer to nvm update command buffer
1448 * @bytes: pointer to the data buffer
1449 * @perrno: pointer to return error code
1450 *
1451 * cmd structure contains identifiers and data buffer
1452 **/
1453static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1454					     struct i40e_nvm_access *cmd,
1455					     u8 *bytes, int *perrno)
1456{
1457	u32 aq_total_len;
1458	u32 aq_desc_len;
1459	int remainder;
1460	u8 *buff;
1461
1462	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1463
1464	aq_desc_len = sizeof(struct i40e_aq_desc);
1465	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1466
1467	/* check offset range */
1468	if (cmd->offset > aq_total_len) {
1469		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1470			   __func__, cmd->offset, aq_total_len);
1471		*perrno = -EINVAL;
1472		return I40E_ERR_PARAM;
1473	}
1474
1475	/* check copylength range */
1476	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1477		int new_len = aq_total_len - cmd->offset;
1478
1479		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1480			   __func__, cmd->data_size, new_len);
1481		cmd->data_size = new_len;
1482	}
1483
1484	remainder = cmd->data_size;
1485	if (cmd->offset < aq_desc_len) {
1486		u32 len = aq_desc_len - cmd->offset;
1487
1488		len = min(len, cmd->data_size);
1489		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1490			   __func__, cmd->offset, cmd->offset + len);
1491
1492		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1493		memcpy(bytes, buff, len);
1494
1495		bytes += len;
1496		remainder -= len;
1497		buff = hw->nvm_buff.va;
1498	} else {
1499		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1500	}
1501
1502	if (remainder > 0) {
1503		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1504
1505		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1506			   __func__, start_byte, start_byte + remainder);
1507		memcpy(bytes, buff, remainder);
1508	}
1509
1510	return 0;
1511}
1512
1513/**
1514 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1515 * @hw: pointer to hardware structure
1516 * @cmd: pointer to nvm update command buffer
1517 * @bytes: pointer to the data buffer
1518 * @perrno: pointer to return error code
1519 *
1520 * cmd structure contains identifiers and data buffer
1521 **/
1522static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1523					    struct i40e_nvm_access *cmd,
1524					    u8 *bytes, int *perrno)
1525{
1526	u32 aq_total_len;
1527	u32 aq_desc_len;
1528
1529	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1530
1531	aq_desc_len = sizeof(struct i40e_aq_desc);
1532	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1533
1534	/* check copylength range */
1535	if (cmd->data_size > aq_total_len) {
1536		i40e_debug(hw, I40E_DEBUG_NVM,
1537			   "%s: copy length %d too big, trimming to %d\n",
1538			   __func__, cmd->data_size, aq_total_len);
1539		cmd->data_size = aq_total_len;
1540	}
1541
1542	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1543
1544	return 0;
1545}
1546
1547/**
1548 * i40e_nvmupd_nvm_read - Read NVM
1549 * @hw: pointer to hardware structure
1550 * @cmd: pointer to nvm update command buffer
1551 * @bytes: pointer to the data buffer
1552 * @perrno: pointer to return error code
1553 *
1554 * cmd structure contains identifiers and data buffer
1555 **/
1556static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1557					struct i40e_nvm_access *cmd,
1558					u8 *bytes, int *perrno)
1559{
1560	struct i40e_asq_cmd_details cmd_details;
1561	i40e_status status;
1562	u8 module, transaction;
1563	bool last;
1564
1565	transaction = i40e_nvmupd_get_transaction(cmd->config);
1566	module = i40e_nvmupd_get_module(cmd->config);
1567	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1568
1569	memset(&cmd_details, 0, sizeof(cmd_details));
1570	cmd_details.wb_desc = &hw->nvm_wb_desc;
1571
1572	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1573				  bytes, last, &cmd_details);
1574	if (status) {
1575		i40e_debug(hw, I40E_DEBUG_NVM,
1576			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1577			   module, cmd->offset, cmd->data_size);
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1580			   status, hw->aq.asq_last_status);
1581		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1582	}
1583
1584	return status;
1585}
1586
1587/**
1588 * i40e_nvmupd_nvm_erase - Erase an NVM module
1589 * @hw: pointer to hardware structure
1590 * @cmd: pointer to nvm update command buffer
1591 * @perrno: pointer to return error code
1592 *
1593 * module, offset, data_size and data are in cmd structure
1594 **/
1595static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1596					 struct i40e_nvm_access *cmd,
1597					 int *perrno)
1598{
1599	i40e_status status = 0;
1600	struct i40e_asq_cmd_details cmd_details;
1601	u8 module, transaction;
1602	bool last;
1603
1604	transaction = i40e_nvmupd_get_transaction(cmd->config);
1605	module = i40e_nvmupd_get_module(cmd->config);
1606	last = (transaction & I40E_NVM_LCB);
1607
1608	memset(&cmd_details, 0, sizeof(cmd_details));
1609	cmd_details.wb_desc = &hw->nvm_wb_desc;
1610
1611	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1612				   last, &cmd_details);
1613	if (status) {
1614		i40e_debug(hw, I40E_DEBUG_NVM,
1615			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1616			   module, cmd->offset, cmd->data_size);
1617		i40e_debug(hw, I40E_DEBUG_NVM,
1618			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1619			   status, hw->aq.asq_last_status);
1620		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1621	}
1622
1623	return status;
1624}
1625
1626/**
1627 * i40e_nvmupd_nvm_write - Write NVM
1628 * @hw: pointer to hardware structure
1629 * @cmd: pointer to nvm update command buffer
1630 * @bytes: pointer to the data buffer
1631 * @perrno: pointer to return error code
1632 *
1633 * module, offset, data_size and data are in cmd structure
1634 **/
1635static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1636					 struct i40e_nvm_access *cmd,
1637					 u8 *bytes, int *perrno)
1638{
1639	i40e_status status = 0;
1640	struct i40e_asq_cmd_details cmd_details;
1641	u8 module, transaction;
1642	u8 preservation_flags;
1643	bool last;
1644
1645	transaction = i40e_nvmupd_get_transaction(cmd->config);
1646	module = i40e_nvmupd_get_module(cmd->config);
1647	last = (transaction & I40E_NVM_LCB);
1648	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1649
1650	memset(&cmd_details, 0, sizeof(cmd_details));
1651	cmd_details.wb_desc = &hw->nvm_wb_desc;
1652
1653	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1654				    (u16)cmd->data_size, bytes, last,
1655				    preservation_flags, &cmd_details);
1656	if (status) {
1657		i40e_debug(hw, I40E_DEBUG_NVM,
1658			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1659			   module, cmd->offset, cmd->data_size);
1660		i40e_debug(hw, I40E_DEBUG_NVM,
1661			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1662			   status, hw->aq.asq_last_status);
1663		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1664	}
1665
1666	return status;
1667}