Linux Audio

Check our new training course

Loading...
v4.6
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION	"0.19.3-k"
 
  32const char fm10k_driver_version[] = DRV_VERSION;
  33char fm10k_driver_name[] = "fm10k";
  34static const char fm10k_driver_string[] =
  35	"Intel(R) Ethernet Switch Host Interface Driver";
  36static const char fm10k_copyright[] =
  37	"Copyright (c) 2013 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/* single workqueue for entire fm10k driver */
  45struct workqueue_struct *fm10k_workqueue;
  46
  47/**
  48 * fm10k_init_module - Driver Registration Routine
  49 *
  50 * fm10k_init_module is the first routine called when the driver is
  51 * loaded.  All it does is register with the PCI subsystem.
  52 **/
  53static int __init fm10k_init_module(void)
  54{
  55	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  56	pr_info("%s\n", fm10k_copyright);
  57
  58	/* create driver workqueue */
  59	fm10k_workqueue = create_workqueue("fm10k");
 
 
 
  60
  61	fm10k_dbg_init();
  62
  63	return fm10k_register_pci_driver();
  64}
  65module_init(fm10k_init_module);
  66
  67/**
  68 * fm10k_exit_module - Driver Exit Cleanup Routine
  69 *
  70 * fm10k_exit_module is called just before the driver is removed
  71 * from memory.
  72 **/
  73static void __exit fm10k_exit_module(void)
  74{
  75	fm10k_unregister_pci_driver();
  76
  77	fm10k_dbg_exit();
  78
  79	/* destroy driver workqueue */
  80	flush_workqueue(fm10k_workqueue);
  81	destroy_workqueue(fm10k_workqueue);
  82}
  83module_exit(fm10k_exit_module);
  84
  85static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  86				    struct fm10k_rx_buffer *bi)
  87{
  88	struct page *page = bi->page;
  89	dma_addr_t dma;
  90
  91	/* Only page will be NULL if buffer was consumed */
  92	if (likely(page))
  93		return true;
  94
  95	/* alloc new page for storage */
  96	page = dev_alloc_page();
  97	if (unlikely(!page)) {
  98		rx_ring->rx_stats.alloc_failed++;
  99		return false;
 100	}
 101
 102	/* map page for use */
 103	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 104
 105	/* if mapping failed free memory back to system since
 106	 * there isn't much point in holding memory we can't use
 107	 */
 108	if (dma_mapping_error(rx_ring->dev, dma)) {
 109		__free_page(page);
 110
 111		rx_ring->rx_stats.alloc_failed++;
 112		return false;
 113	}
 114
 115	bi->dma = dma;
 116	bi->page = page;
 117	bi->page_offset = 0;
 118
 119	return true;
 120}
 121
 122/**
 123 * fm10k_alloc_rx_buffers - Replace used receive buffers
 124 * @rx_ring: ring to place buffers on
 125 * @cleaned_count: number of buffers to replace
 126 **/
 127void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 128{
 129	union fm10k_rx_desc *rx_desc;
 130	struct fm10k_rx_buffer *bi;
 131	u16 i = rx_ring->next_to_use;
 132
 133	/* nothing to do */
 134	if (!cleaned_count)
 135		return;
 136
 137	rx_desc = FM10K_RX_DESC(rx_ring, i);
 138	bi = &rx_ring->rx_buffer[i];
 139	i -= rx_ring->count;
 140
 141	do {
 142		if (!fm10k_alloc_mapped_page(rx_ring, bi))
 143			break;
 144
 145		/* Refresh the desc even if buffer_addrs didn't change
 146		 * because each write-back erases this info.
 147		 */
 148		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 149
 150		rx_desc++;
 151		bi++;
 152		i++;
 153		if (unlikely(!i)) {
 154			rx_desc = FM10K_RX_DESC(rx_ring, 0);
 155			bi = rx_ring->rx_buffer;
 156			i -= rx_ring->count;
 157		}
 158
 159		/* clear the status bits for the next_to_use descriptor */
 160		rx_desc->d.staterr = 0;
 161
 162		cleaned_count--;
 163	} while (cleaned_count);
 164
 165	i += rx_ring->count;
 166
 167	if (rx_ring->next_to_use != i) {
 168		/* record the next descriptor to use */
 169		rx_ring->next_to_use = i;
 170
 171		/* update next to alloc since we have filled the ring */
 172		rx_ring->next_to_alloc = i;
 173
 174		/* Force memory writes to complete before letting h/w
 175		 * know there are new descriptors to fetch.  (Only
 176		 * applicable for weak-ordered memory model archs,
 177		 * such as IA-64).
 178		 */
 179		wmb();
 180
 181		/* notify hardware of new descriptors */
 182		writel(i, rx_ring->tail);
 183	}
 184}
 185
 186/**
 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 188 * @rx_ring: rx descriptor ring to store buffers on
 189 * @old_buff: donor buffer to have page reused
 190 *
 191 * Synchronizes page for reuse by the interface
 192 **/
 193static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 194				struct fm10k_rx_buffer *old_buff)
 195{
 196	struct fm10k_rx_buffer *new_buff;
 197	u16 nta = rx_ring->next_to_alloc;
 198
 199	new_buff = &rx_ring->rx_buffer[nta];
 200
 201	/* update, and store next to alloc */
 202	nta++;
 203	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 204
 205	/* transfer page from old buffer to new buffer */
 206	*new_buff = *old_buff;
 207
 208	/* sync the buffer for use by the device */
 209	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 210					 old_buff->page_offset,
 211					 FM10K_RX_BUFSZ,
 212					 DMA_FROM_DEVICE);
 213}
 214
 215static inline bool fm10k_page_is_reserved(struct page *page)
 216{
 217	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 218}
 219
 220static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 221				    struct page *page,
 222				    unsigned int __maybe_unused truesize)
 223{
 224	/* avoid re-using remote pages */
 225	if (unlikely(fm10k_page_is_reserved(page)))
 226		return false;
 227
 228#if (PAGE_SIZE < 8192)
 229	/* if we are only owner of page we can reuse it */
 230	if (unlikely(page_count(page) != 1))
 231		return false;
 232
 233	/* flip page offset to other buffer */
 234	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 235#else
 236	/* move offset up to the next cache line */
 237	rx_buffer->page_offset += truesize;
 238
 239	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 240		return false;
 241#endif
 242
 243	/* Even if we own the page, we are not allowed to use atomic_set()
 244	 * This would break get_page_unless_zero() users.
 245	 */
 246	page_ref_inc(page);
 247
 248	return true;
 249}
 250
 251/**
 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 253 * @rx_buffer: buffer containing page to add
 
 254 * @rx_desc: descriptor containing length of buffer written by hardware
 255 * @skb: sk_buff to place the data into
 256 *
 257 * This function will add the data contained in rx_buffer->page to the skb.
 258 * This is done either through a direct copy if the data in the buffer is
 259 * less than the skb header size, otherwise it will just attach the page as
 260 * a frag to the skb.
 261 *
 262 * The function will then update the page offset if necessary and return
 263 * true if the buffer can be reused by the interface.
 264 **/
 265static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 
 266			      union fm10k_rx_desc *rx_desc,
 267			      struct sk_buff *skb)
 268{
 269	struct page *page = rx_buffer->page;
 270	unsigned char *va = page_address(page) + rx_buffer->page_offset;
 271	unsigned int size = le16_to_cpu(rx_desc->w.length);
 272#if (PAGE_SIZE < 8192)
 273	unsigned int truesize = FM10K_RX_BUFSZ;
 274#else
 275	unsigned int truesize = SKB_DATA_ALIGN(size);
 276#endif
 277	unsigned int pull_len;
 278
 279	if (unlikely(skb_is_nonlinear(skb)))
 280		goto add_tail_frag;
 281
 282	if (likely(size <= FM10K_RX_HDR_LEN)) {
 283		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 284
 285		/* page is not reserved, we can reuse buffer as-is */
 286		if (likely(!fm10k_page_is_reserved(page)))
 287			return true;
 288
 289		/* this page cannot be reused so discard it */
 290		__free_page(page);
 291		return false;
 292	}
 293
 294	/* we need the header to contain the greater of either ETH_HLEN or
 295	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 296	 */
 297	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 298
 299	/* align pull length to size of long to optimize memcpy performance */
 300	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 301
 302	/* update all of the pointers */
 303	va += pull_len;
 304	size -= pull_len;
 305
 306add_tail_frag:
 307	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 308			(unsigned long)va & ~PAGE_MASK, size, truesize);
 309
 310	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 311}
 312
 313static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 314					     union fm10k_rx_desc *rx_desc,
 315					     struct sk_buff *skb)
 316{
 
 317	struct fm10k_rx_buffer *rx_buffer;
 318	struct page *page;
 319
 320	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 321	page = rx_buffer->page;
 322	prefetchw(page);
 323
 324	if (likely(!skb)) {
 325		void *page_addr = page_address(page) +
 326				  rx_buffer->page_offset;
 327
 328		/* prefetch first cache line of first page */
 329		prefetch(page_addr);
 330#if L1_CACHE_BYTES < 128
 331		prefetch(page_addr + L1_CACHE_BYTES);
 332#endif
 333
 334		/* allocate a skb to store the frags */
 335		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 336				     FM10K_RX_HDR_LEN);
 337		if (unlikely(!skb)) {
 338			rx_ring->rx_stats.alloc_failed++;
 339			return NULL;
 340		}
 341
 342		/* we will be copying header into skb->data in
 343		 * pskb_may_pull so it is in our interest to prefetch
 344		 * it now to avoid a possible cache miss
 345		 */
 346		prefetchw(skb->data);
 347	}
 348
 349	/* we are reusing so sync this buffer for CPU use */
 350	dma_sync_single_range_for_cpu(rx_ring->dev,
 351				      rx_buffer->dma,
 352				      rx_buffer->page_offset,
 353				      FM10K_RX_BUFSZ,
 354				      DMA_FROM_DEVICE);
 355
 356	/* pull page into skb */
 357	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
 358		/* hand second half of page back to the ring */
 359		fm10k_reuse_rx_page(rx_ring, rx_buffer);
 360	} else {
 361		/* we are not reusing the buffer so unmap it */
 362		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 363			       PAGE_SIZE, DMA_FROM_DEVICE);
 364	}
 365
 366	/* clear contents of rx_buffer */
 367	rx_buffer->page = NULL;
 368
 369	return skb;
 370}
 371
 372static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 373				     union fm10k_rx_desc *rx_desc,
 374				     struct sk_buff *skb)
 375{
 376	skb_checksum_none_assert(skb);
 377
 378	/* Rx checksum disabled via ethtool */
 379	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 380		return;
 381
 382	/* TCP/UDP checksum error bit is set */
 383	if (fm10k_test_staterr(rx_desc,
 384			       FM10K_RXD_STATUS_L4E |
 385			       FM10K_RXD_STATUS_L4E2 |
 386			       FM10K_RXD_STATUS_IPE |
 387			       FM10K_RXD_STATUS_IPE2)) {
 388		ring->rx_stats.csum_err++;
 389		return;
 390	}
 391
 392	/* It must be a TCP or UDP packet with a valid checksum */
 393	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 394		skb->encapsulation = true;
 395	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 396		return;
 397
 398	skb->ip_summed = CHECKSUM_UNNECESSARY;
 399
 400	ring->rx_stats.csum_good++;
 401}
 402
 403#define FM10K_RSS_L4_TYPES_MASK \
 404	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 405	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 406	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 407	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
 408
 409static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 410				 union fm10k_rx_desc *rx_desc,
 411				 struct sk_buff *skb)
 412{
 413	u16 rss_type;
 414
 415	if (!(ring->netdev->features & NETIF_F_RXHASH))
 416		return;
 417
 418	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 419	if (!rss_type)
 420		return;
 421
 422	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 423		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 424		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 425}
 426
 427static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 428			      union fm10k_rx_desc *rx_desc,
 429			      struct sk_buff *skb)
 430{
 431	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 432
 433	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 434
 435	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 436		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 437					  le64_to_cpu(rx_desc->q.timestamp));
 438}
 439
 440static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 441			     union fm10k_rx_desc __maybe_unused *rx_desc,
 442			     struct sk_buff *skb)
 443{
 444	struct net_device *dev = rx_ring->netdev;
 445	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 446
 447	/* check to see if DGLORT belongs to a MACVLAN */
 448	if (l2_accel) {
 449		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 450
 451		idx -= l2_accel->dglort;
 452		if (idx < l2_accel->size && l2_accel->macvlan[idx])
 453			dev = l2_accel->macvlan[idx];
 454		else
 455			l2_accel = NULL;
 456	}
 457
 458	skb->protocol = eth_type_trans(skb, dev);
 459
 460	if (!l2_accel)
 461		return;
 
 
 
 462
 463	/* update MACVLAN statistics */
 464	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 465			 !!(rx_desc->w.hdr_info &
 466			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 467}
 468
 469/**
 470 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 471 * @rx_ring: rx descriptor ring packet is being transacted on
 472 * @rx_desc: pointer to the EOP Rx descriptor
 473 * @skb: pointer to current skb being populated
 474 *
 475 * This function checks the ring, descriptor, and packet information in
 476 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 477 * other fields within the skb.
 478 **/
 479static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 480					     union fm10k_rx_desc *rx_desc,
 481					     struct sk_buff *skb)
 482{
 483	unsigned int len = skb->len;
 484
 485	fm10k_rx_hash(rx_ring, rx_desc, skb);
 486
 487	fm10k_rx_checksum(rx_ring, rx_desc, skb);
 488
 489	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 490
 491	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 492
 493	skb_record_rx_queue(skb, rx_ring->queue_index);
 494
 495	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 496
 497	if (rx_desc->w.vlan) {
 498		u16 vid = le16_to_cpu(rx_desc->w.vlan);
 499
 500		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 501			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 502		else if (vid & VLAN_PRIO_MASK)
 503			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 504					       vid & VLAN_PRIO_MASK);
 505	}
 506
 507	fm10k_type_trans(rx_ring, rx_desc, skb);
 508
 509	return len;
 510}
 511
 512/**
 513 * fm10k_is_non_eop - process handling of non-EOP buffers
 514 * @rx_ring: Rx ring being processed
 515 * @rx_desc: Rx descriptor for current buffer
 516 *
 517 * This function updates next to clean.  If the buffer is an EOP buffer
 518 * this function exits returning false, otherwise it will place the
 519 * sk_buff in the next buffer to be chained and return true indicating
 520 * that this is in fact a non-EOP buffer.
 521 **/
 522static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 523			     union fm10k_rx_desc *rx_desc)
 524{
 525	u32 ntc = rx_ring->next_to_clean + 1;
 526
 527	/* fetch, update, and store next to clean */
 528	ntc = (ntc < rx_ring->count) ? ntc : 0;
 529	rx_ring->next_to_clean = ntc;
 530
 531	prefetch(FM10K_RX_DESC(rx_ring, ntc));
 532
 533	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 534		return false;
 535
 536	return true;
 537}
 538
 539/**
 540 * fm10k_cleanup_headers - Correct corrupted or empty headers
 541 * @rx_ring: rx descriptor ring packet is being transacted on
 542 * @rx_desc: pointer to the EOP Rx descriptor
 543 * @skb: pointer to current skb being fixed
 544 *
 545 * Address the case where we are pulling data in on pages only
 546 * and as such no data is present in the skb header.
 547 *
 548 * In addition if skb is not at least 60 bytes we need to pad it so that
 549 * it is large enough to qualify as a valid Ethernet frame.
 550 *
 551 * Returns true if an error was encountered and skb was freed.
 552 **/
 553static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 554				  union fm10k_rx_desc *rx_desc,
 555				  struct sk_buff *skb)
 556{
 557	if (unlikely((fm10k_test_staterr(rx_desc,
 558					 FM10K_RXD_STATUS_RXE)))) {
 559#define FM10K_TEST_RXD_BIT(rxd, bit) \
 560	((rxd)->w.csum_err & cpu_to_le16(bit))
 561		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 562			rx_ring->rx_stats.switch_errors++;
 563		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 564			rx_ring->rx_stats.drops++;
 565		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 566			rx_ring->rx_stats.pp_errors++;
 567		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 568			rx_ring->rx_stats.link_errors++;
 569		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 570			rx_ring->rx_stats.length_errors++;
 571		dev_kfree_skb_any(skb);
 572		rx_ring->rx_stats.errors++;
 573		return true;
 574	}
 575
 576	/* if eth_skb_pad returns an error the skb was freed */
 577	if (eth_skb_pad(skb))
 578		return true;
 579
 580	return false;
 581}
 582
 583/**
 584 * fm10k_receive_skb - helper function to handle rx indications
 585 * @q_vector: structure containing interrupt and ring information
 586 * @skb: packet to send up
 587 **/
 588static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 589			      struct sk_buff *skb)
 590{
 591	napi_gro_receive(&q_vector->napi, skb);
 592}
 593
 594static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 595			      struct fm10k_ring *rx_ring,
 596			      int budget)
 597{
 598	struct sk_buff *skb = rx_ring->skb;
 599	unsigned int total_bytes = 0, total_packets = 0;
 600	u16 cleaned_count = fm10k_desc_unused(rx_ring);
 601
 602	while (likely(total_packets < budget)) {
 603		union fm10k_rx_desc *rx_desc;
 604
 605		/* return some buffers to hardware, one at a time is too slow */
 606		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 607			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 608			cleaned_count = 0;
 609		}
 610
 611		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 612
 613		if (!rx_desc->d.staterr)
 614			break;
 615
 616		/* This memory barrier is needed to keep us from reading
 617		 * any other fields out of the rx_desc until we know the
 618		 * descriptor has been written back
 619		 */
 620		dma_rmb();
 621
 622		/* retrieve a buffer from the ring */
 623		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 624
 625		/* exit if we failed to retrieve a buffer */
 626		if (!skb)
 627			break;
 628
 629		cleaned_count++;
 630
 631		/* fetch next buffer in frame if non-eop */
 632		if (fm10k_is_non_eop(rx_ring, rx_desc))
 633			continue;
 634
 635		/* verify the packet layout is correct */
 636		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 637			skb = NULL;
 638			continue;
 639		}
 640
 641		/* populate checksum, timestamp, VLAN, and protocol */
 642		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 643
 644		fm10k_receive_skb(q_vector, skb);
 645
 646		/* reset skb pointer */
 647		skb = NULL;
 648
 649		/* update budget accounting */
 650		total_packets++;
 651	}
 652
 653	/* place incomplete frames back on ring for completion */
 654	rx_ring->skb = skb;
 655
 656	u64_stats_update_begin(&rx_ring->syncp);
 657	rx_ring->stats.packets += total_packets;
 658	rx_ring->stats.bytes += total_bytes;
 659	u64_stats_update_end(&rx_ring->syncp);
 660	q_vector->rx.total_packets += total_packets;
 661	q_vector->rx.total_bytes += total_bytes;
 662
 663	return total_packets;
 664}
 665
 666#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 667static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 668{
 669	struct fm10k_intfc *interface = netdev_priv(skb->dev);
 670	struct fm10k_vxlan_port *vxlan_port;
 671
 672	/* we can only offload a vxlan if we recognize it as such */
 673	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 674					      struct fm10k_vxlan_port, list);
 675
 676	if (!vxlan_port)
 677		return NULL;
 678	if (vxlan_port->port != udp_hdr(skb)->dest)
 679		return NULL;
 680
 681	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
 682	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 683}
 684
 685#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 686#define NVGRE_TNI htons(0x2000)
 687struct fm10k_nvgre_hdr {
 688	__be16 flags;
 689	__be16 proto;
 690	__be32 tni;
 691};
 692
 693static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 694{
 695	struct fm10k_nvgre_hdr *nvgre_hdr;
 696	int hlen = ip_hdrlen(skb);
 697
 698	/* currently only IPv4 is supported due to hlen above */
 699	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 700		return NULL;
 701
 702	/* our transport header should be NVGRE */
 703	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 704
 705	/* verify all reserved flags are 0 */
 706	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 707		return NULL;
 708
 709	/* report start of ethernet header */
 710	if (nvgre_hdr->flags & NVGRE_TNI)
 711		return (struct ethhdr *)(nvgre_hdr + 1);
 712
 713	return (struct ethhdr *)(&nvgre_hdr->tni);
 714}
 715
 716__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 717{
 718	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 719	struct ethhdr *eth_hdr;
 720
 721	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 722	    skb->inner_protocol != htons(ETH_P_TEB))
 723		return 0;
 724
 725	switch (vlan_get_protocol(skb)) {
 726	case htons(ETH_P_IP):
 727		l4_hdr = ip_hdr(skb)->protocol;
 728		break;
 729	case htons(ETH_P_IPV6):
 730		l4_hdr = ipv6_hdr(skb)->nexthdr;
 731		break;
 732	default:
 733		return 0;
 734	}
 735
 736	switch (l4_hdr) {
 737	case IPPROTO_UDP:
 738		eth_hdr = fm10k_port_is_vxlan(skb);
 739		break;
 740	case IPPROTO_GRE:
 741		eth_hdr = fm10k_gre_is_nvgre(skb);
 742		break;
 743	default:
 744		return 0;
 745	}
 746
 747	if (!eth_hdr)
 748		return 0;
 749
 750	switch (eth_hdr->h_proto) {
 751	case htons(ETH_P_IP):
 752		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 753		break;
 754	case htons(ETH_P_IPV6):
 755		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 756		break;
 757	default:
 758		return 0;
 759	}
 760
 761	switch (inner_l4_hdr) {
 762	case IPPROTO_TCP:
 763		inner_l4_hlen = inner_tcp_hdrlen(skb);
 764		break;
 765	case IPPROTO_UDP:
 766		inner_l4_hlen = 8;
 767		break;
 768	default:
 769		return 0;
 770	}
 771
 772	/* The hardware allows tunnel offloads only if the combined inner and
 773	 * outer header is 184 bytes or less
 774	 */
 775	if (skb_inner_transport_header(skb) + inner_l4_hlen -
 776	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 777		return 0;
 778
 779	return eth_hdr->h_proto;
 780}
 781
 782static int fm10k_tso(struct fm10k_ring *tx_ring,
 783		     struct fm10k_tx_buffer *first)
 784{
 785	struct sk_buff *skb = first->skb;
 786	struct fm10k_tx_desc *tx_desc;
 787	unsigned char *th;
 788	u8 hdrlen;
 789
 790	if (skb->ip_summed != CHECKSUM_PARTIAL)
 791		return 0;
 792
 793	if (!skb_is_gso(skb))
 794		return 0;
 795
 796	/* compute header lengths */
 797	if (skb->encapsulation) {
 798		if (!fm10k_tx_encap_offload(skb))
 799			goto err_vxlan;
 800		th = skb_inner_transport_header(skb);
 801	} else {
 802		th = skb_transport_header(skb);
 803	}
 804
 805	/* compute offset from SOF to transport header and add header len */
 806	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 807
 808	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 809
 810	/* update gso size and bytecount with header size */
 811	first->gso_segs = skb_shinfo(skb)->gso_segs;
 812	first->bytecount += (first->gso_segs - 1) * hdrlen;
 813
 814	/* populate Tx descriptor header size and mss */
 815	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 816	tx_desc->hdrlen = hdrlen;
 817	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 818
 819	return 1;
 
 820err_vxlan:
 821	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 822	if (!net_ratelimit())
 823		netdev_err(tx_ring->netdev,
 824			   "TSO requested for unsupported tunnel, disabling offload\n");
 825	return -1;
 826}
 827
 828static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 829			  struct fm10k_tx_buffer *first)
 830{
 831	struct sk_buff *skb = first->skb;
 832	struct fm10k_tx_desc *tx_desc;
 833	union {
 834		struct iphdr *ipv4;
 835		struct ipv6hdr *ipv6;
 836		u8 *raw;
 837	} network_hdr;
 
 
 838	__be16 protocol;
 839	u8 l4_hdr = 0;
 840
 841	if (skb->ip_summed != CHECKSUM_PARTIAL)
 842		goto no_csum;
 843
 844	if (skb->encapsulation) {
 845		protocol = fm10k_tx_encap_offload(skb);
 846		if (!protocol) {
 847			if (skb_checksum_help(skb)) {
 848				dev_warn(tx_ring->dev,
 849					 "failed to offload encap csum!\n");
 850				tx_ring->tx_stats.csum_err++;
 851			}
 852			goto no_csum;
 853		}
 854		network_hdr.raw = skb_inner_network_header(skb);
 
 855	} else {
 856		protocol = vlan_get_protocol(skb);
 857		network_hdr.raw = skb_network_header(skb);
 
 858	}
 859
 860	switch (protocol) {
 861	case htons(ETH_P_IP):
 862		l4_hdr = network_hdr.ipv4->protocol;
 863		break;
 864	case htons(ETH_P_IPV6):
 865		l4_hdr = network_hdr.ipv6->nexthdr;
 
 
 
 
 
 
 
 
 866		break;
 867	default:
 868		if (unlikely(net_ratelimit())) {
 869			dev_warn(tx_ring->dev,
 870				 "partial checksum but ip version=%x!\n",
 871				 protocol);
 872		}
 873		tx_ring->tx_stats.csum_err++;
 874		goto no_csum;
 875	}
 876
 877	switch (l4_hdr) {
 878	case IPPROTO_TCP:
 879	case IPPROTO_UDP:
 880		break;
 881	case IPPROTO_GRE:
 882		if (skb->encapsulation)
 883			break;
 
 884	default:
 885		if (unlikely(net_ratelimit())) {
 886			dev_warn(tx_ring->dev,
 887				 "partial checksum but l4 proto=%x!\n",
 888				 l4_hdr);
 889		}
 
 890		tx_ring->tx_stats.csum_err++;
 891		goto no_csum;
 892	}
 893
 894	/* update TX checksum flag */
 895	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 896	tx_ring->tx_stats.csum_good++;
 897
 898no_csum:
 899	/* populate Tx descriptor header size and mss */
 900	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 901	tx_desc->hdrlen = 0;
 902	tx_desc->mss = 0;
 903}
 904
 905#define FM10K_SET_FLAG(_input, _flag, _result) \
 906	((_flag <= _result) ? \
 907	 ((u32)(_input & _flag) * (_result / _flag)) : \
 908	 ((u32)(_input & _flag) / (_flag / _result)))
 909
 910static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 911{
 912	/* set type for advanced descriptor with frame checksum insertion */
 913	u32 desc_flags = 0;
 914
 915	/* set timestamping bits */
 916	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 917	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 918		desc_flags |= FM10K_TXD_FLAG_TIME;
 919
 920	/* set checksum offload bits */
 921	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 922				     FM10K_TXD_FLAG_CSUM);
 923
 924	return desc_flags;
 925}
 926
 927static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 928			       struct fm10k_tx_desc *tx_desc, u16 i,
 929			       dma_addr_t dma, unsigned int size, u8 desc_flags)
 930{
 931	/* set RS and INT for last frame in a cache line */
 932	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 933		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 934
 935	/* record values to descriptor */
 936	tx_desc->buffer_addr = cpu_to_le64(dma);
 937	tx_desc->flags = desc_flags;
 938	tx_desc->buflen = cpu_to_le16(size);
 939
 940	/* return true if we just wrapped the ring */
 941	return i == tx_ring->count;
 942}
 943
 944static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 945{
 946	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 947
 948	/* Memory barrier before checking head and tail */
 949	smp_mb();
 950
 951	/* Check again in a case another CPU has just made room available */
 952	if (likely(fm10k_desc_unused(tx_ring) < size))
 953		return -EBUSY;
 954
 955	/* A reprieve! - use start_queue because it doesn't call schedule */
 956	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 957	++tx_ring->tx_stats.restart_queue;
 958	return 0;
 959}
 960
 961static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 962{
 963	if (likely(fm10k_desc_unused(tx_ring) >= size))
 964		return 0;
 965	return __fm10k_maybe_stop_tx(tx_ring, size);
 966}
 967
 968static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 969			 struct fm10k_tx_buffer *first)
 970{
 971	struct sk_buff *skb = first->skb;
 972	struct fm10k_tx_buffer *tx_buffer;
 973	struct fm10k_tx_desc *tx_desc;
 974	struct skb_frag_struct *frag;
 975	unsigned char *data;
 976	dma_addr_t dma;
 977	unsigned int data_len, size;
 978	u32 tx_flags = first->tx_flags;
 979	u16 i = tx_ring->next_to_use;
 980	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 981
 982	tx_desc = FM10K_TX_DESC(tx_ring, i);
 983
 984	/* add HW VLAN tag */
 985	if (skb_vlan_tag_present(skb))
 986		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 987	else
 988		tx_desc->vlan = 0;
 989
 990	size = skb_headlen(skb);
 991	data = skb->data;
 992
 993	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 994
 995	data_len = skb->data_len;
 996	tx_buffer = first;
 997
 998	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 999		if (dma_mapping_error(tx_ring->dev, dma))
1000			goto dma_error;
1001
1002		/* record length, and DMA address */
1003		dma_unmap_len_set(tx_buffer, len, size);
1004		dma_unmap_addr_set(tx_buffer, dma, dma);
1005
1006		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1007			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1008					       FM10K_MAX_DATA_PER_TXD, flags)) {
1009				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1010				i = 0;
1011			}
1012
1013			dma += FM10K_MAX_DATA_PER_TXD;
1014			size -= FM10K_MAX_DATA_PER_TXD;
1015		}
1016
1017		if (likely(!data_len))
1018			break;
1019
1020		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1021				       dma, size, flags)) {
1022			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1023			i = 0;
1024		}
1025
1026		size = skb_frag_size(frag);
1027		data_len -= size;
1028
1029		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1030				       DMA_TO_DEVICE);
1031
1032		tx_buffer = &tx_ring->tx_buffer[i];
1033	}
1034
1035	/* write last descriptor with LAST bit set */
1036	flags |= FM10K_TXD_FLAG_LAST;
1037
1038	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1039		i = 0;
1040
1041	/* record bytecount for BQL */
1042	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1043
1044	/* record SW timestamp if HW timestamp is not available */
1045	skb_tx_timestamp(first->skb);
1046
1047	/* Force memory writes to complete before letting h/w know there
1048	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1049	 * memory model archs, such as IA-64).
1050	 *
1051	 * We also need this memory barrier to make certain all of the
1052	 * status bits have been updated before next_to_watch is written.
1053	 */
1054	wmb();
1055
1056	/* set next_to_watch value indicating a packet is present */
1057	first->next_to_watch = tx_desc;
1058
1059	tx_ring->next_to_use = i;
1060
1061	/* Make sure there is space in the ring for the next send. */
1062	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1063
1064	/* notify HW of packet */
1065	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1066		writel(i, tx_ring->tail);
1067
1068		/* we need this if more than one processor can write to our tail
1069		 * at a time, it synchronizes IO on IA64/Altix systems
1070		 */
1071		mmiowb();
1072	}
1073
1074	return;
1075dma_error:
1076	dev_err(tx_ring->dev, "TX DMA map failed\n");
1077
1078	/* clear dma mappings for failed tx_buffer map */
1079	for (;;) {
1080		tx_buffer = &tx_ring->tx_buffer[i];
1081		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1082		if (tx_buffer == first)
1083			break;
1084		if (i == 0)
1085			i = tx_ring->count;
1086		i--;
1087	}
1088
1089	tx_ring->next_to_use = i;
1090}
1091
1092netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1093				  struct fm10k_ring *tx_ring)
1094{
1095	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1096	struct fm10k_tx_buffer *first;
1097	unsigned short f;
1098	u32 tx_flags = 0;
1099	int tso;
1100
1101	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1102	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1103	 *       + 2 desc gap to keep tail from touching head
1104	 * otherwise try next time
1105	 */
1106	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1107		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
 
 
 
1108
1109	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1110		tx_ring->tx_stats.tx_busy++;
1111		return NETDEV_TX_BUSY;
1112	}
1113
1114	/* record the location of the first descriptor for this packet */
1115	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1116	first->skb = skb;
1117	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1118	first->gso_segs = 1;
1119
1120	/* record initial flags and protocol */
1121	first->tx_flags = tx_flags;
1122
1123	tso = fm10k_tso(tx_ring, first);
1124	if (tso < 0)
1125		goto out_drop;
1126	else if (!tso)
1127		fm10k_tx_csum(tx_ring, first);
1128
1129	fm10k_tx_map(tx_ring, first);
1130
1131	return NETDEV_TX_OK;
1132
1133out_drop:
1134	dev_kfree_skb_any(first->skb);
1135	first->skb = NULL;
1136
1137	return NETDEV_TX_OK;
1138}
1139
1140static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1141{
1142	return ring->stats.packets;
1143}
1144
1145static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
 
 
 
 
 
1146{
1147	/* use SW head and tail until we have real hardware */
1148	u32 head = ring->next_to_clean;
1149	u32 tail = ring->next_to_use;
 
 
 
 
 
 
 
 
1150
1151	return ((head <= tail) ? tail : tail + ring->count) - head;
1152}
1153
1154bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1155{
1156	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1157	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1158	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1159
1160	clear_check_for_tx_hang(tx_ring);
1161
1162	/* Check for a hung queue, but be thorough. This verifies
1163	 * that a transmit has been completed since the previous
1164	 * check AND there is at least one packet pending. By
1165	 * requiring this to fail twice we avoid races with
1166	 * clearing the ARMED bit and conditions where we
1167	 * run the check_tx_hang logic with a transmit completion
1168	 * pending but without time to complete it yet.
1169	 */
1170	if (!tx_pending || (tx_done_old != tx_done)) {
1171		/* update completed stats and continue */
1172		tx_ring->tx_stats.tx_done_old = tx_done;
1173		/* reset the countdown */
1174		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1175
1176		return false;
1177	}
1178
1179	/* make sure it is true for two checks in a row */
1180	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1181}
1182
1183/**
1184 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1185 * @interface: driver private struct
1186 **/
1187void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1188{
1189	/* Do the reset outside of interrupt context */
1190	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1191		interface->tx_timeout_count++;
1192		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1193		fm10k_service_event_schedule(interface);
1194	}
1195}
1196
1197/**
1198 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1199 * @q_vector: structure containing interrupt and ring information
1200 * @tx_ring: tx ring to clean
 
1201 **/
1202static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1203			       struct fm10k_ring *tx_ring)
1204{
1205	struct fm10k_intfc *interface = q_vector->interface;
1206	struct fm10k_tx_buffer *tx_buffer;
1207	struct fm10k_tx_desc *tx_desc;
1208	unsigned int total_bytes = 0, total_packets = 0;
1209	unsigned int budget = q_vector->tx.work_limit;
1210	unsigned int i = tx_ring->next_to_clean;
1211
1212	if (test_bit(__FM10K_DOWN, &interface->state))
1213		return true;
1214
1215	tx_buffer = &tx_ring->tx_buffer[i];
1216	tx_desc = FM10K_TX_DESC(tx_ring, i);
1217	i -= tx_ring->count;
1218
1219	do {
1220		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1221
1222		/* if next_to_watch is not set then there is no work pending */
1223		if (!eop_desc)
1224			break;
1225
1226		/* prevent any other reads prior to eop_desc */
1227		read_barrier_depends();
1228
1229		/* if DD is not set pending work has not been completed */
1230		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1231			break;
1232
1233		/* clear next_to_watch to prevent false hangs */
1234		tx_buffer->next_to_watch = NULL;
1235
1236		/* update the statistics for this packet */
1237		total_bytes += tx_buffer->bytecount;
1238		total_packets += tx_buffer->gso_segs;
1239
1240		/* free the skb */
1241		dev_consume_skb_any(tx_buffer->skb);
1242
1243		/* unmap skb header data */
1244		dma_unmap_single(tx_ring->dev,
1245				 dma_unmap_addr(tx_buffer, dma),
1246				 dma_unmap_len(tx_buffer, len),
1247				 DMA_TO_DEVICE);
1248
1249		/* clear tx_buffer data */
1250		tx_buffer->skb = NULL;
1251		dma_unmap_len_set(tx_buffer, len, 0);
1252
1253		/* unmap remaining buffers */
1254		while (tx_desc != eop_desc) {
1255			tx_buffer++;
1256			tx_desc++;
1257			i++;
1258			if (unlikely(!i)) {
1259				i -= tx_ring->count;
1260				tx_buffer = tx_ring->tx_buffer;
1261				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1262			}
1263
1264			/* unmap any remaining paged data */
1265			if (dma_unmap_len(tx_buffer, len)) {
1266				dma_unmap_page(tx_ring->dev,
1267					       dma_unmap_addr(tx_buffer, dma),
1268					       dma_unmap_len(tx_buffer, len),
1269					       DMA_TO_DEVICE);
1270				dma_unmap_len_set(tx_buffer, len, 0);
1271			}
1272		}
1273
1274		/* move us one more past the eop_desc for start of next pkt */
1275		tx_buffer++;
1276		tx_desc++;
1277		i++;
1278		if (unlikely(!i)) {
1279			i -= tx_ring->count;
1280			tx_buffer = tx_ring->tx_buffer;
1281			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1282		}
1283
1284		/* issue prefetch for next Tx descriptor */
1285		prefetch(tx_desc);
1286
1287		/* update budget accounting */
1288		budget--;
1289	} while (likely(budget));
1290
1291	i += tx_ring->count;
1292	tx_ring->next_to_clean = i;
1293	u64_stats_update_begin(&tx_ring->syncp);
1294	tx_ring->stats.bytes += total_bytes;
1295	tx_ring->stats.packets += total_packets;
1296	u64_stats_update_end(&tx_ring->syncp);
1297	q_vector->tx.total_bytes += total_bytes;
1298	q_vector->tx.total_packets += total_packets;
1299
1300	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1301		/* schedule immediate reset if we believe we hung */
1302		struct fm10k_hw *hw = &interface->hw;
1303
1304		netif_err(interface, drv, tx_ring->netdev,
1305			  "Detected Tx Unit Hang\n"
1306			  "  Tx Queue             <%d>\n"
1307			  "  TDH, TDT             <%x>, <%x>\n"
1308			  "  next_to_use          <%x>\n"
1309			  "  next_to_clean        <%x>\n",
1310			  tx_ring->queue_index,
1311			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1312			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1313			  tx_ring->next_to_use, i);
1314
1315		netif_stop_subqueue(tx_ring->netdev,
1316				    tx_ring->queue_index);
1317
1318		netif_info(interface, probe, tx_ring->netdev,
1319			   "tx hang %d detected on queue %d, resetting interface\n",
1320			   interface->tx_timeout_count + 1,
1321			   tx_ring->queue_index);
1322
1323		fm10k_tx_timeout_reset(interface);
1324
1325		/* the netdev is about to reset, no point in enabling stuff */
1326		return true;
1327	}
1328
1329	/* notify netdev of completed buffers */
1330	netdev_tx_completed_queue(txring_txq(tx_ring),
1331				  total_packets, total_bytes);
1332
1333#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1334	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1335		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1336		/* Make sure that anybody stopping the queue after this
1337		 * sees the new next_to_clean.
1338		 */
1339		smp_mb();
1340		if (__netif_subqueue_stopped(tx_ring->netdev,
1341					     tx_ring->queue_index) &&
1342		    !test_bit(__FM10K_DOWN, &interface->state)) {
1343			netif_wake_subqueue(tx_ring->netdev,
1344					    tx_ring->queue_index);
1345			++tx_ring->tx_stats.restart_queue;
1346		}
1347	}
1348
1349	return !!budget;
1350}
1351
1352/**
1353 * fm10k_update_itr - update the dynamic ITR value based on packet size
1354 *
1355 *      Stores a new ITR value based on strictly on packet size.  The
1356 *      divisors and thresholds used by this function were determined based
1357 *      on theoretical maximum wire speed and testing data, in order to
1358 *      minimize response time while increasing bulk throughput.
1359 *
1360 * @ring_container: Container for rings to have ITR updated
1361 **/
1362static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1363{
1364	unsigned int avg_wire_size, packets, itr_round;
1365
1366	/* Only update ITR if we are using adaptive setting */
1367	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1368		goto clear_counts;
1369
1370	packets = ring_container->total_packets;
1371	if (!packets)
1372		goto clear_counts;
1373
1374	avg_wire_size = ring_container->total_bytes / packets;
1375
1376	/* The following is a crude approximation of:
1377	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1378	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1379	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1380	 *
1381	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1382	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1383	 * formula down to
1384	 *
1385	 *  (34 * (size + 24)) / (size + 640) = ITR
1386	 *
1387	 * We first do some math on the packet size and then finally bitshift
1388	 * by 8 after rounding up. We also have to account for PCIe link speed
1389	 * difference as ITR scales based on this.
1390	 */
1391	if (avg_wire_size <= 360) {
1392		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1393		avg_wire_size *= 8;
1394		avg_wire_size += 376;
1395	} else if (avg_wire_size <= 1152) {
1396		/* 77K ints/sec to 45K ints/sec */
1397		avg_wire_size *= 3;
1398		avg_wire_size += 2176;
1399	} else if (avg_wire_size <= 1920) {
1400		/* 45K ints/sec to 38K ints/sec */
1401		avg_wire_size += 4480;
1402	} else {
1403		/* plateau at a limit of 38K ints/sec */
1404		avg_wire_size = 6656;
1405	}
1406
1407	/* Perform final bitshift for division after rounding up to ensure
1408	 * that the calculation will never get below a 1. The bit shift
1409	 * accounts for changes in the ITR due to PCIe link speed.
1410	 */
1411	itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1412	avg_wire_size += (1 << itr_round) - 1;
1413	avg_wire_size >>= itr_round;
1414
1415	/* write back value and retain adaptive flag */
1416	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1417
1418clear_counts:
1419	ring_container->total_bytes = 0;
1420	ring_container->total_packets = 0;
1421}
1422
1423static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1424{
1425	/* Enable auto-mask and clear the current mask */
1426	u32 itr = FM10K_ITR_ENABLE;
1427
1428	/* Update Tx ITR */
1429	fm10k_update_itr(&q_vector->tx);
1430
1431	/* Update Rx ITR */
1432	fm10k_update_itr(&q_vector->rx);
1433
1434	/* Store Tx itr in timer slot 0 */
1435	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1436
1437	/* Shift Rx itr to timer slot 1 */
1438	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1439
1440	/* Write the final value to the ITR register */
1441	writel(itr, q_vector->itr);
1442}
1443
1444static int fm10k_poll(struct napi_struct *napi, int budget)
1445{
1446	struct fm10k_q_vector *q_vector =
1447			       container_of(napi, struct fm10k_q_vector, napi);
1448	struct fm10k_ring *ring;
1449	int per_ring_budget, work_done = 0;
1450	bool clean_complete = true;
1451
1452	fm10k_for_each_ring(ring, q_vector->tx)
1453		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
 
 
1454
1455	/* Handle case where we are called by netpoll with a budget of 0 */
1456	if (budget <= 0)
1457		return budget;
1458
1459	/* attempt to distribute budget to each queue fairly, but don't
1460	 * allow the budget to go below 1 because we'll exit polling
1461	 */
1462	if (q_vector->rx.count > 1)
1463		per_ring_budget = max(budget / q_vector->rx.count, 1);
1464	else
1465		per_ring_budget = budget;
1466
1467	fm10k_for_each_ring(ring, q_vector->rx) {
1468		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1469
1470		work_done += work;
1471		clean_complete &= !!(work < per_ring_budget);
 
1472	}
1473
1474	/* If all work not completed, return budget and keep polling */
1475	if (!clean_complete)
1476		return budget;
1477
1478	/* all work done, exit the polling mode */
1479	napi_complete_done(napi, work_done);
1480
1481	/* re-enable the q_vector */
1482	fm10k_qv_enable(q_vector);
1483
1484	return 0;
1485}
1486
1487/**
1488 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1489 * @interface: board private structure to initialize
1490 *
1491 * When QoS (Quality of Service) is enabled, allocate queues for
1492 * each traffic class.  If multiqueue isn't available,then abort QoS
1493 * initialization.
1494 *
1495 * This function handles all combinations of Qos and RSS.
1496 *
1497 **/
1498static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1499{
1500	struct net_device *dev = interface->netdev;
1501	struct fm10k_ring_feature *f;
1502	int rss_i, i;
1503	int pcs;
1504
1505	/* Map queue offset and counts onto allocated tx queues */
1506	pcs = netdev_get_num_tc(dev);
1507
1508	if (pcs <= 1)
1509		return false;
1510
1511	/* set QoS mask and indices */
1512	f = &interface->ring_feature[RING_F_QOS];
1513	f->indices = pcs;
1514	f->mask = (1 << fls(pcs - 1)) - 1;
1515
1516	/* determine the upper limit for our current DCB mode */
1517	rss_i = interface->hw.mac.max_queues / pcs;
1518	rss_i = 1 << (fls(rss_i) - 1);
1519
1520	/* set RSS mask and indices */
1521	f = &interface->ring_feature[RING_F_RSS];
1522	rss_i = min_t(u16, rss_i, f->limit);
1523	f->indices = rss_i;
1524	f->mask = (1 << fls(rss_i - 1)) - 1;
1525
1526	/* configure pause class to queue mapping */
1527	for (i = 0; i < pcs; i++)
1528		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1529
1530	interface->num_rx_queues = rss_i * pcs;
1531	interface->num_tx_queues = rss_i * pcs;
1532
1533	return true;
1534}
1535
1536/**
1537 * fm10k_set_rss_queues: Allocate queues for RSS
1538 * @interface: board private structure to initialize
1539 *
1540 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1541 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1542 *
1543 **/
1544static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1545{
1546	struct fm10k_ring_feature *f;
1547	u16 rss_i;
1548
1549	f = &interface->ring_feature[RING_F_RSS];
1550	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1551
1552	/* record indices and power of 2 mask for RSS */
1553	f->indices = rss_i;
1554	f->mask = (1 << fls(rss_i - 1)) - 1;
1555
1556	interface->num_rx_queues = rss_i;
1557	interface->num_tx_queues = rss_i;
1558
1559	return true;
1560}
1561
1562/**
1563 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1564 * @interface: board private structure to initialize
1565 *
1566 * This is the top level queue allocation routine.  The order here is very
1567 * important, starting with the "most" number of features turned on at once,
1568 * and ending with the smallest set of features.  This way large combinations
1569 * can be allocated if they're turned on, and smaller combinations are the
1570 * fallthrough conditions.
1571 *
1572 **/
1573static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1574{
1575	/* Start with base case */
1576	interface->num_rx_queues = 1;
1577	interface->num_tx_queues = 1;
1578
1579	if (fm10k_set_qos_queues(interface))
1580		return;
1581
 
1582	fm10k_set_rss_queues(interface);
1583}
1584
1585/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1587 * @interface: board private structure to initialize
1588 * @v_count: q_vectors allocated on interface, used for ring interleaving
1589 * @v_idx: index of vector in interface struct
1590 * @txr_count: total number of Tx rings to allocate
1591 * @txr_idx: index of first Tx ring to allocate
1592 * @rxr_count: total number of Rx rings to allocate
1593 * @rxr_idx: index of first Rx ring to allocate
1594 *
1595 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1596 **/
1597static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1598				unsigned int v_count, unsigned int v_idx,
1599				unsigned int txr_count, unsigned int txr_idx,
1600				unsigned int rxr_count, unsigned int rxr_idx)
1601{
1602	struct fm10k_q_vector *q_vector;
1603	struct fm10k_ring *ring;
1604	int ring_count, size;
1605
1606	ring_count = txr_count + rxr_count;
1607	size = sizeof(struct fm10k_q_vector) +
1608	       (sizeof(struct fm10k_ring) * ring_count);
1609
1610	/* allocate q_vector and rings */
1611	q_vector = kzalloc(size, GFP_KERNEL);
1612	if (!q_vector)
1613		return -ENOMEM;
1614
1615	/* initialize NAPI */
1616	netif_napi_add(interface->netdev, &q_vector->napi,
1617		       fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619	/* tie q_vector and interface together */
1620	interface->q_vector[v_idx] = q_vector;
1621	q_vector->interface = interface;
1622	q_vector->v_idx = v_idx;
1623
1624	/* initialize pointer to rings */
1625	ring = q_vector->ring;
1626
1627	/* save Tx ring container info */
1628	q_vector->tx.ring = ring;
1629	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630	q_vector->tx.itr = interface->tx_itr;
1631	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632	q_vector->tx.count = txr_count;
1633
1634	while (txr_count) {
1635		/* assign generic ring traits */
1636		ring->dev = &interface->pdev->dev;
1637		ring->netdev = interface->netdev;
1638
1639		/* configure backlink on ring */
1640		ring->q_vector = q_vector;
1641
1642		/* apply Tx specific ring traits */
1643		ring->count = interface->tx_ring_count;
1644		ring->queue_index = txr_idx;
1645
1646		/* assign ring to interface */
1647		interface->tx_ring[txr_idx] = ring;
1648
1649		/* update count and index */
1650		txr_count--;
1651		txr_idx += v_count;
1652
1653		/* push pointer to next ring */
1654		ring++;
1655	}
1656
1657	/* save Rx ring container info */
1658	q_vector->rx.ring = ring;
1659	q_vector->rx.itr = interface->rx_itr;
1660	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661	q_vector->rx.count = rxr_count;
1662
1663	while (rxr_count) {
1664		/* assign generic ring traits */
1665		ring->dev = &interface->pdev->dev;
1666		ring->netdev = interface->netdev;
1667		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669		/* configure backlink on ring */
1670		ring->q_vector = q_vector;
1671
1672		/* apply Rx specific ring traits */
1673		ring->count = interface->rx_ring_count;
1674		ring->queue_index = rxr_idx;
1675
1676		/* assign ring to interface */
1677		interface->rx_ring[rxr_idx] = ring;
1678
1679		/* update count and index */
1680		rxr_count--;
1681		rxr_idx += v_count;
1682
1683		/* push pointer to next ring */
1684		ring++;
1685	}
1686
1687	fm10k_dbg_q_vector_init(q_vector);
1688
1689	return 0;
1690}
1691
1692/**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector.  In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702{
1703	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704	struct fm10k_ring *ring;
1705
1706	fm10k_dbg_q_vector_exit(q_vector);
1707
1708	fm10k_for_each_ring(ring, q_vector->tx)
1709		interface->tx_ring[ring->queue_index] = NULL;
1710
1711	fm10k_for_each_ring(ring, q_vector->rx)
1712		interface->rx_ring[ring->queue_index] = NULL;
1713
1714	interface->q_vector[v_idx] = NULL;
1715	netif_napi_del(&q_vector->napi);
1716	kfree_rcu(q_vector, rcu);
1717}
1718
1719/**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt.  If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727{
1728	unsigned int q_vectors = interface->num_q_vectors;
1729	unsigned int rxr_remaining = interface->num_rx_queues;
1730	unsigned int txr_remaining = interface->num_tx_queues;
1731	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732	int err;
1733
1734	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735		for (; rxr_remaining; v_idx++) {
1736			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737						   0, 0, 1, rxr_idx);
1738			if (err)
1739				goto err_out;
1740
1741			/* update counts and index */
1742			rxr_remaining--;
1743			rxr_idx++;
1744		}
1745	}
1746
1747	for (; v_idx < q_vectors; v_idx++) {
1748		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752					   tqpv, txr_idx,
1753					   rqpv, rxr_idx);
1754
1755		if (err)
1756			goto err_out;
1757
1758		/* update counts and index */
1759		rxr_remaining -= rqpv;
1760		txr_remaining -= tqpv;
1761		rxr_idx++;
1762		txr_idx++;
1763	}
1764
1765	return 0;
1766
1767err_out:
1768	interface->num_tx_queues = 0;
1769	interface->num_rx_queues = 0;
1770	interface->num_q_vectors = 0;
1771
1772	while (v_idx--)
1773		fm10k_free_q_vector(interface, v_idx);
1774
1775	return -ENOMEM;
1776}
1777
1778/**
1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780 * @interface: board private structure to initialize
1781 *
1782 * This function frees the memory allocated to the q_vectors.  In addition if
1783 * NAPI is enabled it will delete any references to the NAPI struct prior
1784 * to freeing the q_vector.
1785 **/
1786static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787{
1788	int v_idx = interface->num_q_vectors;
1789
1790	interface->num_tx_queues = 0;
1791	interface->num_rx_queues = 0;
1792	interface->num_q_vectors = 0;
1793
1794	while (v_idx--)
1795		fm10k_free_q_vector(interface, v_idx);
1796}
1797
1798/**
1799 * f10k_reset_msix_capability - reset MSI-X capability
1800 * @interface: board private structure to initialize
1801 *
1802 * Reset the MSI-X capability back to its starting state
1803 **/
1804static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805{
1806	pci_disable_msix(interface->pdev);
1807	kfree(interface->msix_entries);
1808	interface->msix_entries = NULL;
1809}
1810
1811/**
1812 * f10k_init_msix_capability - configure MSI-X capability
1813 * @interface: board private structure to initialize
1814 *
1815 * Attempt to configure the interrupts using the best available
1816 * capabilities of the hardware and the kernel.
1817 **/
1818static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819{
1820	struct fm10k_hw *hw = &interface->hw;
1821	int v_budget, vector;
1822
1823	/* It's easy to be greedy for MSI-X vectors, but it really
1824	 * doesn't do us much good if we have a lot more vectors
1825	 * than CPU's.  So let's be conservative and only ask for
1826	 * (roughly) the same number of vectors as there are CPU's.
1827	 * the default is to use pairs of vectors
1828	 */
1829	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830	v_budget = min_t(u16, v_budget, num_online_cpus());
1831
1832	/* account for vectors not related to queues */
1833	v_budget += NON_Q_VECTORS(hw);
1834
1835	/* At the same time, hardware can only support a maximum of
1836	 * hw.mac->max_msix_vectors vectors.  With features
1837	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838	 * descriptor queues supported by our device.  Thus, we cap it off in
1839	 * those rare cases where the cpu count also exceeds our vector limit.
1840	 */
1841	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842
1843	/* A failure in MSI-X entry allocation is fatal. */
1844	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845					  GFP_KERNEL);
1846	if (!interface->msix_entries)
1847		return -ENOMEM;
1848
1849	/* populate entry values */
1850	for (vector = 0; vector < v_budget; vector++)
1851		interface->msix_entries[vector].entry = vector;
1852
1853	/* Attempt to enable MSI-X with requested value */
1854	v_budget = pci_enable_msix_range(interface->pdev,
1855					 interface->msix_entries,
1856					 MIN_MSIX_COUNT(hw),
1857					 v_budget);
1858	if (v_budget < 0) {
1859		kfree(interface->msix_entries);
1860		interface->msix_entries = NULL;
1861		return -ENOMEM;
1862	}
1863
1864	/* record the number of queues available for q_vectors */
1865	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866
1867	return 0;
1868}
1869
1870/**
1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872 * @interface: Interface structure continaining rings and devices
1873 *
1874 * Cache the descriptor ring offsets for Qos
1875 **/
1876static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877{
1878	struct net_device *dev = interface->netdev;
1879	int pc, offset, rss_i, i, q_idx;
1880	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881	u8 num_pcs = netdev_get_num_tc(dev);
1882
1883	if (num_pcs <= 1)
1884		return false;
1885
1886	rss_i = interface->ring_feature[RING_F_RSS].indices;
1887
1888	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889		q_idx = pc;
 
1890		for (i = 0; i < rss_i; i++) {
1891			interface->tx_ring[offset + i]->reg_idx = q_idx;
1892			interface->tx_ring[offset + i]->qos_pc = pc;
1893			interface->rx_ring[offset + i]->reg_idx = q_idx;
1894			interface->rx_ring[offset + i]->qos_pc = pc;
1895			q_idx += pc_stride;
1896		}
1897	}
1898
1899	return true;
1900}
1901
1902/**
1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904 * @interface: Interface structure continaining rings and devices
1905 *
1906 * Cache the descriptor ring offsets for RSS
1907 **/
1908static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909{
1910	int i;
1911
1912	for (i = 0; i < interface->num_rx_queues; i++)
1913		interface->rx_ring[i]->reg_idx = i;
1914
1915	for (i = 0; i < interface->num_tx_queues; i++)
1916		interface->tx_ring[i]->reg_idx = i;
1917}
1918
1919/**
1920 * fm10k_assign_rings - Map rings to network devices
1921 * @interface: Interface structure containing rings and devices
1922 *
1923 * This function is meant to go though and configure both the network
1924 * devices so that they contain rings, and configure the rings so that
1925 * they function with their network devices.
1926 **/
1927static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928{
1929	if (fm10k_cache_ring_qos(interface))
1930		return;
1931
1932	fm10k_cache_ring_rss(interface);
1933}
1934
1935static void fm10k_init_reta(struct fm10k_intfc *interface)
1936{
1937	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938	u32 reta, base;
1939
1940	/* If the Rx flow indirection table has been configured manually, we
1941	 * need to maintain it when possible.
1942	 */
1943	if (netif_is_rxfh_configured(interface->netdev)) {
1944		for (i = FM10K_RETA_SIZE; i--;) {
1945			reta = interface->reta[i];
1946			if ((((reta << 24) >> 24) < rss_i) &&
1947			    (((reta << 16) >> 24) < rss_i) &&
1948			    (((reta <<  8) >> 24) < rss_i) &&
1949			    (((reta)       >> 24) < rss_i))
1950				continue;
1951
1952			/* this should never happen */
1953			dev_err(&interface->pdev->dev,
1954				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955			goto repopulate_reta;
1956		}
1957
1958		/* do nothing if all of the elements are in bounds */
1959		return;
1960	}
1961
1962repopulate_reta:
1963	/* Populate the redirection table 4 entries at a time.  To do this
1964	 * we are generating the results for n and n+2 and then interleaving
1965	 * those with the results with n+1 and n+3.
1966	 */
1967	for (i = FM10K_RETA_SIZE; i--;) {
1968		/* first pass generates n and n+2 */
1969		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1970		reta = (base & 0x3F803F80) >> 7;
1971
1972		/* second pass generates n+1 and n+3 */
1973		base += 0x00010001 * rss_i;
1974		reta |= (base & 0x3F803F80) << 1;
1975
1976		interface->reta[i] = reta;
1977	}
1978}
1979
1980/**
1981 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1982 * @interface: board private structure to initialize
1983 *
1984 * We determine which queueing scheme to use based on...
1985 * - Hardware queue count (num_*_queues)
1986 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1987 **/
1988int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1989{
1990	int err;
1991
1992	/* Number of supported queues */
1993	fm10k_set_num_queues(interface);
1994
1995	/* Configure MSI-X capability */
1996	err = fm10k_init_msix_capability(interface);
1997	if (err) {
1998		dev_err(&interface->pdev->dev,
1999			"Unable to initialize MSI-X capability\n");
2000		return err;
2001	}
2002
2003	/* Allocate memory for queues */
2004	err = fm10k_alloc_q_vectors(interface);
2005	if (err) {
2006		fm10k_reset_msix_capability(interface);
2007		return err;
 
2008	}
2009
2010	/* Map rings to devices, and map devices to physical queues */
2011	fm10k_assign_rings(interface);
2012
2013	/* Initialize RSS redirection table */
2014	fm10k_init_reta(interface);
2015
2016	return 0;
 
 
 
 
 
 
2017}
2018
2019/**
2020 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2021 * @interface: board private structure to clear queueing scheme on
2022 *
2023 * We go through and clear queueing specific resources and reset the structure
2024 * to pre-load conditions
2025 **/
2026void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2027{
2028	fm10k_free_q_vectors(interface);
2029	fm10k_reset_msix_capability(interface);
2030}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
  14#define DRV_VERSION	"0.26.1-k"
  15#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
  16const char fm10k_driver_version[] = DRV_VERSION;
  17char fm10k_driver_name[] = "fm10k";
  18static const char fm10k_driver_string[] = DRV_SUMMARY;
 
  19static const char fm10k_copyright[] =
  20	"Copyright(c) 2013 - 2019 Intel Corporation.";
  21
  22MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  23MODULE_DESCRIPTION(DRV_SUMMARY);
  24MODULE_LICENSE("GPL v2");
  25MODULE_VERSION(DRV_VERSION);
  26
  27/* single workqueue for entire fm10k driver */
  28struct workqueue_struct *fm10k_workqueue;
  29
  30/**
  31 * fm10k_init_module - Driver Registration Routine
  32 *
  33 * fm10k_init_module is the first routine called when the driver is
  34 * loaded.  All it does is register with the PCI subsystem.
  35 **/
  36static int __init fm10k_init_module(void)
  37{
  38	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  39	pr_info("%s\n", fm10k_copyright);
  40
  41	/* create driver workqueue */
  42	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  43					  fm10k_driver_name);
  44	if (!fm10k_workqueue)
  45		return -ENOMEM;
  46
  47	fm10k_dbg_init();
  48
  49	return fm10k_register_pci_driver();
  50}
  51module_init(fm10k_init_module);
  52
  53/**
  54 * fm10k_exit_module - Driver Exit Cleanup Routine
  55 *
  56 * fm10k_exit_module is called just before the driver is removed
  57 * from memory.
  58 **/
  59static void __exit fm10k_exit_module(void)
  60{
  61	fm10k_unregister_pci_driver();
  62
  63	fm10k_dbg_exit();
  64
  65	/* destroy driver workqueue */
 
  66	destroy_workqueue(fm10k_workqueue);
  67}
  68module_exit(fm10k_exit_module);
  69
  70static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  71				    struct fm10k_rx_buffer *bi)
  72{
  73	struct page *page = bi->page;
  74	dma_addr_t dma;
  75
  76	/* Only page will be NULL if buffer was consumed */
  77	if (likely(page))
  78		return true;
  79
  80	/* alloc new page for storage */
  81	page = dev_alloc_page();
  82	if (unlikely(!page)) {
  83		rx_ring->rx_stats.alloc_failed++;
  84		return false;
  85	}
  86
  87	/* map page for use */
  88	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  89
  90	/* if mapping failed free memory back to system since
  91	 * there isn't much point in holding memory we can't use
  92	 */
  93	if (dma_mapping_error(rx_ring->dev, dma)) {
  94		__free_page(page);
  95
  96		rx_ring->rx_stats.alloc_failed++;
  97		return false;
  98	}
  99
 100	bi->dma = dma;
 101	bi->page = page;
 102	bi->page_offset = 0;
 103
 104	return true;
 105}
 106
 107/**
 108 * fm10k_alloc_rx_buffers - Replace used receive buffers
 109 * @rx_ring: ring to place buffers on
 110 * @cleaned_count: number of buffers to replace
 111 **/
 112void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 113{
 114	union fm10k_rx_desc *rx_desc;
 115	struct fm10k_rx_buffer *bi;
 116	u16 i = rx_ring->next_to_use;
 117
 118	/* nothing to do */
 119	if (!cleaned_count)
 120		return;
 121
 122	rx_desc = FM10K_RX_DESC(rx_ring, i);
 123	bi = &rx_ring->rx_buffer[i];
 124	i -= rx_ring->count;
 125
 126	do {
 127		if (!fm10k_alloc_mapped_page(rx_ring, bi))
 128			break;
 129
 130		/* Refresh the desc even if buffer_addrs didn't change
 131		 * because each write-back erases this info.
 132		 */
 133		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 134
 135		rx_desc++;
 136		bi++;
 137		i++;
 138		if (unlikely(!i)) {
 139			rx_desc = FM10K_RX_DESC(rx_ring, 0);
 140			bi = rx_ring->rx_buffer;
 141			i -= rx_ring->count;
 142		}
 143
 144		/* clear the status bits for the next_to_use descriptor */
 145		rx_desc->d.staterr = 0;
 146
 147		cleaned_count--;
 148	} while (cleaned_count);
 149
 150	i += rx_ring->count;
 151
 152	if (rx_ring->next_to_use != i) {
 153		/* record the next descriptor to use */
 154		rx_ring->next_to_use = i;
 155
 156		/* update next to alloc since we have filled the ring */
 157		rx_ring->next_to_alloc = i;
 158
 159		/* Force memory writes to complete before letting h/w
 160		 * know there are new descriptors to fetch.  (Only
 161		 * applicable for weak-ordered memory model archs,
 162		 * such as IA-64).
 163		 */
 164		wmb();
 165
 166		/* notify hardware of new descriptors */
 167		writel(i, rx_ring->tail);
 168	}
 169}
 170
 171/**
 172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 173 * @rx_ring: rx descriptor ring to store buffers on
 174 * @old_buff: donor buffer to have page reused
 175 *
 176 * Synchronizes page for reuse by the interface
 177 **/
 178static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 179				struct fm10k_rx_buffer *old_buff)
 180{
 181	struct fm10k_rx_buffer *new_buff;
 182	u16 nta = rx_ring->next_to_alloc;
 183
 184	new_buff = &rx_ring->rx_buffer[nta];
 185
 186	/* update, and store next to alloc */
 187	nta++;
 188	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 189
 190	/* transfer page from old buffer to new buffer */
 191	*new_buff = *old_buff;
 192
 193	/* sync the buffer for use by the device */
 194	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 195					 old_buff->page_offset,
 196					 FM10K_RX_BUFSZ,
 197					 DMA_FROM_DEVICE);
 198}
 199
 200static inline bool fm10k_page_is_reserved(struct page *page)
 201{
 202	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 203}
 204
 205static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 206				    struct page *page,
 207				    unsigned int __maybe_unused truesize)
 208{
 209	/* avoid re-using remote pages */
 210	if (unlikely(fm10k_page_is_reserved(page)))
 211		return false;
 212
 213#if (PAGE_SIZE < 8192)
 214	/* if we are only owner of page we can reuse it */
 215	if (unlikely(page_count(page) != 1))
 216		return false;
 217
 218	/* flip page offset to other buffer */
 219	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 220#else
 221	/* move offset up to the next cache line */
 222	rx_buffer->page_offset += truesize;
 223
 224	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 225		return false;
 226#endif
 227
 228	/* Even if we own the page, we are not allowed to use atomic_set()
 229	 * This would break get_page_unless_zero() users.
 230	 */
 231	page_ref_inc(page);
 232
 233	return true;
 234}
 235
 236/**
 237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 238 * @rx_buffer: buffer containing page to add
 239 * @size: packet size from rx_desc
 240 * @rx_desc: descriptor containing length of buffer written by hardware
 241 * @skb: sk_buff to place the data into
 242 *
 243 * This function will add the data contained in rx_buffer->page to the skb.
 244 * This is done either through a direct copy if the data in the buffer is
 245 * less than the skb header size, otherwise it will just attach the page as
 246 * a frag to the skb.
 247 *
 248 * The function will then update the page offset if necessary and return
 249 * true if the buffer can be reused by the interface.
 250 **/
 251static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 252			      unsigned int size,
 253			      union fm10k_rx_desc *rx_desc,
 254			      struct sk_buff *skb)
 255{
 256	struct page *page = rx_buffer->page;
 257	unsigned char *va = page_address(page) + rx_buffer->page_offset;
 
 258#if (PAGE_SIZE < 8192)
 259	unsigned int truesize = FM10K_RX_BUFSZ;
 260#else
 261	unsigned int truesize = ALIGN(size, 512);
 262#endif
 263	unsigned int pull_len;
 264
 265	if (unlikely(skb_is_nonlinear(skb)))
 266		goto add_tail_frag;
 267
 268	if (likely(size <= FM10K_RX_HDR_LEN)) {
 269		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 270
 271		/* page is not reserved, we can reuse buffer as-is */
 272		if (likely(!fm10k_page_is_reserved(page)))
 273			return true;
 274
 275		/* this page cannot be reused so discard it */
 276		__free_page(page);
 277		return false;
 278	}
 279
 280	/* we need the header to contain the greater of either ETH_HLEN or
 281	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 282	 */
 283	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 284
 285	/* align pull length to size of long to optimize memcpy performance */
 286	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 287
 288	/* update all of the pointers */
 289	va += pull_len;
 290	size -= pull_len;
 291
 292add_tail_frag:
 293	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 294			(unsigned long)va & ~PAGE_MASK, size, truesize);
 295
 296	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 297}
 298
 299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 300					     union fm10k_rx_desc *rx_desc,
 301					     struct sk_buff *skb)
 302{
 303	unsigned int size = le16_to_cpu(rx_desc->w.length);
 304	struct fm10k_rx_buffer *rx_buffer;
 305	struct page *page;
 306
 307	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 308	page = rx_buffer->page;
 309	prefetchw(page);
 310
 311	if (likely(!skb)) {
 312		void *page_addr = page_address(page) +
 313				  rx_buffer->page_offset;
 314
 315		/* prefetch first cache line of first page */
 316		prefetch(page_addr);
 317#if L1_CACHE_BYTES < 128
 318		prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
 319#endif
 320
 321		/* allocate a skb to store the frags */
 322		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 323				     FM10K_RX_HDR_LEN);
 324		if (unlikely(!skb)) {
 325			rx_ring->rx_stats.alloc_failed++;
 326			return NULL;
 327		}
 328
 329		/* we will be copying header into skb->data in
 330		 * pskb_may_pull so it is in our interest to prefetch
 331		 * it now to avoid a possible cache miss
 332		 */
 333		prefetchw(skb->data);
 334	}
 335
 336	/* we are reusing so sync this buffer for CPU use */
 337	dma_sync_single_range_for_cpu(rx_ring->dev,
 338				      rx_buffer->dma,
 339				      rx_buffer->page_offset,
 340				      size,
 341				      DMA_FROM_DEVICE);
 342
 343	/* pull page into skb */
 344	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 345		/* hand second half of page back to the ring */
 346		fm10k_reuse_rx_page(rx_ring, rx_buffer);
 347	} else {
 348		/* we are not reusing the buffer so unmap it */
 349		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 350			       PAGE_SIZE, DMA_FROM_DEVICE);
 351	}
 352
 353	/* clear contents of rx_buffer */
 354	rx_buffer->page = NULL;
 355
 356	return skb;
 357}
 358
 359static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 360				     union fm10k_rx_desc *rx_desc,
 361				     struct sk_buff *skb)
 362{
 363	skb_checksum_none_assert(skb);
 364
 365	/* Rx checksum disabled via ethtool */
 366	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 367		return;
 368
 369	/* TCP/UDP checksum error bit is set */
 370	if (fm10k_test_staterr(rx_desc,
 371			       FM10K_RXD_STATUS_L4E |
 372			       FM10K_RXD_STATUS_L4E2 |
 373			       FM10K_RXD_STATUS_IPE |
 374			       FM10K_RXD_STATUS_IPE2)) {
 375		ring->rx_stats.csum_err++;
 376		return;
 377	}
 378
 379	/* It must be a TCP or UDP packet with a valid checksum */
 380	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 381		skb->encapsulation = true;
 382	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 383		return;
 384
 385	skb->ip_summed = CHECKSUM_UNNECESSARY;
 386
 387	ring->rx_stats.csum_good++;
 388}
 389
 390#define FM10K_RSS_L4_TYPES_MASK \
 391	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 392	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 393	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 394	 BIT(FM10K_RSSTYPE_IPV6_UDP))
 395
 396static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 397				 union fm10k_rx_desc *rx_desc,
 398				 struct sk_buff *skb)
 399{
 400	u16 rss_type;
 401
 402	if (!(ring->netdev->features & NETIF_F_RXHASH))
 403		return;
 404
 405	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 406	if (!rss_type)
 407		return;
 408
 409	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 410		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 411		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 412}
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415			     union fm10k_rx_desc __maybe_unused *rx_desc,
 416			     struct sk_buff *skb)
 417{
 418	struct net_device *dev = rx_ring->netdev;
 419	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420
 421	/* check to see if DGLORT belongs to a MACVLAN */
 422	if (l2_accel) {
 423		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424
 425		idx -= l2_accel->dglort;
 426		if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427			dev = l2_accel->macvlan[idx];
 428		else
 429			l2_accel = NULL;
 430	}
 431
 432	/* Record Rx queue, or update macvlan statistics */
 
 433	if (!l2_accel)
 434		skb_record_rx_queue(skb, rx_ring->queue_index);
 435	else
 436		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 437				 false);
 438
 439	skb->protocol = eth_type_trans(skb, dev);
 
 
 
 440}
 441
 442/**
 443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 444 * @rx_ring: rx descriptor ring packet is being transacted on
 445 * @rx_desc: pointer to the EOP Rx descriptor
 446 * @skb: pointer to current skb being populated
 447 *
 448 * This function checks the ring, descriptor, and packet information in
 449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 450 * other fields within the skb.
 451 **/
 452static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 453					     union fm10k_rx_desc *rx_desc,
 454					     struct sk_buff *skb)
 455{
 456	unsigned int len = skb->len;
 457
 458	fm10k_rx_hash(rx_ring, rx_desc, skb);
 459
 460	fm10k_rx_checksum(rx_ring, rx_desc, skb);
 461
 462	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 463
 464	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 465
 
 
 466	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 467
 468	if (rx_desc->w.vlan) {
 469		u16 vid = le16_to_cpu(rx_desc->w.vlan);
 470
 471		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 472			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 473		else if (vid & VLAN_PRIO_MASK)
 474			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 475					       vid & VLAN_PRIO_MASK);
 476	}
 477
 478	fm10k_type_trans(rx_ring, rx_desc, skb);
 479
 480	return len;
 481}
 482
 483/**
 484 * fm10k_is_non_eop - process handling of non-EOP buffers
 485 * @rx_ring: Rx ring being processed
 486 * @rx_desc: Rx descriptor for current buffer
 487 *
 488 * This function updates next to clean.  If the buffer is an EOP buffer
 489 * this function exits returning false, otherwise it will place the
 490 * sk_buff in the next buffer to be chained and return true indicating
 491 * that this is in fact a non-EOP buffer.
 492 **/
 493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494			     union fm10k_rx_desc *rx_desc)
 495{
 496	u32 ntc = rx_ring->next_to_clean + 1;
 497
 498	/* fetch, update, and store next to clean */
 499	ntc = (ntc < rx_ring->count) ? ntc : 0;
 500	rx_ring->next_to_clean = ntc;
 501
 502	prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503
 504	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505		return false;
 506
 507	return true;
 508}
 509
 510/**
 511 * fm10k_cleanup_headers - Correct corrupted or empty headers
 512 * @rx_ring: rx descriptor ring packet is being transacted on
 513 * @rx_desc: pointer to the EOP Rx descriptor
 514 * @skb: pointer to current skb being fixed
 515 *
 516 * Address the case where we are pulling data in on pages only
 517 * and as such no data is present in the skb header.
 518 *
 519 * In addition if skb is not at least 60 bytes we need to pad it so that
 520 * it is large enough to qualify as a valid Ethernet frame.
 521 *
 522 * Returns true if an error was encountered and skb was freed.
 523 **/
 524static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 525				  union fm10k_rx_desc *rx_desc,
 526				  struct sk_buff *skb)
 527{
 528	if (unlikely((fm10k_test_staterr(rx_desc,
 529					 FM10K_RXD_STATUS_RXE)))) {
 530#define FM10K_TEST_RXD_BIT(rxd, bit) \
 531	((rxd)->w.csum_err & cpu_to_le16(bit))
 532		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 533			rx_ring->rx_stats.switch_errors++;
 534		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 535			rx_ring->rx_stats.drops++;
 536		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 537			rx_ring->rx_stats.pp_errors++;
 538		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 539			rx_ring->rx_stats.link_errors++;
 540		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 541			rx_ring->rx_stats.length_errors++;
 542		dev_kfree_skb_any(skb);
 543		rx_ring->rx_stats.errors++;
 544		return true;
 545	}
 546
 547	/* if eth_skb_pad returns an error the skb was freed */
 548	if (eth_skb_pad(skb))
 549		return true;
 550
 551	return false;
 552}
 553
 554/**
 555 * fm10k_receive_skb - helper function to handle rx indications
 556 * @q_vector: structure containing interrupt and ring information
 557 * @skb: packet to send up
 558 **/
 559static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 560			      struct sk_buff *skb)
 561{
 562	napi_gro_receive(&q_vector->napi, skb);
 563}
 564
 565static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 566			      struct fm10k_ring *rx_ring,
 567			      int budget)
 568{
 569	struct sk_buff *skb = rx_ring->skb;
 570	unsigned int total_bytes = 0, total_packets = 0;
 571	u16 cleaned_count = fm10k_desc_unused(rx_ring);
 572
 573	while (likely(total_packets < budget)) {
 574		union fm10k_rx_desc *rx_desc;
 575
 576		/* return some buffers to hardware, one at a time is too slow */
 577		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 578			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 579			cleaned_count = 0;
 580		}
 581
 582		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 583
 584		if (!rx_desc->d.staterr)
 585			break;
 586
 587		/* This memory barrier is needed to keep us from reading
 588		 * any other fields out of the rx_desc until we know the
 589		 * descriptor has been written back
 590		 */
 591		dma_rmb();
 592
 593		/* retrieve a buffer from the ring */
 594		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 595
 596		/* exit if we failed to retrieve a buffer */
 597		if (!skb)
 598			break;
 599
 600		cleaned_count++;
 601
 602		/* fetch next buffer in frame if non-eop */
 603		if (fm10k_is_non_eop(rx_ring, rx_desc))
 604			continue;
 605
 606		/* verify the packet layout is correct */
 607		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 608			skb = NULL;
 609			continue;
 610		}
 611
 612		/* populate checksum, timestamp, VLAN, and protocol */
 613		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 614
 615		fm10k_receive_skb(q_vector, skb);
 616
 617		/* reset skb pointer */
 618		skb = NULL;
 619
 620		/* update budget accounting */
 621		total_packets++;
 622	}
 623
 624	/* place incomplete frames back on ring for completion */
 625	rx_ring->skb = skb;
 626
 627	u64_stats_update_begin(&rx_ring->syncp);
 628	rx_ring->stats.packets += total_packets;
 629	rx_ring->stats.bytes += total_bytes;
 630	u64_stats_update_end(&rx_ring->syncp);
 631	q_vector->rx.total_packets += total_packets;
 632	q_vector->rx.total_bytes += total_bytes;
 633
 634	return total_packets;
 635}
 636
 637#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 638static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 639{
 640	struct fm10k_intfc *interface = netdev_priv(skb->dev);
 641	struct fm10k_udp_port *vxlan_port;
 642
 643	/* we can only offload a vxlan if we recognize it as such */
 644	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 645					      struct fm10k_udp_port, list);
 646
 647	if (!vxlan_port)
 648		return NULL;
 649	if (vxlan_port->port != udp_hdr(skb)->dest)
 650		return NULL;
 651
 652	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
 653	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 654}
 655
 656#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 657#define NVGRE_TNI htons(0x2000)
 658struct fm10k_nvgre_hdr {
 659	__be16 flags;
 660	__be16 proto;
 661	__be32 tni;
 662};
 663
 664static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 665{
 666	struct fm10k_nvgre_hdr *nvgre_hdr;
 667	int hlen = ip_hdrlen(skb);
 668
 669	/* currently only IPv4 is supported due to hlen above */
 670	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 671		return NULL;
 672
 673	/* our transport header should be NVGRE */
 674	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 675
 676	/* verify all reserved flags are 0 */
 677	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 678		return NULL;
 679
 680	/* report start of ethernet header */
 681	if (nvgre_hdr->flags & NVGRE_TNI)
 682		return (struct ethhdr *)(nvgre_hdr + 1);
 683
 684	return (struct ethhdr *)(&nvgre_hdr->tni);
 685}
 686
 687__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 688{
 689	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 690	struct ethhdr *eth_hdr;
 691
 692	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 693	    skb->inner_protocol != htons(ETH_P_TEB))
 694		return 0;
 695
 696	switch (vlan_get_protocol(skb)) {
 697	case htons(ETH_P_IP):
 698		l4_hdr = ip_hdr(skb)->protocol;
 699		break;
 700	case htons(ETH_P_IPV6):
 701		l4_hdr = ipv6_hdr(skb)->nexthdr;
 702		break;
 703	default:
 704		return 0;
 705	}
 706
 707	switch (l4_hdr) {
 708	case IPPROTO_UDP:
 709		eth_hdr = fm10k_port_is_vxlan(skb);
 710		break;
 711	case IPPROTO_GRE:
 712		eth_hdr = fm10k_gre_is_nvgre(skb);
 713		break;
 714	default:
 715		return 0;
 716	}
 717
 718	if (!eth_hdr)
 719		return 0;
 720
 721	switch (eth_hdr->h_proto) {
 722	case htons(ETH_P_IP):
 723		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 724		break;
 725	case htons(ETH_P_IPV6):
 726		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 727		break;
 728	default:
 729		return 0;
 730	}
 731
 732	switch (inner_l4_hdr) {
 733	case IPPROTO_TCP:
 734		inner_l4_hlen = inner_tcp_hdrlen(skb);
 735		break;
 736	case IPPROTO_UDP:
 737		inner_l4_hlen = 8;
 738		break;
 739	default:
 740		return 0;
 741	}
 742
 743	/* The hardware allows tunnel offloads only if the combined inner and
 744	 * outer header is 184 bytes or less
 745	 */
 746	if (skb_inner_transport_header(skb) + inner_l4_hlen -
 747	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 748		return 0;
 749
 750	return eth_hdr->h_proto;
 751}
 752
 753static int fm10k_tso(struct fm10k_ring *tx_ring,
 754		     struct fm10k_tx_buffer *first)
 755{
 756	struct sk_buff *skb = first->skb;
 757	struct fm10k_tx_desc *tx_desc;
 758	unsigned char *th;
 759	u8 hdrlen;
 760
 761	if (skb->ip_summed != CHECKSUM_PARTIAL)
 762		return 0;
 763
 764	if (!skb_is_gso(skb))
 765		return 0;
 766
 767	/* compute header lengths */
 768	if (skb->encapsulation) {
 769		if (!fm10k_tx_encap_offload(skb))
 770			goto err_vxlan;
 771		th = skb_inner_transport_header(skb);
 772	} else {
 773		th = skb_transport_header(skb);
 774	}
 775
 776	/* compute offset from SOF to transport header and add header len */
 777	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 778
 779	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 780
 781	/* update gso size and bytecount with header size */
 782	first->gso_segs = skb_shinfo(skb)->gso_segs;
 783	first->bytecount += (first->gso_segs - 1) * hdrlen;
 784
 785	/* populate Tx descriptor header size and mss */
 786	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 787	tx_desc->hdrlen = hdrlen;
 788	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 789
 790	return 1;
 791
 792err_vxlan:
 793	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 794	if (net_ratelimit())
 795		netdev_err(tx_ring->netdev,
 796			   "TSO requested for unsupported tunnel, disabling offload\n");
 797	return -1;
 798}
 799
 800static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 801			  struct fm10k_tx_buffer *first)
 802{
 803	struct sk_buff *skb = first->skb;
 804	struct fm10k_tx_desc *tx_desc;
 805	union {
 806		struct iphdr *ipv4;
 807		struct ipv6hdr *ipv6;
 808		u8 *raw;
 809	} network_hdr;
 810	u8 *transport_hdr;
 811	__be16 frag_off;
 812	__be16 protocol;
 813	u8 l4_hdr = 0;
 814
 815	if (skb->ip_summed != CHECKSUM_PARTIAL)
 816		goto no_csum;
 817
 818	if (skb->encapsulation) {
 819		protocol = fm10k_tx_encap_offload(skb);
 820		if (!protocol) {
 821			if (skb_checksum_help(skb)) {
 822				dev_warn(tx_ring->dev,
 823					 "failed to offload encap csum!\n");
 824				tx_ring->tx_stats.csum_err++;
 825			}
 826			goto no_csum;
 827		}
 828		network_hdr.raw = skb_inner_network_header(skb);
 829		transport_hdr = skb_inner_transport_header(skb);
 830	} else {
 831		protocol = vlan_get_protocol(skb);
 832		network_hdr.raw = skb_network_header(skb);
 833		transport_hdr = skb_transport_header(skb);
 834	}
 835
 836	switch (protocol) {
 837	case htons(ETH_P_IP):
 838		l4_hdr = network_hdr.ipv4->protocol;
 839		break;
 840	case htons(ETH_P_IPV6):
 841		l4_hdr = network_hdr.ipv6->nexthdr;
 842		if (likely((transport_hdr - network_hdr.raw) ==
 843			   sizeof(struct ipv6hdr)))
 844			break;
 845		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 846				      sizeof(struct ipv6hdr),
 847				 &l4_hdr, &frag_off);
 848		if (unlikely(frag_off))
 849			l4_hdr = NEXTHDR_FRAGMENT;
 850		break;
 851	default:
 852		break;
 
 
 
 
 
 
 853	}
 854
 855	switch (l4_hdr) {
 856	case IPPROTO_TCP:
 857	case IPPROTO_UDP:
 858		break;
 859	case IPPROTO_GRE:
 860		if (skb->encapsulation)
 861			break;
 862		/* fall through */
 863	default:
 864		if (unlikely(net_ratelimit())) {
 865			dev_warn(tx_ring->dev,
 866				 "partial checksum, version=%d l4 proto=%x\n",
 867				 protocol, l4_hdr);
 868		}
 869		skb_checksum_help(skb);
 870		tx_ring->tx_stats.csum_err++;
 871		goto no_csum;
 872	}
 873
 874	/* update TX checksum flag */
 875	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 876	tx_ring->tx_stats.csum_good++;
 877
 878no_csum:
 879	/* populate Tx descriptor header size and mss */
 880	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 881	tx_desc->hdrlen = 0;
 882	tx_desc->mss = 0;
 883}
 884
 885#define FM10K_SET_FLAG(_input, _flag, _result) \
 886	((_flag <= _result) ? \
 887	 ((u32)(_input & _flag) * (_result / _flag)) : \
 888	 ((u32)(_input & _flag) / (_flag / _result)))
 889
 890static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 891{
 892	/* set type for advanced descriptor with frame checksum insertion */
 893	u32 desc_flags = 0;
 894
 
 
 
 
 
 895	/* set checksum offload bits */
 896	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 897				     FM10K_TXD_FLAG_CSUM);
 898
 899	return desc_flags;
 900}
 901
 902static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 903			       struct fm10k_tx_desc *tx_desc, u16 i,
 904			       dma_addr_t dma, unsigned int size, u8 desc_flags)
 905{
 906	/* set RS and INT for last frame in a cache line */
 907	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 908		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 909
 910	/* record values to descriptor */
 911	tx_desc->buffer_addr = cpu_to_le64(dma);
 912	tx_desc->flags = desc_flags;
 913	tx_desc->buflen = cpu_to_le16(size);
 914
 915	/* return true if we just wrapped the ring */
 916	return i == tx_ring->count;
 917}
 918
 919static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 920{
 921	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 922
 923	/* Memory barrier before checking head and tail */
 924	smp_mb();
 925
 926	/* Check again in a case another CPU has just made room available */
 927	if (likely(fm10k_desc_unused(tx_ring) < size))
 928		return -EBUSY;
 929
 930	/* A reprieve! - use start_queue because it doesn't call schedule */
 931	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 932	++tx_ring->tx_stats.restart_queue;
 933	return 0;
 934}
 935
 936static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 937{
 938	if (likely(fm10k_desc_unused(tx_ring) >= size))
 939		return 0;
 940	return __fm10k_maybe_stop_tx(tx_ring, size);
 941}
 942
 943static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 944			 struct fm10k_tx_buffer *first)
 945{
 946	struct sk_buff *skb = first->skb;
 947	struct fm10k_tx_buffer *tx_buffer;
 948	struct fm10k_tx_desc *tx_desc;
 949	skb_frag_t *frag;
 950	unsigned char *data;
 951	dma_addr_t dma;
 952	unsigned int data_len, size;
 953	u32 tx_flags = first->tx_flags;
 954	u16 i = tx_ring->next_to_use;
 955	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 956
 957	tx_desc = FM10K_TX_DESC(tx_ring, i);
 958
 959	/* add HW VLAN tag */
 960	if (skb_vlan_tag_present(skb))
 961		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 962	else
 963		tx_desc->vlan = 0;
 964
 965	size = skb_headlen(skb);
 966	data = skb->data;
 967
 968	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 969
 970	data_len = skb->data_len;
 971	tx_buffer = first;
 972
 973	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 974		if (dma_mapping_error(tx_ring->dev, dma))
 975			goto dma_error;
 976
 977		/* record length, and DMA address */
 978		dma_unmap_len_set(tx_buffer, len, size);
 979		dma_unmap_addr_set(tx_buffer, dma, dma);
 980
 981		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 982			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 983					       FM10K_MAX_DATA_PER_TXD, flags)) {
 984				tx_desc = FM10K_TX_DESC(tx_ring, 0);
 985				i = 0;
 986			}
 987
 988			dma += FM10K_MAX_DATA_PER_TXD;
 989			size -= FM10K_MAX_DATA_PER_TXD;
 990		}
 991
 992		if (likely(!data_len))
 993			break;
 994
 995		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 996				       dma, size, flags)) {
 997			tx_desc = FM10K_TX_DESC(tx_ring, 0);
 998			i = 0;
 999		}
1000
1001		size = skb_frag_size(frag);
1002		data_len -= size;
1003
1004		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005				       DMA_TO_DEVICE);
1006
1007		tx_buffer = &tx_ring->tx_buffer[i];
1008	}
1009
1010	/* write last descriptor with LAST bit set */
1011	flags |= FM10K_TXD_FLAG_LAST;
1012
1013	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014		i = 0;
1015
1016	/* record bytecount for BQL */
1017	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018
1019	/* record SW timestamp if HW timestamp is not available */
1020	skb_tx_timestamp(first->skb);
1021
1022	/* Force memory writes to complete before letting h/w know there
1023	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1024	 * memory model archs, such as IA-64).
1025	 *
1026	 * We also need this memory barrier to make certain all of the
1027	 * status bits have been updated before next_to_watch is written.
1028	 */
1029	wmb();
1030
1031	/* set next_to_watch value indicating a packet is present */
1032	first->next_to_watch = tx_desc;
1033
1034	tx_ring->next_to_use = i;
1035
1036	/* Make sure there is space in the ring for the next send. */
1037	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038
1039	/* notify HW of packet */
1040	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041		writel(i, tx_ring->tail);
 
 
 
 
 
1042	}
1043
1044	return;
1045dma_error:
1046	dev_err(tx_ring->dev, "TX DMA map failed\n");
1047
1048	/* clear dma mappings for failed tx_buffer map */
1049	for (;;) {
1050		tx_buffer = &tx_ring->tx_buffer[i];
1051		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052		if (tx_buffer == first)
1053			break;
1054		if (i == 0)
1055			i = tx_ring->count;
1056		i--;
1057	}
1058
1059	tx_ring->next_to_use = i;
1060}
1061
1062netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063				  struct fm10k_ring *tx_ring)
1064{
1065	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066	struct fm10k_tx_buffer *first;
1067	unsigned short f;
1068	u32 tx_flags = 0;
1069	int tso;
1070
1071	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073	 *       + 2 desc gap to keep tail from touching head
1074	 * otherwise try next time
1075	 */
1076	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1077		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1078
1079		count += TXD_USE_COUNT(skb_frag_size(frag));
1080	}
1081
1082	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083		tx_ring->tx_stats.tx_busy++;
1084		return NETDEV_TX_BUSY;
1085	}
1086
1087	/* record the location of the first descriptor for this packet */
1088	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089	first->skb = skb;
1090	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091	first->gso_segs = 1;
1092
1093	/* record initial flags and protocol */
1094	first->tx_flags = tx_flags;
1095
1096	tso = fm10k_tso(tx_ring, first);
1097	if (tso < 0)
1098		goto out_drop;
1099	else if (!tso)
1100		fm10k_tx_csum(tx_ring, first);
1101
1102	fm10k_tx_map(tx_ring, first);
1103
1104	return NETDEV_TX_OK;
1105
1106out_drop:
1107	dev_kfree_skb_any(first->skb);
1108	first->skb = NULL;
1109
1110	return NETDEV_TX_OK;
1111}
1112
1113static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114{
1115	return ring->stats.packets;
1116}
1117
1118/**
1119 * fm10k_get_tx_pending - how many Tx descriptors not processed
1120 * @ring: the ring structure
1121 * @in_sw: is tx_pending being checked in SW or in HW?
1122 */
1123u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124{
1125	struct fm10k_intfc *interface = ring->q_vector->interface;
1126	struct fm10k_hw *hw = &interface->hw;
1127	u32 head, tail;
1128
1129	if (likely(in_sw)) {
1130		head = ring->next_to_clean;
1131		tail = ring->next_to_use;
1132	} else {
1133		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135	}
1136
1137	return ((head <= tail) ? tail : tail + ring->count) - head;
1138}
1139
1140bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141{
1142	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145
1146	clear_check_for_tx_hang(tx_ring);
1147
1148	/* Check for a hung queue, but be thorough. This verifies
1149	 * that a transmit has been completed since the previous
1150	 * check AND there is at least one packet pending. By
1151	 * requiring this to fail twice we avoid races with
1152	 * clearing the ARMED bit and conditions where we
1153	 * run the check_tx_hang logic with a transmit completion
1154	 * pending but without time to complete it yet.
1155	 */
1156	if (!tx_pending || (tx_done_old != tx_done)) {
1157		/* update completed stats and continue */
1158		tx_ring->tx_stats.tx_done_old = tx_done;
1159		/* reset the countdown */
1160		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161
1162		return false;
1163	}
1164
1165	/* make sure it is true for two checks in a row */
1166	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167}
1168
1169/**
1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171 * @interface: driver private struct
1172 **/
1173void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174{
1175	/* Do the reset outside of interrupt context */
1176	if (!test_bit(__FM10K_DOWN, interface->state)) {
1177		interface->tx_timeout_count++;
1178		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179		fm10k_service_event_schedule(interface);
1180	}
1181}
1182
1183/**
1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185 * @q_vector: structure containing interrupt and ring information
1186 * @tx_ring: tx ring to clean
1187 * @napi_budget: Used to determine if we are in netpoll
1188 **/
1189static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190			       struct fm10k_ring *tx_ring, int napi_budget)
1191{
1192	struct fm10k_intfc *interface = q_vector->interface;
1193	struct fm10k_tx_buffer *tx_buffer;
1194	struct fm10k_tx_desc *tx_desc;
1195	unsigned int total_bytes = 0, total_packets = 0;
1196	unsigned int budget = q_vector->tx.work_limit;
1197	unsigned int i = tx_ring->next_to_clean;
1198
1199	if (test_bit(__FM10K_DOWN, interface->state))
1200		return true;
1201
1202	tx_buffer = &tx_ring->tx_buffer[i];
1203	tx_desc = FM10K_TX_DESC(tx_ring, i);
1204	i -= tx_ring->count;
1205
1206	do {
1207		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209		/* if next_to_watch is not set then there is no work pending */
1210		if (!eop_desc)
1211			break;
1212
1213		/* prevent any other reads prior to eop_desc */
1214		smp_rmb();
1215
1216		/* if DD is not set pending work has not been completed */
1217		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218			break;
1219
1220		/* clear next_to_watch to prevent false hangs */
1221		tx_buffer->next_to_watch = NULL;
1222
1223		/* update the statistics for this packet */
1224		total_bytes += tx_buffer->bytecount;
1225		total_packets += tx_buffer->gso_segs;
1226
1227		/* free the skb */
1228		napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230		/* unmap skb header data */
1231		dma_unmap_single(tx_ring->dev,
1232				 dma_unmap_addr(tx_buffer, dma),
1233				 dma_unmap_len(tx_buffer, len),
1234				 DMA_TO_DEVICE);
1235
1236		/* clear tx_buffer data */
1237		tx_buffer->skb = NULL;
1238		dma_unmap_len_set(tx_buffer, len, 0);
1239
1240		/* unmap remaining buffers */
1241		while (tx_desc != eop_desc) {
1242			tx_buffer++;
1243			tx_desc++;
1244			i++;
1245			if (unlikely(!i)) {
1246				i -= tx_ring->count;
1247				tx_buffer = tx_ring->tx_buffer;
1248				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249			}
1250
1251			/* unmap any remaining paged data */
1252			if (dma_unmap_len(tx_buffer, len)) {
1253				dma_unmap_page(tx_ring->dev,
1254					       dma_unmap_addr(tx_buffer, dma),
1255					       dma_unmap_len(tx_buffer, len),
1256					       DMA_TO_DEVICE);
1257				dma_unmap_len_set(tx_buffer, len, 0);
1258			}
1259		}
1260
1261		/* move us one more past the eop_desc for start of next pkt */
1262		tx_buffer++;
1263		tx_desc++;
1264		i++;
1265		if (unlikely(!i)) {
1266			i -= tx_ring->count;
1267			tx_buffer = tx_ring->tx_buffer;
1268			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269		}
1270
1271		/* issue prefetch for next Tx descriptor */
1272		prefetch(tx_desc);
1273
1274		/* update budget accounting */
1275		budget--;
1276	} while (likely(budget));
1277
1278	i += tx_ring->count;
1279	tx_ring->next_to_clean = i;
1280	u64_stats_update_begin(&tx_ring->syncp);
1281	tx_ring->stats.bytes += total_bytes;
1282	tx_ring->stats.packets += total_packets;
1283	u64_stats_update_end(&tx_ring->syncp);
1284	q_vector->tx.total_bytes += total_bytes;
1285	q_vector->tx.total_packets += total_packets;
1286
1287	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288		/* schedule immediate reset if we believe we hung */
1289		struct fm10k_hw *hw = &interface->hw;
1290
1291		netif_err(interface, drv, tx_ring->netdev,
1292			  "Detected Tx Unit Hang\n"
1293			  "  Tx Queue             <%d>\n"
1294			  "  TDH, TDT             <%x>, <%x>\n"
1295			  "  next_to_use          <%x>\n"
1296			  "  next_to_clean        <%x>\n",
1297			  tx_ring->queue_index,
1298			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300			  tx_ring->next_to_use, i);
1301
1302		netif_stop_subqueue(tx_ring->netdev,
1303				    tx_ring->queue_index);
1304
1305		netif_info(interface, probe, tx_ring->netdev,
1306			   "tx hang %d detected on queue %d, resetting interface\n",
1307			   interface->tx_timeout_count + 1,
1308			   tx_ring->queue_index);
1309
1310		fm10k_tx_timeout_reset(interface);
1311
1312		/* the netdev is about to reset, no point in enabling stuff */
1313		return true;
1314	}
1315
1316	/* notify netdev of completed buffers */
1317	netdev_tx_completed_queue(txring_txq(tx_ring),
1318				  total_packets, total_bytes);
1319
1320#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323		/* Make sure that anybody stopping the queue after this
1324		 * sees the new next_to_clean.
1325		 */
1326		smp_mb();
1327		if (__netif_subqueue_stopped(tx_ring->netdev,
1328					     tx_ring->queue_index) &&
1329		    !test_bit(__FM10K_DOWN, interface->state)) {
1330			netif_wake_subqueue(tx_ring->netdev,
1331					    tx_ring->queue_index);
1332			++tx_ring->tx_stats.restart_queue;
1333		}
1334	}
1335
1336	return !!budget;
1337}
1338
1339/**
1340 * fm10k_update_itr - update the dynamic ITR value based on packet size
1341 *
1342 *      Stores a new ITR value based on strictly on packet size.  The
1343 *      divisors and thresholds used by this function were determined based
1344 *      on theoretical maximum wire speed and testing data, in order to
1345 *      minimize response time while increasing bulk throughput.
1346 *
1347 * @ring_container: Container for rings to have ITR updated
1348 **/
1349static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350{
1351	unsigned int avg_wire_size, packets, itr_round;
1352
1353	/* Only update ITR if we are using adaptive setting */
1354	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355		goto clear_counts;
1356
1357	packets = ring_container->total_packets;
1358	if (!packets)
1359		goto clear_counts;
1360
1361	avg_wire_size = ring_container->total_bytes / packets;
1362
1363	/* The following is a crude approximation of:
1364	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1365	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367	 *
1368	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370	 * formula down to
1371	 *
1372	 *  (34 * (size + 24)) / (size + 640) = ITR
1373	 *
1374	 * We first do some math on the packet size and then finally bitshift
1375	 * by 8 after rounding up. We also have to account for PCIe link speed
1376	 * difference as ITR scales based on this.
1377	 */
1378	if (avg_wire_size <= 360) {
1379		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380		avg_wire_size *= 8;
1381		avg_wire_size += 376;
1382	} else if (avg_wire_size <= 1152) {
1383		/* 77K ints/sec to 45K ints/sec */
1384		avg_wire_size *= 3;
1385		avg_wire_size += 2176;
1386	} else if (avg_wire_size <= 1920) {
1387		/* 45K ints/sec to 38K ints/sec */
1388		avg_wire_size += 4480;
1389	} else {
1390		/* plateau at a limit of 38K ints/sec */
1391		avg_wire_size = 6656;
1392	}
1393
1394	/* Perform final bitshift for division after rounding up to ensure
1395	 * that the calculation will never get below a 1. The bit shift
1396	 * accounts for changes in the ITR due to PCIe link speed.
1397	 */
1398	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399	avg_wire_size += BIT(itr_round) - 1;
1400	avg_wire_size >>= itr_round;
1401
1402	/* write back value and retain adaptive flag */
1403	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405clear_counts:
1406	ring_container->total_bytes = 0;
1407	ring_container->total_packets = 0;
1408}
1409
1410static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411{
1412	/* Enable auto-mask and clear the current mask */
1413	u32 itr = FM10K_ITR_ENABLE;
1414
1415	/* Update Tx ITR */
1416	fm10k_update_itr(&q_vector->tx);
1417
1418	/* Update Rx ITR */
1419	fm10k_update_itr(&q_vector->rx);
1420
1421	/* Store Tx itr in timer slot 0 */
1422	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424	/* Shift Rx itr to timer slot 1 */
1425	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427	/* Write the final value to the ITR register */
1428	writel(itr, q_vector->itr);
1429}
1430
1431static int fm10k_poll(struct napi_struct *napi, int budget)
1432{
1433	struct fm10k_q_vector *q_vector =
1434			       container_of(napi, struct fm10k_q_vector, napi);
1435	struct fm10k_ring *ring;
1436	int per_ring_budget, work_done = 0;
1437	bool clean_complete = true;
1438
1439	fm10k_for_each_ring(ring, q_vector->tx) {
1440		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441			clean_complete = false;
1442	}
1443
1444	/* Handle case where we are called by netpoll with a budget of 0 */
1445	if (budget <= 0)
1446		return budget;
1447
1448	/* attempt to distribute budget to each queue fairly, but don't
1449	 * allow the budget to go below 1 because we'll exit polling
1450	 */
1451	if (q_vector->rx.count > 1)
1452		per_ring_budget = max(budget / q_vector->rx.count, 1);
1453	else
1454		per_ring_budget = budget;
1455
1456	fm10k_for_each_ring(ring, q_vector->rx) {
1457		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459		work_done += work;
1460		if (work >= per_ring_budget)
1461			clean_complete = false;
1462	}
1463
1464	/* If all work not completed, return budget and keep polling */
1465	if (!clean_complete)
1466		return budget;
1467
1468	/* Exit the polling mode, but don't re-enable interrupts if stack might
1469	 * poll us due to busy-polling
1470	 */
1471	if (likely(napi_complete_done(napi, work_done)))
1472		fm10k_qv_enable(q_vector);
1473
1474	return min(work_done, budget - 1);
1475}
1476
1477/**
1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479 * @interface: board private structure to initialize
1480 *
1481 * When QoS (Quality of Service) is enabled, allocate queues for
1482 * each traffic class.  If multiqueue isn't available,then abort QoS
1483 * initialization.
1484 *
1485 * This function handles all combinations of Qos and RSS.
1486 *
1487 **/
1488static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489{
1490	struct net_device *dev = interface->netdev;
1491	struct fm10k_ring_feature *f;
1492	int rss_i, i;
1493	int pcs;
1494
1495	/* Map queue offset and counts onto allocated tx queues */
1496	pcs = netdev_get_num_tc(dev);
1497
1498	if (pcs <= 1)
1499		return false;
1500
1501	/* set QoS mask and indices */
1502	f = &interface->ring_feature[RING_F_QOS];
1503	f->indices = pcs;
1504	f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506	/* determine the upper limit for our current DCB mode */
1507	rss_i = interface->hw.mac.max_queues / pcs;
1508	rss_i = BIT(fls(rss_i) - 1);
1509
1510	/* set RSS mask and indices */
1511	f = &interface->ring_feature[RING_F_RSS];
1512	rss_i = min_t(u16, rss_i, f->limit);
1513	f->indices = rss_i;
1514	f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516	/* configure pause class to queue mapping */
1517	for (i = 0; i < pcs; i++)
1518		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520	interface->num_rx_queues = rss_i * pcs;
1521	interface->num_tx_queues = rss_i * pcs;
1522
1523	return true;
1524}
1525
1526/**
1527 * fm10k_set_rss_queues: Allocate queues for RSS
1528 * @interface: board private structure to initialize
1529 *
1530 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532 *
1533 **/
1534static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535{
1536	struct fm10k_ring_feature *f;
1537	u16 rss_i;
1538
1539	f = &interface->ring_feature[RING_F_RSS];
1540	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542	/* record indices and power of 2 mask for RSS */
1543	f->indices = rss_i;
1544	f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546	interface->num_rx_queues = rss_i;
1547	interface->num_tx_queues = rss_i;
1548
1549	return true;
1550}
1551
1552/**
1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554 * @interface: board private structure to initialize
1555 *
1556 * This is the top level queue allocation routine.  The order here is very
1557 * important, starting with the "most" number of features turned on at once,
1558 * and ending with the smallest set of features.  This way large combinations
1559 * can be allocated if they're turned on, and smaller combinations are the
1560 * fallthrough conditions.
1561 *
1562 **/
1563static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564{
1565	/* Attempt to setup QoS and RSS first */
 
 
 
1566	if (fm10k_set_qos_queues(interface))
1567		return;
1568
1569	/* If we don't have QoS, just fallback to only RSS. */
1570	fm10k_set_rss_queues(interface);
1571}
1572
1573/**
1574 * fm10k_reset_num_queues - Reset the number of queues to zero
1575 * @interface: board private structure
1576 *
1577 * This function should be called whenever we need to reset the number of
1578 * queues after an error condition.
1579 */
1580static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581{
1582	interface->num_tx_queues = 0;
1583	interface->num_rx_queues = 0;
1584	interface->num_q_vectors = 0;
1585}
1586
1587/**
1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589 * @interface: board private structure to initialize
1590 * @v_count: q_vectors allocated on interface, used for ring interleaving
1591 * @v_idx: index of vector in interface struct
1592 * @txr_count: total number of Tx rings to allocate
1593 * @txr_idx: index of first Tx ring to allocate
1594 * @rxr_count: total number of Rx rings to allocate
1595 * @rxr_idx: index of first Rx ring to allocate
1596 *
1597 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1598 **/
1599static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600				unsigned int v_count, unsigned int v_idx,
1601				unsigned int txr_count, unsigned int txr_idx,
1602				unsigned int rxr_count, unsigned int rxr_idx)
1603{
1604	struct fm10k_q_vector *q_vector;
1605	struct fm10k_ring *ring;
1606	int ring_count;
1607
1608	ring_count = txr_count + rxr_count;
 
 
1609
1610	/* allocate q_vector and rings */
1611	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1612	if (!q_vector)
1613		return -ENOMEM;
1614
1615	/* initialize NAPI */
1616	netif_napi_add(interface->netdev, &q_vector->napi,
1617		       fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619	/* tie q_vector and interface together */
1620	interface->q_vector[v_idx] = q_vector;
1621	q_vector->interface = interface;
1622	q_vector->v_idx = v_idx;
1623
1624	/* initialize pointer to rings */
1625	ring = q_vector->ring;
1626
1627	/* save Tx ring container info */
1628	q_vector->tx.ring = ring;
1629	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630	q_vector->tx.itr = interface->tx_itr;
1631	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632	q_vector->tx.count = txr_count;
1633
1634	while (txr_count) {
1635		/* assign generic ring traits */
1636		ring->dev = &interface->pdev->dev;
1637		ring->netdev = interface->netdev;
1638
1639		/* configure backlink on ring */
1640		ring->q_vector = q_vector;
1641
1642		/* apply Tx specific ring traits */
1643		ring->count = interface->tx_ring_count;
1644		ring->queue_index = txr_idx;
1645
1646		/* assign ring to interface */
1647		interface->tx_ring[txr_idx] = ring;
1648
1649		/* update count and index */
1650		txr_count--;
1651		txr_idx += v_count;
1652
1653		/* push pointer to next ring */
1654		ring++;
1655	}
1656
1657	/* save Rx ring container info */
1658	q_vector->rx.ring = ring;
1659	q_vector->rx.itr = interface->rx_itr;
1660	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661	q_vector->rx.count = rxr_count;
1662
1663	while (rxr_count) {
1664		/* assign generic ring traits */
1665		ring->dev = &interface->pdev->dev;
1666		ring->netdev = interface->netdev;
1667		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669		/* configure backlink on ring */
1670		ring->q_vector = q_vector;
1671
1672		/* apply Rx specific ring traits */
1673		ring->count = interface->rx_ring_count;
1674		ring->queue_index = rxr_idx;
1675
1676		/* assign ring to interface */
1677		interface->rx_ring[rxr_idx] = ring;
1678
1679		/* update count and index */
1680		rxr_count--;
1681		rxr_idx += v_count;
1682
1683		/* push pointer to next ring */
1684		ring++;
1685	}
1686
1687	fm10k_dbg_q_vector_init(q_vector);
1688
1689	return 0;
1690}
1691
1692/**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector.  In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702{
1703	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704	struct fm10k_ring *ring;
1705
1706	fm10k_dbg_q_vector_exit(q_vector);
1707
1708	fm10k_for_each_ring(ring, q_vector->tx)
1709		interface->tx_ring[ring->queue_index] = NULL;
1710
1711	fm10k_for_each_ring(ring, q_vector->rx)
1712		interface->rx_ring[ring->queue_index] = NULL;
1713
1714	interface->q_vector[v_idx] = NULL;
1715	netif_napi_del(&q_vector->napi);
1716	kfree_rcu(q_vector, rcu);
1717}
1718
1719/**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt.  If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727{
1728	unsigned int q_vectors = interface->num_q_vectors;
1729	unsigned int rxr_remaining = interface->num_rx_queues;
1730	unsigned int txr_remaining = interface->num_tx_queues;
1731	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732	int err;
1733
1734	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735		for (; rxr_remaining; v_idx++) {
1736			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737						   0, 0, 1, rxr_idx);
1738			if (err)
1739				goto err_out;
1740
1741			/* update counts and index */
1742			rxr_remaining--;
1743			rxr_idx++;
1744		}
1745	}
1746
1747	for (; v_idx < q_vectors; v_idx++) {
1748		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752					   tqpv, txr_idx,
1753					   rqpv, rxr_idx);
1754
1755		if (err)
1756			goto err_out;
1757
1758		/* update counts and index */
1759		rxr_remaining -= rqpv;
1760		txr_remaining -= tqpv;
1761		rxr_idx++;
1762		txr_idx++;
1763	}
1764
1765	return 0;
1766
1767err_out:
1768	fm10k_reset_num_queues(interface);
 
 
1769
1770	while (v_idx--)
1771		fm10k_free_q_vector(interface, v_idx);
1772
1773	return -ENOMEM;
1774}
1775
1776/**
1777 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1778 * @interface: board private structure to initialize
1779 *
1780 * This function frees the memory allocated to the q_vectors.  In addition if
1781 * NAPI is enabled it will delete any references to the NAPI struct prior
1782 * to freeing the q_vector.
1783 **/
1784static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1785{
1786	int v_idx = interface->num_q_vectors;
1787
1788	fm10k_reset_num_queues(interface);
 
 
1789
1790	while (v_idx--)
1791		fm10k_free_q_vector(interface, v_idx);
1792}
1793
1794/**
1795 * f10k_reset_msix_capability - reset MSI-X capability
1796 * @interface: board private structure to initialize
1797 *
1798 * Reset the MSI-X capability back to its starting state
1799 **/
1800static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1801{
1802	pci_disable_msix(interface->pdev);
1803	kfree(interface->msix_entries);
1804	interface->msix_entries = NULL;
1805}
1806
1807/**
1808 * f10k_init_msix_capability - configure MSI-X capability
1809 * @interface: board private structure to initialize
1810 *
1811 * Attempt to configure the interrupts using the best available
1812 * capabilities of the hardware and the kernel.
1813 **/
1814static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1815{
1816	struct fm10k_hw *hw = &interface->hw;
1817	int v_budget, vector;
1818
1819	/* It's easy to be greedy for MSI-X vectors, but it really
1820	 * doesn't do us much good if we have a lot more vectors
1821	 * than CPU's.  So let's be conservative and only ask for
1822	 * (roughly) the same number of vectors as there are CPU's.
1823	 * the default is to use pairs of vectors
1824	 */
1825	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1826	v_budget = min_t(u16, v_budget, num_online_cpus());
1827
1828	/* account for vectors not related to queues */
1829	v_budget += NON_Q_VECTORS;
1830
1831	/* At the same time, hardware can only support a maximum of
1832	 * hw.mac->max_msix_vectors vectors.  With features
1833	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1834	 * descriptor queues supported by our device.  Thus, we cap it off in
1835	 * those rare cases where the cpu count also exceeds our vector limit.
1836	 */
1837	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1838
1839	/* A failure in MSI-X entry allocation is fatal. */
1840	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1841					  GFP_KERNEL);
1842	if (!interface->msix_entries)
1843		return -ENOMEM;
1844
1845	/* populate entry values */
1846	for (vector = 0; vector < v_budget; vector++)
1847		interface->msix_entries[vector].entry = vector;
1848
1849	/* Attempt to enable MSI-X with requested value */
1850	v_budget = pci_enable_msix_range(interface->pdev,
1851					 interface->msix_entries,
1852					 MIN_MSIX_COUNT(hw),
1853					 v_budget);
1854	if (v_budget < 0) {
1855		kfree(interface->msix_entries);
1856		interface->msix_entries = NULL;
1857		return v_budget;
1858	}
1859
1860	/* record the number of queues available for q_vectors */
1861	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1862
1863	return 0;
1864}
1865
1866/**
1867 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1868 * @interface: Interface structure continaining rings and devices
1869 *
1870 * Cache the descriptor ring offsets for Qos
1871 **/
1872static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1873{
1874	struct net_device *dev = interface->netdev;
1875	int pc, offset, rss_i, i;
1876	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1877	u8 num_pcs = netdev_get_num_tc(dev);
1878
1879	if (num_pcs <= 1)
1880		return false;
1881
1882	rss_i = interface->ring_feature[RING_F_RSS].indices;
1883
1884	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1885		int q_idx = pc;
1886
1887		for (i = 0; i < rss_i; i++) {
1888			interface->tx_ring[offset + i]->reg_idx = q_idx;
1889			interface->tx_ring[offset + i]->qos_pc = pc;
1890			interface->rx_ring[offset + i]->reg_idx = q_idx;
1891			interface->rx_ring[offset + i]->qos_pc = pc;
1892			q_idx += pc_stride;
1893		}
1894	}
1895
1896	return true;
1897}
1898
1899/**
1900 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1901 * @interface: Interface structure continaining rings and devices
1902 *
1903 * Cache the descriptor ring offsets for RSS
1904 **/
1905static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1906{
1907	int i;
1908
1909	for (i = 0; i < interface->num_rx_queues; i++)
1910		interface->rx_ring[i]->reg_idx = i;
1911
1912	for (i = 0; i < interface->num_tx_queues; i++)
1913		interface->tx_ring[i]->reg_idx = i;
1914}
1915
1916/**
1917 * fm10k_assign_rings - Map rings to network devices
1918 * @interface: Interface structure containing rings and devices
1919 *
1920 * This function is meant to go though and configure both the network
1921 * devices so that they contain rings, and configure the rings so that
1922 * they function with their network devices.
1923 **/
1924static void fm10k_assign_rings(struct fm10k_intfc *interface)
1925{
1926	if (fm10k_cache_ring_qos(interface))
1927		return;
1928
1929	fm10k_cache_ring_rss(interface);
1930}
1931
1932static void fm10k_init_reta(struct fm10k_intfc *interface)
1933{
1934	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1935	u32 reta;
1936
1937	/* If the Rx flow indirection table has been configured manually, we
1938	 * need to maintain it when possible.
1939	 */
1940	if (netif_is_rxfh_configured(interface->netdev)) {
1941		for (i = FM10K_RETA_SIZE; i--;) {
1942			reta = interface->reta[i];
1943			if ((((reta << 24) >> 24) < rss_i) &&
1944			    (((reta << 16) >> 24) < rss_i) &&
1945			    (((reta <<  8) >> 24) < rss_i) &&
1946			    (((reta)       >> 24) < rss_i))
1947				continue;
1948
1949			/* this should never happen */
1950			dev_err(&interface->pdev->dev,
1951				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1952			goto repopulate_reta;
1953		}
1954
1955		/* do nothing if all of the elements are in bounds */
1956		return;
1957	}
1958
1959repopulate_reta:
1960	fm10k_write_reta(interface, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961}
1962
1963/**
1964 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1965 * @interface: board private structure to initialize
1966 *
1967 * We determine which queueing scheme to use based on...
1968 * - Hardware queue count (num_*_queues)
1969 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1970 **/
1971int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1972{
1973	int err;
1974
1975	/* Number of supported queues */
1976	fm10k_set_num_queues(interface);
1977
1978	/* Configure MSI-X capability */
1979	err = fm10k_init_msix_capability(interface);
1980	if (err) {
1981		dev_err(&interface->pdev->dev,
1982			"Unable to initialize MSI-X capability\n");
1983		goto err_init_msix;
1984	}
1985
1986	/* Allocate memory for queues */
1987	err = fm10k_alloc_q_vectors(interface);
1988	if (err) {
1989		dev_err(&interface->pdev->dev,
1990			"Unable to allocate queue vectors\n");
1991		goto err_alloc_q_vectors;
1992	}
1993
1994	/* Map rings to devices, and map devices to physical queues */
1995	fm10k_assign_rings(interface);
1996
1997	/* Initialize RSS redirection table */
1998	fm10k_init_reta(interface);
1999
2000	return 0;
2001
2002err_alloc_q_vectors:
2003	fm10k_reset_msix_capability(interface);
2004err_init_msix:
2005	fm10k_reset_num_queues(interface);
2006	return err;
2007}
2008
2009/**
2010 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2011 * @interface: board private structure to clear queueing scheme on
2012 *
2013 * We go through and clear queueing specific resources and reset the structure
2014 * to pre-load conditions
2015 **/
2016void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2017{
2018	fm10k_free_q_vectors(interface);
2019	fm10k_reset_msix_capability(interface);
2020}