Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN		11
  49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR		BIT(8)
  53
  54/* control register */
 
  55#define CONTROL_TEST		BIT(7)
  56#define CONTROL_CCE		BIT(6)
  57#define CONTROL_DISABLE_AR	BIT(5)
  58#define CONTROL_ENABLE_AR	(0 << 5)
  59#define CONTROL_EIE		BIT(3)
  60#define CONTROL_SIE		BIT(2)
  61#define CONTROL_IE		BIT(1)
  62#define CONTROL_INIT		BIT(0)
  63
  64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  65
  66/* test register */
  67#define TEST_RX			BIT(7)
  68#define TEST_TX1		BIT(6)
  69#define TEST_TX2		BIT(5)
  70#define TEST_LBACK		BIT(4)
  71#define TEST_SILENT		BIT(3)
  72#define TEST_BASIC		BIT(2)
  73
  74/* status register */
  75#define STATUS_PDA		BIT(10)
  76#define STATUS_BOFF		BIT(7)
  77#define STATUS_EWARN		BIT(6)
  78#define STATUS_EPASS		BIT(5)
  79#define STATUS_RXOK		BIT(4)
  80#define STATUS_TXOK		BIT(3)
  81
  82/* error counter register */
  83#define ERR_CNT_TEC_MASK	0xff
  84#define ERR_CNT_TEC_SHIFT	0
  85#define ERR_CNT_REC_SHIFT	8
  86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  87#define ERR_CNT_RP_SHIFT	15
  88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  89
  90/* bit-timing register */
  91#define BTR_BRP_MASK		0x3f
  92#define BTR_BRP_SHIFT		0
  93#define BTR_SJW_SHIFT		6
  94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  95#define BTR_TSEG1_SHIFT		8
  96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  97#define BTR_TSEG2_SHIFT		12
  98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  99
 
 
 
 100/* brp extension register */
 101#define BRP_EXT_BRPE_MASK	0x0f
 102#define BRP_EXT_BRPE_SHIFT	0
 103
 104/* IFx command request */
 105#define IF_COMR_BUSY		BIT(15)
 106
 107/* IFx command mask */
 108#define IF_COMM_WR		BIT(7)
 109#define IF_COMM_MASK		BIT(6)
 110#define IF_COMM_ARB		BIT(5)
 111#define IF_COMM_CONTROL		BIT(4)
 112#define IF_COMM_CLR_INT_PND	BIT(3)
 113#define IF_COMM_TXRQST		BIT(2)
 114#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 115#define IF_COMM_DATAA		BIT(1)
 116#define IF_COMM_DATAB		BIT(0)
 117
 118/* TX buffer setup */
 119#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 120				 IF_COMM_TXRQST |		 \
 121				 IF_COMM_DATAA | IF_COMM_DATAB)
 122
 123/* For the low buffers we clear the interrupt bit, but keep newdat */
 124#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 125				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 126				 IF_COMM_DATAA | IF_COMM_DATAB)
 127
 128/* For the high buffers we clear the interrupt bit and newdat */
 129#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 130
 131
 132/* Receive setup of message objects */
 133#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 134
 135/* Invalidation of message objects */
 136#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 137
 138/* IFx arbitration */
 139#define IF_ARB_MSGVAL		BIT(31)
 140#define IF_ARB_MSGXTD		BIT(30)
 141#define IF_ARB_TRANSMIT		BIT(29)
 142
 143/* IFx message control */
 144#define IF_MCONT_NEWDAT		BIT(15)
 145#define IF_MCONT_MSGLST		BIT(14)
 146#define IF_MCONT_INTPND		BIT(13)
 147#define IF_MCONT_UMASK		BIT(12)
 148#define IF_MCONT_TXIE		BIT(11)
 149#define IF_MCONT_RXIE		BIT(10)
 150#define IF_MCONT_RMTEN		BIT(9)
 151#define IF_MCONT_TXRQST		BIT(8)
 152#define IF_MCONT_EOB		BIT(7)
 153#define IF_MCONT_DLC_MASK	0xf
 154
 155#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 156#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 157
 158#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 159
 160/*
 161 * Use IF1 for RX and IF2 for TX
 162 */
 163#define IF_RX			0
 164#define IF_TX			1
 165
 166/* minimum timeout for checking BUSY status */
 167#define MIN_TIMEOUT_VALUE	6
 168
 169/* Wait for ~1 sec for INIT bit */
 170#define INIT_WAIT_MS		1000
 171
 172/* napi related */
 173#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 174
 175/* c_can lec values */
 176enum c_can_lec_type {
 177	LEC_NO_ERROR = 0,
 178	LEC_STUFF_ERROR,
 179	LEC_FORM_ERROR,
 180	LEC_ACK_ERROR,
 181	LEC_BIT1_ERROR,
 182	LEC_BIT0_ERROR,
 183	LEC_CRC_ERROR,
 184	LEC_UNUSED,
 185	LEC_MASK = LEC_UNUSED,
 186};
 187
 188/*
 189 * c_can error types:
 190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 191 */
 192enum c_can_bus_error_types {
 193	C_CAN_NO_ERROR = 0,
 194	C_CAN_BUS_OFF,
 195	C_CAN_ERROR_WARNING,
 196	C_CAN_ERROR_PASSIVE,
 197};
 198
 199static const struct can_bittiming_const c_can_bittiming_const = {
 200	.name = KBUILD_MODNAME,
 201	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 202	.tseg1_max = 16,
 203	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 204	.tseg2_max = 8,
 205	.sjw_max = 4,
 206	.brp_min = 1,
 207	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 208	.brp_inc = 1,
 209};
 210
 211static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 212{
 213	if (priv->device)
 214		pm_runtime_enable(priv->device);
 215}
 216
 217static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 218{
 219	if (priv->device)
 220		pm_runtime_disable(priv->device);
 221}
 222
 223static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 224{
 225	if (priv->device)
 226		pm_runtime_get_sync(priv->device);
 227}
 228
 229static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 230{
 231	if (priv->device)
 232		pm_runtime_put_sync(priv->device);
 233}
 234
 235static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 236{
 237	if (priv->raminit)
 238		priv->raminit(priv, enable);
 239}
 240
 241static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 242{
 243	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 244
 245	if (enable)
 246		ctrl |= CONTROL_IRQMSK;
 247
 248	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 249}
 250
 251static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 252{
 253	struct c_can_priv *priv = netdev_priv(dev);
 254	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 255
 256	priv->write_reg32(priv, reg, (cmd << 16) | obj);
 257
 258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 260			return;
 261		udelay(1);
 262	}
 263	netdev_err(dev, "Updating object timed out\n");
 264
 265}
 266
 267static inline void c_can_object_get(struct net_device *dev, int iface,
 268				    u32 obj, u32 cmd)
 269{
 270	c_can_obj_update(dev, iface, cmd, obj);
 271}
 272
 273static inline void c_can_object_put(struct net_device *dev, int iface,
 274				    u32 obj, u32 cmd)
 275{
 276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 277}
 278
 279/*
 280 * Note: According to documentation clearing TXIE while MSGVAL is set
 281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 282 * load significantly.
 283 */
 284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 285{
 286	struct c_can_priv *priv = netdev_priv(dev);
 287
 288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 290}
 291
 292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 293{
 294	struct c_can_priv *priv = netdev_priv(dev);
 295
 296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 298	c_can_inval_tx_object(dev, iface, obj);
 299}
 300
 301static void c_can_setup_tx_object(struct net_device *dev, int iface,
 302				  struct can_frame *frame, int idx)
 303{
 304	struct c_can_priv *priv = netdev_priv(dev);
 305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 306	bool rtr = frame->can_id & CAN_RTR_FLAG;
 307	u32 arb = IF_ARB_MSGVAL;
 308	int i;
 309
 310	if (frame->can_id & CAN_EFF_FLAG) {
 311		arb |= frame->can_id & CAN_EFF_MASK;
 312		arb |= IF_ARB_MSGXTD;
 313	} else {
 314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 315	}
 316
 317	if (!rtr)
 318		arb |= IF_ARB_TRANSMIT;
 319
 320	/*
 321	 * If we change the DIR bit, we need to invalidate the buffer
 322	 * first, i.e. clear the MSGVAL flag in the arbiter.
 323	 */
 324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 326
 327		c_can_inval_msg_object(dev, iface, obj);
 328		change_bit(idx, &priv->tx_dir);
 329	}
 330
 331	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 332
 333	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 334
 335	for (i = 0; i < frame->can_dlc; i += 2) {
 336		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 337				frame->data[i] | (frame->data[i + 1] << 8));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338	}
 339}
 340
 341static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 342						       int iface)
 343{
 344	int i;
 345
 346	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 347		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 348}
 349
 350static int c_can_handle_lost_msg_obj(struct net_device *dev,
 351				     int iface, int objno, u32 ctrl)
 352{
 353	struct net_device_stats *stats = &dev->stats;
 354	struct c_can_priv *priv = netdev_priv(dev);
 355	struct can_frame *frame;
 356	struct sk_buff *skb;
 357
 358	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 359	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 360	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 361
 362	stats->rx_errors++;
 363	stats->rx_over_errors++;
 364
 365	/* create an error msg */
 366	skb = alloc_can_err_skb(dev, &frame);
 367	if (unlikely(!skb))
 368		return 0;
 369
 370	frame->can_id |= CAN_ERR_CRTL;
 371	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 372
 373	netif_receive_skb(skb);
 374	return 1;
 375}
 376
 377static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 378{
 379	struct net_device_stats *stats = &dev->stats;
 380	struct c_can_priv *priv = netdev_priv(dev);
 381	struct can_frame *frame;
 382	struct sk_buff *skb;
 383	u32 arb, data;
 384
 385	skb = alloc_can_skb(dev, &frame);
 386	if (!skb) {
 387		stats->rx_dropped++;
 388		return -ENOMEM;
 389	}
 390
 391	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 392
 393	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 394
 395	if (arb & IF_ARB_MSGXTD)
 396		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 397	else
 398		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 399
 400	if (arb & IF_ARB_TRANSMIT) {
 401		frame->can_id |= CAN_RTR_FLAG;
 402	} else {
 403		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 404
 405		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
 406			data = priv->read_reg(priv, dreg);
 407			frame->data[i] = data;
 408			frame->data[i + 1] = data >> 8;
 
 
 
 
 
 
 
 
 
 
 409		}
 410	}
 411
 412	stats->rx_packets++;
 413	stats->rx_bytes += frame->can_dlc;
 414
 415	netif_receive_skb(skb);
 416	return 0;
 417}
 418
 419static void c_can_setup_receive_object(struct net_device *dev, int iface,
 420				       u32 obj, u32 mask, u32 id, u32 mcont)
 421{
 422	struct c_can_priv *priv = netdev_priv(dev);
 423
 424	mask |= BIT(29);
 425	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 426
 427	id |= IF_ARB_MSGVAL;
 428	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 429
 430	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 431	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 432}
 433
 434static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 435				    struct net_device *dev)
 436{
 437	struct can_frame *frame = (struct can_frame *)skb->data;
 438	struct c_can_priv *priv = netdev_priv(dev);
 439	u32 idx, obj;
 440
 441	if (can_dropped_invalid_skb(dev, skb))
 442		return NETDEV_TX_OK;
 443	/*
 444	 * This is not a FIFO. C/D_CAN sends out the buffers
 445	 * prioritized. The lowest buffer number wins.
 446	 */
 447	idx = fls(atomic_read(&priv->tx_active));
 448	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 449
 450	/* If this is the last buffer, stop the xmit queue */
 451	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 452		netif_stop_queue(dev);
 453	/*
 454	 * Store the message in the interface so we can call
 455	 * can_put_echo_skb(). We must do this before we enable
 456	 * transmit as we might race against do_tx().
 457	 */
 458	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 459	priv->dlc[idx] = frame->can_dlc;
 460	can_put_echo_skb(skb, dev, idx);
 461
 462	/* Update the active bits */
 463	atomic_add((1 << idx), &priv->tx_active);
 464	/* Start transmission */
 465	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 466
 467	return NETDEV_TX_OK;
 468}
 469
 470static int c_can_wait_for_ctrl_init(struct net_device *dev,
 471				    struct c_can_priv *priv, u32 init)
 472{
 473	int retry = 0;
 474
 475	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 476		udelay(10);
 477		if (retry++ > 1000) {
 478			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 479			return -EIO;
 480		}
 481	}
 482	return 0;
 483}
 484
 485static int c_can_set_bittiming(struct net_device *dev)
 486{
 487	unsigned int reg_btr, reg_brpe, ctrl_save;
 488	u8 brp, brpe, sjw, tseg1, tseg2;
 489	u32 ten_bit_brp;
 490	struct c_can_priv *priv = netdev_priv(dev);
 491	const struct can_bittiming *bt = &priv->can.bittiming;
 492	int res;
 493
 494	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 495	ten_bit_brp = bt->brp - 1;
 496	brp = ten_bit_brp & BTR_BRP_MASK;
 497	brpe = ten_bit_brp >> 6;
 498
 499	sjw = bt->sjw - 1;
 500	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 501	tseg2 = bt->phase_seg2 - 1;
 502	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 503			(tseg2 << BTR_TSEG2_SHIFT);
 504	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 505
 506	netdev_info(dev,
 507		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 508
 509	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 510	ctrl_save &= ~CONTROL_INIT;
 511	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 512	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 513	if (res)
 514		return res;
 515
 516	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 517	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 518	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 519
 520	return c_can_wait_for_ctrl_init(dev, priv, 0);
 521}
 522
 523/*
 524 * Configure C_CAN message objects for Tx and Rx purposes:
 525 * C_CAN provides a total of 32 message objects that can be configured
 526 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 527 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 528 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 529 * See user guide document for further details on configuring message
 530 * objects.
 531 */
 532static void c_can_configure_msg_objects(struct net_device *dev)
 533{
 534	int i;
 535
 536	/* first invalidate all message objects */
 537	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 538		c_can_inval_msg_object(dev, IF_RX, i);
 539
 540	/* setup receive message objects */
 541	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 542		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 543
 544	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 545				   IF_MCONT_RCV_EOB);
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548/*
 549 * Configure C_CAN chip:
 550 * - enable/disable auto-retransmission
 551 * - set operating mode
 552 * - configure message objects
 553 */
 554static int c_can_chip_config(struct net_device *dev)
 555{
 556	struct c_can_priv *priv = netdev_priv(dev);
 
 
 
 
 
 557
 558	/* enable automatic retransmission */
 559	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 560
 561	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 562	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 563		/* loopback + silent mode : useful for hot self-test */
 564		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 565		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 566	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 567		/* loopback mode : useful for self-test function */
 568		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 569		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 571		/* silent mode : bus-monitoring mode */
 572		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 573		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 574	}
 575
 576	/* configure message objects */
 577	c_can_configure_msg_objects(dev);
 578
 579	/* set a `lec` value so that we can check for updates later */
 580	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 581
 582	/* Clear all internal status */
 583	atomic_set(&priv->tx_active, 0);
 584	priv->rxmasked = 0;
 585	priv->tx_dir = 0;
 586
 587	/* set bittiming params */
 588	return c_can_set_bittiming(dev);
 589}
 590
 591static int c_can_start(struct net_device *dev)
 592{
 593	struct c_can_priv *priv = netdev_priv(dev);
 594	int err;
 595	struct pinctrl *p;
 596
 597	/* basic c_can configuration */
 598	err = c_can_chip_config(dev);
 599	if (err)
 600		return err;
 601
 602	/* Setup the command for new messages */
 603	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 604		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 605
 606	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 607
 608	/* Attempt to use "active" if available else use "default" */
 609	p = pinctrl_get_select(priv->device, "active");
 610	if (!IS_ERR(p))
 611		pinctrl_put(p);
 612	else
 613		pinctrl_pm_select_default_state(priv->device);
 614
 615	return 0;
 616}
 617
 618static void c_can_stop(struct net_device *dev)
 619{
 620	struct c_can_priv *priv = netdev_priv(dev);
 621
 622	c_can_irq_control(priv, false);
 623
 624	/* put ctrl to init on stop to end ongoing transmission */
 625	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 626
 627	/* deactivate pins */
 628	pinctrl_pm_select_sleep_state(dev->dev.parent);
 629	priv->can.state = CAN_STATE_STOPPED;
 630}
 631
 632static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 633{
 634	struct c_can_priv *priv = netdev_priv(dev);
 635	int err;
 636
 637	switch (mode) {
 638	case CAN_MODE_START:
 639		err = c_can_start(dev);
 640		if (err)
 641			return err;
 642		netif_wake_queue(dev);
 643		c_can_irq_control(priv, true);
 644		break;
 645	default:
 646		return -EOPNOTSUPP;
 647	}
 648
 649	return 0;
 650}
 651
 652static int __c_can_get_berr_counter(const struct net_device *dev,
 653				    struct can_berr_counter *bec)
 654{
 655	unsigned int reg_err_counter;
 656	struct c_can_priv *priv = netdev_priv(dev);
 657
 658	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 659	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 660				ERR_CNT_REC_SHIFT;
 661	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 662
 663	return 0;
 664}
 665
 666static int c_can_get_berr_counter(const struct net_device *dev,
 667				  struct can_berr_counter *bec)
 668{
 669	struct c_can_priv *priv = netdev_priv(dev);
 670	int err;
 671
 672	c_can_pm_runtime_get_sync(priv);
 673	err = __c_can_get_berr_counter(dev, bec);
 674	c_can_pm_runtime_put_sync(priv);
 675
 676	return err;
 677}
 678
 679static void c_can_do_tx(struct net_device *dev)
 680{
 681	struct c_can_priv *priv = netdev_priv(dev);
 682	struct net_device_stats *stats = &dev->stats;
 683	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 684
 685	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 686
 687	while ((idx = ffs(pend))) {
 688		idx--;
 689		pend &= ~(1 << idx);
 690		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 691		c_can_inval_tx_object(dev, IF_RX, obj);
 692		can_get_echo_skb(dev, idx);
 693		bytes += priv->dlc[idx];
 694		pkts++;
 695	}
 696
 697	/* Clear the bits in the tx_active mask */
 698	atomic_sub(clr, &priv->tx_active);
 699
 700	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 701		netif_wake_queue(dev);
 702
 703	if (pkts) {
 704		stats->tx_bytes += bytes;
 705		stats->tx_packets += pkts;
 706		can_led_event(dev, CAN_LED_EVENT_TX);
 707	}
 708}
 709
 710/*
 711 * If we have a gap in the pending bits, that means we either
 712 * raced with the hardware or failed to readout all upper
 713 * objects in the last run due to quota limit.
 714 */
 715static u32 c_can_adjust_pending(u32 pend)
 716{
 717	u32 weight, lasts;
 718
 719	if (pend == RECEIVE_OBJECT_BITS)
 720		return pend;
 721
 722	/*
 723	 * If the last set bit is larger than the number of pending
 724	 * bits we have a gap.
 725	 */
 726	weight = hweight32(pend);
 727	lasts = fls(pend);
 728
 729	/* If the bits are linear, nothing to do */
 730	if (lasts == weight)
 731		return pend;
 732
 733	/*
 734	 * Find the first set bit after the gap. We walk backwards
 735	 * from the last set bit.
 736	 */
 737	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 738
 739	return pend & ~((1 << lasts) - 1);
 740}
 741
 742static inline void c_can_rx_object_get(struct net_device *dev,
 743				       struct c_can_priv *priv, u32 obj)
 744{
 745		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 746}
 747
 748static inline void c_can_rx_finalize(struct net_device *dev,
 749				     struct c_can_priv *priv, u32 obj)
 750{
 751	if (priv->type != BOSCH_D_CAN)
 752		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 753}
 754
 755static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 756			      u32 pend, int quota)
 757{
 758	u32 pkts = 0, ctrl, obj;
 759
 760	while ((obj = ffs(pend)) && quota > 0) {
 761		pend &= ~BIT(obj - 1);
 762
 763		c_can_rx_object_get(dev, priv, obj);
 764		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 765
 766		if (ctrl & IF_MCONT_MSGLST) {
 767			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 768
 769			pkts += n;
 770			quota -= n;
 771			continue;
 772		}
 773
 774		/*
 775		 * This really should not happen, but this covers some
 776		 * odd HW behaviour. Do not remove that unless you
 777		 * want to brick your machine.
 778		 */
 779		if (!(ctrl & IF_MCONT_NEWDAT))
 780			continue;
 781
 782		/* read the data from the message object */
 783		c_can_read_msg_object(dev, IF_RX, ctrl);
 784
 785		c_can_rx_finalize(dev, priv, obj);
 786
 787		pkts++;
 788		quota--;
 789	}
 790
 791	return pkts;
 792}
 793
 794static inline u32 c_can_get_pending(struct c_can_priv *priv)
 795{
 796	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 797
 798	return pend;
 799}
 800
 801/*
 802 * theory of operation:
 803 *
 804 * c_can core saves a received CAN message into the first free message
 805 * object it finds free (starting with the lowest). Bits NEWDAT and
 806 * INTPND are set for this message object indicating that a new message
 807 * has arrived. To work-around this issue, we keep two groups of message
 808 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 809 *
 810 * We clear the newdat bit right away.
 811 *
 812 * This can result in packet reordering when the readout is slow.
 813 */
 814static int c_can_do_rx_poll(struct net_device *dev, int quota)
 815{
 816	struct c_can_priv *priv = netdev_priv(dev);
 817	u32 pkts = 0, pend = 0, toread, n;
 818
 819	/*
 820	 * It is faster to read only one 16bit register. This is only possible
 821	 * for a maximum number of 16 objects.
 822	 */
 823	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 824			"Implementation does not support more message objects than 16");
 825
 826	while (quota > 0) {
 827		if (!pend) {
 828			pend = c_can_get_pending(priv);
 829			if (!pend)
 830				break;
 831			/*
 832			 * If the pending field has a gap, handle the
 833			 * bits above the gap first.
 834			 */
 835			toread = c_can_adjust_pending(pend);
 836		} else {
 837			toread = pend;
 838		}
 839		/* Remove the bits from pend */
 840		pend &= ~toread;
 841		/* Read the objects */
 842		n = c_can_read_objects(dev, priv, toread, quota);
 843		pkts += n;
 844		quota -= n;
 845	}
 846
 847	if (pkts)
 848		can_led_event(dev, CAN_LED_EVENT_RX);
 849
 850	return pkts;
 851}
 852
 853static int c_can_handle_state_change(struct net_device *dev,
 854				enum c_can_bus_error_types error_type)
 855{
 856	unsigned int reg_err_counter;
 857	unsigned int rx_err_passive;
 858	struct c_can_priv *priv = netdev_priv(dev);
 859	struct net_device_stats *stats = &dev->stats;
 860	struct can_frame *cf;
 861	struct sk_buff *skb;
 862	struct can_berr_counter bec;
 863
 864	switch (error_type) {
 
 
 
 865	case C_CAN_ERROR_WARNING:
 866		/* error warning state */
 867		priv->can.can_stats.error_warning++;
 868		priv->can.state = CAN_STATE_ERROR_WARNING;
 869		break;
 870	case C_CAN_ERROR_PASSIVE:
 871		/* error passive state */
 872		priv->can.can_stats.error_passive++;
 873		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 874		break;
 875	case C_CAN_BUS_OFF:
 876		/* bus-off state */
 877		priv->can.state = CAN_STATE_BUS_OFF;
 878		priv->can.can_stats.bus_off++;
 879		break;
 880	default:
 881		break;
 882	}
 883
 884	/* propagate the error condition to the CAN stack */
 885	skb = alloc_can_err_skb(dev, &cf);
 886	if (unlikely(!skb))
 887		return 0;
 888
 889	__c_can_get_berr_counter(dev, &bec);
 890	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 891	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 892				ERR_CNT_RP_SHIFT;
 893
 894	switch (error_type) {
 
 
 
 
 
 
 
 895	case C_CAN_ERROR_WARNING:
 896		/* error warning state */
 897		cf->can_id |= CAN_ERR_CRTL;
 898		cf->data[1] = (bec.txerr > bec.rxerr) ?
 899			CAN_ERR_CRTL_TX_WARNING :
 900			CAN_ERR_CRTL_RX_WARNING;
 901		cf->data[6] = bec.txerr;
 902		cf->data[7] = bec.rxerr;
 903
 904		break;
 905	case C_CAN_ERROR_PASSIVE:
 906		/* error passive state */
 907		cf->can_id |= CAN_ERR_CRTL;
 908		if (rx_err_passive)
 909			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 910		if (bec.txerr > 127)
 911			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 912
 913		cf->data[6] = bec.txerr;
 914		cf->data[7] = bec.rxerr;
 915		break;
 916	case C_CAN_BUS_OFF:
 917		/* bus-off state */
 918		cf->can_id |= CAN_ERR_BUSOFF;
 919		can_bus_off(dev);
 920		break;
 921	default:
 922		break;
 923	}
 924
 925	stats->rx_packets++;
 926	stats->rx_bytes += cf->can_dlc;
 927	netif_receive_skb(skb);
 928
 929	return 1;
 930}
 931
 932static int c_can_handle_bus_err(struct net_device *dev,
 933				enum c_can_lec_type lec_type)
 934{
 935	struct c_can_priv *priv = netdev_priv(dev);
 936	struct net_device_stats *stats = &dev->stats;
 937	struct can_frame *cf;
 938	struct sk_buff *skb;
 939
 940	/*
 941	 * early exit if no lec update or no error.
 942	 * no lec update means that no CAN bus event has been detected
 943	 * since CPU wrote 0x7 value to status reg.
 944	 */
 945	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 946		return 0;
 947
 948	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
 949		return 0;
 950
 951	/* common for all type of bus errors */
 952	priv->can.can_stats.bus_error++;
 953	stats->rx_errors++;
 954
 955	/* propagate the error condition to the CAN stack */
 956	skb = alloc_can_err_skb(dev, &cf);
 957	if (unlikely(!skb))
 958		return 0;
 959
 960	/*
 961	 * check for 'last error code' which tells us the
 962	 * type of the last error to occur on the CAN bus
 963	 */
 964	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 965
 966	switch (lec_type) {
 967	case LEC_STUFF_ERROR:
 968		netdev_dbg(dev, "stuff error\n");
 969		cf->data[2] |= CAN_ERR_PROT_STUFF;
 970		break;
 971	case LEC_FORM_ERROR:
 972		netdev_dbg(dev, "form error\n");
 973		cf->data[2] |= CAN_ERR_PROT_FORM;
 974		break;
 975	case LEC_ACK_ERROR:
 976		netdev_dbg(dev, "ack error\n");
 977		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 978		break;
 979	case LEC_BIT1_ERROR:
 980		netdev_dbg(dev, "bit1 error\n");
 981		cf->data[2] |= CAN_ERR_PROT_BIT1;
 982		break;
 983	case LEC_BIT0_ERROR:
 984		netdev_dbg(dev, "bit0 error\n");
 985		cf->data[2] |= CAN_ERR_PROT_BIT0;
 986		break;
 987	case LEC_CRC_ERROR:
 988		netdev_dbg(dev, "CRC error\n");
 989		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 990		break;
 991	default:
 992		break;
 993	}
 994
 995	stats->rx_packets++;
 996	stats->rx_bytes += cf->can_dlc;
 997	netif_receive_skb(skb);
 998	return 1;
 999}
1000
1001static int c_can_poll(struct napi_struct *napi, int quota)
1002{
1003	struct net_device *dev = napi->dev;
1004	struct c_can_priv *priv = netdev_priv(dev);
1005	u16 curr, last = priv->last_status;
1006	int work_done = 0;
1007
1008	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1009	/* Ack status on C_CAN. D_CAN is self clearing */
1010	if (priv->type != BOSCH_D_CAN)
1011		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 
 
 
 
 
 
1012
1013	/* handle state changes */
1014	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1015		netdev_dbg(dev, "entered error warning state\n");
1016		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1017	}
1018
1019	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1020		netdev_dbg(dev, "entered error passive state\n");
1021		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1022	}
1023
1024	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1025		netdev_dbg(dev, "entered bus off state\n");
1026		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1027		goto end;
1028	}
1029
1030	/* handle bus recovery events */
1031	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1032		netdev_dbg(dev, "left bus off state\n");
1033		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1034	}
 
1035	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1036		netdev_dbg(dev, "left error passive state\n");
1037		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 
 
 
 
 
1038	}
1039
1040	/* handle lec errors on the bus */
1041	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1042
1043	/* Handle Tx/Rx events. We do this unconditionally */
1044	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1045	c_can_do_tx(dev);
1046
1047end:
1048	if (work_done < quota) {
1049		napi_complete(napi);
1050		/* enable all IRQs if we are not in bus off state */
1051		if (priv->can.state != CAN_STATE_BUS_OFF)
1052			c_can_irq_control(priv, true);
1053	}
1054
1055	return work_done;
1056}
1057
1058static irqreturn_t c_can_isr(int irq, void *dev_id)
1059{
1060	struct net_device *dev = (struct net_device *)dev_id;
1061	struct c_can_priv *priv = netdev_priv(dev);
 
1062
1063	if (!priv->read_reg(priv, C_CAN_INT_REG))
 
1064		return IRQ_NONE;
 
 
 
 
1065
1066	/* disable all interrupts and schedule the NAPI */
1067	c_can_irq_control(priv, false);
1068	napi_schedule(&priv->napi);
1069
1070	return IRQ_HANDLED;
1071}
1072
1073static int c_can_open(struct net_device *dev)
1074{
1075	int err;
1076	struct c_can_priv *priv = netdev_priv(dev);
1077
1078	c_can_pm_runtime_get_sync(priv);
1079	c_can_reset_ram(priv, true);
1080
1081	/* open the can device */
1082	err = open_candev(dev);
1083	if (err) {
1084		netdev_err(dev, "failed to open can device\n");
1085		goto exit_open_fail;
1086	}
1087
1088	/* register interrupt handler */
1089	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1090				dev);
1091	if (err < 0) {
1092		netdev_err(dev, "failed to request interrupt\n");
1093		goto exit_irq_fail;
1094	}
1095
1096	/* start the c_can controller */
1097	err = c_can_start(dev);
1098	if (err)
1099		goto exit_start_fail;
1100
1101	can_led_event(dev, CAN_LED_EVENT_OPEN);
1102
1103	napi_enable(&priv->napi);
1104	/* enable status change, error and module interrupts */
1105	c_can_irq_control(priv, true);
1106	netif_start_queue(dev);
1107
1108	return 0;
1109
1110exit_start_fail:
1111	free_irq(dev->irq, dev);
1112exit_irq_fail:
1113	close_candev(dev);
1114exit_open_fail:
1115	c_can_reset_ram(priv, false);
1116	c_can_pm_runtime_put_sync(priv);
1117	return err;
1118}
1119
1120static int c_can_close(struct net_device *dev)
1121{
1122	struct c_can_priv *priv = netdev_priv(dev);
1123
1124	netif_stop_queue(dev);
1125	napi_disable(&priv->napi);
1126	c_can_stop(dev);
1127	free_irq(dev->irq, dev);
1128	close_candev(dev);
1129
1130	c_can_reset_ram(priv, false);
1131	c_can_pm_runtime_put_sync(priv);
1132
1133	can_led_event(dev, CAN_LED_EVENT_STOP);
1134
1135	return 0;
1136}
1137
1138struct net_device *alloc_c_can_dev(void)
1139{
1140	struct net_device *dev;
1141	struct c_can_priv *priv;
1142
1143	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1144	if (!dev)
1145		return NULL;
1146
1147	priv = netdev_priv(dev);
1148	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1149
1150	priv->dev = dev;
1151	priv->can.bittiming_const = &c_can_bittiming_const;
1152	priv->can.do_set_mode = c_can_set_mode;
1153	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1154	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1155					CAN_CTRLMODE_LISTENONLY |
1156					CAN_CTRLMODE_BERR_REPORTING;
1157
1158	return dev;
1159}
1160EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1161
1162#ifdef CONFIG_PM
1163int c_can_power_down(struct net_device *dev)
1164{
1165	u32 val;
1166	unsigned long time_out;
1167	struct c_can_priv *priv = netdev_priv(dev);
1168
1169	if (!(dev->flags & IFF_UP))
1170		return 0;
1171
1172	WARN_ON(priv->type != BOSCH_D_CAN);
1173
1174	/* set PDR value so the device goes to power down mode */
1175	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1176	val |= CONTROL_EX_PDR;
1177	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1178
1179	/* Wait for the PDA bit to get set */
1180	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1181	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1182				time_after(time_out, jiffies))
1183		cpu_relax();
1184
1185	if (time_after(jiffies, time_out))
1186		return -ETIMEDOUT;
1187
1188	c_can_stop(dev);
1189
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192
1193	return 0;
1194}
1195EXPORT_SYMBOL_GPL(c_can_power_down);
1196
1197int c_can_power_up(struct net_device *dev)
1198{
1199	u32 val;
1200	unsigned long time_out;
1201	struct c_can_priv *priv = netdev_priv(dev);
1202	int ret;
1203
1204	if (!(dev->flags & IFF_UP))
1205		return 0;
1206
1207	WARN_ON(priv->type != BOSCH_D_CAN);
1208
1209	c_can_pm_runtime_get_sync(priv);
1210	c_can_reset_ram(priv, true);
1211
1212	/* Clear PDR and INIT bits */
1213	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1214	val &= ~CONTROL_EX_PDR;
1215	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1216	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1217	val &= ~CONTROL_INIT;
1218	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1219
1220	/* Wait for the PDA bit to get clear */
1221	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1222	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1223				time_after(time_out, jiffies))
1224		cpu_relax();
1225
1226	if (time_after(jiffies, time_out))
1227		return -ETIMEDOUT;
1228
1229	ret = c_can_start(dev);
1230	if (!ret)
1231		c_can_irq_control(priv, true);
1232
1233	return ret;
1234}
1235EXPORT_SYMBOL_GPL(c_can_power_up);
1236#endif
1237
1238void free_c_can_dev(struct net_device *dev)
1239{
1240	struct c_can_priv *priv = netdev_priv(dev);
1241
1242	netif_napi_del(&priv->napi);
1243	free_candev(dev);
1244}
1245EXPORT_SYMBOL_GPL(free_c_can_dev);
1246
1247static const struct net_device_ops c_can_netdev_ops = {
1248	.ndo_open = c_can_open,
1249	.ndo_stop = c_can_close,
1250	.ndo_start_xmit = c_can_start_xmit,
1251	.ndo_change_mtu = can_change_mtu,
1252};
1253
1254int register_c_can_dev(struct net_device *dev)
1255{
1256	struct c_can_priv *priv = netdev_priv(dev);
1257	int err;
1258
1259	/* Deactivate pins to prevent DRA7 DCAN IP from being
1260	 * stuck in transition when module is disabled.
1261	 * Pins are activated in c_can_start() and deactivated
1262	 * in c_can_stop()
1263	 */
1264	pinctrl_pm_select_sleep_state(dev->dev.parent);
1265
1266	c_can_pm_runtime_enable(priv);
1267
1268	dev->flags |= IFF_ECHO;	/* we support local echo */
1269	dev->netdev_ops = &c_can_netdev_ops;
1270
1271	err = register_candev(dev);
1272	if (err)
1273		c_can_pm_runtime_disable(priv);
1274	else
1275		devm_can_led_init(dev);
1276
1277	return err;
1278}
1279EXPORT_SYMBOL_GPL(register_c_can_dev);
1280
1281void unregister_c_can_dev(struct net_device *dev)
1282{
1283	struct c_can_priv *priv = netdev_priv(dev);
1284
1285	unregister_candev(dev);
1286
1287	c_can_pm_runtime_disable(priv);
1288}
1289EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1290
1291MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1292MODULE_LICENSE("GPL v2");
1293MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
v5.4
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN		11
  49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR		BIT(8)
  53
  54/* control register */
  55#define CONTROL_SWR		BIT(15)
  56#define CONTROL_TEST		BIT(7)
  57#define CONTROL_CCE		BIT(6)
  58#define CONTROL_DISABLE_AR	BIT(5)
  59#define CONTROL_ENABLE_AR	(0 << 5)
  60#define CONTROL_EIE		BIT(3)
  61#define CONTROL_SIE		BIT(2)
  62#define CONTROL_IE		BIT(1)
  63#define CONTROL_INIT		BIT(0)
  64
  65#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  66
  67/* test register */
  68#define TEST_RX			BIT(7)
  69#define TEST_TX1		BIT(6)
  70#define TEST_TX2		BIT(5)
  71#define TEST_LBACK		BIT(4)
  72#define TEST_SILENT		BIT(3)
  73#define TEST_BASIC		BIT(2)
  74
  75/* status register */
  76#define STATUS_PDA		BIT(10)
  77#define STATUS_BOFF		BIT(7)
  78#define STATUS_EWARN		BIT(6)
  79#define STATUS_EPASS		BIT(5)
  80#define STATUS_RXOK		BIT(4)
  81#define STATUS_TXOK		BIT(3)
  82
  83/* error counter register */
  84#define ERR_CNT_TEC_MASK	0xff
  85#define ERR_CNT_TEC_SHIFT	0
  86#define ERR_CNT_REC_SHIFT	8
  87#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  88#define ERR_CNT_RP_SHIFT	15
  89#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  90
  91/* bit-timing register */
  92#define BTR_BRP_MASK		0x3f
  93#define BTR_BRP_SHIFT		0
  94#define BTR_SJW_SHIFT		6
  95#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  96#define BTR_TSEG1_SHIFT		8
  97#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  98#define BTR_TSEG2_SHIFT		12
  99#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
 100
 101/* interrupt register */
 102#define INT_STS_PENDING		0x8000
 103
 104/* brp extension register */
 105#define BRP_EXT_BRPE_MASK	0x0f
 106#define BRP_EXT_BRPE_SHIFT	0
 107
 108/* IFx command request */
 109#define IF_COMR_BUSY		BIT(15)
 110
 111/* IFx command mask */
 112#define IF_COMM_WR		BIT(7)
 113#define IF_COMM_MASK		BIT(6)
 114#define IF_COMM_ARB		BIT(5)
 115#define IF_COMM_CONTROL		BIT(4)
 116#define IF_COMM_CLR_INT_PND	BIT(3)
 117#define IF_COMM_TXRQST		BIT(2)
 118#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 119#define IF_COMM_DATAA		BIT(1)
 120#define IF_COMM_DATAB		BIT(0)
 121
 122/* TX buffer setup */
 123#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 124				 IF_COMM_TXRQST |		 \
 125				 IF_COMM_DATAA | IF_COMM_DATAB)
 126
 127/* For the low buffers we clear the interrupt bit, but keep newdat */
 128#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 129				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 130				 IF_COMM_DATAA | IF_COMM_DATAB)
 131
 132/* For the high buffers we clear the interrupt bit and newdat */
 133#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 134
 135
 136/* Receive setup of message objects */
 137#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 138
 139/* Invalidation of message objects */
 140#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 141
 142/* IFx arbitration */
 143#define IF_ARB_MSGVAL		BIT(31)
 144#define IF_ARB_MSGXTD		BIT(30)
 145#define IF_ARB_TRANSMIT		BIT(29)
 146
 147/* IFx message control */
 148#define IF_MCONT_NEWDAT		BIT(15)
 149#define IF_MCONT_MSGLST		BIT(14)
 150#define IF_MCONT_INTPND		BIT(13)
 151#define IF_MCONT_UMASK		BIT(12)
 152#define IF_MCONT_TXIE		BIT(11)
 153#define IF_MCONT_RXIE		BIT(10)
 154#define IF_MCONT_RMTEN		BIT(9)
 155#define IF_MCONT_TXRQST		BIT(8)
 156#define IF_MCONT_EOB		BIT(7)
 157#define IF_MCONT_DLC_MASK	0xf
 158
 159#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 160#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 161
 162#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 163
 164/*
 165 * Use IF1 for RX and IF2 for TX
 166 */
 167#define IF_RX			0
 168#define IF_TX			1
 169
 170/* minimum timeout for checking BUSY status */
 171#define MIN_TIMEOUT_VALUE	6
 172
 173/* Wait for ~1 sec for INIT bit */
 174#define INIT_WAIT_MS		1000
 175
 176/* napi related */
 177#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 178
 179/* c_can lec values */
 180enum c_can_lec_type {
 181	LEC_NO_ERROR = 0,
 182	LEC_STUFF_ERROR,
 183	LEC_FORM_ERROR,
 184	LEC_ACK_ERROR,
 185	LEC_BIT1_ERROR,
 186	LEC_BIT0_ERROR,
 187	LEC_CRC_ERROR,
 188	LEC_UNUSED,
 189	LEC_MASK = LEC_UNUSED,
 190};
 191
 192/*
 193 * c_can error types:
 194 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 195 */
 196enum c_can_bus_error_types {
 197	C_CAN_NO_ERROR = 0,
 198	C_CAN_BUS_OFF,
 199	C_CAN_ERROR_WARNING,
 200	C_CAN_ERROR_PASSIVE,
 201};
 202
 203static const struct can_bittiming_const c_can_bittiming_const = {
 204	.name = KBUILD_MODNAME,
 205	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 206	.tseg1_max = 16,
 207	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 208	.tseg2_max = 8,
 209	.sjw_max = 4,
 210	.brp_min = 1,
 211	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 212	.brp_inc = 1,
 213};
 214
 215static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 216{
 217	if (priv->device)
 218		pm_runtime_enable(priv->device);
 219}
 220
 221static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 222{
 223	if (priv->device)
 224		pm_runtime_disable(priv->device);
 225}
 226
 227static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 228{
 229	if (priv->device)
 230		pm_runtime_get_sync(priv->device);
 231}
 232
 233static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 234{
 235	if (priv->device)
 236		pm_runtime_put_sync(priv->device);
 237}
 238
 239static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 240{
 241	if (priv->raminit)
 242		priv->raminit(priv, enable);
 243}
 244
 245static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 246{
 247	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 248
 249	if (enable)
 250		ctrl |= CONTROL_IRQMSK;
 251
 252	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 253}
 254
 255static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 256{
 257	struct c_can_priv *priv = netdev_priv(dev);
 258	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 259
 260	priv->write_reg32(priv, reg, (cmd << 16) | obj);
 261
 262	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 263		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 264			return;
 265		udelay(1);
 266	}
 267	netdev_err(dev, "Updating object timed out\n");
 268
 269}
 270
 271static inline void c_can_object_get(struct net_device *dev, int iface,
 272				    u32 obj, u32 cmd)
 273{
 274	c_can_obj_update(dev, iface, cmd, obj);
 275}
 276
 277static inline void c_can_object_put(struct net_device *dev, int iface,
 278				    u32 obj, u32 cmd)
 279{
 280	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 281}
 282
 283/*
 284 * Note: According to documentation clearing TXIE while MSGVAL is set
 285 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 286 * load significantly.
 287 */
 288static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 289{
 290	struct c_can_priv *priv = netdev_priv(dev);
 291
 292	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 293	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 294}
 295
 296static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 297{
 298	struct c_can_priv *priv = netdev_priv(dev);
 299
 300	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 301	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 302	c_can_inval_tx_object(dev, iface, obj);
 303}
 304
 305static void c_can_setup_tx_object(struct net_device *dev, int iface,
 306				  struct can_frame *frame, int idx)
 307{
 308	struct c_can_priv *priv = netdev_priv(dev);
 309	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 310	bool rtr = frame->can_id & CAN_RTR_FLAG;
 311	u32 arb = IF_ARB_MSGVAL;
 312	int i;
 313
 314	if (frame->can_id & CAN_EFF_FLAG) {
 315		arb |= frame->can_id & CAN_EFF_MASK;
 316		arb |= IF_ARB_MSGXTD;
 317	} else {
 318		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 319	}
 320
 321	if (!rtr)
 322		arb |= IF_ARB_TRANSMIT;
 323
 324	/*
 325	 * If we change the DIR bit, we need to invalidate the buffer
 326	 * first, i.e. clear the MSGVAL flag in the arbiter.
 327	 */
 328	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 329		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 330
 331		c_can_inval_msg_object(dev, iface, obj);
 332		change_bit(idx, &priv->tx_dir);
 333	}
 334
 335	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 336
 337	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 338
 339	if (priv->type == BOSCH_D_CAN) {
 340		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
 341
 342		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
 343			data = (u32)frame->data[i];
 344			data |= (u32)frame->data[i + 1] << 8;
 345			data |= (u32)frame->data[i + 2] << 16;
 346			data |= (u32)frame->data[i + 3] << 24;
 347			priv->write_reg32(priv, dreg, data);
 348		}
 349	} else {
 350		for (i = 0; i < frame->can_dlc; i += 2) {
 351			priv->write_reg(priv,
 352					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 353					frame->data[i] |
 354					(frame->data[i + 1] << 8));
 355		}
 356	}
 357}
 358
 359static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 360						       int iface)
 361{
 362	int i;
 363
 364	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 365		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 366}
 367
 368static int c_can_handle_lost_msg_obj(struct net_device *dev,
 369				     int iface, int objno, u32 ctrl)
 370{
 371	struct net_device_stats *stats = &dev->stats;
 372	struct c_can_priv *priv = netdev_priv(dev);
 373	struct can_frame *frame;
 374	struct sk_buff *skb;
 375
 376	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 377	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 378	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 379
 380	stats->rx_errors++;
 381	stats->rx_over_errors++;
 382
 383	/* create an error msg */
 384	skb = alloc_can_err_skb(dev, &frame);
 385	if (unlikely(!skb))
 386		return 0;
 387
 388	frame->can_id |= CAN_ERR_CRTL;
 389	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 390
 391	netif_receive_skb(skb);
 392	return 1;
 393}
 394
 395static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 396{
 397	struct net_device_stats *stats = &dev->stats;
 398	struct c_can_priv *priv = netdev_priv(dev);
 399	struct can_frame *frame;
 400	struct sk_buff *skb;
 401	u32 arb, data;
 402
 403	skb = alloc_can_skb(dev, &frame);
 404	if (!skb) {
 405		stats->rx_dropped++;
 406		return -ENOMEM;
 407	}
 408
 409	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 410
 411	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 412
 413	if (arb & IF_ARB_MSGXTD)
 414		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 415	else
 416		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 417
 418	if (arb & IF_ARB_TRANSMIT) {
 419		frame->can_id |= CAN_RTR_FLAG;
 420	} else {
 421		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 422
 423		if (priv->type == BOSCH_D_CAN) {
 424			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
 425				data = priv->read_reg32(priv, dreg);
 426				frame->data[i] = data;
 427				frame->data[i + 1] = data >> 8;
 428				frame->data[i + 2] = data >> 16;
 429				frame->data[i + 3] = data >> 24;
 430			}
 431		} else {
 432			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
 433				data = priv->read_reg(priv, dreg);
 434				frame->data[i] = data;
 435				frame->data[i + 1] = data >> 8;
 436			}
 437		}
 438	}
 439
 440	stats->rx_packets++;
 441	stats->rx_bytes += frame->can_dlc;
 442
 443	netif_receive_skb(skb);
 444	return 0;
 445}
 446
 447static void c_can_setup_receive_object(struct net_device *dev, int iface,
 448				       u32 obj, u32 mask, u32 id, u32 mcont)
 449{
 450	struct c_can_priv *priv = netdev_priv(dev);
 451
 452	mask |= BIT(29);
 453	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 454
 455	id |= IF_ARB_MSGVAL;
 456	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 457
 458	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 459	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 460}
 461
 462static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 463				    struct net_device *dev)
 464{
 465	struct can_frame *frame = (struct can_frame *)skb->data;
 466	struct c_can_priv *priv = netdev_priv(dev);
 467	u32 idx, obj;
 468
 469	if (can_dropped_invalid_skb(dev, skb))
 470		return NETDEV_TX_OK;
 471	/*
 472	 * This is not a FIFO. C/D_CAN sends out the buffers
 473	 * prioritized. The lowest buffer number wins.
 474	 */
 475	idx = fls(atomic_read(&priv->tx_active));
 476	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 477
 478	/* If this is the last buffer, stop the xmit queue */
 479	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 480		netif_stop_queue(dev);
 481	/*
 482	 * Store the message in the interface so we can call
 483	 * can_put_echo_skb(). We must do this before we enable
 484	 * transmit as we might race against do_tx().
 485	 */
 486	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 487	priv->dlc[idx] = frame->can_dlc;
 488	can_put_echo_skb(skb, dev, idx);
 489
 490	/* Update the active bits */
 491	atomic_add((1 << idx), &priv->tx_active);
 492	/* Start transmission */
 493	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 494
 495	return NETDEV_TX_OK;
 496}
 497
 498static int c_can_wait_for_ctrl_init(struct net_device *dev,
 499				    struct c_can_priv *priv, u32 init)
 500{
 501	int retry = 0;
 502
 503	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 504		udelay(10);
 505		if (retry++ > 1000) {
 506			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 507			return -EIO;
 508		}
 509	}
 510	return 0;
 511}
 512
 513static int c_can_set_bittiming(struct net_device *dev)
 514{
 515	unsigned int reg_btr, reg_brpe, ctrl_save;
 516	u8 brp, brpe, sjw, tseg1, tseg2;
 517	u32 ten_bit_brp;
 518	struct c_can_priv *priv = netdev_priv(dev);
 519	const struct can_bittiming *bt = &priv->can.bittiming;
 520	int res;
 521
 522	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 523	ten_bit_brp = bt->brp - 1;
 524	brp = ten_bit_brp & BTR_BRP_MASK;
 525	brpe = ten_bit_brp >> 6;
 526
 527	sjw = bt->sjw - 1;
 528	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 529	tseg2 = bt->phase_seg2 - 1;
 530	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 531			(tseg2 << BTR_TSEG2_SHIFT);
 532	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 533
 534	netdev_info(dev,
 535		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 536
 537	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 538	ctrl_save &= ~CONTROL_INIT;
 539	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 540	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 541	if (res)
 542		return res;
 543
 544	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 545	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 546	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 547
 548	return c_can_wait_for_ctrl_init(dev, priv, 0);
 549}
 550
 551/*
 552 * Configure C_CAN message objects for Tx and Rx purposes:
 553 * C_CAN provides a total of 32 message objects that can be configured
 554 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 555 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 556 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 557 * See user guide document for further details on configuring message
 558 * objects.
 559 */
 560static void c_can_configure_msg_objects(struct net_device *dev)
 561{
 562	int i;
 563
 564	/* first invalidate all message objects */
 565	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 566		c_can_inval_msg_object(dev, IF_RX, i);
 567
 568	/* setup receive message objects */
 569	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 570		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 571
 572	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 573				   IF_MCONT_RCV_EOB);
 574}
 575
 576static int c_can_software_reset(struct net_device *dev)
 577{
 578	struct c_can_priv *priv = netdev_priv(dev);
 579	int retry = 0;
 580
 581	if (priv->type != BOSCH_D_CAN)
 582		return 0;
 583
 584	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
 585	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
 586		msleep(20);
 587		if (retry++ > 100) {
 588			netdev_err(dev, "CCTRL: software reset failed\n");
 589			return -EIO;
 590		}
 591	}
 592
 593	return 0;
 594}
 595
 596/*
 597 * Configure C_CAN chip:
 598 * - enable/disable auto-retransmission
 599 * - set operating mode
 600 * - configure message objects
 601 */
 602static int c_can_chip_config(struct net_device *dev)
 603{
 604	struct c_can_priv *priv = netdev_priv(dev);
 605	int err;
 606
 607	err = c_can_software_reset(dev);
 608	if (err)
 609		return err;
 610
 611	/* enable automatic retransmission */
 612	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 613
 614	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 615	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 616		/* loopback + silent mode : useful for hot self-test */
 617		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 618		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 619	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 620		/* loopback mode : useful for self-test function */
 621		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 622		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 623	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 624		/* silent mode : bus-monitoring mode */
 625		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 626		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 627	}
 628
 629	/* configure message objects */
 630	c_can_configure_msg_objects(dev);
 631
 632	/* set a `lec` value so that we can check for updates later */
 633	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 634
 635	/* Clear all internal status */
 636	atomic_set(&priv->tx_active, 0);
 637	priv->rxmasked = 0;
 638	priv->tx_dir = 0;
 639
 640	/* set bittiming params */
 641	return c_can_set_bittiming(dev);
 642}
 643
 644static int c_can_start(struct net_device *dev)
 645{
 646	struct c_can_priv *priv = netdev_priv(dev);
 647	int err;
 648	struct pinctrl *p;
 649
 650	/* basic c_can configuration */
 651	err = c_can_chip_config(dev);
 652	if (err)
 653		return err;
 654
 655	/* Setup the command for new messages */
 656	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 657		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 658
 659	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 660
 661	/* Attempt to use "active" if available else use "default" */
 662	p = pinctrl_get_select(priv->device, "active");
 663	if (!IS_ERR(p))
 664		pinctrl_put(p);
 665	else
 666		pinctrl_pm_select_default_state(priv->device);
 667
 668	return 0;
 669}
 670
 671static void c_can_stop(struct net_device *dev)
 672{
 673	struct c_can_priv *priv = netdev_priv(dev);
 674
 675	c_can_irq_control(priv, false);
 676
 677	/* put ctrl to init on stop to end ongoing transmission */
 678	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 679
 680	/* deactivate pins */
 681	pinctrl_pm_select_sleep_state(dev->dev.parent);
 682	priv->can.state = CAN_STATE_STOPPED;
 683}
 684
 685static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 686{
 687	struct c_can_priv *priv = netdev_priv(dev);
 688	int err;
 689
 690	switch (mode) {
 691	case CAN_MODE_START:
 692		err = c_can_start(dev);
 693		if (err)
 694			return err;
 695		netif_wake_queue(dev);
 696		c_can_irq_control(priv, true);
 697		break;
 698	default:
 699		return -EOPNOTSUPP;
 700	}
 701
 702	return 0;
 703}
 704
 705static int __c_can_get_berr_counter(const struct net_device *dev,
 706				    struct can_berr_counter *bec)
 707{
 708	unsigned int reg_err_counter;
 709	struct c_can_priv *priv = netdev_priv(dev);
 710
 711	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 712	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 713				ERR_CNT_REC_SHIFT;
 714	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 715
 716	return 0;
 717}
 718
 719static int c_can_get_berr_counter(const struct net_device *dev,
 720				  struct can_berr_counter *bec)
 721{
 722	struct c_can_priv *priv = netdev_priv(dev);
 723	int err;
 724
 725	c_can_pm_runtime_get_sync(priv);
 726	err = __c_can_get_berr_counter(dev, bec);
 727	c_can_pm_runtime_put_sync(priv);
 728
 729	return err;
 730}
 731
 732static void c_can_do_tx(struct net_device *dev)
 733{
 734	struct c_can_priv *priv = netdev_priv(dev);
 735	struct net_device_stats *stats = &dev->stats;
 736	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 737
 738	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 739
 740	while ((idx = ffs(pend))) {
 741		idx--;
 742		pend &= ~(1 << idx);
 743		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 744		c_can_inval_tx_object(dev, IF_RX, obj);
 745		can_get_echo_skb(dev, idx);
 746		bytes += priv->dlc[idx];
 747		pkts++;
 748	}
 749
 750	/* Clear the bits in the tx_active mask */
 751	atomic_sub(clr, &priv->tx_active);
 752
 753	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 754		netif_wake_queue(dev);
 755
 756	if (pkts) {
 757		stats->tx_bytes += bytes;
 758		stats->tx_packets += pkts;
 759		can_led_event(dev, CAN_LED_EVENT_TX);
 760	}
 761}
 762
 763/*
 764 * If we have a gap in the pending bits, that means we either
 765 * raced with the hardware or failed to readout all upper
 766 * objects in the last run due to quota limit.
 767 */
 768static u32 c_can_adjust_pending(u32 pend)
 769{
 770	u32 weight, lasts;
 771
 772	if (pend == RECEIVE_OBJECT_BITS)
 773		return pend;
 774
 775	/*
 776	 * If the last set bit is larger than the number of pending
 777	 * bits we have a gap.
 778	 */
 779	weight = hweight32(pend);
 780	lasts = fls(pend);
 781
 782	/* If the bits are linear, nothing to do */
 783	if (lasts == weight)
 784		return pend;
 785
 786	/*
 787	 * Find the first set bit after the gap. We walk backwards
 788	 * from the last set bit.
 789	 */
 790	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 791
 792	return pend & ~((1 << lasts) - 1);
 793}
 794
 795static inline void c_can_rx_object_get(struct net_device *dev,
 796				       struct c_can_priv *priv, u32 obj)
 797{
 798		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 799}
 800
 801static inline void c_can_rx_finalize(struct net_device *dev,
 802				     struct c_can_priv *priv, u32 obj)
 803{
 804	if (priv->type != BOSCH_D_CAN)
 805		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 806}
 807
 808static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 809			      u32 pend, int quota)
 810{
 811	u32 pkts = 0, ctrl, obj;
 812
 813	while ((obj = ffs(pend)) && quota > 0) {
 814		pend &= ~BIT(obj - 1);
 815
 816		c_can_rx_object_get(dev, priv, obj);
 817		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 818
 819		if (ctrl & IF_MCONT_MSGLST) {
 820			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 821
 822			pkts += n;
 823			quota -= n;
 824			continue;
 825		}
 826
 827		/*
 828		 * This really should not happen, but this covers some
 829		 * odd HW behaviour. Do not remove that unless you
 830		 * want to brick your machine.
 831		 */
 832		if (!(ctrl & IF_MCONT_NEWDAT))
 833			continue;
 834
 835		/* read the data from the message object */
 836		c_can_read_msg_object(dev, IF_RX, ctrl);
 837
 838		c_can_rx_finalize(dev, priv, obj);
 839
 840		pkts++;
 841		quota--;
 842	}
 843
 844	return pkts;
 845}
 846
 847static inline u32 c_can_get_pending(struct c_can_priv *priv)
 848{
 849	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 850
 851	return pend;
 852}
 853
 854/*
 855 * theory of operation:
 856 *
 857 * c_can core saves a received CAN message into the first free message
 858 * object it finds free (starting with the lowest). Bits NEWDAT and
 859 * INTPND are set for this message object indicating that a new message
 860 * has arrived. To work-around this issue, we keep two groups of message
 861 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 862 *
 863 * We clear the newdat bit right away.
 864 *
 865 * This can result in packet reordering when the readout is slow.
 866 */
 867static int c_can_do_rx_poll(struct net_device *dev, int quota)
 868{
 869	struct c_can_priv *priv = netdev_priv(dev);
 870	u32 pkts = 0, pend = 0, toread, n;
 871
 872	/*
 873	 * It is faster to read only one 16bit register. This is only possible
 874	 * for a maximum number of 16 objects.
 875	 */
 876	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 877			"Implementation does not support more message objects than 16");
 878
 879	while (quota > 0) {
 880		if (!pend) {
 881			pend = c_can_get_pending(priv);
 882			if (!pend)
 883				break;
 884			/*
 885			 * If the pending field has a gap, handle the
 886			 * bits above the gap first.
 887			 */
 888			toread = c_can_adjust_pending(pend);
 889		} else {
 890			toread = pend;
 891		}
 892		/* Remove the bits from pend */
 893		pend &= ~toread;
 894		/* Read the objects */
 895		n = c_can_read_objects(dev, priv, toread, quota);
 896		pkts += n;
 897		quota -= n;
 898	}
 899
 900	if (pkts)
 901		can_led_event(dev, CAN_LED_EVENT_RX);
 902
 903	return pkts;
 904}
 905
 906static int c_can_handle_state_change(struct net_device *dev,
 907				enum c_can_bus_error_types error_type)
 908{
 909	unsigned int reg_err_counter;
 910	unsigned int rx_err_passive;
 911	struct c_can_priv *priv = netdev_priv(dev);
 912	struct net_device_stats *stats = &dev->stats;
 913	struct can_frame *cf;
 914	struct sk_buff *skb;
 915	struct can_berr_counter bec;
 916
 917	switch (error_type) {
 918	case C_CAN_NO_ERROR:
 919		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 920		break;
 921	case C_CAN_ERROR_WARNING:
 922		/* error warning state */
 923		priv->can.can_stats.error_warning++;
 924		priv->can.state = CAN_STATE_ERROR_WARNING;
 925		break;
 926	case C_CAN_ERROR_PASSIVE:
 927		/* error passive state */
 928		priv->can.can_stats.error_passive++;
 929		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 930		break;
 931	case C_CAN_BUS_OFF:
 932		/* bus-off state */
 933		priv->can.state = CAN_STATE_BUS_OFF;
 934		priv->can.can_stats.bus_off++;
 935		break;
 936	default:
 937		break;
 938	}
 939
 940	/* propagate the error condition to the CAN stack */
 941	skb = alloc_can_err_skb(dev, &cf);
 942	if (unlikely(!skb))
 943		return 0;
 944
 945	__c_can_get_berr_counter(dev, &bec);
 946	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 947	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 948				ERR_CNT_RP_SHIFT;
 949
 950	switch (error_type) {
 951	case C_CAN_NO_ERROR:
 952		/* error warning state */
 953		cf->can_id |= CAN_ERR_CRTL;
 954		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
 955		cf->data[6] = bec.txerr;
 956		cf->data[7] = bec.rxerr;
 957		break;
 958	case C_CAN_ERROR_WARNING:
 959		/* error warning state */
 960		cf->can_id |= CAN_ERR_CRTL;
 961		cf->data[1] = (bec.txerr > bec.rxerr) ?
 962			CAN_ERR_CRTL_TX_WARNING :
 963			CAN_ERR_CRTL_RX_WARNING;
 964		cf->data[6] = bec.txerr;
 965		cf->data[7] = bec.rxerr;
 966
 967		break;
 968	case C_CAN_ERROR_PASSIVE:
 969		/* error passive state */
 970		cf->can_id |= CAN_ERR_CRTL;
 971		if (rx_err_passive)
 972			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 973		if (bec.txerr > 127)
 974			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 975
 976		cf->data[6] = bec.txerr;
 977		cf->data[7] = bec.rxerr;
 978		break;
 979	case C_CAN_BUS_OFF:
 980		/* bus-off state */
 981		cf->can_id |= CAN_ERR_BUSOFF;
 982		can_bus_off(dev);
 983		break;
 984	default:
 985		break;
 986	}
 987
 988	stats->rx_packets++;
 989	stats->rx_bytes += cf->can_dlc;
 990	netif_receive_skb(skb);
 991
 992	return 1;
 993}
 994
 995static int c_can_handle_bus_err(struct net_device *dev,
 996				enum c_can_lec_type lec_type)
 997{
 998	struct c_can_priv *priv = netdev_priv(dev);
 999	struct net_device_stats *stats = &dev->stats;
1000	struct can_frame *cf;
1001	struct sk_buff *skb;
1002
1003	/*
1004	 * early exit if no lec update or no error.
1005	 * no lec update means that no CAN bus event has been detected
1006	 * since CPU wrote 0x7 value to status reg.
1007	 */
1008	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1009		return 0;
1010
1011	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1012		return 0;
1013
1014	/* common for all type of bus errors */
1015	priv->can.can_stats.bus_error++;
1016	stats->rx_errors++;
1017
1018	/* propagate the error condition to the CAN stack */
1019	skb = alloc_can_err_skb(dev, &cf);
1020	if (unlikely(!skb))
1021		return 0;
1022
1023	/*
1024	 * check for 'last error code' which tells us the
1025	 * type of the last error to occur on the CAN bus
1026	 */
1027	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1028
1029	switch (lec_type) {
1030	case LEC_STUFF_ERROR:
1031		netdev_dbg(dev, "stuff error\n");
1032		cf->data[2] |= CAN_ERR_PROT_STUFF;
1033		break;
1034	case LEC_FORM_ERROR:
1035		netdev_dbg(dev, "form error\n");
1036		cf->data[2] |= CAN_ERR_PROT_FORM;
1037		break;
1038	case LEC_ACK_ERROR:
1039		netdev_dbg(dev, "ack error\n");
1040		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1041		break;
1042	case LEC_BIT1_ERROR:
1043		netdev_dbg(dev, "bit1 error\n");
1044		cf->data[2] |= CAN_ERR_PROT_BIT1;
1045		break;
1046	case LEC_BIT0_ERROR:
1047		netdev_dbg(dev, "bit0 error\n");
1048		cf->data[2] |= CAN_ERR_PROT_BIT0;
1049		break;
1050	case LEC_CRC_ERROR:
1051		netdev_dbg(dev, "CRC error\n");
1052		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1053		break;
1054	default:
1055		break;
1056	}
1057
1058	stats->rx_packets++;
1059	stats->rx_bytes += cf->can_dlc;
1060	netif_receive_skb(skb);
1061	return 1;
1062}
1063
1064static int c_can_poll(struct napi_struct *napi, int quota)
1065{
1066	struct net_device *dev = napi->dev;
1067	struct c_can_priv *priv = netdev_priv(dev);
1068	u16 curr, last = priv->last_status;
1069	int work_done = 0;
1070
1071	/* Only read the status register if a status interrupt was pending */
1072	if (atomic_xchg(&priv->sie_pending, 0)) {
1073		priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1074		/* Ack status on C_CAN. D_CAN is self clearing */
1075		if (priv->type != BOSCH_D_CAN)
1076			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1077	} else {
1078		/* no change detected ... */
1079		curr = last;
1080	}
1081
1082	/* handle state changes */
1083	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1084		netdev_dbg(dev, "entered error warning state\n");
1085		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1086	}
1087
1088	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1089		netdev_dbg(dev, "entered error passive state\n");
1090		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1091	}
1092
1093	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1094		netdev_dbg(dev, "entered bus off state\n");
1095		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1096		goto end;
1097	}
1098
1099	/* handle bus recovery events */
1100	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1101		netdev_dbg(dev, "left bus off state\n");
1102		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1103	}
1104
1105	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1106		netdev_dbg(dev, "left error passive state\n");
1107		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1108	}
1109
1110	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1111		netdev_dbg(dev, "left error warning state\n");
1112		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1113	}
1114
1115	/* handle lec errors on the bus */
1116	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1117
1118	/* Handle Tx/Rx events. We do this unconditionally */
1119	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1120	c_can_do_tx(dev);
1121
1122end:
1123	if (work_done < quota) {
1124		napi_complete_done(napi, work_done);
1125		/* enable all IRQs if we are not in bus off state */
1126		if (priv->can.state != CAN_STATE_BUS_OFF)
1127			c_can_irq_control(priv, true);
1128	}
1129
1130	return work_done;
1131}
1132
1133static irqreturn_t c_can_isr(int irq, void *dev_id)
1134{
1135	struct net_device *dev = (struct net_device *)dev_id;
1136	struct c_can_priv *priv = netdev_priv(dev);
1137	int reg_int;
1138
1139	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1140	if (!reg_int)
1141		return IRQ_NONE;
1142
1143	/* save for later use */
1144	if (reg_int & INT_STS_PENDING)
1145		atomic_set(&priv->sie_pending, 1);
1146
1147	/* disable all interrupts and schedule the NAPI */
1148	c_can_irq_control(priv, false);
1149	napi_schedule(&priv->napi);
1150
1151	return IRQ_HANDLED;
1152}
1153
1154static int c_can_open(struct net_device *dev)
1155{
1156	int err;
1157	struct c_can_priv *priv = netdev_priv(dev);
1158
1159	c_can_pm_runtime_get_sync(priv);
1160	c_can_reset_ram(priv, true);
1161
1162	/* open the can device */
1163	err = open_candev(dev);
1164	if (err) {
1165		netdev_err(dev, "failed to open can device\n");
1166		goto exit_open_fail;
1167	}
1168
1169	/* register interrupt handler */
1170	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1171				dev);
1172	if (err < 0) {
1173		netdev_err(dev, "failed to request interrupt\n");
1174		goto exit_irq_fail;
1175	}
1176
1177	/* start the c_can controller */
1178	err = c_can_start(dev);
1179	if (err)
1180		goto exit_start_fail;
1181
1182	can_led_event(dev, CAN_LED_EVENT_OPEN);
1183
1184	napi_enable(&priv->napi);
1185	/* enable status change, error and module interrupts */
1186	c_can_irq_control(priv, true);
1187	netif_start_queue(dev);
1188
1189	return 0;
1190
1191exit_start_fail:
1192	free_irq(dev->irq, dev);
1193exit_irq_fail:
1194	close_candev(dev);
1195exit_open_fail:
1196	c_can_reset_ram(priv, false);
1197	c_can_pm_runtime_put_sync(priv);
1198	return err;
1199}
1200
1201static int c_can_close(struct net_device *dev)
1202{
1203	struct c_can_priv *priv = netdev_priv(dev);
1204
1205	netif_stop_queue(dev);
1206	napi_disable(&priv->napi);
1207	c_can_stop(dev);
1208	free_irq(dev->irq, dev);
1209	close_candev(dev);
1210
1211	c_can_reset_ram(priv, false);
1212	c_can_pm_runtime_put_sync(priv);
1213
1214	can_led_event(dev, CAN_LED_EVENT_STOP);
1215
1216	return 0;
1217}
1218
1219struct net_device *alloc_c_can_dev(void)
1220{
1221	struct net_device *dev;
1222	struct c_can_priv *priv;
1223
1224	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1225	if (!dev)
1226		return NULL;
1227
1228	priv = netdev_priv(dev);
1229	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1230
1231	priv->dev = dev;
1232	priv->can.bittiming_const = &c_can_bittiming_const;
1233	priv->can.do_set_mode = c_can_set_mode;
1234	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1235	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1236					CAN_CTRLMODE_LISTENONLY |
1237					CAN_CTRLMODE_BERR_REPORTING;
1238
1239	return dev;
1240}
1241EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1242
1243#ifdef CONFIG_PM
1244int c_can_power_down(struct net_device *dev)
1245{
1246	u32 val;
1247	unsigned long time_out;
1248	struct c_can_priv *priv = netdev_priv(dev);
1249
1250	if (!(dev->flags & IFF_UP))
1251		return 0;
1252
1253	WARN_ON(priv->type != BOSCH_D_CAN);
1254
1255	/* set PDR value so the device goes to power down mode */
1256	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1257	val |= CONTROL_EX_PDR;
1258	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1259
1260	/* Wait for the PDA bit to get set */
1261	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1262	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1263				time_after(time_out, jiffies))
1264		cpu_relax();
1265
1266	if (time_after(jiffies, time_out))
1267		return -ETIMEDOUT;
1268
1269	c_can_stop(dev);
1270
1271	c_can_reset_ram(priv, false);
1272	c_can_pm_runtime_put_sync(priv);
1273
1274	return 0;
1275}
1276EXPORT_SYMBOL_GPL(c_can_power_down);
1277
1278int c_can_power_up(struct net_device *dev)
1279{
1280	u32 val;
1281	unsigned long time_out;
1282	struct c_can_priv *priv = netdev_priv(dev);
1283	int ret;
1284
1285	if (!(dev->flags & IFF_UP))
1286		return 0;
1287
1288	WARN_ON(priv->type != BOSCH_D_CAN);
1289
1290	c_can_pm_runtime_get_sync(priv);
1291	c_can_reset_ram(priv, true);
1292
1293	/* Clear PDR and INIT bits */
1294	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1295	val &= ~CONTROL_EX_PDR;
1296	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1297	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1298	val &= ~CONTROL_INIT;
1299	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1300
1301	/* Wait for the PDA bit to get clear */
1302	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1303	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1304				time_after(time_out, jiffies))
1305		cpu_relax();
1306
1307	if (time_after(jiffies, time_out))
1308		return -ETIMEDOUT;
1309
1310	ret = c_can_start(dev);
1311	if (!ret)
1312		c_can_irq_control(priv, true);
1313
1314	return ret;
1315}
1316EXPORT_SYMBOL_GPL(c_can_power_up);
1317#endif
1318
1319void free_c_can_dev(struct net_device *dev)
1320{
1321	struct c_can_priv *priv = netdev_priv(dev);
1322
1323	netif_napi_del(&priv->napi);
1324	free_candev(dev);
1325}
1326EXPORT_SYMBOL_GPL(free_c_can_dev);
1327
1328static const struct net_device_ops c_can_netdev_ops = {
1329	.ndo_open = c_can_open,
1330	.ndo_stop = c_can_close,
1331	.ndo_start_xmit = c_can_start_xmit,
1332	.ndo_change_mtu = can_change_mtu,
1333};
1334
1335int register_c_can_dev(struct net_device *dev)
1336{
1337	struct c_can_priv *priv = netdev_priv(dev);
1338	int err;
1339
1340	/* Deactivate pins to prevent DRA7 DCAN IP from being
1341	 * stuck in transition when module is disabled.
1342	 * Pins are activated in c_can_start() and deactivated
1343	 * in c_can_stop()
1344	 */
1345	pinctrl_pm_select_sleep_state(dev->dev.parent);
1346
1347	c_can_pm_runtime_enable(priv);
1348
1349	dev->flags |= IFF_ECHO;	/* we support local echo */
1350	dev->netdev_ops = &c_can_netdev_ops;
1351
1352	err = register_candev(dev);
1353	if (err)
1354		c_can_pm_runtime_disable(priv);
1355	else
1356		devm_can_led_init(dev);
1357
1358	return err;
1359}
1360EXPORT_SYMBOL_GPL(register_c_can_dev);
1361
1362void unregister_c_can_dev(struct net_device *dev)
1363{
1364	struct c_can_priv *priv = netdev_priv(dev);
1365
1366	unregister_candev(dev);
1367
1368	c_can_pm_runtime_disable(priv);
1369}
1370EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1371
1372MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1373MODULE_LICENSE("GPL v2");
1374MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");