Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/cdev.h>
  32#include <linux/mutex.h>
  33#include <linux/scatterlist.h>
  34#include <linux/string_helpers.h>
  35#include <linux/delay.h>
  36#include <linux/capability.h>
  37#include <linux/compat.h>
  38#include <linux/pm_runtime.h>
  39#include <linux/idr.h>
  40#include <linux/debugfs.h>
  41
  42#include <linux/mmc/ioctl.h>
  43#include <linux/mmc/card.h>
  44#include <linux/mmc/host.h>
  45#include <linux/mmc/mmc.h>
  46#include <linux/mmc/sd.h>
  47
  48#include <linux/uaccess.h>
  49
  50#include "queue.h"
  51#include "block.h"
  52#include "core.h"
  53#include "card.h"
  54#include "host.h"
  55#include "bus.h"
  56#include "mmc_ops.h"
  57#include "quirks.h"
  58#include "sd_ops.h"
  59
  60MODULE_ALIAS("mmc:block");
  61#ifdef MODULE_PARAM_PREFIX
  62#undef MODULE_PARAM_PREFIX
  63#endif
  64#define MODULE_PARAM_PREFIX "mmcblk."
  65
  66/*
  67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  69 * second software timer to timeout the whole request, so 10 seconds should be
  70 * ample.
  71 */
  72#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  73#define MMC_SANITIZE_REQ_TIMEOUT 240000
  74#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  75#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  76
  77#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  78				  (rq_data_dir(req) == WRITE))
  79static DEFINE_MUTEX(block_mutex);
  80
  81/*
  82 * The defaults come from config options but can be overriden by module
  83 * or bootarg options.
  84 */
  85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  86
  87/*
  88 * We've only got one major, so number of mmcblk devices is
  89 * limited to (1 << 20) / number of minors per device.  It is also
  90 * limited by the MAX_DEVICES below.
  91 */
  92static int max_devices;
  93
  94#define MAX_DEVICES 256
  95
  96static DEFINE_IDA(mmc_blk_ida);
  97static DEFINE_IDA(mmc_rpmb_ida);
  98
  99/*
 100 * There is one mmc_blk_data per slot.
 101 */
 102struct mmc_blk_data {
 103	struct device	*parent;
 104	struct gendisk	*disk;
 105	struct mmc_queue queue;
 106	struct list_head part;
 107	struct list_head rpmbs;
 108
 109	unsigned int	flags;
 110#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 111#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 112
 113	unsigned int	usage;
 114	unsigned int	read_only;
 115	unsigned int	part_type;
 116	unsigned int	reset_done;
 117#define MMC_BLK_READ		BIT(0)
 118#define MMC_BLK_WRITE		BIT(1)
 119#define MMC_BLK_DISCARD		BIT(2)
 120#define MMC_BLK_SECDISCARD	BIT(3)
 121#define MMC_BLK_CQE_RECOVERY	BIT(4)
 122
 123	/*
 124	 * Only set in main mmc_blk_data associated
 125	 * with mmc_card with dev_set_drvdata, and keeps
 126	 * track of the current selected device partition.
 127	 */
 128	unsigned int	part_curr;
 129	struct device_attribute force_ro;
 130	struct device_attribute power_ro_lock;
 131	int	area_type;
 132
 133	/* debugfs files (only in main mmc_blk_data) */
 134	struct dentry *status_dentry;
 135	struct dentry *ext_csd_dentry;
 136};
 137
 138/* Device type for RPMB character devices */
 139static dev_t mmc_rpmb_devt;
 140
 141/* Bus type for RPMB character devices */
 142static struct bus_type mmc_rpmb_bus_type = {
 143	.name = "mmc_rpmb",
 144};
 145
 146/**
 147 * struct mmc_rpmb_data - special RPMB device type for these areas
 148 * @dev: the device for the RPMB area
 149 * @chrdev: character device for the RPMB area
 150 * @id: unique device ID number
 151 * @part_index: partition index (0 on first)
 152 * @md: parent MMC block device
 153 * @node: list item, so we can put this device on a list
 154 */
 155struct mmc_rpmb_data {
 156	struct device dev;
 157	struct cdev chrdev;
 158	int id;
 159	unsigned int part_index;
 160	struct mmc_blk_data *md;
 161	struct list_head node;
 162};
 163
 164static DEFINE_MUTEX(open_lock);
 165
 166module_param(perdev_minors, int, 0444);
 167MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 168
 169static inline int mmc_blk_part_switch(struct mmc_card *card,
 170				      unsigned int part_type);
 171
 172static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 173{
 174	struct mmc_blk_data *md;
 175
 176	mutex_lock(&open_lock);
 177	md = disk->private_data;
 178	if (md && md->usage == 0)
 179		md = NULL;
 180	if (md)
 181		md->usage++;
 182	mutex_unlock(&open_lock);
 183
 184	return md;
 185}
 186
 187static inline int mmc_get_devidx(struct gendisk *disk)
 188{
 189	int devidx = disk->first_minor / perdev_minors;
 190	return devidx;
 191}
 192
 193static void mmc_blk_put(struct mmc_blk_data *md)
 194{
 195	mutex_lock(&open_lock);
 196	md->usage--;
 197	if (md->usage == 0) {
 198		int devidx = mmc_get_devidx(md->disk);
 199		blk_put_queue(md->queue.queue);
 200		ida_simple_remove(&mmc_blk_ida, devidx);
 201		put_disk(md->disk);
 202		kfree(md);
 203	}
 204	mutex_unlock(&open_lock);
 205}
 206
 207static ssize_t power_ro_lock_show(struct device *dev,
 208		struct device_attribute *attr, char *buf)
 209{
 210	int ret;
 211	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 212	struct mmc_card *card = md->queue.card;
 213	int locked = 0;
 214
 215	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 216		locked = 2;
 217	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 218		locked = 1;
 219
 220	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 221
 222	mmc_blk_put(md);
 223
 224	return ret;
 225}
 226
 227static ssize_t power_ro_lock_store(struct device *dev,
 228		struct device_attribute *attr, const char *buf, size_t count)
 229{
 230	int ret;
 231	struct mmc_blk_data *md, *part_md;
 232	struct mmc_queue *mq;
 233	struct request *req;
 234	unsigned long set;
 235
 236	if (kstrtoul(buf, 0, &set))
 237		return -EINVAL;
 238
 239	if (set != 1)
 240		return count;
 241
 242	md = mmc_blk_get(dev_to_disk(dev));
 243	mq = &md->queue;
 244
 245	/* Dispatch locking to the block layer */
 246	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
 247	if (IS_ERR(req)) {
 248		count = PTR_ERR(req);
 249		goto out_put;
 250	}
 251	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 252	blk_execute_rq(mq->queue, NULL, req, 0);
 253	ret = req_to_mmc_queue_req(req)->drv_op_result;
 254	blk_put_request(req);
 255
 256	if (!ret) {
 257		pr_info("%s: Locking boot partition ro until next power on\n",
 258			md->disk->disk_name);
 259		set_disk_ro(md->disk, 1);
 260
 261		list_for_each_entry(part_md, &md->part, part)
 262			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 263				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 264				set_disk_ro(part_md->disk, 1);
 265			}
 266	}
 267out_put:
 268	mmc_blk_put(md);
 269	return count;
 270}
 271
 272static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 273			     char *buf)
 274{
 275	int ret;
 276	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 277
 278	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 279		       get_disk_ro(dev_to_disk(dev)) ^
 280		       md->read_only);
 281	mmc_blk_put(md);
 282	return ret;
 283}
 284
 285static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 286			      const char *buf, size_t count)
 287{
 288	int ret;
 289	char *end;
 290	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 291	unsigned long set = simple_strtoul(buf, &end, 0);
 292	if (end == buf) {
 293		ret = -EINVAL;
 294		goto out;
 295	}
 296
 297	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 298	ret = count;
 299out:
 300	mmc_blk_put(md);
 301	return ret;
 302}
 303
 304static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 305{
 306	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 307	int ret = -ENXIO;
 308
 309	mutex_lock(&block_mutex);
 310	if (md) {
 311		if (md->usage == 2)
 312			check_disk_change(bdev);
 313		ret = 0;
 314
 315		if ((mode & FMODE_WRITE) && md->read_only) {
 316			mmc_blk_put(md);
 317			ret = -EROFS;
 318		}
 319	}
 320	mutex_unlock(&block_mutex);
 321
 322	return ret;
 323}
 324
 325static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 326{
 327	struct mmc_blk_data *md = disk->private_data;
 328
 329	mutex_lock(&block_mutex);
 330	mmc_blk_put(md);
 331	mutex_unlock(&block_mutex);
 332}
 333
 334static int
 335mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 336{
 337	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 338	geo->heads = 4;
 339	geo->sectors = 16;
 340	return 0;
 341}
 342
 343struct mmc_blk_ioc_data {
 344	struct mmc_ioc_cmd ic;
 345	unsigned char *buf;
 346	u64 buf_bytes;
 347	struct mmc_rpmb_data *rpmb;
 348};
 349
 350static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 351	struct mmc_ioc_cmd __user *user)
 352{
 353	struct mmc_blk_ioc_data *idata;
 354	int err;
 355
 356	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 357	if (!idata) {
 358		err = -ENOMEM;
 359		goto out;
 360	}
 361
 362	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 363		err = -EFAULT;
 364		goto idata_err;
 365	}
 366
 367	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 368	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 369		err = -EOVERFLOW;
 370		goto idata_err;
 371	}
 372
 373	if (!idata->buf_bytes) {
 374		idata->buf = NULL;
 375		return idata;
 376	}
 377
 378	idata->buf = memdup_user((void __user *)(unsigned long)
 379				 idata->ic.data_ptr, idata->buf_bytes);
 380	if (IS_ERR(idata->buf)) {
 381		err = PTR_ERR(idata->buf);
 382		goto idata_err;
 383	}
 384
 385	return idata;
 386
 387idata_err:
 388	kfree(idata);
 389out:
 390	return ERR_PTR(err);
 391}
 392
 393static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 394				      struct mmc_blk_ioc_data *idata)
 395{
 396	struct mmc_ioc_cmd *ic = &idata->ic;
 397
 398	if (copy_to_user(&(ic_ptr->response), ic->response,
 399			 sizeof(ic->response)))
 400		return -EFAULT;
 401
 402	if (!idata->ic.write_flag) {
 403		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 404				 idata->buf, idata->buf_bytes))
 405			return -EFAULT;
 406	}
 407
 408	return 0;
 409}
 410
 411static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
 412				       u32 retries_max)
 413{
 414	int err;
 415	u32 retry_count = 0;
 416
 417	if (!status || !retries_max)
 418		return -EINVAL;
 419
 420	do {
 421		err = __mmc_send_status(card, status, 5);
 422		if (err)
 423			break;
 424
 425		if (!R1_STATUS(*status) &&
 426				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
 427			break; /* RPMB programming operation complete */
 428
 429		/*
 430		 * Rechedule to give the MMC device a chance to continue
 431		 * processing the previous command without being polled too
 432		 * frequently.
 433		 */
 434		usleep_range(1000, 5000);
 435	} while (++retry_count < retries_max);
 436
 437	if (retry_count == retries_max)
 438		err = -EPERM;
 439
 440	return err;
 441}
 442
 443static int ioctl_do_sanitize(struct mmc_card *card)
 444{
 445	int err;
 446
 447	if (!mmc_can_sanitize(card)) {
 448			pr_warn("%s: %s - SANITIZE is not supported\n",
 449				mmc_hostname(card->host), __func__);
 450			err = -EOPNOTSUPP;
 451			goto out;
 452	}
 453
 454	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
 455		mmc_hostname(card->host), __func__);
 456
 457	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 458					EXT_CSD_SANITIZE_START, 1,
 459					MMC_SANITIZE_REQ_TIMEOUT);
 460
 461	if (err)
 462		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
 463		       mmc_hostname(card->host), __func__, err);
 464
 465	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
 466					     __func__);
 467out:
 468	return err;
 469}
 470
 471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 472			       struct mmc_blk_ioc_data *idata)
 473{
 474	struct mmc_command cmd = {}, sbc = {};
 475	struct mmc_data data = {};
 476	struct mmc_request mrq = {};
 477	struct scatterlist sg;
 478	int err;
 479	unsigned int target_part;
 480	u32 status = 0;
 481
 482	if (!card || !md || !idata)
 483		return -EINVAL;
 484
 485	/*
 486	 * The RPMB accesses comes in from the character device, so we
 487	 * need to target these explicitly. Else we just target the
 488	 * partition type for the block device the ioctl() was issued
 489	 * on.
 490	 */
 491	if (idata->rpmb) {
 492		/* Support multiple RPMB partitions */
 493		target_part = idata->rpmb->part_index;
 494		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 495	} else {
 496		target_part = md->part_type;
 497	}
 498
 499	cmd.opcode = idata->ic.opcode;
 500	cmd.arg = idata->ic.arg;
 501	cmd.flags = idata->ic.flags;
 502
 503	if (idata->buf_bytes) {
 504		data.sg = &sg;
 505		data.sg_len = 1;
 506		data.blksz = idata->ic.blksz;
 507		data.blocks = idata->ic.blocks;
 508
 509		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 510
 511		if (idata->ic.write_flag)
 512			data.flags = MMC_DATA_WRITE;
 513		else
 514			data.flags = MMC_DATA_READ;
 515
 516		/* data.flags must already be set before doing this. */
 517		mmc_set_data_timeout(&data, card);
 518
 519		/* Allow overriding the timeout_ns for empirical tuning. */
 520		if (idata->ic.data_timeout_ns)
 521			data.timeout_ns = idata->ic.data_timeout_ns;
 522
 523		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 524			/*
 525			 * Pretend this is a data transfer and rely on the
 526			 * host driver to compute timeout.  When all host
 527			 * drivers support cmd.cmd_timeout for R1B, this
 528			 * can be changed to:
 529			 *
 530			 *     mrq.data = NULL;
 531			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 532			 */
 533			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 534		}
 535
 536		mrq.data = &data;
 537	}
 538
 539	mrq.cmd = &cmd;
 540
 541	err = mmc_blk_part_switch(card, target_part);
 542	if (err)
 543		return err;
 544
 545	if (idata->ic.is_acmd) {
 546		err = mmc_app_cmd(card->host, card);
 547		if (err)
 548			return err;
 549	}
 550
 551	if (idata->rpmb) {
 552		sbc.opcode = MMC_SET_BLOCK_COUNT;
 553		/*
 554		 * We don't do any blockcount validation because the max size
 555		 * may be increased by a future standard. We just copy the
 556		 * 'Reliable Write' bit here.
 557		 */
 558		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 559		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 560		mrq.sbc = &sbc;
 561	}
 562
 563	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 564	    (cmd.opcode == MMC_SWITCH)) {
 565		err = ioctl_do_sanitize(card);
 566
 567		if (err)
 568			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
 569			       __func__, err);
 570
 571		return err;
 572	}
 573
 574	mmc_wait_for_req(card->host, &mrq);
 575
 576	if (cmd.error) {
 577		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 578						__func__, cmd.error);
 579		return cmd.error;
 580	}
 581	if (data.error) {
 582		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 583						__func__, data.error);
 584		return data.error;
 585	}
 586
 587	/*
 588	 * Make sure the cache of the PARTITION_CONFIG register and
 589	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 590	 * changed it successfully.
 591	 */
 592	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 593	    (cmd.opcode == MMC_SWITCH)) {
 594		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 595		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 596
 597		/*
 598		 * Update cache so the next mmc_blk_part_switch call operates
 599		 * on up-to-date data.
 600		 */
 601		card->ext_csd.part_config = value;
 602		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 603	}
 604
 605	/*
 606	 * According to the SD specs, some commands require a delay after
 607	 * issuing the command.
 608	 */
 609	if (idata->ic.postsleep_min_us)
 610		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 611
 612	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
 613
 614	if (idata->rpmb) {
 615		/*
 616		 * Ensure RPMB command has completed by polling CMD13
 617		 * "Send Status".
 618		 */
 619		err = ioctl_rpmb_card_status_poll(card, &status, 5);
 620		if (err)
 621			dev_err(mmc_dev(card->host),
 622					"%s: Card Status=0x%08X, error %d\n",
 623					__func__, status, err);
 624	}
 625
 626	return err;
 627}
 628
 629static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 630			     struct mmc_ioc_cmd __user *ic_ptr,
 631			     struct mmc_rpmb_data *rpmb)
 632{
 633	struct mmc_blk_ioc_data *idata;
 634	struct mmc_blk_ioc_data *idatas[1];
 635	struct mmc_queue *mq;
 636	struct mmc_card *card;
 637	int err = 0, ioc_err = 0;
 638	struct request *req;
 639
 640	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 641	if (IS_ERR(idata))
 642		return PTR_ERR(idata);
 643	/* This will be NULL on non-RPMB ioctl():s */
 644	idata->rpmb = rpmb;
 645
 646	card = md->queue.card;
 647	if (IS_ERR(card)) {
 648		err = PTR_ERR(card);
 649		goto cmd_done;
 650	}
 651
 652	/*
 653	 * Dispatch the ioctl() into the block request queue.
 654	 */
 655	mq = &md->queue;
 656	req = blk_get_request(mq->queue,
 657		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 658	if (IS_ERR(req)) {
 659		err = PTR_ERR(req);
 660		goto cmd_done;
 661	}
 662	idatas[0] = idata;
 663	req_to_mmc_queue_req(req)->drv_op =
 664		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 665	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 666	req_to_mmc_queue_req(req)->ioc_count = 1;
 667	blk_execute_rq(mq->queue, NULL, req, 0);
 668	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 669	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 670	blk_put_request(req);
 671
 672cmd_done:
 673	kfree(idata->buf);
 674	kfree(idata);
 675	return ioc_err ? ioc_err : err;
 676}
 677
 678static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 679				   struct mmc_ioc_multi_cmd __user *user,
 680				   struct mmc_rpmb_data *rpmb)
 681{
 682	struct mmc_blk_ioc_data **idata = NULL;
 683	struct mmc_ioc_cmd __user *cmds = user->cmds;
 684	struct mmc_card *card;
 685	struct mmc_queue *mq;
 686	int i, err = 0, ioc_err = 0;
 687	__u64 num_of_cmds;
 688	struct request *req;
 689
 690	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 691			   sizeof(num_of_cmds)))
 692		return -EFAULT;
 693
 694	if (!num_of_cmds)
 695		return 0;
 696
 697	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 698		return -EINVAL;
 699
 700	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 701	if (!idata)
 702		return -ENOMEM;
 703
 704	for (i = 0; i < num_of_cmds; i++) {
 705		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 706		if (IS_ERR(idata[i])) {
 707			err = PTR_ERR(idata[i]);
 708			num_of_cmds = i;
 709			goto cmd_err;
 710		}
 711		/* This will be NULL on non-RPMB ioctl():s */
 712		idata[i]->rpmb = rpmb;
 713	}
 714
 715	card = md->queue.card;
 716	if (IS_ERR(card)) {
 717		err = PTR_ERR(card);
 718		goto cmd_err;
 719	}
 720
 721
 722	/*
 723	 * Dispatch the ioctl()s into the block request queue.
 724	 */
 725	mq = &md->queue;
 726	req = blk_get_request(mq->queue,
 727		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 728	if (IS_ERR(req)) {
 729		err = PTR_ERR(req);
 730		goto cmd_err;
 731	}
 732	req_to_mmc_queue_req(req)->drv_op =
 733		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 734	req_to_mmc_queue_req(req)->drv_op_data = idata;
 735	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 736	blk_execute_rq(mq->queue, NULL, req, 0);
 737	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 738
 739	/* copy to user if data and response */
 740	for (i = 0; i < num_of_cmds && !err; i++)
 741		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 742
 743	blk_put_request(req);
 744
 745cmd_err:
 746	for (i = 0; i < num_of_cmds; i++) {
 747		kfree(idata[i]->buf);
 748		kfree(idata[i]);
 749	}
 750	kfree(idata);
 751	return ioc_err ? ioc_err : err;
 752}
 753
 754static int mmc_blk_check_blkdev(struct block_device *bdev)
 755{
 756	/*
 757	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 758	 * whole block device, not on a partition.  This prevents overspray
 759	 * between sibling partitions.
 760	 */
 761	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 762		return -EPERM;
 763	return 0;
 764}
 765
 766static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 767	unsigned int cmd, unsigned long arg)
 768{
 769	struct mmc_blk_data *md;
 770	int ret;
 771
 772	switch (cmd) {
 773	case MMC_IOC_CMD:
 774		ret = mmc_blk_check_blkdev(bdev);
 775		if (ret)
 776			return ret;
 777		md = mmc_blk_get(bdev->bd_disk);
 778		if (!md)
 779			return -EINVAL;
 780		ret = mmc_blk_ioctl_cmd(md,
 781					(struct mmc_ioc_cmd __user *)arg,
 782					NULL);
 783		mmc_blk_put(md);
 784		return ret;
 785	case MMC_IOC_MULTI_CMD:
 786		ret = mmc_blk_check_blkdev(bdev);
 787		if (ret)
 788			return ret;
 789		md = mmc_blk_get(bdev->bd_disk);
 790		if (!md)
 791			return -EINVAL;
 792		ret = mmc_blk_ioctl_multi_cmd(md,
 793					(struct mmc_ioc_multi_cmd __user *)arg,
 794					NULL);
 795		mmc_blk_put(md);
 796		return ret;
 797	default:
 798		return -EINVAL;
 799	}
 800}
 801
 802#ifdef CONFIG_COMPAT
 803static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 804	unsigned int cmd, unsigned long arg)
 805{
 806	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 807}
 808#endif
 809
 810static const struct block_device_operations mmc_bdops = {
 811	.open			= mmc_blk_open,
 812	.release		= mmc_blk_release,
 813	.getgeo			= mmc_blk_getgeo,
 814	.owner			= THIS_MODULE,
 815	.ioctl			= mmc_blk_ioctl,
 816#ifdef CONFIG_COMPAT
 817	.compat_ioctl		= mmc_blk_compat_ioctl,
 818#endif
 819};
 820
 821static int mmc_blk_part_switch_pre(struct mmc_card *card,
 822				   unsigned int part_type)
 823{
 824	int ret = 0;
 825
 826	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 827		if (card->ext_csd.cmdq_en) {
 828			ret = mmc_cmdq_disable(card);
 829			if (ret)
 830				return ret;
 831		}
 832		mmc_retune_pause(card->host);
 833	}
 834
 835	return ret;
 836}
 837
 838static int mmc_blk_part_switch_post(struct mmc_card *card,
 839				    unsigned int part_type)
 840{
 841	int ret = 0;
 842
 843	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 844		mmc_retune_unpause(card->host);
 845		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 846			ret = mmc_cmdq_enable(card);
 847	}
 848
 849	return ret;
 850}
 851
 852static inline int mmc_blk_part_switch(struct mmc_card *card,
 853				      unsigned int part_type)
 854{
 855	int ret = 0;
 856	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 857
 858	if (main_md->part_curr == part_type)
 859		return 0;
 860
 861	if (mmc_card_mmc(card)) {
 862		u8 part_config = card->ext_csd.part_config;
 863
 864		ret = mmc_blk_part_switch_pre(card, part_type);
 865		if (ret)
 866			return ret;
 867
 868		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 869		part_config |= part_type;
 870
 871		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 872				 EXT_CSD_PART_CONFIG, part_config,
 873				 card->ext_csd.part_time);
 874		if (ret) {
 875			mmc_blk_part_switch_post(card, part_type);
 876			return ret;
 877		}
 878
 879		card->ext_csd.part_config = part_config;
 880
 881		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 882	}
 883
 884	main_md->part_curr = part_type;
 885	return ret;
 886}
 887
 888static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 889{
 890	int err;
 891	u32 result;
 892	__be32 *blocks;
 893
 894	struct mmc_request mrq = {};
 895	struct mmc_command cmd = {};
 896	struct mmc_data data = {};
 897
 898	struct scatterlist sg;
 899
 900	cmd.opcode = MMC_APP_CMD;
 901	cmd.arg = card->rca << 16;
 902	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 903
 904	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 905	if (err)
 906		return err;
 907	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 908		return -EIO;
 909
 910	memset(&cmd, 0, sizeof(struct mmc_command));
 911
 912	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 913	cmd.arg = 0;
 914	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 915
 916	data.blksz = 4;
 917	data.blocks = 1;
 918	data.flags = MMC_DATA_READ;
 919	data.sg = &sg;
 920	data.sg_len = 1;
 921	mmc_set_data_timeout(&data, card);
 922
 923	mrq.cmd = &cmd;
 924	mrq.data = &data;
 925
 926	blocks = kmalloc(4, GFP_KERNEL);
 927	if (!blocks)
 928		return -ENOMEM;
 929
 930	sg_init_one(&sg, blocks, 4);
 931
 932	mmc_wait_for_req(card->host, &mrq);
 933
 934	result = ntohl(*blocks);
 935	kfree(blocks);
 936
 937	if (cmd.error || data.error)
 938		return -EIO;
 939
 940	*written_blocks = result;
 941
 942	return 0;
 943}
 944
 945static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 946{
 947	if (host->actual_clock)
 948		return host->actual_clock / 1000;
 949
 950	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 951	if (host->ios.clock)
 952		return host->ios.clock / 2000;
 953
 954	/* How can there be no clock */
 955	WARN_ON_ONCE(1);
 956	return 100; /* 100 kHz is minimum possible value */
 957}
 958
 959static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 960					    struct mmc_data *data)
 961{
 962	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 963	unsigned int khz;
 964
 965	if (data->timeout_clks) {
 966		khz = mmc_blk_clock_khz(host);
 967		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 968	}
 969
 970	return ms;
 971}
 972
 973static inline bool mmc_blk_in_tran_state(u32 status)
 974{
 975	/*
 976	 * Some cards mishandle the status bits, so make sure to check both the
 977	 * busy indication and the card state.
 978	 */
 979	return status & R1_READY_FOR_DATA &&
 980	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
 981}
 982
 983static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 984			    struct request *req, u32 *resp_errs)
 985{
 986	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 987	int err = 0;
 988	u32 status;
 989
 990	do {
 991		bool done = time_after(jiffies, timeout);
 992
 993		err = __mmc_send_status(card, &status, 5);
 994		if (err) {
 995			pr_err("%s: error %d requesting status\n",
 996			       req->rq_disk->disk_name, err);
 997			return err;
 998		}
 999
1000		/* Accumulate any response error bits seen */
1001		if (resp_errs)
1002			*resp_errs |= status;
1003
1004		/*
1005		 * Timeout if the device never becomes ready for data and never
1006		 * leaves the program state.
1007		 */
1008		if (done) {
1009			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1010				mmc_hostname(card->host),
1011				req->rq_disk->disk_name, __func__, status);
1012			return -ETIMEDOUT;
1013		}
1014
1015		/*
1016		 * Some cards mishandle the status bits,
1017		 * so make sure to check both the busy
1018		 * indication and the card state.
1019		 */
1020	} while (!mmc_blk_in_tran_state(status));
1021
1022	return err;
1023}
1024
1025static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1026			 int type)
1027{
1028	int err;
1029
1030	if (md->reset_done & type)
1031		return -EEXIST;
1032
1033	md->reset_done |= type;
1034	err = mmc_hw_reset(host);
1035	/* Ensure we switch back to the correct partition */
1036	if (err != -EOPNOTSUPP) {
1037		struct mmc_blk_data *main_md =
1038			dev_get_drvdata(&host->card->dev);
1039		int part_err;
1040
1041		main_md->part_curr = main_md->part_type;
1042		part_err = mmc_blk_part_switch(host->card, md->part_type);
1043		if (part_err) {
1044			/*
1045			 * We have failed to get back into the correct
1046			 * partition, so we need to abort the whole request.
1047			 */
1048			return -ENODEV;
1049		}
1050	}
1051	return err;
1052}
1053
1054static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1055{
1056	md->reset_done &= ~type;
1057}
1058
1059/*
1060 * The non-block commands come back from the block layer after it queued it and
1061 * processed it with all other requests and then they get issued in this
1062 * function.
1063 */
1064static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1065{
1066	struct mmc_queue_req *mq_rq;
1067	struct mmc_card *card = mq->card;
1068	struct mmc_blk_data *md = mq->blkdata;
1069	struct mmc_blk_ioc_data **idata;
1070	bool rpmb_ioctl;
1071	u8 **ext_csd;
1072	u32 status;
1073	int ret;
1074	int i;
1075
1076	mq_rq = req_to_mmc_queue_req(req);
1077	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1078
1079	switch (mq_rq->drv_op) {
1080	case MMC_DRV_OP_IOCTL:
1081	case MMC_DRV_OP_IOCTL_RPMB:
1082		idata = mq_rq->drv_op_data;
1083		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1084			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1085			if (ret)
1086				break;
1087		}
1088		/* Always switch back to main area after RPMB access */
1089		if (rpmb_ioctl)
1090			mmc_blk_part_switch(card, 0);
1091		break;
1092	case MMC_DRV_OP_BOOT_WP:
1093		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1094				 card->ext_csd.boot_ro_lock |
1095				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1096				 card->ext_csd.part_time);
1097		if (ret)
1098			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1099			       md->disk->disk_name, ret);
1100		else
1101			card->ext_csd.boot_ro_lock |=
1102				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1103		break;
1104	case MMC_DRV_OP_GET_CARD_STATUS:
1105		ret = mmc_send_status(card, &status);
1106		if (!ret)
1107			ret = status;
1108		break;
1109	case MMC_DRV_OP_GET_EXT_CSD:
1110		ext_csd = mq_rq->drv_op_data;
1111		ret = mmc_get_ext_csd(card, ext_csd);
1112		break;
1113	default:
1114		pr_err("%s: unknown driver specific operation\n",
1115		       md->disk->disk_name);
1116		ret = -EINVAL;
1117		break;
1118	}
1119	mq_rq->drv_op_result = ret;
1120	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1121}
1122
1123static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1124{
1125	struct mmc_blk_data *md = mq->blkdata;
1126	struct mmc_card *card = md->queue.card;
1127	unsigned int from, nr;
1128	int err = 0, type = MMC_BLK_DISCARD;
1129	blk_status_t status = BLK_STS_OK;
1130
1131	if (!mmc_can_erase(card)) {
1132		status = BLK_STS_NOTSUPP;
1133		goto fail;
1134	}
1135
1136	from = blk_rq_pos(req);
1137	nr = blk_rq_sectors(req);
1138
1139	do {
1140		err = 0;
1141		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1142			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1143					 INAND_CMD38_ARG_EXT_CSD,
1144					 card->erase_arg == MMC_TRIM_ARG ?
1145					 INAND_CMD38_ARG_TRIM :
1146					 INAND_CMD38_ARG_ERASE,
1147					 0);
1148		}
1149		if (!err)
1150			err = mmc_erase(card, from, nr, card->erase_arg);
1151	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1152	if (err)
1153		status = BLK_STS_IOERR;
1154	else
1155		mmc_blk_reset_success(md, type);
1156fail:
1157	blk_mq_end_request(req, status);
1158}
1159
1160static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1161				       struct request *req)
1162{
1163	struct mmc_blk_data *md = mq->blkdata;
1164	struct mmc_card *card = md->queue.card;
1165	unsigned int from, nr, arg;
1166	int err = 0, type = MMC_BLK_SECDISCARD;
1167	blk_status_t status = BLK_STS_OK;
1168
1169	if (!(mmc_can_secure_erase_trim(card))) {
1170		status = BLK_STS_NOTSUPP;
1171		goto out;
1172	}
1173
1174	from = blk_rq_pos(req);
1175	nr = blk_rq_sectors(req);
1176
1177	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1178		arg = MMC_SECURE_TRIM1_ARG;
1179	else
1180		arg = MMC_SECURE_ERASE_ARG;
1181
1182retry:
1183	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1184		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1185				 INAND_CMD38_ARG_EXT_CSD,
1186				 arg == MMC_SECURE_TRIM1_ARG ?
1187				 INAND_CMD38_ARG_SECTRIM1 :
1188				 INAND_CMD38_ARG_SECERASE,
1189				 0);
1190		if (err)
1191			goto out_retry;
1192	}
1193
1194	err = mmc_erase(card, from, nr, arg);
1195	if (err == -EIO)
1196		goto out_retry;
1197	if (err) {
1198		status = BLK_STS_IOERR;
1199		goto out;
1200	}
1201
1202	if (arg == MMC_SECURE_TRIM1_ARG) {
1203		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1204			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1205					 INAND_CMD38_ARG_EXT_CSD,
1206					 INAND_CMD38_ARG_SECTRIM2,
1207					 0);
1208			if (err)
1209				goto out_retry;
1210		}
1211
1212		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1213		if (err == -EIO)
1214			goto out_retry;
1215		if (err) {
1216			status = BLK_STS_IOERR;
1217			goto out;
1218		}
1219	}
1220
1221out_retry:
1222	if (err && !mmc_blk_reset(md, card->host, type))
1223		goto retry;
1224	if (!err)
1225		mmc_blk_reset_success(md, type);
1226out:
1227	blk_mq_end_request(req, status);
1228}
1229
1230static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1231{
1232	struct mmc_blk_data *md = mq->blkdata;
1233	struct mmc_card *card = md->queue.card;
1234	int ret = 0;
1235
1236	ret = mmc_flush_cache(card);
1237	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1238}
1239
1240/*
1241 * Reformat current write as a reliable write, supporting
1242 * both legacy and the enhanced reliable write MMC cards.
1243 * In each transfer we'll handle only as much as a single
1244 * reliable write can handle, thus finish the request in
1245 * partial completions.
1246 */
1247static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1248				    struct mmc_card *card,
1249				    struct request *req)
1250{
1251	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1252		/* Legacy mode imposes restrictions on transfers. */
1253		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1254			brq->data.blocks = 1;
1255
1256		if (brq->data.blocks > card->ext_csd.rel_sectors)
1257			brq->data.blocks = card->ext_csd.rel_sectors;
1258		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1259			brq->data.blocks = 1;
1260	}
1261}
1262
1263#define CMD_ERRORS_EXCL_OOR						\
1264	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1265	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1266	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1267	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1268	 R1_CC_ERROR |		/* Card controller error */		\
1269	 R1_ERROR)		/* General/unknown error */
1270
1271#define CMD_ERRORS							\
1272	(CMD_ERRORS_EXCL_OOR |						\
1273	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1274
1275static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1276{
1277	u32 val;
1278
1279	/*
1280	 * Per the SD specification(physical layer version 4.10)[1],
1281	 * section 4.3.3, it explicitly states that "When the last
1282	 * block of user area is read using CMD18, the host should
1283	 * ignore OUT_OF_RANGE error that may occur even the sequence
1284	 * is correct". And JESD84-B51 for eMMC also has a similar
1285	 * statement on section 6.8.3.
1286	 *
1287	 * Multiple block read/write could be done by either predefined
1288	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1289	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1290	 *
1291	 * However the spec[1] doesn't tell us whether we should also
1292	 * ignore that for predefined method. But per the spec[1], section
1293	 * 4.15 Set Block Count Command, it says"If illegal block count
1294	 * is set, out of range error will be indicated during read/write
1295	 * operation (For example, data transfer is stopped at user area
1296	 * boundary)." In another word, we could expect a out of range error
1297	 * in the response for the following CMD18/25. And if argument of
1298	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1299	 * we could also expect to get a -ETIMEDOUT or any error number from
1300	 * the host drivers due to missing data response(for write)/data(for
1301	 * read), as the cards will stop the data transfer by itself per the
1302	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1303	 */
1304
1305	if (!brq->stop.error) {
1306		bool oor_with_open_end;
1307		/* If there is no error yet, check R1 response */
1308
1309		val = brq->stop.resp[0] & CMD_ERRORS;
1310		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1311
1312		if (val && !oor_with_open_end)
1313			brq->stop.error = -EIO;
1314	}
1315}
1316
1317static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1318			      int disable_multi, bool *do_rel_wr_p,
1319			      bool *do_data_tag_p)
1320{
1321	struct mmc_blk_data *md = mq->blkdata;
1322	struct mmc_card *card = md->queue.card;
1323	struct mmc_blk_request *brq = &mqrq->brq;
1324	struct request *req = mmc_queue_req_to_req(mqrq);
1325	bool do_rel_wr, do_data_tag;
1326
1327	/*
1328	 * Reliable writes are used to implement Forced Unit Access and
1329	 * are supported only on MMCs.
1330	 */
1331	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1332		    rq_data_dir(req) == WRITE &&
1333		    (md->flags & MMC_BLK_REL_WR);
1334
1335	memset(brq, 0, sizeof(struct mmc_blk_request));
1336
1337	brq->mrq.data = &brq->data;
1338	brq->mrq.tag = req->tag;
1339
1340	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1341	brq->stop.arg = 0;
1342
1343	if (rq_data_dir(req) == READ) {
1344		brq->data.flags = MMC_DATA_READ;
1345		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1346	} else {
1347		brq->data.flags = MMC_DATA_WRITE;
1348		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1349	}
1350
1351	brq->data.blksz = 512;
1352	brq->data.blocks = blk_rq_sectors(req);
1353	brq->data.blk_addr = blk_rq_pos(req);
1354
1355	/*
1356	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1357	 * The eMMC will give "high" priority tasks priority over "simple"
1358	 * priority tasks. Here we always set "simple" priority by not setting
1359	 * MMC_DATA_PRIO.
1360	 */
1361
1362	/*
1363	 * The block layer doesn't support all sector count
1364	 * restrictions, so we need to be prepared for too big
1365	 * requests.
1366	 */
1367	if (brq->data.blocks > card->host->max_blk_count)
1368		brq->data.blocks = card->host->max_blk_count;
1369
1370	if (brq->data.blocks > 1) {
1371		/*
1372		 * Some SD cards in SPI mode return a CRC error or even lock up
1373		 * completely when trying to read the last block using a
1374		 * multiblock read command.
1375		 */
1376		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1377		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1378		     get_capacity(md->disk)))
1379			brq->data.blocks--;
1380
1381		/*
1382		 * After a read error, we redo the request one sector
1383		 * at a time in order to accurately determine which
1384		 * sectors can be read successfully.
1385		 */
1386		if (disable_multi)
1387			brq->data.blocks = 1;
1388
1389		/*
1390		 * Some controllers have HW issues while operating
1391		 * in multiple I/O mode
1392		 */
1393		if (card->host->ops->multi_io_quirk)
1394			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1395						(rq_data_dir(req) == READ) ?
1396						MMC_DATA_READ : MMC_DATA_WRITE,
1397						brq->data.blocks);
1398	}
1399
1400	if (do_rel_wr) {
1401		mmc_apply_rel_rw(brq, card, req);
1402		brq->data.flags |= MMC_DATA_REL_WR;
1403	}
1404
1405	/*
1406	 * Data tag is used only during writing meta data to speed
1407	 * up write and any subsequent read of this meta data
1408	 */
1409	do_data_tag = card->ext_csd.data_tag_unit_size &&
1410		      (req->cmd_flags & REQ_META) &&
1411		      (rq_data_dir(req) == WRITE) &&
1412		      ((brq->data.blocks * brq->data.blksz) >=
1413		       card->ext_csd.data_tag_unit_size);
1414
1415	if (do_data_tag)
1416		brq->data.flags |= MMC_DATA_DAT_TAG;
1417
1418	mmc_set_data_timeout(&brq->data, card);
1419
1420	brq->data.sg = mqrq->sg;
1421	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1422
1423	/*
1424	 * Adjust the sg list so it is the same size as the
1425	 * request.
1426	 */
1427	if (brq->data.blocks != blk_rq_sectors(req)) {
1428		int i, data_size = brq->data.blocks << 9;
1429		struct scatterlist *sg;
1430
1431		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1432			data_size -= sg->length;
1433			if (data_size <= 0) {
1434				sg->length += data_size;
1435				i++;
1436				break;
1437			}
1438		}
1439		brq->data.sg_len = i;
1440	}
1441
1442	if (do_rel_wr_p)
1443		*do_rel_wr_p = do_rel_wr;
1444
1445	if (do_data_tag_p)
1446		*do_data_tag_p = do_data_tag;
1447}
1448
1449#define MMC_CQE_RETRIES 2
1450
1451static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1452{
1453	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1454	struct mmc_request *mrq = &mqrq->brq.mrq;
1455	struct request_queue *q = req->q;
1456	struct mmc_host *host = mq->card->host;
1457	unsigned long flags;
1458	bool put_card;
1459	int err;
1460
1461	mmc_cqe_post_req(host, mrq);
1462
1463	if (mrq->cmd && mrq->cmd->error)
1464		err = mrq->cmd->error;
1465	else if (mrq->data && mrq->data->error)
1466		err = mrq->data->error;
1467	else
1468		err = 0;
1469
1470	if (err) {
1471		if (mqrq->retries++ < MMC_CQE_RETRIES)
1472			blk_mq_requeue_request(req, true);
1473		else
1474			blk_mq_end_request(req, BLK_STS_IOERR);
1475	} else if (mrq->data) {
1476		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1477			blk_mq_requeue_request(req, true);
1478		else
1479			__blk_mq_end_request(req, BLK_STS_OK);
1480	} else {
1481		blk_mq_end_request(req, BLK_STS_OK);
1482	}
1483
1484	spin_lock_irqsave(&mq->lock, flags);
1485
1486	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1487
1488	put_card = (mmc_tot_in_flight(mq) == 0);
1489
1490	mmc_cqe_check_busy(mq);
1491
1492	spin_unlock_irqrestore(&mq->lock, flags);
1493
1494	if (!mq->cqe_busy)
1495		blk_mq_run_hw_queues(q, true);
1496
1497	if (put_card)
1498		mmc_put_card(mq->card, &mq->ctx);
1499}
1500
1501void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1502{
1503	struct mmc_card *card = mq->card;
1504	struct mmc_host *host = card->host;
1505	int err;
1506
1507	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1508
1509	err = mmc_cqe_recovery(host);
1510	if (err)
1511		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1512	else
1513		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1514
1515	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1516}
1517
1518static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1519{
1520	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1521						  brq.mrq);
1522	struct request *req = mmc_queue_req_to_req(mqrq);
1523	struct request_queue *q = req->q;
1524	struct mmc_queue *mq = q->queuedata;
1525
1526	/*
1527	 * Block layer timeouts race with completions which means the normal
1528	 * completion path cannot be used during recovery.
1529	 */
1530	if (mq->in_recovery)
1531		mmc_blk_cqe_complete_rq(mq, req);
1532	else
1533		blk_mq_complete_request(req);
1534}
1535
1536static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1537{
1538	mrq->done		= mmc_blk_cqe_req_done;
1539	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1540
1541	return mmc_cqe_start_req(host, mrq);
1542}
1543
1544static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1545						 struct request *req)
1546{
1547	struct mmc_blk_request *brq = &mqrq->brq;
1548
1549	memset(brq, 0, sizeof(*brq));
1550
1551	brq->mrq.cmd = &brq->cmd;
1552	brq->mrq.tag = req->tag;
1553
1554	return &brq->mrq;
1555}
1556
1557static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1558{
1559	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1560	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1561
1562	mrq->cmd->opcode = MMC_SWITCH;
1563	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1564			(EXT_CSD_FLUSH_CACHE << 16) |
1565			(1 << 8) |
1566			EXT_CSD_CMD_SET_NORMAL;
1567	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1568
1569	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1570}
1571
1572static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1573{
1574	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1575
1576	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1577
1578	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1579}
1580
1581static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1582			       struct mmc_card *card,
1583			       int disable_multi,
1584			       struct mmc_queue *mq)
1585{
1586	u32 readcmd, writecmd;
1587	struct mmc_blk_request *brq = &mqrq->brq;
1588	struct request *req = mmc_queue_req_to_req(mqrq);
1589	struct mmc_blk_data *md = mq->blkdata;
1590	bool do_rel_wr, do_data_tag;
1591
1592	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1593
1594	brq->mrq.cmd = &brq->cmd;
1595
1596	brq->cmd.arg = blk_rq_pos(req);
1597	if (!mmc_card_blockaddr(card))
1598		brq->cmd.arg <<= 9;
1599	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1600
1601	if (brq->data.blocks > 1 || do_rel_wr) {
1602		/* SPI multiblock writes terminate using a special
1603		 * token, not a STOP_TRANSMISSION request.
1604		 */
1605		if (!mmc_host_is_spi(card->host) ||
1606		    rq_data_dir(req) == READ)
1607			brq->mrq.stop = &brq->stop;
1608		readcmd = MMC_READ_MULTIPLE_BLOCK;
1609		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1610	} else {
1611		brq->mrq.stop = NULL;
1612		readcmd = MMC_READ_SINGLE_BLOCK;
1613		writecmd = MMC_WRITE_BLOCK;
1614	}
1615	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1616
1617	/*
1618	 * Pre-defined multi-block transfers are preferable to
1619	 * open ended-ones (and necessary for reliable writes).
1620	 * However, it is not sufficient to just send CMD23,
1621	 * and avoid the final CMD12, as on an error condition
1622	 * CMD12 (stop) needs to be sent anyway. This, coupled
1623	 * with Auto-CMD23 enhancements provided by some
1624	 * hosts, means that the complexity of dealing
1625	 * with this is best left to the host. If CMD23 is
1626	 * supported by card and host, we'll fill sbc in and let
1627	 * the host deal with handling it correctly. This means
1628	 * that for hosts that don't expose MMC_CAP_CMD23, no
1629	 * change of behavior will be observed.
1630	 *
1631	 * N.B: Some MMC cards experience perf degradation.
1632	 * We'll avoid using CMD23-bounded multiblock writes for
1633	 * these, while retaining features like reliable writes.
1634	 */
1635	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1636	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1637	     do_data_tag)) {
1638		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1639		brq->sbc.arg = brq->data.blocks |
1640			(do_rel_wr ? (1 << 31) : 0) |
1641			(do_data_tag ? (1 << 29) : 0);
1642		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1643		brq->mrq.sbc = &brq->sbc;
1644	}
1645}
1646
1647#define MMC_MAX_RETRIES		5
1648#define MMC_DATA_RETRIES	2
1649#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1650
1651static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1652{
1653	struct mmc_command cmd = {
1654		.opcode = MMC_STOP_TRANSMISSION,
1655		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1656		/* Some hosts wait for busy anyway, so provide a busy timeout */
1657		.busy_timeout = timeout,
1658	};
1659
1660	return mmc_wait_for_cmd(card->host, &cmd, 5);
1661}
1662
1663static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1664{
1665	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1666	struct mmc_blk_request *brq = &mqrq->brq;
1667	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1668	int err;
1669
1670	mmc_retune_hold_now(card->host);
1671
1672	mmc_blk_send_stop(card, timeout);
1673
1674	err = card_busy_detect(card, timeout, req, NULL);
1675
1676	mmc_retune_release(card->host);
1677
1678	return err;
1679}
1680
1681#define MMC_READ_SINGLE_RETRIES	2
1682
1683/* Single sector read during recovery */
1684static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1685{
1686	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1687	struct mmc_request *mrq = &mqrq->brq.mrq;
1688	struct mmc_card *card = mq->card;
1689	struct mmc_host *host = card->host;
1690	blk_status_t error = BLK_STS_OK;
1691	int retries = 0;
1692
1693	do {
1694		u32 status;
1695		int err;
1696
1697		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1698
1699		mmc_wait_for_req(host, mrq);
1700
1701		err = mmc_send_status(card, &status);
1702		if (err)
1703			goto error_exit;
1704
1705		if (!mmc_host_is_spi(host) &&
1706		    !mmc_blk_in_tran_state(status)) {
1707			err = mmc_blk_fix_state(card, req);
1708			if (err)
1709				goto error_exit;
1710		}
1711
1712		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1713			continue;
1714
1715		retries = 0;
1716
1717		if (mrq->cmd->error ||
1718		    mrq->data->error ||
1719		    (!mmc_host_is_spi(host) &&
1720		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1721			error = BLK_STS_IOERR;
1722		else
1723			error = BLK_STS_OK;
1724
1725	} while (blk_update_request(req, error, 512));
1726
1727	return;
1728
1729error_exit:
1730	mrq->data->bytes_xfered = 0;
1731	blk_update_request(req, BLK_STS_IOERR, 512);
1732	/* Let it try the remaining request again */
1733	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1734		mqrq->retries = MMC_MAX_RETRIES - 1;
1735}
1736
1737static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1738{
1739	return !!brq->mrq.sbc;
1740}
1741
1742static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1743{
1744	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1745}
1746
1747/*
1748 * Check for errors the host controller driver might not have seen such as
1749 * response mode errors or invalid card state.
1750 */
1751static bool mmc_blk_status_error(struct request *req, u32 status)
1752{
1753	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1754	struct mmc_blk_request *brq = &mqrq->brq;
1755	struct mmc_queue *mq = req->q->queuedata;
1756	u32 stop_err_bits;
1757
1758	if (mmc_host_is_spi(mq->card->host))
1759		return false;
1760
1761	stop_err_bits = mmc_blk_stop_err_bits(brq);
1762
1763	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1764	       brq->stop.resp[0] & stop_err_bits ||
1765	       status            & stop_err_bits ||
1766	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1767}
1768
1769static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1770{
1771	return !brq->sbc.error && !brq->cmd.error &&
1772	       !(brq->cmd.resp[0] & CMD_ERRORS);
1773}
1774
1775/*
1776 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1777 * policy:
1778 * 1. A request that has transferred at least some data is considered
1779 * successful and will be requeued if there is remaining data to
1780 * transfer.
1781 * 2. Otherwise the number of retries is incremented and the request
1782 * will be requeued if there are remaining retries.
1783 * 3. Otherwise the request will be errored out.
1784 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1785 * mqrq->retries. So there are only 4 possible actions here:
1786 *	1. do not accept the bytes_xfered value i.e. set it to zero
1787 *	2. change mqrq->retries to determine the number of retries
1788 *	3. try to reset the card
1789 *	4. read one sector at a time
1790 */
1791static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1792{
1793	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1794	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1795	struct mmc_blk_request *brq = &mqrq->brq;
1796	struct mmc_blk_data *md = mq->blkdata;
1797	struct mmc_card *card = mq->card;
1798	u32 status;
1799	u32 blocks;
1800	int err;
1801
1802	/*
1803	 * Some errors the host driver might not have seen. Set the number of
1804	 * bytes transferred to zero in that case.
1805	 */
1806	err = __mmc_send_status(card, &status, 0);
1807	if (err || mmc_blk_status_error(req, status))
1808		brq->data.bytes_xfered = 0;
1809
1810	mmc_retune_release(card->host);
1811
1812	/*
1813	 * Try again to get the status. This also provides an opportunity for
1814	 * re-tuning.
1815	 */
1816	if (err)
1817		err = __mmc_send_status(card, &status, 0);
1818
1819	/*
1820	 * Nothing more to do after the number of bytes transferred has been
1821	 * updated and there is no card.
1822	 */
1823	if (err && mmc_detect_card_removed(card->host))
1824		return;
1825
1826	/* Try to get back to "tran" state */
1827	if (!mmc_host_is_spi(mq->card->host) &&
1828	    (err || !mmc_blk_in_tran_state(status)))
1829		err = mmc_blk_fix_state(mq->card, req);
1830
1831	/*
1832	 * Special case for SD cards where the card might record the number of
1833	 * blocks written.
1834	 */
1835	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1836	    rq_data_dir(req) == WRITE) {
1837		if (mmc_sd_num_wr_blocks(card, &blocks))
1838			brq->data.bytes_xfered = 0;
1839		else
1840			brq->data.bytes_xfered = blocks << 9;
1841	}
1842
1843	/* Reset if the card is in a bad state */
1844	if (!mmc_host_is_spi(mq->card->host) &&
1845	    err && mmc_blk_reset(md, card->host, type)) {
1846		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1847		mqrq->retries = MMC_NO_RETRIES;
1848		return;
1849	}
1850
1851	/*
1852	 * If anything was done, just return and if there is anything remaining
1853	 * on the request it will get requeued.
1854	 */
1855	if (brq->data.bytes_xfered)
1856		return;
1857
1858	/* Reset before last retry */
1859	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1860		mmc_blk_reset(md, card->host, type);
1861
1862	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1863	if (brq->sbc.error || brq->cmd.error)
1864		return;
1865
1866	/* Reduce the remaining retries for data errors */
1867	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1868		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1869		return;
1870	}
1871
1872	/* FIXME: Missing single sector read for large sector size */
1873	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1874	    brq->data.blocks > 1) {
1875		/* Read one sector at a time */
1876		mmc_blk_read_single(mq, req);
1877		return;
1878	}
1879}
1880
1881static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1882{
1883	mmc_blk_eval_resp_error(brq);
1884
1885	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1886	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1887}
1888
1889static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1890{
1891	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1892	u32 status = 0;
1893	int err;
1894
1895	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1896		return 0;
1897
1898	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1899
1900	/*
1901	 * Do not assume data transferred correctly if there are any error bits
1902	 * set.
1903	 */
1904	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1905		mqrq->brq.data.bytes_xfered = 0;
1906		err = err ? err : -EIO;
1907	}
1908
1909	/* Copy the exception bit so it will be seen later on */
1910	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1911		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1912
1913	return err;
1914}
1915
1916static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1917					    struct request *req)
1918{
1919	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1920
1921	mmc_blk_reset_success(mq->blkdata, type);
1922}
1923
1924static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1925{
1926	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1927	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1928
1929	if (nr_bytes) {
1930		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1931			blk_mq_requeue_request(req, true);
1932		else
1933			__blk_mq_end_request(req, BLK_STS_OK);
1934	} else if (!blk_rq_bytes(req)) {
1935		__blk_mq_end_request(req, BLK_STS_IOERR);
1936	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1937		blk_mq_requeue_request(req, true);
1938	} else {
1939		if (mmc_card_removed(mq->card))
1940			req->rq_flags |= RQF_QUIET;
1941		blk_mq_end_request(req, BLK_STS_IOERR);
1942	}
1943}
1944
1945static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1946					struct mmc_queue_req *mqrq)
1947{
1948	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1949	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1950		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1951}
1952
1953static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1954				 struct mmc_queue_req *mqrq)
1955{
1956	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1957		mmc_run_bkops(mq->card);
1958}
1959
1960void mmc_blk_mq_complete(struct request *req)
1961{
1962	struct mmc_queue *mq = req->q->queuedata;
1963
1964	if (mq->use_cqe)
1965		mmc_blk_cqe_complete_rq(mq, req);
1966	else
1967		mmc_blk_mq_complete_rq(mq, req);
1968}
1969
1970static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1971				       struct request *req)
1972{
1973	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1974	struct mmc_host *host = mq->card->host;
1975
1976	if (mmc_blk_rq_error(&mqrq->brq) ||
1977	    mmc_blk_card_busy(mq->card, req)) {
1978		mmc_blk_mq_rw_recovery(mq, req);
1979	} else {
1980		mmc_blk_rw_reset_success(mq, req);
1981		mmc_retune_release(host);
1982	}
1983
1984	mmc_blk_urgent_bkops(mq, mqrq);
1985}
1986
1987static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1988{
1989	unsigned long flags;
1990	bool put_card;
1991
1992	spin_lock_irqsave(&mq->lock, flags);
1993
1994	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1995
1996	put_card = (mmc_tot_in_flight(mq) == 0);
1997
1998	spin_unlock_irqrestore(&mq->lock, flags);
1999
2000	if (put_card)
2001		mmc_put_card(mq->card, &mq->ctx);
2002}
2003
2004static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2005{
2006	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2007	struct mmc_request *mrq = &mqrq->brq.mrq;
2008	struct mmc_host *host = mq->card->host;
2009
2010	mmc_post_req(host, mrq, 0);
2011
2012	/*
2013	 * Block layer timeouts race with completions which means the normal
2014	 * completion path cannot be used during recovery.
2015	 */
2016	if (mq->in_recovery)
2017		mmc_blk_mq_complete_rq(mq, req);
2018	else
2019		blk_mq_complete_request(req);
2020
2021	mmc_blk_mq_dec_in_flight(mq, req);
2022}
2023
2024void mmc_blk_mq_recovery(struct mmc_queue *mq)
2025{
2026	struct request *req = mq->recovery_req;
2027	struct mmc_host *host = mq->card->host;
2028	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2029
2030	mq->recovery_req = NULL;
2031	mq->rw_wait = false;
2032
2033	if (mmc_blk_rq_error(&mqrq->brq)) {
2034		mmc_retune_hold_now(host);
2035		mmc_blk_mq_rw_recovery(mq, req);
2036	}
2037
2038	mmc_blk_urgent_bkops(mq, mqrq);
2039
2040	mmc_blk_mq_post_req(mq, req);
2041}
2042
2043static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2044					 struct request **prev_req)
2045{
2046	if (mmc_host_done_complete(mq->card->host))
2047		return;
2048
2049	mutex_lock(&mq->complete_lock);
2050
2051	if (!mq->complete_req)
2052		goto out_unlock;
2053
2054	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2055
2056	if (prev_req)
2057		*prev_req = mq->complete_req;
2058	else
2059		mmc_blk_mq_post_req(mq, mq->complete_req);
2060
2061	mq->complete_req = NULL;
2062
2063out_unlock:
2064	mutex_unlock(&mq->complete_lock);
2065}
2066
2067void mmc_blk_mq_complete_work(struct work_struct *work)
2068{
2069	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2070					    complete_work);
2071
2072	mmc_blk_mq_complete_prev_req(mq, NULL);
2073}
2074
2075static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2076{
2077	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2078						  brq.mrq);
2079	struct request *req = mmc_queue_req_to_req(mqrq);
2080	struct request_queue *q = req->q;
2081	struct mmc_queue *mq = q->queuedata;
2082	struct mmc_host *host = mq->card->host;
2083	unsigned long flags;
2084
2085	if (!mmc_host_done_complete(host)) {
2086		bool waiting;
2087
2088		/*
2089		 * We cannot complete the request in this context, so record
2090		 * that there is a request to complete, and that a following
2091		 * request does not need to wait (although it does need to
2092		 * complete complete_req first).
2093		 */
2094		spin_lock_irqsave(&mq->lock, flags);
2095		mq->complete_req = req;
2096		mq->rw_wait = false;
2097		waiting = mq->waiting;
2098		spin_unlock_irqrestore(&mq->lock, flags);
2099
2100		/*
2101		 * If 'waiting' then the waiting task will complete this
2102		 * request, otherwise queue a work to do it. Note that
2103		 * complete_work may still race with the dispatch of a following
2104		 * request.
2105		 */
2106		if (waiting)
2107			wake_up(&mq->wait);
2108		else
2109			queue_work(mq->card->complete_wq, &mq->complete_work);
2110
2111		return;
2112	}
2113
2114	/* Take the recovery path for errors or urgent background operations */
2115	if (mmc_blk_rq_error(&mqrq->brq) ||
2116	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2117		spin_lock_irqsave(&mq->lock, flags);
2118		mq->recovery_needed = true;
2119		mq->recovery_req = req;
2120		spin_unlock_irqrestore(&mq->lock, flags);
2121		wake_up(&mq->wait);
2122		schedule_work(&mq->recovery_work);
2123		return;
2124	}
2125
2126	mmc_blk_rw_reset_success(mq, req);
2127
2128	mq->rw_wait = false;
2129	wake_up(&mq->wait);
2130
2131	mmc_blk_mq_post_req(mq, req);
2132}
2133
2134static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2135{
2136	unsigned long flags;
2137	bool done;
2138
2139	/*
2140	 * Wait while there is another request in progress, but not if recovery
2141	 * is needed. Also indicate whether there is a request waiting to start.
2142	 */
2143	spin_lock_irqsave(&mq->lock, flags);
2144	if (mq->recovery_needed) {
2145		*err = -EBUSY;
2146		done = true;
2147	} else {
2148		done = !mq->rw_wait;
2149	}
2150	mq->waiting = !done;
2151	spin_unlock_irqrestore(&mq->lock, flags);
2152
2153	return done;
2154}
2155
2156static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2157{
2158	int err = 0;
2159
2160	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2161
2162	/* Always complete the previous request if there is one */
2163	mmc_blk_mq_complete_prev_req(mq, prev_req);
2164
2165	return err;
2166}
2167
2168static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2169				  struct request *req)
2170{
2171	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2172	struct mmc_host *host = mq->card->host;
2173	struct request *prev_req = NULL;
2174	int err = 0;
2175
2176	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2177
2178	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2179
2180	mmc_pre_req(host, &mqrq->brq.mrq);
2181
2182	err = mmc_blk_rw_wait(mq, &prev_req);
2183	if (err)
2184		goto out_post_req;
2185
2186	mq->rw_wait = true;
2187
2188	err = mmc_start_request(host, &mqrq->brq.mrq);
2189
2190	if (prev_req)
2191		mmc_blk_mq_post_req(mq, prev_req);
2192
2193	if (err)
2194		mq->rw_wait = false;
2195
2196	/* Release re-tuning here where there is no synchronization required */
2197	if (err || mmc_host_done_complete(host))
2198		mmc_retune_release(host);
2199
2200out_post_req:
2201	if (err)
2202		mmc_post_req(host, &mqrq->brq.mrq, err);
2203
2204	return err;
2205}
2206
2207static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2208{
2209	if (mq->use_cqe)
2210		return host->cqe_ops->cqe_wait_for_idle(host);
2211
2212	return mmc_blk_rw_wait(mq, NULL);
2213}
2214
2215enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2216{
2217	struct mmc_blk_data *md = mq->blkdata;
2218	struct mmc_card *card = md->queue.card;
2219	struct mmc_host *host = card->host;
2220	int ret;
2221
2222	ret = mmc_blk_part_switch(card, md->part_type);
2223	if (ret)
2224		return MMC_REQ_FAILED_TO_START;
2225
2226	switch (mmc_issue_type(mq, req)) {
2227	case MMC_ISSUE_SYNC:
2228		ret = mmc_blk_wait_for_idle(mq, host);
2229		if (ret)
2230			return MMC_REQ_BUSY;
2231		switch (req_op(req)) {
2232		case REQ_OP_DRV_IN:
2233		case REQ_OP_DRV_OUT:
2234			mmc_blk_issue_drv_op(mq, req);
2235			break;
2236		case REQ_OP_DISCARD:
2237			mmc_blk_issue_discard_rq(mq, req);
2238			break;
2239		case REQ_OP_SECURE_ERASE:
2240			mmc_blk_issue_secdiscard_rq(mq, req);
2241			break;
2242		case REQ_OP_FLUSH:
2243			mmc_blk_issue_flush(mq, req);
2244			break;
2245		default:
2246			WARN_ON_ONCE(1);
2247			return MMC_REQ_FAILED_TO_START;
2248		}
2249		return MMC_REQ_FINISHED;
2250	case MMC_ISSUE_DCMD:
2251	case MMC_ISSUE_ASYNC:
2252		switch (req_op(req)) {
2253		case REQ_OP_FLUSH:
2254			ret = mmc_blk_cqe_issue_flush(mq, req);
2255			break;
2256		case REQ_OP_READ:
2257		case REQ_OP_WRITE:
2258			if (mq->use_cqe)
2259				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2260			else
2261				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2262			break;
2263		default:
2264			WARN_ON_ONCE(1);
2265			ret = -EINVAL;
2266		}
2267		if (!ret)
2268			return MMC_REQ_STARTED;
2269		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2270	default:
2271		WARN_ON_ONCE(1);
2272		return MMC_REQ_FAILED_TO_START;
2273	}
2274}
2275
2276static inline int mmc_blk_readonly(struct mmc_card *card)
2277{
2278	return mmc_card_readonly(card) ||
2279	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2280}
2281
2282static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2283					      struct device *parent,
2284					      sector_t size,
2285					      bool default_ro,
2286					      const char *subname,
2287					      int area_type)
2288{
2289	struct mmc_blk_data *md;
2290	int devidx, ret;
2291
2292	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2293	if (devidx < 0) {
2294		/*
2295		 * We get -ENOSPC because there are no more any available
2296		 * devidx. The reason may be that, either userspace haven't yet
2297		 * unmounted the partitions, which postpones mmc_blk_release()
2298		 * from being called, or the device has more partitions than
2299		 * what we support.
2300		 */
2301		if (devidx == -ENOSPC)
2302			dev_err(mmc_dev(card->host),
2303				"no more device IDs available\n");
2304
2305		return ERR_PTR(devidx);
2306	}
2307
2308	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2309	if (!md) {
2310		ret = -ENOMEM;
2311		goto out;
2312	}
2313
2314	md->area_type = area_type;
2315
2316	/*
2317	 * Set the read-only status based on the supported commands
2318	 * and the write protect switch.
2319	 */
2320	md->read_only = mmc_blk_readonly(card);
2321
2322	md->disk = alloc_disk(perdev_minors);
2323	if (md->disk == NULL) {
2324		ret = -ENOMEM;
2325		goto err_kfree;
2326	}
2327
2328	INIT_LIST_HEAD(&md->part);
2329	INIT_LIST_HEAD(&md->rpmbs);
2330	md->usage = 1;
2331
2332	ret = mmc_init_queue(&md->queue, card);
2333	if (ret)
2334		goto err_putdisk;
2335
2336	md->queue.blkdata = md;
2337
2338	/*
2339	 * Keep an extra reference to the queue so that we can shutdown the
2340	 * queue (i.e. call blk_cleanup_queue()) while there are still
2341	 * references to the 'md'. The corresponding blk_put_queue() is in
2342	 * mmc_blk_put().
2343	 */
2344	if (!blk_get_queue(md->queue.queue)) {
2345		mmc_cleanup_queue(&md->queue);
2346		ret = -ENODEV;
2347		goto err_putdisk;
2348	}
2349
2350	md->disk->major	= MMC_BLOCK_MAJOR;
2351	md->disk->first_minor = devidx * perdev_minors;
2352	md->disk->fops = &mmc_bdops;
2353	md->disk->private_data = md;
2354	md->disk->queue = md->queue.queue;
2355	md->parent = parent;
2356	set_disk_ro(md->disk, md->read_only || default_ro);
2357	md->disk->flags = GENHD_FL_EXT_DEVT;
2358	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2359		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2360				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2361
2362	/*
2363	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2364	 *
2365	 * - be set for removable media with permanent block devices
2366	 * - be unset for removable block devices with permanent media
2367	 *
2368	 * Since MMC block devices clearly fall under the second
2369	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2370	 * should use the block device creation/destruction hotplug
2371	 * messages to tell when the card is present.
2372	 */
2373
2374	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2375		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2376
2377	set_capacity(md->disk, size);
2378
2379	if (mmc_host_cmd23(card->host)) {
2380		if ((mmc_card_mmc(card) &&
2381		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2382		    (mmc_card_sd(card) &&
2383		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2384			md->flags |= MMC_BLK_CMD23;
2385	}
2386
2387	if (mmc_card_mmc(card) &&
2388	    md->flags & MMC_BLK_CMD23 &&
2389	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2390	     card->ext_csd.rel_sectors)) {
2391		md->flags |= MMC_BLK_REL_WR;
2392		blk_queue_write_cache(md->queue.queue, true, true);
2393	}
2394
2395	return md;
2396
2397 err_putdisk:
2398	put_disk(md->disk);
2399 err_kfree:
2400	kfree(md);
2401 out:
2402	ida_simple_remove(&mmc_blk_ida, devidx);
2403	return ERR_PTR(ret);
2404}
2405
2406static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2407{
2408	sector_t size;
2409
2410	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2411		/*
2412		 * The EXT_CSD sector count is in number or 512 byte
2413		 * sectors.
2414		 */
2415		size = card->ext_csd.sectors;
2416	} else {
2417		/*
2418		 * The CSD capacity field is in units of read_blkbits.
2419		 * set_capacity takes units of 512 bytes.
2420		 */
2421		size = (typeof(sector_t))card->csd.capacity
2422			<< (card->csd.read_blkbits - 9);
2423	}
2424
2425	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2426					MMC_BLK_DATA_AREA_MAIN);
2427}
2428
2429static int mmc_blk_alloc_part(struct mmc_card *card,
2430			      struct mmc_blk_data *md,
2431			      unsigned int part_type,
2432			      sector_t size,
2433			      bool default_ro,
2434			      const char *subname,
2435			      int area_type)
2436{
2437	char cap_str[10];
2438	struct mmc_blk_data *part_md;
2439
2440	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2441				    subname, area_type);
2442	if (IS_ERR(part_md))
2443		return PTR_ERR(part_md);
2444	part_md->part_type = part_type;
2445	list_add(&part_md->part, &md->part);
2446
2447	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2448			cap_str, sizeof(cap_str));
2449	pr_info("%s: %s %s partition %u %s\n",
2450	       part_md->disk->disk_name, mmc_card_id(card),
2451	       mmc_card_name(card), part_md->part_type, cap_str);
2452	return 0;
2453}
2454
2455/**
2456 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2457 * @filp: the character device file
2458 * @cmd: the ioctl() command
2459 * @arg: the argument from userspace
2460 *
2461 * This will essentially just redirect the ioctl()s coming in over to
2462 * the main block device spawning the RPMB character device.
2463 */
2464static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2465			   unsigned long arg)
2466{
2467	struct mmc_rpmb_data *rpmb = filp->private_data;
2468	int ret;
2469
2470	switch (cmd) {
2471	case MMC_IOC_CMD:
2472		ret = mmc_blk_ioctl_cmd(rpmb->md,
2473					(struct mmc_ioc_cmd __user *)arg,
2474					rpmb);
2475		break;
2476	case MMC_IOC_MULTI_CMD:
2477		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2478					(struct mmc_ioc_multi_cmd __user *)arg,
2479					rpmb);
2480		break;
2481	default:
2482		ret = -EINVAL;
2483		break;
2484	}
2485
2486	return ret;
2487}
2488
2489#ifdef CONFIG_COMPAT
2490static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2491			      unsigned long arg)
2492{
2493	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2494}
2495#endif
2496
2497static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2498{
2499	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2500						  struct mmc_rpmb_data, chrdev);
2501
2502	get_device(&rpmb->dev);
2503	filp->private_data = rpmb;
2504	mmc_blk_get(rpmb->md->disk);
2505
2506	return nonseekable_open(inode, filp);
2507}
2508
2509static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2510{
2511	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2512						  struct mmc_rpmb_data, chrdev);
2513
2514	put_device(&rpmb->dev);
2515	mmc_blk_put(rpmb->md);
2516
2517	return 0;
2518}
2519
2520static const struct file_operations mmc_rpmb_fileops = {
2521	.release = mmc_rpmb_chrdev_release,
2522	.open = mmc_rpmb_chrdev_open,
2523	.owner = THIS_MODULE,
2524	.llseek = no_llseek,
2525	.unlocked_ioctl = mmc_rpmb_ioctl,
2526#ifdef CONFIG_COMPAT
2527	.compat_ioctl = mmc_rpmb_ioctl_compat,
2528#endif
2529};
2530
2531static void mmc_blk_rpmb_device_release(struct device *dev)
2532{
2533	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2534
2535	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2536	kfree(rpmb);
2537}
2538
2539static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2540				   struct mmc_blk_data *md,
2541				   unsigned int part_index,
2542				   sector_t size,
2543				   const char *subname)
2544{
2545	int devidx, ret;
2546	char rpmb_name[DISK_NAME_LEN];
2547	char cap_str[10];
2548	struct mmc_rpmb_data *rpmb;
2549
2550	/* This creates the minor number for the RPMB char device */
2551	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2552	if (devidx < 0)
2553		return devidx;
2554
2555	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2556	if (!rpmb) {
2557		ida_simple_remove(&mmc_rpmb_ida, devidx);
2558		return -ENOMEM;
2559	}
2560
2561	snprintf(rpmb_name, sizeof(rpmb_name),
2562		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2563
2564	rpmb->id = devidx;
2565	rpmb->part_index = part_index;
2566	rpmb->dev.init_name = rpmb_name;
2567	rpmb->dev.bus = &mmc_rpmb_bus_type;
2568	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2569	rpmb->dev.parent = &card->dev;
2570	rpmb->dev.release = mmc_blk_rpmb_device_release;
2571	device_initialize(&rpmb->dev);
2572	dev_set_drvdata(&rpmb->dev, rpmb);
2573	rpmb->md = md;
2574
2575	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2576	rpmb->chrdev.owner = THIS_MODULE;
2577	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2578	if (ret) {
2579		pr_err("%s: could not add character device\n", rpmb_name);
2580		goto out_put_device;
2581	}
2582
2583	list_add(&rpmb->node, &md->rpmbs);
2584
2585	string_get_size((u64)size, 512, STRING_UNITS_2,
2586			cap_str, sizeof(cap_str));
2587
2588	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2589		rpmb_name, mmc_card_id(card),
2590		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2591		MAJOR(mmc_rpmb_devt), rpmb->id);
2592
2593	return 0;
2594
2595out_put_device:
2596	put_device(&rpmb->dev);
2597	return ret;
2598}
2599
2600static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2601
2602{
2603	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2604	put_device(&rpmb->dev);
2605}
2606
2607/* MMC Physical partitions consist of two boot partitions and
2608 * up to four general purpose partitions.
2609 * For each partition enabled in EXT_CSD a block device will be allocatedi
2610 * to provide access to the partition.
2611 */
2612
2613static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2614{
2615	int idx, ret;
2616
2617	if (!mmc_card_mmc(card))
2618		return 0;
2619
2620	for (idx = 0; idx < card->nr_parts; idx++) {
2621		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2622			/*
2623			 * RPMB partitions does not provide block access, they
2624			 * are only accessed using ioctl():s. Thus create
2625			 * special RPMB block devices that do not have a
2626			 * backing block queue for these.
2627			 */
2628			ret = mmc_blk_alloc_rpmb_part(card, md,
2629				card->part[idx].part_cfg,
2630				card->part[idx].size >> 9,
2631				card->part[idx].name);
2632			if (ret)
2633				return ret;
2634		} else if (card->part[idx].size) {
2635			ret = mmc_blk_alloc_part(card, md,
2636				card->part[idx].part_cfg,
2637				card->part[idx].size >> 9,
2638				card->part[idx].force_ro,
2639				card->part[idx].name,
2640				card->part[idx].area_type);
2641			if (ret)
2642				return ret;
2643		}
2644	}
2645
2646	return 0;
2647}
2648
2649static void mmc_blk_remove_req(struct mmc_blk_data *md)
2650{
2651	struct mmc_card *card;
2652
2653	if (md) {
2654		/*
2655		 * Flush remaining requests and free queues. It
2656		 * is freeing the queue that stops new requests
2657		 * from being accepted.
2658		 */
2659		card = md->queue.card;
2660		if (md->disk->flags & GENHD_FL_UP) {
2661			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2662			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2663					card->ext_csd.boot_ro_lockable)
2664				device_remove_file(disk_to_dev(md->disk),
2665					&md->power_ro_lock);
2666
2667			del_gendisk(md->disk);
2668		}
2669		mmc_cleanup_queue(&md->queue);
2670		mmc_blk_put(md);
2671	}
2672}
2673
2674static void mmc_blk_remove_parts(struct mmc_card *card,
2675				 struct mmc_blk_data *md)
2676{
2677	struct list_head *pos, *q;
2678	struct mmc_blk_data *part_md;
2679	struct mmc_rpmb_data *rpmb;
2680
2681	/* Remove RPMB partitions */
2682	list_for_each_safe(pos, q, &md->rpmbs) {
2683		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2684		list_del(pos);
2685		mmc_blk_remove_rpmb_part(rpmb);
2686	}
2687	/* Remove block partitions */
2688	list_for_each_safe(pos, q, &md->part) {
2689		part_md = list_entry(pos, struct mmc_blk_data, part);
2690		list_del(pos);
2691		mmc_blk_remove_req(part_md);
2692	}
2693}
2694
2695static int mmc_add_disk(struct mmc_blk_data *md)
2696{
2697	int ret;
2698	struct mmc_card *card = md->queue.card;
2699
2700	device_add_disk(md->parent, md->disk, NULL);
2701	md->force_ro.show = force_ro_show;
2702	md->force_ro.store = force_ro_store;
2703	sysfs_attr_init(&md->force_ro.attr);
2704	md->force_ro.attr.name = "force_ro";
2705	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2706	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2707	if (ret)
2708		goto force_ro_fail;
2709
2710	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2711	     card->ext_csd.boot_ro_lockable) {
2712		umode_t mode;
2713
2714		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2715			mode = S_IRUGO;
2716		else
2717			mode = S_IRUGO | S_IWUSR;
2718
2719		md->power_ro_lock.show = power_ro_lock_show;
2720		md->power_ro_lock.store = power_ro_lock_store;
2721		sysfs_attr_init(&md->power_ro_lock.attr);
2722		md->power_ro_lock.attr.mode = mode;
2723		md->power_ro_lock.attr.name =
2724					"ro_lock_until_next_power_on";
2725		ret = device_create_file(disk_to_dev(md->disk),
2726				&md->power_ro_lock);
2727		if (ret)
2728			goto power_ro_lock_fail;
2729	}
2730	return ret;
2731
2732power_ro_lock_fail:
2733	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2734force_ro_fail:
2735	del_gendisk(md->disk);
2736
2737	return ret;
2738}
2739
2740#ifdef CONFIG_DEBUG_FS
2741
2742static int mmc_dbg_card_status_get(void *data, u64 *val)
2743{
2744	struct mmc_card *card = data;
2745	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2746	struct mmc_queue *mq = &md->queue;
2747	struct request *req;
2748	int ret;
2749
2750	/* Ask the block layer about the card status */
2751	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2752	if (IS_ERR(req))
2753		return PTR_ERR(req);
2754	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2755	blk_execute_rq(mq->queue, NULL, req, 0);
2756	ret = req_to_mmc_queue_req(req)->drv_op_result;
2757	if (ret >= 0) {
2758		*val = ret;
2759		ret = 0;
2760	}
2761	blk_put_request(req);
2762
2763	return ret;
2764}
2765DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2766			 NULL, "%08llx\n");
2767
2768/* That is two digits * 512 + 1 for newline */
2769#define EXT_CSD_STR_LEN 1025
2770
2771static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2772{
2773	struct mmc_card *card = inode->i_private;
2774	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2775	struct mmc_queue *mq = &md->queue;
2776	struct request *req;
2777	char *buf;
2778	ssize_t n = 0;
2779	u8 *ext_csd;
2780	int err, i;
2781
2782	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2783	if (!buf)
2784		return -ENOMEM;
2785
2786	/* Ask the block layer for the EXT CSD */
2787	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2788	if (IS_ERR(req)) {
2789		err = PTR_ERR(req);
2790		goto out_free;
2791	}
2792	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2793	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2794	blk_execute_rq(mq->queue, NULL, req, 0);
2795	err = req_to_mmc_queue_req(req)->drv_op_result;
2796	blk_put_request(req);
2797	if (err) {
2798		pr_err("FAILED %d\n", err);
2799		goto out_free;
2800	}
2801
2802	for (i = 0; i < 512; i++)
2803		n += sprintf(buf + n, "%02x", ext_csd[i]);
2804	n += sprintf(buf + n, "\n");
2805
2806	if (n != EXT_CSD_STR_LEN) {
2807		err = -EINVAL;
2808		kfree(ext_csd);
2809		goto out_free;
2810	}
2811
2812	filp->private_data = buf;
2813	kfree(ext_csd);
2814	return 0;
2815
2816out_free:
2817	kfree(buf);
2818	return err;
2819}
2820
2821static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2822				size_t cnt, loff_t *ppos)
2823{
2824	char *buf = filp->private_data;
2825
2826	return simple_read_from_buffer(ubuf, cnt, ppos,
2827				       buf, EXT_CSD_STR_LEN);
2828}
2829
2830static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2831{
2832	kfree(file->private_data);
2833	return 0;
2834}
2835
2836static const struct file_operations mmc_dbg_ext_csd_fops = {
2837	.open		= mmc_ext_csd_open,
2838	.read		= mmc_ext_csd_read,
2839	.release	= mmc_ext_csd_release,
2840	.llseek		= default_llseek,
2841};
2842
2843static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2844{
2845	struct dentry *root;
2846
2847	if (!card->debugfs_root)
2848		return 0;
2849
2850	root = card->debugfs_root;
2851
2852	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2853		md->status_dentry =
2854			debugfs_create_file_unsafe("status", 0400, root,
2855						   card,
2856						   &mmc_dbg_card_status_fops);
2857		if (!md->status_dentry)
2858			return -EIO;
2859	}
2860
2861	if (mmc_card_mmc(card)) {
2862		md->ext_csd_dentry =
2863			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2864					    &mmc_dbg_ext_csd_fops);
2865		if (!md->ext_csd_dentry)
2866			return -EIO;
2867	}
2868
2869	return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873				   struct mmc_blk_data *md)
2874{
2875	if (!card->debugfs_root)
2876		return;
2877
2878	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2879		debugfs_remove(md->status_dentry);
2880		md->status_dentry = NULL;
2881	}
2882
2883	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2884		debugfs_remove(md->ext_csd_dentry);
2885		md->ext_csd_dentry = NULL;
2886	}
2887}
2888
2889#else
2890
2891static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2892{
2893	return 0;
2894}
2895
2896static void mmc_blk_remove_debugfs(struct mmc_card *card,
2897				   struct mmc_blk_data *md)
2898{
2899}
2900
2901#endif /* CONFIG_DEBUG_FS */
2902
2903static int mmc_blk_probe(struct mmc_card *card)
2904{
2905	struct mmc_blk_data *md, *part_md;
2906	char cap_str[10];
2907
2908	/*
2909	 * Check that the card supports the command class(es) we need.
2910	 */
2911	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2912		return -ENODEV;
2913
2914	mmc_fixup_device(card, mmc_blk_fixups);
2915
2916	card->complete_wq = alloc_workqueue("mmc_complete",
2917					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2918	if (unlikely(!card->complete_wq)) {
2919		pr_err("Failed to create mmc completion workqueue");
2920		return -ENOMEM;
2921	}
2922
2923	md = mmc_blk_alloc(card);
2924	if (IS_ERR(md))
2925		return PTR_ERR(md);
2926
2927	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2928			cap_str, sizeof(cap_str));
2929	pr_info("%s: %s %s %s %s\n",
2930		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2931		cap_str, md->read_only ? "(ro)" : "");
2932
2933	if (mmc_blk_alloc_parts(card, md))
2934		goto out;
2935
2936	dev_set_drvdata(&card->dev, md);
2937
2938	if (mmc_add_disk(md))
2939		goto out;
2940
2941	list_for_each_entry(part_md, &md->part, part) {
2942		if (mmc_add_disk(part_md))
2943			goto out;
2944	}
2945
2946	/* Add two debugfs entries */
2947	mmc_blk_add_debugfs(card, md);
2948
2949	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2950	pm_runtime_use_autosuspend(&card->dev);
2951
2952	/*
2953	 * Don't enable runtime PM for SD-combo cards here. Leave that
2954	 * decision to be taken during the SDIO init sequence instead.
2955	 */
2956	if (card->type != MMC_TYPE_SD_COMBO) {
2957		pm_runtime_set_active(&card->dev);
2958		pm_runtime_enable(&card->dev);
2959	}
2960
2961	return 0;
2962
2963 out:
2964	mmc_blk_remove_parts(card, md);
2965	mmc_blk_remove_req(md);
2966	return 0;
2967}
2968
2969static void mmc_blk_remove(struct mmc_card *card)
2970{
2971	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2972
2973	mmc_blk_remove_debugfs(card, md);
2974	mmc_blk_remove_parts(card, md);
2975	pm_runtime_get_sync(&card->dev);
2976	if (md->part_curr != md->part_type) {
2977		mmc_claim_host(card->host);
2978		mmc_blk_part_switch(card, md->part_type);
2979		mmc_release_host(card->host);
2980	}
2981	if (card->type != MMC_TYPE_SD_COMBO)
2982		pm_runtime_disable(&card->dev);
2983	pm_runtime_put_noidle(&card->dev);
2984	mmc_blk_remove_req(md);
2985	dev_set_drvdata(&card->dev, NULL);
2986	destroy_workqueue(card->complete_wq);
2987}
2988
2989static int _mmc_blk_suspend(struct mmc_card *card)
2990{
2991	struct mmc_blk_data *part_md;
2992	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2993
2994	if (md) {
2995		mmc_queue_suspend(&md->queue);
2996		list_for_each_entry(part_md, &md->part, part) {
2997			mmc_queue_suspend(&part_md->queue);
2998		}
2999	}
3000	return 0;
3001}
3002
3003static void mmc_blk_shutdown(struct mmc_card *card)
3004{
3005	_mmc_blk_suspend(card);
3006}
3007
3008#ifdef CONFIG_PM_SLEEP
3009static int mmc_blk_suspend(struct device *dev)
3010{
3011	struct mmc_card *card = mmc_dev_to_card(dev);
3012
3013	return _mmc_blk_suspend(card);
3014}
3015
3016static int mmc_blk_resume(struct device *dev)
3017{
3018	struct mmc_blk_data *part_md;
3019	struct mmc_blk_data *md = dev_get_drvdata(dev);
3020
3021	if (md) {
3022		/*
3023		 * Resume involves the card going into idle state,
3024		 * so current partition is always the main one.
3025		 */
3026		md->part_curr = md->part_type;
3027		mmc_queue_resume(&md->queue);
3028		list_for_each_entry(part_md, &md->part, part) {
3029			mmc_queue_resume(&part_md->queue);
3030		}
3031	}
3032	return 0;
3033}
3034#endif
3035
3036static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3037
3038static struct mmc_driver mmc_driver = {
3039	.drv		= {
3040		.name	= "mmcblk",
3041		.pm	= &mmc_blk_pm_ops,
3042	},
3043	.probe		= mmc_blk_probe,
3044	.remove		= mmc_blk_remove,
3045	.shutdown	= mmc_blk_shutdown,
3046};
3047
3048static int __init mmc_blk_init(void)
3049{
3050	int res;
3051
3052	res  = bus_register(&mmc_rpmb_bus_type);
3053	if (res < 0) {
3054		pr_err("mmcblk: could not register RPMB bus type\n");
3055		return res;
3056	}
3057	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3058	if (res < 0) {
3059		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3060		goto out_bus_unreg;
3061	}
3062
3063	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3064		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3065
3066	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3067
3068	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3069	if (res)
3070		goto out_chrdev_unreg;
3071
3072	res = mmc_register_driver(&mmc_driver);
3073	if (res)
3074		goto out_blkdev_unreg;
3075
3076	return 0;
3077
3078out_blkdev_unreg:
3079	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3080out_chrdev_unreg:
3081	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3082out_bus_unreg:
3083	bus_unregister(&mmc_rpmb_bus_type);
3084	return res;
3085}
3086
3087static void __exit mmc_blk_exit(void)
3088{
3089	mmc_unregister_driver(&mmc_driver);
3090	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3091	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3092	bus_unregister(&mmc_rpmb_bus_type);
3093}
3094
3095module_init(mmc_blk_init);
3096module_exit(mmc_blk_exit);
3097
3098MODULE_LICENSE("GPL");
3099MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3100