Loading...
Note: File does not exist in v4.6.
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/cdev.h>
32#include <linux/mutex.h>
33#include <linux/scatterlist.h>
34#include <linux/string_helpers.h>
35#include <linux/delay.h>
36#include <linux/capability.h>
37#include <linux/compat.h>
38#include <linux/pm_runtime.h>
39#include <linux/idr.h>
40#include <linux/debugfs.h>
41
42#include <linux/mmc/ioctl.h>
43#include <linux/mmc/card.h>
44#include <linux/mmc/host.h>
45#include <linux/mmc/mmc.h>
46#include <linux/mmc/sd.h>
47
48#include <linux/uaccess.h>
49
50#include "queue.h"
51#include "block.h"
52#include "core.h"
53#include "card.h"
54#include "host.h"
55#include "bus.h"
56#include "mmc_ops.h"
57#include "quirks.h"
58#include "sd_ops.h"
59
60MODULE_ALIAS("mmc:block");
61#ifdef MODULE_PARAM_PREFIX
62#undef MODULE_PARAM_PREFIX
63#endif
64#define MODULE_PARAM_PREFIX "mmcblk."
65
66/*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72#define MMC_BLK_TIMEOUT_MS (10 * 1000)
73#define MMC_SANITIZE_REQ_TIMEOUT 240000
74#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76
77#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
78 (rq_data_dir(req) == WRITE))
79static DEFINE_MUTEX(block_mutex);
80
81/*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87/*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92static int max_devices;
93
94#define MAX_DEVICES 256
95
96static DEFINE_IDA(mmc_blk_ida);
97static DEFINE_IDA(mmc_rpmb_ida);
98
99/*
100 * There is one mmc_blk_data per slot.
101 */
102struct mmc_blk_data {
103 struct device *parent;
104 struct gendisk *disk;
105 struct mmc_queue queue;
106 struct list_head part;
107 struct list_head rpmbs;
108
109 unsigned int flags;
110#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
111#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
112
113 unsigned int usage;
114 unsigned int read_only;
115 unsigned int part_type;
116 unsigned int reset_done;
117#define MMC_BLK_READ BIT(0)
118#define MMC_BLK_WRITE BIT(1)
119#define MMC_BLK_DISCARD BIT(2)
120#define MMC_BLK_SECDISCARD BIT(3)
121#define MMC_BLK_CQE_RECOVERY BIT(4)
122
123 /*
124 * Only set in main mmc_blk_data associated
125 * with mmc_card with dev_set_drvdata, and keeps
126 * track of the current selected device partition.
127 */
128 unsigned int part_curr;
129 struct device_attribute force_ro;
130 struct device_attribute power_ro_lock;
131 int area_type;
132
133 /* debugfs files (only in main mmc_blk_data) */
134 struct dentry *status_dentry;
135 struct dentry *ext_csd_dentry;
136};
137
138/* Device type for RPMB character devices */
139static dev_t mmc_rpmb_devt;
140
141/* Bus type for RPMB character devices */
142static struct bus_type mmc_rpmb_bus_type = {
143 .name = "mmc_rpmb",
144};
145
146/**
147 * struct mmc_rpmb_data - special RPMB device type for these areas
148 * @dev: the device for the RPMB area
149 * @chrdev: character device for the RPMB area
150 * @id: unique device ID number
151 * @part_index: partition index (0 on first)
152 * @md: parent MMC block device
153 * @node: list item, so we can put this device on a list
154 */
155struct mmc_rpmb_data {
156 struct device dev;
157 struct cdev chrdev;
158 int id;
159 unsigned int part_index;
160 struct mmc_blk_data *md;
161 struct list_head node;
162};
163
164static DEFINE_MUTEX(open_lock);
165
166module_param(perdev_minors, int, 0444);
167MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168
169static inline int mmc_blk_part_switch(struct mmc_card *card,
170 unsigned int part_type);
171
172static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
173{
174 struct mmc_blk_data *md;
175
176 mutex_lock(&open_lock);
177 md = disk->private_data;
178 if (md && md->usage == 0)
179 md = NULL;
180 if (md)
181 md->usage++;
182 mutex_unlock(&open_lock);
183
184 return md;
185}
186
187static inline int mmc_get_devidx(struct gendisk *disk)
188{
189 int devidx = disk->first_minor / perdev_minors;
190 return devidx;
191}
192
193static void mmc_blk_put(struct mmc_blk_data *md)
194{
195 mutex_lock(&open_lock);
196 md->usage--;
197 if (md->usage == 0) {
198 int devidx = mmc_get_devidx(md->disk);
199 blk_put_queue(md->queue.queue);
200 ida_simple_remove(&mmc_blk_ida, devidx);
201 put_disk(md->disk);
202 kfree(md);
203 }
204 mutex_unlock(&open_lock);
205}
206
207static ssize_t power_ro_lock_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
209{
210 int ret;
211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 struct mmc_card *card = md->queue.card;
213 int locked = 0;
214
215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 locked = 2;
217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 locked = 1;
219
220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
221
222 mmc_blk_put(md);
223
224 return ret;
225}
226
227static ssize_t power_ro_lock_store(struct device *dev,
228 struct device_attribute *attr, const char *buf, size_t count)
229{
230 int ret;
231 struct mmc_blk_data *md, *part_md;
232 struct mmc_queue *mq;
233 struct request *req;
234 unsigned long set;
235
236 if (kstrtoul(buf, 0, &set))
237 return -EINVAL;
238
239 if (set != 1)
240 return count;
241
242 md = mmc_blk_get(dev_to_disk(dev));
243 mq = &md->queue;
244
245 /* Dispatch locking to the block layer */
246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
247 if (IS_ERR(req)) {
248 count = PTR_ERR(req);
249 goto out_put;
250 }
251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 blk_execute_rq(mq->queue, NULL, req, 0);
253 ret = req_to_mmc_queue_req(req)->drv_op_result;
254 blk_put_request(req);
255
256 if (!ret) {
257 pr_info("%s: Locking boot partition ro until next power on\n",
258 md->disk->disk_name);
259 set_disk_ro(md->disk, 1);
260
261 list_for_each_entry(part_md, &md->part, part)
262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 set_disk_ro(part_md->disk, 1);
265 }
266 }
267out_put:
268 mmc_blk_put(md);
269 return count;
270}
271
272static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 char *buf)
274{
275 int ret;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277
278 ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 get_disk_ro(dev_to_disk(dev)) ^
280 md->read_only);
281 mmc_blk_put(md);
282 return ret;
283}
284
285static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 const char *buf, size_t count)
287{
288 int ret;
289 char *end;
290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 unsigned long set = simple_strtoul(buf, &end, 0);
292 if (end == buf) {
293 ret = -EINVAL;
294 goto out;
295 }
296
297 set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 ret = count;
299out:
300 mmc_blk_put(md);
301 return ret;
302}
303
304static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
305{
306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 int ret = -ENXIO;
308
309 mutex_lock(&block_mutex);
310 if (md) {
311 if (md->usage == 2)
312 check_disk_change(bdev);
313 ret = 0;
314
315 if ((mode & FMODE_WRITE) && md->read_only) {
316 mmc_blk_put(md);
317 ret = -EROFS;
318 }
319 }
320 mutex_unlock(&block_mutex);
321
322 return ret;
323}
324
325static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
326{
327 struct mmc_blk_data *md = disk->private_data;
328
329 mutex_lock(&block_mutex);
330 mmc_blk_put(md);
331 mutex_unlock(&block_mutex);
332}
333
334static int
335mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
336{
337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 geo->heads = 4;
339 geo->sectors = 16;
340 return 0;
341}
342
343struct mmc_blk_ioc_data {
344 struct mmc_ioc_cmd ic;
345 unsigned char *buf;
346 u64 buf_bytes;
347 struct mmc_rpmb_data *rpmb;
348};
349
350static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 struct mmc_ioc_cmd __user *user)
352{
353 struct mmc_blk_ioc_data *idata;
354 int err;
355
356 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 if (!idata) {
358 err = -ENOMEM;
359 goto out;
360 }
361
362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 err = -EFAULT;
364 goto idata_err;
365 }
366
367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 err = -EOVERFLOW;
370 goto idata_err;
371 }
372
373 if (!idata->buf_bytes) {
374 idata->buf = NULL;
375 return idata;
376 }
377
378 idata->buf = memdup_user((void __user *)(unsigned long)
379 idata->ic.data_ptr, idata->buf_bytes);
380 if (IS_ERR(idata->buf)) {
381 err = PTR_ERR(idata->buf);
382 goto idata_err;
383 }
384
385 return idata;
386
387idata_err:
388 kfree(idata);
389out:
390 return ERR_PTR(err);
391}
392
393static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 struct mmc_blk_ioc_data *idata)
395{
396 struct mmc_ioc_cmd *ic = &idata->ic;
397
398 if (copy_to_user(&(ic_ptr->response), ic->response,
399 sizeof(ic->response)))
400 return -EFAULT;
401
402 if (!idata->ic.write_flag) {
403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 idata->buf, idata->buf_bytes))
405 return -EFAULT;
406 }
407
408 return 0;
409}
410
411static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
412 u32 retries_max)
413{
414 int err;
415 u32 retry_count = 0;
416
417 if (!status || !retries_max)
418 return -EINVAL;
419
420 do {
421 err = __mmc_send_status(card, status, 5);
422 if (err)
423 break;
424
425 if (!R1_STATUS(*status) &&
426 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
427 break; /* RPMB programming operation complete */
428
429 /*
430 * Rechedule to give the MMC device a chance to continue
431 * processing the previous command without being polled too
432 * frequently.
433 */
434 usleep_range(1000, 5000);
435 } while (++retry_count < retries_max);
436
437 if (retry_count == retries_max)
438 err = -EPERM;
439
440 return err;
441}
442
443static int ioctl_do_sanitize(struct mmc_card *card)
444{
445 int err;
446
447 if (!mmc_can_sanitize(card)) {
448 pr_warn("%s: %s - SANITIZE is not supported\n",
449 mmc_hostname(card->host), __func__);
450 err = -EOPNOTSUPP;
451 goto out;
452 }
453
454 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
455 mmc_hostname(card->host), __func__);
456
457 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
458 EXT_CSD_SANITIZE_START, 1,
459 MMC_SANITIZE_REQ_TIMEOUT);
460
461 if (err)
462 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
463 mmc_hostname(card->host), __func__, err);
464
465 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
466 __func__);
467out:
468 return err;
469}
470
471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data *idata)
473{
474 struct mmc_command cmd = {}, sbc = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 int err;
479 unsigned int target_part;
480 u32 status = 0;
481
482 if (!card || !md || !idata)
483 return -EINVAL;
484
485 /*
486 * The RPMB accesses comes in from the character device, so we
487 * need to target these explicitly. Else we just target the
488 * partition type for the block device the ioctl() was issued
489 * on.
490 */
491 if (idata->rpmb) {
492 /* Support multiple RPMB partitions */
493 target_part = idata->rpmb->part_index;
494 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
495 } else {
496 target_part = md->part_type;
497 }
498
499 cmd.opcode = idata->ic.opcode;
500 cmd.arg = idata->ic.arg;
501 cmd.flags = idata->ic.flags;
502
503 if (idata->buf_bytes) {
504 data.sg = &sg;
505 data.sg_len = 1;
506 data.blksz = idata->ic.blksz;
507 data.blocks = idata->ic.blocks;
508
509 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
510
511 if (idata->ic.write_flag)
512 data.flags = MMC_DATA_WRITE;
513 else
514 data.flags = MMC_DATA_READ;
515
516 /* data.flags must already be set before doing this. */
517 mmc_set_data_timeout(&data, card);
518
519 /* Allow overriding the timeout_ns for empirical tuning. */
520 if (idata->ic.data_timeout_ns)
521 data.timeout_ns = idata->ic.data_timeout_ns;
522
523 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
524 /*
525 * Pretend this is a data transfer and rely on the
526 * host driver to compute timeout. When all host
527 * drivers support cmd.cmd_timeout for R1B, this
528 * can be changed to:
529 *
530 * mrq.data = NULL;
531 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
532 */
533 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
534 }
535
536 mrq.data = &data;
537 }
538
539 mrq.cmd = &cmd;
540
541 err = mmc_blk_part_switch(card, target_part);
542 if (err)
543 return err;
544
545 if (idata->ic.is_acmd) {
546 err = mmc_app_cmd(card->host, card);
547 if (err)
548 return err;
549 }
550
551 if (idata->rpmb) {
552 sbc.opcode = MMC_SET_BLOCK_COUNT;
553 /*
554 * We don't do any blockcount validation because the max size
555 * may be increased by a future standard. We just copy the
556 * 'Reliable Write' bit here.
557 */
558 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
559 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
560 mrq.sbc = &sbc;
561 }
562
563 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
564 (cmd.opcode == MMC_SWITCH)) {
565 err = ioctl_do_sanitize(card);
566
567 if (err)
568 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
569 __func__, err);
570
571 return err;
572 }
573
574 mmc_wait_for_req(card->host, &mrq);
575
576 if (cmd.error) {
577 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
578 __func__, cmd.error);
579 return cmd.error;
580 }
581 if (data.error) {
582 dev_err(mmc_dev(card->host), "%s: data error %d\n",
583 __func__, data.error);
584 return data.error;
585 }
586
587 /*
588 * Make sure the cache of the PARTITION_CONFIG register and
589 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
590 * changed it successfully.
591 */
592 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
593 (cmd.opcode == MMC_SWITCH)) {
594 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
595 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
596
597 /*
598 * Update cache so the next mmc_blk_part_switch call operates
599 * on up-to-date data.
600 */
601 card->ext_csd.part_config = value;
602 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
603 }
604
605 /*
606 * According to the SD specs, some commands require a delay after
607 * issuing the command.
608 */
609 if (idata->ic.postsleep_min_us)
610 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
611
612 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
613
614 if (idata->rpmb) {
615 /*
616 * Ensure RPMB command has completed by polling CMD13
617 * "Send Status".
618 */
619 err = ioctl_rpmb_card_status_poll(card, &status, 5);
620 if (err)
621 dev_err(mmc_dev(card->host),
622 "%s: Card Status=0x%08X, error %d\n",
623 __func__, status, err);
624 }
625
626 return err;
627}
628
629static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
630 struct mmc_ioc_cmd __user *ic_ptr,
631 struct mmc_rpmb_data *rpmb)
632{
633 struct mmc_blk_ioc_data *idata;
634 struct mmc_blk_ioc_data *idatas[1];
635 struct mmc_queue *mq;
636 struct mmc_card *card;
637 int err = 0, ioc_err = 0;
638 struct request *req;
639
640 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
641 if (IS_ERR(idata))
642 return PTR_ERR(idata);
643 /* This will be NULL on non-RPMB ioctl():s */
644 idata->rpmb = rpmb;
645
646 card = md->queue.card;
647 if (IS_ERR(card)) {
648 err = PTR_ERR(card);
649 goto cmd_done;
650 }
651
652 /*
653 * Dispatch the ioctl() into the block request queue.
654 */
655 mq = &md->queue;
656 req = blk_get_request(mq->queue,
657 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
658 if (IS_ERR(req)) {
659 err = PTR_ERR(req);
660 goto cmd_done;
661 }
662 idatas[0] = idata;
663 req_to_mmc_queue_req(req)->drv_op =
664 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
665 req_to_mmc_queue_req(req)->drv_op_data = idatas;
666 req_to_mmc_queue_req(req)->ioc_count = 1;
667 blk_execute_rq(mq->queue, NULL, req, 0);
668 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
669 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
670 blk_put_request(req);
671
672cmd_done:
673 kfree(idata->buf);
674 kfree(idata);
675 return ioc_err ? ioc_err : err;
676}
677
678static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
679 struct mmc_ioc_multi_cmd __user *user,
680 struct mmc_rpmb_data *rpmb)
681{
682 struct mmc_blk_ioc_data **idata = NULL;
683 struct mmc_ioc_cmd __user *cmds = user->cmds;
684 struct mmc_card *card;
685 struct mmc_queue *mq;
686 int i, err = 0, ioc_err = 0;
687 __u64 num_of_cmds;
688 struct request *req;
689
690 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
691 sizeof(num_of_cmds)))
692 return -EFAULT;
693
694 if (!num_of_cmds)
695 return 0;
696
697 if (num_of_cmds > MMC_IOC_MAX_CMDS)
698 return -EINVAL;
699
700 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
701 if (!idata)
702 return -ENOMEM;
703
704 for (i = 0; i < num_of_cmds; i++) {
705 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
706 if (IS_ERR(idata[i])) {
707 err = PTR_ERR(idata[i]);
708 num_of_cmds = i;
709 goto cmd_err;
710 }
711 /* This will be NULL on non-RPMB ioctl():s */
712 idata[i]->rpmb = rpmb;
713 }
714
715 card = md->queue.card;
716 if (IS_ERR(card)) {
717 err = PTR_ERR(card);
718 goto cmd_err;
719 }
720
721
722 /*
723 * Dispatch the ioctl()s into the block request queue.
724 */
725 mq = &md->queue;
726 req = blk_get_request(mq->queue,
727 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
728 if (IS_ERR(req)) {
729 err = PTR_ERR(req);
730 goto cmd_err;
731 }
732 req_to_mmc_queue_req(req)->drv_op =
733 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
734 req_to_mmc_queue_req(req)->drv_op_data = idata;
735 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
736 blk_execute_rq(mq->queue, NULL, req, 0);
737 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
738
739 /* copy to user if data and response */
740 for (i = 0; i < num_of_cmds && !err; i++)
741 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
742
743 blk_put_request(req);
744
745cmd_err:
746 for (i = 0; i < num_of_cmds; i++) {
747 kfree(idata[i]->buf);
748 kfree(idata[i]);
749 }
750 kfree(idata);
751 return ioc_err ? ioc_err : err;
752}
753
754static int mmc_blk_check_blkdev(struct block_device *bdev)
755{
756 /*
757 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
758 * whole block device, not on a partition. This prevents overspray
759 * between sibling partitions.
760 */
761 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
762 return -EPERM;
763 return 0;
764}
765
766static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
767 unsigned int cmd, unsigned long arg)
768{
769 struct mmc_blk_data *md;
770 int ret;
771
772 switch (cmd) {
773 case MMC_IOC_CMD:
774 ret = mmc_blk_check_blkdev(bdev);
775 if (ret)
776 return ret;
777 md = mmc_blk_get(bdev->bd_disk);
778 if (!md)
779 return -EINVAL;
780 ret = mmc_blk_ioctl_cmd(md,
781 (struct mmc_ioc_cmd __user *)arg,
782 NULL);
783 mmc_blk_put(md);
784 return ret;
785 case MMC_IOC_MULTI_CMD:
786 ret = mmc_blk_check_blkdev(bdev);
787 if (ret)
788 return ret;
789 md = mmc_blk_get(bdev->bd_disk);
790 if (!md)
791 return -EINVAL;
792 ret = mmc_blk_ioctl_multi_cmd(md,
793 (struct mmc_ioc_multi_cmd __user *)arg,
794 NULL);
795 mmc_blk_put(md);
796 return ret;
797 default:
798 return -EINVAL;
799 }
800}
801
802#ifdef CONFIG_COMPAT
803static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
804 unsigned int cmd, unsigned long arg)
805{
806 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
807}
808#endif
809
810static const struct block_device_operations mmc_bdops = {
811 .open = mmc_blk_open,
812 .release = mmc_blk_release,
813 .getgeo = mmc_blk_getgeo,
814 .owner = THIS_MODULE,
815 .ioctl = mmc_blk_ioctl,
816#ifdef CONFIG_COMPAT
817 .compat_ioctl = mmc_blk_compat_ioctl,
818#endif
819};
820
821static int mmc_blk_part_switch_pre(struct mmc_card *card,
822 unsigned int part_type)
823{
824 int ret = 0;
825
826 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
827 if (card->ext_csd.cmdq_en) {
828 ret = mmc_cmdq_disable(card);
829 if (ret)
830 return ret;
831 }
832 mmc_retune_pause(card->host);
833 }
834
835 return ret;
836}
837
838static int mmc_blk_part_switch_post(struct mmc_card *card,
839 unsigned int part_type)
840{
841 int ret = 0;
842
843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 mmc_retune_unpause(card->host);
845 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
846 ret = mmc_cmdq_enable(card);
847 }
848
849 return ret;
850}
851
852static inline int mmc_blk_part_switch(struct mmc_card *card,
853 unsigned int part_type)
854{
855 int ret = 0;
856 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
857
858 if (main_md->part_curr == part_type)
859 return 0;
860
861 if (mmc_card_mmc(card)) {
862 u8 part_config = card->ext_csd.part_config;
863
864 ret = mmc_blk_part_switch_pre(card, part_type);
865 if (ret)
866 return ret;
867
868 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
869 part_config |= part_type;
870
871 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
872 EXT_CSD_PART_CONFIG, part_config,
873 card->ext_csd.part_time);
874 if (ret) {
875 mmc_blk_part_switch_post(card, part_type);
876 return ret;
877 }
878
879 card->ext_csd.part_config = part_config;
880
881 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
882 }
883
884 main_md->part_curr = part_type;
885 return ret;
886}
887
888static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
889{
890 int err;
891 u32 result;
892 __be32 *blocks;
893
894 struct mmc_request mrq = {};
895 struct mmc_command cmd = {};
896 struct mmc_data data = {};
897
898 struct scatterlist sg;
899
900 cmd.opcode = MMC_APP_CMD;
901 cmd.arg = card->rca << 16;
902 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
903
904 err = mmc_wait_for_cmd(card->host, &cmd, 0);
905 if (err)
906 return err;
907 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
908 return -EIO;
909
910 memset(&cmd, 0, sizeof(struct mmc_command));
911
912 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
913 cmd.arg = 0;
914 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
915
916 data.blksz = 4;
917 data.blocks = 1;
918 data.flags = MMC_DATA_READ;
919 data.sg = &sg;
920 data.sg_len = 1;
921 mmc_set_data_timeout(&data, card);
922
923 mrq.cmd = &cmd;
924 mrq.data = &data;
925
926 blocks = kmalloc(4, GFP_KERNEL);
927 if (!blocks)
928 return -ENOMEM;
929
930 sg_init_one(&sg, blocks, 4);
931
932 mmc_wait_for_req(card->host, &mrq);
933
934 result = ntohl(*blocks);
935 kfree(blocks);
936
937 if (cmd.error || data.error)
938 return -EIO;
939
940 *written_blocks = result;
941
942 return 0;
943}
944
945static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
946{
947 if (host->actual_clock)
948 return host->actual_clock / 1000;
949
950 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
951 if (host->ios.clock)
952 return host->ios.clock / 2000;
953
954 /* How can there be no clock */
955 WARN_ON_ONCE(1);
956 return 100; /* 100 kHz is minimum possible value */
957}
958
959static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
960 struct mmc_data *data)
961{
962 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
963 unsigned int khz;
964
965 if (data->timeout_clks) {
966 khz = mmc_blk_clock_khz(host);
967 ms += DIV_ROUND_UP(data->timeout_clks, khz);
968 }
969
970 return ms;
971}
972
973static inline bool mmc_blk_in_tran_state(u32 status)
974{
975 /*
976 * Some cards mishandle the status bits, so make sure to check both the
977 * busy indication and the card state.
978 */
979 return status & R1_READY_FOR_DATA &&
980 (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
981}
982
983static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
984 struct request *req, u32 *resp_errs)
985{
986 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
987 int err = 0;
988 u32 status;
989
990 do {
991 bool done = time_after(jiffies, timeout);
992
993 err = __mmc_send_status(card, &status, 5);
994 if (err) {
995 pr_err("%s: error %d requesting status\n",
996 req->rq_disk->disk_name, err);
997 return err;
998 }
999
1000 /* Accumulate any response error bits seen */
1001 if (resp_errs)
1002 *resp_errs |= status;
1003
1004 /*
1005 * Timeout if the device never becomes ready for data and never
1006 * leaves the program state.
1007 */
1008 if (done) {
1009 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1010 mmc_hostname(card->host),
1011 req->rq_disk->disk_name, __func__, status);
1012 return -ETIMEDOUT;
1013 }
1014
1015 /*
1016 * Some cards mishandle the status bits,
1017 * so make sure to check both the busy
1018 * indication and the card state.
1019 */
1020 } while (!mmc_blk_in_tran_state(status));
1021
1022 return err;
1023}
1024
1025static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1026 int type)
1027{
1028 int err;
1029
1030 if (md->reset_done & type)
1031 return -EEXIST;
1032
1033 md->reset_done |= type;
1034 err = mmc_hw_reset(host);
1035 /* Ensure we switch back to the correct partition */
1036 if (err != -EOPNOTSUPP) {
1037 struct mmc_blk_data *main_md =
1038 dev_get_drvdata(&host->card->dev);
1039 int part_err;
1040
1041 main_md->part_curr = main_md->part_type;
1042 part_err = mmc_blk_part_switch(host->card, md->part_type);
1043 if (part_err) {
1044 /*
1045 * We have failed to get back into the correct
1046 * partition, so we need to abort the whole request.
1047 */
1048 return -ENODEV;
1049 }
1050 }
1051 return err;
1052}
1053
1054static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1055{
1056 md->reset_done &= ~type;
1057}
1058
1059/*
1060 * The non-block commands come back from the block layer after it queued it and
1061 * processed it with all other requests and then they get issued in this
1062 * function.
1063 */
1064static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1065{
1066 struct mmc_queue_req *mq_rq;
1067 struct mmc_card *card = mq->card;
1068 struct mmc_blk_data *md = mq->blkdata;
1069 struct mmc_blk_ioc_data **idata;
1070 bool rpmb_ioctl;
1071 u8 **ext_csd;
1072 u32 status;
1073 int ret;
1074 int i;
1075
1076 mq_rq = req_to_mmc_queue_req(req);
1077 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1078
1079 switch (mq_rq->drv_op) {
1080 case MMC_DRV_OP_IOCTL:
1081 case MMC_DRV_OP_IOCTL_RPMB:
1082 idata = mq_rq->drv_op_data;
1083 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1084 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1085 if (ret)
1086 break;
1087 }
1088 /* Always switch back to main area after RPMB access */
1089 if (rpmb_ioctl)
1090 mmc_blk_part_switch(card, 0);
1091 break;
1092 case MMC_DRV_OP_BOOT_WP:
1093 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1094 card->ext_csd.boot_ro_lock |
1095 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1096 card->ext_csd.part_time);
1097 if (ret)
1098 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1099 md->disk->disk_name, ret);
1100 else
1101 card->ext_csd.boot_ro_lock |=
1102 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1103 break;
1104 case MMC_DRV_OP_GET_CARD_STATUS:
1105 ret = mmc_send_status(card, &status);
1106 if (!ret)
1107 ret = status;
1108 break;
1109 case MMC_DRV_OP_GET_EXT_CSD:
1110 ext_csd = mq_rq->drv_op_data;
1111 ret = mmc_get_ext_csd(card, ext_csd);
1112 break;
1113 default:
1114 pr_err("%s: unknown driver specific operation\n",
1115 md->disk->disk_name);
1116 ret = -EINVAL;
1117 break;
1118 }
1119 mq_rq->drv_op_result = ret;
1120 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1121}
1122
1123static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1124{
1125 struct mmc_blk_data *md = mq->blkdata;
1126 struct mmc_card *card = md->queue.card;
1127 unsigned int from, nr;
1128 int err = 0, type = MMC_BLK_DISCARD;
1129 blk_status_t status = BLK_STS_OK;
1130
1131 if (!mmc_can_erase(card)) {
1132 status = BLK_STS_NOTSUPP;
1133 goto fail;
1134 }
1135
1136 from = blk_rq_pos(req);
1137 nr = blk_rq_sectors(req);
1138
1139 do {
1140 err = 0;
1141 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1142 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1143 INAND_CMD38_ARG_EXT_CSD,
1144 card->erase_arg == MMC_TRIM_ARG ?
1145 INAND_CMD38_ARG_TRIM :
1146 INAND_CMD38_ARG_ERASE,
1147 0);
1148 }
1149 if (!err)
1150 err = mmc_erase(card, from, nr, card->erase_arg);
1151 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1152 if (err)
1153 status = BLK_STS_IOERR;
1154 else
1155 mmc_blk_reset_success(md, type);
1156fail:
1157 blk_mq_end_request(req, status);
1158}
1159
1160static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1161 struct request *req)
1162{
1163 struct mmc_blk_data *md = mq->blkdata;
1164 struct mmc_card *card = md->queue.card;
1165 unsigned int from, nr, arg;
1166 int err = 0, type = MMC_BLK_SECDISCARD;
1167 blk_status_t status = BLK_STS_OK;
1168
1169 if (!(mmc_can_secure_erase_trim(card))) {
1170 status = BLK_STS_NOTSUPP;
1171 goto out;
1172 }
1173
1174 from = blk_rq_pos(req);
1175 nr = blk_rq_sectors(req);
1176
1177 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1178 arg = MMC_SECURE_TRIM1_ARG;
1179 else
1180 arg = MMC_SECURE_ERASE_ARG;
1181
1182retry:
1183 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1184 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1185 INAND_CMD38_ARG_EXT_CSD,
1186 arg == MMC_SECURE_TRIM1_ARG ?
1187 INAND_CMD38_ARG_SECTRIM1 :
1188 INAND_CMD38_ARG_SECERASE,
1189 0);
1190 if (err)
1191 goto out_retry;
1192 }
1193
1194 err = mmc_erase(card, from, nr, arg);
1195 if (err == -EIO)
1196 goto out_retry;
1197 if (err) {
1198 status = BLK_STS_IOERR;
1199 goto out;
1200 }
1201
1202 if (arg == MMC_SECURE_TRIM1_ARG) {
1203 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1204 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1205 INAND_CMD38_ARG_EXT_CSD,
1206 INAND_CMD38_ARG_SECTRIM2,
1207 0);
1208 if (err)
1209 goto out_retry;
1210 }
1211
1212 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1213 if (err == -EIO)
1214 goto out_retry;
1215 if (err) {
1216 status = BLK_STS_IOERR;
1217 goto out;
1218 }
1219 }
1220
1221out_retry:
1222 if (err && !mmc_blk_reset(md, card->host, type))
1223 goto retry;
1224 if (!err)
1225 mmc_blk_reset_success(md, type);
1226out:
1227 blk_mq_end_request(req, status);
1228}
1229
1230static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1231{
1232 struct mmc_blk_data *md = mq->blkdata;
1233 struct mmc_card *card = md->queue.card;
1234 int ret = 0;
1235
1236 ret = mmc_flush_cache(card);
1237 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1238}
1239
1240/*
1241 * Reformat current write as a reliable write, supporting
1242 * both legacy and the enhanced reliable write MMC cards.
1243 * In each transfer we'll handle only as much as a single
1244 * reliable write can handle, thus finish the request in
1245 * partial completions.
1246 */
1247static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1248 struct mmc_card *card,
1249 struct request *req)
1250{
1251 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1252 /* Legacy mode imposes restrictions on transfers. */
1253 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1254 brq->data.blocks = 1;
1255
1256 if (brq->data.blocks > card->ext_csd.rel_sectors)
1257 brq->data.blocks = card->ext_csd.rel_sectors;
1258 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1259 brq->data.blocks = 1;
1260 }
1261}
1262
1263#define CMD_ERRORS_EXCL_OOR \
1264 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1265 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1266 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1267 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1268 R1_CC_ERROR | /* Card controller error */ \
1269 R1_ERROR) /* General/unknown error */
1270
1271#define CMD_ERRORS \
1272 (CMD_ERRORS_EXCL_OOR | \
1273 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1274
1275static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1276{
1277 u32 val;
1278
1279 /*
1280 * Per the SD specification(physical layer version 4.10)[1],
1281 * section 4.3.3, it explicitly states that "When the last
1282 * block of user area is read using CMD18, the host should
1283 * ignore OUT_OF_RANGE error that may occur even the sequence
1284 * is correct". And JESD84-B51 for eMMC also has a similar
1285 * statement on section 6.8.3.
1286 *
1287 * Multiple block read/write could be done by either predefined
1288 * method, namely CMD23, or open-ending mode. For open-ending mode,
1289 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1290 *
1291 * However the spec[1] doesn't tell us whether we should also
1292 * ignore that for predefined method. But per the spec[1], section
1293 * 4.15 Set Block Count Command, it says"If illegal block count
1294 * is set, out of range error will be indicated during read/write
1295 * operation (For example, data transfer is stopped at user area
1296 * boundary)." In another word, we could expect a out of range error
1297 * in the response for the following CMD18/25. And if argument of
1298 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1299 * we could also expect to get a -ETIMEDOUT or any error number from
1300 * the host drivers due to missing data response(for write)/data(for
1301 * read), as the cards will stop the data transfer by itself per the
1302 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1303 */
1304
1305 if (!brq->stop.error) {
1306 bool oor_with_open_end;
1307 /* If there is no error yet, check R1 response */
1308
1309 val = brq->stop.resp[0] & CMD_ERRORS;
1310 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1311
1312 if (val && !oor_with_open_end)
1313 brq->stop.error = -EIO;
1314 }
1315}
1316
1317static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1318 int disable_multi, bool *do_rel_wr_p,
1319 bool *do_data_tag_p)
1320{
1321 struct mmc_blk_data *md = mq->blkdata;
1322 struct mmc_card *card = md->queue.card;
1323 struct mmc_blk_request *brq = &mqrq->brq;
1324 struct request *req = mmc_queue_req_to_req(mqrq);
1325 bool do_rel_wr, do_data_tag;
1326
1327 /*
1328 * Reliable writes are used to implement Forced Unit Access and
1329 * are supported only on MMCs.
1330 */
1331 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1332 rq_data_dir(req) == WRITE &&
1333 (md->flags & MMC_BLK_REL_WR);
1334
1335 memset(brq, 0, sizeof(struct mmc_blk_request));
1336
1337 brq->mrq.data = &brq->data;
1338 brq->mrq.tag = req->tag;
1339
1340 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1341 brq->stop.arg = 0;
1342
1343 if (rq_data_dir(req) == READ) {
1344 brq->data.flags = MMC_DATA_READ;
1345 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1346 } else {
1347 brq->data.flags = MMC_DATA_WRITE;
1348 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1349 }
1350
1351 brq->data.blksz = 512;
1352 brq->data.blocks = blk_rq_sectors(req);
1353 brq->data.blk_addr = blk_rq_pos(req);
1354
1355 /*
1356 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1357 * The eMMC will give "high" priority tasks priority over "simple"
1358 * priority tasks. Here we always set "simple" priority by not setting
1359 * MMC_DATA_PRIO.
1360 */
1361
1362 /*
1363 * The block layer doesn't support all sector count
1364 * restrictions, so we need to be prepared for too big
1365 * requests.
1366 */
1367 if (brq->data.blocks > card->host->max_blk_count)
1368 brq->data.blocks = card->host->max_blk_count;
1369
1370 if (brq->data.blocks > 1) {
1371 /*
1372 * Some SD cards in SPI mode return a CRC error or even lock up
1373 * completely when trying to read the last block using a
1374 * multiblock read command.
1375 */
1376 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1377 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1378 get_capacity(md->disk)))
1379 brq->data.blocks--;
1380
1381 /*
1382 * After a read error, we redo the request one sector
1383 * at a time in order to accurately determine which
1384 * sectors can be read successfully.
1385 */
1386 if (disable_multi)
1387 brq->data.blocks = 1;
1388
1389 /*
1390 * Some controllers have HW issues while operating
1391 * in multiple I/O mode
1392 */
1393 if (card->host->ops->multi_io_quirk)
1394 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1395 (rq_data_dir(req) == READ) ?
1396 MMC_DATA_READ : MMC_DATA_WRITE,
1397 brq->data.blocks);
1398 }
1399
1400 if (do_rel_wr) {
1401 mmc_apply_rel_rw(brq, card, req);
1402 brq->data.flags |= MMC_DATA_REL_WR;
1403 }
1404
1405 /*
1406 * Data tag is used only during writing meta data to speed
1407 * up write and any subsequent read of this meta data
1408 */
1409 do_data_tag = card->ext_csd.data_tag_unit_size &&
1410 (req->cmd_flags & REQ_META) &&
1411 (rq_data_dir(req) == WRITE) &&
1412 ((brq->data.blocks * brq->data.blksz) >=
1413 card->ext_csd.data_tag_unit_size);
1414
1415 if (do_data_tag)
1416 brq->data.flags |= MMC_DATA_DAT_TAG;
1417
1418 mmc_set_data_timeout(&brq->data, card);
1419
1420 brq->data.sg = mqrq->sg;
1421 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1422
1423 /*
1424 * Adjust the sg list so it is the same size as the
1425 * request.
1426 */
1427 if (brq->data.blocks != blk_rq_sectors(req)) {
1428 int i, data_size = brq->data.blocks << 9;
1429 struct scatterlist *sg;
1430
1431 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1432 data_size -= sg->length;
1433 if (data_size <= 0) {
1434 sg->length += data_size;
1435 i++;
1436 break;
1437 }
1438 }
1439 brq->data.sg_len = i;
1440 }
1441
1442 if (do_rel_wr_p)
1443 *do_rel_wr_p = do_rel_wr;
1444
1445 if (do_data_tag_p)
1446 *do_data_tag_p = do_data_tag;
1447}
1448
1449#define MMC_CQE_RETRIES 2
1450
1451static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1452{
1453 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1454 struct mmc_request *mrq = &mqrq->brq.mrq;
1455 struct request_queue *q = req->q;
1456 struct mmc_host *host = mq->card->host;
1457 unsigned long flags;
1458 bool put_card;
1459 int err;
1460
1461 mmc_cqe_post_req(host, mrq);
1462
1463 if (mrq->cmd && mrq->cmd->error)
1464 err = mrq->cmd->error;
1465 else if (mrq->data && mrq->data->error)
1466 err = mrq->data->error;
1467 else
1468 err = 0;
1469
1470 if (err) {
1471 if (mqrq->retries++ < MMC_CQE_RETRIES)
1472 blk_mq_requeue_request(req, true);
1473 else
1474 blk_mq_end_request(req, BLK_STS_IOERR);
1475 } else if (mrq->data) {
1476 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1477 blk_mq_requeue_request(req, true);
1478 else
1479 __blk_mq_end_request(req, BLK_STS_OK);
1480 } else {
1481 blk_mq_end_request(req, BLK_STS_OK);
1482 }
1483
1484 spin_lock_irqsave(&mq->lock, flags);
1485
1486 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1487
1488 put_card = (mmc_tot_in_flight(mq) == 0);
1489
1490 mmc_cqe_check_busy(mq);
1491
1492 spin_unlock_irqrestore(&mq->lock, flags);
1493
1494 if (!mq->cqe_busy)
1495 blk_mq_run_hw_queues(q, true);
1496
1497 if (put_card)
1498 mmc_put_card(mq->card, &mq->ctx);
1499}
1500
1501void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1502{
1503 struct mmc_card *card = mq->card;
1504 struct mmc_host *host = card->host;
1505 int err;
1506
1507 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1508
1509 err = mmc_cqe_recovery(host);
1510 if (err)
1511 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1512 else
1513 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1514
1515 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1516}
1517
1518static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1519{
1520 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1521 brq.mrq);
1522 struct request *req = mmc_queue_req_to_req(mqrq);
1523 struct request_queue *q = req->q;
1524 struct mmc_queue *mq = q->queuedata;
1525
1526 /*
1527 * Block layer timeouts race with completions which means the normal
1528 * completion path cannot be used during recovery.
1529 */
1530 if (mq->in_recovery)
1531 mmc_blk_cqe_complete_rq(mq, req);
1532 else
1533 blk_mq_complete_request(req);
1534}
1535
1536static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1537{
1538 mrq->done = mmc_blk_cqe_req_done;
1539 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1540
1541 return mmc_cqe_start_req(host, mrq);
1542}
1543
1544static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1545 struct request *req)
1546{
1547 struct mmc_blk_request *brq = &mqrq->brq;
1548
1549 memset(brq, 0, sizeof(*brq));
1550
1551 brq->mrq.cmd = &brq->cmd;
1552 brq->mrq.tag = req->tag;
1553
1554 return &brq->mrq;
1555}
1556
1557static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1558{
1559 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1560 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1561
1562 mrq->cmd->opcode = MMC_SWITCH;
1563 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1564 (EXT_CSD_FLUSH_CACHE << 16) |
1565 (1 << 8) |
1566 EXT_CSD_CMD_SET_NORMAL;
1567 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1568
1569 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1570}
1571
1572static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1573{
1574 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1575
1576 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1577
1578 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1579}
1580
1581static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1582 struct mmc_card *card,
1583 int disable_multi,
1584 struct mmc_queue *mq)
1585{
1586 u32 readcmd, writecmd;
1587 struct mmc_blk_request *brq = &mqrq->brq;
1588 struct request *req = mmc_queue_req_to_req(mqrq);
1589 struct mmc_blk_data *md = mq->blkdata;
1590 bool do_rel_wr, do_data_tag;
1591
1592 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1593
1594 brq->mrq.cmd = &brq->cmd;
1595
1596 brq->cmd.arg = blk_rq_pos(req);
1597 if (!mmc_card_blockaddr(card))
1598 brq->cmd.arg <<= 9;
1599 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1600
1601 if (brq->data.blocks > 1 || do_rel_wr) {
1602 /* SPI multiblock writes terminate using a special
1603 * token, not a STOP_TRANSMISSION request.
1604 */
1605 if (!mmc_host_is_spi(card->host) ||
1606 rq_data_dir(req) == READ)
1607 brq->mrq.stop = &brq->stop;
1608 readcmd = MMC_READ_MULTIPLE_BLOCK;
1609 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1610 } else {
1611 brq->mrq.stop = NULL;
1612 readcmd = MMC_READ_SINGLE_BLOCK;
1613 writecmd = MMC_WRITE_BLOCK;
1614 }
1615 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1616
1617 /*
1618 * Pre-defined multi-block transfers are preferable to
1619 * open ended-ones (and necessary for reliable writes).
1620 * However, it is not sufficient to just send CMD23,
1621 * and avoid the final CMD12, as on an error condition
1622 * CMD12 (stop) needs to be sent anyway. This, coupled
1623 * with Auto-CMD23 enhancements provided by some
1624 * hosts, means that the complexity of dealing
1625 * with this is best left to the host. If CMD23 is
1626 * supported by card and host, we'll fill sbc in and let
1627 * the host deal with handling it correctly. This means
1628 * that for hosts that don't expose MMC_CAP_CMD23, no
1629 * change of behavior will be observed.
1630 *
1631 * N.B: Some MMC cards experience perf degradation.
1632 * We'll avoid using CMD23-bounded multiblock writes for
1633 * these, while retaining features like reliable writes.
1634 */
1635 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1636 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1637 do_data_tag)) {
1638 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1639 brq->sbc.arg = brq->data.blocks |
1640 (do_rel_wr ? (1 << 31) : 0) |
1641 (do_data_tag ? (1 << 29) : 0);
1642 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1643 brq->mrq.sbc = &brq->sbc;
1644 }
1645}
1646
1647#define MMC_MAX_RETRIES 5
1648#define MMC_DATA_RETRIES 2
1649#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1650
1651static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1652{
1653 struct mmc_command cmd = {
1654 .opcode = MMC_STOP_TRANSMISSION,
1655 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1656 /* Some hosts wait for busy anyway, so provide a busy timeout */
1657 .busy_timeout = timeout,
1658 };
1659
1660 return mmc_wait_for_cmd(card->host, &cmd, 5);
1661}
1662
1663static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1664{
1665 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1666 struct mmc_blk_request *brq = &mqrq->brq;
1667 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1668 int err;
1669
1670 mmc_retune_hold_now(card->host);
1671
1672 mmc_blk_send_stop(card, timeout);
1673
1674 err = card_busy_detect(card, timeout, req, NULL);
1675
1676 mmc_retune_release(card->host);
1677
1678 return err;
1679}
1680
1681#define MMC_READ_SINGLE_RETRIES 2
1682
1683/* Single sector read during recovery */
1684static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1685{
1686 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1687 struct mmc_request *mrq = &mqrq->brq.mrq;
1688 struct mmc_card *card = mq->card;
1689 struct mmc_host *host = card->host;
1690 blk_status_t error = BLK_STS_OK;
1691 int retries = 0;
1692
1693 do {
1694 u32 status;
1695 int err;
1696
1697 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1698
1699 mmc_wait_for_req(host, mrq);
1700
1701 err = mmc_send_status(card, &status);
1702 if (err)
1703 goto error_exit;
1704
1705 if (!mmc_host_is_spi(host) &&
1706 !mmc_blk_in_tran_state(status)) {
1707 err = mmc_blk_fix_state(card, req);
1708 if (err)
1709 goto error_exit;
1710 }
1711
1712 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1713 continue;
1714
1715 retries = 0;
1716
1717 if (mrq->cmd->error ||
1718 mrq->data->error ||
1719 (!mmc_host_is_spi(host) &&
1720 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1721 error = BLK_STS_IOERR;
1722 else
1723 error = BLK_STS_OK;
1724
1725 } while (blk_update_request(req, error, 512));
1726
1727 return;
1728
1729error_exit:
1730 mrq->data->bytes_xfered = 0;
1731 blk_update_request(req, BLK_STS_IOERR, 512);
1732 /* Let it try the remaining request again */
1733 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1734 mqrq->retries = MMC_MAX_RETRIES - 1;
1735}
1736
1737static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1738{
1739 return !!brq->mrq.sbc;
1740}
1741
1742static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1743{
1744 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1745}
1746
1747/*
1748 * Check for errors the host controller driver might not have seen such as
1749 * response mode errors or invalid card state.
1750 */
1751static bool mmc_blk_status_error(struct request *req, u32 status)
1752{
1753 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1754 struct mmc_blk_request *brq = &mqrq->brq;
1755 struct mmc_queue *mq = req->q->queuedata;
1756 u32 stop_err_bits;
1757
1758 if (mmc_host_is_spi(mq->card->host))
1759 return false;
1760
1761 stop_err_bits = mmc_blk_stop_err_bits(brq);
1762
1763 return brq->cmd.resp[0] & CMD_ERRORS ||
1764 brq->stop.resp[0] & stop_err_bits ||
1765 status & stop_err_bits ||
1766 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1767}
1768
1769static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1770{
1771 return !brq->sbc.error && !brq->cmd.error &&
1772 !(brq->cmd.resp[0] & CMD_ERRORS);
1773}
1774
1775/*
1776 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1777 * policy:
1778 * 1. A request that has transferred at least some data is considered
1779 * successful and will be requeued if there is remaining data to
1780 * transfer.
1781 * 2. Otherwise the number of retries is incremented and the request
1782 * will be requeued if there are remaining retries.
1783 * 3. Otherwise the request will be errored out.
1784 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1785 * mqrq->retries. So there are only 4 possible actions here:
1786 * 1. do not accept the bytes_xfered value i.e. set it to zero
1787 * 2. change mqrq->retries to determine the number of retries
1788 * 3. try to reset the card
1789 * 4. read one sector at a time
1790 */
1791static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1792{
1793 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1794 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1795 struct mmc_blk_request *brq = &mqrq->brq;
1796 struct mmc_blk_data *md = mq->blkdata;
1797 struct mmc_card *card = mq->card;
1798 u32 status;
1799 u32 blocks;
1800 int err;
1801
1802 /*
1803 * Some errors the host driver might not have seen. Set the number of
1804 * bytes transferred to zero in that case.
1805 */
1806 err = __mmc_send_status(card, &status, 0);
1807 if (err || mmc_blk_status_error(req, status))
1808 brq->data.bytes_xfered = 0;
1809
1810 mmc_retune_release(card->host);
1811
1812 /*
1813 * Try again to get the status. This also provides an opportunity for
1814 * re-tuning.
1815 */
1816 if (err)
1817 err = __mmc_send_status(card, &status, 0);
1818
1819 /*
1820 * Nothing more to do after the number of bytes transferred has been
1821 * updated and there is no card.
1822 */
1823 if (err && mmc_detect_card_removed(card->host))
1824 return;
1825
1826 /* Try to get back to "tran" state */
1827 if (!mmc_host_is_spi(mq->card->host) &&
1828 (err || !mmc_blk_in_tran_state(status)))
1829 err = mmc_blk_fix_state(mq->card, req);
1830
1831 /*
1832 * Special case for SD cards where the card might record the number of
1833 * blocks written.
1834 */
1835 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1836 rq_data_dir(req) == WRITE) {
1837 if (mmc_sd_num_wr_blocks(card, &blocks))
1838 brq->data.bytes_xfered = 0;
1839 else
1840 brq->data.bytes_xfered = blocks << 9;
1841 }
1842
1843 /* Reset if the card is in a bad state */
1844 if (!mmc_host_is_spi(mq->card->host) &&
1845 err && mmc_blk_reset(md, card->host, type)) {
1846 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1847 mqrq->retries = MMC_NO_RETRIES;
1848 return;
1849 }
1850
1851 /*
1852 * If anything was done, just return and if there is anything remaining
1853 * on the request it will get requeued.
1854 */
1855 if (brq->data.bytes_xfered)
1856 return;
1857
1858 /* Reset before last retry */
1859 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1860 mmc_blk_reset(md, card->host, type);
1861
1862 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1863 if (brq->sbc.error || brq->cmd.error)
1864 return;
1865
1866 /* Reduce the remaining retries for data errors */
1867 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1868 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1869 return;
1870 }
1871
1872 /* FIXME: Missing single sector read for large sector size */
1873 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1874 brq->data.blocks > 1) {
1875 /* Read one sector at a time */
1876 mmc_blk_read_single(mq, req);
1877 return;
1878 }
1879}
1880
1881static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1882{
1883 mmc_blk_eval_resp_error(brq);
1884
1885 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1886 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1887}
1888
1889static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1890{
1891 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1892 u32 status = 0;
1893 int err;
1894
1895 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1896 return 0;
1897
1898 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1899
1900 /*
1901 * Do not assume data transferred correctly if there are any error bits
1902 * set.
1903 */
1904 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1905 mqrq->brq.data.bytes_xfered = 0;
1906 err = err ? err : -EIO;
1907 }
1908
1909 /* Copy the exception bit so it will be seen later on */
1910 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1911 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1912
1913 return err;
1914}
1915
1916static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1917 struct request *req)
1918{
1919 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1920
1921 mmc_blk_reset_success(mq->blkdata, type);
1922}
1923
1924static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1925{
1926 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1927 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1928
1929 if (nr_bytes) {
1930 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1931 blk_mq_requeue_request(req, true);
1932 else
1933 __blk_mq_end_request(req, BLK_STS_OK);
1934 } else if (!blk_rq_bytes(req)) {
1935 __blk_mq_end_request(req, BLK_STS_IOERR);
1936 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1937 blk_mq_requeue_request(req, true);
1938 } else {
1939 if (mmc_card_removed(mq->card))
1940 req->rq_flags |= RQF_QUIET;
1941 blk_mq_end_request(req, BLK_STS_IOERR);
1942 }
1943}
1944
1945static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1946 struct mmc_queue_req *mqrq)
1947{
1948 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1949 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1950 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1951}
1952
1953static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1954 struct mmc_queue_req *mqrq)
1955{
1956 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1957 mmc_run_bkops(mq->card);
1958}
1959
1960void mmc_blk_mq_complete(struct request *req)
1961{
1962 struct mmc_queue *mq = req->q->queuedata;
1963
1964 if (mq->use_cqe)
1965 mmc_blk_cqe_complete_rq(mq, req);
1966 else
1967 mmc_blk_mq_complete_rq(mq, req);
1968}
1969
1970static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1971 struct request *req)
1972{
1973 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1974 struct mmc_host *host = mq->card->host;
1975
1976 if (mmc_blk_rq_error(&mqrq->brq) ||
1977 mmc_blk_card_busy(mq->card, req)) {
1978 mmc_blk_mq_rw_recovery(mq, req);
1979 } else {
1980 mmc_blk_rw_reset_success(mq, req);
1981 mmc_retune_release(host);
1982 }
1983
1984 mmc_blk_urgent_bkops(mq, mqrq);
1985}
1986
1987static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1988{
1989 unsigned long flags;
1990 bool put_card;
1991
1992 spin_lock_irqsave(&mq->lock, flags);
1993
1994 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1995
1996 put_card = (mmc_tot_in_flight(mq) == 0);
1997
1998 spin_unlock_irqrestore(&mq->lock, flags);
1999
2000 if (put_card)
2001 mmc_put_card(mq->card, &mq->ctx);
2002}
2003
2004static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2005{
2006 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2007 struct mmc_request *mrq = &mqrq->brq.mrq;
2008 struct mmc_host *host = mq->card->host;
2009
2010 mmc_post_req(host, mrq, 0);
2011
2012 /*
2013 * Block layer timeouts race with completions which means the normal
2014 * completion path cannot be used during recovery.
2015 */
2016 if (mq->in_recovery)
2017 mmc_blk_mq_complete_rq(mq, req);
2018 else
2019 blk_mq_complete_request(req);
2020
2021 mmc_blk_mq_dec_in_flight(mq, req);
2022}
2023
2024void mmc_blk_mq_recovery(struct mmc_queue *mq)
2025{
2026 struct request *req = mq->recovery_req;
2027 struct mmc_host *host = mq->card->host;
2028 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2029
2030 mq->recovery_req = NULL;
2031 mq->rw_wait = false;
2032
2033 if (mmc_blk_rq_error(&mqrq->brq)) {
2034 mmc_retune_hold_now(host);
2035 mmc_blk_mq_rw_recovery(mq, req);
2036 }
2037
2038 mmc_blk_urgent_bkops(mq, mqrq);
2039
2040 mmc_blk_mq_post_req(mq, req);
2041}
2042
2043static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2044 struct request **prev_req)
2045{
2046 if (mmc_host_done_complete(mq->card->host))
2047 return;
2048
2049 mutex_lock(&mq->complete_lock);
2050
2051 if (!mq->complete_req)
2052 goto out_unlock;
2053
2054 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2055
2056 if (prev_req)
2057 *prev_req = mq->complete_req;
2058 else
2059 mmc_blk_mq_post_req(mq, mq->complete_req);
2060
2061 mq->complete_req = NULL;
2062
2063out_unlock:
2064 mutex_unlock(&mq->complete_lock);
2065}
2066
2067void mmc_blk_mq_complete_work(struct work_struct *work)
2068{
2069 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2070 complete_work);
2071
2072 mmc_blk_mq_complete_prev_req(mq, NULL);
2073}
2074
2075static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2076{
2077 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2078 brq.mrq);
2079 struct request *req = mmc_queue_req_to_req(mqrq);
2080 struct request_queue *q = req->q;
2081 struct mmc_queue *mq = q->queuedata;
2082 struct mmc_host *host = mq->card->host;
2083 unsigned long flags;
2084
2085 if (!mmc_host_done_complete(host)) {
2086 bool waiting;
2087
2088 /*
2089 * We cannot complete the request in this context, so record
2090 * that there is a request to complete, and that a following
2091 * request does not need to wait (although it does need to
2092 * complete complete_req first).
2093 */
2094 spin_lock_irqsave(&mq->lock, flags);
2095 mq->complete_req = req;
2096 mq->rw_wait = false;
2097 waiting = mq->waiting;
2098 spin_unlock_irqrestore(&mq->lock, flags);
2099
2100 /*
2101 * If 'waiting' then the waiting task will complete this
2102 * request, otherwise queue a work to do it. Note that
2103 * complete_work may still race with the dispatch of a following
2104 * request.
2105 */
2106 if (waiting)
2107 wake_up(&mq->wait);
2108 else
2109 queue_work(mq->card->complete_wq, &mq->complete_work);
2110
2111 return;
2112 }
2113
2114 /* Take the recovery path for errors or urgent background operations */
2115 if (mmc_blk_rq_error(&mqrq->brq) ||
2116 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2117 spin_lock_irqsave(&mq->lock, flags);
2118 mq->recovery_needed = true;
2119 mq->recovery_req = req;
2120 spin_unlock_irqrestore(&mq->lock, flags);
2121 wake_up(&mq->wait);
2122 schedule_work(&mq->recovery_work);
2123 return;
2124 }
2125
2126 mmc_blk_rw_reset_success(mq, req);
2127
2128 mq->rw_wait = false;
2129 wake_up(&mq->wait);
2130
2131 mmc_blk_mq_post_req(mq, req);
2132}
2133
2134static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2135{
2136 unsigned long flags;
2137 bool done;
2138
2139 /*
2140 * Wait while there is another request in progress, but not if recovery
2141 * is needed. Also indicate whether there is a request waiting to start.
2142 */
2143 spin_lock_irqsave(&mq->lock, flags);
2144 if (mq->recovery_needed) {
2145 *err = -EBUSY;
2146 done = true;
2147 } else {
2148 done = !mq->rw_wait;
2149 }
2150 mq->waiting = !done;
2151 spin_unlock_irqrestore(&mq->lock, flags);
2152
2153 return done;
2154}
2155
2156static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2157{
2158 int err = 0;
2159
2160 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2161
2162 /* Always complete the previous request if there is one */
2163 mmc_blk_mq_complete_prev_req(mq, prev_req);
2164
2165 return err;
2166}
2167
2168static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2169 struct request *req)
2170{
2171 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2172 struct mmc_host *host = mq->card->host;
2173 struct request *prev_req = NULL;
2174 int err = 0;
2175
2176 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2177
2178 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2179
2180 mmc_pre_req(host, &mqrq->brq.mrq);
2181
2182 err = mmc_blk_rw_wait(mq, &prev_req);
2183 if (err)
2184 goto out_post_req;
2185
2186 mq->rw_wait = true;
2187
2188 err = mmc_start_request(host, &mqrq->brq.mrq);
2189
2190 if (prev_req)
2191 mmc_blk_mq_post_req(mq, prev_req);
2192
2193 if (err)
2194 mq->rw_wait = false;
2195
2196 /* Release re-tuning here where there is no synchronization required */
2197 if (err || mmc_host_done_complete(host))
2198 mmc_retune_release(host);
2199
2200out_post_req:
2201 if (err)
2202 mmc_post_req(host, &mqrq->brq.mrq, err);
2203
2204 return err;
2205}
2206
2207static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2208{
2209 if (mq->use_cqe)
2210 return host->cqe_ops->cqe_wait_for_idle(host);
2211
2212 return mmc_blk_rw_wait(mq, NULL);
2213}
2214
2215enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2216{
2217 struct mmc_blk_data *md = mq->blkdata;
2218 struct mmc_card *card = md->queue.card;
2219 struct mmc_host *host = card->host;
2220 int ret;
2221
2222 ret = mmc_blk_part_switch(card, md->part_type);
2223 if (ret)
2224 return MMC_REQ_FAILED_TO_START;
2225
2226 switch (mmc_issue_type(mq, req)) {
2227 case MMC_ISSUE_SYNC:
2228 ret = mmc_blk_wait_for_idle(mq, host);
2229 if (ret)
2230 return MMC_REQ_BUSY;
2231 switch (req_op(req)) {
2232 case REQ_OP_DRV_IN:
2233 case REQ_OP_DRV_OUT:
2234 mmc_blk_issue_drv_op(mq, req);
2235 break;
2236 case REQ_OP_DISCARD:
2237 mmc_blk_issue_discard_rq(mq, req);
2238 break;
2239 case REQ_OP_SECURE_ERASE:
2240 mmc_blk_issue_secdiscard_rq(mq, req);
2241 break;
2242 case REQ_OP_FLUSH:
2243 mmc_blk_issue_flush(mq, req);
2244 break;
2245 default:
2246 WARN_ON_ONCE(1);
2247 return MMC_REQ_FAILED_TO_START;
2248 }
2249 return MMC_REQ_FINISHED;
2250 case MMC_ISSUE_DCMD:
2251 case MMC_ISSUE_ASYNC:
2252 switch (req_op(req)) {
2253 case REQ_OP_FLUSH:
2254 ret = mmc_blk_cqe_issue_flush(mq, req);
2255 break;
2256 case REQ_OP_READ:
2257 case REQ_OP_WRITE:
2258 if (mq->use_cqe)
2259 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2260 else
2261 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2262 break;
2263 default:
2264 WARN_ON_ONCE(1);
2265 ret = -EINVAL;
2266 }
2267 if (!ret)
2268 return MMC_REQ_STARTED;
2269 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2270 default:
2271 WARN_ON_ONCE(1);
2272 return MMC_REQ_FAILED_TO_START;
2273 }
2274}
2275
2276static inline int mmc_blk_readonly(struct mmc_card *card)
2277{
2278 return mmc_card_readonly(card) ||
2279 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2280}
2281
2282static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2283 struct device *parent,
2284 sector_t size,
2285 bool default_ro,
2286 const char *subname,
2287 int area_type)
2288{
2289 struct mmc_blk_data *md;
2290 int devidx, ret;
2291
2292 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2293 if (devidx < 0) {
2294 /*
2295 * We get -ENOSPC because there are no more any available
2296 * devidx. The reason may be that, either userspace haven't yet
2297 * unmounted the partitions, which postpones mmc_blk_release()
2298 * from being called, or the device has more partitions than
2299 * what we support.
2300 */
2301 if (devidx == -ENOSPC)
2302 dev_err(mmc_dev(card->host),
2303 "no more device IDs available\n");
2304
2305 return ERR_PTR(devidx);
2306 }
2307
2308 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2309 if (!md) {
2310 ret = -ENOMEM;
2311 goto out;
2312 }
2313
2314 md->area_type = area_type;
2315
2316 /*
2317 * Set the read-only status based on the supported commands
2318 * and the write protect switch.
2319 */
2320 md->read_only = mmc_blk_readonly(card);
2321
2322 md->disk = alloc_disk(perdev_minors);
2323 if (md->disk == NULL) {
2324 ret = -ENOMEM;
2325 goto err_kfree;
2326 }
2327
2328 INIT_LIST_HEAD(&md->part);
2329 INIT_LIST_HEAD(&md->rpmbs);
2330 md->usage = 1;
2331
2332 ret = mmc_init_queue(&md->queue, card);
2333 if (ret)
2334 goto err_putdisk;
2335
2336 md->queue.blkdata = md;
2337
2338 /*
2339 * Keep an extra reference to the queue so that we can shutdown the
2340 * queue (i.e. call blk_cleanup_queue()) while there are still
2341 * references to the 'md'. The corresponding blk_put_queue() is in
2342 * mmc_blk_put().
2343 */
2344 if (!blk_get_queue(md->queue.queue)) {
2345 mmc_cleanup_queue(&md->queue);
2346 ret = -ENODEV;
2347 goto err_putdisk;
2348 }
2349
2350 md->disk->major = MMC_BLOCK_MAJOR;
2351 md->disk->first_minor = devidx * perdev_minors;
2352 md->disk->fops = &mmc_bdops;
2353 md->disk->private_data = md;
2354 md->disk->queue = md->queue.queue;
2355 md->parent = parent;
2356 set_disk_ro(md->disk, md->read_only || default_ro);
2357 md->disk->flags = GENHD_FL_EXT_DEVT;
2358 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2359 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2360 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2361
2362 /*
2363 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2364 *
2365 * - be set for removable media with permanent block devices
2366 * - be unset for removable block devices with permanent media
2367 *
2368 * Since MMC block devices clearly fall under the second
2369 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2370 * should use the block device creation/destruction hotplug
2371 * messages to tell when the card is present.
2372 */
2373
2374 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2375 "mmcblk%u%s", card->host->index, subname ? subname : "");
2376
2377 set_capacity(md->disk, size);
2378
2379 if (mmc_host_cmd23(card->host)) {
2380 if ((mmc_card_mmc(card) &&
2381 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2382 (mmc_card_sd(card) &&
2383 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2384 md->flags |= MMC_BLK_CMD23;
2385 }
2386
2387 if (mmc_card_mmc(card) &&
2388 md->flags & MMC_BLK_CMD23 &&
2389 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2390 card->ext_csd.rel_sectors)) {
2391 md->flags |= MMC_BLK_REL_WR;
2392 blk_queue_write_cache(md->queue.queue, true, true);
2393 }
2394
2395 return md;
2396
2397 err_putdisk:
2398 put_disk(md->disk);
2399 err_kfree:
2400 kfree(md);
2401 out:
2402 ida_simple_remove(&mmc_blk_ida, devidx);
2403 return ERR_PTR(ret);
2404}
2405
2406static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2407{
2408 sector_t size;
2409
2410 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2411 /*
2412 * The EXT_CSD sector count is in number or 512 byte
2413 * sectors.
2414 */
2415 size = card->ext_csd.sectors;
2416 } else {
2417 /*
2418 * The CSD capacity field is in units of read_blkbits.
2419 * set_capacity takes units of 512 bytes.
2420 */
2421 size = (typeof(sector_t))card->csd.capacity
2422 << (card->csd.read_blkbits - 9);
2423 }
2424
2425 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2426 MMC_BLK_DATA_AREA_MAIN);
2427}
2428
2429static int mmc_blk_alloc_part(struct mmc_card *card,
2430 struct mmc_blk_data *md,
2431 unsigned int part_type,
2432 sector_t size,
2433 bool default_ro,
2434 const char *subname,
2435 int area_type)
2436{
2437 char cap_str[10];
2438 struct mmc_blk_data *part_md;
2439
2440 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2441 subname, area_type);
2442 if (IS_ERR(part_md))
2443 return PTR_ERR(part_md);
2444 part_md->part_type = part_type;
2445 list_add(&part_md->part, &md->part);
2446
2447 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2448 cap_str, sizeof(cap_str));
2449 pr_info("%s: %s %s partition %u %s\n",
2450 part_md->disk->disk_name, mmc_card_id(card),
2451 mmc_card_name(card), part_md->part_type, cap_str);
2452 return 0;
2453}
2454
2455/**
2456 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2457 * @filp: the character device file
2458 * @cmd: the ioctl() command
2459 * @arg: the argument from userspace
2460 *
2461 * This will essentially just redirect the ioctl()s coming in over to
2462 * the main block device spawning the RPMB character device.
2463 */
2464static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2465 unsigned long arg)
2466{
2467 struct mmc_rpmb_data *rpmb = filp->private_data;
2468 int ret;
2469
2470 switch (cmd) {
2471 case MMC_IOC_CMD:
2472 ret = mmc_blk_ioctl_cmd(rpmb->md,
2473 (struct mmc_ioc_cmd __user *)arg,
2474 rpmb);
2475 break;
2476 case MMC_IOC_MULTI_CMD:
2477 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2478 (struct mmc_ioc_multi_cmd __user *)arg,
2479 rpmb);
2480 break;
2481 default:
2482 ret = -EINVAL;
2483 break;
2484 }
2485
2486 return ret;
2487}
2488
2489#ifdef CONFIG_COMPAT
2490static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2491 unsigned long arg)
2492{
2493 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2494}
2495#endif
2496
2497static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2498{
2499 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2500 struct mmc_rpmb_data, chrdev);
2501
2502 get_device(&rpmb->dev);
2503 filp->private_data = rpmb;
2504 mmc_blk_get(rpmb->md->disk);
2505
2506 return nonseekable_open(inode, filp);
2507}
2508
2509static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2510{
2511 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2512 struct mmc_rpmb_data, chrdev);
2513
2514 put_device(&rpmb->dev);
2515 mmc_blk_put(rpmb->md);
2516
2517 return 0;
2518}
2519
2520static const struct file_operations mmc_rpmb_fileops = {
2521 .release = mmc_rpmb_chrdev_release,
2522 .open = mmc_rpmb_chrdev_open,
2523 .owner = THIS_MODULE,
2524 .llseek = no_llseek,
2525 .unlocked_ioctl = mmc_rpmb_ioctl,
2526#ifdef CONFIG_COMPAT
2527 .compat_ioctl = mmc_rpmb_ioctl_compat,
2528#endif
2529};
2530
2531static void mmc_blk_rpmb_device_release(struct device *dev)
2532{
2533 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2534
2535 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2536 kfree(rpmb);
2537}
2538
2539static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2540 struct mmc_blk_data *md,
2541 unsigned int part_index,
2542 sector_t size,
2543 const char *subname)
2544{
2545 int devidx, ret;
2546 char rpmb_name[DISK_NAME_LEN];
2547 char cap_str[10];
2548 struct mmc_rpmb_data *rpmb;
2549
2550 /* This creates the minor number for the RPMB char device */
2551 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2552 if (devidx < 0)
2553 return devidx;
2554
2555 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2556 if (!rpmb) {
2557 ida_simple_remove(&mmc_rpmb_ida, devidx);
2558 return -ENOMEM;
2559 }
2560
2561 snprintf(rpmb_name, sizeof(rpmb_name),
2562 "mmcblk%u%s", card->host->index, subname ? subname : "");
2563
2564 rpmb->id = devidx;
2565 rpmb->part_index = part_index;
2566 rpmb->dev.init_name = rpmb_name;
2567 rpmb->dev.bus = &mmc_rpmb_bus_type;
2568 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2569 rpmb->dev.parent = &card->dev;
2570 rpmb->dev.release = mmc_blk_rpmb_device_release;
2571 device_initialize(&rpmb->dev);
2572 dev_set_drvdata(&rpmb->dev, rpmb);
2573 rpmb->md = md;
2574
2575 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2576 rpmb->chrdev.owner = THIS_MODULE;
2577 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2578 if (ret) {
2579 pr_err("%s: could not add character device\n", rpmb_name);
2580 goto out_put_device;
2581 }
2582
2583 list_add(&rpmb->node, &md->rpmbs);
2584
2585 string_get_size((u64)size, 512, STRING_UNITS_2,
2586 cap_str, sizeof(cap_str));
2587
2588 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2589 rpmb_name, mmc_card_id(card),
2590 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2591 MAJOR(mmc_rpmb_devt), rpmb->id);
2592
2593 return 0;
2594
2595out_put_device:
2596 put_device(&rpmb->dev);
2597 return ret;
2598}
2599
2600static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2601
2602{
2603 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2604 put_device(&rpmb->dev);
2605}
2606
2607/* MMC Physical partitions consist of two boot partitions and
2608 * up to four general purpose partitions.
2609 * For each partition enabled in EXT_CSD a block device will be allocatedi
2610 * to provide access to the partition.
2611 */
2612
2613static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2614{
2615 int idx, ret;
2616
2617 if (!mmc_card_mmc(card))
2618 return 0;
2619
2620 for (idx = 0; idx < card->nr_parts; idx++) {
2621 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2622 /*
2623 * RPMB partitions does not provide block access, they
2624 * are only accessed using ioctl():s. Thus create
2625 * special RPMB block devices that do not have a
2626 * backing block queue for these.
2627 */
2628 ret = mmc_blk_alloc_rpmb_part(card, md,
2629 card->part[idx].part_cfg,
2630 card->part[idx].size >> 9,
2631 card->part[idx].name);
2632 if (ret)
2633 return ret;
2634 } else if (card->part[idx].size) {
2635 ret = mmc_blk_alloc_part(card, md,
2636 card->part[idx].part_cfg,
2637 card->part[idx].size >> 9,
2638 card->part[idx].force_ro,
2639 card->part[idx].name,
2640 card->part[idx].area_type);
2641 if (ret)
2642 return ret;
2643 }
2644 }
2645
2646 return 0;
2647}
2648
2649static void mmc_blk_remove_req(struct mmc_blk_data *md)
2650{
2651 struct mmc_card *card;
2652
2653 if (md) {
2654 /*
2655 * Flush remaining requests and free queues. It
2656 * is freeing the queue that stops new requests
2657 * from being accepted.
2658 */
2659 card = md->queue.card;
2660 if (md->disk->flags & GENHD_FL_UP) {
2661 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2662 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2663 card->ext_csd.boot_ro_lockable)
2664 device_remove_file(disk_to_dev(md->disk),
2665 &md->power_ro_lock);
2666
2667 del_gendisk(md->disk);
2668 }
2669 mmc_cleanup_queue(&md->queue);
2670 mmc_blk_put(md);
2671 }
2672}
2673
2674static void mmc_blk_remove_parts(struct mmc_card *card,
2675 struct mmc_blk_data *md)
2676{
2677 struct list_head *pos, *q;
2678 struct mmc_blk_data *part_md;
2679 struct mmc_rpmb_data *rpmb;
2680
2681 /* Remove RPMB partitions */
2682 list_for_each_safe(pos, q, &md->rpmbs) {
2683 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2684 list_del(pos);
2685 mmc_blk_remove_rpmb_part(rpmb);
2686 }
2687 /* Remove block partitions */
2688 list_for_each_safe(pos, q, &md->part) {
2689 part_md = list_entry(pos, struct mmc_blk_data, part);
2690 list_del(pos);
2691 mmc_blk_remove_req(part_md);
2692 }
2693}
2694
2695static int mmc_add_disk(struct mmc_blk_data *md)
2696{
2697 int ret;
2698 struct mmc_card *card = md->queue.card;
2699
2700 device_add_disk(md->parent, md->disk, NULL);
2701 md->force_ro.show = force_ro_show;
2702 md->force_ro.store = force_ro_store;
2703 sysfs_attr_init(&md->force_ro.attr);
2704 md->force_ro.attr.name = "force_ro";
2705 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2706 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2707 if (ret)
2708 goto force_ro_fail;
2709
2710 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2711 card->ext_csd.boot_ro_lockable) {
2712 umode_t mode;
2713
2714 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2715 mode = S_IRUGO;
2716 else
2717 mode = S_IRUGO | S_IWUSR;
2718
2719 md->power_ro_lock.show = power_ro_lock_show;
2720 md->power_ro_lock.store = power_ro_lock_store;
2721 sysfs_attr_init(&md->power_ro_lock.attr);
2722 md->power_ro_lock.attr.mode = mode;
2723 md->power_ro_lock.attr.name =
2724 "ro_lock_until_next_power_on";
2725 ret = device_create_file(disk_to_dev(md->disk),
2726 &md->power_ro_lock);
2727 if (ret)
2728 goto power_ro_lock_fail;
2729 }
2730 return ret;
2731
2732power_ro_lock_fail:
2733 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2734force_ro_fail:
2735 del_gendisk(md->disk);
2736
2737 return ret;
2738}
2739
2740#ifdef CONFIG_DEBUG_FS
2741
2742static int mmc_dbg_card_status_get(void *data, u64 *val)
2743{
2744 struct mmc_card *card = data;
2745 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2746 struct mmc_queue *mq = &md->queue;
2747 struct request *req;
2748 int ret;
2749
2750 /* Ask the block layer about the card status */
2751 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2752 if (IS_ERR(req))
2753 return PTR_ERR(req);
2754 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2755 blk_execute_rq(mq->queue, NULL, req, 0);
2756 ret = req_to_mmc_queue_req(req)->drv_op_result;
2757 if (ret >= 0) {
2758 *val = ret;
2759 ret = 0;
2760 }
2761 blk_put_request(req);
2762
2763 return ret;
2764}
2765DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2766 NULL, "%08llx\n");
2767
2768/* That is two digits * 512 + 1 for newline */
2769#define EXT_CSD_STR_LEN 1025
2770
2771static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2772{
2773 struct mmc_card *card = inode->i_private;
2774 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2775 struct mmc_queue *mq = &md->queue;
2776 struct request *req;
2777 char *buf;
2778 ssize_t n = 0;
2779 u8 *ext_csd;
2780 int err, i;
2781
2782 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2783 if (!buf)
2784 return -ENOMEM;
2785
2786 /* Ask the block layer for the EXT CSD */
2787 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2788 if (IS_ERR(req)) {
2789 err = PTR_ERR(req);
2790 goto out_free;
2791 }
2792 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2793 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2794 blk_execute_rq(mq->queue, NULL, req, 0);
2795 err = req_to_mmc_queue_req(req)->drv_op_result;
2796 blk_put_request(req);
2797 if (err) {
2798 pr_err("FAILED %d\n", err);
2799 goto out_free;
2800 }
2801
2802 for (i = 0; i < 512; i++)
2803 n += sprintf(buf + n, "%02x", ext_csd[i]);
2804 n += sprintf(buf + n, "\n");
2805
2806 if (n != EXT_CSD_STR_LEN) {
2807 err = -EINVAL;
2808 kfree(ext_csd);
2809 goto out_free;
2810 }
2811
2812 filp->private_data = buf;
2813 kfree(ext_csd);
2814 return 0;
2815
2816out_free:
2817 kfree(buf);
2818 return err;
2819}
2820
2821static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2822 size_t cnt, loff_t *ppos)
2823{
2824 char *buf = filp->private_data;
2825
2826 return simple_read_from_buffer(ubuf, cnt, ppos,
2827 buf, EXT_CSD_STR_LEN);
2828}
2829
2830static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2831{
2832 kfree(file->private_data);
2833 return 0;
2834}
2835
2836static const struct file_operations mmc_dbg_ext_csd_fops = {
2837 .open = mmc_ext_csd_open,
2838 .read = mmc_ext_csd_read,
2839 .release = mmc_ext_csd_release,
2840 .llseek = default_llseek,
2841};
2842
2843static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2844{
2845 struct dentry *root;
2846
2847 if (!card->debugfs_root)
2848 return 0;
2849
2850 root = card->debugfs_root;
2851
2852 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2853 md->status_dentry =
2854 debugfs_create_file_unsafe("status", 0400, root,
2855 card,
2856 &mmc_dbg_card_status_fops);
2857 if (!md->status_dentry)
2858 return -EIO;
2859 }
2860
2861 if (mmc_card_mmc(card)) {
2862 md->ext_csd_dentry =
2863 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2864 &mmc_dbg_ext_csd_fops);
2865 if (!md->ext_csd_dentry)
2866 return -EIO;
2867 }
2868
2869 return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873 struct mmc_blk_data *md)
2874{
2875 if (!card->debugfs_root)
2876 return;
2877
2878 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2879 debugfs_remove(md->status_dentry);
2880 md->status_dentry = NULL;
2881 }
2882
2883 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2884 debugfs_remove(md->ext_csd_dentry);
2885 md->ext_csd_dentry = NULL;
2886 }
2887}
2888
2889#else
2890
2891static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2892{
2893 return 0;
2894}
2895
2896static void mmc_blk_remove_debugfs(struct mmc_card *card,
2897 struct mmc_blk_data *md)
2898{
2899}
2900
2901#endif /* CONFIG_DEBUG_FS */
2902
2903static int mmc_blk_probe(struct mmc_card *card)
2904{
2905 struct mmc_blk_data *md, *part_md;
2906 char cap_str[10];
2907
2908 /*
2909 * Check that the card supports the command class(es) we need.
2910 */
2911 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2912 return -ENODEV;
2913
2914 mmc_fixup_device(card, mmc_blk_fixups);
2915
2916 card->complete_wq = alloc_workqueue("mmc_complete",
2917 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2918 if (unlikely(!card->complete_wq)) {
2919 pr_err("Failed to create mmc completion workqueue");
2920 return -ENOMEM;
2921 }
2922
2923 md = mmc_blk_alloc(card);
2924 if (IS_ERR(md))
2925 return PTR_ERR(md);
2926
2927 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2928 cap_str, sizeof(cap_str));
2929 pr_info("%s: %s %s %s %s\n",
2930 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2931 cap_str, md->read_only ? "(ro)" : "");
2932
2933 if (mmc_blk_alloc_parts(card, md))
2934 goto out;
2935
2936 dev_set_drvdata(&card->dev, md);
2937
2938 if (mmc_add_disk(md))
2939 goto out;
2940
2941 list_for_each_entry(part_md, &md->part, part) {
2942 if (mmc_add_disk(part_md))
2943 goto out;
2944 }
2945
2946 /* Add two debugfs entries */
2947 mmc_blk_add_debugfs(card, md);
2948
2949 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2950 pm_runtime_use_autosuspend(&card->dev);
2951
2952 /*
2953 * Don't enable runtime PM for SD-combo cards here. Leave that
2954 * decision to be taken during the SDIO init sequence instead.
2955 */
2956 if (card->type != MMC_TYPE_SD_COMBO) {
2957 pm_runtime_set_active(&card->dev);
2958 pm_runtime_enable(&card->dev);
2959 }
2960
2961 return 0;
2962
2963 out:
2964 mmc_blk_remove_parts(card, md);
2965 mmc_blk_remove_req(md);
2966 return 0;
2967}
2968
2969static void mmc_blk_remove(struct mmc_card *card)
2970{
2971 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2972
2973 mmc_blk_remove_debugfs(card, md);
2974 mmc_blk_remove_parts(card, md);
2975 pm_runtime_get_sync(&card->dev);
2976 if (md->part_curr != md->part_type) {
2977 mmc_claim_host(card->host);
2978 mmc_blk_part_switch(card, md->part_type);
2979 mmc_release_host(card->host);
2980 }
2981 if (card->type != MMC_TYPE_SD_COMBO)
2982 pm_runtime_disable(&card->dev);
2983 pm_runtime_put_noidle(&card->dev);
2984 mmc_blk_remove_req(md);
2985 dev_set_drvdata(&card->dev, NULL);
2986 destroy_workqueue(card->complete_wq);
2987}
2988
2989static int _mmc_blk_suspend(struct mmc_card *card)
2990{
2991 struct mmc_blk_data *part_md;
2992 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2993
2994 if (md) {
2995 mmc_queue_suspend(&md->queue);
2996 list_for_each_entry(part_md, &md->part, part) {
2997 mmc_queue_suspend(&part_md->queue);
2998 }
2999 }
3000 return 0;
3001}
3002
3003static void mmc_blk_shutdown(struct mmc_card *card)
3004{
3005 _mmc_blk_suspend(card);
3006}
3007
3008#ifdef CONFIG_PM_SLEEP
3009static int mmc_blk_suspend(struct device *dev)
3010{
3011 struct mmc_card *card = mmc_dev_to_card(dev);
3012
3013 return _mmc_blk_suspend(card);
3014}
3015
3016static int mmc_blk_resume(struct device *dev)
3017{
3018 struct mmc_blk_data *part_md;
3019 struct mmc_blk_data *md = dev_get_drvdata(dev);
3020
3021 if (md) {
3022 /*
3023 * Resume involves the card going into idle state,
3024 * so current partition is always the main one.
3025 */
3026 md->part_curr = md->part_type;
3027 mmc_queue_resume(&md->queue);
3028 list_for_each_entry(part_md, &md->part, part) {
3029 mmc_queue_resume(&part_md->queue);
3030 }
3031 }
3032 return 0;
3033}
3034#endif
3035
3036static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3037
3038static struct mmc_driver mmc_driver = {
3039 .drv = {
3040 .name = "mmcblk",
3041 .pm = &mmc_blk_pm_ops,
3042 },
3043 .probe = mmc_blk_probe,
3044 .remove = mmc_blk_remove,
3045 .shutdown = mmc_blk_shutdown,
3046};
3047
3048static int __init mmc_blk_init(void)
3049{
3050 int res;
3051
3052 res = bus_register(&mmc_rpmb_bus_type);
3053 if (res < 0) {
3054 pr_err("mmcblk: could not register RPMB bus type\n");
3055 return res;
3056 }
3057 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3058 if (res < 0) {
3059 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3060 goto out_bus_unreg;
3061 }
3062
3063 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3064 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3065
3066 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3067
3068 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3069 if (res)
3070 goto out_chrdev_unreg;
3071
3072 res = mmc_register_driver(&mmc_driver);
3073 if (res)
3074 goto out_blkdev_unreg;
3075
3076 return 0;
3077
3078out_blkdev_unreg:
3079 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3080out_chrdev_unreg:
3081 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3082out_bus_unreg:
3083 bus_unregister(&mmc_rpmb_bus_type);
3084 return res;
3085}
3086
3087static void __exit mmc_blk_exit(void)
3088{
3089 mmc_unregister_driver(&mmc_driver);
3090 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3091 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3092 bus_unregister(&mmc_rpmb_bus_type);
3093}
3094
3095module_init(mmc_blk_init);
3096module_exit(mmc_blk_exit);
3097
3098MODULE_LICENSE("GPL");
3099MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3100