Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * Copyright © 2016 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#ifndef __I915_VMA_H__
 26#define __I915_VMA_H__
 27
 28#include <linux/io-mapping.h>
 29#include <linux/rbtree.h>
 30
 31#include <drm/drm_mm.h>
 32
 33#include "i915_gem_gtt.h"
 34#include "i915_gem_fence_reg.h"
 35#include "gem/i915_gem_object.h"
 36
 37#include "i915_active.h"
 38#include "i915_request.h"
 39
 40enum i915_cache_level;
 41
 42/**
 43 * DOC: Virtual Memory Address
 44 *
 45 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 46 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 47 * object into/from the address space.
 48 *
 49 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 50 * will always be <= an objects lifetime. So object refcounting should cover us.
 51 */
 52struct i915_vma {
 53	struct drm_mm_node node;
 54	struct drm_i915_gem_object *obj;
 55	struct i915_address_space *vm;
 56	const struct i915_vma_ops *ops;
 57	struct i915_fence_reg *fence;
 58	struct dma_resv *resv; /** Alias of obj->resv */
 59	struct sg_table *pages;
 60	void __iomem *iomap;
 61	void *private; /* owned by creator */
 62	u64 size;
 63	u64 display_alignment;
 64	struct i915_page_sizes page_sizes;
 65
 66	u32 fence_size;
 67	u32 fence_alignment;
 68
 69	/**
 70	 * Count of the number of times this vma has been opened by different
 71	 * handles (but same file) for execbuf, i.e. the number of aliases
 72	 * that exist in the ctx->handle_vmas LUT for this vma.
 73	 */
 74	atomic_t open_count;
 75	unsigned long flags;
 76	/**
 77	 * How many users have pinned this object in GTT space.
 78	 *
 79	 * This is a tightly bound, fairly small number of users, so we
 80	 * stuff inside the flags field so that we can both check for overflow
 81	 * and detect a no-op i915_vma_pin() in a single check, while also
 82	 * pinning the vma.
 83	 *
 84	 * The worst case display setup would have the same vma pinned for
 85	 * use on each plane on each crtc, while also building the next atomic
 86	 * state and holding a pin for the length of the cleanup queue. In the
 87	 * future, the flip queue may be increased from 1.
 88	 * Estimated worst case: 3 [qlen] * 4 [max crtcs] * 7 [max planes] = 84
 89	 *
 90	 * For GEM, the number of concurrent users for pwrite/pread is
 91	 * unbounded. For execbuffer, it is currently one but will in future
 92	 * be extended to allow multiple clients to pin vma concurrently.
 93	 *
 94	 * We also use suballocated pages, with each suballocation claiming
 95	 * its own pin on the shared vma. At present, this is limited to
 96	 * exclusive cachelines of a single page, so a maximum of 64 possible
 97	 * users.
 98	 */
 99#define I915_VMA_PIN_MASK 0xff
100#define I915_VMA_PIN_OVERFLOW	BIT(8)
101
102	/** Flags and address space this VMA is bound to */
103#define I915_VMA_GLOBAL_BIND	BIT(9)
104#define I915_VMA_LOCAL_BIND	BIT(10)
105#define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
106
107#define I915_VMA_GGTT		BIT(11)
108#define I915_VMA_CAN_FENCE	BIT(12)
109#define I915_VMA_USERFAULT_BIT	13
110#define I915_VMA_USERFAULT	BIT(I915_VMA_USERFAULT_BIT)
111#define I915_VMA_GGTT_WRITE	BIT(14)
112
113	struct i915_active active;
114
115	/**
116	 * Support different GGTT views into the same object.
117	 * This means there can be multiple VMA mappings per object and per VM.
118	 * i915_ggtt_view_type is used to distinguish between those entries.
119	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
120	 * assumed in GEM functions which take no ggtt view parameter.
121	 */
122	struct i915_ggtt_view ggtt_view;
123
124	/** This object's place on the active/inactive lists */
125	struct list_head vm_link;
126
127	struct list_head obj_link; /* Link in the object's VMA list */
128	struct rb_node obj_node;
129	struct hlist_node obj_hash;
130
131	/** This vma's place in the execbuf reservation list */
132	struct list_head exec_link;
133	struct list_head reloc_link;
134
135	/** This vma's place in the eviction list */
136	struct list_head evict_link;
137
138	struct list_head closed_link;
139
140	/**
141	 * Used for performing relocations during execbuffer insertion.
142	 */
143	unsigned int *exec_flags;
144	struct hlist_node exec_node;
145	u32 exec_handle;
146};
147
148struct i915_vma *
149i915_vma_instance(struct drm_i915_gem_object *obj,
150		  struct i915_address_space *vm,
151		  const struct i915_ggtt_view *view);
152
153void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags);
154#define I915_VMA_RELEASE_MAP BIT(0)
155
156static inline bool i915_vma_is_active(const struct i915_vma *vma)
157{
158	return !i915_active_is_idle(&vma->active);
159}
160
161int __must_check i915_vma_move_to_active(struct i915_vma *vma,
162					 struct i915_request *rq,
163					 unsigned int flags);
164
165static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
166{
167	return vma->flags & I915_VMA_GGTT;
168}
169
170static inline bool i915_vma_has_ggtt_write(const struct i915_vma *vma)
171{
172	return vma->flags & I915_VMA_GGTT_WRITE;
173}
174
175static inline void i915_vma_set_ggtt_write(struct i915_vma *vma)
176{
177	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
178	vma->flags |= I915_VMA_GGTT_WRITE;
179}
180
181static inline void i915_vma_unset_ggtt_write(struct i915_vma *vma)
182{
183	vma->flags &= ~I915_VMA_GGTT_WRITE;
184}
185
186void i915_vma_flush_writes(struct i915_vma *vma);
187
188static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma)
189{
190	return vma->flags & I915_VMA_CAN_FENCE;
191}
192
193static inline bool i915_vma_set_userfault(struct i915_vma *vma)
194{
195	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
196	return __test_and_set_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
197}
198
199static inline void i915_vma_unset_userfault(struct i915_vma *vma)
200{
201	return __clear_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
202}
203
204static inline bool i915_vma_has_userfault(const struct i915_vma *vma)
205{
206	return test_bit(I915_VMA_USERFAULT_BIT, &vma->flags);
207}
208
209static inline bool i915_vma_is_closed(const struct i915_vma *vma)
210{
211	return !list_empty(&vma->closed_link);
212}
213
214static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
215{
216	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
217	GEM_BUG_ON(!vma->node.allocated);
218	GEM_BUG_ON(upper_32_bits(vma->node.start));
219	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
220	return lower_32_bits(vma->node.start);
221}
222
223static inline u32 i915_ggtt_pin_bias(struct i915_vma *vma)
224{
225	return i915_vm_to_ggtt(vma->vm)->pin_bias;
226}
227
228static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
229{
230	i915_gem_object_get(vma->obj);
231	return vma;
232}
233
234static inline struct i915_vma *i915_vma_tryget(struct i915_vma *vma)
235{
236	if (likely(kref_get_unless_zero(&vma->obj->base.refcount)))
237		return vma;
238
239	return NULL;
240}
241
242static inline void i915_vma_put(struct i915_vma *vma)
243{
244	i915_gem_object_put(vma->obj);
245}
246
247static __always_inline ptrdiff_t ptrdiff(const void *a, const void *b)
248{
249	return a - b;
250}
251
252static inline long
253i915_vma_compare(struct i915_vma *vma,
254		 struct i915_address_space *vm,
255		 const struct i915_ggtt_view *view)
256{
257	ptrdiff_t cmp;
258
259	GEM_BUG_ON(view && !i915_is_ggtt(vm));
260
261	cmp = ptrdiff(vma->vm, vm);
262	if (cmp)
263		return cmp;
264
265	BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL != 0);
266	cmp = vma->ggtt_view.type;
267	if (!view)
268		return cmp;
269
270	cmp -= view->type;
271	if (cmp)
272		return cmp;
273
274	assert_i915_gem_gtt_types();
275
276	/* ggtt_view.type also encodes its size so that we both distinguish
277	 * different views using it as a "type" and also use a compact (no
278	 * accessing of uninitialised padding bytes) memcmp without storing
279	 * an extra parameter or adding more code.
280	 *
281	 * To ensure that the memcmp is valid for all branches of the union,
282	 * even though the code looks like it is just comparing one branch,
283	 * we assert above that all branches have the same address, and that
284	 * each branch has a unique type/size.
285	 */
286	BUILD_BUG_ON(I915_GGTT_VIEW_NORMAL >= I915_GGTT_VIEW_PARTIAL);
287	BUILD_BUG_ON(I915_GGTT_VIEW_PARTIAL >= I915_GGTT_VIEW_ROTATED);
288	BUILD_BUG_ON(I915_GGTT_VIEW_ROTATED >= I915_GGTT_VIEW_REMAPPED);
289	BUILD_BUG_ON(offsetof(typeof(*view), rotated) !=
290		     offsetof(typeof(*view), partial));
291	BUILD_BUG_ON(offsetof(typeof(*view), rotated) !=
292		     offsetof(typeof(*view), remapped));
293	return memcmp(&vma->ggtt_view.partial, &view->partial, view->type);
294}
295
296int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
297		  u32 flags);
298bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level);
299bool i915_vma_misplaced(const struct i915_vma *vma,
300			u64 size, u64 alignment, u64 flags);
301void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
302void i915_vma_revoke_mmap(struct i915_vma *vma);
303int __must_check i915_vma_unbind(struct i915_vma *vma);
304void i915_vma_unlink_ctx(struct i915_vma *vma);
305void i915_vma_close(struct i915_vma *vma);
306void i915_vma_reopen(struct i915_vma *vma);
307void i915_vma_destroy(struct i915_vma *vma);
308
309#define assert_vma_held(vma) dma_resv_assert_held((vma)->resv)
310
311static inline void i915_vma_lock(struct i915_vma *vma)
312{
313	dma_resv_lock(vma->resv, NULL);
314}
315
316static inline void i915_vma_unlock(struct i915_vma *vma)
317{
318	dma_resv_unlock(vma->resv);
319}
320
321int __i915_vma_do_pin(struct i915_vma *vma,
322		      u64 size, u64 alignment, u64 flags);
323static inline int __must_check
324i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
325{
326	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
327	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
328	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
329
330	/* Pin early to prevent the shrinker/eviction logic from destroying
331	 * our vma as we insert and bind.
332	 */
333	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0)) {
334		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
335		GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
336		return 0;
337	}
338
339	return __i915_vma_do_pin(vma, size, alignment, flags);
340}
341
342static inline int i915_vma_pin_count(const struct i915_vma *vma)
343{
344	return vma->flags & I915_VMA_PIN_MASK;
345}
346
347static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
348{
349	return i915_vma_pin_count(vma);
350}
351
352static inline void __i915_vma_pin(struct i915_vma *vma)
353{
354	vma->flags++;
355	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
356}
357
358static inline void __i915_vma_unpin(struct i915_vma *vma)
359{
360	vma->flags--;
361}
362
363static inline void i915_vma_unpin(struct i915_vma *vma)
364{
365	GEM_BUG_ON(!i915_vma_is_pinned(vma));
366	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
367	__i915_vma_unpin(vma);
368}
369
370static inline bool i915_vma_is_bound(const struct i915_vma *vma,
371				     unsigned int where)
372{
373	return vma->flags & where;
374}
375
376/**
377 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
378 * @vma: VMA to iomap
379 *
380 * The passed in VMA has to be pinned in the global GTT mappable region.
381 * An extra pinning of the VMA is acquired for the return iomapping,
382 * the caller must call i915_vma_unpin_iomap to relinquish the pinning
383 * after the iomapping is no longer required.
384 *
385 * Callers must hold the struct_mutex.
386 *
387 * Returns a valid iomapped pointer or ERR_PTR.
388 */
389void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
390#define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
391
392/**
393 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
394 * @vma: VMA to unpin
395 *
396 * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
397 *
398 * Callers must hold the struct_mutex. This function is only valid to be
399 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
400 */
401void i915_vma_unpin_iomap(struct i915_vma *vma);
402
403static inline struct page *i915_vma_first_page(struct i915_vma *vma)
404{
405	GEM_BUG_ON(!vma->pages);
406	return sg_page(vma->pages->sgl);
407}
408
409/**
410 * i915_vma_pin_fence - pin fencing state
411 * @vma: vma to pin fencing for
412 *
413 * This pins the fencing state (whether tiled or untiled) to make sure the
414 * vma (and its object) is ready to be used as a scanout target. Fencing
415 * status must be synchronize first by calling i915_vma_get_fence():
416 *
417 * The resulting fence pin reference must be released again with
418 * i915_vma_unpin_fence().
419 *
420 * Returns:
421 *
422 * True if the vma has a fence, false otherwise.
423 */
424int __must_check i915_vma_pin_fence(struct i915_vma *vma);
425int __must_check i915_vma_revoke_fence(struct i915_vma *vma);
426
427static inline void __i915_vma_unpin_fence(struct i915_vma *vma)
428{
429	GEM_BUG_ON(atomic_read(&vma->fence->pin_count) <= 0);
430	atomic_dec(&vma->fence->pin_count);
431}
432
433/**
434 * i915_vma_unpin_fence - unpin fencing state
435 * @vma: vma to unpin fencing for
436 *
437 * This releases the fence pin reference acquired through
438 * i915_vma_pin_fence. It will handle both objects with and without an
439 * attached fence correctly, callers do not need to distinguish this.
440 */
441static inline void
442i915_vma_unpin_fence(struct i915_vma *vma)
443{
444	/* lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); */
445	if (vma->fence)
446		__i915_vma_unpin_fence(vma);
447}
448
449void i915_vma_parked(struct drm_i915_private *i915);
450
451#define for_each_until(cond) if (cond) break; else
452
453/**
454 * for_each_ggtt_vma - Iterate over the GGTT VMA belonging to an object.
455 * @V: the #i915_vma iterator
456 * @OBJ: the #drm_i915_gem_object
457 *
458 * GGTT VMA are placed at the being of the object's vma_list, see
459 * vma_create(), so we can stop our walk as soon as we see a ppgtt VMA,
460 * or the list is empty ofc.
461 */
462#define for_each_ggtt_vma(V, OBJ) \
463	list_for_each_entry(V, &(OBJ)->vma.list, obj_link)		\
464		for_each_until(!i915_vma_is_ggtt(V))
465
466struct i915_vma *i915_vma_alloc(void);
467void i915_vma_free(struct i915_vma *vma);
468
469struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma);
470void i915_vma_make_shrinkable(struct i915_vma *vma);
471void i915_vma_make_purgeable(struct i915_vma *vma);
472
473#endif