Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright © 2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 * Please try to maintain the following order within this file unless it makes
 24 * sense to do otherwise. From top to bottom:
 25 * 1. typedefs
 26 * 2. #defines, and macros
 27 * 3. structure definitions
 28 * 4. function prototypes
 29 *
 30 * Within each section, please try to order by generation in ascending order,
 31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 32 */
 33
 34#ifndef __I915_GEM_GTT_H__
 35#define __I915_GEM_GTT_H__
 36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37struct drm_i915_file_private;
 
 
 
 38
 39typedef uint32_t gen6_pte_t;
 40typedef uint64_t gen8_pte_t;
 41typedef uint64_t gen8_pde_t;
 42typedef uint64_t gen8_ppgtt_pdpe_t;
 43typedef uint64_t gen8_ppgtt_pml4e_t;
 44
 45#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
 46
 47/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
 48#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
 49#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 50#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 51#define GEN6_PTE_CACHE_LLC		(2 << 1)
 52#define GEN6_PTE_UNCACHED		(1 << 1)
 53#define GEN6_PTE_VALID			(1 << 0)
 54
 55#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
 56#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
 57#define I915_PDES			512
 58#define I915_PDE_MASK			(I915_PDES - 1)
 59#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
 60
 61#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
 62#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
 63#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
 64#define GEN6_PDE_SHIFT			22
 65#define GEN6_PDE_VALID			(1 << 0)
 66
 67#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
 68
 69#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
 70#define BYT_PTE_WRITEABLE		(1 << 1)
 71
 72/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
 73 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 74 */
 75#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
 76					 (((bits) & 0x8) << (11 - 3)))
 77#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
 78#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
 79#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
 80#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
 81#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
 82#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
 83#define HSW_PTE_UNCACHED		(0)
 84#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
 85#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
 86
 87/* GEN8 legacy style address is defined as a 3 level page table:
 
 88 * 31:30 | 29:21 | 20:12 |  11:0
 89 * PDPE  |  PDE  |  PTE  | offset
 90 * The difference as compared to normal x86 3 level page table is the PDPEs are
 91 * programmed via register.
 92 *
 93 * GEN8 48b legacy style address is defined as a 4 level page table:
 94 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
 95 * PML4E | PDPE  |  PDE  |  PTE  | offset
 96 */
 97#define GEN8_PML4ES_PER_PML4		512
 98#define GEN8_PML4E_SHIFT		39
 99#define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
100#define GEN8_PDPE_SHIFT			30
101/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
102 * tables */
103#define GEN8_PDPE_MASK			0x1ff
104#define GEN8_PDE_SHIFT			21
105#define GEN8_PDE_MASK			0x1ff
106#define GEN8_PTE_SHIFT			12
107#define GEN8_PTE_MASK			0x1ff
108#define GEN8_LEGACY_PDPES		4
109#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
110
111#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
112				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
113
114#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
115#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
116#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
117#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
118
119#define CHV_PPAT_SNOOP			(1<<6)
120#define GEN8_PPAT_AGE(x)		(x<<4)
121#define GEN8_PPAT_LLCeLLC		(3<<2)
122#define GEN8_PPAT_LLCELLC		(2<<2)
123#define GEN8_PPAT_LLC			(1<<2)
124#define GEN8_PPAT_WB			(3<<0)
125#define GEN8_PPAT_WT			(2<<0)
126#define GEN8_PPAT_WC			(1<<0)
127#define GEN8_PPAT_UC			(0<<0)
128#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
129#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
131enum i915_ggtt_view_type {
132	I915_GGTT_VIEW_NORMAL = 0,
133	I915_GGTT_VIEW_ROTATED,
134	I915_GGTT_VIEW_PARTIAL,
 
135};
136
137struct intel_rotation_info {
138	unsigned int height;
139	unsigned int pitch;
140	unsigned int uv_offset;
141	uint32_t pixel_format;
142	uint64_t fb_modifier;
143	unsigned int width_pages, height_pages;
144	uint64_t size;
145	unsigned int width_pages_uv, height_pages_uv;
146	uint64_t size_uv;
147	unsigned int uv_start_page;
148};
 
 
 
 
 
 
 
 
 
 
 
 
149
150struct i915_ggtt_view {
151	enum i915_ggtt_view_type type;
152
153	union {
154		struct {
155			u64 offset;
156			unsigned int size;
157		} partial;
158		struct intel_rotation_info rotated;
159	} params;
160
161	struct sg_table *pages;
162};
163
164extern const struct i915_ggtt_view i915_ggtt_view_normal;
165extern const struct i915_ggtt_view i915_ggtt_view_rotated;
166
167enum i915_cache_level;
168
169/**
170 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
171 * VMA's presence cannot be guaranteed before binding, or after unbinding the
172 * object into/from the address space.
173 *
174 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
175 * will always be <= an objects lifetime. So object refcounting should cover us.
176 */
177struct i915_vma {
178	struct drm_mm_node node;
179	struct drm_i915_gem_object *obj;
180	struct i915_address_space *vm;
181
182	/** Flags and address space this VMA is bound to */
183#define GLOBAL_BIND	(1<<0)
184#define LOCAL_BIND	(1<<1)
185	unsigned int bound : 4;
186	bool is_ggtt : 1;
187
188	/**
189	 * Support different GGTT views into the same object.
190	 * This means there can be multiple VMA mappings per object and per VM.
191	 * i915_ggtt_view_type is used to distinguish between those entries.
192	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193	 * assumed in GEM functions which take no ggtt view parameter.
194	 */
195	struct i915_ggtt_view ggtt_view;
196
197	/** This object's place on the active/inactive lists */
198	struct list_head vm_link;
199
200	struct list_head obj_link; /* Link in the object's VMA list */
201
202	/** This vma's place in the batchbuffer or on the eviction list */
203	struct list_head exec_list;
204
205	/**
206	 * Used for performing relocations during execbuffer insertion.
207	 */
208	struct hlist_node exec_node;
209	unsigned long exec_handle;
210	struct drm_i915_gem_exec_object2 *exec_entry;
211
212	/**
213	 * How many users have pinned this object in GTT space. The following
214	 * users can each hold at most one reference: pwrite/pread, execbuffer
215	 * (objects are not allowed multiple times for the same batchbuffer),
216	 * and the framebuffer code. When switching/pageflipping, the
217	 * framebuffer code has at most two buffers pinned per crtc.
218	 *
219	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220	 * bits with absolutely no headroom. So use 4 bits. */
221	unsigned int pin_count:4;
222#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223};
224
225struct i915_page_dma {
226	struct page *page;
227	union {
228		dma_addr_t daddr;
229
230		/* For gen6/gen7 only. This is the offset in the GGTT
231		 * where the page directory entries for PPGTT begin
232		 */
233		uint32_t ggtt_offset;
234	};
235};
236
237#define px_base(px) (&(px)->base)
238#define px_page(px) (px_base(px)->page)
239#define px_dma(px) (px_base(px)->daddr)
240
241struct i915_page_scratch {
242	struct i915_page_dma base;
 
243};
244
245struct i915_page_table {
246	struct i915_page_dma base;
247
248	unsigned long *used_ptes;
249};
250
251struct i915_page_directory {
252	struct i915_page_dma base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
254	unsigned long *used_pdes;
255	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256};
 
 
257
258struct i915_page_directory_pointer {
259	struct i915_page_dma base;
 
 
 
 
 
 
 
 
260
261	unsigned long *used_pdpes;
262	struct i915_page_directory **page_directory;
263};
264
265struct i915_pml4 {
266	struct i915_page_dma base;
267
268	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270};
271
272struct i915_address_space {
 
 
 
273	struct drm_mm mm;
274	struct drm_device *dev;
275	struct list_head global_link;
276	u64 start;		/* Start offset always 0 for dri2 */
 
 
 
 
 
 
 
 
 
277	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
 
278
279	bool is_ggtt;
280
281	struct i915_page_scratch *scratch_page;
282	struct i915_page_table *scratch_pt;
283	struct i915_page_directory *scratch_pd;
284	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
 
 
 
285
286	/**
287	 * List of objects currently involved in rendering.
288	 *
289	 * Includes buffers having the contents of their GPU caches
290	 * flushed, not necessarily primitives. last_read_req
291	 * represents when the rendering involved will be completed.
292	 *
293	 * A reference is held on the buffer while on this list.
294	 */
295	struct list_head active_list;
296
297	/**
298	 * LRU list of objects which are not in the ringbuffer and
299	 * are ready to unbind, but are still in the GTT.
300	 *
301	 * last_read_req is NULL while an object is in this list.
302	 *
303	 * A reference is not held on the buffer while on this list,
304	 * as merely being GTT-bound shouldn't prevent its being
305	 * freed, and we'll pull it off the list in the free path.
306	 */
307	struct list_head inactive_list;
 
 
 
 
 
 
 
 
308
309	/* FIXME: Need a more generic return type */
310	gen6_pte_t (*pte_encode)(dma_addr_t addr,
311				 enum i915_cache_level level,
312				 bool valid, u32 flags); /* Create a valid PTE */
313	/* flags for pte_encode */
 
314#define PTE_READ_ONLY	(1<<0)
 
315	int (*allocate_va_range)(struct i915_address_space *vm,
316				 uint64_t start,
317				 uint64_t length);
318	void (*clear_range)(struct i915_address_space *vm,
319			    uint64_t start,
320			    uint64_t length,
321			    bool use_scratch);
 
 
 
322	void (*insert_entries)(struct i915_address_space *vm,
323			       struct sg_table *st,
324			       uint64_t start,
325			       enum i915_cache_level cache_level, u32 flags);
326	void (*cleanup)(struct i915_address_space *vm);
327	/** Unmap an object from an address space. This usually consists of
328	 * setting the valid PTE entries to a reserved scratch page. */
329	void (*unbind_vma)(struct i915_vma *vma);
330	/* Map an object into an address space with the given cache flags. */
331	int (*bind_vma)(struct i915_vma *vma,
332			enum i915_cache_level cache_level,
333			u32 flags);
334};
335
336#define i915_is_ggtt(V) ((V)->is_ggtt)
 
 
 
 
 
 
 
 
 
 
 
 
337
338/* The Graphics Translation Table is the way in which GEN hardware translates a
339 * Graphics Virtual Address into a Physical Address. In addition to the normal
340 * collateral associated with any va->pa translations GEN hardware also has a
341 * portion of the GTT which can be mapped by the CPU and remain both coherent
342 * and correct (in cases like swizzling). That region is referred to as GMADR in
343 * the spec.
344 */
345struct i915_gtt {
346	struct i915_address_space base;
347
348	size_t stolen_size;		/* Total size of stolen memory */
349	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
350	size_t stolen_reserved_base;
351	size_t stolen_reserved_size;
352	u64 mappable_end;		/* End offset that we can CPU map */
353	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
354	phys_addr_t mappable_base;	/* PA of our GMADR */
355
356	/** "Graphics Stolen Memory" holds the global PTEs */
357	void __iomem *gsm;
 
 
 
 
358
359	bool do_idle_maps;
360
361	int mtrr;
362
363	/* global gtt ops */
364	int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
365			  size_t *stolen, phys_addr_t *mappable_base,
366			  u64 *mappable_end);
 
 
 
 
 
 
 
 
 
 
 
 
367};
368
369struct i915_hw_ppgtt {
370	struct i915_address_space base;
371	struct kref ref;
372	struct drm_mm_node node;
373	unsigned long pd_dirty_rings;
374	union {
375		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
376		struct i915_page_directory_pointer pdp;	/* GEN8+ */
377		struct i915_page_directory pd;		/* GEN6-7 */
378	};
379
380	struct drm_i915_file_private *file_priv;
 
381
 
382	gen6_pte_t __iomem *pd_addr;
383
384	int (*enable)(struct i915_hw_ppgtt *ppgtt);
385	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
386			 struct drm_i915_gem_request *req);
387	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
388};
389
390/* For each pde iterates over every pde between from start until start + length.
391 * If start, and start+length are not perfectly divisible, the macro will round
392 * down, and up as needed. The macro modifies pde, start, and length. Dev is
393 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
394 * and length = 2G effectively iterates over every PDE in the system.
395 *
396 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
 
 
 
 
 
 
 
 
397 */
398#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
399	for (iter = gen6_pde_index(start); \
400	     length > 0 && iter < I915_PDES ? \
401			(pt = (pd)->page_table[iter]), 1 : 0; \
402	     iter++, \
403	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
404	     temp = min_t(unsigned, temp, length), \
405	     start += temp, length -= temp)
406
407#define gen6_for_all_pdes(pt, ppgtt, iter)  \
408	for (iter = 0;		\
409	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
410	     iter++)
411
412static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
 
 
 
 
 
 
413{
414	const uint32_t mask = NUM_PTE(pde_shift) - 1;
415
416	return (address >> PAGE_SHIFT) & mask;
417}
418
419/* Helper to counts the number of PTEs within the given length. This count
420 * does not cross a page table boundary, so the max value would be
421 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
422*/
423static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
424				      uint32_t pde_shift)
425{
426	const uint64_t mask = ~((1ULL << pde_shift) - 1);
427	uint64_t end;
428
429	WARN_ON(length == 0);
430	WARN_ON(offset_in_page(addr|length));
431
432	end = addr + length;
433
434	if ((addr & mask) != (end & mask))
435		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
436
437	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
438}
439
440static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
441{
442	return (addr >> shift) & I915_PDE_MASK;
443}
444
445static inline uint32_t gen6_pte_index(uint32_t addr)
446{
447	return i915_pte_index(addr, GEN6_PDE_SHIFT);
448}
449
450static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
451{
452	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
453}
454
455static inline uint32_t gen6_pde_index(uint32_t addr)
456{
457	return i915_pde_index(addr, GEN6_PDE_SHIFT);
458}
459
460/* Equivalent to the gen6 version, For each pde iterates over every pde
461 * between from start until start + length. On gen8+ it simply iterates
462 * over every page directory entry in a page directory.
463 */
464#define gen8_for_each_pde(pt, pd, start, length, iter)			\
465	for (iter = gen8_pde_index(start);				\
466	     length > 0 && iter < I915_PDES &&				\
467		(pt = (pd)->page_table[iter], true);			\
468	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
469		    temp = min(temp - start, length);			\
470		    start += temp, length -= temp; }), ++iter)
471
472#define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
473	for (iter = gen8_pdpe_index(start);				\
474	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
475		(pd = (pdp)->page_directory[iter], true);		\
476	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
477		    temp = min(temp - start, length);			\
478		    start += temp, length -= temp; }), ++iter)
479
480#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
481	for (iter = gen8_pml4e_index(start);				\
482	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
483		(pdp = (pml4)->pdps[iter], true);			\
484	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
485		    temp = min(temp - start, length);			\
486		    start += temp, length -= temp; }), ++iter)
487
488static inline uint32_t gen8_pte_index(uint64_t address)
489{
490	return i915_pte_index(address, GEN8_PDE_SHIFT);
491}
492
493static inline uint32_t gen8_pde_index(uint64_t address)
 
 
494{
495	return i915_pde_index(address, GEN8_PDE_SHIFT);
496}
497
498static inline uint32_t gen8_pdpe_index(uint64_t address)
 
499{
500	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
501}
502
503static inline uint32_t gen8_pml4e_index(uint64_t address)
504{
505	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
506}
507
508static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
 
509{
510	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
 
 
511}
512
513static inline dma_addr_t
514i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
515{
516	return test_bit(n, ppgtt->pdp.used_pdpes) ?
517		px_dma(ppgtt->pdp.page_directory[n]) :
518		px_dma(ppgtt->base.scratch_pd);
519}
520
521int i915_gem_gtt_init(struct drm_device *dev);
522void i915_gem_init_global_gtt(struct drm_device *dev);
523void i915_global_gtt_cleanup(struct drm_device *dev);
 
 
 
 
 
 
524
 
525
526int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
527int i915_ppgtt_init_hw(struct drm_device *dev);
528int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
529void i915_ppgtt_release(struct kref *kref);
530struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
531					struct drm_i915_file_private *fpriv);
532static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
533{
534	if (ppgtt)
535		kref_get(&ppgtt->ref);
536}
537static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
 
 
 
538{
539	if (ppgtt)
540		kref_put(&ppgtt->ref, i915_ppgtt_release);
541}
542
543void i915_check_and_clear_faults(struct drm_device *dev);
544void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
545void i915_gem_restore_gtt_mappings(struct drm_device *dev);
546
547int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
548void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
549
550static inline bool
551i915_ggtt_view_equal(const struct i915_ggtt_view *a,
552                     const struct i915_ggtt_view *b)
553{
554	if (WARN_ON(!a || !b))
555		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556
557	if (a->type != b->type)
558		return false;
559	if (a->type != I915_GGTT_VIEW_NORMAL)
560		return !memcmp(&a->params, &b->params, sizeof(a->params));
561	return true;
562}
563
564size_t
565i915_ggtt_view_size(struct drm_i915_gem_object *obj,
566		    const struct i915_ggtt_view *view);
567
568#endif
v5.4
  1/*
  2 * Copyright © 2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 * Please try to maintain the following order within this file unless it makes
 24 * sense to do otherwise. From top to bottom:
 25 * 1. typedefs
 26 * 2. #defines, and macros
 27 * 3. structure definitions
 28 * 4. function prototypes
 29 *
 30 * Within each section, please try to order by generation in ascending order,
 31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 32 */
 33
 34#ifndef __I915_GEM_GTT_H__
 35#define __I915_GEM_GTT_H__
 36
 37#include <linux/io-mapping.h>
 38#include <linux/kref.h>
 39#include <linux/mm.h>
 40#include <linux/pagevec.h>
 41#include <linux/workqueue.h>
 42
 43#include <drm/drm_mm.h>
 44
 45#include "gt/intel_reset.h"
 46#include "i915_gem_fence_reg.h"
 47#include "i915_request.h"
 48#include "i915_scatterlist.h"
 49#include "i915_selftest.h"
 50#include "gt/intel_timeline.h"
 51
 52#define I915_GTT_PAGE_SIZE_4K	BIT_ULL(12)
 53#define I915_GTT_PAGE_SIZE_64K	BIT_ULL(16)
 54#define I915_GTT_PAGE_SIZE_2M	BIT_ULL(21)
 55
 56#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
 57#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
 58
 59#define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
 60
 61#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
 62
 63#define I915_FENCE_REG_NONE -1
 64#define I915_MAX_NUM_FENCES 32
 65/* 32 fences + sign bit for FENCE_REG_NONE */
 66#define I915_MAX_NUM_FENCE_BITS 6
 67
 68struct drm_i915_file_private;
 69struct drm_i915_gem_object;
 70struct i915_vma;
 71struct intel_gt;
 72
 73typedef u32 gen6_pte_t;
 74typedef u64 gen8_pte_t;
 
 
 
 75
 76#define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
 77
 78/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
 79#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
 80#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 81#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 82#define GEN6_PTE_CACHE_LLC		(2 << 1)
 83#define GEN6_PTE_UNCACHED		(1 << 1)
 84#define GEN6_PTE_VALID			(1 << 0)
 85
 86#define I915_PTES(pte_len)		((unsigned int)(PAGE_SIZE / (pte_len)))
 87#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
 88#define I915_PDES			512
 89#define I915_PDE_MASK			(I915_PDES - 1)
 90#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
 91
 92#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
 93#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
 94#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
 95#define GEN6_PDE_SHIFT			22
 96#define GEN6_PDE_VALID			(1 << 0)
 97
 98#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
 99
100#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
101#define BYT_PTE_WRITEABLE		(1 << 1)
102
103/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
104 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
105 */
106#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
107					 (((bits) & 0x8) << (11 - 3)))
108#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
109#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
110#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
111#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
112#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
113#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
114#define HSW_PTE_UNCACHED		(0)
115#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
116#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
117
118/*
119 * GEN8 32b style address is defined as a 3 level page table:
120 * 31:30 | 29:21 | 20:12 |  11:0
121 * PDPE  |  PDE  |  PTE  | offset
122 * The difference as compared to normal x86 3 level page table is the PDPEs are
123 * programmed via register.
124 *
125 * GEN8 48b style address is defined as a 4 level page table:
126 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
127 * PML4E | PDPE  |  PDE  |  PTE  | offset
128 */
129#define GEN8_3LVL_PDPES			4
130
131#define PPAT_UNCACHED			(_PAGE_PWT | _PAGE_PCD)
132#define PPAT_CACHED_PDE			0 /* WB LLC */
133#define PPAT_CACHED			_PAGE_PAT /* WB LLCeLLC */
134#define PPAT_DISPLAY_ELLC		_PAGE_PCD /* WT eLLC */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
136#define CHV_PPAT_SNOOP			(1<<6)
137#define GEN8_PPAT_AGE(x)		((x)<<4)
138#define GEN8_PPAT_LLCeLLC		(3<<2)
139#define GEN8_PPAT_LLCELLC		(2<<2)
140#define GEN8_PPAT_LLC			(1<<2)
141#define GEN8_PPAT_WB			(3<<0)
142#define GEN8_PPAT_WT			(2<<0)
143#define GEN8_PPAT_WC			(1<<0)
144#define GEN8_PPAT_UC			(0<<0)
145#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
146#define GEN8_PPAT(i, x)			((u64)(x) << ((i) * 8))
147
148#define GEN8_PDE_IPS_64K BIT(11)
149#define GEN8_PDE_PS_2M   BIT(7)
150
151#define for_each_sgt_dma(__dmap, __iter, __sgt) \
152	__for_each_sgt_dma(__dmap, __iter, __sgt, I915_GTT_PAGE_SIZE)
153
154struct intel_remapped_plane_info {
155	/* in gtt pages */
156	unsigned int width, height, stride, offset;
157} __packed;
158
159struct intel_remapped_info {
160	struct intel_remapped_plane_info plane[2];
161	unsigned int unused_mbz;
162} __packed;
163
164struct intel_rotation_info {
165	struct intel_remapped_plane_info plane[2];
166} __packed;
167
168struct intel_partial_info {
169	u64 offset;
170	unsigned int size;
171} __packed;
172
173enum i915_ggtt_view_type {
174	I915_GGTT_VIEW_NORMAL = 0,
175	I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
176	I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
177	I915_GGTT_VIEW_REMAPPED = sizeof(struct intel_remapped_info),
178};
179
180static inline void assert_i915_gem_gtt_types(void)
181{
182	BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
183	BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
184	BUILD_BUG_ON(sizeof(struct intel_remapped_info) != 9*sizeof(unsigned int));
185
186	/* Check that rotation/remapped shares offsets for simplicity */
187	BUILD_BUG_ON(offsetof(struct intel_remapped_info, plane[0]) !=
188		     offsetof(struct intel_rotation_info, plane[0]));
189	BUILD_BUG_ON(offsetofend(struct intel_remapped_info, plane[1]) !=
190		     offsetofend(struct intel_rotation_info, plane[1]));
191
192	/* As we encode the size of each branch inside the union into its type,
193	 * we have to be careful that each branch has a unique size.
194	 */
195	switch ((enum i915_ggtt_view_type)0) {
196	case I915_GGTT_VIEW_NORMAL:
197	case I915_GGTT_VIEW_PARTIAL:
198	case I915_GGTT_VIEW_ROTATED:
199	case I915_GGTT_VIEW_REMAPPED:
200		/* gcc complains if these are identical cases */
201		break;
202	}
203}
204
205struct i915_ggtt_view {
206	enum i915_ggtt_view_type type;
 
207	union {
208		/* Members need to contain no holes/padding */
209		struct intel_partial_info partial;
 
 
210		struct intel_rotation_info rotated;
211		struct intel_remapped_info remapped;
212	};
 
213};
214
 
 
 
215enum i915_cache_level;
216
217struct i915_vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
219struct i915_page_dma {
220	struct page *page;
221	union {
222		dma_addr_t daddr;
223
224		/* For gen6/gen7 only. This is the offset in the GGTT
225		 * where the page directory entries for PPGTT begin
226		 */
227		u32 ggtt_offset;
228	};
229};
230
 
 
 
 
231struct i915_page_scratch {
232	struct i915_page_dma base;
233	u64 encode;
234};
235
236struct i915_page_table {
237	struct i915_page_dma base;
238	atomic_t used;
 
239};
240
241struct i915_page_directory {
242	struct i915_page_table pt;
243	spinlock_t lock;
244	void *entry[512];
245};
246
247#define __px_choose_expr(x, type, expr, other) \
248	__builtin_choose_expr( \
249	__builtin_types_compatible_p(typeof(x), type) || \
250	__builtin_types_compatible_p(typeof(x), const type), \
251	({ type __x = (type)(x); expr; }), \
252	other)
253
254#define px_base(px) \
255	__px_choose_expr(px, struct i915_page_dma *, __x, \
256	__px_choose_expr(px, struct i915_page_scratch *, &__x->base, \
257	__px_choose_expr(px, struct i915_page_table *, &__x->base, \
258	__px_choose_expr(px, struct i915_page_directory *, &__x->pt.base, \
259	(void)0))))
260#define px_dma(px) (px_base(px)->daddr)
261
262#define px_pt(px) \
263	__px_choose_expr(px, struct i915_page_table *, __x, \
264	__px_choose_expr(px, struct i915_page_directory *, &__x->pt, \
265	(void)0))
266#define px_used(px) (&px_pt(px)->used)
267
268struct i915_vma_ops {
269	/* Map an object into an address space with the given cache flags. */
270	int (*bind_vma)(struct i915_vma *vma,
271			enum i915_cache_level cache_level,
272			u32 flags);
273	/*
274	 * Unmap an object from an address space. This usually consists of
275	 * setting the valid PTE entries to a reserved scratch page.
276	 */
277	void (*unbind_vma)(struct i915_vma *vma);
278
279	int (*set_pages)(struct i915_vma *vma);
280	void (*clear_pages)(struct i915_vma *vma);
281};
282
283struct pagestash {
284	spinlock_t lock;
285	struct pagevec pvec;
 
 
286};
287
288struct i915_address_space {
289	struct kref ref;
290	struct rcu_work rcu;
291
292	struct drm_mm mm;
293	struct intel_gt *gt;
294	struct drm_i915_private *i915;
295	struct device *dma;
296	/* Every address space belongs to a struct file - except for the global
297	 * GTT that is owned by the driver (and so @file is set to NULL). In
298	 * principle, no information should leak from one context to another
299	 * (or between files/processes etc) unless explicitly shared by the
300	 * owner. Tracking the owner is important in order to free up per-file
301	 * objects along with the file, to aide resource tracking, and to
302	 * assign blame.
303	 */
304	struct drm_i915_file_private *file;
305	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
306	u64 reserved;		/* size addr space reserved */
307
308	bool closed;
309
310	struct mutex mutex; /* protects vma and our lists */
311#define VM_CLASS_GGTT 0
312#define VM_CLASS_PPGTT 1
313
314	struct i915_page_scratch scratch[4];
315	unsigned int scratch_order;
316	unsigned int top;
317
318	/**
319	 * List of vma currently bound.
 
 
 
 
 
 
320	 */
321	struct list_head bound_list;
322
323	/**
324	 * List of vma that are not unbound.
 
 
 
 
 
 
 
325	 */
326	struct list_head unbound_list;
327
328	struct pagestash free_pages;
329
330	/* Global GTT */
331	bool is_ggtt:1;
332
333	/* Some systems require uncached updates of the page directories */
334	bool pt_kmap_wc:1;
335
336	/* Some systems support read-only mappings for GGTT and/or PPGTT */
337	bool has_read_only:1;
338
339	u64 (*pte_encode)(dma_addr_t addr,
340			  enum i915_cache_level level,
341			  u32 flags); /* Create a valid PTE */
342#define PTE_READ_ONLY	(1<<0)
343
344	int (*allocate_va_range)(struct i915_address_space *vm,
345				 u64 start, u64 length);
 
346	void (*clear_range)(struct i915_address_space *vm,
347			    u64 start, u64 length);
348	void (*insert_page)(struct i915_address_space *vm,
349			    dma_addr_t addr,
350			    u64 offset,
351			    enum i915_cache_level cache_level,
352			    u32 flags);
353	void (*insert_entries)(struct i915_address_space *vm,
354			       struct i915_vma *vma,
355			       enum i915_cache_level cache_level,
356			       u32 flags);
357	void (*cleanup)(struct i915_address_space *vm);
358
359	struct i915_vma_ops vma_ops;
360
361	I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
362	I915_SELFTEST_DECLARE(bool scrub_64K);
 
 
363};
364
365#define i915_is_ggtt(vm) ((vm)->is_ggtt)
366
367static inline bool
368i915_vm_is_4lvl(const struct i915_address_space *vm)
369{
370	return (vm->total - 1) >> 32;
371}
372
373static inline bool
374i915_vm_has_scratch_64K(struct i915_address_space *vm)
375{
376	return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
377}
378
379/* The Graphics Translation Table is the way in which GEN hardware translates a
380 * Graphics Virtual Address into a Physical Address. In addition to the normal
381 * collateral associated with any va->pa translations GEN hardware also has a
382 * portion of the GTT which can be mapped by the CPU and remain both coherent
383 * and correct (in cases like swizzling). That region is referred to as GMADR in
384 * the spec.
385 */
386struct i915_ggtt {
387	struct i915_address_space vm;
388
389	struct io_mapping iomap;	/* Mapping to our CPU mappable region */
390	struct resource gmadr;          /* GMADR resource */
391	resource_size_t mappable_end;	/* End offset that we can CPU map */
 
 
 
 
392
393	/** "Graphics Stolen Memory" holds the global PTEs */
394	void __iomem *gsm;
395	void (*invalidate)(struct i915_ggtt *ggtt);
396
397	/** PPGTT used for aliasing the PPGTT with the GTT */
398	struct i915_ppgtt *alias;
399
400	bool do_idle_maps;
401
402	int mtrr;
403
404	u32 pin_bias;
405
406	unsigned int num_fences;
407	struct i915_fence_reg fence_regs[I915_MAX_NUM_FENCES];
408	struct list_head fence_list;
409
410	/** List of all objects in gtt_space, currently mmaped by userspace.
411	 * All objects within this list must also be on bound_list.
412	 */
413	struct list_head userfault_list;
414
415	/* Manual runtime pm autosuspend delay for user GGTT mmaps */
416	struct intel_wakeref_auto userfault_wakeref;
417
418	struct drm_mm_node error_capture;
419	struct drm_mm_node uc_fw;
420};
421
422struct i915_ppgtt {
423	struct i915_address_space vm;
424
425	intel_engine_mask_t pd_dirty_engines;
426	struct i915_page_directory *pd;
427};
 
 
 
 
428
429struct gen6_ppgtt {
430	struct i915_ppgtt base;
431
432	struct i915_vma *vma;
433	gen6_pte_t __iomem *pd_addr;
434
435	unsigned int pin_count;
436	bool scan_for_unused_pt;
 
 
437};
438
439#define __to_gen6_ppgtt(base) container_of(base, struct gen6_ppgtt, base)
440
441static inline struct gen6_ppgtt *to_gen6_ppgtt(struct i915_ppgtt *base)
442{
443	BUILD_BUG_ON(offsetof(struct gen6_ppgtt, base));
444	return __to_gen6_ppgtt(base);
445}
446
447/*
448 * gen6_for_each_pde() iterates over every pde from start until start+length.
449 * If start and start+length are not perfectly divisible, the macro will round
450 * down and up as needed. Start=0 and length=2G effectively iterates over
451 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
452 * so each of the other parameters should preferably be a simple variable, or
453 * at most an lvalue with no side-effects!
454 */
455#define gen6_for_each_pde(pt, pd, start, length, iter)			\
456	for (iter = gen6_pde_index(start);				\
457	     length > 0 && iter < I915_PDES &&				\
458		     (pt = i915_pt_entry(pd, iter), true);		\
459	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
460		    temp = min(temp - start, length);			\
461		    start += temp, length -= temp; }), ++iter)
 
 
 
 
 
 
462
463#define gen6_for_all_pdes(pt, pd, iter)					\
464	for (iter = 0;							\
465	     iter < I915_PDES &&					\
466		     (pt = i915_pt_entry(pd, iter), true);		\
467	     ++iter)
468
469static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
470{
471	const u32 mask = NUM_PTE(pde_shift) - 1;
472
473	return (address >> PAGE_SHIFT) & mask;
474}
475
476/* Helper to counts the number of PTEs within the given length. This count
477 * does not cross a page table boundary, so the max value would be
478 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
479*/
480static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
 
481{
482	const u64 mask = ~((1ULL << pde_shift) - 1);
483	u64 end;
484
485	GEM_BUG_ON(length == 0);
486	GEM_BUG_ON(offset_in_page(addr | length));
487
488	end = addr + length;
489
490	if ((addr & mask) != (end & mask))
491		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
492
493	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
494}
495
496static inline u32 i915_pde_index(u64 addr, u32 shift)
497{
498	return (addr >> shift) & I915_PDE_MASK;
499}
500
501static inline u32 gen6_pte_index(u32 addr)
502{
503	return i915_pte_index(addr, GEN6_PDE_SHIFT);
504}
505
506static inline u32 gen6_pte_count(u32 addr, u32 length)
507{
508	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
509}
510
511static inline u32 gen6_pde_index(u32 addr)
512{
513	return i915_pde_index(addr, GEN6_PDE_SHIFT);
514}
515
516static inline struct i915_page_table *
517i915_pt_entry(const struct i915_page_directory * const pd,
518	      const unsigned short n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519{
520	return pd->entry[n];
521}
522
523static inline struct i915_page_directory *
524i915_pd_entry(const struct i915_page_directory * const pdp,
525	      const unsigned short n)
526{
527	return pdp->entry[n];
528}
529
530static inline dma_addr_t
531i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n)
532{
533	struct i915_page_dma *pt = ppgtt->pd->entry[n];
 
534
535	return px_dma(pt ?: px_base(&ppgtt->vm.scratch[ppgtt->vm.top]));
 
 
536}
537
538static inline struct i915_ggtt *
539i915_vm_to_ggtt(struct i915_address_space *vm)
540{
541	BUILD_BUG_ON(offsetof(struct i915_ggtt, vm));
542	GEM_BUG_ON(!i915_is_ggtt(vm));
543	return container_of(vm, struct i915_ggtt, vm);
544}
545
546static inline struct i915_ppgtt *
547i915_vm_to_ppgtt(struct i915_address_space *vm)
548{
549	BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm));
550	GEM_BUG_ON(i915_is_ggtt(vm));
551	return container_of(vm, struct i915_ppgtt, vm);
552}
553
554int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
555int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
556int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
557void i915_ggtt_enable_guc(struct i915_ggtt *ggtt);
558void i915_ggtt_disable_guc(struct i915_ggtt *ggtt);
559int i915_init_ggtt(struct drm_i915_private *dev_priv);
560void i915_ggtt_driver_release(struct drm_i915_private *dev_priv);
561
562int i915_ppgtt_init_hw(struct intel_gt *gt);
563
564struct i915_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv);
565
566static inline struct i915_address_space *
567i915_vm_get(struct i915_address_space *vm)
 
 
 
 
 
568{
569	kref_get(&vm->ref);
570	return vm;
571}
572
573void i915_vm_release(struct kref *kref);
574
575static inline void i915_vm_put(struct i915_address_space *vm)
576{
577	kref_put(&vm->ref, i915_vm_release);
 
578}
579
580int gen6_ppgtt_pin(struct i915_ppgtt *base);
581void gen6_ppgtt_unpin(struct i915_ppgtt *base);
582void gen6_ppgtt_unpin_all(struct i915_ppgtt *base);
583
584void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
585void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
586
587int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
588					    struct sg_table *pages);
589void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
590			       struct sg_table *pages);
591
592int i915_gem_gtt_reserve(struct i915_address_space *vm,
593			 struct drm_mm_node *node,
594			 u64 size, u64 offset, unsigned long color,
595			 unsigned int flags);
596
597int i915_gem_gtt_insert(struct i915_address_space *vm,
598			struct drm_mm_node *node,
599			u64 size, u64 alignment, unsigned long color,
600			u64 start, u64 end, unsigned int flags);
601
602/* Flags used by pin/bind&friends. */
603#define PIN_NOEVICT		BIT_ULL(0)
604#define PIN_NOSEARCH		BIT_ULL(1)
605#define PIN_NONBLOCK		BIT_ULL(2)
606#define PIN_MAPPABLE		BIT_ULL(3)
607#define PIN_ZONE_4G		BIT_ULL(4)
608#define PIN_HIGH		BIT_ULL(5)
609#define PIN_OFFSET_BIAS		BIT_ULL(6)
610#define PIN_OFFSET_FIXED	BIT_ULL(7)
611
612#define PIN_MBZ			BIT_ULL(8) /* I915_VMA_PIN_OVERFLOW */
613#define PIN_GLOBAL		BIT_ULL(9) /* I915_VMA_GLOBAL_BIND */
614#define PIN_USER		BIT_ULL(10) /* I915_VMA_LOCAL_BIND */
615#define PIN_UPDATE		BIT_ULL(11)
616
617#define PIN_OFFSET_MASK		(-I915_GTT_PAGE_SIZE)
 
 
 
 
 
 
 
 
 
618
619#endif