Loading...
Note: File does not exist in v4.6.
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <drm/i915_drm.h>
25
26#include "i915_drv.h"
27#include "i915_scatterlist.h"
28#include "i915_vgpu.h"
29
30/**
31 * DOC: fence register handling
32 *
33 * Important to avoid confusions: "fences" in the i915 driver are not execution
34 * fences used to track command completion but hardware detiler objects which
35 * wrap a given range of the global GTT. Each platform has only a fairly limited
36 * set of these objects.
37 *
38 * Fences are used to detile GTT memory mappings. They're also connected to the
39 * hardware frontbuffer render tracking and hence interact with frontbuffer
40 * compression. Furthermore on older platforms fences are required for tiled
41 * objects used by the display engine. They can also be used by the render
42 * engine - they're required for blitter commands and are optional for render
43 * commands. But on gen4+ both display (with the exception of fbc) and rendering
44 * have their own tiling state bits and don't need fences.
45 *
46 * Also note that fences only support X and Y tiling and hence can't be used for
47 * the fancier new tiling formats like W, Ys and Yf.
48 *
49 * Finally note that because fences are such a restricted resource they're
50 * dynamically associated with objects. Furthermore fence state is committed to
51 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
52 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
53 * for cpu access. Also note that some code wants an unfenced view, for those
54 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
55 *
56 * Internally these functions will synchronize with userspace access by removing
57 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
58 */
59
60#define pipelined 0
61
62static void i965_write_fence_reg(struct i915_fence_reg *fence,
63 struct i915_vma *vma)
64{
65 i915_reg_t fence_reg_lo, fence_reg_hi;
66 int fence_pitch_shift;
67 u64 val;
68
69 if (INTEL_GEN(fence->i915) >= 6) {
70 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
71 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
72 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
73
74 } else {
75 fence_reg_lo = FENCE_REG_965_LO(fence->id);
76 fence_reg_hi = FENCE_REG_965_HI(fence->id);
77 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
78 }
79
80 val = 0;
81 if (vma) {
82 unsigned int stride = i915_gem_object_get_stride(vma->obj);
83
84 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
85 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
86 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
87 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
88
89 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
90 val |= vma->node.start;
91 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
92 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
93 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
94 val |= I965_FENCE_REG_VALID;
95 }
96
97 if (!pipelined) {
98 struct intel_uncore *uncore = &fence->i915->uncore;
99
100 /*
101 * To w/a incoherency with non-atomic 64-bit register updates,
102 * we split the 64-bit update into two 32-bit writes. In order
103 * for a partial fence not to be evaluated between writes, we
104 * precede the update with write to turn off the fence register,
105 * and only enable the fence as the last step.
106 *
107 * For extra levels of paranoia, we make sure each step lands
108 * before applying the next step.
109 */
110 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
111 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
112
113 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
114 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
115 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
116 }
117}
118
119static void i915_write_fence_reg(struct i915_fence_reg *fence,
120 struct i915_vma *vma)
121{
122 u32 val;
123
124 val = 0;
125 if (vma) {
126 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
127 bool is_y_tiled = tiling == I915_TILING_Y;
128 unsigned int stride = i915_gem_object_get_stride(vma->obj);
129
130 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
131 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
132 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
133 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
134
135 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
136 stride /= 128;
137 else
138 stride /= 512;
139 GEM_BUG_ON(!is_power_of_2(stride));
140
141 val = vma->node.start;
142 if (is_y_tiled)
143 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
144 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
145 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
146
147 val |= I830_FENCE_REG_VALID;
148 }
149
150 if (!pipelined) {
151 struct intel_uncore *uncore = &fence->i915->uncore;
152 i915_reg_t reg = FENCE_REG(fence->id);
153
154 intel_uncore_write_fw(uncore, reg, val);
155 intel_uncore_posting_read_fw(uncore, reg);
156 }
157}
158
159static void i830_write_fence_reg(struct i915_fence_reg *fence,
160 struct i915_vma *vma)
161{
162 u32 val;
163
164 val = 0;
165 if (vma) {
166 unsigned int stride = i915_gem_object_get_stride(vma->obj);
167
168 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
169 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
170 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
171 GEM_BUG_ON(!is_power_of_2(stride / 128));
172 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
173
174 val = vma->node.start;
175 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
176 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
177 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
178 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
179 val |= I830_FENCE_REG_VALID;
180 }
181
182 if (!pipelined) {
183 struct intel_uncore *uncore = &fence->i915->uncore;
184 i915_reg_t reg = FENCE_REG(fence->id);
185
186 intel_uncore_write_fw(uncore, reg, val);
187 intel_uncore_posting_read_fw(uncore, reg);
188 }
189}
190
191static void fence_write(struct i915_fence_reg *fence,
192 struct i915_vma *vma)
193{
194 /*
195 * Previous access through the fence register is marshalled by
196 * the mb() inside the fault handlers (i915_gem_release_mmaps)
197 * and explicitly managed for internal users.
198 */
199
200 if (IS_GEN(fence->i915, 2))
201 i830_write_fence_reg(fence, vma);
202 else if (IS_GEN(fence->i915, 3))
203 i915_write_fence_reg(fence, vma);
204 else
205 i965_write_fence_reg(fence, vma);
206
207 /*
208 * Access through the fenced region afterwards is
209 * ordered by the posting reads whilst writing the registers.
210 */
211
212 fence->dirty = false;
213}
214
215static int fence_update(struct i915_fence_reg *fence,
216 struct i915_vma *vma)
217{
218 intel_wakeref_t wakeref;
219 struct i915_vma *old;
220 int ret;
221
222 if (vma) {
223 if (!i915_vma_is_map_and_fenceable(vma))
224 return -EINVAL;
225
226 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
227 !i915_gem_object_get_tiling(vma->obj),
228 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
229 i915_gem_object_get_stride(vma->obj),
230 i915_gem_object_get_tiling(vma->obj)))
231 return -EINVAL;
232
233 ret = i915_active_wait(&vma->active);
234 if (ret)
235 return ret;
236 }
237
238 old = xchg(&fence->vma, NULL);
239 if (old) {
240 ret = i915_active_wait(&old->active);
241 if (ret) {
242 fence->vma = old;
243 return ret;
244 }
245
246 i915_vma_flush_writes(old);
247
248 /*
249 * Ensure that all userspace CPU access is completed before
250 * stealing the fence.
251 */
252 if (old != vma) {
253 GEM_BUG_ON(old->fence != fence);
254 i915_vma_revoke_mmap(old);
255 old->fence = NULL;
256 }
257
258 list_move(&fence->link, &fence->i915->ggtt.fence_list);
259 }
260
261 /*
262 * We only need to update the register itself if the device is awake.
263 * If the device is currently powered down, we will defer the write
264 * to the runtime resume, see i915_gem_restore_fences().
265 *
266 * This only works for removing the fence register, on acquisition
267 * the caller must hold the rpm wakeref. The fence register must
268 * be cleared before we can use any other fences to ensure that
269 * the new fences do not overlap the elided clears, confusing HW.
270 */
271 wakeref = intel_runtime_pm_get_if_in_use(&fence->i915->runtime_pm);
272 if (!wakeref) {
273 GEM_BUG_ON(vma);
274 return 0;
275 }
276
277 WRITE_ONCE(fence->vma, vma);
278 fence_write(fence, vma);
279
280 if (vma) {
281 vma->fence = fence;
282 list_move_tail(&fence->link, &fence->i915->ggtt.fence_list);
283 }
284
285 intel_runtime_pm_put(&fence->i915->runtime_pm, wakeref);
286 return 0;
287}
288
289/**
290 * i915_vma_revoke_fence - force-remove fence for a VMA
291 * @vma: vma to map linearly (not through a fence reg)
292 *
293 * This function force-removes any fence from the given object, which is useful
294 * if the kernel wants to do untiled GTT access.
295 *
296 * Returns:
297 *
298 * 0 on success, negative error code on failure.
299 */
300int i915_vma_revoke_fence(struct i915_vma *vma)
301{
302 struct i915_fence_reg *fence = vma->fence;
303
304 lockdep_assert_held(&vma->vm->mutex);
305 if (!fence)
306 return 0;
307
308 if (atomic_read(&fence->pin_count))
309 return -EBUSY;
310
311 return fence_update(fence, NULL);
312}
313
314static struct i915_fence_reg *fence_find(struct drm_i915_private *i915)
315{
316 struct i915_fence_reg *fence;
317
318 list_for_each_entry(fence, &i915->ggtt.fence_list, link) {
319 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
320
321 if (atomic_read(&fence->pin_count))
322 continue;
323
324 return fence;
325 }
326
327 /* Wait for completion of pending flips which consume fences */
328 if (intel_has_pending_fb_unpin(i915))
329 return ERR_PTR(-EAGAIN);
330
331 return ERR_PTR(-EDEADLK);
332}
333
334static int __i915_vma_pin_fence(struct i915_vma *vma)
335{
336 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
337 struct i915_fence_reg *fence;
338 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
339 int err;
340
341 /* Just update our place in the LRU if our fence is getting reused. */
342 if (vma->fence) {
343 fence = vma->fence;
344 GEM_BUG_ON(fence->vma != vma);
345 atomic_inc(&fence->pin_count);
346 if (!fence->dirty) {
347 list_move_tail(&fence->link, &ggtt->fence_list);
348 return 0;
349 }
350 } else if (set) {
351 fence = fence_find(vma->vm->i915);
352 if (IS_ERR(fence))
353 return PTR_ERR(fence);
354
355 GEM_BUG_ON(atomic_read(&fence->pin_count));
356 atomic_inc(&fence->pin_count);
357 } else {
358 return 0;
359 }
360
361 err = fence_update(fence, set);
362 if (err)
363 goto out_unpin;
364
365 GEM_BUG_ON(fence->vma != set);
366 GEM_BUG_ON(vma->fence != (set ? fence : NULL));
367
368 if (set)
369 return 0;
370
371out_unpin:
372 atomic_dec(&fence->pin_count);
373 return err;
374}
375
376/**
377 * i915_vma_pin_fence - set up fencing for a vma
378 * @vma: vma to map through a fence reg
379 *
380 * When mapping objects through the GTT, userspace wants to be able to write
381 * to them without having to worry about swizzling if the object is tiled.
382 * This function walks the fence regs looking for a free one for @obj,
383 * stealing one if it can't find any.
384 *
385 * It then sets up the reg based on the object's properties: address, pitch
386 * and tiling format.
387 *
388 * For an untiled surface, this removes any existing fence.
389 *
390 * Returns:
391 *
392 * 0 on success, negative error code on failure.
393 */
394int i915_vma_pin_fence(struct i915_vma *vma)
395{
396 int err;
397
398 /*
399 * Note that we revoke fences on runtime suspend. Therefore the user
400 * must keep the device awake whilst using the fence.
401 */
402 assert_rpm_wakelock_held(&vma->vm->i915->runtime_pm);
403 GEM_BUG_ON(!i915_vma_is_pinned(vma));
404 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
405
406 err = mutex_lock_interruptible(&vma->vm->mutex);
407 if (err)
408 return err;
409
410 err = __i915_vma_pin_fence(vma);
411 mutex_unlock(&vma->vm->mutex);
412
413 return err;
414}
415
416/**
417 * i915_reserve_fence - Reserve a fence for vGPU
418 * @i915: i915 device private
419 *
420 * This function walks the fence regs looking for a free one and remove
421 * it from the fence_list. It is used to reserve fence for vGPU to use.
422 */
423struct i915_fence_reg *i915_reserve_fence(struct drm_i915_private *i915)
424{
425 struct i915_ggtt *ggtt = &i915->ggtt;
426 struct i915_fence_reg *fence;
427 int count;
428 int ret;
429
430 lockdep_assert_held(&ggtt->vm.mutex);
431
432 /* Keep at least one fence available for the display engine. */
433 count = 0;
434 list_for_each_entry(fence, &ggtt->fence_list, link)
435 count += !atomic_read(&fence->pin_count);
436 if (count <= 1)
437 return ERR_PTR(-ENOSPC);
438
439 fence = fence_find(i915);
440 if (IS_ERR(fence))
441 return fence;
442
443 if (fence->vma) {
444 /* Force-remove fence from VMA */
445 ret = fence_update(fence, NULL);
446 if (ret)
447 return ERR_PTR(ret);
448 }
449
450 list_del(&fence->link);
451
452 return fence;
453}
454
455/**
456 * i915_unreserve_fence - Reclaim a reserved fence
457 * @fence: the fence reg
458 *
459 * This function add a reserved fence register from vGPU to the fence_list.
460 */
461void i915_unreserve_fence(struct i915_fence_reg *fence)
462{
463 struct i915_ggtt *ggtt = &fence->i915->ggtt;
464
465 lockdep_assert_held(&ggtt->vm.mutex);
466
467 list_add(&fence->link, &ggtt->fence_list);
468}
469
470/**
471 * i915_gem_restore_fences - restore fence state
472 * @i915: i915 device private
473 *
474 * Restore the hw fence state to match the software tracking again, to be called
475 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
476 * the fences, to be reacquired by the user later.
477 */
478void i915_gem_restore_fences(struct drm_i915_private *i915)
479{
480 int i;
481
482 rcu_read_lock(); /* keep obj alive as we dereference */
483 for (i = 0; i < i915->ggtt.num_fences; i++) {
484 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
485 struct i915_vma *vma = READ_ONCE(reg->vma);
486
487 GEM_BUG_ON(vma && vma->fence != reg);
488
489 /*
490 * Commit delayed tiling changes if we have an object still
491 * attached to the fence, otherwise just clear the fence.
492 */
493 if (vma && !i915_gem_object_is_tiled(vma->obj))
494 vma = NULL;
495
496 fence_write(reg, vma);
497 }
498 rcu_read_unlock();
499}
500
501/**
502 * DOC: tiling swizzling details
503 *
504 * The idea behind tiling is to increase cache hit rates by rearranging
505 * pixel data so that a group of pixel accesses are in the same cacheline.
506 * Performance improvement from doing this on the back/depth buffer are on
507 * the order of 30%.
508 *
509 * Intel architectures make this somewhat more complicated, though, by
510 * adjustments made to addressing of data when the memory is in interleaved
511 * mode (matched pairs of DIMMS) to improve memory bandwidth.
512 * For interleaved memory, the CPU sends every sequential 64 bytes
513 * to an alternate memory channel so it can get the bandwidth from both.
514 *
515 * The GPU also rearranges its accesses for increased bandwidth to interleaved
516 * memory, and it matches what the CPU does for non-tiled. However, when tiled
517 * it does it a little differently, since one walks addresses not just in the
518 * X direction but also Y. So, along with alternating channels when bit
519 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
520 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
521 * are common to both the 915 and 965-class hardware.
522 *
523 * The CPU also sometimes XORs in higher bits as well, to improve
524 * bandwidth doing strided access like we do so frequently in graphics. This
525 * is called "Channel XOR Randomization" in the MCH documentation. The result
526 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
527 * decode.
528 *
529 * All of this bit 6 XORing has an effect on our memory management,
530 * as we need to make sure that the 3d driver can correctly address object
531 * contents.
532 *
533 * If we don't have interleaved memory, all tiling is safe and no swizzling is
534 * required.
535 *
536 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
537 * 17 is not just a page offset, so as we page an object out and back in,
538 * individual pages in it will have different bit 17 addresses, resulting in
539 * each 64 bytes being swapped with its neighbor!
540 *
541 * Otherwise, if interleaved, we have to tell the 3d driver what the address
542 * swizzling it needs to do is, since it's writing with the CPU to the pages
543 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
544 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
545 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
546 * to match what the GPU expects.
547 */
548
549/**
550 * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
551 * @i915: i915 device private
552 *
553 * Detects bit 6 swizzling of address lookup between IGD access and CPU
554 * access through main memory.
555 */
556static void detect_bit_6_swizzle(struct drm_i915_private *i915)
557{
558 struct intel_uncore *uncore = &i915->uncore;
559 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
560 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
561
562 if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
563 /*
564 * On BDW+, swizzling is not used. We leave the CPU memory
565 * controller in charge of optimizing memory accesses without
566 * the extra address manipulation GPU side.
567 *
568 * VLV and CHV don't have GPU swizzling.
569 */
570 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
571 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
572 } else if (INTEL_GEN(i915) >= 6) {
573 if (i915->preserve_bios_swizzle) {
574 if (intel_uncore_read(uncore, DISP_ARB_CTL) &
575 DISP_TILE_SURFACE_SWIZZLING) {
576 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
577 swizzle_y = I915_BIT_6_SWIZZLE_9;
578 } else {
579 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
580 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
581 }
582 } else {
583 u32 dimm_c0, dimm_c1;
584 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
585 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
586 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
587 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
588 /*
589 * Enable swizzling when the channels are populated
590 * with identically sized dimms. We don't need to check
591 * the 3rd channel because no cpu with gpu attached
592 * ships in that configuration. Also, swizzling only
593 * makes sense for 2 channels anyway.
594 */
595 if (dimm_c0 == dimm_c1) {
596 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
597 swizzle_y = I915_BIT_6_SWIZZLE_9;
598 } else {
599 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
600 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
601 }
602 }
603 } else if (IS_GEN(i915, 5)) {
604 /*
605 * On Ironlake whatever DRAM config, GPU always do
606 * same swizzling setup.
607 */
608 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
609 swizzle_y = I915_BIT_6_SWIZZLE_9;
610 } else if (IS_GEN(i915, 2)) {
611 /*
612 * As far as we know, the 865 doesn't have these bit 6
613 * swizzling issues.
614 */
615 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
616 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
617 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
618 /*
619 * The 965, G33, and newer, have a very flexible memory
620 * configuration. It will enable dual-channel mode
621 * (interleaving) on as much memory as it can, and the GPU
622 * will additionally sometimes enable different bit 6
623 * swizzling for tiled objects from the CPU.
624 *
625 * Here's what I found on the G965:
626 * slot fill memory size swizzling
627 * 0A 0B 1A 1B 1-ch 2-ch
628 * 512 0 0 0 512 0 O
629 * 512 0 512 0 16 1008 X
630 * 512 0 0 512 16 1008 X
631 * 0 512 0 512 16 1008 X
632 * 1024 1024 1024 0 2048 1024 O
633 *
634 * We could probably detect this based on either the DRB
635 * matching, which was the case for the swizzling required in
636 * the table above, or from the 1-ch value being less than
637 * the minimum size of a rank.
638 *
639 * Reports indicate that the swizzling actually
640 * varies depending upon page placement inside the
641 * channels, i.e. we see swizzled pages where the
642 * banks of memory are paired and unswizzled on the
643 * uneven portion, so leave that as unknown.
644 */
645 if (intel_uncore_read(uncore, C0DRB3) ==
646 intel_uncore_read(uncore, C1DRB3)) {
647 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
648 swizzle_y = I915_BIT_6_SWIZZLE_9;
649 }
650 } else {
651 u32 dcc = intel_uncore_read(uncore, DCC);
652
653 /*
654 * On 9xx chipsets, channel interleave by the CPU is
655 * determined by DCC. For single-channel, neither the CPU
656 * nor the GPU do swizzling. For dual channel interleaved,
657 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
658 * 9 for Y tiled. The CPU's interleave is independent, and
659 * can be based on either bit 11 (haven't seen this yet) or
660 * bit 17 (common).
661 */
662 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
663 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
664 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
665 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
666 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
667 break;
668 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
669 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
670 /*
671 * This is the base swizzling by the GPU for
672 * tiled buffers.
673 */
674 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
675 swizzle_y = I915_BIT_6_SWIZZLE_9;
676 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
677 /* Bit 11 swizzling by the CPU in addition. */
678 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
679 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
680 } else {
681 /* Bit 17 swizzling by the CPU in addition. */
682 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
683 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
684 }
685 break;
686 }
687
688 /* check for L-shaped memory aka modified enhanced addressing */
689 if (IS_GEN(i915, 4) &&
690 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
691 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
692 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
693 }
694
695 if (dcc == 0xffffffff) {
696 DRM_ERROR("Couldn't read from MCHBAR. "
697 "Disabling tiling.\n");
698 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
699 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
700 }
701 }
702
703 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
704 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
705 /*
706 * Userspace likes to explode if it sees unknown swizzling,
707 * so lie. We will finish the lie when reporting through
708 * the get-tiling-ioctl by reporting the physical swizzle
709 * mode as unknown instead.
710 *
711 * As we don't strictly know what the swizzling is, it may be
712 * bit17 dependent, and so we need to also prevent the pages
713 * from being moved.
714 */
715 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
716 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
717 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
718 }
719
720 i915->mm.bit_6_swizzle_x = swizzle_x;
721 i915->mm.bit_6_swizzle_y = swizzle_y;
722}
723
724/*
725 * Swap every 64 bytes of this page around, to account for it having a new
726 * bit 17 of its physical address and therefore being interpreted differently
727 * by the GPU.
728 */
729static void i915_gem_swizzle_page(struct page *page)
730{
731 char temp[64];
732 char *vaddr;
733 int i;
734
735 vaddr = kmap(page);
736
737 for (i = 0; i < PAGE_SIZE; i += 128) {
738 memcpy(temp, &vaddr[i], 64);
739 memcpy(&vaddr[i], &vaddr[i + 64], 64);
740 memcpy(&vaddr[i + 64], temp, 64);
741 }
742
743 kunmap(page);
744}
745
746/**
747 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
748 * @obj: i915 GEM buffer object
749 * @pages: the scattergather list of physical pages
750 *
751 * This function fixes up the swizzling in case any page frame number for this
752 * object has changed in bit 17 since that state has been saved with
753 * i915_gem_object_save_bit_17_swizzle().
754 *
755 * This is called when pinning backing storage again, since the kernel is free
756 * to move unpinned backing storage around (either by directly moving pages or
757 * by swapping them out and back in again).
758 */
759void
760i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
761 struct sg_table *pages)
762{
763 struct sgt_iter sgt_iter;
764 struct page *page;
765 int i;
766
767 if (obj->bit_17 == NULL)
768 return;
769
770 i = 0;
771 for_each_sgt_page(page, sgt_iter, pages) {
772 char new_bit_17 = page_to_phys(page) >> 17;
773 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
774 i915_gem_swizzle_page(page);
775 set_page_dirty(page);
776 }
777 i++;
778 }
779}
780
781/**
782 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
783 * @obj: i915 GEM buffer object
784 * @pages: the scattergather list of physical pages
785 *
786 * This function saves the bit 17 of each page frame number so that swizzling
787 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
788 * be called before the backing storage can be unpinned.
789 */
790void
791i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
792 struct sg_table *pages)
793{
794 const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
795 struct sgt_iter sgt_iter;
796 struct page *page;
797 int i;
798
799 if (obj->bit_17 == NULL) {
800 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
801 if (obj->bit_17 == NULL) {
802 DRM_ERROR("Failed to allocate memory for bit 17 "
803 "record\n");
804 return;
805 }
806 }
807
808 i = 0;
809
810 for_each_sgt_page(page, sgt_iter, pages) {
811 if (page_to_phys(page) & (1 << 17))
812 __set_bit(i, obj->bit_17);
813 else
814 __clear_bit(i, obj->bit_17);
815 i++;
816 }
817}
818
819void i915_ggtt_init_fences(struct i915_ggtt *ggtt)
820{
821 struct drm_i915_private *i915 = ggtt->vm.i915;
822 int num_fences;
823 int i;
824
825 INIT_LIST_HEAD(&ggtt->fence_list);
826 INIT_LIST_HEAD(&ggtt->userfault_list);
827 intel_wakeref_auto_init(&ggtt->userfault_wakeref, &i915->runtime_pm);
828
829 detect_bit_6_swizzle(i915);
830
831 if (INTEL_GEN(i915) >= 7 &&
832 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
833 num_fences = 32;
834 else if (INTEL_GEN(i915) >= 4 ||
835 IS_I945G(i915) || IS_I945GM(i915) ||
836 IS_G33(i915) || IS_PINEVIEW(i915))
837 num_fences = 16;
838 else
839 num_fences = 8;
840
841 if (intel_vgpu_active(i915))
842 num_fences = intel_uncore_read(&i915->uncore,
843 vgtif_reg(avail_rs.fence_num));
844
845 /* Initialize fence registers to zero */
846 for (i = 0; i < num_fences; i++) {
847 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
848
849 fence->i915 = i915;
850 fence->id = i;
851 list_add_tail(&fence->link, &ggtt->fence_list);
852 }
853 ggtt->num_fences = num_fences;
854
855 i915_gem_restore_fences(i915);
856}
857
858void intel_gt_init_swizzling(struct intel_gt *gt)
859{
860 struct drm_i915_private *i915 = gt->i915;
861 struct intel_uncore *uncore = gt->uncore;
862
863 if (INTEL_GEN(i915) < 5 ||
864 i915->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
865 return;
866
867 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
868
869 if (IS_GEN(i915, 5))
870 return;
871
872 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
873
874 if (IS_GEN(i915, 6))
875 intel_uncore_write(uncore,
876 ARB_MODE,
877 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
878 else if (IS_GEN(i915, 7))
879 intel_uncore_write(uncore,
880 ARB_MODE,
881 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
882 else if (IS_GEN(i915, 8))
883 intel_uncore_write(uncore,
884 GAMTARBMODE,
885 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
886 else
887 MISSING_CASE(INTEL_GEN(i915));
888}