Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include "gem/i915_gem_context.h"
 137
 138#include "i915_drv.h"
 139#include "i915_perf.h"
 140#include "i915_trace.h"
 141#include "i915_vgpu.h"
 142#include "intel_engine_pm.h"
 143#include "intel_gt.h"
 144#include "intel_gt_pm.h"
 145#include "intel_lrc_reg.h"
 146#include "intel_mocs.h"
 147#include "intel_reset.h"
 148#include "intel_workarounds.h"
 149
 150#define RING_EXECLIST_QFULL		(1 << 0x2)
 151#define RING_EXECLIST1_VALID		(1 << 0x3)
 152#define RING_EXECLIST0_VALID		(1 << 0x4)
 153#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 154#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 155#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 156
 157#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 158#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 159#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 160#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 161#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 162#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 163
 164#define GEN8_CTX_STATUS_COMPLETED_MASK \
 165	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 166
 167#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
 168
 169#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
 170#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
 171#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
 172#define GEN12_IDLE_CTX_ID		0x7FF
 173#define GEN12_CSB_CTX_VALID(csb_dw) \
 174	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
 175
 176/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 177#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 178#define WA_TAIL_DWORDS 2
 179#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
 180
 181struct virtual_engine {
 182	struct intel_engine_cs base;
 183	struct intel_context context;
 184
 185	/*
 186	 * We allow only a single request through the virtual engine at a time
 187	 * (each request in the timeline waits for the completion fence of
 188	 * the previous before being submitted). By restricting ourselves to
 189	 * only submitting a single request, each request is placed on to a
 190	 * physical to maximise load spreading (by virtue of the late greedy
 191	 * scheduling -- each real engine takes the next available request
 192	 * upon idling).
 193	 */
 194	struct i915_request *request;
 195
 196	/*
 197	 * We keep a rbtree of available virtual engines inside each physical
 198	 * engine, sorted by priority. Here we preallocate the nodes we need
 199	 * for the virtual engine, indexed by physical_engine->id.
 200	 */
 201	struct ve_node {
 202		struct rb_node rb;
 203		int prio;
 204	} nodes[I915_NUM_ENGINES];
 205
 206	/*
 207	 * Keep track of bonded pairs -- restrictions upon on our selection
 208	 * of physical engines any particular request may be submitted to.
 209	 * If we receive a submit-fence from a master engine, we will only
 210	 * use one of sibling_mask physical engines.
 211	 */
 212	struct ve_bond {
 213		const struct intel_engine_cs *master;
 214		intel_engine_mask_t sibling_mask;
 215	} *bonds;
 216	unsigned int num_bonds;
 217
 218	/* And finally, which physical engines this virtual engine maps onto. */
 219	unsigned int num_siblings;
 220	struct intel_engine_cs *siblings[0];
 221};
 222
 223static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
 224{
 225	GEM_BUG_ON(!intel_engine_is_virtual(engine));
 226	return container_of(engine, struct virtual_engine, base);
 227}
 228
 229static int __execlists_context_alloc(struct intel_context *ce,
 230				     struct intel_engine_cs *engine);
 231
 232static void execlists_init_reg_state(u32 *reg_state,
 233				     struct intel_context *ce,
 234				     struct intel_engine_cs *engine,
 235				     struct intel_ring *ring);
 236
 237static void mark_eio(struct i915_request *rq)
 238{
 239	if (!i915_request_signaled(rq))
 240		dma_fence_set_error(&rq->fence, -EIO);
 241	i915_request_mark_complete(rq);
 242}
 243
 244static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
 245{
 246	return (i915_ggtt_offset(engine->status_page.vma) +
 247		I915_GEM_HWS_PREEMPT_ADDR);
 248}
 249
 250static inline void
 251ring_set_paused(const struct intel_engine_cs *engine, int state)
 252{
 253	/*
 254	 * We inspect HWS_PREEMPT with a semaphore inside
 255	 * engine->emit_fini_breadcrumb. If the dword is true,
 256	 * the ring is paused as the semaphore will busywait
 257	 * until the dword is false.
 258	 */
 259	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
 260	if (state)
 261		wmb();
 262}
 263
 264static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 265{
 266	return rb_entry(rb, struct i915_priolist, node);
 267}
 268
 269static inline int rq_prio(const struct i915_request *rq)
 270{
 271	return rq->sched.attr.priority;
 272}
 273
 274static int effective_prio(const struct i915_request *rq)
 275{
 276	int prio = rq_prio(rq);
 277
 278	/*
 279	 * If this request is special and must not be interrupted at any
 280	 * cost, so be it. Note we are only checking the most recent request
 281	 * in the context and so may be masking an earlier vip request. It
 282	 * is hoped that under the conditions where nopreempt is used, this
 283	 * will not matter (i.e. all requests to that context will be
 284	 * nopreempt for as long as desired).
 285	 */
 286	if (i915_request_has_nopreempt(rq))
 287		prio = I915_PRIORITY_UNPREEMPTABLE;
 288
 289	/*
 290	 * On unwinding the active request, we give it a priority bump
 291	 * if it has completed waiting on any semaphore. If we know that
 292	 * the request has already started, we can prevent an unwanted
 293	 * preempt-to-idle cycle by taking that into account now.
 294	 */
 295	if (__i915_request_has_started(rq))
 296		prio |= I915_PRIORITY_NOSEMAPHORE;
 297
 298	/* Restrict mere WAIT boosts from triggering preemption */
 299	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
 300	return prio | __NO_PREEMPTION;
 301}
 302
 303static int queue_prio(const struct intel_engine_execlists *execlists)
 304{
 305	struct i915_priolist *p;
 306	struct rb_node *rb;
 307
 308	rb = rb_first_cached(&execlists->queue);
 309	if (!rb)
 310		return INT_MIN;
 311
 312	/*
 313	 * As the priolist[] are inverted, with the highest priority in [0],
 314	 * we have to flip the index value to become priority.
 315	 */
 316	p = to_priolist(rb);
 317	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
 318}
 319
 320static inline bool need_preempt(const struct intel_engine_cs *engine,
 321				const struct i915_request *rq,
 322				struct rb_node *rb)
 323{
 324	int last_prio;
 325
 326	if (!intel_engine_has_semaphores(engine))
 327		return false;
 328
 329	/*
 330	 * Check if the current priority hint merits a preemption attempt.
 331	 *
 332	 * We record the highest value priority we saw during rescheduling
 333	 * prior to this dequeue, therefore we know that if it is strictly
 334	 * less than the current tail of ESLP[0], we do not need to force
 335	 * a preempt-to-idle cycle.
 336	 *
 337	 * However, the priority hint is a mere hint that we may need to
 338	 * preempt. If that hint is stale or we may be trying to preempt
 339	 * ourselves, ignore the request.
 340	 */
 341	last_prio = effective_prio(rq);
 342	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
 343					 last_prio))
 344		return false;
 345
 346	/*
 347	 * Check against the first request in ELSP[1], it will, thanks to the
 348	 * power of PI, be the highest priority of that context.
 349	 */
 350	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
 351	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
 352		return true;
 353
 354	if (rb) {
 355		struct virtual_engine *ve =
 356			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
 357		bool preempt = false;
 358
 359		if (engine == ve->siblings[0]) { /* only preempt one sibling */
 360			struct i915_request *next;
 361
 362			rcu_read_lock();
 363			next = READ_ONCE(ve->request);
 364			if (next)
 365				preempt = rq_prio(next) > last_prio;
 366			rcu_read_unlock();
 367		}
 368
 369		if (preempt)
 370			return preempt;
 371	}
 372
 373	/*
 374	 * If the inflight context did not trigger the preemption, then maybe
 375	 * it was the set of queued requests? Pick the highest priority in
 376	 * the queue (the first active priolist) and see if it deserves to be
 377	 * running instead of ELSP[0].
 378	 *
 379	 * The highest priority request in the queue can not be either
 380	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
 381	 * context, it's priority would not exceed ELSP[0] aka last_prio.
 382	 */
 383	return queue_prio(&engine->execlists) > last_prio;
 384}
 385
 386__maybe_unused static inline bool
 387assert_priority_queue(const struct i915_request *prev,
 388		      const struct i915_request *next)
 389{
 390	/*
 391	 * Without preemption, the prev may refer to the still active element
 392	 * which we refuse to let go.
 393	 *
 394	 * Even with preemption, there are times when we think it is better not
 395	 * to preempt and leave an ostensibly lower priority request in flight.
 396	 */
 397	if (i915_request_is_active(prev))
 398		return true;
 399
 400	return rq_prio(prev) >= rq_prio(next);
 401}
 402
 403/*
 404 * The context descriptor encodes various attributes of a context,
 405 * including its GTT address and some flags. Because it's fairly
 406 * expensive to calculate, we'll just do it once and cache the result,
 407 * which remains valid until the context is unpinned.
 408 *
 409 * This is what a descriptor looks like, from LSB to MSB::
 410 *
 411 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 412 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 413 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
 414 *      bits 53-54:    mbz, reserved for use by hardware
 415 *      bits 55-63:    group ID, currently unused and set to 0
 416 *
 417 * Starting from Gen11, the upper dword of the descriptor has a new format:
 418 *
 419 *      bits 32-36:    reserved
 420 *      bits 37-47:    SW context ID
 421 *      bits 48:53:    engine instance
 422 *      bit 54:        mbz, reserved for use by hardware
 423 *      bits 55-60:    SW counter
 424 *      bits 61-63:    engine class
 425 *
 426 * engine info, SW context ID and SW counter need to form a unique number
 427 * (Context ID) per lrc.
 428 */
 429static u64
 430lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
 431{
 432	struct i915_gem_context *ctx = ce->gem_context;
 433	u64 desc;
 434
 435	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
 436	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
 437
 438	desc = INTEL_LEGACY_32B_CONTEXT;
 439	if (i915_vm_is_4lvl(ce->vm))
 440		desc = INTEL_LEGACY_64B_CONTEXT;
 441	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
 442
 443	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
 444	if (IS_GEN(engine->i915, 8))
 445		desc |= GEN8_CTX_L3LLC_COHERENT;
 446
 447	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
 448								/* bits 12-31 */
 449	/*
 450	 * The following 32bits are copied into the OA reports (dword 2).
 451	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
 452	 * anything below.
 453	 */
 454	if (INTEL_GEN(engine->i915) >= 11) {
 455		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
 456		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
 457								/* bits 37-47 */
 458
 459		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
 460								/* bits 48-53 */
 461
 462		/* TODO: decide what to do with SW counter (bits 55-60) */
 463
 464		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
 465								/* bits 61-63 */
 466	} else {
 467		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
 468		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
 469	}
 470
 471	return desc;
 472}
 473
 474static void unwind_wa_tail(struct i915_request *rq)
 475{
 476	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
 477	assert_ring_tail_valid(rq->ring, rq->tail);
 478}
 479
 480static struct i915_request *
 481__unwind_incomplete_requests(struct intel_engine_cs *engine)
 482{
 483	struct i915_request *rq, *rn, *active = NULL;
 484	struct list_head *uninitialized_var(pl);
 485	int prio = I915_PRIORITY_INVALID;
 486
 487	lockdep_assert_held(&engine->active.lock);
 488
 489	list_for_each_entry_safe_reverse(rq, rn,
 490					 &engine->active.requests,
 491					 sched.link) {
 492		struct intel_engine_cs *owner;
 493
 494		if (i915_request_completed(rq))
 495			continue; /* XXX */
 496
 497		__i915_request_unsubmit(rq);
 498		unwind_wa_tail(rq);
 499
 500		/*
 501		 * Push the request back into the queue for later resubmission.
 502		 * If this request is not native to this physical engine (i.e.
 503		 * it came from a virtual source), push it back onto the virtual
 504		 * engine so that it can be moved across onto another physical
 505		 * engine as load dictates.
 506		 */
 507		owner = rq->hw_context->engine;
 508		if (likely(owner == engine)) {
 509			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 510			if (rq_prio(rq) != prio) {
 511				prio = rq_prio(rq);
 512				pl = i915_sched_lookup_priolist(engine, prio);
 513			}
 514			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
 515
 516			list_move(&rq->sched.link, pl);
 517			active = rq;
 518		} else {
 519			/*
 520			 * Decouple the virtual breadcrumb before moving it
 521			 * back to the virtual engine -- we don't want the
 522			 * request to complete in the background and try
 523			 * and cancel the breadcrumb on the virtual engine
 524			 * (instead of the old engine where it is linked)!
 525			 */
 526			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
 527				     &rq->fence.flags)) {
 528				spin_lock(&rq->lock);
 529				i915_request_cancel_breadcrumb(rq);
 530				spin_unlock(&rq->lock);
 531			}
 532			rq->engine = owner;
 533			owner->submit_request(rq);
 534			active = NULL;
 535		}
 536	}
 537
 538	return active;
 539}
 540
 541struct i915_request *
 542execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 543{
 544	struct intel_engine_cs *engine =
 545		container_of(execlists, typeof(*engine), execlists);
 546
 547	return __unwind_incomplete_requests(engine);
 548}
 549
 550static inline void
 551execlists_context_status_change(struct i915_request *rq, unsigned long status)
 552{
 553	/*
 554	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
 555	 * The compiler should eliminate this function as dead-code.
 556	 */
 557	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 558		return;
 559
 560	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 561				   status, rq);
 562}
 563
 564static inline struct intel_engine_cs *
 565__execlists_schedule_in(struct i915_request *rq)
 566{
 567	struct intel_engine_cs * const engine = rq->engine;
 568	struct intel_context * const ce = rq->hw_context;
 569
 570	intel_context_get(ce);
 571
 572	intel_gt_pm_get(engine->gt);
 573	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 574	intel_engine_context_in(engine);
 575
 576	return engine;
 577}
 578
 579static inline struct i915_request *
 580execlists_schedule_in(struct i915_request *rq, int idx)
 581{
 582	struct intel_context * const ce = rq->hw_context;
 583	struct intel_engine_cs *old;
 584
 585	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
 586	trace_i915_request_in(rq, idx);
 587
 588	old = READ_ONCE(ce->inflight);
 589	do {
 590		if (!old) {
 591			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
 592			break;
 593		}
 594	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
 595
 596	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
 597	return i915_request_get(rq);
 598}
 599
 600static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
 601{
 602	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
 603	struct i915_request *next = READ_ONCE(ve->request);
 604
 605	if (next && next->execution_mask & ~rq->execution_mask)
 606		tasklet_schedule(&ve->base.execlists.tasklet);
 607}
 608
 609static inline void
 610__execlists_schedule_out(struct i915_request *rq,
 611			 struct intel_engine_cs * const engine)
 612{
 613	struct intel_context * const ce = rq->hw_context;
 614
 615	intel_engine_context_out(engine);
 616	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 617	intel_gt_pm_put(engine->gt);
 618
 619	/*
 620	 * If this is part of a virtual engine, its next request may
 621	 * have been blocked waiting for access to the active context.
 622	 * We have to kick all the siblings again in case we need to
 623	 * switch (e.g. the next request is not runnable on this
 624	 * engine). Hopefully, we will already have submitted the next
 625	 * request before the tasklet runs and do not need to rebuild
 626	 * each virtual tree and kick everyone again.
 627	 */
 628	if (ce->engine != engine)
 629		kick_siblings(rq, ce);
 630
 631	intel_context_put(ce);
 632}
 633
 634static inline void
 635execlists_schedule_out(struct i915_request *rq)
 636{
 637	struct intel_context * const ce = rq->hw_context;
 638	struct intel_engine_cs *cur, *old;
 639
 640	trace_i915_request_out(rq);
 641
 642	old = READ_ONCE(ce->inflight);
 643	do
 644		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
 645	while (!try_cmpxchg(&ce->inflight, &old, cur));
 646	if (!cur)
 647		__execlists_schedule_out(rq, old);
 648
 649	i915_request_put(rq);
 650}
 651
 652static u64 execlists_update_context(const struct i915_request *rq)
 653{
 654	struct intel_context *ce = rq->hw_context;
 655	u64 desc;
 656
 657	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
 658		intel_ring_set_tail(rq->ring, rq->tail);
 659
 660	/*
 661	 * Make sure the context image is complete before we submit it to HW.
 662	 *
 663	 * Ostensibly, writes (including the WCB) should be flushed prior to
 664	 * an uncached write such as our mmio register access, the empirical
 665	 * evidence (esp. on Braswell) suggests that the WC write into memory
 666	 * may not be visible to the HW prior to the completion of the UC
 667	 * register write and that we may begin execution from the context
 668	 * before its image is complete leading to invalid PD chasing.
 669	 *
 670	 * Furthermore, Braswell, at least, wants a full mb to be sure that
 671	 * the writes are coherent in memory (visible to the GPU) prior to
 672	 * execution, and not just visible to other CPUs (as is the result of
 673	 * wmb).
 674	 */
 675	mb();
 676
 677	desc = ce->lrc_desc;
 678	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
 679
 680	return desc;
 681}
 682
 683static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 684{
 685	if (execlists->ctrl_reg) {
 686		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 687		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 688	} else {
 689		writel(upper_32_bits(desc), execlists->submit_reg);
 690		writel(lower_32_bits(desc), execlists->submit_reg);
 691	}
 692}
 693
 694static __maybe_unused void
 695trace_ports(const struct intel_engine_execlists *execlists,
 696	    const char *msg,
 697	    struct i915_request * const *ports)
 698{
 699	const struct intel_engine_cs *engine =
 700		container_of(execlists, typeof(*engine), execlists);
 701
 702	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
 703		  engine->name, msg,
 704		  ports[0]->fence.context,
 705		  ports[0]->fence.seqno,
 706		  i915_request_completed(ports[0]) ? "!" :
 707		  i915_request_started(ports[0]) ? "*" :
 708		  "",
 709		  ports[1] ? ports[1]->fence.context : 0,
 710		  ports[1] ? ports[1]->fence.seqno : 0);
 711}
 712
 713static __maybe_unused bool
 714assert_pending_valid(const struct intel_engine_execlists *execlists,
 715		     const char *msg)
 716{
 717	struct i915_request * const *port, *rq;
 718	struct intel_context *ce = NULL;
 719
 720	trace_ports(execlists, msg, execlists->pending);
 721
 722	if (!execlists->pending[0])
 723		return false;
 724
 725	if (execlists->pending[execlists_num_ports(execlists)])
 726		return false;
 727
 728	for (port = execlists->pending; (rq = *port); port++) {
 729		if (ce == rq->hw_context)
 730			return false;
 731
 732		ce = rq->hw_context;
 733		if (i915_request_completed(rq))
 734			continue;
 735
 736		if (i915_active_is_idle(&ce->active))
 737			return false;
 738
 739		if (!i915_vma_is_pinned(ce->state))
 740			return false;
 741	}
 742
 743	return ce;
 744}
 745
 746static void execlists_submit_ports(struct intel_engine_cs *engine)
 747{
 748	struct intel_engine_execlists *execlists = &engine->execlists;
 749	unsigned int n;
 750
 751	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
 752
 753	/*
 754	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
 755	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
 756	 * not be relinquished until the device is idle (see
 757	 * i915_gem_idle_work_handler()). As a precaution, we make sure
 758	 * that all ELSP are drained i.e. we have processed the CSB,
 759	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
 760	 */
 761	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
 762
 763	/*
 764	 * ELSQ note: the submit queue is not cleared after being submitted
 765	 * to the HW so we need to make sure we always clean it up. This is
 766	 * currently ensured by the fact that we always write the same number
 767	 * of elsq entries, keep this in mind before changing the loop below.
 768	 */
 769	for (n = execlists_num_ports(execlists); n--; ) {
 770		struct i915_request *rq = execlists->pending[n];
 771
 772		write_desc(execlists,
 773			   rq ? execlists_update_context(rq) : 0,
 774			   n);
 775	}
 776
 777	/* we need to manually load the submit queue */
 778	if (execlists->ctrl_reg)
 779		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 780}
 781
 782static bool ctx_single_port_submission(const struct intel_context *ce)
 783{
 784	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 785		i915_gem_context_force_single_submission(ce->gem_context));
 786}
 787
 788static bool can_merge_ctx(const struct intel_context *prev,
 789			  const struct intel_context *next)
 790{
 791	if (prev != next)
 792		return false;
 793
 794	if (ctx_single_port_submission(prev))
 795		return false;
 796
 797	return true;
 798}
 799
 800static bool can_merge_rq(const struct i915_request *prev,
 801			 const struct i915_request *next)
 802{
 803	GEM_BUG_ON(prev == next);
 804	GEM_BUG_ON(!assert_priority_queue(prev, next));
 805
 806	/*
 807	 * We do not submit known completed requests. Therefore if the next
 808	 * request is already completed, we can pretend to merge it in
 809	 * with the previous context (and we will skip updating the ELSP
 810	 * and tracking). Thus hopefully keeping the ELSP full with active
 811	 * contexts, despite the best efforts of preempt-to-busy to confuse
 812	 * us.
 813	 */
 814	if (i915_request_completed(next))
 815		return true;
 816
 817	if (!can_merge_ctx(prev->hw_context, next->hw_context))
 818		return false;
 819
 820	return true;
 821}
 822
 823static void virtual_update_register_offsets(u32 *regs,
 824					    struct intel_engine_cs *engine)
 825{
 826	u32 base = engine->mmio_base;
 827
 828	/* Must match execlists_init_reg_state()! */
 829
 830	regs[CTX_CONTEXT_CONTROL] =
 831		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
 832	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
 833	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
 834	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
 835	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
 836
 837	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
 838	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
 839	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
 840	regs[CTX_SECOND_BB_HEAD_U] =
 841		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
 842	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
 843	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
 844
 845	regs[CTX_CTX_TIMESTAMP] =
 846		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
 847	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
 848	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
 849	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
 850	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
 851	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
 852	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
 853	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
 854	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
 855
 856	if (engine->class == RENDER_CLASS) {
 857		regs[CTX_RCS_INDIRECT_CTX] =
 858			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
 859		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
 860			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
 861		regs[CTX_BB_PER_CTX_PTR] =
 862			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
 863
 864		regs[CTX_R_PWR_CLK_STATE] =
 865			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
 866	}
 867}
 868
 869static bool virtual_matches(const struct virtual_engine *ve,
 870			    const struct i915_request *rq,
 871			    const struct intel_engine_cs *engine)
 872{
 873	const struct intel_engine_cs *inflight;
 874
 875	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
 876		return false;
 877
 878	/*
 879	 * We track when the HW has completed saving the context image
 880	 * (i.e. when we have seen the final CS event switching out of
 881	 * the context) and must not overwrite the context image before
 882	 * then. This restricts us to only using the active engine
 883	 * while the previous virtualized request is inflight (so
 884	 * we reuse the register offsets). This is a very small
 885	 * hystersis on the greedy seelction algorithm.
 886	 */
 887	inflight = intel_context_inflight(&ve->context);
 888	if (inflight && inflight != engine)
 889		return false;
 890
 891	return true;
 892}
 893
 894static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
 895				     struct intel_engine_cs *engine)
 896{
 897	struct intel_engine_cs *old = ve->siblings[0];
 898
 899	/* All unattached (rq->engine == old) must already be completed */
 900
 901	spin_lock(&old->breadcrumbs.irq_lock);
 902	if (!list_empty(&ve->context.signal_link)) {
 903		list_move_tail(&ve->context.signal_link,
 904			       &engine->breadcrumbs.signalers);
 905		intel_engine_queue_breadcrumbs(engine);
 906	}
 907	spin_unlock(&old->breadcrumbs.irq_lock);
 908}
 909
 910static struct i915_request *
 911last_active(const struct intel_engine_execlists *execlists)
 912{
 913	struct i915_request * const *last = READ_ONCE(execlists->active);
 914
 915	while (*last && i915_request_completed(*last))
 916		last++;
 917
 918	return *last;
 919}
 920
 921static void defer_request(struct i915_request *rq, struct list_head * const pl)
 922{
 923	LIST_HEAD(list);
 924
 925	/*
 926	 * We want to move the interrupted request to the back of
 927	 * the round-robin list (i.e. its priority level), but
 928	 * in doing so, we must then move all requests that were in
 929	 * flight and were waiting for the interrupted request to
 930	 * be run after it again.
 931	 */
 932	do {
 933		struct i915_dependency *p;
 934
 935		GEM_BUG_ON(i915_request_is_active(rq));
 936		list_move_tail(&rq->sched.link, pl);
 937
 938		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
 939			struct i915_request *w =
 940				container_of(p->waiter, typeof(*w), sched);
 941
 942			/* Leave semaphores spinning on the other engines */
 943			if (w->engine != rq->engine)
 944				continue;
 945
 946			/* No waiter should start before its signaler */
 947			GEM_BUG_ON(i915_request_started(w) &&
 948				   !i915_request_completed(rq));
 949
 950			GEM_BUG_ON(i915_request_is_active(w));
 951			if (list_empty(&w->sched.link))
 952				continue; /* Not yet submitted; unready */
 953
 954			if (rq_prio(w) < rq_prio(rq))
 955				continue;
 956
 957			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
 958			list_move_tail(&w->sched.link, &list);
 959		}
 960
 961		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
 962	} while (rq);
 963}
 964
 965static void defer_active(struct intel_engine_cs *engine)
 966{
 967	struct i915_request *rq;
 968
 969	rq = __unwind_incomplete_requests(engine);
 970	if (!rq)
 971		return;
 972
 973	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
 974}
 975
 976static bool
 977need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
 978{
 979	int hint;
 980
 981	if (!intel_engine_has_semaphores(engine))
 982		return false;
 983
 984	if (list_is_last(&rq->sched.link, &engine->active.requests))
 985		return false;
 986
 987	hint = max(rq_prio(list_next_entry(rq, sched.link)),
 988		   engine->execlists.queue_priority_hint);
 989
 990	return hint >= effective_prio(rq);
 991}
 992
 993static int
 994switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
 995{
 996	if (list_is_last(&rq->sched.link, &engine->active.requests))
 997		return INT_MIN;
 998
 999	return rq_prio(list_next_entry(rq, sched.link));
1000}
1001
1002static bool
1003enable_timeslice(const struct intel_engine_execlists *execlists)
1004{
1005	const struct i915_request *rq = *execlists->active;
1006
1007	if (i915_request_completed(rq))
1008		return false;
1009
1010	return execlists->switch_priority_hint >= effective_prio(rq);
1011}
1012
1013static void record_preemption(struct intel_engine_execlists *execlists)
1014{
1015	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1016}
1017
1018static void execlists_dequeue(struct intel_engine_cs *engine)
1019{
1020	struct intel_engine_execlists * const execlists = &engine->execlists;
1021	struct i915_request **port = execlists->pending;
1022	struct i915_request ** const last_port = port + execlists->port_mask;
1023	struct i915_request *last;
1024	struct rb_node *rb;
1025	bool submit = false;
1026
1027	/*
1028	 * Hardware submission is through 2 ports. Conceptually each port
1029	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1030	 * static for a context, and unique to each, so we only execute
1031	 * requests belonging to a single context from each ring. RING_HEAD
1032	 * is maintained by the CS in the context image, it marks the place
1033	 * where it got up to last time, and through RING_TAIL we tell the CS
1034	 * where we want to execute up to this time.
1035	 *
1036	 * In this list the requests are in order of execution. Consecutive
1037	 * requests from the same context are adjacent in the ringbuffer. We
1038	 * can combine these requests into a single RING_TAIL update:
1039	 *
1040	 *              RING_HEAD...req1...req2
1041	 *                                    ^- RING_TAIL
1042	 * since to execute req2 the CS must first execute req1.
1043	 *
1044	 * Our goal then is to point each port to the end of a consecutive
1045	 * sequence of requests as being the most optimal (fewest wake ups
1046	 * and context switches) submission.
1047	 */
1048
1049	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
1050		struct virtual_engine *ve =
1051			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1052		struct i915_request *rq = READ_ONCE(ve->request);
1053
1054		if (!rq) { /* lazily cleanup after another engine handled rq */
1055			rb_erase_cached(rb, &execlists->virtual);
1056			RB_CLEAR_NODE(rb);
1057			rb = rb_first_cached(&execlists->virtual);
1058			continue;
1059		}
1060
1061		if (!virtual_matches(ve, rq, engine)) {
1062			rb = rb_next(rb);
1063			continue;
1064		}
1065
1066		break;
1067	}
1068
1069	/*
1070	 * If the queue is higher priority than the last
1071	 * request in the currently active context, submit afresh.
1072	 * We will resubmit again afterwards in case we need to split
1073	 * the active context to interject the preemption request,
1074	 * i.e. we will retrigger preemption following the ack in case
1075	 * of trouble.
1076	 */
1077	last = last_active(execlists);
1078	if (last) {
1079		if (need_preempt(engine, last, rb)) {
1080			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
1081				  engine->name,
1082				  last->fence.context,
1083				  last->fence.seqno,
1084				  last->sched.attr.priority,
1085				  execlists->queue_priority_hint);
1086			record_preemption(execlists);
1087
1088			/*
1089			 * Don't let the RING_HEAD advance past the breadcrumb
1090			 * as we unwind (and until we resubmit) so that we do
1091			 * not accidentally tell it to go backwards.
1092			 */
1093			ring_set_paused(engine, 1);
1094
1095			/*
1096			 * Note that we have not stopped the GPU at this point,
1097			 * so we are unwinding the incomplete requests as they
1098			 * remain inflight and so by the time we do complete
1099			 * the preemption, some of the unwound requests may
1100			 * complete!
1101			 */
1102			__unwind_incomplete_requests(engine);
1103
1104			/*
1105			 * If we need to return to the preempted context, we
1106			 * need to skip the lite-restore and force it to
1107			 * reload the RING_TAIL. Otherwise, the HW has a
1108			 * tendency to ignore us rewinding the TAIL to the
1109			 * end of an earlier request.
1110			 */
1111			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1112			last = NULL;
1113		} else if (need_timeslice(engine, last) &&
1114			   !timer_pending(&engine->execlists.timer)) {
1115			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
1116				  engine->name,
1117				  last->fence.context,
1118				  last->fence.seqno,
1119				  last->sched.attr.priority,
1120				  execlists->queue_priority_hint);
1121
1122			ring_set_paused(engine, 1);
1123			defer_active(engine);
1124
1125			/*
1126			 * Unlike for preemption, if we rewind and continue
1127			 * executing the same context as previously active,
1128			 * the order of execution will remain the same and
1129			 * the tail will only advance. We do not need to
1130			 * force a full context restore, as a lite-restore
1131			 * is sufficient to resample the monotonic TAIL.
1132			 *
1133			 * If we switch to any other context, similarly we
1134			 * will not rewind TAIL of current context, and
1135			 * normal save/restore will preserve state and allow
1136			 * us to later continue executing the same request.
1137			 */
1138			last = NULL;
1139		} else {
1140			/*
1141			 * Otherwise if we already have a request pending
1142			 * for execution after the current one, we can
1143			 * just wait until the next CS event before
1144			 * queuing more. In either case we will force a
1145			 * lite-restore preemption event, but if we wait
1146			 * we hopefully coalesce several updates into a single
1147			 * submission.
1148			 */
1149			if (!list_is_last(&last->sched.link,
1150					  &engine->active.requests))
1151				return;
1152
1153			/*
1154			 * WaIdleLiteRestore:bdw,skl
1155			 * Apply the wa NOOPs to prevent
1156			 * ring:HEAD == rq:TAIL as we resubmit the
1157			 * request. See gen8_emit_fini_breadcrumb() for
1158			 * where we prepare the padding after the
1159			 * end of the request.
1160			 */
1161			last->tail = last->wa_tail;
1162		}
1163	}
1164
1165	while (rb) { /* XXX virtual is always taking precedence */
1166		struct virtual_engine *ve =
1167			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1168		struct i915_request *rq;
1169
1170		spin_lock(&ve->base.active.lock);
1171
1172		rq = ve->request;
1173		if (unlikely(!rq)) { /* lost the race to a sibling */
1174			spin_unlock(&ve->base.active.lock);
1175			rb_erase_cached(rb, &execlists->virtual);
1176			RB_CLEAR_NODE(rb);
1177			rb = rb_first_cached(&execlists->virtual);
1178			continue;
1179		}
1180
1181		GEM_BUG_ON(rq != ve->request);
1182		GEM_BUG_ON(rq->engine != &ve->base);
1183		GEM_BUG_ON(rq->hw_context != &ve->context);
1184
1185		if (rq_prio(rq) >= queue_prio(execlists)) {
1186			if (!virtual_matches(ve, rq, engine)) {
1187				spin_unlock(&ve->base.active.lock);
1188				rb = rb_next(rb);
1189				continue;
1190			}
1191
1192			if (last && !can_merge_rq(last, rq)) {
1193				spin_unlock(&ve->base.active.lock);
1194				return; /* leave this for another */
1195			}
1196
1197			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
1198				  engine->name,
1199				  rq->fence.context,
1200				  rq->fence.seqno,
1201				  i915_request_completed(rq) ? "!" :
1202				  i915_request_started(rq) ? "*" :
1203				  "",
1204				  yesno(engine != ve->siblings[0]));
1205
1206			ve->request = NULL;
1207			ve->base.execlists.queue_priority_hint = INT_MIN;
1208			rb_erase_cached(rb, &execlists->virtual);
1209			RB_CLEAR_NODE(rb);
1210
1211			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1212			rq->engine = engine;
1213
1214			if (engine != ve->siblings[0]) {
1215				u32 *regs = ve->context.lrc_reg_state;
1216				unsigned int n;
1217
1218				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1219				virtual_update_register_offsets(regs, engine);
1220
1221				if (!list_empty(&ve->context.signals))
1222					virtual_xfer_breadcrumbs(ve, engine);
1223
1224				/*
1225				 * Move the bound engine to the top of the list
1226				 * for future execution. We then kick this
1227				 * tasklet first before checking others, so that
1228				 * we preferentially reuse this set of bound
1229				 * registers.
1230				 */
1231				for (n = 1; n < ve->num_siblings; n++) {
1232					if (ve->siblings[n] == engine) {
1233						swap(ve->siblings[n],
1234						     ve->siblings[0]);
1235						break;
1236					}
1237				}
1238
1239				GEM_BUG_ON(ve->siblings[0] != engine);
1240			}
1241
1242			if (__i915_request_submit(rq)) {
1243				submit = true;
1244				last = rq;
1245			}
1246			i915_request_put(rq);
1247
1248			/*
1249			 * Hmm, we have a bunch of virtual engine requests,
1250			 * but the first one was already completed (thanks
1251			 * preempt-to-busy!). Keep looking at the veng queue
1252			 * until we have no more relevant requests (i.e.
1253			 * the normal submit queue has higher priority).
1254			 */
1255			if (!submit) {
1256				spin_unlock(&ve->base.active.lock);
1257				rb = rb_first_cached(&execlists->virtual);
1258				continue;
1259			}
1260		}
1261
1262		spin_unlock(&ve->base.active.lock);
1263		break;
1264	}
1265
1266	while ((rb = rb_first_cached(&execlists->queue))) {
1267		struct i915_priolist *p = to_priolist(rb);
1268		struct i915_request *rq, *rn;
1269		int i;
1270
1271		priolist_for_each_request_consume(rq, rn, p, i) {
1272			bool merge = true;
1273
1274			/*
1275			 * Can we combine this request with the current port?
1276			 * It has to be the same context/ringbuffer and not
1277			 * have any exceptions (e.g. GVT saying never to
1278			 * combine contexts).
1279			 *
1280			 * If we can combine the requests, we can execute both
1281			 * by updating the RING_TAIL to point to the end of the
1282			 * second request, and so we never need to tell the
1283			 * hardware about the first.
1284			 */
1285			if (last && !can_merge_rq(last, rq)) {
1286				/*
1287				 * If we are on the second port and cannot
1288				 * combine this request with the last, then we
1289				 * are done.
1290				 */
1291				if (port == last_port)
1292					goto done;
1293
1294				/*
1295				 * We must not populate both ELSP[] with the
1296				 * same LRCA, i.e. we must submit 2 different
1297				 * contexts if we submit 2 ELSP.
1298				 */
1299				if (last->hw_context == rq->hw_context)
1300					goto done;
1301
1302				/*
1303				 * If GVT overrides us we only ever submit
1304				 * port[0], leaving port[1] empty. Note that we
1305				 * also have to be careful that we don't queue
1306				 * the same context (even though a different
1307				 * request) to the second port.
1308				 */
1309				if (ctx_single_port_submission(last->hw_context) ||
1310				    ctx_single_port_submission(rq->hw_context))
1311					goto done;
1312
1313				merge = false;
1314			}
1315
1316			if (__i915_request_submit(rq)) {
1317				if (!merge) {
1318					*port = execlists_schedule_in(last, port - execlists->pending);
1319					port++;
1320					last = NULL;
1321				}
1322
1323				GEM_BUG_ON(last &&
1324					   !can_merge_ctx(last->hw_context,
1325							  rq->hw_context));
1326
1327				submit = true;
1328				last = rq;
1329			}
1330		}
1331
1332		rb_erase_cached(&p->node, &execlists->queue);
1333		i915_priolist_free(p);
1334	}
1335
1336done:
1337	/*
1338	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1339	 *
1340	 * We choose the priority hint such that if we add a request of greater
1341	 * priority than this, we kick the submission tasklet to decide on
1342	 * the right order of submitting the requests to hardware. We must
1343	 * also be prepared to reorder requests as they are in-flight on the
1344	 * HW. We derive the priority hint then as the first "hole" in
1345	 * the HW submission ports and if there are no available slots,
1346	 * the priority of the lowest executing request, i.e. last.
1347	 *
1348	 * When we do receive a higher priority request ready to run from the
1349	 * user, see queue_request(), the priority hint is bumped to that
1350	 * request triggering preemption on the next dequeue (or subsequent
1351	 * interrupt for secondary ports).
1352	 */
1353	execlists->queue_priority_hint = queue_prio(execlists);
1354	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
1355		  engine->name, execlists->queue_priority_hint,
1356		  yesno(submit));
1357
1358	if (submit) {
1359		*port = execlists_schedule_in(last, port - execlists->pending);
1360		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1361		execlists->switch_priority_hint =
1362			switch_prio(engine, *execlists->pending);
1363		execlists_submit_ports(engine);
1364	} else {
1365		ring_set_paused(engine, 0);
1366	}
1367}
1368
1369static void
1370cancel_port_requests(struct intel_engine_execlists * const execlists)
1371{
1372	struct i915_request * const *port, *rq;
1373
1374	for (port = execlists->pending; (rq = *port); port++)
1375		execlists_schedule_out(rq);
1376	memset(execlists->pending, 0, sizeof(execlists->pending));
1377
1378	for (port = execlists->active; (rq = *port); port++)
1379		execlists_schedule_out(rq);
1380	execlists->active =
1381		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1382}
1383
1384static inline void
1385invalidate_csb_entries(const u32 *first, const u32 *last)
1386{
1387	clflush((void *)first);
1388	clflush((void *)last);
1389}
1390
1391static inline bool
1392reset_in_progress(const struct intel_engine_execlists *execlists)
1393{
1394	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1395}
1396
1397enum csb_step {
1398	CSB_NOP,
1399	CSB_PROMOTE,
1400	CSB_PREEMPT,
1401	CSB_COMPLETE,
1402};
1403
1404/*
1405 * Starting with Gen12, the status has a new format:
1406 *
1407 *     bit  0:     switched to new queue
1408 *     bit  1:     reserved
1409 *     bit  2:     semaphore wait mode (poll or signal), only valid when
1410 *                 switch detail is set to "wait on semaphore"
1411 *     bits 3-5:   engine class
1412 *     bits 6-11:  engine instance
1413 *     bits 12-14: reserved
1414 *     bits 15-25: sw context id of the lrc the GT switched to
1415 *     bits 26-31: sw counter of the lrc the GT switched to
1416 *     bits 32-35: context switch detail
1417 *                  - 0: ctx complete
1418 *                  - 1: wait on sync flip
1419 *                  - 2: wait on vblank
1420 *                  - 3: wait on scanline
1421 *                  - 4: wait on semaphore
1422 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1423 *                       WAIT_FOR_EVENT)
1424 *     bit  36:    reserved
1425 *     bits 37-43: wait detail (for switch detail 1 to 4)
1426 *     bits 44-46: reserved
1427 *     bits 47-57: sw context id of the lrc the GT switched away from
1428 *     bits 58-63: sw counter of the lrc the GT switched away from
1429 */
1430static inline enum csb_step
1431gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1432{
1433	u32 lower_dw = csb[0];
1434	u32 upper_dw = csb[1];
1435	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
1436	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
1437	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1438
1439	if (!ctx_away_valid && ctx_to_valid)
1440		return CSB_PROMOTE;
1441
1442	/*
1443	 * The context switch detail is not guaranteed to be 5 when a preemption
1444	 * occurs, so we can't just check for that. The check below works for
1445	 * all the cases we care about, including preemptions of WAIT
1446	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1447	 * would require some extra handling, but we don't support that.
1448	 */
1449	if (new_queue && ctx_away_valid)
1450		return CSB_PREEMPT;
1451
1452	/*
1453	 * switch detail = 5 is covered by the case above and we do not expect a
1454	 * context switch on an unsuccessful wait instruction since we always
1455	 * use polling mode.
1456	 */
1457	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
1458
1459	if (*execlists->active) {
1460		GEM_BUG_ON(!ctx_away_valid);
1461		return CSB_COMPLETE;
1462	}
1463
1464	return CSB_NOP;
1465}
1466
1467static inline enum csb_step
1468gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1469{
1470	unsigned int status = *csb;
1471
1472	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
1473		return CSB_PROMOTE;
1474
1475	if (status & GEN8_CTX_STATUS_PREEMPTED)
1476		return CSB_PREEMPT;
1477
1478	if (*execlists->active)
1479		return CSB_COMPLETE;
1480
1481	return CSB_NOP;
1482}
1483
1484static void process_csb(struct intel_engine_cs *engine)
1485{
1486	struct intel_engine_execlists * const execlists = &engine->execlists;
1487	const u32 * const buf = execlists->csb_status;
1488	const u8 num_entries = execlists->csb_size;
1489	u8 head, tail;
1490
1491	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1492
1493	/*
1494	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1495	 * When reading from the csb_write mmio register, we have to be
1496	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1497	 * the low 4bits. As it happens we know the next 4bits are always
1498	 * zero and so we can simply masked off the low u8 of the register
1499	 * and treat it identically to reading from the HWSP (without having
1500	 * to use explicit shifting and masking, and probably bifurcating
1501	 * the code to handle the legacy mmio read).
1502	 */
1503	head = execlists->csb_head;
1504	tail = READ_ONCE(*execlists->csb_write);
1505	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1506	if (unlikely(head == tail))
1507		return;
1508
1509	/*
1510	 * Hopefully paired with a wmb() in HW!
1511	 *
1512	 * We must complete the read of the write pointer before any reads
1513	 * from the CSB, so that we do not see stale values. Without an rmb
1514	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1515	 * we perform the READ_ONCE(*csb_write).
1516	 */
1517	rmb();
1518
1519	do {
1520		enum csb_step csb_step;
1521
1522		if (++head == num_entries)
1523			head = 0;
1524
1525		/*
1526		 * We are flying near dragons again.
1527		 *
1528		 * We hold a reference to the request in execlist_port[]
1529		 * but no more than that. We are operating in softirq
1530		 * context and so cannot hold any mutex or sleep. That
1531		 * prevents us stopping the requests we are processing
1532		 * in port[] from being retired simultaneously (the
1533		 * breadcrumb will be complete before we see the
1534		 * context-switch). As we only hold the reference to the
1535		 * request, any pointer chasing underneath the request
1536		 * is subject to a potential use-after-free. Thus we
1537		 * store all of the bookkeeping within port[] as
1538		 * required, and avoid using unguarded pointers beneath
1539		 * request itself. The same applies to the atomic
1540		 * status notifier.
1541		 */
1542
1543		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1544			  engine->name, head,
1545			  buf[2 * head + 0], buf[2 * head + 1]);
1546
1547		if (INTEL_GEN(engine->i915) >= 12)
1548			csb_step = gen12_csb_parse(execlists, buf + 2 * head);
1549		else
1550			csb_step = gen8_csb_parse(execlists, buf + 2 * head);
1551
1552		switch (csb_step) {
1553		case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
1554			trace_ports(execlists, "preempted", execlists->active);
1555
1556			while (*execlists->active)
1557				execlists_schedule_out(*execlists->active++);
1558
1559			/* fallthrough */
1560		case CSB_PROMOTE: /* switch pending to inflight */
1561			GEM_BUG_ON(*execlists->active);
1562			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1563			execlists->active =
1564				memcpy(execlists->inflight,
1565				       execlists->pending,
1566				       execlists_num_ports(execlists) *
1567				       sizeof(*execlists->pending));
1568
1569			if (enable_timeslice(execlists))
1570				mod_timer(&execlists->timer, jiffies + 1);
1571
1572			if (!inject_preempt_hang(execlists))
1573				ring_set_paused(engine, 0);
1574
1575			WRITE_ONCE(execlists->pending[0], NULL);
1576			break;
1577
1578		case CSB_COMPLETE: /* port0 completed, advanced to port1 */
1579			trace_ports(execlists, "completed", execlists->active);
1580
1581			/*
1582			 * We rely on the hardware being strongly
1583			 * ordered, that the breadcrumb write is
1584			 * coherent (visible from the CPU) before the
1585			 * user interrupt and CSB is processed.
1586			 */
1587			GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
1588				   !reset_in_progress(execlists));
1589			execlists_schedule_out(*execlists->active++);
1590
1591			GEM_BUG_ON(execlists->active - execlists->inflight >
1592				   execlists_num_ports(execlists));
1593			break;
1594
1595		case CSB_NOP:
1596			break;
1597		}
1598	} while (head != tail);
1599
1600	execlists->csb_head = head;
1601
1602	/*
1603	 * Gen11 has proven to fail wrt global observation point between
1604	 * entry and tail update, failing on the ordering and thus
1605	 * we see an old entry in the context status buffer.
1606	 *
1607	 * Forcibly evict out entries for the next gpu csb update,
1608	 * to increase the odds that we get a fresh entries with non
1609	 * working hardware. The cost for doing so comes out mostly with
1610	 * the wash as hardware, working or not, will need to do the
1611	 * invalidation before.
1612	 */
1613	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1614}
1615
1616static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1617{
1618	lockdep_assert_held(&engine->active.lock);
1619	if (!engine->execlists.pending[0]) {
1620		rcu_read_lock(); /* protect peeking at execlists->active */
1621		execlists_dequeue(engine);
1622		rcu_read_unlock();
1623	}
1624}
1625
1626/*
1627 * Check the unread Context Status Buffers and manage the submission of new
1628 * contexts to the ELSP accordingly.
1629 */
1630static void execlists_submission_tasklet(unsigned long data)
1631{
1632	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1633	unsigned long flags;
1634
1635	process_csb(engine);
1636	if (!READ_ONCE(engine->execlists.pending[0])) {
1637		spin_lock_irqsave(&engine->active.lock, flags);
1638		__execlists_submission_tasklet(engine);
1639		spin_unlock_irqrestore(&engine->active.lock, flags);
1640	}
1641}
1642
1643static void execlists_submission_timer(struct timer_list *timer)
1644{
1645	struct intel_engine_cs *engine =
1646		from_timer(engine, timer, execlists.timer);
1647
1648	/* Kick the tasklet for some interrupt coalescing and reset handling */
1649	tasklet_hi_schedule(&engine->execlists.tasklet);
1650}
1651
1652static void queue_request(struct intel_engine_cs *engine,
1653			  struct i915_sched_node *node,
1654			  int prio)
1655{
1656	GEM_BUG_ON(!list_empty(&node->link));
1657	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1658}
1659
1660static void __submit_queue_imm(struct intel_engine_cs *engine)
1661{
1662	struct intel_engine_execlists * const execlists = &engine->execlists;
1663
1664	if (reset_in_progress(execlists))
1665		return; /* defer until we restart the engine following reset */
1666
1667	if (execlists->tasklet.func == execlists_submission_tasklet)
1668		__execlists_submission_tasklet(engine);
1669	else
1670		tasklet_hi_schedule(&execlists->tasklet);
1671}
1672
1673static void submit_queue(struct intel_engine_cs *engine,
1674			 const struct i915_request *rq)
1675{
1676	struct intel_engine_execlists *execlists = &engine->execlists;
1677
1678	if (rq_prio(rq) <= execlists->queue_priority_hint)
1679		return;
1680
1681	execlists->queue_priority_hint = rq_prio(rq);
1682	__submit_queue_imm(engine);
1683}
1684
1685static void execlists_submit_request(struct i915_request *request)
1686{
1687	struct intel_engine_cs *engine = request->engine;
1688	unsigned long flags;
1689
1690	/* Will be called from irq-context when using foreign fences. */
1691	spin_lock_irqsave(&engine->active.lock, flags);
1692
1693	queue_request(engine, &request->sched, rq_prio(request));
1694
1695	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1696	GEM_BUG_ON(list_empty(&request->sched.link));
1697
1698	submit_queue(engine, request);
1699
1700	spin_unlock_irqrestore(&engine->active.lock, flags);
1701}
1702
1703static void __execlists_context_fini(struct intel_context *ce)
1704{
1705	intel_ring_put(ce->ring);
1706	i915_vma_put(ce->state);
1707}
1708
1709static void execlists_context_destroy(struct kref *kref)
1710{
1711	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1712
1713	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1714	GEM_BUG_ON(intel_context_is_pinned(ce));
1715
1716	if (ce->state)
1717		__execlists_context_fini(ce);
1718
1719	intel_context_fini(ce);
1720	intel_context_free(ce);
1721}
1722
1723static void
1724set_redzone(void *vaddr, const struct intel_engine_cs *engine)
1725{
1726	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1727		return;
1728
1729	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1730	vaddr += engine->context_size;
1731
1732	memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
1733}
1734
1735static void
1736check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
1737{
1738	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1739		return;
1740
1741	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1742	vaddr += engine->context_size;
1743
1744	if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE))
1745		dev_err_once(engine->i915->drm.dev,
1746			     "%s context redzone overwritten!\n",
1747			     engine->name);
1748}
1749
1750static void execlists_context_unpin(struct intel_context *ce)
1751{
1752	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
1753		      ce->engine);
1754
1755	i915_gem_context_unpin_hw_id(ce->gem_context);
1756	i915_gem_object_unpin_map(ce->state->obj);
1757	intel_ring_reset(ce->ring, ce->ring->tail);
1758}
1759
1760static void
1761__execlists_update_reg_state(struct intel_context *ce,
1762			     struct intel_engine_cs *engine)
1763{
1764	struct intel_ring *ring = ce->ring;
1765	u32 *regs = ce->lrc_reg_state;
1766
1767	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1768	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1769
1770	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1771	regs[CTX_RING_HEAD + 1] = ring->head;
1772	regs[CTX_RING_TAIL + 1] = ring->tail;
1773
1774	/* RPCS */
1775	if (engine->class == RENDER_CLASS) {
1776		regs[CTX_R_PWR_CLK_STATE + 1] =
1777			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1778
1779		i915_oa_init_reg_state(engine, ce, regs);
1780	}
1781}
1782
1783static int
1784__execlists_context_pin(struct intel_context *ce,
1785			struct intel_engine_cs *engine)
1786{
1787	void *vaddr;
1788	int ret;
1789
1790	GEM_BUG_ON(!ce->state);
1791
1792	ret = intel_context_active_acquire(ce);
1793	if (ret)
1794		goto err;
1795	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1796
1797	vaddr = i915_gem_object_pin_map(ce->state->obj,
1798					i915_coherent_map_type(engine->i915) |
1799					I915_MAP_OVERRIDE);
1800	if (IS_ERR(vaddr)) {
1801		ret = PTR_ERR(vaddr);
1802		goto unpin_active;
1803	}
1804
1805	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1806	if (ret)
1807		goto unpin_map;
1808
1809	ce->lrc_desc = lrc_descriptor(ce, engine);
1810	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1811	__execlists_update_reg_state(ce, engine);
1812
1813	return 0;
1814
1815unpin_map:
1816	i915_gem_object_unpin_map(ce->state->obj);
1817unpin_active:
1818	intel_context_active_release(ce);
1819err:
1820	return ret;
1821}
1822
1823static int execlists_context_pin(struct intel_context *ce)
1824{
1825	return __execlists_context_pin(ce, ce->engine);
1826}
1827
1828static int execlists_context_alloc(struct intel_context *ce)
1829{
1830	return __execlists_context_alloc(ce, ce->engine);
1831}
1832
1833static void execlists_context_reset(struct intel_context *ce)
1834{
1835	/*
1836	 * Because we emit WA_TAIL_DWORDS there may be a disparity
1837	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1838	 * that stored in context. As we only write new commands from
1839	 * ce->ring->tail onwards, everything before that is junk. If the GPU
1840	 * starts reading from its RING_HEAD from the context, it may try to
1841	 * execute that junk and die.
1842	 *
1843	 * The contexts that are stilled pinned on resume belong to the
1844	 * kernel, and are local to each engine. All other contexts will
1845	 * have their head/tail sanitized upon pinning before use, so they
1846	 * will never see garbage,
1847	 *
1848	 * So to avoid that we reset the context images upon resume. For
1849	 * simplicity, we just zero everything out.
1850	 */
1851	intel_ring_reset(ce->ring, 0);
1852	__execlists_update_reg_state(ce, ce->engine);
1853}
1854
1855static const struct intel_context_ops execlists_context_ops = {
1856	.alloc = execlists_context_alloc,
1857
1858	.pin = execlists_context_pin,
1859	.unpin = execlists_context_unpin,
1860
1861	.enter = intel_context_enter_engine,
1862	.exit = intel_context_exit_engine,
1863
1864	.reset = execlists_context_reset,
1865	.destroy = execlists_context_destroy,
1866};
1867
1868static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1869{
1870	u32 *cs;
1871
1872	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1873
1874	cs = intel_ring_begin(rq, 6);
1875	if (IS_ERR(cs))
1876		return PTR_ERR(cs);
1877
1878	/*
1879	 * Check if we have been preempted before we even get started.
1880	 *
1881	 * After this point i915_request_started() reports true, even if
1882	 * we get preempted and so are no longer running.
1883	 */
1884	*cs++ = MI_ARB_CHECK;
1885	*cs++ = MI_NOOP;
1886
1887	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1888	*cs++ = rq->timeline->hwsp_offset;
1889	*cs++ = 0;
1890	*cs++ = rq->fence.seqno - 1;
1891
1892	intel_ring_advance(rq, cs);
1893
1894	/* Record the updated position of the request's payload */
1895	rq->infix = intel_ring_offset(rq, cs);
1896
1897	return 0;
1898}
1899
1900static int emit_pdps(struct i915_request *rq)
1901{
1902	const struct intel_engine_cs * const engine = rq->engine;
1903	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->hw_context->vm);
1904	int err, i;
1905	u32 *cs;
1906
1907	GEM_BUG_ON(intel_vgpu_active(rq->i915));
1908
1909	/*
1910	 * Beware ye of the dragons, this sequence is magic!
1911	 *
1912	 * Small changes to this sequence can cause anything from
1913	 * GPU hangs to forcewake errors and machine lockups!
1914	 */
1915
1916	/* Flush any residual operations from the context load */
1917	err = engine->emit_flush(rq, EMIT_FLUSH);
1918	if (err)
1919		return err;
1920
1921	/* Magic required to prevent forcewake errors! */
1922	err = engine->emit_flush(rq, EMIT_INVALIDATE);
1923	if (err)
1924		return err;
1925
1926	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1927	if (IS_ERR(cs))
1928		return PTR_ERR(cs);
1929
1930	/* Ensure the LRI have landed before we invalidate & continue */
1931	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1932	for (i = GEN8_3LVL_PDPES; i--; ) {
1933		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1934		u32 base = engine->mmio_base;
1935
1936		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1937		*cs++ = upper_32_bits(pd_daddr);
1938		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1939		*cs++ = lower_32_bits(pd_daddr);
1940	}
1941	*cs++ = MI_NOOP;
1942
1943	intel_ring_advance(rq, cs);
1944
1945	/* Be doubly sure the LRI have landed before proceeding */
1946	err = engine->emit_flush(rq, EMIT_FLUSH);
1947	if (err)
1948		return err;
1949
1950	/* Re-invalidate the TLB for luck */
1951	return engine->emit_flush(rq, EMIT_INVALIDATE);
1952}
1953
1954static int execlists_request_alloc(struct i915_request *request)
1955{
1956	int ret;
1957
1958	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1959
1960	/*
1961	 * Flush enough space to reduce the likelihood of waiting after
1962	 * we start building the request - in which case we will just
1963	 * have to repeat work.
1964	 */
1965	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1966
1967	/*
1968	 * Note that after this point, we have committed to using
1969	 * this request as it is being used to both track the
1970	 * state of engine initialisation and liveness of the
1971	 * golden renderstate above. Think twice before you try
1972	 * to cancel/unwind this request now.
1973	 */
1974
1975	/* Unconditionally invalidate GPU caches and TLBs. */
1976	if (i915_vm_is_4lvl(request->hw_context->vm))
1977		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1978	else
1979		ret = emit_pdps(request);
1980	if (ret)
1981		return ret;
1982
1983	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1984	return 0;
1985}
1986
1987/*
1988 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1989 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1990 * but there is a slight complication as this is applied in WA batch where the
1991 * values are only initialized once so we cannot take register value at the
1992 * beginning and reuse it further; hence we save its value to memory, upload a
1993 * constant value with bit21 set and then we restore it back with the saved value.
1994 * To simplify the WA, a constant value is formed by using the default value
1995 * of this register. This shouldn't be a problem because we are only modifying
1996 * it for a short period and this batch in non-premptible. We can ofcourse
1997 * use additional instructions that read the actual value of the register
1998 * at that time and set our bit of interest but it makes the WA complicated.
1999 *
2000 * This WA is also required for Gen9 so extracting as a function avoids
2001 * code duplication.
2002 */
2003static u32 *
2004gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
2005{
2006	/* NB no one else is allowed to scribble over scratch + 256! */
2007	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
2008	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2009	*batch++ = intel_gt_scratch_offset(engine->gt,
2010					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
2011	*batch++ = 0;
2012
2013	*batch++ = MI_LOAD_REGISTER_IMM(1);
2014	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2015	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
2016
2017	batch = gen8_emit_pipe_control(batch,
2018				       PIPE_CONTROL_CS_STALL |
2019				       PIPE_CONTROL_DC_FLUSH_ENABLE,
2020				       0);
2021
2022	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
2023	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2024	*batch++ = intel_gt_scratch_offset(engine->gt,
2025					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
2026	*batch++ = 0;
2027
2028	return batch;
2029}
2030
2031static u32 slm_offset(struct intel_engine_cs *engine)
2032{
2033	return intel_gt_scratch_offset(engine->gt,
2034				       INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
2035}
2036
2037/*
2038 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
2039 * initialized at the beginning and shared across all contexts but this field
2040 * helps us to have multiple batches at different offsets and select them based
2041 * on a criteria. At the moment this batch always start at the beginning of the page
2042 * and at this point we don't have multiple wa_ctx batch buffers.
2043 *
2044 * The number of WA applied are not known at the beginning; we use this field
2045 * to return the no of DWORDS written.
2046 *
2047 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
2048 * so it adds NOOPs as padding to make it cacheline aligned.
2049 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
2050 * makes a complete batch buffer.
2051 */
2052static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2053{
2054	/* WaDisableCtxRestoreArbitration:bdw,chv */
2055	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2056
2057	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
2058	if (IS_BROADWELL(engine->i915))
2059		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2060
2061	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
2062	/* Actual scratch location is at 128 bytes offset */
2063	batch = gen8_emit_pipe_control(batch,
2064				       PIPE_CONTROL_FLUSH_L3 |
2065				       PIPE_CONTROL_GLOBAL_GTT_IVB |
2066				       PIPE_CONTROL_CS_STALL |
2067				       PIPE_CONTROL_QW_WRITE,
2068				       slm_offset(engine));
2069
2070	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2071
2072	/* Pad to end of cacheline */
2073	while ((unsigned long)batch % CACHELINE_BYTES)
2074		*batch++ = MI_NOOP;
2075
2076	/*
2077	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
2078	 * execution depends on the length specified in terms of cache lines
2079	 * in the register CTX_RCS_INDIRECT_CTX
2080	 */
2081
2082	return batch;
2083}
2084
2085struct lri {
2086	i915_reg_t reg;
2087	u32 value;
2088};
2089
2090static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
2091{
2092	GEM_BUG_ON(!count || count > 63);
2093
2094	*batch++ = MI_LOAD_REGISTER_IMM(count);
2095	do {
2096		*batch++ = i915_mmio_reg_offset(lri->reg);
2097		*batch++ = lri->value;
2098	} while (lri++, --count);
2099	*batch++ = MI_NOOP;
2100
2101	return batch;
2102}
2103
2104static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2105{
2106	static const struct lri lri[] = {
2107		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
2108		{
2109			COMMON_SLICE_CHICKEN2,
2110			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
2111				       0),
2112		},
2113
2114		/* BSpec: 11391 */
2115		{
2116			FF_SLICE_CHICKEN,
2117			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
2118				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
2119		},
2120
2121		/* BSpec: 11299 */
2122		{
2123			_3D_CHICKEN3,
2124			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
2125				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
2126		}
2127	};
2128
2129	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2130
2131	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
2132	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2133
2134	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
2135
2136	/* WaMediaPoolStateCmdInWABB:bxt,glk */
2137	if (HAS_POOLED_EU(engine->i915)) {
2138		/*
2139		 * EU pool configuration is setup along with golden context
2140		 * during context initialization. This value depends on
2141		 * device type (2x6 or 3x6) and needs to be updated based
2142		 * on which subslice is disabled especially for 2x6
2143		 * devices, however it is safe to load default
2144		 * configuration of 3x6 device instead of masking off
2145		 * corresponding bits because HW ignores bits of a disabled
2146		 * subslice and drops down to appropriate config. Please
2147		 * see render_state_setup() in i915_gem_render_state.c for
2148		 * possible configurations, to avoid duplication they are
2149		 * not shown here again.
2150		 */
2151		*batch++ = GEN9_MEDIA_POOL_STATE;
2152		*batch++ = GEN9_MEDIA_POOL_ENABLE;
2153		*batch++ = 0x00777000;
2154		*batch++ = 0;
2155		*batch++ = 0;
2156		*batch++ = 0;
2157	}
2158
2159	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2160
2161	/* Pad to end of cacheline */
2162	while ((unsigned long)batch % CACHELINE_BYTES)
2163		*batch++ = MI_NOOP;
2164
2165	return batch;
2166}
2167
2168static u32 *
2169gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2170{
2171	int i;
2172
2173	/*
2174	 * WaPipeControlBefore3DStateSamplePattern: cnl
2175	 *
2176	 * Ensure the engine is idle prior to programming a
2177	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
2178	 */
2179	batch = gen8_emit_pipe_control(batch,
2180				       PIPE_CONTROL_CS_STALL,
2181				       0);
2182	/*
2183	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
2184	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
2185	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
2186	 * confusing. Since gen8_emit_pipe_control() already advances the
2187	 * batch by 6 dwords, we advance the other 10 here, completing a
2188	 * cacheline. It's not clear if the workaround requires this padding
2189	 * before other commands, or if it's just the regular padding we would
2190	 * already have for the workaround bb, so leave it here for now.
2191	 */
2192	for (i = 0; i < 10; i++)
2193		*batch++ = MI_NOOP;
2194
2195	/* Pad to end of cacheline */
2196	while ((unsigned long)batch % CACHELINE_BYTES)
2197		*batch++ = MI_NOOP;
2198
2199	return batch;
2200}
2201
2202#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
2203
2204static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2205{
2206	struct drm_i915_gem_object *obj;
2207	struct i915_vma *vma;
2208	int err;
2209
2210	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2211	if (IS_ERR(obj))
2212		return PTR_ERR(obj);
2213
2214	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2215	if (IS_ERR(vma)) {
2216		err = PTR_ERR(vma);
2217		goto err;
2218	}
2219
2220	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2221	if (err)
2222		goto err;
2223
2224	engine->wa_ctx.vma = vma;
2225	return 0;
2226
2227err:
2228	i915_gem_object_put(obj);
2229	return err;
2230}
2231
2232static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2233{
2234	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2235}
2236
2237typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
2238
2239static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2240{
2241	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2242	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
2243					    &wa_ctx->per_ctx };
2244	wa_bb_func_t wa_bb_fn[2];
2245	struct page *page;
2246	void *batch, *batch_ptr;
2247	unsigned int i;
2248	int ret;
2249
2250	if (engine->class != RENDER_CLASS)
2251		return 0;
2252
2253	switch (INTEL_GEN(engine->i915)) {
2254	case 12:
2255	case 11:
2256		return 0;
2257	case 10:
2258		wa_bb_fn[0] = gen10_init_indirectctx_bb;
2259		wa_bb_fn[1] = NULL;
2260		break;
2261	case 9:
2262		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2263		wa_bb_fn[1] = NULL;
2264		break;
2265	case 8:
2266		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2267		wa_bb_fn[1] = NULL;
2268		break;
2269	default:
2270		MISSING_CASE(INTEL_GEN(engine->i915));
2271		return 0;
2272	}
2273
2274	ret = lrc_setup_wa_ctx(engine);
2275	if (ret) {
2276		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
2277		return ret;
2278	}
2279
2280	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2281	batch = batch_ptr = kmap_atomic(page);
2282
2283	/*
2284	 * Emit the two workaround batch buffers, recording the offset from the
2285	 * start of the workaround batch buffer object for each and their
2286	 * respective sizes.
2287	 */
2288	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2289		wa_bb[i]->offset = batch_ptr - batch;
2290		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2291						  CACHELINE_BYTES))) {
2292			ret = -EINVAL;
2293			break;
2294		}
2295		if (wa_bb_fn[i])
2296			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2297		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2298	}
2299
2300	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2301
2302	kunmap_atomic(batch);
2303	if (ret)
2304		lrc_destroy_wa_ctx(engine);
2305
2306	return ret;
2307}
2308
2309static void enable_execlists(struct intel_engine_cs *engine)
2310{
2311	u32 mode;
2312
2313	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2314
2315	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2316
2317	if (INTEL_GEN(engine->i915) >= 11)
2318		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2319	else
2320		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2321	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2322
2323	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2324
2325	ENGINE_WRITE_FW(engine,
2326			RING_HWS_PGA,
2327			i915_ggtt_offset(engine->status_page.vma));
2328	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2329}
2330
2331static bool unexpected_starting_state(struct intel_engine_cs *engine)
2332{
2333	bool unexpected = false;
2334
2335	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2336		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2337		unexpected = true;
2338	}
2339
2340	return unexpected;
2341}
2342
2343static int execlists_resume(struct intel_engine_cs *engine)
2344{
2345	intel_engine_apply_workarounds(engine);
2346	intel_engine_apply_whitelist(engine);
2347
2348	intel_mocs_init_engine(engine);
2349
2350	intel_engine_reset_breadcrumbs(engine);
2351
2352	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2353		struct drm_printer p = drm_debug_printer(__func__);
2354
2355		intel_engine_dump(engine, &p, NULL);
2356	}
2357
2358	enable_execlists(engine);
2359
2360	return 0;
2361}
2362
2363static void execlists_reset_prepare(struct intel_engine_cs *engine)
2364{
2365	struct intel_engine_execlists * const execlists = &engine->execlists;
2366	unsigned long flags;
2367
2368	GEM_TRACE("%s: depth<-%d\n", engine->name,
2369		  atomic_read(&execlists->tasklet.count));
2370
2371	/*
2372	 * Prevent request submission to the hardware until we have
2373	 * completed the reset in i915_gem_reset_finish(). If a request
2374	 * is completed by one engine, it may then queue a request
2375	 * to a second via its execlists->tasklet *just* as we are
2376	 * calling engine->resume() and also writing the ELSP.
2377	 * Turning off the execlists->tasklet until the reset is over
2378	 * prevents the race.
2379	 */
2380	__tasklet_disable_sync_once(&execlists->tasklet);
2381	GEM_BUG_ON(!reset_in_progress(execlists));
2382
2383	/* And flush any current direct submission. */
2384	spin_lock_irqsave(&engine->active.lock, flags);
2385	spin_unlock_irqrestore(&engine->active.lock, flags);
2386
2387	/*
2388	 * We stop engines, otherwise we might get failed reset and a
2389	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2390	 * from system hang if batchbuffer is progressing when
2391	 * the reset is issued, regardless of READY_TO_RESET ack.
2392	 * Thus assume it is best to stop engines on all gens
2393	 * where we have a gpu reset.
2394	 *
2395	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2396	 *
2397	 * FIXME: Wa for more modern gens needs to be validated
2398	 */
2399	intel_engine_stop_cs(engine);
2400}
2401
2402static void reset_csb_pointers(struct intel_engine_cs *engine)
2403{
2404	struct intel_engine_execlists * const execlists = &engine->execlists;
2405	const unsigned int reset_value = execlists->csb_size - 1;
2406
2407	ring_set_paused(engine, 0);
2408
2409	/*
2410	 * After a reset, the HW starts writing into CSB entry [0]. We
2411	 * therefore have to set our HEAD pointer back one entry so that
2412	 * the *first* entry we check is entry 0. To complicate this further,
2413	 * as we don't wait for the first interrupt after reset, we have to
2414	 * fake the HW write to point back to the last entry so that our
2415	 * inline comparison of our cached head position against the last HW
2416	 * write works even before the first interrupt.
2417	 */
2418	execlists->csb_head = reset_value;
2419	WRITE_ONCE(*execlists->csb_write, reset_value);
2420	wmb(); /* Make sure this is visible to HW (paranoia?) */
2421
2422	invalidate_csb_entries(&execlists->csb_status[0],
2423			       &execlists->csb_status[reset_value]);
2424}
2425
2426static struct i915_request *active_request(struct i915_request *rq)
2427{
2428	const struct intel_context * const ce = rq->hw_context;
2429	struct i915_request *active = NULL;
2430	struct list_head *list;
2431
2432	if (!i915_request_is_active(rq)) /* unwound, but incomplete! */
2433		return rq;
2434
2435	list = &rq->timeline->requests;
2436	list_for_each_entry_from_reverse(rq, list, link) {
2437		if (i915_request_completed(rq))
2438			break;
2439
2440		if (rq->hw_context != ce)
2441			break;
2442
2443		active = rq;
2444	}
2445
2446	return active;
2447}
2448
2449static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2450{
2451	struct intel_engine_execlists * const execlists = &engine->execlists;
2452	struct intel_context *ce;
2453	struct i915_request *rq;
2454	u32 *regs;
2455
2456	process_csb(engine); /* drain preemption events */
2457
2458	/* Following the reset, we need to reload the CSB read/write pointers */
2459	reset_csb_pointers(engine);
2460
2461	/*
2462	 * Save the currently executing context, even if we completed
2463	 * its request, it was still running at the time of the
2464	 * reset and will have been clobbered.
2465	 */
2466	rq = execlists_active(execlists);
2467	if (!rq)
2468		goto unwind;
2469
2470	ce = rq->hw_context;
2471	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2472	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2473	rq = active_request(rq);
2474	if (!rq) {
2475		ce->ring->head = ce->ring->tail;
2476		goto out_replay;
2477	}
2478
2479	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2480
2481	/*
2482	 * If this request hasn't started yet, e.g. it is waiting on a
2483	 * semaphore, we need to avoid skipping the request or else we
2484	 * break the signaling chain. However, if the context is corrupt
2485	 * the request will not restart and we will be stuck with a wedged
2486	 * device. It is quite often the case that if we issue a reset
2487	 * while the GPU is loading the context image, that the context
2488	 * image becomes corrupt.
2489	 *
2490	 * Otherwise, if we have not started yet, the request should replay
2491	 * perfectly and we do not need to flag the result as being erroneous.
2492	 */
2493	if (!i915_request_started(rq))
2494		goto out_replay;
2495
2496	/*
2497	 * If the request was innocent, we leave the request in the ELSP
2498	 * and will try to replay it on restarting. The context image may
2499	 * have been corrupted by the reset, in which case we may have
2500	 * to service a new GPU hang, but more likely we can continue on
2501	 * without impact.
2502	 *
2503	 * If the request was guilty, we presume the context is corrupt
2504	 * and have to at least restore the RING register in the context
2505	 * image back to the expected values to skip over the guilty request.
2506	 */
2507	__i915_request_reset(rq, stalled);
2508	if (!stalled)
2509		goto out_replay;
2510
2511	/*
2512	 * We want a simple context + ring to execute the breadcrumb update.
2513	 * We cannot rely on the context being intact across the GPU hang,
2514	 * so clear it and rebuild just what we need for the breadcrumb.
2515	 * All pending requests for this context will be zapped, and any
2516	 * future request will be after userspace has had the opportunity
2517	 * to recreate its own state.
2518	 */
2519	regs = ce->lrc_reg_state;
2520	if (engine->pinned_default_state) {
2521		memcpy(regs, /* skip restoring the vanilla PPHWSP */
2522		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2523		       engine->context_size - PAGE_SIZE);
2524	}
2525	execlists_init_reg_state(regs, ce, engine, ce->ring);
2526
2527out_replay:
2528	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
2529		  engine->name, ce->ring->head, ce->ring->tail);
2530	intel_ring_update_space(ce->ring);
2531	__execlists_update_reg_state(ce, engine);
2532
2533unwind:
2534	/* Push back any incomplete requests for replay after the reset. */
2535	cancel_port_requests(execlists);
2536	__unwind_incomplete_requests(engine);
2537}
2538
2539static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2540{
2541	unsigned long flags;
2542
2543	GEM_TRACE("%s\n", engine->name);
2544
2545	spin_lock_irqsave(&engine->active.lock, flags);
2546
2547	__execlists_reset(engine, stalled);
2548
2549	spin_unlock_irqrestore(&engine->active.lock, flags);
2550}
2551
2552static void nop_submission_tasklet(unsigned long data)
2553{
2554	/* The driver is wedged; don't process any more events. */
2555}
2556
2557static void execlists_cancel_requests(struct intel_engine_cs *engine)
2558{
2559	struct intel_engine_execlists * const execlists = &engine->execlists;
2560	struct i915_request *rq, *rn;
2561	struct rb_node *rb;
2562	unsigned long flags;
2563
2564	GEM_TRACE("%s\n", engine->name);
2565
2566	/*
2567	 * Before we call engine->cancel_requests(), we should have exclusive
2568	 * access to the submission state. This is arranged for us by the
2569	 * caller disabling the interrupt generation, the tasklet and other
2570	 * threads that may then access the same state, giving us a free hand
2571	 * to reset state. However, we still need to let lockdep be aware that
2572	 * we know this state may be accessed in hardirq context, so we
2573	 * disable the irq around this manipulation and we want to keep
2574	 * the spinlock focused on its duties and not accidentally conflate
2575	 * coverage to the submission's irq state. (Similarly, although we
2576	 * shouldn't need to disable irq around the manipulation of the
2577	 * submission's irq state, we also wish to remind ourselves that
2578	 * it is irq state.)
2579	 */
2580	spin_lock_irqsave(&engine->active.lock, flags);
2581
2582	__execlists_reset(engine, true);
2583
2584	/* Mark all executing requests as skipped. */
2585	list_for_each_entry(rq, &engine->active.requests, sched.link)
2586		mark_eio(rq);
2587
2588	/* Flush the queued requests to the timeline list (for retiring). */
2589	while ((rb = rb_first_cached(&execlists->queue))) {
2590		struct i915_priolist *p = to_priolist(rb);
2591		int i;
2592
2593		priolist_for_each_request_consume(rq, rn, p, i) {
2594			mark_eio(rq);
2595			__i915_request_submit(rq);
2596		}
2597
2598		rb_erase_cached(&p->node, &execlists->queue);
2599		i915_priolist_free(p);
2600	}
2601
2602	/* Cancel all attached virtual engines */
2603	while ((rb = rb_first_cached(&execlists->virtual))) {
2604		struct virtual_engine *ve =
2605			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2606
2607		rb_erase_cached(rb, &execlists->virtual);
2608		RB_CLEAR_NODE(rb);
2609
2610		spin_lock(&ve->base.active.lock);
2611		rq = fetch_and_zero(&ve->request);
2612		if (rq) {
2613			mark_eio(rq);
2614
2615			rq->engine = engine;
2616			__i915_request_submit(rq);
2617			i915_request_put(rq);
2618
2619			ve->base.execlists.queue_priority_hint = INT_MIN;
2620		}
2621		spin_unlock(&ve->base.active.lock);
2622	}
2623
2624	/* Remaining _unready_ requests will be nop'ed when submitted */
2625
2626	execlists->queue_priority_hint = INT_MIN;
2627	execlists->queue = RB_ROOT_CACHED;
2628
2629	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2630	execlists->tasklet.func = nop_submission_tasklet;
2631
2632	spin_unlock_irqrestore(&engine->active.lock, flags);
2633}
2634
2635static void execlists_reset_finish(struct intel_engine_cs *engine)
2636{
2637	struct intel_engine_execlists * const execlists = &engine->execlists;
2638
2639	/*
2640	 * After a GPU reset, we may have requests to replay. Do so now while
2641	 * we still have the forcewake to be sure that the GPU is not allowed
2642	 * to sleep before we restart and reload a context.
2643	 */
2644	GEM_BUG_ON(!reset_in_progress(execlists));
2645	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2646		execlists->tasklet.func(execlists->tasklet.data);
2647
2648	if (__tasklet_enable(&execlists->tasklet))
2649		/* And kick in case we missed a new request submission. */
2650		tasklet_hi_schedule(&execlists->tasklet);
2651	GEM_TRACE("%s: depth->%d\n", engine->name,
2652		  atomic_read(&execlists->tasklet.count));
2653}
2654
2655static int gen8_emit_bb_start(struct i915_request *rq,
2656			      u64 offset, u32 len,
2657			      const unsigned int flags)
2658{
2659	u32 *cs;
2660
2661	cs = intel_ring_begin(rq, 4);
2662	if (IS_ERR(cs))
2663		return PTR_ERR(cs);
2664
2665	/*
2666	 * WaDisableCtxRestoreArbitration:bdw,chv
2667	 *
2668	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2669	 * particular all the gen that do not need the w/a at all!), if we
2670	 * took care to make sure that on every switch into this context
2671	 * (both ordinary and for preemption) that arbitrartion was enabled
2672	 * we would be fine.  However, for gen8 there is another w/a that
2673	 * requires us to not preempt inside GPGPU execution, so we keep
2674	 * arbitration disabled for gen8 batches. Arbitration will be
2675	 * re-enabled before we close the request
2676	 * (engine->emit_fini_breadcrumb).
2677	 */
2678	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2679
2680	/* FIXME(BDW+): Address space and security selectors. */
2681	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2682		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2683	*cs++ = lower_32_bits(offset);
2684	*cs++ = upper_32_bits(offset);
2685
2686	intel_ring_advance(rq, cs);
2687
2688	return 0;
2689}
2690
2691static int gen9_emit_bb_start(struct i915_request *rq,
2692			      u64 offset, u32 len,
2693			      const unsigned int flags)
2694{
2695	u32 *cs;
2696
2697	cs = intel_ring_begin(rq, 6);
2698	if (IS_ERR(cs))
2699		return PTR_ERR(cs);
2700
2701	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2702
2703	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2704		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2705	*cs++ = lower_32_bits(offset);
2706	*cs++ = upper_32_bits(offset);
2707
2708	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2709	*cs++ = MI_NOOP;
2710
2711	intel_ring_advance(rq, cs);
2712
2713	return 0;
2714}
2715
2716static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2717{
2718	ENGINE_WRITE(engine, RING_IMR,
2719		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
2720	ENGINE_POSTING_READ(engine, RING_IMR);
2721}
2722
2723static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2724{
2725	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2726}
2727
2728static int gen8_emit_flush(struct i915_request *request, u32 mode)
2729{
2730	u32 cmd, *cs;
2731
2732	cs = intel_ring_begin(request, 4);
2733	if (IS_ERR(cs))
2734		return PTR_ERR(cs);
2735
2736	cmd = MI_FLUSH_DW + 1;
2737
2738	/* We always require a command barrier so that subsequent
2739	 * commands, such as breadcrumb interrupts, are strictly ordered
2740	 * wrt the contents of the write cache being flushed to memory
2741	 * (and thus being coherent from the CPU).
2742	 */
2743	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2744
2745	if (mode & EMIT_INVALIDATE) {
2746		cmd |= MI_INVALIDATE_TLB;
2747		if (request->engine->class == VIDEO_DECODE_CLASS)
2748			cmd |= MI_INVALIDATE_BSD;
2749	}
2750
2751	*cs++ = cmd;
2752	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2753	*cs++ = 0; /* upper addr */
2754	*cs++ = 0; /* value */
2755	intel_ring_advance(request, cs);
2756
2757	return 0;
2758}
2759
2760static int gen8_emit_flush_render(struct i915_request *request,
2761				  u32 mode)
2762{
2763	struct intel_engine_cs *engine = request->engine;
2764	u32 scratch_addr =
2765		intel_gt_scratch_offset(engine->gt,
2766					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2767	bool vf_flush_wa = false, dc_flush_wa = false;
2768	u32 *cs, flags = 0;
2769	int len;
2770
2771	flags |= PIPE_CONTROL_CS_STALL;
2772
2773	if (mode & EMIT_FLUSH) {
2774		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2775		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2776		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2777		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2778	}
2779
2780	if (mode & EMIT_INVALIDATE) {
2781		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2782		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2783		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2784		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2785		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2786		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2787		flags |= PIPE_CONTROL_QW_WRITE;
2788		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2789
2790		/*
2791		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2792		 * pipe control.
2793		 */
2794		if (IS_GEN(request->i915, 9))
2795			vf_flush_wa = true;
2796
2797		/* WaForGAMHang:kbl */
2798		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2799			dc_flush_wa = true;
2800	}
2801
2802	len = 6;
2803
2804	if (vf_flush_wa)
2805		len += 6;
2806
2807	if (dc_flush_wa)
2808		len += 12;
2809
2810	cs = intel_ring_begin(request, len);
2811	if (IS_ERR(cs))
2812		return PTR_ERR(cs);
2813
2814	if (vf_flush_wa)
2815		cs = gen8_emit_pipe_control(cs, 0, 0);
2816
2817	if (dc_flush_wa)
2818		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2819					    0);
2820
2821	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2822
2823	if (dc_flush_wa)
2824		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2825
2826	intel_ring_advance(request, cs);
2827
2828	return 0;
2829}
2830
2831static int gen11_emit_flush_render(struct i915_request *request,
2832				   u32 mode)
2833{
2834	struct intel_engine_cs *engine = request->engine;
2835	const u32 scratch_addr =
2836		intel_gt_scratch_offset(engine->gt,
2837					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2838
2839	if (mode & EMIT_FLUSH) {
2840		u32 *cs;
2841		u32 flags = 0;
2842
2843		flags |= PIPE_CONTROL_CS_STALL;
2844
2845		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
2846		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2847		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2848		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2849		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2850		flags |= PIPE_CONTROL_QW_WRITE;
2851		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2852
2853		cs = intel_ring_begin(request, 6);
2854		if (IS_ERR(cs))
2855			return PTR_ERR(cs);
2856
2857		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2858		intel_ring_advance(request, cs);
2859	}
2860
2861	if (mode & EMIT_INVALIDATE) {
2862		u32 *cs;
2863		u32 flags = 0;
2864
2865		flags |= PIPE_CONTROL_CS_STALL;
2866
2867		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
2868		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2869		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2870		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2871		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2872		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2873		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2874		flags |= PIPE_CONTROL_QW_WRITE;
2875		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2876
2877		cs = intel_ring_begin(request, 6);
2878		if (IS_ERR(cs))
2879			return PTR_ERR(cs);
2880
2881		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2882		intel_ring_advance(request, cs);
2883	}
2884
2885	return 0;
2886}
2887
2888/*
2889 * Reserve space for 2 NOOPs at the end of each request to be
2890 * used as a workaround for not being allowed to do lite
2891 * restore with HEAD==TAIL (WaIdleLiteRestore).
2892 */
2893static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2894{
2895	/* Ensure there's always at least one preemption point per-request. */
2896	*cs++ = MI_ARB_CHECK;
2897	*cs++ = MI_NOOP;
2898	request->wa_tail = intel_ring_offset(request, cs);
2899
2900	return cs;
2901}
2902
2903static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
2904{
2905	*cs++ = MI_SEMAPHORE_WAIT |
2906		MI_SEMAPHORE_GLOBAL_GTT |
2907		MI_SEMAPHORE_POLL |
2908		MI_SEMAPHORE_SAD_EQ_SDD;
2909	*cs++ = 0;
2910	*cs++ = intel_hws_preempt_address(request->engine);
2911	*cs++ = 0;
2912
2913	return cs;
2914}
2915
2916static __always_inline u32*
2917gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
2918				 u32 *cs)
2919{
2920	*cs++ = MI_USER_INTERRUPT;
2921
2922	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2923	if (intel_engine_has_semaphores(request->engine))
2924		cs = emit_preempt_busywait(request, cs);
2925
2926	request->tail = intel_ring_offset(request, cs);
2927	assert_ring_tail_valid(request->ring, request->tail);
2928
2929	return gen8_emit_wa_tail(request, cs);
2930}
2931
2932static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2933{
2934	cs = gen8_emit_ggtt_write(cs,
2935				  request->fence.seqno,
2936				  request->timeline->hwsp_offset,
2937				  0);
2938
2939	return gen8_emit_fini_breadcrumb_footer(request, cs);
2940}
2941
2942static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2943{
2944	cs = gen8_emit_ggtt_write_rcs(cs,
2945				      request->fence.seqno,
2946				      request->timeline->hwsp_offset,
2947				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2948				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2949				      PIPE_CONTROL_DC_FLUSH_ENABLE);
2950
2951	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2952	cs = gen8_emit_pipe_control(cs,
2953				    PIPE_CONTROL_FLUSH_ENABLE |
2954				    PIPE_CONTROL_CS_STALL,
2955				    0);
2956
2957	return gen8_emit_fini_breadcrumb_footer(request, cs);
2958}
2959
2960static u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *request,
2961					   u32 *cs)
2962{
2963	cs = gen8_emit_ggtt_write_rcs(cs,
2964				      request->fence.seqno,
2965				      request->timeline->hwsp_offset,
2966				      PIPE_CONTROL_CS_STALL |
2967				      PIPE_CONTROL_TILE_CACHE_FLUSH |
2968				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2969				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2970				      PIPE_CONTROL_DC_FLUSH_ENABLE |
2971				      PIPE_CONTROL_FLUSH_ENABLE);
2972
2973	return gen8_emit_fini_breadcrumb_footer(request, cs);
2974}
2975
2976static void execlists_park(struct intel_engine_cs *engine)
2977{
2978	del_timer(&engine->execlists.timer);
2979}
2980
2981void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2982{
2983	engine->submit_request = execlists_submit_request;
2984	engine->cancel_requests = execlists_cancel_requests;
2985	engine->schedule = i915_schedule;
2986	engine->execlists.tasklet.func = execlists_submission_tasklet;
2987
2988	engine->reset.prepare = execlists_reset_prepare;
2989	engine->reset.reset = execlists_reset;
2990	engine->reset.finish = execlists_reset_finish;
2991
2992	engine->park = execlists_park;
2993	engine->unpark = NULL;
2994
2995	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2996	if (!intel_vgpu_active(engine->i915)) {
2997		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2998		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2999			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3000	}
3001}
3002
3003static void execlists_destroy(struct intel_engine_cs *engine)
3004{
3005	intel_engine_cleanup_common(engine);
3006	lrc_destroy_wa_ctx(engine);
3007	kfree(engine);
3008}
3009
3010static void
3011logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3012{
3013	/* Default vfuncs which can be overriden by each engine. */
3014
3015	engine->destroy = execlists_destroy;
3016	engine->resume = execlists_resume;
3017
3018	engine->reset.prepare = execlists_reset_prepare;
3019	engine->reset.reset = execlists_reset;
3020	engine->reset.finish = execlists_reset_finish;
3021
3022	engine->cops = &execlists_context_ops;
3023	engine->request_alloc = execlists_request_alloc;
3024
3025	engine->emit_flush = gen8_emit_flush;
3026	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3027	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
3028
3029	engine->set_default_submission = intel_execlists_set_default_submission;
3030
3031	if (INTEL_GEN(engine->i915) < 11) {
3032		engine->irq_enable = gen8_logical_ring_enable_irq;
3033		engine->irq_disable = gen8_logical_ring_disable_irq;
3034	} else {
3035		/*
3036		 * TODO: On Gen11 interrupt masks need to be clear
3037		 * to allow C6 entry. Keep interrupts enabled at
3038		 * and take the hit of generating extra interrupts
3039		 * until a more refined solution exists.
3040		 */
3041	}
3042	if (IS_GEN(engine->i915, 8))
3043		engine->emit_bb_start = gen8_emit_bb_start;
3044	else
3045		engine->emit_bb_start = gen9_emit_bb_start;
3046}
3047
3048static inline void
3049logical_ring_default_irqs(struct intel_engine_cs *engine)
3050{
3051	unsigned int shift = 0;
3052
3053	if (INTEL_GEN(engine->i915) < 11) {
3054		const u8 irq_shifts[] = {
3055			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3056			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3057			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3058			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3059			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3060		};
3061
3062		shift = irq_shifts[engine->id];
3063	}
3064
3065	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3066	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3067}
3068
3069static void rcs_submission_override(struct intel_engine_cs *engine)
3070{
3071	switch (INTEL_GEN(engine->i915)) {
3072	case 12:
3073	case 11:
3074		engine->emit_flush = gen11_emit_flush_render;
3075		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3076		break;
3077	default:
3078		engine->emit_flush = gen8_emit_flush_render;
3079		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3080		break;
3081	}
3082}
3083
3084int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3085{
3086	tasklet_init(&engine->execlists.tasklet,
3087		     execlists_submission_tasklet, (unsigned long)engine);
3088	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
3089
3090	logical_ring_default_vfuncs(engine);
3091	logical_ring_default_irqs(engine);
3092
3093	if (engine->class == RENDER_CLASS)
3094		rcs_submission_override(engine);
3095
3096	return 0;
3097}
3098
3099int intel_execlists_submission_init(struct intel_engine_cs *engine)
3100{
3101	struct intel_engine_execlists * const execlists = &engine->execlists;
3102	struct drm_i915_private *i915 = engine->i915;
3103	struct intel_uncore *uncore = engine->uncore;
3104	u32 base = engine->mmio_base;
3105	int ret;
3106
3107	ret = intel_engine_init_common(engine);
3108	if (ret)
3109		return ret;
3110
3111	if (intel_init_workaround_bb(engine))
3112		/*
3113		 * We continue even if we fail to initialize WA batch
3114		 * because we only expect rare glitches but nothing
3115		 * critical to prevent us from using GPU
3116		 */
3117		DRM_ERROR("WA batch buffer initialization failed\n");
3118
3119	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3120		execlists->submit_reg = uncore->regs +
3121			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3122		execlists->ctrl_reg = uncore->regs +
3123			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3124	} else {
3125		execlists->submit_reg = uncore->regs +
3126			i915_mmio_reg_offset(RING_ELSP(base));
3127	}
3128
3129	execlists->csb_status =
3130		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3131
3132	execlists->csb_write =
3133		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3134
3135	if (INTEL_GEN(i915) < 11)
3136		execlists->csb_size = GEN8_CSB_ENTRIES;
3137	else
3138		execlists->csb_size = GEN11_CSB_ENTRIES;
3139
3140	reset_csb_pointers(engine);
3141
3142	return 0;
3143}
3144
3145static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
3146{
3147	u32 indirect_ctx_offset;
3148
3149	switch (INTEL_GEN(engine->i915)) {
3150	default:
3151		MISSING_CASE(INTEL_GEN(engine->i915));
3152		/* fall through */
3153	case 12:
3154		indirect_ctx_offset =
3155			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3156		break;
3157	case 11:
3158		indirect_ctx_offset =
3159			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3160		break;
3161	case 10:
3162		indirect_ctx_offset =
3163			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3164		break;
3165	case 9:
3166		indirect_ctx_offset =
3167			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3168		break;
3169	case 8:
3170		indirect_ctx_offset =
3171			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3172		break;
3173	}
3174
3175	return indirect_ctx_offset;
3176}
3177
3178static void execlists_init_reg_state(u32 *regs,
3179				     struct intel_context *ce,
3180				     struct intel_engine_cs *engine,
3181				     struct intel_ring *ring)
3182{
3183	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
3184	bool rcs = engine->class == RENDER_CLASS;
3185	u32 base = engine->mmio_base;
3186
3187	/*
3188	 * A context is actually a big batch buffer with several
3189	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
3190	 * values we are setting here are only for the first context restore:
3191	 * on a subsequent save, the GPU will recreate this batchbuffer with new
3192	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
3193	 * we are not initializing here).
3194	 *
3195	 * Must keep consistent with virtual_update_register_offsets().
3196	 */
3197	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
3198				 MI_LRI_FORCE_POSTED;
3199
3200	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
3201		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
3202		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
3203	if (INTEL_GEN(engine->i915) < 11) {
3204		regs[CTX_CONTEXT_CONTROL + 1] |=
3205			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
3206					    CTX_CTRL_RS_CTX_ENABLE);
3207	}
3208	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
3209	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
3210	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
3211	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
3212		RING_CTL_SIZE(ring->size) | RING_VALID);
3213	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
3214	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
3215	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
3216	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
3217	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
3218	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
3219	if (rcs) {
3220		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3221
3222		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
3223		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
3224			RING_INDIRECT_CTX_OFFSET(base), 0);
3225		if (wa_ctx->indirect_ctx.size) {
3226			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3227
3228			regs[CTX_RCS_INDIRECT_CTX + 1] =
3229				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
3230				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
3231
3232			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
3233				intel_lr_indirect_ctx_offset(engine) << 6;
3234		}
3235
3236		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
3237		if (wa_ctx->per_ctx.size) {
3238			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3239
3240			regs[CTX_BB_PER_CTX_PTR + 1] =
3241				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
3242		}
3243	}
3244
3245	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
3246
3247	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
3248	/* PDP values well be assigned later if needed */
3249	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
3250	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
3251	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
3252	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
3253	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
3254	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
3255	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
3256	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
3257
3258	if (i915_vm_is_4lvl(&ppgtt->vm)) {
3259		/* 64b PPGTT (48bit canonical)
3260		 * PDP0_DESCRIPTOR contains the base address to PML4 and
3261		 * other PDP Descriptors are ignored.
3262		 */
3263		ASSIGN_CTX_PML4(ppgtt, regs);
3264	} else {
3265		ASSIGN_CTX_PDP(ppgtt, regs, 3);
3266		ASSIGN_CTX_PDP(ppgtt, regs, 2);
3267		ASSIGN_CTX_PDP(ppgtt, regs, 1);
3268		ASSIGN_CTX_PDP(ppgtt, regs, 0);
3269	}
3270
3271	if (rcs) {
3272		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
3273		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3274	}
3275
3276	regs[CTX_END] = MI_BATCH_BUFFER_END;
3277	if (INTEL_GEN(engine->i915) >= 10)
3278		regs[CTX_END] |= BIT(0);
3279}
3280
3281static int
3282populate_lr_context(struct intel_context *ce,
3283		    struct drm_i915_gem_object *ctx_obj,
3284		    struct intel_engine_cs *engine,
3285		    struct intel_ring *ring)
3286{
3287	void *vaddr;
3288	u32 *regs;
3289	int ret;
3290
3291	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
3292	if (IS_ERR(vaddr)) {
3293		ret = PTR_ERR(vaddr);
3294		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
3295		return ret;
3296	}
3297
3298	set_redzone(vaddr, engine);
3299
3300	if (engine->default_state) {
3301		/*
3302		 * We only want to copy over the template context state;
3303		 * skipping over the headers reserved for GuC communication,
3304		 * leaving those as zero.
3305		 */
3306		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
3307		void *defaults;
3308
3309		defaults = i915_gem_object_pin_map(engine->default_state,
3310						   I915_MAP_WB);
3311		if (IS_ERR(defaults)) {
3312			ret = PTR_ERR(defaults);
3313			goto err_unpin_ctx;
3314		}
3315
3316		memcpy(vaddr + start, defaults + start, engine->context_size);
3317		i915_gem_object_unpin_map(engine->default_state);
3318	}
3319
3320	/* The second page of the context object contains some fields which must
3321	 * be set up prior to the first execution. */
3322	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3323	execlists_init_reg_state(regs, ce, engine, ring);
3324	if (!engine->default_state)
3325		regs[CTX_CONTEXT_CONTROL + 1] |=
3326			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3327
3328	ret = 0;
3329err_unpin_ctx:
3330	__i915_gem_object_flush_map(ctx_obj,
3331				    LRC_HEADER_PAGES * PAGE_SIZE,
3332				    engine->context_size);
3333	i915_gem_object_unpin_map(ctx_obj);
3334	return ret;
3335}
3336
3337static int __execlists_context_alloc(struct intel_context *ce,
3338				     struct intel_engine_cs *engine)
3339{
3340	struct drm_i915_gem_object *ctx_obj;
3341	struct intel_ring *ring;
3342	struct i915_vma *vma;
3343	u32 context_size;
3344	int ret;
3345
3346	GEM_BUG_ON(ce->state);
3347	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3348
3349	/*
3350	 * Before the actual start of the context image, we insert a few pages
3351	 * for our own use and for sharing with the GuC.
3352	 */
3353	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3354	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3355		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
3356
3357	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3358	if (IS_ERR(ctx_obj))
3359		return PTR_ERR(ctx_obj);
3360
3361	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3362	if (IS_ERR(vma)) {
3363		ret = PTR_ERR(vma);
3364		goto error_deref_obj;
3365	}
3366
3367	if (!ce->timeline) {
3368		struct intel_timeline *tl;
3369
3370		tl = intel_timeline_create(engine->gt, NULL);
3371		if (IS_ERR(tl)) {
3372			ret = PTR_ERR(tl);
3373			goto error_deref_obj;
3374		}
3375
3376		ce->timeline = tl;
3377	}
3378
3379	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
3380	if (IS_ERR(ring)) {
3381		ret = PTR_ERR(ring);
3382		goto error_deref_obj;
3383	}
3384
3385	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3386	if (ret) {
3387		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3388		goto error_ring_free;
3389	}
3390
3391	ce->ring = ring;
3392	ce->state = vma;
3393
3394	return 0;
3395
3396error_ring_free:
3397	intel_ring_put(ring);
3398error_deref_obj:
3399	i915_gem_object_put(ctx_obj);
3400	return ret;
3401}
3402
3403static struct list_head *virtual_queue(struct virtual_engine *ve)
3404{
3405	return &ve->base.execlists.default_priolist.requests[0];
3406}
3407
3408static void virtual_context_destroy(struct kref *kref)
3409{
3410	struct virtual_engine *ve =
3411		container_of(kref, typeof(*ve), context.ref);
3412	unsigned int n;
3413
3414	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3415	GEM_BUG_ON(ve->request);
3416	GEM_BUG_ON(ve->context.inflight);
3417
3418	for (n = 0; n < ve->num_siblings; n++) {
3419		struct intel_engine_cs *sibling = ve->siblings[n];
3420		struct rb_node *node = &ve->nodes[sibling->id].rb;
3421
3422		if (RB_EMPTY_NODE(node))
3423			continue;
3424
3425		spin_lock_irq(&sibling->active.lock);
3426
3427		/* Detachment is lazily performed in the execlists tasklet */
3428		if (!RB_EMPTY_NODE(node))
3429			rb_erase_cached(node, &sibling->execlists.virtual);
3430
3431		spin_unlock_irq(&sibling->active.lock);
3432	}
3433	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3434
3435	if (ve->context.state)
3436		__execlists_context_fini(&ve->context);
3437	intel_context_fini(&ve->context);
3438
3439	kfree(ve->bonds);
3440	kfree(ve);
3441}
3442
3443static void virtual_engine_initial_hint(struct virtual_engine *ve)
3444{
3445	int swp;
3446
3447	/*
3448	 * Pick a random sibling on starting to help spread the load around.
3449	 *
3450	 * New contexts are typically created with exactly the same order
3451	 * of siblings, and often started in batches. Due to the way we iterate
3452	 * the array of sibling when submitting requests, sibling[0] is
3453	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3454	 * randomised across the system, we also help spread the load by the
3455	 * first engine we inspect being different each time.
3456	 *
3457	 * NB This does not force us to execute on this engine, it will just
3458	 * typically be the first we inspect for submission.
3459	 */
3460	swp = prandom_u32_max(ve->num_siblings);
3461	if (!swp)
3462		return;
3463
3464	swap(ve->siblings[swp], ve->siblings[0]);
3465	virtual_update_register_offsets(ve->context.lrc_reg_state,
3466					ve->siblings[0]);
3467}
3468
3469static int virtual_context_pin(struct intel_context *ce)
3470{
3471	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3472	int err;
3473
3474	/* Note: we must use a real engine class for setting up reg state */
3475	err = __execlists_context_pin(ce, ve->siblings[0]);
3476	if (err)
3477		return err;
3478
3479	virtual_engine_initial_hint(ve);
3480	return 0;
3481}
3482
3483static void virtual_context_enter(struct intel_context *ce)
3484{
3485	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3486	unsigned int n;
3487
3488	for (n = 0; n < ve->num_siblings; n++)
3489		intel_engine_pm_get(ve->siblings[n]);
3490
3491	intel_timeline_enter(ce->timeline);
3492}
3493
3494static void virtual_context_exit(struct intel_context *ce)
3495{
3496	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3497	unsigned int n;
3498
3499	intel_timeline_exit(ce->timeline);
3500
3501	for (n = 0; n < ve->num_siblings; n++)
3502		intel_engine_pm_put(ve->siblings[n]);
3503}
3504
3505static const struct intel_context_ops virtual_context_ops = {
3506	.pin = virtual_context_pin,
3507	.unpin = execlists_context_unpin,
3508
3509	.enter = virtual_context_enter,
3510	.exit = virtual_context_exit,
3511
3512	.destroy = virtual_context_destroy,
3513};
3514
3515static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3516{
3517	struct i915_request *rq;
3518	intel_engine_mask_t mask;
3519
3520	rq = READ_ONCE(ve->request);
3521	if (!rq)
3522		return 0;
3523
3524	/* The rq is ready for submission; rq->execution_mask is now stable. */
3525	mask = rq->execution_mask;
3526	if (unlikely(!mask)) {
3527		/* Invalid selection, submit to a random engine in error */
3528		i915_request_skip(rq, -ENODEV);
3529		mask = ve->siblings[0]->mask;
3530	}
3531
3532	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3533		  ve->base.name,
3534		  rq->fence.context, rq->fence.seqno,
3535		  mask, ve->base.execlists.queue_priority_hint);
3536
3537	return mask;
3538}
3539
3540static void virtual_submission_tasklet(unsigned long data)
3541{
3542	struct virtual_engine * const ve = (struct virtual_engine *)data;
3543	const int prio = ve->base.execlists.queue_priority_hint;
3544	intel_engine_mask_t mask;
3545	unsigned int n;
3546
3547	rcu_read_lock();
3548	mask = virtual_submission_mask(ve);
3549	rcu_read_unlock();
3550	if (unlikely(!mask))
3551		return;
3552
3553	local_irq_disable();
3554	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3555		struct intel_engine_cs *sibling = ve->siblings[n];
3556		struct ve_node * const node = &ve->nodes[sibling->id];
3557		struct rb_node **parent, *rb;
3558		bool first;
3559
3560		if (unlikely(!(mask & sibling->mask))) {
3561			if (!RB_EMPTY_NODE(&node->rb)) {
3562				spin_lock(&sibling->active.lock);
3563				rb_erase_cached(&node->rb,
3564						&sibling->execlists.virtual);
3565				RB_CLEAR_NODE(&node->rb);
3566				spin_unlock(&sibling->active.lock);
3567			}
3568			continue;
3569		}
3570
3571		spin_lock(&sibling->active.lock);
3572
3573		if (!RB_EMPTY_NODE(&node->rb)) {
3574			/*
3575			 * Cheat and avoid rebalancing the tree if we can
3576			 * reuse this node in situ.
3577			 */
3578			first = rb_first_cached(&sibling->execlists.virtual) ==
3579				&node->rb;
3580			if (prio == node->prio || (prio > node->prio && first))
3581				goto submit_engine;
3582
3583			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3584		}
3585
3586		rb = NULL;
3587		first = true;
3588		parent = &sibling->execlists.virtual.rb_root.rb_node;
3589		while (*parent) {
3590			struct ve_node *other;
3591
3592			rb = *parent;
3593			other = rb_entry(rb, typeof(*other), rb);
3594			if (prio > other->prio) {
3595				parent = &rb->rb_left;
3596			} else {
3597				parent = &rb->rb_right;
3598				first = false;
3599			}
3600		}
3601
3602		rb_link_node(&node->rb, rb, parent);
3603		rb_insert_color_cached(&node->rb,
3604				       &sibling->execlists.virtual,
3605				       first);
3606
3607submit_engine:
3608		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3609		node->prio = prio;
3610		if (first && prio > sibling->execlists.queue_priority_hint) {
3611			sibling->execlists.queue_priority_hint = prio;
3612			tasklet_hi_schedule(&sibling->execlists.tasklet);
3613		}
3614
3615		spin_unlock(&sibling->active.lock);
3616	}
3617	local_irq_enable();
3618}
3619
3620static void virtual_submit_request(struct i915_request *rq)
3621{
3622	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3623	struct i915_request *old;
3624	unsigned long flags;
3625
3626	GEM_TRACE("%s: rq=%llx:%lld\n",
3627		  ve->base.name,
3628		  rq->fence.context,
3629		  rq->fence.seqno);
3630
3631	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3632
3633	spin_lock_irqsave(&ve->base.active.lock, flags);
3634
3635	old = ve->request;
3636	if (old) { /* background completion event from preempt-to-busy */
3637		GEM_BUG_ON(!i915_request_completed(old));
3638		__i915_request_submit(old);
3639		i915_request_put(old);
3640	}
3641
3642	if (i915_request_completed(rq)) {
3643		__i915_request_submit(rq);
3644
3645		ve->base.execlists.queue_priority_hint = INT_MIN;
3646		ve->request = NULL;
3647	} else {
3648		ve->base.execlists.queue_priority_hint = rq_prio(rq);
3649		ve->request = i915_request_get(rq);
3650
3651		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3652		list_move_tail(&rq->sched.link, virtual_queue(ve));
3653
3654		tasklet_schedule(&ve->base.execlists.tasklet);
3655	}
3656
3657	spin_unlock_irqrestore(&ve->base.active.lock, flags);
3658}
3659
3660static struct ve_bond *
3661virtual_find_bond(struct virtual_engine *ve,
3662		  const struct intel_engine_cs *master)
3663{
3664	int i;
3665
3666	for (i = 0; i < ve->num_bonds; i++) {
3667		if (ve->bonds[i].master == master)
3668			return &ve->bonds[i];
3669	}
3670
3671	return NULL;
3672}
3673
3674static void
3675virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3676{
3677	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3678	intel_engine_mask_t allowed, exec;
3679	struct ve_bond *bond;
3680
3681	allowed = ~to_request(signal)->engine->mask;
3682
3683	bond = virtual_find_bond(ve, to_request(signal)->engine);
3684	if (bond)
3685		allowed &= bond->sibling_mask;
3686
3687	/* Restrict the bonded request to run on only the available engines */
3688	exec = READ_ONCE(rq->execution_mask);
3689	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3690		;
3691
3692	/* Prevent the master from being re-run on the bonded engines */
3693	to_request(signal)->execution_mask &= ~allowed;
3694}
3695
3696struct intel_context *
3697intel_execlists_create_virtual(struct i915_gem_context *ctx,
3698			       struct intel_engine_cs **siblings,
3699			       unsigned int count)
3700{
3701	struct virtual_engine *ve;
3702	unsigned int n;
3703	int err;
3704
3705	if (count == 0)
3706		return ERR_PTR(-EINVAL);
3707
3708	if (count == 1)
3709		return intel_context_create(ctx, siblings[0]);
3710
3711	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3712	if (!ve)
3713		return ERR_PTR(-ENOMEM);
3714
3715	ve->base.i915 = ctx->i915;
3716	ve->base.gt = siblings[0]->gt;
3717	ve->base.id = -1;
3718	ve->base.class = OTHER_CLASS;
3719	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3720	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3721
3722	/*
3723	 * The decision on whether to submit a request using semaphores
3724	 * depends on the saturated state of the engine. We only compute
3725	 * this during HW submission of the request, and we need for this
3726	 * state to be globally applied to all requests being submitted
3727	 * to this engine. Virtual engines encompass more than one physical
3728	 * engine and so we cannot accurately tell in advance if one of those
3729	 * engines is already saturated and so cannot afford to use a semaphore
3730	 * and be pessimized in priority for doing so -- if we are the only
3731	 * context using semaphores after all other clients have stopped, we
3732	 * will be starved on the saturated system. Such a global switch for
3733	 * semaphores is less than ideal, but alas is the current compromise.
3734	 */
3735	ve->base.saturated = ALL_ENGINES;
3736
3737	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3738
3739	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3740
3741	intel_engine_init_execlists(&ve->base);
3742
3743	ve->base.cops = &virtual_context_ops;
3744	ve->base.request_alloc = execlists_request_alloc;
3745
3746	ve->base.schedule = i915_schedule;
3747	ve->base.submit_request = virtual_submit_request;
3748	ve->base.bond_execute = virtual_bond_execute;
3749
3750	INIT_LIST_HEAD(virtual_queue(ve));
3751	ve->base.execlists.queue_priority_hint = INT_MIN;
3752	tasklet_init(&ve->base.execlists.tasklet,
3753		     virtual_submission_tasklet,
3754		     (unsigned long)ve);
3755
3756	intel_context_init(&ve->context, ctx, &ve->base);
3757
3758	for (n = 0; n < count; n++) {
3759		struct intel_engine_cs *sibling = siblings[n];
3760
3761		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3762		if (sibling->mask & ve->base.mask) {
3763			DRM_DEBUG("duplicate %s entry in load balancer\n",
3764				  sibling->name);
3765			err = -EINVAL;
3766			goto err_put;
3767		}
3768
3769		/*
3770		 * The virtual engine implementation is tightly coupled to
3771		 * the execlists backend -- we push out request directly
3772		 * into a tree inside each physical engine. We could support
3773		 * layering if we handle cloning of the requests and
3774		 * submitting a copy into each backend.
3775		 */
3776		if (sibling->execlists.tasklet.func !=
3777		    execlists_submission_tasklet) {
3778			err = -ENODEV;
3779			goto err_put;
3780		}
3781
3782		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3783		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3784
3785		ve->siblings[ve->num_siblings++] = sibling;
3786		ve->base.mask |= sibling->mask;
3787
3788		/*
3789		 * All physical engines must be compatible for their emission
3790		 * functions (as we build the instructions during request
3791		 * construction and do not alter them before submission
3792		 * on the physical engine). We use the engine class as a guide
3793		 * here, although that could be refined.
3794		 */
3795		if (ve->base.class != OTHER_CLASS) {
3796			if (ve->base.class != sibling->class) {
3797				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3798					  sibling->class, ve->base.class);
3799				err = -EINVAL;
3800				goto err_put;
3801			}
3802			continue;
3803		}
3804
3805		ve->base.class = sibling->class;
3806		ve->base.uabi_class = sibling->uabi_class;
3807		snprintf(ve->base.name, sizeof(ve->base.name),
3808			 "v%dx%d", ve->base.class, count);
3809		ve->base.context_size = sibling->context_size;
3810
3811		ve->base.emit_bb_start = sibling->emit_bb_start;
3812		ve->base.emit_flush = sibling->emit_flush;
3813		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3814		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3815		ve->base.emit_fini_breadcrumb_dw =
3816			sibling->emit_fini_breadcrumb_dw;
3817
3818		ve->base.flags = sibling->flags;
3819	}
3820
3821	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3822
3823	err = __execlists_context_alloc(&ve->context, siblings[0]);
3824	if (err)
3825		goto err_put;
3826
3827	__set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);
3828
3829	return &ve->context;
3830
3831err_put:
3832	intel_context_put(&ve->context);
3833	return ERR_PTR(err);
3834}
3835
3836struct intel_context *
3837intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3838			      struct intel_engine_cs *src)
3839{
3840	struct virtual_engine *se = to_virtual_engine(src);
3841	struct intel_context *dst;
3842
3843	dst = intel_execlists_create_virtual(ctx,
3844					     se->siblings,
3845					     se->num_siblings);
3846	if (IS_ERR(dst))
3847		return dst;
3848
3849	if (se->num_bonds) {
3850		struct virtual_engine *de = to_virtual_engine(dst->engine);
3851
3852		de->bonds = kmemdup(se->bonds,
3853				    sizeof(*se->bonds) * se->num_bonds,
3854				    GFP_KERNEL);
3855		if (!de->bonds) {
3856			intel_context_put(dst);
3857			return ERR_PTR(-ENOMEM);
3858		}
3859
3860		de->num_bonds = se->num_bonds;
3861	}
3862
3863	return dst;
3864}
3865
3866int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3867				     const struct intel_engine_cs *master,
3868				     const struct intel_engine_cs *sibling)
3869{
3870	struct virtual_engine *ve = to_virtual_engine(engine);
3871	struct ve_bond *bond;
3872	int n;
3873
3874	/* Sanity check the sibling is part of the virtual engine */
3875	for (n = 0; n < ve->num_siblings; n++)
3876		if (sibling == ve->siblings[n])
3877			break;
3878	if (n == ve->num_siblings)
3879		return -EINVAL;
3880
3881	bond = virtual_find_bond(ve, master);
3882	if (bond) {
3883		bond->sibling_mask |= sibling->mask;
3884		return 0;
3885	}
3886
3887	bond = krealloc(ve->bonds,
3888			sizeof(*bond) * (ve->num_bonds + 1),
3889			GFP_KERNEL);
3890	if (!bond)
3891		return -ENOMEM;
3892
3893	bond[ve->num_bonds].master = master;
3894	bond[ve->num_bonds].sibling_mask = sibling->mask;
3895
3896	ve->bonds = bond;
3897	ve->num_bonds++;
3898
3899	return 0;
3900}
3901
3902void intel_execlists_show_requests(struct intel_engine_cs *engine,
3903				   struct drm_printer *m,
3904				   void (*show_request)(struct drm_printer *m,
3905							struct i915_request *rq,
3906							const char *prefix),
3907				   unsigned int max)
3908{
3909	const struct intel_engine_execlists *execlists = &engine->execlists;
3910	struct i915_request *rq, *last;
3911	unsigned long flags;
3912	unsigned int count;
3913	struct rb_node *rb;
3914
3915	spin_lock_irqsave(&engine->active.lock, flags);
3916
3917	last = NULL;
3918	count = 0;
3919	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3920		if (count++ < max - 1)
3921			show_request(m, rq, "\t\tE ");
3922		else
3923			last = rq;
3924	}
3925	if (last) {
3926		if (count > max) {
3927			drm_printf(m,
3928				   "\t\t...skipping %d executing requests...\n",
3929				   count - max);
3930		}
3931		show_request(m, last, "\t\tE ");
3932	}
3933
3934	last = NULL;
3935	count = 0;
3936	if (execlists->queue_priority_hint != INT_MIN)
3937		drm_printf(m, "\t\tQueue priority hint: %d\n",
3938			   execlists->queue_priority_hint);
3939	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3940		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3941		int i;
3942
3943		priolist_for_each_request(rq, p, i) {
3944			if (count++ < max - 1)
3945				show_request(m, rq, "\t\tQ ");
3946			else
3947				last = rq;
3948		}
3949	}
3950	if (last) {
3951		if (count > max) {
3952			drm_printf(m,
3953				   "\t\t...skipping %d queued requests...\n",
3954				   count - max);
3955		}
3956		show_request(m, last, "\t\tQ ");
3957	}
3958
3959	last = NULL;
3960	count = 0;
3961	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3962		struct virtual_engine *ve =
3963			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3964		struct i915_request *rq = READ_ONCE(ve->request);
3965
3966		if (rq) {
3967			if (count++ < max - 1)
3968				show_request(m, rq, "\t\tV ");
3969			else
3970				last = rq;
3971		}
3972	}
3973	if (last) {
3974		if (count > max) {
3975			drm_printf(m,
3976				   "\t\t...skipping %d virtual requests...\n",
3977				   count - max);
3978		}
3979		show_request(m, last, "\t\tV ");
3980	}
3981
3982	spin_unlock_irqrestore(&engine->active.lock, flags);
3983}
3984
3985void intel_lr_context_reset(struct intel_engine_cs *engine,
3986			    struct intel_context *ce,
3987			    u32 head,
3988			    bool scrub)
3989{
3990	/*
3991	 * We want a simple context + ring to execute the breadcrumb update.
3992	 * We cannot rely on the context being intact across the GPU hang,
3993	 * so clear it and rebuild just what we need for the breadcrumb.
3994	 * All pending requests for this context will be zapped, and any
3995	 * future request will be after userspace has had the opportunity
3996	 * to recreate its own state.
3997	 */
3998	if (scrub) {
3999		u32 *regs = ce->lrc_reg_state;
4000
4001		if (engine->pinned_default_state) {
4002			memcpy(regs, /* skip restoring the vanilla PPHWSP */
4003			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
4004			       engine->context_size - PAGE_SIZE);
4005		}
4006		execlists_init_reg_state(regs, ce, engine, ce->ring);
4007	}
4008
4009	/* Rerun the request; its payload has been neutered (if guilty). */
4010	ce->ring->head = head;
4011	intel_ring_update_space(ce->ring);
4012
4013	__execlists_update_reg_state(ce, engine);
4014}
4015
4016#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4017#include "selftest_lrc.c"
4018#endif